1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/migrate.h> 43 #include <linux/delayacct.h> 44 #include <linux/sysctl.h> 45 #include <linux/memory-tiers.h> 46 #include <linux/oom.h> 47 #include <linux/pagevec.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 #include <linux/psi.h> 52 #include <linux/pagewalk.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/ctype.h> 55 #include <linux/debugfs.h> 56 #include <linux/khugepaged.h> 57 #include <linux/rculist_nulls.h> 58 #include <linux/random.h> 59 60 #include <asm/tlbflush.h> 61 #include <asm/div64.h> 62 63 #include <linux/swapops.h> 64 #include <linux/balloon_compaction.h> 65 #include <linux/sched/sysctl.h> 66 67 #include "internal.h" 68 #include "swap.h" 69 70 #define CREATE_TRACE_POINTS 71 #include <trace/events/vmscan.h> 72 73 struct scan_control { 74 /* How many pages shrink_list() should reclaim */ 75 unsigned long nr_to_reclaim; 76 77 /* 78 * Nodemask of nodes allowed by the caller. If NULL, all nodes 79 * are scanned. 80 */ 81 nodemask_t *nodemask; 82 83 /* 84 * The memory cgroup that hit its limit and as a result is the 85 * primary target of this reclaim invocation. 86 */ 87 struct mem_cgroup *target_mem_cgroup; 88 89 /* 90 * Scan pressure balancing between anon and file LRUs 91 */ 92 unsigned long anon_cost; 93 unsigned long file_cost; 94 95 #ifdef CONFIG_MEMCG 96 /* Swappiness value for proactive reclaim. Always use sc_swappiness()! */ 97 int *proactive_swappiness; 98 #endif 99 100 /* Can active folios be deactivated as part of reclaim? */ 101 #define DEACTIVATE_ANON 1 102 #define DEACTIVATE_FILE 2 103 unsigned int may_deactivate:2; 104 unsigned int force_deactivate:1; 105 unsigned int skipped_deactivate:1; 106 107 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 108 unsigned int may_writepage:1; 109 110 /* Can mapped folios be reclaimed? */ 111 unsigned int may_unmap:1; 112 113 /* Can folios be swapped as part of reclaim? */ 114 unsigned int may_swap:1; 115 116 /* Not allow cache_trim_mode to be turned on as part of reclaim? */ 117 unsigned int no_cache_trim_mode:1; 118 119 /* Has cache_trim_mode failed at least once? */ 120 unsigned int cache_trim_mode_failed:1; 121 122 /* Proactive reclaim invoked by userspace through memory.reclaim */ 123 unsigned int proactive:1; 124 125 /* 126 * Cgroup memory below memory.low is protected as long as we 127 * don't threaten to OOM. If any cgroup is reclaimed at 128 * reduced force or passed over entirely due to its memory.low 129 * setting (memcg_low_skipped), and nothing is reclaimed as a 130 * result, then go back for one more cycle that reclaims the protected 131 * memory (memcg_low_reclaim) to avert OOM. 132 */ 133 unsigned int memcg_low_reclaim:1; 134 unsigned int memcg_low_skipped:1; 135 136 /* Shared cgroup tree walk failed, rescan the whole tree */ 137 unsigned int memcg_full_walk:1; 138 139 unsigned int hibernation_mode:1; 140 141 /* One of the zones is ready for compaction */ 142 unsigned int compaction_ready:1; 143 144 /* There is easily reclaimable cold cache in the current node */ 145 unsigned int cache_trim_mode:1; 146 147 /* The file folios on the current node are dangerously low */ 148 unsigned int file_is_tiny:1; 149 150 /* Always discard instead of demoting to lower tier memory */ 151 unsigned int no_demotion:1; 152 153 /* Allocation order */ 154 s8 order; 155 156 /* Scan (total_size >> priority) pages at once */ 157 s8 priority; 158 159 /* The highest zone to isolate folios for reclaim from */ 160 s8 reclaim_idx; 161 162 /* This context's GFP mask */ 163 gfp_t gfp_mask; 164 165 /* Incremented by the number of inactive pages that were scanned */ 166 unsigned long nr_scanned; 167 168 /* Number of pages freed so far during a call to shrink_zones() */ 169 unsigned long nr_reclaimed; 170 171 struct { 172 unsigned int dirty; 173 unsigned int unqueued_dirty; 174 unsigned int congested; 175 unsigned int writeback; 176 unsigned int immediate; 177 unsigned int file_taken; 178 unsigned int taken; 179 } nr; 180 181 /* for recording the reclaimed slab by now */ 182 struct reclaim_state reclaim_state; 183 }; 184 185 #ifdef ARCH_HAS_PREFETCHW 186 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 187 do { \ 188 if ((_folio)->lru.prev != _base) { \ 189 struct folio *prev; \ 190 \ 191 prev = lru_to_folio(&(_folio->lru)); \ 192 prefetchw(&prev->_field); \ 193 } \ 194 } while (0) 195 #else 196 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 197 #endif 198 199 /* 200 * From 0 .. MAX_SWAPPINESS. Higher means more swappy. 201 */ 202 int vm_swappiness = 60; 203 204 #ifdef CONFIG_MEMCG 205 206 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */ 207 static bool cgroup_reclaim(struct scan_control *sc) 208 { 209 return sc->target_mem_cgroup; 210 } 211 212 /* 213 * Returns true for reclaim on the root cgroup. This is true for direct 214 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup. 215 */ 216 static bool root_reclaim(struct scan_control *sc) 217 { 218 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 219 } 220 221 /** 222 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 223 * @sc: scan_control in question 224 * 225 * The normal page dirty throttling mechanism in balance_dirty_pages() is 226 * completely broken with the legacy memcg and direct stalling in 227 * shrink_folio_list() is used for throttling instead, which lacks all the 228 * niceties such as fairness, adaptive pausing, bandwidth proportional 229 * allocation and configurability. 230 * 231 * This function tests whether the vmscan currently in progress can assume 232 * that the normal dirty throttling mechanism is operational. 233 */ 234 static bool writeback_throttling_sane(struct scan_control *sc) 235 { 236 if (!cgroup_reclaim(sc)) 237 return true; 238 #ifdef CONFIG_CGROUP_WRITEBACK 239 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 240 return true; 241 #endif 242 return false; 243 } 244 245 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 246 { 247 if (sc->proactive && sc->proactive_swappiness) 248 return *sc->proactive_swappiness; 249 return mem_cgroup_swappiness(memcg); 250 } 251 #else 252 static bool cgroup_reclaim(struct scan_control *sc) 253 { 254 return false; 255 } 256 257 static bool root_reclaim(struct scan_control *sc) 258 { 259 return true; 260 } 261 262 static bool writeback_throttling_sane(struct scan_control *sc) 263 { 264 return true; 265 } 266 267 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 268 { 269 return READ_ONCE(vm_swappiness); 270 } 271 #endif 272 273 static void set_task_reclaim_state(struct task_struct *task, 274 struct reclaim_state *rs) 275 { 276 /* Check for an overwrite */ 277 WARN_ON_ONCE(rs && task->reclaim_state); 278 279 /* Check for the nulling of an already-nulled member */ 280 WARN_ON_ONCE(!rs && !task->reclaim_state); 281 282 task->reclaim_state = rs; 283 } 284 285 /* 286 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to 287 * scan_control->nr_reclaimed. 288 */ 289 static void flush_reclaim_state(struct scan_control *sc) 290 { 291 /* 292 * Currently, reclaim_state->reclaimed includes three types of pages 293 * freed outside of vmscan: 294 * (1) Slab pages. 295 * (2) Clean file pages from pruned inodes (on highmem systems). 296 * (3) XFS freed buffer pages. 297 * 298 * For all of these cases, we cannot universally link the pages to a 299 * single memcg. For example, a memcg-aware shrinker can free one object 300 * charged to the target memcg, causing an entire page to be freed. 301 * If we count the entire page as reclaimed from the memcg, we end up 302 * overestimating the reclaimed amount (potentially under-reclaiming). 303 * 304 * Only count such pages for global reclaim to prevent under-reclaiming 305 * from the target memcg; preventing unnecessary retries during memcg 306 * charging and false positives from proactive reclaim. 307 * 308 * For uncommon cases where the freed pages were actually mostly 309 * charged to the target memcg, we end up underestimating the reclaimed 310 * amount. This should be fine. The freed pages will be uncharged 311 * anyway, even if they are not counted here properly, and we will be 312 * able to make forward progress in charging (which is usually in a 313 * retry loop). 314 * 315 * We can go one step further, and report the uncharged objcg pages in 316 * memcg reclaim, to make reporting more accurate and reduce 317 * underestimation, but it's probably not worth the complexity for now. 318 */ 319 if (current->reclaim_state && root_reclaim(sc)) { 320 sc->nr_reclaimed += current->reclaim_state->reclaimed; 321 current->reclaim_state->reclaimed = 0; 322 } 323 } 324 325 static bool can_demote(int nid, struct scan_control *sc) 326 { 327 if (!numa_demotion_enabled) 328 return false; 329 if (sc && sc->no_demotion) 330 return false; 331 if (next_demotion_node(nid) == NUMA_NO_NODE) 332 return false; 333 334 return true; 335 } 336 337 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 338 int nid, 339 struct scan_control *sc) 340 { 341 if (memcg == NULL) { 342 /* 343 * For non-memcg reclaim, is there 344 * space in any swap device? 345 */ 346 if (get_nr_swap_pages() > 0) 347 return true; 348 } else { 349 /* Is the memcg below its swap limit? */ 350 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 351 return true; 352 } 353 354 /* 355 * The page can not be swapped. 356 * 357 * Can it be reclaimed from this node via demotion? 358 */ 359 return can_demote(nid, sc); 360 } 361 362 /* 363 * This misses isolated folios which are not accounted for to save counters. 364 * As the data only determines if reclaim or compaction continues, it is 365 * not expected that isolated folios will be a dominating factor. 366 */ 367 unsigned long zone_reclaimable_pages(struct zone *zone) 368 { 369 unsigned long nr; 370 371 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 372 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 373 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 374 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 375 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 376 377 return nr; 378 } 379 380 /** 381 * lruvec_lru_size - Returns the number of pages on the given LRU list. 382 * @lruvec: lru vector 383 * @lru: lru to use 384 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 385 */ 386 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 387 int zone_idx) 388 { 389 unsigned long size = 0; 390 int zid; 391 392 for (zid = 0; zid <= zone_idx; zid++) { 393 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 394 395 if (!managed_zone(zone)) 396 continue; 397 398 if (!mem_cgroup_disabled()) 399 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 400 else 401 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 402 } 403 return size; 404 } 405 406 static unsigned long drop_slab_node(int nid) 407 { 408 unsigned long freed = 0; 409 struct mem_cgroup *memcg = NULL; 410 411 memcg = mem_cgroup_iter(NULL, NULL, NULL); 412 do { 413 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 414 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 415 416 return freed; 417 } 418 419 void drop_slab(void) 420 { 421 int nid; 422 int shift = 0; 423 unsigned long freed; 424 425 do { 426 freed = 0; 427 for_each_online_node(nid) { 428 if (fatal_signal_pending(current)) 429 return; 430 431 freed += drop_slab_node(nid); 432 } 433 } while ((freed >> shift++) > 1); 434 } 435 436 static int reclaimer_offset(void) 437 { 438 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 439 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD); 440 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 441 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD); 442 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 443 PGSCAN_DIRECT - PGSCAN_KSWAPD); 444 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 445 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD); 446 447 if (current_is_kswapd()) 448 return 0; 449 if (current_is_khugepaged()) 450 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 451 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 452 } 453 454 static inline int is_page_cache_freeable(struct folio *folio) 455 { 456 /* 457 * A freeable page cache folio is referenced only by the caller 458 * that isolated the folio, the page cache and optional filesystem 459 * private data at folio->private. 460 */ 461 return folio_ref_count(folio) - folio_test_private(folio) == 462 1 + folio_nr_pages(folio); 463 } 464 465 /* 466 * We detected a synchronous write error writing a folio out. Probably 467 * -ENOSPC. We need to propagate that into the address_space for a subsequent 468 * fsync(), msync() or close(). 469 * 470 * The tricky part is that after writepage we cannot touch the mapping: nothing 471 * prevents it from being freed up. But we have a ref on the folio and once 472 * that folio is locked, the mapping is pinned. 473 * 474 * We're allowed to run sleeping folio_lock() here because we know the caller has 475 * __GFP_FS. 476 */ 477 static void handle_write_error(struct address_space *mapping, 478 struct folio *folio, int error) 479 { 480 folio_lock(folio); 481 if (folio_mapping(folio) == mapping) 482 mapping_set_error(mapping, error); 483 folio_unlock(folio); 484 } 485 486 static bool skip_throttle_noprogress(pg_data_t *pgdat) 487 { 488 int reclaimable = 0, write_pending = 0; 489 int i; 490 491 /* 492 * If kswapd is disabled, reschedule if necessary but do not 493 * throttle as the system is likely near OOM. 494 */ 495 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 496 return true; 497 498 /* 499 * If there are a lot of dirty/writeback folios then do not 500 * throttle as throttling will occur when the folios cycle 501 * towards the end of the LRU if still under writeback. 502 */ 503 for (i = 0; i < MAX_NR_ZONES; i++) { 504 struct zone *zone = pgdat->node_zones + i; 505 506 if (!managed_zone(zone)) 507 continue; 508 509 reclaimable += zone_reclaimable_pages(zone); 510 write_pending += zone_page_state_snapshot(zone, 511 NR_ZONE_WRITE_PENDING); 512 } 513 if (2 * write_pending <= reclaimable) 514 return true; 515 516 return false; 517 } 518 519 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 520 { 521 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 522 long timeout, ret; 523 DEFINE_WAIT(wait); 524 525 /* 526 * Do not throttle user workers, kthreads other than kswapd or 527 * workqueues. They may be required for reclaim to make 528 * forward progress (e.g. journalling workqueues or kthreads). 529 */ 530 if (!current_is_kswapd() && 531 current->flags & (PF_USER_WORKER|PF_KTHREAD)) { 532 cond_resched(); 533 return; 534 } 535 536 /* 537 * These figures are pulled out of thin air. 538 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 539 * parallel reclaimers which is a short-lived event so the timeout is 540 * short. Failing to make progress or waiting on writeback are 541 * potentially long-lived events so use a longer timeout. This is shaky 542 * logic as a failure to make progress could be due to anything from 543 * writeback to a slow device to excessive referenced folios at the tail 544 * of the inactive LRU. 545 */ 546 switch(reason) { 547 case VMSCAN_THROTTLE_WRITEBACK: 548 timeout = HZ/10; 549 550 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 551 WRITE_ONCE(pgdat->nr_reclaim_start, 552 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 553 } 554 555 break; 556 case VMSCAN_THROTTLE_CONGESTED: 557 fallthrough; 558 case VMSCAN_THROTTLE_NOPROGRESS: 559 if (skip_throttle_noprogress(pgdat)) { 560 cond_resched(); 561 return; 562 } 563 564 timeout = 1; 565 566 break; 567 case VMSCAN_THROTTLE_ISOLATED: 568 timeout = HZ/50; 569 break; 570 default: 571 WARN_ON_ONCE(1); 572 timeout = HZ; 573 break; 574 } 575 576 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 577 ret = schedule_timeout(timeout); 578 finish_wait(wqh, &wait); 579 580 if (reason == VMSCAN_THROTTLE_WRITEBACK) 581 atomic_dec(&pgdat->nr_writeback_throttled); 582 583 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 584 jiffies_to_usecs(timeout - ret), 585 reason); 586 } 587 588 /* 589 * Account for folios written if tasks are throttled waiting on dirty 590 * folios to clean. If enough folios have been cleaned since throttling 591 * started then wakeup the throttled tasks. 592 */ 593 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 594 int nr_throttled) 595 { 596 unsigned long nr_written; 597 598 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 599 600 /* 601 * This is an inaccurate read as the per-cpu deltas may not 602 * be synchronised. However, given that the system is 603 * writeback throttled, it is not worth taking the penalty 604 * of getting an accurate count. At worst, the throttle 605 * timeout guarantees forward progress. 606 */ 607 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 608 READ_ONCE(pgdat->nr_reclaim_start); 609 610 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 611 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 612 } 613 614 /* possible outcome of pageout() */ 615 typedef enum { 616 /* failed to write folio out, folio is locked */ 617 PAGE_KEEP, 618 /* move folio to the active list, folio is locked */ 619 PAGE_ACTIVATE, 620 /* folio has been sent to the disk successfully, folio is unlocked */ 621 PAGE_SUCCESS, 622 /* folio is clean and locked */ 623 PAGE_CLEAN, 624 } pageout_t; 625 626 /* 627 * pageout is called by shrink_folio_list() for each dirty folio. 628 * Calls ->writepage(). 629 */ 630 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 631 struct swap_iocb **plug, struct list_head *folio_list) 632 { 633 /* 634 * If the folio is dirty, only perform writeback if that write 635 * will be non-blocking. To prevent this allocation from being 636 * stalled by pagecache activity. But note that there may be 637 * stalls if we need to run get_block(). We could test 638 * PagePrivate for that. 639 * 640 * If this process is currently in __generic_file_write_iter() against 641 * this folio's queue, we can perform writeback even if that 642 * will block. 643 * 644 * If the folio is swapcache, write it back even if that would 645 * block, for some throttling. This happens by accident, because 646 * swap_backing_dev_info is bust: it doesn't reflect the 647 * congestion state of the swapdevs. Easy to fix, if needed. 648 */ 649 if (!is_page_cache_freeable(folio)) 650 return PAGE_KEEP; 651 if (!mapping) { 652 /* 653 * Some data journaling orphaned folios can have 654 * folio->mapping == NULL while being dirty with clean buffers. 655 */ 656 if (folio_test_private(folio)) { 657 if (try_to_free_buffers(folio)) { 658 folio_clear_dirty(folio); 659 pr_info("%s: orphaned folio\n", __func__); 660 return PAGE_CLEAN; 661 } 662 } 663 return PAGE_KEEP; 664 } 665 if (mapping->a_ops->writepage == NULL) 666 return PAGE_ACTIVATE; 667 668 if (folio_clear_dirty_for_io(folio)) { 669 int res; 670 struct writeback_control wbc = { 671 .sync_mode = WB_SYNC_NONE, 672 .nr_to_write = SWAP_CLUSTER_MAX, 673 .range_start = 0, 674 .range_end = LLONG_MAX, 675 .for_reclaim = 1, 676 .swap_plug = plug, 677 }; 678 679 /* 680 * The large shmem folio can be split if CONFIG_THP_SWAP is 681 * not enabled or contiguous swap entries are failed to 682 * allocate. 683 */ 684 if (shmem_mapping(mapping) && folio_test_large(folio)) 685 wbc.list = folio_list; 686 687 folio_set_reclaim(folio); 688 res = mapping->a_ops->writepage(&folio->page, &wbc); 689 if (res < 0) 690 handle_write_error(mapping, folio, res); 691 if (res == AOP_WRITEPAGE_ACTIVATE) { 692 folio_clear_reclaim(folio); 693 return PAGE_ACTIVATE; 694 } 695 696 if (!folio_test_writeback(folio)) { 697 /* synchronous write or broken a_ops? */ 698 folio_clear_reclaim(folio); 699 } 700 trace_mm_vmscan_write_folio(folio); 701 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 702 return PAGE_SUCCESS; 703 } 704 705 return PAGE_CLEAN; 706 } 707 708 /* 709 * Same as remove_mapping, but if the folio is removed from the mapping, it 710 * gets returned with a refcount of 0. 711 */ 712 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 713 bool reclaimed, struct mem_cgroup *target_memcg) 714 { 715 int refcount; 716 void *shadow = NULL; 717 718 BUG_ON(!folio_test_locked(folio)); 719 BUG_ON(mapping != folio_mapping(folio)); 720 721 if (!folio_test_swapcache(folio)) 722 spin_lock(&mapping->host->i_lock); 723 xa_lock_irq(&mapping->i_pages); 724 /* 725 * The non racy check for a busy folio. 726 * 727 * Must be careful with the order of the tests. When someone has 728 * a ref to the folio, it may be possible that they dirty it then 729 * drop the reference. So if the dirty flag is tested before the 730 * refcount here, then the following race may occur: 731 * 732 * get_user_pages(&page); 733 * [user mapping goes away] 734 * write_to(page); 735 * !folio_test_dirty(folio) [good] 736 * folio_set_dirty(folio); 737 * folio_put(folio); 738 * !refcount(folio) [good, discard it] 739 * 740 * [oops, our write_to data is lost] 741 * 742 * Reversing the order of the tests ensures such a situation cannot 743 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 744 * load is not satisfied before that of folio->_refcount. 745 * 746 * Note that if the dirty flag is always set via folio_mark_dirty, 747 * and thus under the i_pages lock, then this ordering is not required. 748 */ 749 refcount = 1 + folio_nr_pages(folio); 750 if (!folio_ref_freeze(folio, refcount)) 751 goto cannot_free; 752 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 753 if (unlikely(folio_test_dirty(folio))) { 754 folio_ref_unfreeze(folio, refcount); 755 goto cannot_free; 756 } 757 758 if (folio_test_swapcache(folio)) { 759 swp_entry_t swap = folio->swap; 760 761 if (reclaimed && !mapping_exiting(mapping)) 762 shadow = workingset_eviction(folio, target_memcg); 763 __delete_from_swap_cache(folio, swap, shadow); 764 mem_cgroup_swapout(folio, swap); 765 xa_unlock_irq(&mapping->i_pages); 766 put_swap_folio(folio, swap); 767 } else { 768 void (*free_folio)(struct folio *); 769 770 free_folio = mapping->a_ops->free_folio; 771 /* 772 * Remember a shadow entry for reclaimed file cache in 773 * order to detect refaults, thus thrashing, later on. 774 * 775 * But don't store shadows in an address space that is 776 * already exiting. This is not just an optimization, 777 * inode reclaim needs to empty out the radix tree or 778 * the nodes are lost. Don't plant shadows behind its 779 * back. 780 * 781 * We also don't store shadows for DAX mappings because the 782 * only page cache folios found in these are zero pages 783 * covering holes, and because we don't want to mix DAX 784 * exceptional entries and shadow exceptional entries in the 785 * same address_space. 786 */ 787 if (reclaimed && folio_is_file_lru(folio) && 788 !mapping_exiting(mapping) && !dax_mapping(mapping)) 789 shadow = workingset_eviction(folio, target_memcg); 790 __filemap_remove_folio(folio, shadow); 791 xa_unlock_irq(&mapping->i_pages); 792 if (mapping_shrinkable(mapping)) 793 inode_add_lru(mapping->host); 794 spin_unlock(&mapping->host->i_lock); 795 796 if (free_folio) 797 free_folio(folio); 798 } 799 800 return 1; 801 802 cannot_free: 803 xa_unlock_irq(&mapping->i_pages); 804 if (!folio_test_swapcache(folio)) 805 spin_unlock(&mapping->host->i_lock); 806 return 0; 807 } 808 809 /** 810 * remove_mapping() - Attempt to remove a folio from its mapping. 811 * @mapping: The address space. 812 * @folio: The folio to remove. 813 * 814 * If the folio is dirty, under writeback or if someone else has a ref 815 * on it, removal will fail. 816 * Return: The number of pages removed from the mapping. 0 if the folio 817 * could not be removed. 818 * Context: The caller should have a single refcount on the folio and 819 * hold its lock. 820 */ 821 long remove_mapping(struct address_space *mapping, struct folio *folio) 822 { 823 if (__remove_mapping(mapping, folio, false, NULL)) { 824 /* 825 * Unfreezing the refcount with 1 effectively 826 * drops the pagecache ref for us without requiring another 827 * atomic operation. 828 */ 829 folio_ref_unfreeze(folio, 1); 830 return folio_nr_pages(folio); 831 } 832 return 0; 833 } 834 835 /** 836 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 837 * @folio: Folio to be returned to an LRU list. 838 * 839 * Add previously isolated @folio to appropriate LRU list. 840 * The folio may still be unevictable for other reasons. 841 * 842 * Context: lru_lock must not be held, interrupts must be enabled. 843 */ 844 void folio_putback_lru(struct folio *folio) 845 { 846 folio_add_lru(folio); 847 folio_put(folio); /* drop ref from isolate */ 848 } 849 850 enum folio_references { 851 FOLIOREF_RECLAIM, 852 FOLIOREF_RECLAIM_CLEAN, 853 FOLIOREF_KEEP, 854 FOLIOREF_ACTIVATE, 855 }; 856 857 static enum folio_references folio_check_references(struct folio *folio, 858 struct scan_control *sc) 859 { 860 int referenced_ptes, referenced_folio; 861 unsigned long vm_flags; 862 863 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 864 &vm_flags); 865 referenced_folio = folio_test_clear_referenced(folio); 866 867 /* 868 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 869 * Let the folio, now marked Mlocked, be moved to the unevictable list. 870 */ 871 if (vm_flags & VM_LOCKED) 872 return FOLIOREF_ACTIVATE; 873 874 /* 875 * There are two cases to consider. 876 * 1) Rmap lock contention: rotate. 877 * 2) Skip the non-shared swapbacked folio mapped solely by 878 * the exiting or OOM-reaped process. 879 */ 880 if (referenced_ptes == -1) 881 return FOLIOREF_KEEP; 882 883 if (referenced_ptes) { 884 /* 885 * All mapped folios start out with page table 886 * references from the instantiating fault, so we need 887 * to look twice if a mapped file/anon folio is used more 888 * than once. 889 * 890 * Mark it and spare it for another trip around the 891 * inactive list. Another page table reference will 892 * lead to its activation. 893 * 894 * Note: the mark is set for activated folios as well 895 * so that recently deactivated but used folios are 896 * quickly recovered. 897 */ 898 folio_set_referenced(folio); 899 900 if (referenced_folio || referenced_ptes > 1) 901 return FOLIOREF_ACTIVATE; 902 903 /* 904 * Activate file-backed executable folios after first usage. 905 */ 906 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 907 return FOLIOREF_ACTIVATE; 908 909 return FOLIOREF_KEEP; 910 } 911 912 /* Reclaim if clean, defer dirty folios to writeback */ 913 if (referenced_folio && folio_is_file_lru(folio)) 914 return FOLIOREF_RECLAIM_CLEAN; 915 916 return FOLIOREF_RECLAIM; 917 } 918 919 /* Check if a folio is dirty or under writeback */ 920 static void folio_check_dirty_writeback(struct folio *folio, 921 bool *dirty, bool *writeback) 922 { 923 struct address_space *mapping; 924 925 /* 926 * Anonymous folios are not handled by flushers and must be written 927 * from reclaim context. Do not stall reclaim based on them. 928 * MADV_FREE anonymous folios are put into inactive file list too. 929 * They could be mistakenly treated as file lru. So further anon 930 * test is needed. 931 */ 932 if (!folio_is_file_lru(folio) || 933 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 934 *dirty = false; 935 *writeback = false; 936 return; 937 } 938 939 /* By default assume that the folio flags are accurate */ 940 *dirty = folio_test_dirty(folio); 941 *writeback = folio_test_writeback(folio); 942 943 /* Verify dirty/writeback state if the filesystem supports it */ 944 if (!folio_test_private(folio)) 945 return; 946 947 mapping = folio_mapping(folio); 948 if (mapping && mapping->a_ops->is_dirty_writeback) 949 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 950 } 951 952 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private) 953 { 954 struct folio *dst; 955 nodemask_t *allowed_mask; 956 struct migration_target_control *mtc; 957 958 mtc = (struct migration_target_control *)private; 959 960 allowed_mask = mtc->nmask; 961 /* 962 * make sure we allocate from the target node first also trying to 963 * demote or reclaim pages from the target node via kswapd if we are 964 * low on free memory on target node. If we don't do this and if 965 * we have free memory on the slower(lower) memtier, we would start 966 * allocating pages from slower(lower) memory tiers without even forcing 967 * a demotion of cold pages from the target memtier. This can result 968 * in the kernel placing hot pages in slower(lower) memory tiers. 969 */ 970 mtc->nmask = NULL; 971 mtc->gfp_mask |= __GFP_THISNODE; 972 dst = alloc_migration_target(src, (unsigned long)mtc); 973 if (dst) 974 return dst; 975 976 mtc->gfp_mask &= ~__GFP_THISNODE; 977 mtc->nmask = allowed_mask; 978 979 return alloc_migration_target(src, (unsigned long)mtc); 980 } 981 982 /* 983 * Take folios on @demote_folios and attempt to demote them to another node. 984 * Folios which are not demoted are left on @demote_folios. 985 */ 986 static unsigned int demote_folio_list(struct list_head *demote_folios, 987 struct pglist_data *pgdat) 988 { 989 int target_nid = next_demotion_node(pgdat->node_id); 990 unsigned int nr_succeeded; 991 nodemask_t allowed_mask; 992 993 struct migration_target_control mtc = { 994 /* 995 * Allocate from 'node', or fail quickly and quietly. 996 * When this happens, 'page' will likely just be discarded 997 * instead of migrated. 998 */ 999 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 1000 __GFP_NOMEMALLOC | GFP_NOWAIT, 1001 .nid = target_nid, 1002 .nmask = &allowed_mask, 1003 .reason = MR_DEMOTION, 1004 }; 1005 1006 if (list_empty(demote_folios)) 1007 return 0; 1008 1009 if (target_nid == NUMA_NO_NODE) 1010 return 0; 1011 1012 node_get_allowed_targets(pgdat, &allowed_mask); 1013 1014 /* Demotion ignores all cpuset and mempolicy settings */ 1015 migrate_pages(demote_folios, alloc_migrate_folio, NULL, 1016 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1017 &nr_succeeded); 1018 1019 return nr_succeeded; 1020 } 1021 1022 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1023 { 1024 if (gfp_mask & __GFP_FS) 1025 return true; 1026 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1027 return false; 1028 /* 1029 * We can "enter_fs" for swap-cache with only __GFP_IO 1030 * providing this isn't SWP_FS_OPS. 1031 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1032 * but that will never affect SWP_FS_OPS, so the data_race 1033 * is safe. 1034 */ 1035 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1036 } 1037 1038 /* 1039 * shrink_folio_list() returns the number of reclaimed pages 1040 */ 1041 static unsigned int shrink_folio_list(struct list_head *folio_list, 1042 struct pglist_data *pgdat, struct scan_control *sc, 1043 struct reclaim_stat *stat, bool ignore_references) 1044 { 1045 struct folio_batch free_folios; 1046 LIST_HEAD(ret_folios); 1047 LIST_HEAD(demote_folios); 1048 unsigned int nr_reclaimed = 0; 1049 unsigned int pgactivate = 0; 1050 bool do_demote_pass; 1051 struct swap_iocb *plug = NULL; 1052 1053 folio_batch_init(&free_folios); 1054 memset(stat, 0, sizeof(*stat)); 1055 cond_resched(); 1056 do_demote_pass = can_demote(pgdat->node_id, sc); 1057 1058 retry: 1059 while (!list_empty(folio_list)) { 1060 struct address_space *mapping; 1061 struct folio *folio; 1062 enum folio_references references = FOLIOREF_RECLAIM; 1063 bool dirty, writeback; 1064 unsigned int nr_pages; 1065 1066 cond_resched(); 1067 1068 folio = lru_to_folio(folio_list); 1069 list_del(&folio->lru); 1070 1071 if (!folio_trylock(folio)) 1072 goto keep; 1073 1074 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1075 1076 nr_pages = folio_nr_pages(folio); 1077 1078 /* Account the number of base pages */ 1079 sc->nr_scanned += nr_pages; 1080 1081 if (unlikely(!folio_evictable(folio))) 1082 goto activate_locked; 1083 1084 if (!sc->may_unmap && folio_mapped(folio)) 1085 goto keep_locked; 1086 1087 /* folio_update_gen() tried to promote this page? */ 1088 if (lru_gen_enabled() && !ignore_references && 1089 folio_mapped(folio) && folio_test_referenced(folio)) 1090 goto keep_locked; 1091 1092 /* 1093 * The number of dirty pages determines if a node is marked 1094 * reclaim_congested. kswapd will stall and start writing 1095 * folios if the tail of the LRU is all dirty unqueued folios. 1096 */ 1097 folio_check_dirty_writeback(folio, &dirty, &writeback); 1098 if (dirty || writeback) 1099 stat->nr_dirty += nr_pages; 1100 1101 if (dirty && !writeback) 1102 stat->nr_unqueued_dirty += nr_pages; 1103 1104 /* 1105 * Treat this folio as congested if folios are cycling 1106 * through the LRU so quickly that the folios marked 1107 * for immediate reclaim are making it to the end of 1108 * the LRU a second time. 1109 */ 1110 if (writeback && folio_test_reclaim(folio)) 1111 stat->nr_congested += nr_pages; 1112 1113 /* 1114 * If a folio at the tail of the LRU is under writeback, there 1115 * are three cases to consider. 1116 * 1117 * 1) If reclaim is encountering an excessive number 1118 * of folios under writeback and this folio has both 1119 * the writeback and reclaim flags set, then it 1120 * indicates that folios are being queued for I/O but 1121 * are being recycled through the LRU before the I/O 1122 * can complete. Waiting on the folio itself risks an 1123 * indefinite stall if it is impossible to writeback 1124 * the folio due to I/O error or disconnected storage 1125 * so instead note that the LRU is being scanned too 1126 * quickly and the caller can stall after the folio 1127 * list has been processed. 1128 * 1129 * 2) Global or new memcg reclaim encounters a folio that is 1130 * not marked for immediate reclaim, or the caller does not 1131 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1132 * not to fs). In this case mark the folio for immediate 1133 * reclaim and continue scanning. 1134 * 1135 * Require may_enter_fs() because we would wait on fs, which 1136 * may not have submitted I/O yet. And the loop driver might 1137 * enter reclaim, and deadlock if it waits on a folio for 1138 * which it is needed to do the write (loop masks off 1139 * __GFP_IO|__GFP_FS for this reason); but more thought 1140 * would probably show more reasons. 1141 * 1142 * 3) Legacy memcg encounters a folio that already has the 1143 * reclaim flag set. memcg does not have any dirty folio 1144 * throttling so we could easily OOM just because too many 1145 * folios are in writeback and there is nothing else to 1146 * reclaim. Wait for the writeback to complete. 1147 * 1148 * In cases 1) and 2) we activate the folios to get them out of 1149 * the way while we continue scanning for clean folios on the 1150 * inactive list and refilling from the active list. The 1151 * observation here is that waiting for disk writes is more 1152 * expensive than potentially causing reloads down the line. 1153 * Since they're marked for immediate reclaim, they won't put 1154 * memory pressure on the cache working set any longer than it 1155 * takes to write them to disk. 1156 */ 1157 if (folio_test_writeback(folio)) { 1158 /* Case 1 above */ 1159 if (current_is_kswapd() && 1160 folio_test_reclaim(folio) && 1161 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1162 stat->nr_immediate += nr_pages; 1163 goto activate_locked; 1164 1165 /* Case 2 above */ 1166 } else if (writeback_throttling_sane(sc) || 1167 !folio_test_reclaim(folio) || 1168 !may_enter_fs(folio, sc->gfp_mask)) { 1169 /* 1170 * This is slightly racy - 1171 * folio_end_writeback() might have 1172 * just cleared the reclaim flag, then 1173 * setting the reclaim flag here ends up 1174 * interpreted as the readahead flag - but 1175 * that does not matter enough to care. 1176 * What we do want is for this folio to 1177 * have the reclaim flag set next time 1178 * memcg reclaim reaches the tests above, 1179 * so it will then wait for writeback to 1180 * avoid OOM; and it's also appropriate 1181 * in global reclaim. 1182 */ 1183 folio_set_reclaim(folio); 1184 stat->nr_writeback += nr_pages; 1185 goto activate_locked; 1186 1187 /* Case 3 above */ 1188 } else { 1189 folio_unlock(folio); 1190 folio_wait_writeback(folio); 1191 /* then go back and try same folio again */ 1192 list_add_tail(&folio->lru, folio_list); 1193 continue; 1194 } 1195 } 1196 1197 if (!ignore_references) 1198 references = folio_check_references(folio, sc); 1199 1200 switch (references) { 1201 case FOLIOREF_ACTIVATE: 1202 goto activate_locked; 1203 case FOLIOREF_KEEP: 1204 stat->nr_ref_keep += nr_pages; 1205 goto keep_locked; 1206 case FOLIOREF_RECLAIM: 1207 case FOLIOREF_RECLAIM_CLEAN: 1208 ; /* try to reclaim the folio below */ 1209 } 1210 1211 /* 1212 * Before reclaiming the folio, try to relocate 1213 * its contents to another node. 1214 */ 1215 if (do_demote_pass && 1216 (thp_migration_supported() || !folio_test_large(folio))) { 1217 list_add(&folio->lru, &demote_folios); 1218 folio_unlock(folio); 1219 continue; 1220 } 1221 1222 /* 1223 * Anonymous process memory has backing store? 1224 * Try to allocate it some swap space here. 1225 * Lazyfree folio could be freed directly 1226 */ 1227 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1228 if (!folio_test_swapcache(folio)) { 1229 if (!(sc->gfp_mask & __GFP_IO)) 1230 goto keep_locked; 1231 if (folio_maybe_dma_pinned(folio)) 1232 goto keep_locked; 1233 if (folio_test_large(folio)) { 1234 /* cannot split folio, skip it */ 1235 if (!can_split_folio(folio, 1, NULL)) 1236 goto activate_locked; 1237 /* 1238 * Split partially mapped folios right away. 1239 * We can free the unmapped pages without IO. 1240 */ 1241 if (data_race(!list_empty(&folio->_deferred_list) && 1242 folio_test_partially_mapped(folio)) && 1243 split_folio_to_list(folio, folio_list)) 1244 goto activate_locked; 1245 } 1246 if (!add_to_swap(folio)) { 1247 int __maybe_unused order = folio_order(folio); 1248 1249 if (!folio_test_large(folio)) 1250 goto activate_locked_split; 1251 /* Fallback to swap normal pages */ 1252 if (split_folio_to_list(folio, folio_list)) 1253 goto activate_locked; 1254 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1255 if (nr_pages >= HPAGE_PMD_NR) { 1256 count_memcg_folio_events(folio, 1257 THP_SWPOUT_FALLBACK, 1); 1258 count_vm_event(THP_SWPOUT_FALLBACK); 1259 } 1260 count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK); 1261 #endif 1262 if (!add_to_swap(folio)) 1263 goto activate_locked_split; 1264 } 1265 } 1266 } 1267 1268 /* 1269 * If the folio was split above, the tail pages will make 1270 * their own pass through this function and be accounted 1271 * then. 1272 */ 1273 if ((nr_pages > 1) && !folio_test_large(folio)) { 1274 sc->nr_scanned -= (nr_pages - 1); 1275 nr_pages = 1; 1276 } 1277 1278 /* 1279 * The folio is mapped into the page tables of one or more 1280 * processes. Try to unmap it here. 1281 */ 1282 if (folio_mapped(folio)) { 1283 enum ttu_flags flags = TTU_BATCH_FLUSH; 1284 bool was_swapbacked = folio_test_swapbacked(folio); 1285 1286 if (folio_test_pmd_mappable(folio)) 1287 flags |= TTU_SPLIT_HUGE_PMD; 1288 /* 1289 * Without TTU_SYNC, try_to_unmap will only begin to 1290 * hold PTL from the first present PTE within a large 1291 * folio. Some initial PTEs might be skipped due to 1292 * races with parallel PTE writes in which PTEs can be 1293 * cleared temporarily before being written new present 1294 * values. This will lead to a large folio is still 1295 * mapped while some subpages have been partially 1296 * unmapped after try_to_unmap; TTU_SYNC helps 1297 * try_to_unmap acquire PTL from the first PTE, 1298 * eliminating the influence of temporary PTE values. 1299 */ 1300 if (folio_test_large(folio)) 1301 flags |= TTU_SYNC; 1302 1303 try_to_unmap(folio, flags); 1304 if (folio_mapped(folio)) { 1305 stat->nr_unmap_fail += nr_pages; 1306 if (!was_swapbacked && 1307 folio_test_swapbacked(folio)) 1308 stat->nr_lazyfree_fail += nr_pages; 1309 goto activate_locked; 1310 } 1311 } 1312 1313 /* 1314 * Folio is unmapped now so it cannot be newly pinned anymore. 1315 * No point in trying to reclaim folio if it is pinned. 1316 * Furthermore we don't want to reclaim underlying fs metadata 1317 * if the folio is pinned and thus potentially modified by the 1318 * pinning process as that may upset the filesystem. 1319 */ 1320 if (folio_maybe_dma_pinned(folio)) 1321 goto activate_locked; 1322 1323 mapping = folio_mapping(folio); 1324 if (folio_test_dirty(folio)) { 1325 /* 1326 * Only kswapd can writeback filesystem folios 1327 * to avoid risk of stack overflow. But avoid 1328 * injecting inefficient single-folio I/O into 1329 * flusher writeback as much as possible: only 1330 * write folios when we've encountered many 1331 * dirty folios, and when we've already scanned 1332 * the rest of the LRU for clean folios and see 1333 * the same dirty folios again (with the reclaim 1334 * flag set). 1335 */ 1336 if (folio_is_file_lru(folio) && 1337 (!current_is_kswapd() || 1338 !folio_test_reclaim(folio) || 1339 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1340 /* 1341 * Immediately reclaim when written back. 1342 * Similar in principle to folio_deactivate() 1343 * except we already have the folio isolated 1344 * and know it's dirty 1345 */ 1346 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1347 nr_pages); 1348 folio_set_reclaim(folio); 1349 1350 goto activate_locked; 1351 } 1352 1353 if (references == FOLIOREF_RECLAIM_CLEAN) 1354 goto keep_locked; 1355 if (!may_enter_fs(folio, sc->gfp_mask)) 1356 goto keep_locked; 1357 if (!sc->may_writepage) 1358 goto keep_locked; 1359 1360 /* 1361 * Folio is dirty. Flush the TLB if a writable entry 1362 * potentially exists to avoid CPU writes after I/O 1363 * starts and then write it out here. 1364 */ 1365 try_to_unmap_flush_dirty(); 1366 switch (pageout(folio, mapping, &plug, folio_list)) { 1367 case PAGE_KEEP: 1368 goto keep_locked; 1369 case PAGE_ACTIVATE: 1370 /* 1371 * If shmem folio is split when writeback to swap, 1372 * the tail pages will make their own pass through 1373 * this function and be accounted then. 1374 */ 1375 if (nr_pages > 1 && !folio_test_large(folio)) { 1376 sc->nr_scanned -= (nr_pages - 1); 1377 nr_pages = 1; 1378 } 1379 goto activate_locked; 1380 case PAGE_SUCCESS: 1381 if (nr_pages > 1 && !folio_test_large(folio)) { 1382 sc->nr_scanned -= (nr_pages - 1); 1383 nr_pages = 1; 1384 } 1385 stat->nr_pageout += nr_pages; 1386 1387 if (folio_test_writeback(folio)) 1388 goto keep; 1389 if (folio_test_dirty(folio)) 1390 goto keep; 1391 1392 /* 1393 * A synchronous write - probably a ramdisk. Go 1394 * ahead and try to reclaim the folio. 1395 */ 1396 if (!folio_trylock(folio)) 1397 goto keep; 1398 if (folio_test_dirty(folio) || 1399 folio_test_writeback(folio)) 1400 goto keep_locked; 1401 mapping = folio_mapping(folio); 1402 fallthrough; 1403 case PAGE_CLEAN: 1404 ; /* try to free the folio below */ 1405 } 1406 } 1407 1408 /* 1409 * If the folio has buffers, try to free the buffer 1410 * mappings associated with this folio. If we succeed 1411 * we try to free the folio as well. 1412 * 1413 * We do this even if the folio is dirty. 1414 * filemap_release_folio() does not perform I/O, but it 1415 * is possible for a folio to have the dirty flag set, 1416 * but it is actually clean (all its buffers are clean). 1417 * This happens if the buffers were written out directly, 1418 * with submit_bh(). ext3 will do this, as well as 1419 * the blockdev mapping. filemap_release_folio() will 1420 * discover that cleanness and will drop the buffers 1421 * and mark the folio clean - it can be freed. 1422 * 1423 * Rarely, folios can have buffers and no ->mapping. 1424 * These are the folios which were not successfully 1425 * invalidated in truncate_cleanup_folio(). We try to 1426 * drop those buffers here and if that worked, and the 1427 * folio is no longer mapped into process address space 1428 * (refcount == 1) it can be freed. Otherwise, leave 1429 * the folio on the LRU so it is swappable. 1430 */ 1431 if (folio_needs_release(folio)) { 1432 if (!filemap_release_folio(folio, sc->gfp_mask)) 1433 goto activate_locked; 1434 if (!mapping && folio_ref_count(folio) == 1) { 1435 folio_unlock(folio); 1436 if (folio_put_testzero(folio)) 1437 goto free_it; 1438 else { 1439 /* 1440 * rare race with speculative reference. 1441 * the speculative reference will free 1442 * this folio shortly, so we may 1443 * increment nr_reclaimed here (and 1444 * leave it off the LRU). 1445 */ 1446 nr_reclaimed += nr_pages; 1447 continue; 1448 } 1449 } 1450 } 1451 1452 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 1453 /* follow __remove_mapping for reference */ 1454 if (!folio_ref_freeze(folio, 1)) 1455 goto keep_locked; 1456 /* 1457 * The folio has only one reference left, which is 1458 * from the isolation. After the caller puts the 1459 * folio back on the lru and drops the reference, the 1460 * folio will be freed anyway. It doesn't matter 1461 * which lru it goes on. So we don't bother checking 1462 * the dirty flag here. 1463 */ 1464 count_vm_events(PGLAZYFREED, nr_pages); 1465 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 1466 } else if (!mapping || !__remove_mapping(mapping, folio, true, 1467 sc->target_mem_cgroup)) 1468 goto keep_locked; 1469 1470 folio_unlock(folio); 1471 free_it: 1472 /* 1473 * Folio may get swapped out as a whole, need to account 1474 * all pages in it. 1475 */ 1476 nr_reclaimed += nr_pages; 1477 1478 folio_undo_large_rmappable(folio); 1479 if (folio_batch_add(&free_folios, folio) == 0) { 1480 mem_cgroup_uncharge_folios(&free_folios); 1481 try_to_unmap_flush(); 1482 free_unref_folios(&free_folios); 1483 } 1484 continue; 1485 1486 activate_locked_split: 1487 /* 1488 * The tail pages that are failed to add into swap cache 1489 * reach here. Fixup nr_scanned and nr_pages. 1490 */ 1491 if (nr_pages > 1) { 1492 sc->nr_scanned -= (nr_pages - 1); 1493 nr_pages = 1; 1494 } 1495 activate_locked: 1496 /* Not a candidate for swapping, so reclaim swap space. */ 1497 if (folio_test_swapcache(folio) && 1498 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 1499 folio_free_swap(folio); 1500 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1501 if (!folio_test_mlocked(folio)) { 1502 int type = folio_is_file_lru(folio); 1503 folio_set_active(folio); 1504 stat->nr_activate[type] += nr_pages; 1505 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 1506 } 1507 keep_locked: 1508 folio_unlock(folio); 1509 keep: 1510 list_add(&folio->lru, &ret_folios); 1511 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 1512 folio_test_unevictable(folio), folio); 1513 } 1514 /* 'folio_list' is always empty here */ 1515 1516 /* Migrate folios selected for demotion */ 1517 stat->nr_demoted = demote_folio_list(&demote_folios, pgdat); 1518 nr_reclaimed += stat->nr_demoted; 1519 /* Folios that could not be demoted are still in @demote_folios */ 1520 if (!list_empty(&demote_folios)) { 1521 /* Folios which weren't demoted go back on @folio_list */ 1522 list_splice_init(&demote_folios, folio_list); 1523 1524 /* 1525 * goto retry to reclaim the undemoted folios in folio_list if 1526 * desired. 1527 * 1528 * Reclaiming directly from top tier nodes is not often desired 1529 * due to it breaking the LRU ordering: in general memory 1530 * should be reclaimed from lower tier nodes and demoted from 1531 * top tier nodes. 1532 * 1533 * However, disabling reclaim from top tier nodes entirely 1534 * would cause ooms in edge scenarios where lower tier memory 1535 * is unreclaimable for whatever reason, eg memory being 1536 * mlocked or too hot to reclaim. We can disable reclaim 1537 * from top tier nodes in proactive reclaim though as that is 1538 * not real memory pressure. 1539 */ 1540 if (!sc->proactive) { 1541 do_demote_pass = false; 1542 goto retry; 1543 } 1544 } 1545 1546 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1547 1548 mem_cgroup_uncharge_folios(&free_folios); 1549 try_to_unmap_flush(); 1550 free_unref_folios(&free_folios); 1551 1552 list_splice(&ret_folios, folio_list); 1553 count_vm_events(PGACTIVATE, pgactivate); 1554 1555 if (plug) 1556 swap_write_unplug(plug); 1557 return nr_reclaimed; 1558 } 1559 1560 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1561 struct list_head *folio_list) 1562 { 1563 struct scan_control sc = { 1564 .gfp_mask = GFP_KERNEL, 1565 .may_unmap = 1, 1566 }; 1567 struct reclaim_stat stat; 1568 unsigned int nr_reclaimed; 1569 struct folio *folio, *next; 1570 LIST_HEAD(clean_folios); 1571 unsigned int noreclaim_flag; 1572 1573 list_for_each_entry_safe(folio, next, folio_list, lru) { 1574 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 1575 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 1576 !folio_test_unevictable(folio)) { 1577 folio_clear_active(folio); 1578 list_move(&folio->lru, &clean_folios); 1579 } 1580 } 1581 1582 /* 1583 * We should be safe here since we are only dealing with file pages and 1584 * we are not kswapd and therefore cannot write dirty file pages. But 1585 * call memalloc_noreclaim_save() anyway, just in case these conditions 1586 * change in the future. 1587 */ 1588 noreclaim_flag = memalloc_noreclaim_save(); 1589 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 1590 &stat, true); 1591 memalloc_noreclaim_restore(noreclaim_flag); 1592 1593 list_splice(&clean_folios, folio_list); 1594 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1595 -(long)nr_reclaimed); 1596 /* 1597 * Since lazyfree pages are isolated from file LRU from the beginning, 1598 * they will rotate back to anonymous LRU in the end if it failed to 1599 * discard so isolated count will be mismatched. 1600 * Compensate the isolated count for both LRU lists. 1601 */ 1602 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1603 stat.nr_lazyfree_fail); 1604 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1605 -(long)stat.nr_lazyfree_fail); 1606 return nr_reclaimed; 1607 } 1608 1609 /* 1610 * Update LRU sizes after isolating pages. The LRU size updates must 1611 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1612 */ 1613 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1614 enum lru_list lru, unsigned long *nr_zone_taken) 1615 { 1616 int zid; 1617 1618 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1619 if (!nr_zone_taken[zid]) 1620 continue; 1621 1622 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1623 } 1624 1625 } 1626 1627 /* 1628 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1629 * 1630 * lruvec->lru_lock is heavily contended. Some of the functions that 1631 * shrink the lists perform better by taking out a batch of pages 1632 * and working on them outside the LRU lock. 1633 * 1634 * For pagecache intensive workloads, this function is the hottest 1635 * spot in the kernel (apart from copy_*_user functions). 1636 * 1637 * Lru_lock must be held before calling this function. 1638 * 1639 * @nr_to_scan: The number of eligible pages to look through on the list. 1640 * @lruvec: The LRU vector to pull pages from. 1641 * @dst: The temp list to put pages on to. 1642 * @nr_scanned: The number of pages that were scanned. 1643 * @sc: The scan_control struct for this reclaim session 1644 * @lru: LRU list id for isolating 1645 * 1646 * returns how many pages were moved onto *@dst. 1647 */ 1648 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 1649 struct lruvec *lruvec, struct list_head *dst, 1650 unsigned long *nr_scanned, struct scan_control *sc, 1651 enum lru_list lru) 1652 { 1653 struct list_head *src = &lruvec->lists[lru]; 1654 unsigned long nr_taken = 0; 1655 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1656 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1657 unsigned long skipped = 0; 1658 unsigned long scan, total_scan, nr_pages; 1659 LIST_HEAD(folios_skipped); 1660 1661 total_scan = 0; 1662 scan = 0; 1663 while (scan < nr_to_scan && !list_empty(src)) { 1664 struct list_head *move_to = src; 1665 struct folio *folio; 1666 1667 folio = lru_to_folio(src); 1668 prefetchw_prev_lru_folio(folio, src, flags); 1669 1670 nr_pages = folio_nr_pages(folio); 1671 total_scan += nr_pages; 1672 1673 if (folio_zonenum(folio) > sc->reclaim_idx) { 1674 nr_skipped[folio_zonenum(folio)] += nr_pages; 1675 move_to = &folios_skipped; 1676 goto move; 1677 } 1678 1679 /* 1680 * Do not count skipped folios because that makes the function 1681 * return with no isolated folios if the LRU mostly contains 1682 * ineligible folios. This causes the VM to not reclaim any 1683 * folios, triggering a premature OOM. 1684 * Account all pages in a folio. 1685 */ 1686 scan += nr_pages; 1687 1688 if (!folio_test_lru(folio)) 1689 goto move; 1690 if (!sc->may_unmap && folio_mapped(folio)) 1691 goto move; 1692 1693 /* 1694 * Be careful not to clear the lru flag until after we're 1695 * sure the folio is not being freed elsewhere -- the 1696 * folio release code relies on it. 1697 */ 1698 if (unlikely(!folio_try_get(folio))) 1699 goto move; 1700 1701 if (!folio_test_clear_lru(folio)) { 1702 /* Another thread is already isolating this folio */ 1703 folio_put(folio); 1704 goto move; 1705 } 1706 1707 nr_taken += nr_pages; 1708 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 1709 move_to = dst; 1710 move: 1711 list_move(&folio->lru, move_to); 1712 } 1713 1714 /* 1715 * Splice any skipped folios to the start of the LRU list. Note that 1716 * this disrupts the LRU order when reclaiming for lower zones but 1717 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1718 * scanning would soon rescan the same folios to skip and waste lots 1719 * of cpu cycles. 1720 */ 1721 if (!list_empty(&folios_skipped)) { 1722 int zid; 1723 1724 list_splice(&folios_skipped, src); 1725 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1726 if (!nr_skipped[zid]) 1727 continue; 1728 1729 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1730 skipped += nr_skipped[zid]; 1731 } 1732 } 1733 *nr_scanned = total_scan; 1734 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1735 total_scan, skipped, nr_taken, lru); 1736 update_lru_sizes(lruvec, lru, nr_zone_taken); 1737 return nr_taken; 1738 } 1739 1740 /** 1741 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 1742 * @folio: Folio to isolate from its LRU list. 1743 * 1744 * Isolate a @folio from an LRU list and adjust the vmstat statistic 1745 * corresponding to whatever LRU list the folio was on. 1746 * 1747 * The folio will have its LRU flag cleared. If it was found on the 1748 * active list, it will have the Active flag set. If it was found on the 1749 * unevictable list, it will have the Unevictable flag set. These flags 1750 * may need to be cleared by the caller before letting the page go. 1751 * 1752 * Context: 1753 * 1754 * (1) Must be called with an elevated refcount on the folio. This is a 1755 * fundamental difference from isolate_lru_folios() (which is called 1756 * without a stable reference). 1757 * (2) The lru_lock must not be held. 1758 * (3) Interrupts must be enabled. 1759 * 1760 * Return: true if the folio was removed from an LRU list. 1761 * false if the folio was not on an LRU list. 1762 */ 1763 bool folio_isolate_lru(struct folio *folio) 1764 { 1765 bool ret = false; 1766 1767 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 1768 1769 if (folio_test_clear_lru(folio)) { 1770 struct lruvec *lruvec; 1771 1772 folio_get(folio); 1773 lruvec = folio_lruvec_lock_irq(folio); 1774 lruvec_del_folio(lruvec, folio); 1775 unlock_page_lruvec_irq(lruvec); 1776 ret = true; 1777 } 1778 1779 return ret; 1780 } 1781 1782 /* 1783 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1784 * then get rescheduled. When there are massive number of tasks doing page 1785 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1786 * the LRU list will go small and be scanned faster than necessary, leading to 1787 * unnecessary swapping, thrashing and OOM. 1788 */ 1789 static bool too_many_isolated(struct pglist_data *pgdat, int file, 1790 struct scan_control *sc) 1791 { 1792 unsigned long inactive, isolated; 1793 bool too_many; 1794 1795 if (current_is_kswapd()) 1796 return false; 1797 1798 if (!writeback_throttling_sane(sc)) 1799 return false; 1800 1801 if (file) { 1802 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1803 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1804 } else { 1805 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1806 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1807 } 1808 1809 /* 1810 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1811 * won't get blocked by normal direct-reclaimers, forming a circular 1812 * deadlock. 1813 */ 1814 if (gfp_has_io_fs(sc->gfp_mask)) 1815 inactive >>= 3; 1816 1817 too_many = isolated > inactive; 1818 1819 /* Wake up tasks throttled due to too_many_isolated. */ 1820 if (!too_many) 1821 wake_throttle_isolated(pgdat); 1822 1823 return too_many; 1824 } 1825 1826 /* 1827 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 1828 * 1829 * Returns the number of pages moved to the given lruvec. 1830 */ 1831 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 1832 struct list_head *list) 1833 { 1834 int nr_pages, nr_moved = 0; 1835 struct folio_batch free_folios; 1836 1837 folio_batch_init(&free_folios); 1838 while (!list_empty(list)) { 1839 struct folio *folio = lru_to_folio(list); 1840 1841 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 1842 list_del(&folio->lru); 1843 if (unlikely(!folio_evictable(folio))) { 1844 spin_unlock_irq(&lruvec->lru_lock); 1845 folio_putback_lru(folio); 1846 spin_lock_irq(&lruvec->lru_lock); 1847 continue; 1848 } 1849 1850 /* 1851 * The folio_set_lru needs to be kept here for list integrity. 1852 * Otherwise: 1853 * #0 move_folios_to_lru #1 release_pages 1854 * if (!folio_put_testzero()) 1855 * if (folio_put_testzero()) 1856 * !lru //skip lru_lock 1857 * folio_set_lru() 1858 * list_add(&folio->lru,) 1859 * list_add(&folio->lru,) 1860 */ 1861 folio_set_lru(folio); 1862 1863 if (unlikely(folio_put_testzero(folio))) { 1864 __folio_clear_lru_flags(folio); 1865 1866 folio_undo_large_rmappable(folio); 1867 if (folio_batch_add(&free_folios, folio) == 0) { 1868 spin_unlock_irq(&lruvec->lru_lock); 1869 mem_cgroup_uncharge_folios(&free_folios); 1870 free_unref_folios(&free_folios); 1871 spin_lock_irq(&lruvec->lru_lock); 1872 } 1873 1874 continue; 1875 } 1876 1877 /* 1878 * All pages were isolated from the same lruvec (and isolation 1879 * inhibits memcg migration). 1880 */ 1881 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 1882 lruvec_add_folio(lruvec, folio); 1883 nr_pages = folio_nr_pages(folio); 1884 nr_moved += nr_pages; 1885 if (folio_test_active(folio)) 1886 workingset_age_nonresident(lruvec, nr_pages); 1887 } 1888 1889 if (free_folios.nr) { 1890 spin_unlock_irq(&lruvec->lru_lock); 1891 mem_cgroup_uncharge_folios(&free_folios); 1892 free_unref_folios(&free_folios); 1893 spin_lock_irq(&lruvec->lru_lock); 1894 } 1895 1896 return nr_moved; 1897 } 1898 1899 /* 1900 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 1901 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 1902 * we should not throttle. Otherwise it is safe to do so. 1903 */ 1904 static int current_may_throttle(void) 1905 { 1906 return !(current->flags & PF_LOCAL_THROTTLE); 1907 } 1908 1909 /* 1910 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1911 * of reclaimed pages 1912 */ 1913 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 1914 struct lruvec *lruvec, struct scan_control *sc, 1915 enum lru_list lru) 1916 { 1917 LIST_HEAD(folio_list); 1918 unsigned long nr_scanned; 1919 unsigned int nr_reclaimed = 0; 1920 unsigned long nr_taken; 1921 struct reclaim_stat stat; 1922 bool file = is_file_lru(lru); 1923 enum vm_event_item item; 1924 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1925 bool stalled = false; 1926 1927 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1928 if (stalled) 1929 return 0; 1930 1931 /* wait a bit for the reclaimer. */ 1932 stalled = true; 1933 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 1934 1935 /* We are about to die and free our memory. Return now. */ 1936 if (fatal_signal_pending(current)) 1937 return SWAP_CLUSTER_MAX; 1938 } 1939 1940 lru_add_drain(); 1941 1942 spin_lock_irq(&lruvec->lru_lock); 1943 1944 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 1945 &nr_scanned, sc, lru); 1946 1947 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1948 item = PGSCAN_KSWAPD + reclaimer_offset(); 1949 if (!cgroup_reclaim(sc)) 1950 __count_vm_events(item, nr_scanned); 1951 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1952 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 1953 1954 spin_unlock_irq(&lruvec->lru_lock); 1955 1956 if (nr_taken == 0) 1957 return 0; 1958 1959 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 1960 1961 spin_lock_irq(&lruvec->lru_lock); 1962 move_folios_to_lru(lruvec, &folio_list); 1963 1964 __mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(), 1965 stat.nr_demoted); 1966 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1967 item = PGSTEAL_KSWAPD + reclaimer_offset(); 1968 if (!cgroup_reclaim(sc)) 1969 __count_vm_events(item, nr_reclaimed); 1970 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1971 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 1972 spin_unlock_irq(&lruvec->lru_lock); 1973 1974 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); 1975 1976 /* 1977 * If dirty folios are scanned that are not queued for IO, it 1978 * implies that flushers are not doing their job. This can 1979 * happen when memory pressure pushes dirty folios to the end of 1980 * the LRU before the dirty limits are breached and the dirty 1981 * data has expired. It can also happen when the proportion of 1982 * dirty folios grows not through writes but through memory 1983 * pressure reclaiming all the clean cache. And in some cases, 1984 * the flushers simply cannot keep up with the allocation 1985 * rate. Nudge the flusher threads in case they are asleep. 1986 */ 1987 if (stat.nr_unqueued_dirty == nr_taken) { 1988 wakeup_flusher_threads(WB_REASON_VMSCAN); 1989 /* 1990 * For cgroupv1 dirty throttling is achieved by waking up 1991 * the kernel flusher here and later waiting on folios 1992 * which are in writeback to finish (see shrink_folio_list()). 1993 * 1994 * Flusher may not be able to issue writeback quickly 1995 * enough for cgroupv1 writeback throttling to work 1996 * on a large system. 1997 */ 1998 if (!writeback_throttling_sane(sc)) 1999 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 2000 } 2001 2002 sc->nr.dirty += stat.nr_dirty; 2003 sc->nr.congested += stat.nr_congested; 2004 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2005 sc->nr.writeback += stat.nr_writeback; 2006 sc->nr.immediate += stat.nr_immediate; 2007 sc->nr.taken += nr_taken; 2008 if (file) 2009 sc->nr.file_taken += nr_taken; 2010 2011 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2012 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2013 return nr_reclaimed; 2014 } 2015 2016 /* 2017 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2018 * 2019 * We move them the other way if the folio is referenced by one or more 2020 * processes. 2021 * 2022 * If the folios are mostly unmapped, the processing is fast and it is 2023 * appropriate to hold lru_lock across the whole operation. But if 2024 * the folios are mapped, the processing is slow (folio_referenced()), so 2025 * we should drop lru_lock around each folio. It's impossible to balance 2026 * this, so instead we remove the folios from the LRU while processing them. 2027 * It is safe to rely on the active flag against the non-LRU folios in here 2028 * because nobody will play with that bit on a non-LRU folio. 2029 * 2030 * The downside is that we have to touch folio->_refcount against each folio. 2031 * But we had to alter folio->flags anyway. 2032 */ 2033 static void shrink_active_list(unsigned long nr_to_scan, 2034 struct lruvec *lruvec, 2035 struct scan_control *sc, 2036 enum lru_list lru) 2037 { 2038 unsigned long nr_taken; 2039 unsigned long nr_scanned; 2040 unsigned long vm_flags; 2041 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2042 LIST_HEAD(l_active); 2043 LIST_HEAD(l_inactive); 2044 unsigned nr_deactivate, nr_activate; 2045 unsigned nr_rotated = 0; 2046 bool file = is_file_lru(lru); 2047 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2048 2049 lru_add_drain(); 2050 2051 spin_lock_irq(&lruvec->lru_lock); 2052 2053 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2054 &nr_scanned, sc, lru); 2055 2056 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2057 2058 if (!cgroup_reclaim(sc)) 2059 __count_vm_events(PGREFILL, nr_scanned); 2060 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2061 2062 spin_unlock_irq(&lruvec->lru_lock); 2063 2064 while (!list_empty(&l_hold)) { 2065 struct folio *folio; 2066 2067 cond_resched(); 2068 folio = lru_to_folio(&l_hold); 2069 list_del(&folio->lru); 2070 2071 if (unlikely(!folio_evictable(folio))) { 2072 folio_putback_lru(folio); 2073 continue; 2074 } 2075 2076 if (unlikely(buffer_heads_over_limit)) { 2077 if (folio_needs_release(folio) && 2078 folio_trylock(folio)) { 2079 filemap_release_folio(folio, 0); 2080 folio_unlock(folio); 2081 } 2082 } 2083 2084 /* Referenced or rmap lock contention: rotate */ 2085 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2086 &vm_flags) != 0) { 2087 /* 2088 * Identify referenced, file-backed active folios and 2089 * give them one more trip around the active list. So 2090 * that executable code get better chances to stay in 2091 * memory under moderate memory pressure. Anon folios 2092 * are not likely to be evicted by use-once streaming 2093 * IO, plus JVM can create lots of anon VM_EXEC folios, 2094 * so we ignore them here. 2095 */ 2096 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2097 nr_rotated += folio_nr_pages(folio); 2098 list_add(&folio->lru, &l_active); 2099 continue; 2100 } 2101 } 2102 2103 folio_clear_active(folio); /* we are de-activating */ 2104 folio_set_workingset(folio); 2105 list_add(&folio->lru, &l_inactive); 2106 } 2107 2108 /* 2109 * Move folios back to the lru list. 2110 */ 2111 spin_lock_irq(&lruvec->lru_lock); 2112 2113 nr_activate = move_folios_to_lru(lruvec, &l_active); 2114 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2115 2116 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2117 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2118 2119 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2120 spin_unlock_irq(&lruvec->lru_lock); 2121 2122 if (nr_rotated) 2123 lru_note_cost(lruvec, file, 0, nr_rotated); 2124 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2125 nr_deactivate, nr_rotated, sc->priority, file); 2126 } 2127 2128 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2129 struct pglist_data *pgdat) 2130 { 2131 struct reclaim_stat dummy_stat; 2132 unsigned int nr_reclaimed; 2133 struct folio *folio; 2134 struct scan_control sc = { 2135 .gfp_mask = GFP_KERNEL, 2136 .may_writepage = 1, 2137 .may_unmap = 1, 2138 .may_swap = 1, 2139 .no_demotion = 1, 2140 }; 2141 2142 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, true); 2143 while (!list_empty(folio_list)) { 2144 folio = lru_to_folio(folio_list); 2145 list_del(&folio->lru); 2146 folio_putback_lru(folio); 2147 } 2148 2149 return nr_reclaimed; 2150 } 2151 2152 unsigned long reclaim_pages(struct list_head *folio_list) 2153 { 2154 int nid; 2155 unsigned int nr_reclaimed = 0; 2156 LIST_HEAD(node_folio_list); 2157 unsigned int noreclaim_flag; 2158 2159 if (list_empty(folio_list)) 2160 return nr_reclaimed; 2161 2162 noreclaim_flag = memalloc_noreclaim_save(); 2163 2164 nid = folio_nid(lru_to_folio(folio_list)); 2165 do { 2166 struct folio *folio = lru_to_folio(folio_list); 2167 2168 if (nid == folio_nid(folio)) { 2169 folio_clear_active(folio); 2170 list_move(&folio->lru, &node_folio_list); 2171 continue; 2172 } 2173 2174 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2175 nid = folio_nid(lru_to_folio(folio_list)); 2176 } while (!list_empty(folio_list)); 2177 2178 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2179 2180 memalloc_noreclaim_restore(noreclaim_flag); 2181 2182 return nr_reclaimed; 2183 } 2184 2185 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2186 struct lruvec *lruvec, struct scan_control *sc) 2187 { 2188 if (is_active_lru(lru)) { 2189 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2190 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2191 else 2192 sc->skipped_deactivate = 1; 2193 return 0; 2194 } 2195 2196 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2197 } 2198 2199 /* 2200 * The inactive anon list should be small enough that the VM never has 2201 * to do too much work. 2202 * 2203 * The inactive file list should be small enough to leave most memory 2204 * to the established workingset on the scan-resistant active list, 2205 * but large enough to avoid thrashing the aggregate readahead window. 2206 * 2207 * Both inactive lists should also be large enough that each inactive 2208 * folio has a chance to be referenced again before it is reclaimed. 2209 * 2210 * If that fails and refaulting is observed, the inactive list grows. 2211 * 2212 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2213 * on this LRU, maintained by the pageout code. An inactive_ratio 2214 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2215 * 2216 * total target max 2217 * memory ratio inactive 2218 * ------------------------------------- 2219 * 10MB 1 5MB 2220 * 100MB 1 50MB 2221 * 1GB 3 250MB 2222 * 10GB 10 0.9GB 2223 * 100GB 31 3GB 2224 * 1TB 101 10GB 2225 * 10TB 320 32GB 2226 */ 2227 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2228 { 2229 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2230 unsigned long inactive, active; 2231 unsigned long inactive_ratio; 2232 unsigned long gb; 2233 2234 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2235 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2236 2237 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2238 if (gb) 2239 inactive_ratio = int_sqrt(10 * gb); 2240 else 2241 inactive_ratio = 1; 2242 2243 return inactive * inactive_ratio < active; 2244 } 2245 2246 enum scan_balance { 2247 SCAN_EQUAL, 2248 SCAN_FRACT, 2249 SCAN_ANON, 2250 SCAN_FILE, 2251 }; 2252 2253 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc) 2254 { 2255 unsigned long file; 2256 struct lruvec *target_lruvec; 2257 2258 if (lru_gen_enabled()) 2259 return; 2260 2261 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2262 2263 /* 2264 * Flush the memory cgroup stats in rate-limited way as we don't need 2265 * most accurate stats here. We may switch to regular stats flushing 2266 * in the future once it is cheap enough. 2267 */ 2268 mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup); 2269 2270 /* 2271 * Determine the scan balance between anon and file LRUs. 2272 */ 2273 spin_lock_irq(&target_lruvec->lru_lock); 2274 sc->anon_cost = target_lruvec->anon_cost; 2275 sc->file_cost = target_lruvec->file_cost; 2276 spin_unlock_irq(&target_lruvec->lru_lock); 2277 2278 /* 2279 * Target desirable inactive:active list ratios for the anon 2280 * and file LRU lists. 2281 */ 2282 if (!sc->force_deactivate) { 2283 unsigned long refaults; 2284 2285 /* 2286 * When refaults are being observed, it means a new 2287 * workingset is being established. Deactivate to get 2288 * rid of any stale active pages quickly. 2289 */ 2290 refaults = lruvec_page_state(target_lruvec, 2291 WORKINGSET_ACTIVATE_ANON); 2292 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2293 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2294 sc->may_deactivate |= DEACTIVATE_ANON; 2295 else 2296 sc->may_deactivate &= ~DEACTIVATE_ANON; 2297 2298 refaults = lruvec_page_state(target_lruvec, 2299 WORKINGSET_ACTIVATE_FILE); 2300 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2301 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2302 sc->may_deactivate |= DEACTIVATE_FILE; 2303 else 2304 sc->may_deactivate &= ~DEACTIVATE_FILE; 2305 } else 2306 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2307 2308 /* 2309 * If we have plenty of inactive file pages that aren't 2310 * thrashing, try to reclaim those first before touching 2311 * anonymous pages. 2312 */ 2313 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2314 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) && 2315 !sc->no_cache_trim_mode) 2316 sc->cache_trim_mode = 1; 2317 else 2318 sc->cache_trim_mode = 0; 2319 2320 /* 2321 * Prevent the reclaimer from falling into the cache trap: as 2322 * cache pages start out inactive, every cache fault will tip 2323 * the scan balance towards the file LRU. And as the file LRU 2324 * shrinks, so does the window for rotation from references. 2325 * This means we have a runaway feedback loop where a tiny 2326 * thrashing file LRU becomes infinitely more attractive than 2327 * anon pages. Try to detect this based on file LRU size. 2328 */ 2329 if (!cgroup_reclaim(sc)) { 2330 unsigned long total_high_wmark = 0; 2331 unsigned long free, anon; 2332 int z; 2333 2334 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2335 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2336 node_page_state(pgdat, NR_INACTIVE_FILE); 2337 2338 for (z = 0; z < MAX_NR_ZONES; z++) { 2339 struct zone *zone = &pgdat->node_zones[z]; 2340 2341 if (!managed_zone(zone)) 2342 continue; 2343 2344 total_high_wmark += high_wmark_pages(zone); 2345 } 2346 2347 /* 2348 * Consider anon: if that's low too, this isn't a 2349 * runaway file reclaim problem, but rather just 2350 * extreme pressure. Reclaim as per usual then. 2351 */ 2352 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2353 2354 sc->file_is_tiny = 2355 file + free <= total_high_wmark && 2356 !(sc->may_deactivate & DEACTIVATE_ANON) && 2357 anon >> sc->priority; 2358 } 2359 } 2360 2361 /* 2362 * Determine how aggressively the anon and file LRU lists should be 2363 * scanned. 2364 * 2365 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 2366 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 2367 */ 2368 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2369 unsigned long *nr) 2370 { 2371 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2372 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2373 unsigned long anon_cost, file_cost, total_cost; 2374 int swappiness = sc_swappiness(sc, memcg); 2375 u64 fraction[ANON_AND_FILE]; 2376 u64 denominator = 0; /* gcc */ 2377 enum scan_balance scan_balance; 2378 unsigned long ap, fp; 2379 enum lru_list lru; 2380 2381 /* If we have no swap space, do not bother scanning anon folios. */ 2382 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2383 scan_balance = SCAN_FILE; 2384 goto out; 2385 } 2386 2387 /* 2388 * Global reclaim will swap to prevent OOM even with no 2389 * swappiness, but memcg users want to use this knob to 2390 * disable swapping for individual groups completely when 2391 * using the memory controller's swap limit feature would be 2392 * too expensive. 2393 */ 2394 if (cgroup_reclaim(sc) && !swappiness) { 2395 scan_balance = SCAN_FILE; 2396 goto out; 2397 } 2398 2399 /* 2400 * Do not apply any pressure balancing cleverness when the 2401 * system is close to OOM, scan both anon and file equally 2402 * (unless the swappiness setting disagrees with swapping). 2403 */ 2404 if (!sc->priority && swappiness) { 2405 scan_balance = SCAN_EQUAL; 2406 goto out; 2407 } 2408 2409 /* 2410 * If the system is almost out of file pages, force-scan anon. 2411 */ 2412 if (sc->file_is_tiny) { 2413 scan_balance = SCAN_ANON; 2414 goto out; 2415 } 2416 2417 /* 2418 * If there is enough inactive page cache, we do not reclaim 2419 * anything from the anonymous working right now. 2420 */ 2421 if (sc->cache_trim_mode) { 2422 scan_balance = SCAN_FILE; 2423 goto out; 2424 } 2425 2426 scan_balance = SCAN_FRACT; 2427 /* 2428 * Calculate the pressure balance between anon and file pages. 2429 * 2430 * The amount of pressure we put on each LRU is inversely 2431 * proportional to the cost of reclaiming each list, as 2432 * determined by the share of pages that are refaulting, times 2433 * the relative IO cost of bringing back a swapped out 2434 * anonymous page vs reloading a filesystem page (swappiness). 2435 * 2436 * Although we limit that influence to ensure no list gets 2437 * left behind completely: at least a third of the pressure is 2438 * applied, before swappiness. 2439 * 2440 * With swappiness at 100, anon and file have equal IO cost. 2441 */ 2442 total_cost = sc->anon_cost + sc->file_cost; 2443 anon_cost = total_cost + sc->anon_cost; 2444 file_cost = total_cost + sc->file_cost; 2445 total_cost = anon_cost + file_cost; 2446 2447 ap = swappiness * (total_cost + 1); 2448 ap /= anon_cost + 1; 2449 2450 fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1); 2451 fp /= file_cost + 1; 2452 2453 fraction[0] = ap; 2454 fraction[1] = fp; 2455 denominator = ap + fp; 2456 out: 2457 for_each_evictable_lru(lru) { 2458 bool file = is_file_lru(lru); 2459 unsigned long lruvec_size; 2460 unsigned long low, min; 2461 unsigned long scan; 2462 2463 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2464 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2465 &min, &low); 2466 2467 if (min || low) { 2468 /* 2469 * Scale a cgroup's reclaim pressure by proportioning 2470 * its current usage to its memory.low or memory.min 2471 * setting. 2472 * 2473 * This is important, as otherwise scanning aggression 2474 * becomes extremely binary -- from nothing as we 2475 * approach the memory protection threshold, to totally 2476 * nominal as we exceed it. This results in requiring 2477 * setting extremely liberal protection thresholds. It 2478 * also means we simply get no protection at all if we 2479 * set it too low, which is not ideal. 2480 * 2481 * If there is any protection in place, we reduce scan 2482 * pressure by how much of the total memory used is 2483 * within protection thresholds. 2484 * 2485 * There is one special case: in the first reclaim pass, 2486 * we skip over all groups that are within their low 2487 * protection. If that fails to reclaim enough pages to 2488 * satisfy the reclaim goal, we come back and override 2489 * the best-effort low protection. However, we still 2490 * ideally want to honor how well-behaved groups are in 2491 * that case instead of simply punishing them all 2492 * equally. As such, we reclaim them based on how much 2493 * memory they are using, reducing the scan pressure 2494 * again by how much of the total memory used is under 2495 * hard protection. 2496 */ 2497 unsigned long cgroup_size = mem_cgroup_size(memcg); 2498 unsigned long protection; 2499 2500 /* memory.low scaling, make sure we retry before OOM */ 2501 if (!sc->memcg_low_reclaim && low > min) { 2502 protection = low; 2503 sc->memcg_low_skipped = 1; 2504 } else { 2505 protection = min; 2506 } 2507 2508 /* Avoid TOCTOU with earlier protection check */ 2509 cgroup_size = max(cgroup_size, protection); 2510 2511 scan = lruvec_size - lruvec_size * protection / 2512 (cgroup_size + 1); 2513 2514 /* 2515 * Minimally target SWAP_CLUSTER_MAX pages to keep 2516 * reclaim moving forwards, avoiding decrementing 2517 * sc->priority further than desirable. 2518 */ 2519 scan = max(scan, SWAP_CLUSTER_MAX); 2520 } else { 2521 scan = lruvec_size; 2522 } 2523 2524 scan >>= sc->priority; 2525 2526 /* 2527 * If the cgroup's already been deleted, make sure to 2528 * scrape out the remaining cache. 2529 */ 2530 if (!scan && !mem_cgroup_online(memcg)) 2531 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2532 2533 switch (scan_balance) { 2534 case SCAN_EQUAL: 2535 /* Scan lists relative to size */ 2536 break; 2537 case SCAN_FRACT: 2538 /* 2539 * Scan types proportional to swappiness and 2540 * their relative recent reclaim efficiency. 2541 * Make sure we don't miss the last page on 2542 * the offlined memory cgroups because of a 2543 * round-off error. 2544 */ 2545 scan = mem_cgroup_online(memcg) ? 2546 div64_u64(scan * fraction[file], denominator) : 2547 DIV64_U64_ROUND_UP(scan * fraction[file], 2548 denominator); 2549 break; 2550 case SCAN_FILE: 2551 case SCAN_ANON: 2552 /* Scan one type exclusively */ 2553 if ((scan_balance == SCAN_FILE) != file) 2554 scan = 0; 2555 break; 2556 default: 2557 /* Look ma, no brain */ 2558 BUG(); 2559 } 2560 2561 nr[lru] = scan; 2562 } 2563 } 2564 2565 /* 2566 * Anonymous LRU management is a waste if there is 2567 * ultimately no way to reclaim the memory. 2568 */ 2569 static bool can_age_anon_pages(struct pglist_data *pgdat, 2570 struct scan_control *sc) 2571 { 2572 /* Aging the anon LRU is valuable if swap is present: */ 2573 if (total_swap_pages > 0) 2574 return true; 2575 2576 /* Also valuable if anon pages can be demoted: */ 2577 return can_demote(pgdat->node_id, sc); 2578 } 2579 2580 #ifdef CONFIG_LRU_GEN 2581 2582 #ifdef CONFIG_LRU_GEN_ENABLED 2583 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 2584 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 2585 #else 2586 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 2587 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 2588 #endif 2589 2590 static bool should_walk_mmu(void) 2591 { 2592 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK); 2593 } 2594 2595 static bool should_clear_pmd_young(void) 2596 { 2597 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG); 2598 } 2599 2600 /****************************************************************************** 2601 * shorthand helpers 2602 ******************************************************************************/ 2603 2604 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 2605 2606 #define DEFINE_MAX_SEQ(lruvec) \ 2607 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 2608 2609 #define DEFINE_MIN_SEQ(lruvec) \ 2610 unsigned long min_seq[ANON_AND_FILE] = { \ 2611 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 2612 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 2613 } 2614 2615 #define for_each_gen_type_zone(gen, type, zone) \ 2616 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 2617 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 2618 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 2619 2620 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 2621 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 2622 2623 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 2624 { 2625 struct pglist_data *pgdat = NODE_DATA(nid); 2626 2627 #ifdef CONFIG_MEMCG 2628 if (memcg) { 2629 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 2630 2631 /* see the comment in mem_cgroup_lruvec() */ 2632 if (!lruvec->pgdat) 2633 lruvec->pgdat = pgdat; 2634 2635 return lruvec; 2636 } 2637 #endif 2638 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2639 2640 return &pgdat->__lruvec; 2641 } 2642 2643 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 2644 { 2645 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2646 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2647 2648 if (!sc->may_swap) 2649 return 0; 2650 2651 if (!can_demote(pgdat->node_id, sc) && 2652 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 2653 return 0; 2654 2655 return sc_swappiness(sc, memcg); 2656 } 2657 2658 static int get_nr_gens(struct lruvec *lruvec, int type) 2659 { 2660 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 2661 } 2662 2663 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 2664 { 2665 /* see the comment on lru_gen_folio */ 2666 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS && 2667 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) && 2668 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS; 2669 } 2670 2671 /****************************************************************************** 2672 * Bloom filters 2673 ******************************************************************************/ 2674 2675 /* 2676 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 2677 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 2678 * bits in a bitmap, k is the number of hash functions and n is the number of 2679 * inserted items. 2680 * 2681 * Page table walkers use one of the two filters to reduce their search space. 2682 * To get rid of non-leaf entries that no longer have enough leaf entries, the 2683 * aging uses the double-buffering technique to flip to the other filter each 2684 * time it produces a new generation. For non-leaf entries that have enough 2685 * leaf entries, the aging carries them over to the next generation in 2686 * walk_pmd_range(); the eviction also report them when walking the rmap 2687 * in lru_gen_look_around(). 2688 * 2689 * For future optimizations: 2690 * 1. It's not necessary to keep both filters all the time. The spare one can be 2691 * freed after the RCU grace period and reallocated if needed again. 2692 * 2. And when reallocating, it's worth scaling its size according to the number 2693 * of inserted entries in the other filter, to reduce the memory overhead on 2694 * small systems and false positives on large systems. 2695 * 3. Jenkins' hash function is an alternative to Knuth's. 2696 */ 2697 #define BLOOM_FILTER_SHIFT 15 2698 2699 static inline int filter_gen_from_seq(unsigned long seq) 2700 { 2701 return seq % NR_BLOOM_FILTERS; 2702 } 2703 2704 static void get_item_key(void *item, int *key) 2705 { 2706 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 2707 2708 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 2709 2710 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 2711 key[1] = hash >> BLOOM_FILTER_SHIFT; 2712 } 2713 2714 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2715 void *item) 2716 { 2717 int key[2]; 2718 unsigned long *filter; 2719 int gen = filter_gen_from_seq(seq); 2720 2721 filter = READ_ONCE(mm_state->filters[gen]); 2722 if (!filter) 2723 return true; 2724 2725 get_item_key(item, key); 2726 2727 return test_bit(key[0], filter) && test_bit(key[1], filter); 2728 } 2729 2730 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2731 void *item) 2732 { 2733 int key[2]; 2734 unsigned long *filter; 2735 int gen = filter_gen_from_seq(seq); 2736 2737 filter = READ_ONCE(mm_state->filters[gen]); 2738 if (!filter) 2739 return; 2740 2741 get_item_key(item, key); 2742 2743 if (!test_bit(key[0], filter)) 2744 set_bit(key[0], filter); 2745 if (!test_bit(key[1], filter)) 2746 set_bit(key[1], filter); 2747 } 2748 2749 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq) 2750 { 2751 unsigned long *filter; 2752 int gen = filter_gen_from_seq(seq); 2753 2754 filter = mm_state->filters[gen]; 2755 if (filter) { 2756 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 2757 return; 2758 } 2759 2760 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 2761 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 2762 WRITE_ONCE(mm_state->filters[gen], filter); 2763 } 2764 2765 /****************************************************************************** 2766 * mm_struct list 2767 ******************************************************************************/ 2768 2769 #ifdef CONFIG_LRU_GEN_WALKS_MMU 2770 2771 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2772 { 2773 static struct lru_gen_mm_list mm_list = { 2774 .fifo = LIST_HEAD_INIT(mm_list.fifo), 2775 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 2776 }; 2777 2778 #ifdef CONFIG_MEMCG 2779 if (memcg) 2780 return &memcg->mm_list; 2781 #endif 2782 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2783 2784 return &mm_list; 2785 } 2786 2787 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2788 { 2789 return &lruvec->mm_state; 2790 } 2791 2792 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2793 { 2794 int key; 2795 struct mm_struct *mm; 2796 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 2797 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 2798 2799 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 2800 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 2801 2802 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 2803 return NULL; 2804 2805 clear_bit(key, &mm->lru_gen.bitmap); 2806 2807 return mmget_not_zero(mm) ? mm : NULL; 2808 } 2809 2810 void lru_gen_add_mm(struct mm_struct *mm) 2811 { 2812 int nid; 2813 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 2814 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2815 2816 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 2817 #ifdef CONFIG_MEMCG 2818 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 2819 mm->lru_gen.memcg = memcg; 2820 #endif 2821 spin_lock(&mm_list->lock); 2822 2823 for_each_node_state(nid, N_MEMORY) { 2824 struct lruvec *lruvec = get_lruvec(memcg, nid); 2825 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2826 2827 /* the first addition since the last iteration */ 2828 if (mm_state->tail == &mm_list->fifo) 2829 mm_state->tail = &mm->lru_gen.list; 2830 } 2831 2832 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 2833 2834 spin_unlock(&mm_list->lock); 2835 } 2836 2837 void lru_gen_del_mm(struct mm_struct *mm) 2838 { 2839 int nid; 2840 struct lru_gen_mm_list *mm_list; 2841 struct mem_cgroup *memcg = NULL; 2842 2843 if (list_empty(&mm->lru_gen.list)) 2844 return; 2845 2846 #ifdef CONFIG_MEMCG 2847 memcg = mm->lru_gen.memcg; 2848 #endif 2849 mm_list = get_mm_list(memcg); 2850 2851 spin_lock(&mm_list->lock); 2852 2853 for_each_node(nid) { 2854 struct lruvec *lruvec = get_lruvec(memcg, nid); 2855 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2856 2857 /* where the current iteration continues after */ 2858 if (mm_state->head == &mm->lru_gen.list) 2859 mm_state->head = mm_state->head->prev; 2860 2861 /* where the last iteration ended before */ 2862 if (mm_state->tail == &mm->lru_gen.list) 2863 mm_state->tail = mm_state->tail->next; 2864 } 2865 2866 list_del_init(&mm->lru_gen.list); 2867 2868 spin_unlock(&mm_list->lock); 2869 2870 #ifdef CONFIG_MEMCG 2871 mem_cgroup_put(mm->lru_gen.memcg); 2872 mm->lru_gen.memcg = NULL; 2873 #endif 2874 } 2875 2876 #ifdef CONFIG_MEMCG 2877 void lru_gen_migrate_mm(struct mm_struct *mm) 2878 { 2879 struct mem_cgroup *memcg; 2880 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 2881 2882 VM_WARN_ON_ONCE(task->mm != mm); 2883 lockdep_assert_held(&task->alloc_lock); 2884 2885 /* for mm_update_next_owner() */ 2886 if (mem_cgroup_disabled()) 2887 return; 2888 2889 /* migration can happen before addition */ 2890 if (!mm->lru_gen.memcg) 2891 return; 2892 2893 rcu_read_lock(); 2894 memcg = mem_cgroup_from_task(task); 2895 rcu_read_unlock(); 2896 if (memcg == mm->lru_gen.memcg) 2897 return; 2898 2899 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 2900 2901 lru_gen_del_mm(mm); 2902 lru_gen_add_mm(mm); 2903 } 2904 #endif 2905 2906 #else /* !CONFIG_LRU_GEN_WALKS_MMU */ 2907 2908 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2909 { 2910 return NULL; 2911 } 2912 2913 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2914 { 2915 return NULL; 2916 } 2917 2918 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2919 { 2920 return NULL; 2921 } 2922 2923 #endif 2924 2925 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last) 2926 { 2927 int i; 2928 int hist; 2929 struct lruvec *lruvec = walk->lruvec; 2930 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2931 2932 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 2933 2934 hist = lru_hist_from_seq(walk->seq); 2935 2936 for (i = 0; i < NR_MM_STATS; i++) { 2937 WRITE_ONCE(mm_state->stats[hist][i], 2938 mm_state->stats[hist][i] + walk->mm_stats[i]); 2939 walk->mm_stats[i] = 0; 2940 } 2941 2942 if (NR_HIST_GENS > 1 && last) { 2943 hist = lru_hist_from_seq(walk->seq + 1); 2944 2945 for (i = 0; i < NR_MM_STATS; i++) 2946 WRITE_ONCE(mm_state->stats[hist][i], 0); 2947 } 2948 } 2949 2950 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter) 2951 { 2952 bool first = false; 2953 bool last = false; 2954 struct mm_struct *mm = NULL; 2955 struct lruvec *lruvec = walk->lruvec; 2956 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2957 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2958 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2959 2960 /* 2961 * mm_state->seq is incremented after each iteration of mm_list. There 2962 * are three interesting cases for this page table walker: 2963 * 1. It tries to start a new iteration with a stale max_seq: there is 2964 * nothing left to do. 2965 * 2. It started the next iteration: it needs to reset the Bloom filter 2966 * so that a fresh set of PTE tables can be recorded. 2967 * 3. It ended the current iteration: it needs to reset the mm stats 2968 * counters and tell its caller to increment max_seq. 2969 */ 2970 spin_lock(&mm_list->lock); 2971 2972 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq); 2973 2974 if (walk->seq <= mm_state->seq) 2975 goto done; 2976 2977 if (!mm_state->head) 2978 mm_state->head = &mm_list->fifo; 2979 2980 if (mm_state->head == &mm_list->fifo) 2981 first = true; 2982 2983 do { 2984 mm_state->head = mm_state->head->next; 2985 if (mm_state->head == &mm_list->fifo) { 2986 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 2987 last = true; 2988 break; 2989 } 2990 2991 /* force scan for those added after the last iteration */ 2992 if (!mm_state->tail || mm_state->tail == mm_state->head) { 2993 mm_state->tail = mm_state->head->next; 2994 walk->force_scan = true; 2995 } 2996 } while (!(mm = get_next_mm(walk))); 2997 done: 2998 if (*iter || last) 2999 reset_mm_stats(walk, last); 3000 3001 spin_unlock(&mm_list->lock); 3002 3003 if (mm && first) 3004 reset_bloom_filter(mm_state, walk->seq + 1); 3005 3006 if (*iter) 3007 mmput_async(*iter); 3008 3009 *iter = mm; 3010 3011 return last; 3012 } 3013 3014 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq) 3015 { 3016 bool success = false; 3017 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3018 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3019 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3020 3021 spin_lock(&mm_list->lock); 3022 3023 VM_WARN_ON_ONCE(mm_state->seq + 1 < seq); 3024 3025 if (seq > mm_state->seq) { 3026 mm_state->head = NULL; 3027 mm_state->tail = NULL; 3028 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3029 success = true; 3030 } 3031 3032 spin_unlock(&mm_list->lock); 3033 3034 return success; 3035 } 3036 3037 /****************************************************************************** 3038 * PID controller 3039 ******************************************************************************/ 3040 3041 /* 3042 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3043 * 3044 * The P term is refaulted/(evicted+protected) from a tier in the generation 3045 * currently being evicted; the I term is the exponential moving average of the 3046 * P term over the generations previously evicted, using the smoothing factor 3047 * 1/2; the D term isn't supported. 3048 * 3049 * The setpoint (SP) is always the first tier of one type; the process variable 3050 * (PV) is either any tier of the other type or any other tier of the same 3051 * type. 3052 * 3053 * The error is the difference between the SP and the PV; the correction is to 3054 * turn off protection when SP>PV or turn on protection when SP<PV. 3055 * 3056 * For future optimizations: 3057 * 1. The D term may discount the other two terms over time so that long-lived 3058 * generations can resist stale information. 3059 */ 3060 struct ctrl_pos { 3061 unsigned long refaulted; 3062 unsigned long total; 3063 int gain; 3064 }; 3065 3066 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3067 struct ctrl_pos *pos) 3068 { 3069 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3070 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3071 3072 pos->refaulted = lrugen->avg_refaulted[type][tier] + 3073 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3074 pos->total = lrugen->avg_total[type][tier] + 3075 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3076 if (tier) 3077 pos->total += lrugen->protected[hist][type][tier - 1]; 3078 pos->gain = gain; 3079 } 3080 3081 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3082 { 3083 int hist, tier; 3084 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3085 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3086 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3087 3088 lockdep_assert_held(&lruvec->lru_lock); 3089 3090 if (!carryover && !clear) 3091 return; 3092 3093 hist = lru_hist_from_seq(seq); 3094 3095 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3096 if (carryover) { 3097 unsigned long sum; 3098 3099 sum = lrugen->avg_refaulted[type][tier] + 3100 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3101 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3102 3103 sum = lrugen->avg_total[type][tier] + 3104 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3105 if (tier) 3106 sum += lrugen->protected[hist][type][tier - 1]; 3107 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3108 } 3109 3110 if (clear) { 3111 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3112 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3113 if (tier) 3114 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0); 3115 } 3116 } 3117 } 3118 3119 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3120 { 3121 /* 3122 * Return true if the PV has a limited number of refaults or a lower 3123 * refaulted/total than the SP. 3124 */ 3125 return pv->refaulted < MIN_LRU_BATCH || 3126 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3127 (sp->refaulted + 1) * pv->total * pv->gain; 3128 } 3129 3130 /****************************************************************************** 3131 * the aging 3132 ******************************************************************************/ 3133 3134 /* promote pages accessed through page tables */ 3135 static int folio_update_gen(struct folio *folio, int gen) 3136 { 3137 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3138 3139 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3140 VM_WARN_ON_ONCE(!rcu_read_lock_held()); 3141 3142 do { 3143 /* lru_gen_del_folio() has isolated this page? */ 3144 if (!(old_flags & LRU_GEN_MASK)) { 3145 /* for shrink_folio_list() */ 3146 new_flags = old_flags | BIT(PG_referenced); 3147 continue; 3148 } 3149 3150 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3151 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF; 3152 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3153 3154 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3155 } 3156 3157 /* protect pages accessed multiple times through file descriptors */ 3158 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3159 { 3160 int type = folio_is_file_lru(folio); 3161 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3162 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3163 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3164 3165 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3166 3167 do { 3168 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3169 /* folio_update_gen() has promoted this page? */ 3170 if (new_gen >= 0 && new_gen != old_gen) 3171 return new_gen; 3172 3173 new_gen = (old_gen + 1) % MAX_NR_GENS; 3174 3175 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3176 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3177 /* for folio_end_writeback() */ 3178 if (reclaiming) 3179 new_flags |= BIT(PG_reclaim); 3180 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3181 3182 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3183 3184 return new_gen; 3185 } 3186 3187 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3188 int old_gen, int new_gen) 3189 { 3190 int type = folio_is_file_lru(folio); 3191 int zone = folio_zonenum(folio); 3192 int delta = folio_nr_pages(folio); 3193 3194 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3195 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3196 3197 walk->batched++; 3198 3199 walk->nr_pages[old_gen][type][zone] -= delta; 3200 walk->nr_pages[new_gen][type][zone] += delta; 3201 } 3202 3203 static void reset_batch_size(struct lru_gen_mm_walk *walk) 3204 { 3205 int gen, type, zone; 3206 struct lruvec *lruvec = walk->lruvec; 3207 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3208 3209 walk->batched = 0; 3210 3211 for_each_gen_type_zone(gen, type, zone) { 3212 enum lru_list lru = type * LRU_INACTIVE_FILE; 3213 int delta = walk->nr_pages[gen][type][zone]; 3214 3215 if (!delta) 3216 continue; 3217 3218 walk->nr_pages[gen][type][zone] = 0; 3219 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3220 lrugen->nr_pages[gen][type][zone] + delta); 3221 3222 if (lru_gen_is_active(lruvec, gen)) 3223 lru += LRU_ACTIVE; 3224 __update_lru_size(lruvec, lru, zone, delta); 3225 } 3226 } 3227 3228 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3229 { 3230 struct address_space *mapping; 3231 struct vm_area_struct *vma = args->vma; 3232 struct lru_gen_mm_walk *walk = args->private; 3233 3234 if (!vma_is_accessible(vma)) 3235 return true; 3236 3237 if (is_vm_hugetlb_page(vma)) 3238 return true; 3239 3240 if (!vma_has_recency(vma)) 3241 return true; 3242 3243 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) 3244 return true; 3245 3246 if (vma == get_gate_vma(vma->vm_mm)) 3247 return true; 3248 3249 if (vma_is_anonymous(vma)) 3250 return !walk->can_swap; 3251 3252 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3253 return true; 3254 3255 mapping = vma->vm_file->f_mapping; 3256 if (mapping_unevictable(mapping)) 3257 return true; 3258 3259 if (shmem_mapping(mapping)) 3260 return !walk->can_swap; 3261 3262 /* to exclude special mappings like dax, etc. */ 3263 return !mapping->a_ops->read_folio; 3264 } 3265 3266 /* 3267 * Some userspace memory allocators map many single-page VMAs. Instead of 3268 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3269 * table to reduce zigzags and improve cache performance. 3270 */ 3271 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3272 unsigned long *vm_start, unsigned long *vm_end) 3273 { 3274 unsigned long start = round_up(*vm_end, size); 3275 unsigned long end = (start | ~mask) + 1; 3276 VMA_ITERATOR(vmi, args->mm, start); 3277 3278 VM_WARN_ON_ONCE(mask & size); 3279 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3280 3281 for_each_vma(vmi, args->vma) { 3282 if (end && end <= args->vma->vm_start) 3283 return false; 3284 3285 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3286 continue; 3287 3288 *vm_start = max(start, args->vma->vm_start); 3289 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3290 3291 return true; 3292 } 3293 3294 return false; 3295 } 3296 3297 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr) 3298 { 3299 unsigned long pfn = pte_pfn(pte); 3300 3301 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3302 3303 if (!pte_present(pte) || is_zero_pfn(pfn)) 3304 return -1; 3305 3306 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3307 return -1; 3308 3309 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3310 return -1; 3311 3312 return pfn; 3313 } 3314 3315 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr) 3316 { 3317 unsigned long pfn = pmd_pfn(pmd); 3318 3319 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3320 3321 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3322 return -1; 3323 3324 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3325 return -1; 3326 3327 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3328 return -1; 3329 3330 return pfn; 3331 } 3332 3333 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3334 struct pglist_data *pgdat, bool can_swap) 3335 { 3336 struct folio *folio; 3337 3338 /* try to avoid unnecessary memory loads */ 3339 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3340 return NULL; 3341 3342 folio = pfn_folio(pfn); 3343 if (folio_nid(folio) != pgdat->node_id) 3344 return NULL; 3345 3346 if (folio_memcg_rcu(folio) != memcg) 3347 return NULL; 3348 3349 /* file VMAs can contain anon pages from COW */ 3350 if (!folio_is_file_lru(folio) && !can_swap) 3351 return NULL; 3352 3353 return folio; 3354 } 3355 3356 static bool suitable_to_scan(int total, int young) 3357 { 3358 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3359 3360 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3361 return young * n >= total; 3362 } 3363 3364 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3365 struct mm_walk *args) 3366 { 3367 int i; 3368 pte_t *pte; 3369 spinlock_t *ptl; 3370 unsigned long addr; 3371 int total = 0; 3372 int young = 0; 3373 struct lru_gen_mm_walk *walk = args->private; 3374 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3375 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3376 DEFINE_MAX_SEQ(walk->lruvec); 3377 int old_gen, new_gen = lru_gen_from_seq(max_seq); 3378 3379 pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl); 3380 if (!pte) 3381 return false; 3382 if (!spin_trylock(ptl)) { 3383 pte_unmap(pte); 3384 return false; 3385 } 3386 3387 arch_enter_lazy_mmu_mode(); 3388 restart: 3389 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3390 unsigned long pfn; 3391 struct folio *folio; 3392 pte_t ptent = ptep_get(pte + i); 3393 3394 total++; 3395 walk->mm_stats[MM_LEAF_TOTAL]++; 3396 3397 pfn = get_pte_pfn(ptent, args->vma, addr); 3398 if (pfn == -1) 3399 continue; 3400 3401 if (!pte_young(ptent)) { 3402 walk->mm_stats[MM_LEAF_OLD]++; 3403 continue; 3404 } 3405 3406 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3407 if (!folio) 3408 continue; 3409 3410 if (!ptep_test_and_clear_young(args->vma, addr, pte + i)) 3411 VM_WARN_ON_ONCE(true); 3412 3413 young++; 3414 walk->mm_stats[MM_LEAF_YOUNG]++; 3415 3416 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 3417 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3418 !folio_test_swapcache(folio))) 3419 folio_mark_dirty(folio); 3420 3421 old_gen = folio_update_gen(folio, new_gen); 3422 if (old_gen >= 0 && old_gen != new_gen) 3423 update_batch_size(walk, folio, old_gen, new_gen); 3424 } 3425 3426 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 3427 goto restart; 3428 3429 arch_leave_lazy_mmu_mode(); 3430 pte_unmap_unlock(pte, ptl); 3431 3432 return suitable_to_scan(total, young); 3433 } 3434 3435 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 3436 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 3437 { 3438 int i; 3439 pmd_t *pmd; 3440 spinlock_t *ptl; 3441 struct lru_gen_mm_walk *walk = args->private; 3442 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3443 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3444 DEFINE_MAX_SEQ(walk->lruvec); 3445 int old_gen, new_gen = lru_gen_from_seq(max_seq); 3446 3447 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3448 3449 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 3450 if (*first == -1) { 3451 *first = addr; 3452 bitmap_zero(bitmap, MIN_LRU_BATCH); 3453 return; 3454 } 3455 3456 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); 3457 if (i && i <= MIN_LRU_BATCH) { 3458 __set_bit(i - 1, bitmap); 3459 return; 3460 } 3461 3462 pmd = pmd_offset(pud, *first); 3463 3464 ptl = pmd_lockptr(args->mm, pmd); 3465 if (!spin_trylock(ptl)) 3466 goto done; 3467 3468 arch_enter_lazy_mmu_mode(); 3469 3470 do { 3471 unsigned long pfn; 3472 struct folio *folio; 3473 3474 /* don't round down the first address */ 3475 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; 3476 3477 pfn = get_pmd_pfn(pmd[i], vma, addr); 3478 if (pfn == -1) 3479 goto next; 3480 3481 if (!pmd_trans_huge(pmd[i])) { 3482 if (!walk->force_scan && should_clear_pmd_young()) 3483 pmdp_test_and_clear_young(vma, addr, pmd + i); 3484 goto next; 3485 } 3486 3487 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3488 if (!folio) 3489 goto next; 3490 3491 if (!pmdp_test_and_clear_young(vma, addr, pmd + i)) 3492 goto next; 3493 3494 walk->mm_stats[MM_LEAF_YOUNG]++; 3495 3496 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) && 3497 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3498 !folio_test_swapcache(folio))) 3499 folio_mark_dirty(folio); 3500 3501 old_gen = folio_update_gen(folio, new_gen); 3502 if (old_gen >= 0 && old_gen != new_gen) 3503 update_batch_size(walk, folio, old_gen, new_gen); 3504 next: 3505 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 3506 } while (i <= MIN_LRU_BATCH); 3507 3508 arch_leave_lazy_mmu_mode(); 3509 spin_unlock(ptl); 3510 done: 3511 *first = -1; 3512 } 3513 3514 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 3515 struct mm_walk *args) 3516 { 3517 int i; 3518 pmd_t *pmd; 3519 unsigned long next; 3520 unsigned long addr; 3521 struct vm_area_struct *vma; 3522 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH); 3523 unsigned long first = -1; 3524 struct lru_gen_mm_walk *walk = args->private; 3525 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 3526 3527 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3528 3529 /* 3530 * Finish an entire PMD in two passes: the first only reaches to PTE 3531 * tables to avoid taking the PMD lock; the second, if necessary, takes 3532 * the PMD lock to clear the accessed bit in PMD entries. 3533 */ 3534 pmd = pmd_offset(pud, start & PUD_MASK); 3535 restart: 3536 /* walk_pte_range() may call get_next_vma() */ 3537 vma = args->vma; 3538 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 3539 pmd_t val = pmdp_get_lockless(pmd + i); 3540 3541 next = pmd_addr_end(addr, end); 3542 3543 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 3544 walk->mm_stats[MM_LEAF_TOTAL]++; 3545 continue; 3546 } 3547 3548 if (pmd_trans_huge(val)) { 3549 unsigned long pfn = pmd_pfn(val); 3550 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3551 3552 walk->mm_stats[MM_LEAF_TOTAL]++; 3553 3554 if (!pmd_young(val)) { 3555 walk->mm_stats[MM_LEAF_OLD]++; 3556 continue; 3557 } 3558 3559 /* try to avoid unnecessary memory loads */ 3560 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3561 continue; 3562 3563 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3564 continue; 3565 } 3566 3567 walk->mm_stats[MM_NONLEAF_TOTAL]++; 3568 3569 if (!walk->force_scan && should_clear_pmd_young()) { 3570 if (!pmd_young(val)) 3571 continue; 3572 3573 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3574 } 3575 3576 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i)) 3577 continue; 3578 3579 walk->mm_stats[MM_NONLEAF_FOUND]++; 3580 3581 if (!walk_pte_range(&val, addr, next, args)) 3582 continue; 3583 3584 walk->mm_stats[MM_NONLEAF_ADDED]++; 3585 3586 /* carry over to the next generation */ 3587 update_bloom_filter(mm_state, walk->seq + 1, pmd + i); 3588 } 3589 3590 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); 3591 3592 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 3593 goto restart; 3594 } 3595 3596 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 3597 struct mm_walk *args) 3598 { 3599 int i; 3600 pud_t *pud; 3601 unsigned long addr; 3602 unsigned long next; 3603 struct lru_gen_mm_walk *walk = args->private; 3604 3605 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 3606 3607 pud = pud_offset(p4d, start & P4D_MASK); 3608 restart: 3609 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 3610 pud_t val = READ_ONCE(pud[i]); 3611 3612 next = pud_addr_end(addr, end); 3613 3614 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 3615 continue; 3616 3617 walk_pmd_range(&val, addr, next, args); 3618 3619 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 3620 end = (addr | ~PUD_MASK) + 1; 3621 goto done; 3622 } 3623 } 3624 3625 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 3626 goto restart; 3627 3628 end = round_up(end, P4D_SIZE); 3629 done: 3630 if (!end || !args->vma) 3631 return 1; 3632 3633 walk->next_addr = max(end, args->vma->vm_start); 3634 3635 return -EAGAIN; 3636 } 3637 3638 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3639 { 3640 static const struct mm_walk_ops mm_walk_ops = { 3641 .test_walk = should_skip_vma, 3642 .p4d_entry = walk_pud_range, 3643 .walk_lock = PGWALK_RDLOCK, 3644 }; 3645 3646 int err; 3647 struct lruvec *lruvec = walk->lruvec; 3648 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3649 3650 walk->next_addr = FIRST_USER_ADDRESS; 3651 3652 do { 3653 DEFINE_MAX_SEQ(lruvec); 3654 3655 err = -EBUSY; 3656 3657 /* another thread might have called inc_max_seq() */ 3658 if (walk->seq != max_seq) 3659 break; 3660 3661 /* folio_update_gen() requires stable folio_memcg() */ 3662 if (!mem_cgroup_trylock_pages(memcg)) 3663 break; 3664 3665 /* the caller might be holding the lock for write */ 3666 if (mmap_read_trylock(mm)) { 3667 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 3668 3669 mmap_read_unlock(mm); 3670 } 3671 3672 mem_cgroup_unlock_pages(); 3673 3674 if (walk->batched) { 3675 spin_lock_irq(&lruvec->lru_lock); 3676 reset_batch_size(walk); 3677 spin_unlock_irq(&lruvec->lru_lock); 3678 } 3679 3680 cond_resched(); 3681 } while (err == -EAGAIN); 3682 } 3683 3684 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 3685 { 3686 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3687 3688 if (pgdat && current_is_kswapd()) { 3689 VM_WARN_ON_ONCE(walk); 3690 3691 walk = &pgdat->mm_walk; 3692 } else if (!walk && force_alloc) { 3693 VM_WARN_ON_ONCE(current_is_kswapd()); 3694 3695 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3696 } 3697 3698 current->reclaim_state->mm_walk = walk; 3699 3700 return walk; 3701 } 3702 3703 static void clear_mm_walk(void) 3704 { 3705 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3706 3707 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 3708 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 3709 3710 current->reclaim_state->mm_walk = NULL; 3711 3712 if (!current_is_kswapd()) 3713 kfree(walk); 3714 } 3715 3716 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap) 3717 { 3718 int zone; 3719 int remaining = MAX_LRU_BATCH; 3720 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3721 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3722 3723 if (type == LRU_GEN_ANON && !can_swap) 3724 goto done; 3725 3726 /* prevent cold/hot inversion if force_scan is true */ 3727 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3728 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 3729 3730 while (!list_empty(head)) { 3731 struct folio *folio = lru_to_folio(head); 3732 3733 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 3734 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 3735 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 3736 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 3737 3738 new_gen = folio_inc_gen(lruvec, folio, false); 3739 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 3740 3741 if (!--remaining) 3742 return false; 3743 } 3744 } 3745 done: 3746 reset_ctrl_pos(lruvec, type, true); 3747 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 3748 3749 return true; 3750 } 3751 3752 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap) 3753 { 3754 int gen, type, zone; 3755 bool success = false; 3756 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3757 DEFINE_MIN_SEQ(lruvec); 3758 3759 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3760 3761 /* find the oldest populated generation */ 3762 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3763 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 3764 gen = lru_gen_from_seq(min_seq[type]); 3765 3766 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3767 if (!list_empty(&lrugen->folios[gen][type][zone])) 3768 goto next; 3769 } 3770 3771 min_seq[type]++; 3772 } 3773 next: 3774 ; 3775 } 3776 3777 /* see the comment on lru_gen_folio */ 3778 if (can_swap) { 3779 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]); 3780 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]); 3781 } 3782 3783 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3784 if (min_seq[type] == lrugen->min_seq[type]) 3785 continue; 3786 3787 reset_ctrl_pos(lruvec, type, true); 3788 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 3789 success = true; 3790 } 3791 3792 return success; 3793 } 3794 3795 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, 3796 bool can_swap, bool force_scan) 3797 { 3798 bool success; 3799 int prev, next; 3800 int type, zone; 3801 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3802 restart: 3803 if (seq < READ_ONCE(lrugen->max_seq)) 3804 return false; 3805 3806 spin_lock_irq(&lruvec->lru_lock); 3807 3808 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3809 3810 success = seq == lrugen->max_seq; 3811 if (!success) 3812 goto unlock; 3813 3814 for (type = ANON_AND_FILE - 1; type >= 0; type--) { 3815 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 3816 continue; 3817 3818 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap)); 3819 3820 if (inc_min_seq(lruvec, type, can_swap)) 3821 continue; 3822 3823 spin_unlock_irq(&lruvec->lru_lock); 3824 cond_resched(); 3825 goto restart; 3826 } 3827 3828 /* 3829 * Update the active/inactive LRU sizes for compatibility. Both sides of 3830 * the current max_seq need to be covered, since max_seq+1 can overlap 3831 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 3832 * overlap, cold/hot inversion happens. 3833 */ 3834 prev = lru_gen_from_seq(lrugen->max_seq - 1); 3835 next = lru_gen_from_seq(lrugen->max_seq + 1); 3836 3837 for (type = 0; type < ANON_AND_FILE; type++) { 3838 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3839 enum lru_list lru = type * LRU_INACTIVE_FILE; 3840 long delta = lrugen->nr_pages[prev][type][zone] - 3841 lrugen->nr_pages[next][type][zone]; 3842 3843 if (!delta) 3844 continue; 3845 3846 __update_lru_size(lruvec, lru, zone, delta); 3847 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 3848 } 3849 } 3850 3851 for (type = 0; type < ANON_AND_FILE; type++) 3852 reset_ctrl_pos(lruvec, type, false); 3853 3854 WRITE_ONCE(lrugen->timestamps[next], jiffies); 3855 /* make sure preceding modifications appear */ 3856 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 3857 unlock: 3858 spin_unlock_irq(&lruvec->lru_lock); 3859 3860 return success; 3861 } 3862 3863 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq, 3864 bool can_swap, bool force_scan) 3865 { 3866 bool success; 3867 struct lru_gen_mm_walk *walk; 3868 struct mm_struct *mm = NULL; 3869 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3870 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3871 3872 VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq)); 3873 3874 if (!mm_state) 3875 return inc_max_seq(lruvec, seq, can_swap, force_scan); 3876 3877 /* see the comment in iterate_mm_list() */ 3878 if (seq <= READ_ONCE(mm_state->seq)) 3879 return false; 3880 3881 /* 3882 * If the hardware doesn't automatically set the accessed bit, fallback 3883 * to lru_gen_look_around(), which only clears the accessed bit in a 3884 * handful of PTEs. Spreading the work out over a period of time usually 3885 * is less efficient, but it avoids bursty page faults. 3886 */ 3887 if (!should_walk_mmu()) { 3888 success = iterate_mm_list_nowalk(lruvec, seq); 3889 goto done; 3890 } 3891 3892 walk = set_mm_walk(NULL, true); 3893 if (!walk) { 3894 success = iterate_mm_list_nowalk(lruvec, seq); 3895 goto done; 3896 } 3897 3898 walk->lruvec = lruvec; 3899 walk->seq = seq; 3900 walk->can_swap = can_swap; 3901 walk->force_scan = force_scan; 3902 3903 do { 3904 success = iterate_mm_list(walk, &mm); 3905 if (mm) 3906 walk_mm(mm, walk); 3907 } while (mm); 3908 done: 3909 if (success) { 3910 success = inc_max_seq(lruvec, seq, can_swap, force_scan); 3911 WARN_ON_ONCE(!success); 3912 } 3913 3914 return success; 3915 } 3916 3917 /****************************************************************************** 3918 * working set protection 3919 ******************************************************************************/ 3920 3921 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 3922 { 3923 int priority; 3924 unsigned long reclaimable; 3925 3926 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 3927 return; 3928 /* 3929 * Determine the initial priority based on 3930 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, 3931 * where reclaimed_to_scanned_ratio = inactive / total. 3932 */ 3933 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 3934 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 3935 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 3936 3937 /* round down reclaimable and round up sc->nr_to_reclaim */ 3938 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 3939 3940 /* 3941 * The estimation is based on LRU pages only, so cap it to prevent 3942 * overshoots of shrinker objects by large margins. 3943 */ 3944 sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY); 3945 } 3946 3947 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 3948 { 3949 int gen, type, zone; 3950 unsigned long total = 0; 3951 bool can_swap = get_swappiness(lruvec, sc); 3952 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3953 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3954 DEFINE_MAX_SEQ(lruvec); 3955 DEFINE_MIN_SEQ(lruvec); 3956 3957 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3958 unsigned long seq; 3959 3960 for (seq = min_seq[type]; seq <= max_seq; seq++) { 3961 gen = lru_gen_from_seq(seq); 3962 3963 for (zone = 0; zone < MAX_NR_ZONES; zone++) 3964 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 3965 } 3966 } 3967 3968 /* whether the size is big enough to be helpful */ 3969 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 3970 } 3971 3972 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 3973 unsigned long min_ttl) 3974 { 3975 int gen; 3976 unsigned long birth; 3977 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3978 DEFINE_MIN_SEQ(lruvec); 3979 3980 if (mem_cgroup_below_min(NULL, memcg)) 3981 return false; 3982 3983 if (!lruvec_is_sizable(lruvec, sc)) 3984 return false; 3985 3986 /* see the comment on lru_gen_folio */ 3987 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]); 3988 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 3989 3990 return time_is_before_jiffies(birth + min_ttl); 3991 } 3992 3993 /* to protect the working set of the last N jiffies */ 3994 static unsigned long lru_gen_min_ttl __read_mostly; 3995 3996 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 3997 { 3998 struct mem_cgroup *memcg; 3999 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 4000 bool reclaimable = !min_ttl; 4001 4002 VM_WARN_ON_ONCE(!current_is_kswapd()); 4003 4004 set_initial_priority(pgdat, sc); 4005 4006 memcg = mem_cgroup_iter(NULL, NULL, NULL); 4007 do { 4008 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4009 4010 mem_cgroup_calculate_protection(NULL, memcg); 4011 4012 if (!reclaimable) 4013 reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl); 4014 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 4015 4016 /* 4017 * The main goal is to OOM kill if every generation from all memcgs is 4018 * younger than min_ttl. However, another possibility is all memcgs are 4019 * either too small or below min. 4020 */ 4021 if (!reclaimable && mutex_trylock(&oom_lock)) { 4022 struct oom_control oc = { 4023 .gfp_mask = sc->gfp_mask, 4024 }; 4025 4026 out_of_memory(&oc); 4027 4028 mutex_unlock(&oom_lock); 4029 } 4030 } 4031 4032 /****************************************************************************** 4033 * rmap/PT walk feedback 4034 ******************************************************************************/ 4035 4036 /* 4037 * This function exploits spatial locality when shrink_folio_list() walks the 4038 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4039 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4040 * the PTE table to the Bloom filter. This forms a feedback loop between the 4041 * eviction and the aging. 4042 */ 4043 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4044 { 4045 int i; 4046 unsigned long start; 4047 unsigned long end; 4048 struct lru_gen_mm_walk *walk; 4049 int young = 0; 4050 pte_t *pte = pvmw->pte; 4051 unsigned long addr = pvmw->address; 4052 struct vm_area_struct *vma = pvmw->vma; 4053 struct folio *folio = pfn_folio(pvmw->pfn); 4054 bool can_swap = !folio_is_file_lru(folio); 4055 struct mem_cgroup *memcg = folio_memcg(folio); 4056 struct pglist_data *pgdat = folio_pgdat(folio); 4057 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4058 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 4059 DEFINE_MAX_SEQ(lruvec); 4060 int old_gen, new_gen = lru_gen_from_seq(max_seq); 4061 4062 lockdep_assert_held(pvmw->ptl); 4063 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4064 4065 if (spin_is_contended(pvmw->ptl)) 4066 return; 4067 4068 /* exclude special VMAs containing anon pages from COW */ 4069 if (vma->vm_flags & VM_SPECIAL) 4070 return; 4071 4072 /* avoid taking the LRU lock under the PTL when possible */ 4073 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4074 4075 start = max(addr & PMD_MASK, vma->vm_start); 4076 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1; 4077 4078 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4079 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4080 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4081 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) 4082 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4083 else { 4084 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; 4085 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; 4086 } 4087 } 4088 4089 /* folio_update_gen() requires stable folio_memcg() */ 4090 if (!mem_cgroup_trylock_pages(memcg)) 4091 return; 4092 4093 arch_enter_lazy_mmu_mode(); 4094 4095 pte -= (addr - start) / PAGE_SIZE; 4096 4097 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4098 unsigned long pfn; 4099 pte_t ptent = ptep_get(pte + i); 4100 4101 pfn = get_pte_pfn(ptent, vma, addr); 4102 if (pfn == -1) 4103 continue; 4104 4105 if (!pte_young(ptent)) 4106 continue; 4107 4108 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap); 4109 if (!folio) 4110 continue; 4111 4112 if (!ptep_test_and_clear_young(vma, addr, pte + i)) 4113 VM_WARN_ON_ONCE(true); 4114 4115 young++; 4116 4117 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 4118 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4119 !folio_test_swapcache(folio))) 4120 folio_mark_dirty(folio); 4121 4122 if (walk) { 4123 old_gen = folio_update_gen(folio, new_gen); 4124 if (old_gen >= 0 && old_gen != new_gen) 4125 update_batch_size(walk, folio, old_gen, new_gen); 4126 4127 continue; 4128 } 4129 4130 old_gen = folio_lru_gen(folio); 4131 if (old_gen < 0) 4132 folio_set_referenced(folio); 4133 else if (old_gen != new_gen) 4134 folio_activate(folio); 4135 } 4136 4137 arch_leave_lazy_mmu_mode(); 4138 mem_cgroup_unlock_pages(); 4139 4140 /* feedback from rmap walkers to page table walkers */ 4141 if (mm_state && suitable_to_scan(i, young)) 4142 update_bloom_filter(mm_state, max_seq, pvmw->pmd); 4143 } 4144 4145 /****************************************************************************** 4146 * memcg LRU 4147 ******************************************************************************/ 4148 4149 /* see the comment on MEMCG_NR_GENS */ 4150 enum { 4151 MEMCG_LRU_NOP, 4152 MEMCG_LRU_HEAD, 4153 MEMCG_LRU_TAIL, 4154 MEMCG_LRU_OLD, 4155 MEMCG_LRU_YOUNG, 4156 }; 4157 4158 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 4159 { 4160 int seg; 4161 int old, new; 4162 unsigned long flags; 4163 int bin = get_random_u32_below(MEMCG_NR_BINS); 4164 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4165 4166 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags); 4167 4168 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4169 4170 seg = 0; 4171 new = old = lruvec->lrugen.gen; 4172 4173 /* see the comment on MEMCG_NR_GENS */ 4174 if (op == MEMCG_LRU_HEAD) 4175 seg = MEMCG_LRU_HEAD; 4176 else if (op == MEMCG_LRU_TAIL) 4177 seg = MEMCG_LRU_TAIL; 4178 else if (op == MEMCG_LRU_OLD) 4179 new = get_memcg_gen(pgdat->memcg_lru.seq); 4180 else if (op == MEMCG_LRU_YOUNG) 4181 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 4182 else 4183 VM_WARN_ON_ONCE(true); 4184 4185 WRITE_ONCE(lruvec->lrugen.seg, seg); 4186 WRITE_ONCE(lruvec->lrugen.gen, new); 4187 4188 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4189 4190 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 4191 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4192 else 4193 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4194 4195 pgdat->memcg_lru.nr_memcgs[old]--; 4196 pgdat->memcg_lru.nr_memcgs[new]++; 4197 4198 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 4199 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4200 4201 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags); 4202 } 4203 4204 #ifdef CONFIG_MEMCG 4205 4206 void lru_gen_online_memcg(struct mem_cgroup *memcg) 4207 { 4208 int gen; 4209 int nid; 4210 int bin = get_random_u32_below(MEMCG_NR_BINS); 4211 4212 for_each_node(nid) { 4213 struct pglist_data *pgdat = NODE_DATA(nid); 4214 struct lruvec *lruvec = get_lruvec(memcg, nid); 4215 4216 spin_lock_irq(&pgdat->memcg_lru.lock); 4217 4218 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 4219 4220 gen = get_memcg_gen(pgdat->memcg_lru.seq); 4221 4222 lruvec->lrugen.gen = gen; 4223 4224 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 4225 pgdat->memcg_lru.nr_memcgs[gen]++; 4226 4227 spin_unlock_irq(&pgdat->memcg_lru.lock); 4228 } 4229 } 4230 4231 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 4232 { 4233 int nid; 4234 4235 for_each_node(nid) { 4236 struct lruvec *lruvec = get_lruvec(memcg, nid); 4237 4238 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 4239 } 4240 } 4241 4242 void lru_gen_release_memcg(struct mem_cgroup *memcg) 4243 { 4244 int gen; 4245 int nid; 4246 4247 for_each_node(nid) { 4248 struct pglist_data *pgdat = NODE_DATA(nid); 4249 struct lruvec *lruvec = get_lruvec(memcg, nid); 4250 4251 spin_lock_irq(&pgdat->memcg_lru.lock); 4252 4253 if (hlist_nulls_unhashed(&lruvec->lrugen.list)) 4254 goto unlock; 4255 4256 gen = lruvec->lrugen.gen; 4257 4258 hlist_nulls_del_init_rcu(&lruvec->lrugen.list); 4259 pgdat->memcg_lru.nr_memcgs[gen]--; 4260 4261 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 4262 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4263 unlock: 4264 spin_unlock_irq(&pgdat->memcg_lru.lock); 4265 } 4266 } 4267 4268 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 4269 { 4270 struct lruvec *lruvec = get_lruvec(memcg, nid); 4271 4272 /* see the comment on MEMCG_NR_GENS */ 4273 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD) 4274 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 4275 } 4276 4277 #endif /* CONFIG_MEMCG */ 4278 4279 /****************************************************************************** 4280 * the eviction 4281 ******************************************************************************/ 4282 4283 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc, 4284 int tier_idx) 4285 { 4286 bool success; 4287 int gen = folio_lru_gen(folio); 4288 int type = folio_is_file_lru(folio); 4289 int zone = folio_zonenum(folio); 4290 int delta = folio_nr_pages(folio); 4291 int refs = folio_lru_refs(folio); 4292 int tier = lru_tier_from_refs(refs); 4293 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4294 4295 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4296 4297 /* unevictable */ 4298 if (!folio_evictable(folio)) { 4299 success = lru_gen_del_folio(lruvec, folio, true); 4300 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4301 folio_set_unevictable(folio); 4302 lruvec_add_folio(lruvec, folio); 4303 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4304 return true; 4305 } 4306 4307 /* promoted */ 4308 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4309 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4310 return true; 4311 } 4312 4313 /* protected */ 4314 if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) { 4315 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4316 4317 gen = folio_inc_gen(lruvec, folio, false); 4318 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4319 4320 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 4321 lrugen->protected[hist][type][tier - 1] + delta); 4322 return true; 4323 } 4324 4325 /* ineligible */ 4326 if (!folio_test_lru(folio) || zone > sc->reclaim_idx) { 4327 gen = folio_inc_gen(lruvec, folio, false); 4328 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4329 return true; 4330 } 4331 4332 /* waiting for writeback */ 4333 if (folio_test_locked(folio) || folio_test_writeback(folio) || 4334 (type == LRU_GEN_FILE && folio_test_dirty(folio))) { 4335 gen = folio_inc_gen(lruvec, folio, true); 4336 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4337 return true; 4338 } 4339 4340 return false; 4341 } 4342 4343 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4344 { 4345 bool success; 4346 4347 /* swap constrained */ 4348 if (!(sc->gfp_mask & __GFP_IO) && 4349 (folio_test_dirty(folio) || 4350 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4351 return false; 4352 4353 /* raced with release_pages() */ 4354 if (!folio_try_get(folio)) 4355 return false; 4356 4357 /* raced with another isolation */ 4358 if (!folio_test_clear_lru(folio)) { 4359 folio_put(folio); 4360 return false; 4361 } 4362 4363 /* see the comment on MAX_NR_TIERS */ 4364 if (!folio_test_referenced(folio)) 4365 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); 4366 4367 /* for shrink_folio_list() */ 4368 folio_clear_reclaim(folio); 4369 folio_clear_referenced(folio); 4370 4371 success = lru_gen_del_folio(lruvec, folio, true); 4372 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4373 4374 return true; 4375 } 4376 4377 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 4378 int type, int tier, struct list_head *list) 4379 { 4380 int i; 4381 int gen; 4382 enum vm_event_item item; 4383 int sorted = 0; 4384 int scanned = 0; 4385 int isolated = 0; 4386 int skipped = 0; 4387 int remaining = MAX_LRU_BATCH; 4388 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4389 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4390 4391 VM_WARN_ON_ONCE(!list_empty(list)); 4392 4393 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4394 return 0; 4395 4396 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4397 4398 for (i = MAX_NR_ZONES; i > 0; i--) { 4399 LIST_HEAD(moved); 4400 int skipped_zone = 0; 4401 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES; 4402 struct list_head *head = &lrugen->folios[gen][type][zone]; 4403 4404 while (!list_empty(head)) { 4405 struct folio *folio = lru_to_folio(head); 4406 int delta = folio_nr_pages(folio); 4407 4408 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4409 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4410 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4411 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4412 4413 scanned += delta; 4414 4415 if (sort_folio(lruvec, folio, sc, tier)) 4416 sorted += delta; 4417 else if (isolate_folio(lruvec, folio, sc)) { 4418 list_add(&folio->lru, list); 4419 isolated += delta; 4420 } else { 4421 list_move(&folio->lru, &moved); 4422 skipped_zone += delta; 4423 } 4424 4425 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH) 4426 break; 4427 } 4428 4429 if (skipped_zone) { 4430 list_splice(&moved, head); 4431 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone); 4432 skipped += skipped_zone; 4433 } 4434 4435 if (!remaining || isolated >= MIN_LRU_BATCH) 4436 break; 4437 } 4438 4439 item = PGSCAN_KSWAPD + reclaimer_offset(); 4440 if (!cgroup_reclaim(sc)) { 4441 __count_vm_events(item, isolated); 4442 __count_vm_events(PGREFILL, sorted); 4443 } 4444 __count_memcg_events(memcg, item, isolated); 4445 __count_memcg_events(memcg, PGREFILL, sorted); 4446 __count_vm_events(PGSCAN_ANON + type, isolated); 4447 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH, 4448 scanned, skipped, isolated, 4449 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4450 4451 /* 4452 * There might not be eligible folios due to reclaim_idx. Check the 4453 * remaining to prevent livelock if it's not making progress. 4454 */ 4455 return isolated || !remaining ? scanned : 0; 4456 } 4457 4458 static int get_tier_idx(struct lruvec *lruvec, int type) 4459 { 4460 int tier; 4461 struct ctrl_pos sp, pv; 4462 4463 /* 4464 * To leave a margin for fluctuations, use a larger gain factor (1:2). 4465 * This value is chosen because any other tier would have at least twice 4466 * as many refaults as the first tier. 4467 */ 4468 read_ctrl_pos(lruvec, type, 0, 1, &sp); 4469 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4470 read_ctrl_pos(lruvec, type, tier, 2, &pv); 4471 if (!positive_ctrl_err(&sp, &pv)) 4472 break; 4473 } 4474 4475 return tier - 1; 4476 } 4477 4478 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx) 4479 { 4480 int type, tier; 4481 struct ctrl_pos sp, pv; 4482 int gain[ANON_AND_FILE] = { swappiness, MAX_SWAPPINESS - swappiness }; 4483 4484 /* 4485 * Compare the first tier of anon with that of file to determine which 4486 * type to scan. Also need to compare other tiers of the selected type 4487 * with the first tier of the other type to determine the last tier (of 4488 * the selected type) to evict. 4489 */ 4490 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp); 4491 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv); 4492 type = positive_ctrl_err(&sp, &pv); 4493 4494 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp); 4495 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4496 read_ctrl_pos(lruvec, type, tier, gain[type], &pv); 4497 if (!positive_ctrl_err(&sp, &pv)) 4498 break; 4499 } 4500 4501 *tier_idx = tier - 1; 4502 4503 return type; 4504 } 4505 4506 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 4507 int *type_scanned, struct list_head *list) 4508 { 4509 int i; 4510 int type; 4511 int scanned; 4512 int tier = -1; 4513 DEFINE_MIN_SEQ(lruvec); 4514 4515 /* 4516 * Try to make the obvious choice first, and if anon and file are both 4517 * available from the same generation, 4518 * 1. Interpret swappiness 1 as file first and MAX_SWAPPINESS as anon 4519 * first. 4520 * 2. If !__GFP_IO, file first since clean pagecache is more likely to 4521 * exist than clean swapcache. 4522 */ 4523 if (!swappiness) 4524 type = LRU_GEN_FILE; 4525 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE]) 4526 type = LRU_GEN_ANON; 4527 else if (swappiness == 1) 4528 type = LRU_GEN_FILE; 4529 else if (swappiness == MAX_SWAPPINESS) 4530 type = LRU_GEN_ANON; 4531 else if (!(sc->gfp_mask & __GFP_IO)) 4532 type = LRU_GEN_FILE; 4533 else 4534 type = get_type_to_scan(lruvec, swappiness, &tier); 4535 4536 for (i = !swappiness; i < ANON_AND_FILE; i++) { 4537 if (tier < 0) 4538 tier = get_tier_idx(lruvec, type); 4539 4540 scanned = scan_folios(lruvec, sc, type, tier, list); 4541 if (scanned) 4542 break; 4543 4544 type = !type; 4545 tier = -1; 4546 } 4547 4548 *type_scanned = type; 4549 4550 return scanned; 4551 } 4552 4553 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 4554 { 4555 int type; 4556 int scanned; 4557 int reclaimed; 4558 LIST_HEAD(list); 4559 LIST_HEAD(clean); 4560 struct folio *folio; 4561 struct folio *next; 4562 enum vm_event_item item; 4563 struct reclaim_stat stat; 4564 struct lru_gen_mm_walk *walk; 4565 bool skip_retry = false; 4566 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4567 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4568 4569 spin_lock_irq(&lruvec->lru_lock); 4570 4571 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 4572 4573 scanned += try_to_inc_min_seq(lruvec, swappiness); 4574 4575 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS) 4576 scanned = 0; 4577 4578 spin_unlock_irq(&lruvec->lru_lock); 4579 4580 if (list_empty(&list)) 4581 return scanned; 4582 retry: 4583 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 4584 sc->nr_reclaimed += reclaimed; 4585 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 4586 scanned, reclaimed, &stat, sc->priority, 4587 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4588 4589 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 4590 if (!folio_evictable(folio)) { 4591 list_del(&folio->lru); 4592 folio_putback_lru(folio); 4593 continue; 4594 } 4595 4596 if (folio_test_reclaim(folio) && 4597 (folio_test_dirty(folio) || folio_test_writeback(folio))) { 4598 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */ 4599 if (folio_test_workingset(folio)) 4600 folio_set_referenced(folio); 4601 continue; 4602 } 4603 4604 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) || 4605 folio_mapped(folio) || folio_test_locked(folio) || 4606 folio_test_dirty(folio) || folio_test_writeback(folio)) { 4607 /* don't add rejected folios to the oldest generation */ 4608 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 4609 BIT(PG_active)); 4610 continue; 4611 } 4612 4613 /* retry folios that may have missed folio_rotate_reclaimable() */ 4614 list_move(&folio->lru, &clean); 4615 } 4616 4617 spin_lock_irq(&lruvec->lru_lock); 4618 4619 move_folios_to_lru(lruvec, &list); 4620 4621 walk = current->reclaim_state->mm_walk; 4622 if (walk && walk->batched) { 4623 walk->lruvec = lruvec; 4624 reset_batch_size(walk); 4625 } 4626 4627 item = PGSTEAL_KSWAPD + reclaimer_offset(); 4628 if (!cgroup_reclaim(sc)) 4629 __count_vm_events(item, reclaimed); 4630 __count_memcg_events(memcg, item, reclaimed); 4631 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 4632 4633 spin_unlock_irq(&lruvec->lru_lock); 4634 4635 list_splice_init(&clean, &list); 4636 4637 if (!list_empty(&list)) { 4638 skip_retry = true; 4639 goto retry; 4640 } 4641 4642 return scanned; 4643 } 4644 4645 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 4646 bool can_swap, unsigned long *nr_to_scan) 4647 { 4648 int gen, type, zone; 4649 unsigned long old = 0; 4650 unsigned long young = 0; 4651 unsigned long total = 0; 4652 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4653 DEFINE_MIN_SEQ(lruvec); 4654 4655 /* whether this lruvec is completely out of cold folios */ 4656 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) { 4657 *nr_to_scan = 0; 4658 return true; 4659 } 4660 4661 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4662 unsigned long seq; 4663 4664 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4665 unsigned long size = 0; 4666 4667 gen = lru_gen_from_seq(seq); 4668 4669 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4670 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4671 4672 total += size; 4673 if (seq == max_seq) 4674 young += size; 4675 else if (seq + MIN_NR_GENS == max_seq) 4676 old += size; 4677 } 4678 } 4679 4680 *nr_to_scan = total; 4681 4682 /* 4683 * The aging tries to be lazy to reduce the overhead, while the eviction 4684 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the 4685 * ideal number of generations is MIN_NR_GENS+1. 4686 */ 4687 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq) 4688 return false; 4689 4690 /* 4691 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1) 4692 * of the total number of pages for each generation. A reasonable range 4693 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The 4694 * aging cares about the upper bound of hot pages, while the eviction 4695 * cares about the lower bound of cold pages. 4696 */ 4697 if (young * MIN_NR_GENS > total) 4698 return true; 4699 if (old * (MIN_NR_GENS + 2) < total) 4700 return true; 4701 4702 return false; 4703 } 4704 4705 /* 4706 * For future optimizations: 4707 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 4708 * reclaim. 4709 */ 4710 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap) 4711 { 4712 bool success; 4713 unsigned long nr_to_scan; 4714 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4715 DEFINE_MAX_SEQ(lruvec); 4716 4717 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 4718 return -1; 4719 4720 success = should_run_aging(lruvec, max_seq, can_swap, &nr_to_scan); 4721 4722 /* try to scrape all its memory if this memcg was deleted */ 4723 if (nr_to_scan && !mem_cgroup_online(memcg)) 4724 return nr_to_scan; 4725 4726 /* try to get away with not aging at the default priority */ 4727 if (!success || sc->priority == DEF_PRIORITY) 4728 return nr_to_scan >> sc->priority; 4729 4730 /* stop scanning this lruvec as it's low on cold folios */ 4731 return try_to_inc_max_seq(lruvec, max_seq, can_swap, false) ? -1 : 0; 4732 } 4733 4734 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc) 4735 { 4736 int i; 4737 enum zone_watermarks mark; 4738 4739 /* don't abort memcg reclaim to ensure fairness */ 4740 if (!root_reclaim(sc)) 4741 return false; 4742 4743 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order))) 4744 return true; 4745 4746 /* check the order to exclude compaction-induced reclaim */ 4747 if (!current_is_kswapd() || sc->order) 4748 return false; 4749 4750 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ? 4751 WMARK_PROMO : WMARK_HIGH; 4752 4753 for (i = 0; i <= sc->reclaim_idx; i++) { 4754 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i; 4755 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH; 4756 4757 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0)) 4758 return false; 4759 } 4760 4761 /* kswapd should abort if all eligible zones are safe */ 4762 return true; 4763 } 4764 4765 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4766 { 4767 long nr_to_scan; 4768 unsigned long scanned = 0; 4769 int swappiness = get_swappiness(lruvec, sc); 4770 4771 while (true) { 4772 int delta; 4773 4774 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 4775 if (nr_to_scan <= 0) 4776 break; 4777 4778 delta = evict_folios(lruvec, sc, swappiness); 4779 if (!delta) 4780 break; 4781 4782 scanned += delta; 4783 if (scanned >= nr_to_scan) 4784 break; 4785 4786 if (should_abort_scan(lruvec, sc)) 4787 break; 4788 4789 cond_resched(); 4790 } 4791 4792 /* whether this lruvec should be rotated */ 4793 return nr_to_scan < 0; 4794 } 4795 4796 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 4797 { 4798 bool success; 4799 unsigned long scanned = sc->nr_scanned; 4800 unsigned long reclaimed = sc->nr_reclaimed; 4801 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4802 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4803 4804 /* lru_gen_age_node() called mem_cgroup_calculate_protection() */ 4805 if (mem_cgroup_below_min(NULL, memcg)) 4806 return MEMCG_LRU_YOUNG; 4807 4808 if (mem_cgroup_below_low(NULL, memcg)) { 4809 /* see the comment on MEMCG_NR_GENS */ 4810 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL) 4811 return MEMCG_LRU_TAIL; 4812 4813 memcg_memory_event(memcg, MEMCG_LOW); 4814 } 4815 4816 success = try_to_shrink_lruvec(lruvec, sc); 4817 4818 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 4819 4820 if (!sc->proactive) 4821 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 4822 sc->nr_reclaimed - reclaimed); 4823 4824 flush_reclaim_state(sc); 4825 4826 if (success && mem_cgroup_online(memcg)) 4827 return MEMCG_LRU_YOUNG; 4828 4829 if (!success && lruvec_is_sizable(lruvec, sc)) 4830 return 0; 4831 4832 /* one retry if offlined or too small */ 4833 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ? 4834 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 4835 } 4836 4837 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 4838 { 4839 int op; 4840 int gen; 4841 int bin; 4842 int first_bin; 4843 struct lruvec *lruvec; 4844 struct lru_gen_folio *lrugen; 4845 struct mem_cgroup *memcg; 4846 struct hlist_nulls_node *pos; 4847 4848 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 4849 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 4850 restart: 4851 op = 0; 4852 memcg = NULL; 4853 4854 rcu_read_lock(); 4855 4856 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 4857 if (op) { 4858 lru_gen_rotate_memcg(lruvec, op); 4859 op = 0; 4860 } 4861 4862 mem_cgroup_put(memcg); 4863 memcg = NULL; 4864 4865 if (gen != READ_ONCE(lrugen->gen)) 4866 continue; 4867 4868 lruvec = container_of(lrugen, struct lruvec, lrugen); 4869 memcg = lruvec_memcg(lruvec); 4870 4871 if (!mem_cgroup_tryget(memcg)) { 4872 lru_gen_release_memcg(memcg); 4873 memcg = NULL; 4874 continue; 4875 } 4876 4877 rcu_read_unlock(); 4878 4879 op = shrink_one(lruvec, sc); 4880 4881 rcu_read_lock(); 4882 4883 if (should_abort_scan(lruvec, sc)) 4884 break; 4885 } 4886 4887 rcu_read_unlock(); 4888 4889 if (op) 4890 lru_gen_rotate_memcg(lruvec, op); 4891 4892 mem_cgroup_put(memcg); 4893 4894 if (!is_a_nulls(pos)) 4895 return; 4896 4897 /* restart if raced with lru_gen_rotate_memcg() */ 4898 if (gen != get_nulls_value(pos)) 4899 goto restart; 4900 4901 /* try the rest of the bins of the current generation */ 4902 bin = get_memcg_bin(bin + 1); 4903 if (bin != first_bin) 4904 goto restart; 4905 } 4906 4907 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4908 { 4909 struct blk_plug plug; 4910 4911 VM_WARN_ON_ONCE(root_reclaim(sc)); 4912 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 4913 4914 lru_add_drain(); 4915 4916 blk_start_plug(&plug); 4917 4918 set_mm_walk(NULL, sc->proactive); 4919 4920 if (try_to_shrink_lruvec(lruvec, sc)) 4921 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 4922 4923 clear_mm_walk(); 4924 4925 blk_finish_plug(&plug); 4926 } 4927 4928 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 4929 { 4930 struct blk_plug plug; 4931 unsigned long reclaimed = sc->nr_reclaimed; 4932 4933 VM_WARN_ON_ONCE(!root_reclaim(sc)); 4934 4935 /* 4936 * Unmapped clean folios are already prioritized. Scanning for more of 4937 * them is likely futile and can cause high reclaim latency when there 4938 * is a large number of memcgs. 4939 */ 4940 if (!sc->may_writepage || !sc->may_unmap) 4941 goto done; 4942 4943 lru_add_drain(); 4944 4945 blk_start_plug(&plug); 4946 4947 set_mm_walk(pgdat, sc->proactive); 4948 4949 set_initial_priority(pgdat, sc); 4950 4951 if (current_is_kswapd()) 4952 sc->nr_reclaimed = 0; 4953 4954 if (mem_cgroup_disabled()) 4955 shrink_one(&pgdat->__lruvec, sc); 4956 else 4957 shrink_many(pgdat, sc); 4958 4959 if (current_is_kswapd()) 4960 sc->nr_reclaimed += reclaimed; 4961 4962 clear_mm_walk(); 4963 4964 blk_finish_plug(&plug); 4965 done: 4966 /* kswapd should never fail */ 4967 pgdat->kswapd_failures = 0; 4968 } 4969 4970 /****************************************************************************** 4971 * state change 4972 ******************************************************************************/ 4973 4974 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 4975 { 4976 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4977 4978 if (lrugen->enabled) { 4979 enum lru_list lru; 4980 4981 for_each_evictable_lru(lru) { 4982 if (!list_empty(&lruvec->lists[lru])) 4983 return false; 4984 } 4985 } else { 4986 int gen, type, zone; 4987 4988 for_each_gen_type_zone(gen, type, zone) { 4989 if (!list_empty(&lrugen->folios[gen][type][zone])) 4990 return false; 4991 } 4992 } 4993 4994 return true; 4995 } 4996 4997 static bool fill_evictable(struct lruvec *lruvec) 4998 { 4999 enum lru_list lru; 5000 int remaining = MAX_LRU_BATCH; 5001 5002 for_each_evictable_lru(lru) { 5003 int type = is_file_lru(lru); 5004 bool active = is_active_lru(lru); 5005 struct list_head *head = &lruvec->lists[lru]; 5006 5007 while (!list_empty(head)) { 5008 bool success; 5009 struct folio *folio = lru_to_folio(head); 5010 5011 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5012 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5013 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5014 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5015 5016 lruvec_del_folio(lruvec, folio); 5017 success = lru_gen_add_folio(lruvec, folio, false); 5018 VM_WARN_ON_ONCE(!success); 5019 5020 if (!--remaining) 5021 return false; 5022 } 5023 } 5024 5025 return true; 5026 } 5027 5028 static bool drain_evictable(struct lruvec *lruvec) 5029 { 5030 int gen, type, zone; 5031 int remaining = MAX_LRU_BATCH; 5032 5033 for_each_gen_type_zone(gen, type, zone) { 5034 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5035 5036 while (!list_empty(head)) { 5037 bool success; 5038 struct folio *folio = lru_to_folio(head); 5039 5040 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5041 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5042 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5043 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5044 5045 success = lru_gen_del_folio(lruvec, folio, false); 5046 VM_WARN_ON_ONCE(!success); 5047 lruvec_add_folio(lruvec, folio); 5048 5049 if (!--remaining) 5050 return false; 5051 } 5052 } 5053 5054 return true; 5055 } 5056 5057 static void lru_gen_change_state(bool enabled) 5058 { 5059 static DEFINE_MUTEX(state_mutex); 5060 5061 struct mem_cgroup *memcg; 5062 5063 cgroup_lock(); 5064 cpus_read_lock(); 5065 get_online_mems(); 5066 mutex_lock(&state_mutex); 5067 5068 if (enabled == lru_gen_enabled()) 5069 goto unlock; 5070 5071 if (enabled) 5072 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5073 else 5074 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5075 5076 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5077 do { 5078 int nid; 5079 5080 for_each_node(nid) { 5081 struct lruvec *lruvec = get_lruvec(memcg, nid); 5082 5083 spin_lock_irq(&lruvec->lru_lock); 5084 5085 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5086 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5087 5088 lruvec->lrugen.enabled = enabled; 5089 5090 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5091 spin_unlock_irq(&lruvec->lru_lock); 5092 cond_resched(); 5093 spin_lock_irq(&lruvec->lru_lock); 5094 } 5095 5096 spin_unlock_irq(&lruvec->lru_lock); 5097 } 5098 5099 cond_resched(); 5100 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5101 unlock: 5102 mutex_unlock(&state_mutex); 5103 put_online_mems(); 5104 cpus_read_unlock(); 5105 cgroup_unlock(); 5106 } 5107 5108 /****************************************************************************** 5109 * sysfs interface 5110 ******************************************************************************/ 5111 5112 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5113 { 5114 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5115 } 5116 5117 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5118 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, 5119 const char *buf, size_t len) 5120 { 5121 unsigned int msecs; 5122 5123 if (kstrtouint(buf, 0, &msecs)) 5124 return -EINVAL; 5125 5126 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5127 5128 return len; 5129 } 5130 5131 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); 5132 5133 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5134 { 5135 unsigned int caps = 0; 5136 5137 if (get_cap(LRU_GEN_CORE)) 5138 caps |= BIT(LRU_GEN_CORE); 5139 5140 if (should_walk_mmu()) 5141 caps |= BIT(LRU_GEN_MM_WALK); 5142 5143 if (should_clear_pmd_young()) 5144 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5145 5146 return sysfs_emit(buf, "0x%04x\n", caps); 5147 } 5148 5149 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5150 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 5151 const char *buf, size_t len) 5152 { 5153 int i; 5154 unsigned int caps; 5155 5156 if (tolower(*buf) == 'n') 5157 caps = 0; 5158 else if (tolower(*buf) == 'y') 5159 caps = -1; 5160 else if (kstrtouint(buf, 0, &caps)) 5161 return -EINVAL; 5162 5163 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5164 bool enabled = caps & BIT(i); 5165 5166 if (i == LRU_GEN_CORE) 5167 lru_gen_change_state(enabled); 5168 else if (enabled) 5169 static_branch_enable(&lru_gen_caps[i]); 5170 else 5171 static_branch_disable(&lru_gen_caps[i]); 5172 } 5173 5174 return len; 5175 } 5176 5177 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); 5178 5179 static struct attribute *lru_gen_attrs[] = { 5180 &lru_gen_min_ttl_attr.attr, 5181 &lru_gen_enabled_attr.attr, 5182 NULL 5183 }; 5184 5185 static const struct attribute_group lru_gen_attr_group = { 5186 .name = "lru_gen", 5187 .attrs = lru_gen_attrs, 5188 }; 5189 5190 /****************************************************************************** 5191 * debugfs interface 5192 ******************************************************************************/ 5193 5194 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5195 { 5196 struct mem_cgroup *memcg; 5197 loff_t nr_to_skip = *pos; 5198 5199 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5200 if (!m->private) 5201 return ERR_PTR(-ENOMEM); 5202 5203 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5204 do { 5205 int nid; 5206 5207 for_each_node_state(nid, N_MEMORY) { 5208 if (!nr_to_skip--) 5209 return get_lruvec(memcg, nid); 5210 } 5211 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5212 5213 return NULL; 5214 } 5215 5216 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5217 { 5218 if (!IS_ERR_OR_NULL(v)) 5219 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5220 5221 kvfree(m->private); 5222 m->private = NULL; 5223 } 5224 5225 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5226 { 5227 int nid = lruvec_pgdat(v)->node_id; 5228 struct mem_cgroup *memcg = lruvec_memcg(v); 5229 5230 ++*pos; 5231 5232 nid = next_memory_node(nid); 5233 if (nid == MAX_NUMNODES) { 5234 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5235 if (!memcg) 5236 return NULL; 5237 5238 nid = first_memory_node; 5239 } 5240 5241 return get_lruvec(memcg, nid); 5242 } 5243 5244 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5245 unsigned long max_seq, unsigned long *min_seq, 5246 unsigned long seq) 5247 { 5248 int i; 5249 int type, tier; 5250 int hist = lru_hist_from_seq(seq); 5251 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5252 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5253 5254 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5255 seq_printf(m, " %10d", tier); 5256 for (type = 0; type < ANON_AND_FILE; type++) { 5257 const char *s = " "; 5258 unsigned long n[3] = {}; 5259 5260 if (seq == max_seq) { 5261 s = "RT "; 5262 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5263 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5264 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5265 s = "rep"; 5266 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5267 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5268 if (tier) 5269 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]); 5270 } 5271 5272 for (i = 0; i < 3; i++) 5273 seq_printf(m, " %10lu%c", n[i], s[i]); 5274 } 5275 seq_putc(m, '\n'); 5276 } 5277 5278 if (!mm_state) 5279 return; 5280 5281 seq_puts(m, " "); 5282 for (i = 0; i < NR_MM_STATS; i++) { 5283 const char *s = " "; 5284 unsigned long n = 0; 5285 5286 if (seq == max_seq && NR_HIST_GENS == 1) { 5287 s = "LOYNFA"; 5288 n = READ_ONCE(mm_state->stats[hist][i]); 5289 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5290 s = "loynfa"; 5291 n = READ_ONCE(mm_state->stats[hist][i]); 5292 } 5293 5294 seq_printf(m, " %10lu%c", n, s[i]); 5295 } 5296 seq_putc(m, '\n'); 5297 } 5298 5299 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5300 static int lru_gen_seq_show(struct seq_file *m, void *v) 5301 { 5302 unsigned long seq; 5303 bool full = !debugfs_real_fops(m->file)->write; 5304 struct lruvec *lruvec = v; 5305 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5306 int nid = lruvec_pgdat(lruvec)->node_id; 5307 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5308 DEFINE_MAX_SEQ(lruvec); 5309 DEFINE_MIN_SEQ(lruvec); 5310 5311 if (nid == first_memory_node) { 5312 const char *path = memcg ? m->private : ""; 5313 5314 #ifdef CONFIG_MEMCG 5315 if (memcg) 5316 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5317 #endif 5318 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5319 } 5320 5321 seq_printf(m, " node %5d\n", nid); 5322 5323 if (!full) 5324 seq = min_seq[LRU_GEN_ANON]; 5325 else if (max_seq >= MAX_NR_GENS) 5326 seq = max_seq - MAX_NR_GENS + 1; 5327 else 5328 seq = 0; 5329 5330 for (; seq <= max_seq; seq++) { 5331 int type, zone; 5332 int gen = lru_gen_from_seq(seq); 5333 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5334 5335 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5336 5337 for (type = 0; type < ANON_AND_FILE; type++) { 5338 unsigned long size = 0; 5339 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5340 5341 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5342 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5343 5344 seq_printf(m, " %10lu%c", size, mark); 5345 } 5346 5347 seq_putc(m, '\n'); 5348 5349 if (full) 5350 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5351 } 5352 5353 return 0; 5354 } 5355 5356 static const struct seq_operations lru_gen_seq_ops = { 5357 .start = lru_gen_seq_start, 5358 .stop = lru_gen_seq_stop, 5359 .next = lru_gen_seq_next, 5360 .show = lru_gen_seq_show, 5361 }; 5362 5363 static int run_aging(struct lruvec *lruvec, unsigned long seq, 5364 bool can_swap, bool force_scan) 5365 { 5366 DEFINE_MAX_SEQ(lruvec); 5367 DEFINE_MIN_SEQ(lruvec); 5368 5369 if (seq < max_seq) 5370 return 0; 5371 5372 if (seq > max_seq) 5373 return -EINVAL; 5374 5375 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq) 5376 return -ERANGE; 5377 5378 try_to_inc_max_seq(lruvec, max_seq, can_swap, force_scan); 5379 5380 return 0; 5381 } 5382 5383 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5384 int swappiness, unsigned long nr_to_reclaim) 5385 { 5386 DEFINE_MAX_SEQ(lruvec); 5387 5388 if (seq + MIN_NR_GENS > max_seq) 5389 return -EINVAL; 5390 5391 sc->nr_reclaimed = 0; 5392 5393 while (!signal_pending(current)) { 5394 DEFINE_MIN_SEQ(lruvec); 5395 5396 if (seq < min_seq[!swappiness]) 5397 return 0; 5398 5399 if (sc->nr_reclaimed >= nr_to_reclaim) 5400 return 0; 5401 5402 if (!evict_folios(lruvec, sc, swappiness)) 5403 return 0; 5404 5405 cond_resched(); 5406 } 5407 5408 return -EINTR; 5409 } 5410 5411 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5412 struct scan_control *sc, int swappiness, unsigned long opt) 5413 { 5414 struct lruvec *lruvec; 5415 int err = -EINVAL; 5416 struct mem_cgroup *memcg = NULL; 5417 5418 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5419 return -EINVAL; 5420 5421 if (!mem_cgroup_disabled()) { 5422 rcu_read_lock(); 5423 5424 memcg = mem_cgroup_from_id(memcg_id); 5425 if (!mem_cgroup_tryget(memcg)) 5426 memcg = NULL; 5427 5428 rcu_read_unlock(); 5429 5430 if (!memcg) 5431 return -EINVAL; 5432 } 5433 5434 if (memcg_id != mem_cgroup_id(memcg)) 5435 goto done; 5436 5437 lruvec = get_lruvec(memcg, nid); 5438 5439 if (swappiness < MIN_SWAPPINESS) 5440 swappiness = get_swappiness(lruvec, sc); 5441 else if (swappiness > MAX_SWAPPINESS) 5442 goto done; 5443 5444 switch (cmd) { 5445 case '+': 5446 err = run_aging(lruvec, seq, swappiness, opt); 5447 break; 5448 case '-': 5449 err = run_eviction(lruvec, seq, sc, swappiness, opt); 5450 break; 5451 } 5452 done: 5453 mem_cgroup_put(memcg); 5454 5455 return err; 5456 } 5457 5458 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5459 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 5460 size_t len, loff_t *pos) 5461 { 5462 void *buf; 5463 char *cur, *next; 5464 unsigned int flags; 5465 struct blk_plug plug; 5466 int err = -EINVAL; 5467 struct scan_control sc = { 5468 .may_writepage = true, 5469 .may_unmap = true, 5470 .may_swap = true, 5471 .reclaim_idx = MAX_NR_ZONES - 1, 5472 .gfp_mask = GFP_KERNEL, 5473 }; 5474 5475 buf = kvmalloc(len + 1, GFP_KERNEL); 5476 if (!buf) 5477 return -ENOMEM; 5478 5479 if (copy_from_user(buf, src, len)) { 5480 kvfree(buf); 5481 return -EFAULT; 5482 } 5483 5484 set_task_reclaim_state(current, &sc.reclaim_state); 5485 flags = memalloc_noreclaim_save(); 5486 blk_start_plug(&plug); 5487 if (!set_mm_walk(NULL, true)) { 5488 err = -ENOMEM; 5489 goto done; 5490 } 5491 5492 next = buf; 5493 next[len] = '\0'; 5494 5495 while ((cur = strsep(&next, ",;\n"))) { 5496 int n; 5497 int end; 5498 char cmd; 5499 unsigned int memcg_id; 5500 unsigned int nid; 5501 unsigned long seq; 5502 unsigned int swappiness = -1; 5503 unsigned long opt = -1; 5504 5505 cur = skip_spaces(cur); 5506 if (!*cur) 5507 continue; 5508 5509 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 5510 &seq, &end, &swappiness, &end, &opt, &end); 5511 if (n < 4 || cur[end]) { 5512 err = -EINVAL; 5513 break; 5514 } 5515 5516 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 5517 if (err) 5518 break; 5519 } 5520 done: 5521 clear_mm_walk(); 5522 blk_finish_plug(&plug); 5523 memalloc_noreclaim_restore(flags); 5524 set_task_reclaim_state(current, NULL); 5525 5526 kvfree(buf); 5527 5528 return err ? : len; 5529 } 5530 5531 static int lru_gen_seq_open(struct inode *inode, struct file *file) 5532 { 5533 return seq_open(file, &lru_gen_seq_ops); 5534 } 5535 5536 static const struct file_operations lru_gen_rw_fops = { 5537 .open = lru_gen_seq_open, 5538 .read = seq_read, 5539 .write = lru_gen_seq_write, 5540 .llseek = seq_lseek, 5541 .release = seq_release, 5542 }; 5543 5544 static const struct file_operations lru_gen_ro_fops = { 5545 .open = lru_gen_seq_open, 5546 .read = seq_read, 5547 .llseek = seq_lseek, 5548 .release = seq_release, 5549 }; 5550 5551 /****************************************************************************** 5552 * initialization 5553 ******************************************************************************/ 5554 5555 void lru_gen_init_pgdat(struct pglist_data *pgdat) 5556 { 5557 int i, j; 5558 5559 spin_lock_init(&pgdat->memcg_lru.lock); 5560 5561 for (i = 0; i < MEMCG_NR_GENS; i++) { 5562 for (j = 0; j < MEMCG_NR_BINS; j++) 5563 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 5564 } 5565 } 5566 5567 void lru_gen_init_lruvec(struct lruvec *lruvec) 5568 { 5569 int i; 5570 int gen, type, zone; 5571 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5572 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5573 5574 lrugen->max_seq = MIN_NR_GENS + 1; 5575 lrugen->enabled = lru_gen_enabled(); 5576 5577 for (i = 0; i <= MIN_NR_GENS + 1; i++) 5578 lrugen->timestamps[i] = jiffies; 5579 5580 for_each_gen_type_zone(gen, type, zone) 5581 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 5582 5583 if (mm_state) 5584 mm_state->seq = MIN_NR_GENS; 5585 } 5586 5587 #ifdef CONFIG_MEMCG 5588 5589 void lru_gen_init_memcg(struct mem_cgroup *memcg) 5590 { 5591 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5592 5593 if (!mm_list) 5594 return; 5595 5596 INIT_LIST_HEAD(&mm_list->fifo); 5597 spin_lock_init(&mm_list->lock); 5598 } 5599 5600 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 5601 { 5602 int i; 5603 int nid; 5604 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5605 5606 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo)); 5607 5608 for_each_node(nid) { 5609 struct lruvec *lruvec = get_lruvec(memcg, nid); 5610 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5611 5612 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 5613 sizeof(lruvec->lrugen.nr_pages))); 5614 5615 lruvec->lrugen.list.next = LIST_POISON1; 5616 5617 if (!mm_state) 5618 continue; 5619 5620 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 5621 bitmap_free(mm_state->filters[i]); 5622 mm_state->filters[i] = NULL; 5623 } 5624 } 5625 } 5626 5627 #endif /* CONFIG_MEMCG */ 5628 5629 static int __init init_lru_gen(void) 5630 { 5631 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 5632 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 5633 5634 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 5635 pr_err("lru_gen: failed to create sysfs group\n"); 5636 5637 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 5638 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 5639 5640 return 0; 5641 }; 5642 late_initcall(init_lru_gen); 5643 5644 #else /* !CONFIG_LRU_GEN */ 5645 5646 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 5647 { 5648 BUILD_BUG(); 5649 } 5650 5651 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5652 { 5653 BUILD_BUG(); 5654 } 5655 5656 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5657 { 5658 BUILD_BUG(); 5659 } 5660 5661 #endif /* CONFIG_LRU_GEN */ 5662 5663 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5664 { 5665 unsigned long nr[NR_LRU_LISTS]; 5666 unsigned long targets[NR_LRU_LISTS]; 5667 unsigned long nr_to_scan; 5668 enum lru_list lru; 5669 unsigned long nr_reclaimed = 0; 5670 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 5671 bool proportional_reclaim; 5672 struct blk_plug plug; 5673 5674 if (lru_gen_enabled() && !root_reclaim(sc)) { 5675 lru_gen_shrink_lruvec(lruvec, sc); 5676 return; 5677 } 5678 5679 get_scan_count(lruvec, sc, nr); 5680 5681 /* Record the original scan target for proportional adjustments later */ 5682 memcpy(targets, nr, sizeof(nr)); 5683 5684 /* 5685 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 5686 * event that can occur when there is little memory pressure e.g. 5687 * multiple streaming readers/writers. Hence, we do not abort scanning 5688 * when the requested number of pages are reclaimed when scanning at 5689 * DEF_PRIORITY on the assumption that the fact we are direct 5690 * reclaiming implies that kswapd is not keeping up and it is best to 5691 * do a batch of work at once. For memcg reclaim one check is made to 5692 * abort proportional reclaim if either the file or anon lru has already 5693 * dropped to zero at the first pass. 5694 */ 5695 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 5696 sc->priority == DEF_PRIORITY); 5697 5698 blk_start_plug(&plug); 5699 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 5700 nr[LRU_INACTIVE_FILE]) { 5701 unsigned long nr_anon, nr_file, percentage; 5702 unsigned long nr_scanned; 5703 5704 for_each_evictable_lru(lru) { 5705 if (nr[lru]) { 5706 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 5707 nr[lru] -= nr_to_scan; 5708 5709 nr_reclaimed += shrink_list(lru, nr_to_scan, 5710 lruvec, sc); 5711 } 5712 } 5713 5714 cond_resched(); 5715 5716 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 5717 continue; 5718 5719 /* 5720 * For kswapd and memcg, reclaim at least the number of pages 5721 * requested. Ensure that the anon and file LRUs are scanned 5722 * proportionally what was requested by get_scan_count(). We 5723 * stop reclaiming one LRU and reduce the amount scanning 5724 * proportional to the original scan target. 5725 */ 5726 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 5727 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 5728 5729 /* 5730 * It's just vindictive to attack the larger once the smaller 5731 * has gone to zero. And given the way we stop scanning the 5732 * smaller below, this makes sure that we only make one nudge 5733 * towards proportionality once we've got nr_to_reclaim. 5734 */ 5735 if (!nr_file || !nr_anon) 5736 break; 5737 5738 if (nr_file > nr_anon) { 5739 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 5740 targets[LRU_ACTIVE_ANON] + 1; 5741 lru = LRU_BASE; 5742 percentage = nr_anon * 100 / scan_target; 5743 } else { 5744 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 5745 targets[LRU_ACTIVE_FILE] + 1; 5746 lru = LRU_FILE; 5747 percentage = nr_file * 100 / scan_target; 5748 } 5749 5750 /* Stop scanning the smaller of the LRU */ 5751 nr[lru] = 0; 5752 nr[lru + LRU_ACTIVE] = 0; 5753 5754 /* 5755 * Recalculate the other LRU scan count based on its original 5756 * scan target and the percentage scanning already complete 5757 */ 5758 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 5759 nr_scanned = targets[lru] - nr[lru]; 5760 nr[lru] = targets[lru] * (100 - percentage) / 100; 5761 nr[lru] -= min(nr[lru], nr_scanned); 5762 5763 lru += LRU_ACTIVE; 5764 nr_scanned = targets[lru] - nr[lru]; 5765 nr[lru] = targets[lru] * (100 - percentage) / 100; 5766 nr[lru] -= min(nr[lru], nr_scanned); 5767 } 5768 blk_finish_plug(&plug); 5769 sc->nr_reclaimed += nr_reclaimed; 5770 5771 /* 5772 * Even if we did not try to evict anon pages at all, we want to 5773 * rebalance the anon lru active/inactive ratio. 5774 */ 5775 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 5776 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 5777 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 5778 sc, LRU_ACTIVE_ANON); 5779 } 5780 5781 /* Use reclaim/compaction for costly allocs or under memory pressure */ 5782 static bool in_reclaim_compaction(struct scan_control *sc) 5783 { 5784 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order && 5785 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 5786 sc->priority < DEF_PRIORITY - 2)) 5787 return true; 5788 5789 return false; 5790 } 5791 5792 /* 5793 * Reclaim/compaction is used for high-order allocation requests. It reclaims 5794 * order-0 pages before compacting the zone. should_continue_reclaim() returns 5795 * true if more pages should be reclaimed such that when the page allocator 5796 * calls try_to_compact_pages() that it will have enough free pages to succeed. 5797 * It will give up earlier than that if there is difficulty reclaiming pages. 5798 */ 5799 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 5800 unsigned long nr_reclaimed, 5801 struct scan_control *sc) 5802 { 5803 unsigned long pages_for_compaction; 5804 unsigned long inactive_lru_pages; 5805 int z; 5806 5807 /* If not in reclaim/compaction mode, stop */ 5808 if (!in_reclaim_compaction(sc)) 5809 return false; 5810 5811 /* 5812 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 5813 * number of pages that were scanned. This will return to the caller 5814 * with the risk reclaim/compaction and the resulting allocation attempt 5815 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 5816 * allocations through requiring that the full LRU list has been scanned 5817 * first, by assuming that zero delta of sc->nr_scanned means full LRU 5818 * scan, but that approximation was wrong, and there were corner cases 5819 * where always a non-zero amount of pages were scanned. 5820 */ 5821 if (!nr_reclaimed) 5822 return false; 5823 5824 /* If compaction would go ahead or the allocation would succeed, stop */ 5825 for (z = 0; z <= sc->reclaim_idx; z++) { 5826 struct zone *zone = &pgdat->node_zones[z]; 5827 if (!managed_zone(zone)) 5828 continue; 5829 5830 /* Allocation can already succeed, nothing to do */ 5831 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 5832 sc->reclaim_idx, 0)) 5833 return false; 5834 5835 if (compaction_suitable(zone, sc->order, sc->reclaim_idx)) 5836 return false; 5837 } 5838 5839 /* 5840 * If we have not reclaimed enough pages for compaction and the 5841 * inactive lists are large enough, continue reclaiming 5842 */ 5843 pages_for_compaction = compact_gap(sc->order); 5844 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 5845 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 5846 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 5847 5848 return inactive_lru_pages > pages_for_compaction; 5849 } 5850 5851 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 5852 { 5853 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 5854 struct mem_cgroup_reclaim_cookie reclaim = { 5855 .pgdat = pgdat, 5856 }; 5857 struct mem_cgroup_reclaim_cookie *partial = &reclaim; 5858 struct mem_cgroup *memcg; 5859 5860 /* 5861 * In most cases, direct reclaimers can do partial walks 5862 * through the cgroup tree, using an iterator state that 5863 * persists across invocations. This strikes a balance between 5864 * fairness and allocation latency. 5865 * 5866 * For kswapd, reliable forward progress is more important 5867 * than a quick return to idle. Always do full walks. 5868 */ 5869 if (current_is_kswapd() || sc->memcg_full_walk) 5870 partial = NULL; 5871 5872 memcg = mem_cgroup_iter(target_memcg, NULL, partial); 5873 do { 5874 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 5875 unsigned long reclaimed; 5876 unsigned long scanned; 5877 5878 /* 5879 * This loop can become CPU-bound when target memcgs 5880 * aren't eligible for reclaim - either because they 5881 * don't have any reclaimable pages, or because their 5882 * memory is explicitly protected. Avoid soft lockups. 5883 */ 5884 cond_resched(); 5885 5886 mem_cgroup_calculate_protection(target_memcg, memcg); 5887 5888 if (mem_cgroup_below_min(target_memcg, memcg)) { 5889 /* 5890 * Hard protection. 5891 * If there is no reclaimable memory, OOM. 5892 */ 5893 continue; 5894 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 5895 /* 5896 * Soft protection. 5897 * Respect the protection only as long as 5898 * there is an unprotected supply 5899 * of reclaimable memory from other cgroups. 5900 */ 5901 if (!sc->memcg_low_reclaim) { 5902 sc->memcg_low_skipped = 1; 5903 continue; 5904 } 5905 memcg_memory_event(memcg, MEMCG_LOW); 5906 } 5907 5908 reclaimed = sc->nr_reclaimed; 5909 scanned = sc->nr_scanned; 5910 5911 shrink_lruvec(lruvec, sc); 5912 5913 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 5914 sc->priority); 5915 5916 /* Record the group's reclaim efficiency */ 5917 if (!sc->proactive) 5918 vmpressure(sc->gfp_mask, memcg, false, 5919 sc->nr_scanned - scanned, 5920 sc->nr_reclaimed - reclaimed); 5921 5922 /* If partial walks are allowed, bail once goal is reached */ 5923 if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) { 5924 mem_cgroup_iter_break(target_memcg, memcg); 5925 break; 5926 } 5927 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial))); 5928 } 5929 5930 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 5931 { 5932 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; 5933 struct lruvec *target_lruvec; 5934 bool reclaimable = false; 5935 5936 if (lru_gen_enabled() && root_reclaim(sc)) { 5937 lru_gen_shrink_node(pgdat, sc); 5938 return; 5939 } 5940 5941 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 5942 5943 again: 5944 memset(&sc->nr, 0, sizeof(sc->nr)); 5945 5946 nr_reclaimed = sc->nr_reclaimed; 5947 nr_scanned = sc->nr_scanned; 5948 5949 prepare_scan_control(pgdat, sc); 5950 5951 shrink_node_memcgs(pgdat, sc); 5952 5953 flush_reclaim_state(sc); 5954 5955 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; 5956 5957 /* Record the subtree's reclaim efficiency */ 5958 if (!sc->proactive) 5959 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 5960 sc->nr_scanned - nr_scanned, nr_node_reclaimed); 5961 5962 if (nr_node_reclaimed) 5963 reclaimable = true; 5964 5965 if (current_is_kswapd()) { 5966 /* 5967 * If reclaim is isolating dirty pages under writeback, 5968 * it implies that the long-lived page allocation rate 5969 * is exceeding the page laundering rate. Either the 5970 * global limits are not being effective at throttling 5971 * processes due to the page distribution throughout 5972 * zones or there is heavy usage of a slow backing 5973 * device. The only option is to throttle from reclaim 5974 * context which is not ideal as there is no guarantee 5975 * the dirtying process is throttled in the same way 5976 * balance_dirty_pages() manages. 5977 * 5978 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 5979 * count the number of pages under pages flagged for 5980 * immediate reclaim and stall if any are encountered 5981 * in the nr_immediate check below. 5982 */ 5983 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 5984 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 5985 5986 /* Allow kswapd to start writing pages during reclaim.*/ 5987 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 5988 set_bit(PGDAT_DIRTY, &pgdat->flags); 5989 5990 /* 5991 * If kswapd scans pages marked for immediate 5992 * reclaim and under writeback (nr_immediate), it 5993 * implies that pages are cycling through the LRU 5994 * faster than they are written so forcibly stall 5995 * until some pages complete writeback. 5996 */ 5997 if (sc->nr.immediate) 5998 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 5999 } 6000 6001 /* 6002 * Tag a node/memcg as congested if all the dirty pages were marked 6003 * for writeback and immediate reclaim (counted in nr.congested). 6004 * 6005 * Legacy memcg will stall in page writeback so avoid forcibly 6006 * stalling in reclaim_throttle(). 6007 */ 6008 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) { 6009 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc)) 6010 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags); 6011 6012 if (current_is_kswapd()) 6013 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags); 6014 } 6015 6016 /* 6017 * Stall direct reclaim for IO completions if the lruvec is 6018 * node is congested. Allow kswapd to continue until it 6019 * starts encountering unqueued dirty pages or cycling through 6020 * the LRU too quickly. 6021 */ 6022 if (!current_is_kswapd() && current_may_throttle() && 6023 !sc->hibernation_mode && 6024 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) || 6025 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags))) 6026 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6027 6028 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) 6029 goto again; 6030 6031 /* 6032 * Kswapd gives up on balancing particular nodes after too 6033 * many failures to reclaim anything from them and goes to 6034 * sleep. On reclaim progress, reset the failure counter. A 6035 * successful direct reclaim run will revive a dormant kswapd. 6036 */ 6037 if (reclaimable) 6038 pgdat->kswapd_failures = 0; 6039 else if (sc->cache_trim_mode) 6040 sc->cache_trim_mode_failed = 1; 6041 } 6042 6043 /* 6044 * Returns true if compaction should go ahead for a costly-order request, or 6045 * the allocation would already succeed without compaction. Return false if we 6046 * should reclaim first. 6047 */ 6048 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6049 { 6050 unsigned long watermark; 6051 6052 if (!gfp_compaction_allowed(sc->gfp_mask)) 6053 return false; 6054 6055 /* Allocation can already succeed, nothing to do */ 6056 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 6057 sc->reclaim_idx, 0)) 6058 return true; 6059 6060 /* Compaction cannot yet proceed. Do reclaim. */ 6061 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx)) 6062 return false; 6063 6064 /* 6065 * Compaction is already possible, but it takes time to run and there 6066 * are potentially other callers using the pages just freed. So proceed 6067 * with reclaim to make a buffer of free pages available to give 6068 * compaction a reasonable chance of completing and allocating the page. 6069 * Note that we won't actually reclaim the whole buffer in one attempt 6070 * as the target watermark in should_continue_reclaim() is lower. But if 6071 * we are already above the high+gap watermark, don't reclaim at all. 6072 */ 6073 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 6074 6075 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 6076 } 6077 6078 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6079 { 6080 /* 6081 * If reclaim is making progress greater than 12% efficiency then 6082 * wake all the NOPROGRESS throttled tasks. 6083 */ 6084 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6085 wait_queue_head_t *wqh; 6086 6087 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6088 if (waitqueue_active(wqh)) 6089 wake_up(wqh); 6090 6091 return; 6092 } 6093 6094 /* 6095 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6096 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6097 * under writeback and marked for immediate reclaim at the tail of the 6098 * LRU. 6099 */ 6100 if (current_is_kswapd() || cgroup_reclaim(sc)) 6101 return; 6102 6103 /* Throttle if making no progress at high prioities. */ 6104 if (sc->priority == 1 && !sc->nr_reclaimed) 6105 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6106 } 6107 6108 /* 6109 * This is the direct reclaim path, for page-allocating processes. We only 6110 * try to reclaim pages from zones which will satisfy the caller's allocation 6111 * request. 6112 * 6113 * If a zone is deemed to be full of pinned pages then just give it a light 6114 * scan then give up on it. 6115 */ 6116 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6117 { 6118 struct zoneref *z; 6119 struct zone *zone; 6120 unsigned long nr_soft_reclaimed; 6121 unsigned long nr_soft_scanned; 6122 gfp_t orig_mask; 6123 pg_data_t *last_pgdat = NULL; 6124 pg_data_t *first_pgdat = NULL; 6125 6126 /* 6127 * If the number of buffer_heads in the machine exceeds the maximum 6128 * allowed level, force direct reclaim to scan the highmem zone as 6129 * highmem pages could be pinning lowmem pages storing buffer_heads 6130 */ 6131 orig_mask = sc->gfp_mask; 6132 if (buffer_heads_over_limit) { 6133 sc->gfp_mask |= __GFP_HIGHMEM; 6134 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6135 } 6136 6137 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6138 sc->reclaim_idx, sc->nodemask) { 6139 /* 6140 * Take care memory controller reclaiming has small influence 6141 * to global LRU. 6142 */ 6143 if (!cgroup_reclaim(sc)) { 6144 if (!cpuset_zone_allowed(zone, 6145 GFP_KERNEL | __GFP_HARDWALL)) 6146 continue; 6147 6148 /* 6149 * If we already have plenty of memory free for 6150 * compaction in this zone, don't free any more. 6151 * Even though compaction is invoked for any 6152 * non-zero order, only frequent costly order 6153 * reclamation is disruptive enough to become a 6154 * noticeable problem, like transparent huge 6155 * page allocations. 6156 */ 6157 if (IS_ENABLED(CONFIG_COMPACTION) && 6158 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6159 compaction_ready(zone, sc)) { 6160 sc->compaction_ready = true; 6161 continue; 6162 } 6163 6164 /* 6165 * Shrink each node in the zonelist once. If the 6166 * zonelist is ordered by zone (not the default) then a 6167 * node may be shrunk multiple times but in that case 6168 * the user prefers lower zones being preserved. 6169 */ 6170 if (zone->zone_pgdat == last_pgdat) 6171 continue; 6172 6173 /* 6174 * This steals pages from memory cgroups over softlimit 6175 * and returns the number of reclaimed pages and 6176 * scanned pages. This works for global memory pressure 6177 * and balancing, not for a memcg's limit. 6178 */ 6179 nr_soft_scanned = 0; 6180 nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat, 6181 sc->order, sc->gfp_mask, 6182 &nr_soft_scanned); 6183 sc->nr_reclaimed += nr_soft_reclaimed; 6184 sc->nr_scanned += nr_soft_scanned; 6185 /* need some check for avoid more shrink_zone() */ 6186 } 6187 6188 if (!first_pgdat) 6189 first_pgdat = zone->zone_pgdat; 6190 6191 /* See comment about same check for global reclaim above */ 6192 if (zone->zone_pgdat == last_pgdat) 6193 continue; 6194 last_pgdat = zone->zone_pgdat; 6195 shrink_node(zone->zone_pgdat, sc); 6196 } 6197 6198 if (first_pgdat) 6199 consider_reclaim_throttle(first_pgdat, sc); 6200 6201 /* 6202 * Restore to original mask to avoid the impact on the caller if we 6203 * promoted it to __GFP_HIGHMEM. 6204 */ 6205 sc->gfp_mask = orig_mask; 6206 } 6207 6208 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6209 { 6210 struct lruvec *target_lruvec; 6211 unsigned long refaults; 6212 6213 if (lru_gen_enabled()) 6214 return; 6215 6216 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6217 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6218 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6219 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6220 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6221 } 6222 6223 /* 6224 * This is the main entry point to direct page reclaim. 6225 * 6226 * If a full scan of the inactive list fails to free enough memory then we 6227 * are "out of memory" and something needs to be killed. 6228 * 6229 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6230 * high - the zone may be full of dirty or under-writeback pages, which this 6231 * caller can't do much about. We kick the writeback threads and take explicit 6232 * naps in the hope that some of these pages can be written. But if the 6233 * allocating task holds filesystem locks which prevent writeout this might not 6234 * work, and the allocation attempt will fail. 6235 * 6236 * returns: 0, if no pages reclaimed 6237 * else, the number of pages reclaimed 6238 */ 6239 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6240 struct scan_control *sc) 6241 { 6242 int initial_priority = sc->priority; 6243 pg_data_t *last_pgdat; 6244 struct zoneref *z; 6245 struct zone *zone; 6246 retry: 6247 delayacct_freepages_start(); 6248 6249 if (!cgroup_reclaim(sc)) 6250 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6251 6252 do { 6253 if (!sc->proactive) 6254 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6255 sc->priority); 6256 sc->nr_scanned = 0; 6257 shrink_zones(zonelist, sc); 6258 6259 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6260 break; 6261 6262 if (sc->compaction_ready) 6263 break; 6264 6265 /* 6266 * If we're getting trouble reclaiming, start doing 6267 * writepage even in laptop mode. 6268 */ 6269 if (sc->priority < DEF_PRIORITY - 2) 6270 sc->may_writepage = 1; 6271 } while (--sc->priority >= 0); 6272 6273 last_pgdat = NULL; 6274 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6275 sc->nodemask) { 6276 if (zone->zone_pgdat == last_pgdat) 6277 continue; 6278 last_pgdat = zone->zone_pgdat; 6279 6280 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6281 6282 if (cgroup_reclaim(sc)) { 6283 struct lruvec *lruvec; 6284 6285 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6286 zone->zone_pgdat); 6287 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6288 } 6289 } 6290 6291 delayacct_freepages_end(); 6292 6293 if (sc->nr_reclaimed) 6294 return sc->nr_reclaimed; 6295 6296 /* Aborted reclaim to try compaction? don't OOM, then */ 6297 if (sc->compaction_ready) 6298 return 1; 6299 6300 /* 6301 * In most cases, direct reclaimers can do partial walks 6302 * through the cgroup tree to meet the reclaim goal while 6303 * keeping latency low. Since the iterator state is shared 6304 * among all direct reclaim invocations (to retain fairness 6305 * among cgroups), though, high concurrency can result in 6306 * individual threads not seeing enough cgroups to make 6307 * meaningful forward progress. Avoid false OOMs in this case. 6308 */ 6309 if (!sc->memcg_full_walk) { 6310 sc->priority = initial_priority; 6311 sc->memcg_full_walk = 1; 6312 goto retry; 6313 } 6314 6315 /* 6316 * We make inactive:active ratio decisions based on the node's 6317 * composition of memory, but a restrictive reclaim_idx or a 6318 * memory.low cgroup setting can exempt large amounts of 6319 * memory from reclaim. Neither of which are very common, so 6320 * instead of doing costly eligibility calculations of the 6321 * entire cgroup subtree up front, we assume the estimates are 6322 * good, and retry with forcible deactivation if that fails. 6323 */ 6324 if (sc->skipped_deactivate) { 6325 sc->priority = initial_priority; 6326 sc->force_deactivate = 1; 6327 sc->skipped_deactivate = 0; 6328 goto retry; 6329 } 6330 6331 /* Untapped cgroup reserves? Don't OOM, retry. */ 6332 if (sc->memcg_low_skipped) { 6333 sc->priority = initial_priority; 6334 sc->force_deactivate = 0; 6335 sc->memcg_low_reclaim = 1; 6336 sc->memcg_low_skipped = 0; 6337 goto retry; 6338 } 6339 6340 return 0; 6341 } 6342 6343 static bool allow_direct_reclaim(pg_data_t *pgdat) 6344 { 6345 struct zone *zone; 6346 unsigned long pfmemalloc_reserve = 0; 6347 unsigned long free_pages = 0; 6348 int i; 6349 bool wmark_ok; 6350 6351 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6352 return true; 6353 6354 for (i = 0; i <= ZONE_NORMAL; i++) { 6355 zone = &pgdat->node_zones[i]; 6356 if (!managed_zone(zone)) 6357 continue; 6358 6359 if (!zone_reclaimable_pages(zone)) 6360 continue; 6361 6362 pfmemalloc_reserve += min_wmark_pages(zone); 6363 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES); 6364 } 6365 6366 /* If there are no reserves (unexpected config) then do not throttle */ 6367 if (!pfmemalloc_reserve) 6368 return true; 6369 6370 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6371 6372 /* kswapd must be awake if processes are being throttled */ 6373 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6374 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6375 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6376 6377 wake_up_interruptible(&pgdat->kswapd_wait); 6378 } 6379 6380 return wmark_ok; 6381 } 6382 6383 /* 6384 * Throttle direct reclaimers if backing storage is backed by the network 6385 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6386 * depleted. kswapd will continue to make progress and wake the processes 6387 * when the low watermark is reached. 6388 * 6389 * Returns true if a fatal signal was delivered during throttling. If this 6390 * happens, the page allocator should not consider triggering the OOM killer. 6391 */ 6392 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6393 nodemask_t *nodemask) 6394 { 6395 struct zoneref *z; 6396 struct zone *zone; 6397 pg_data_t *pgdat = NULL; 6398 6399 /* 6400 * Kernel threads should not be throttled as they may be indirectly 6401 * responsible for cleaning pages necessary for reclaim to make forward 6402 * progress. kjournald for example may enter direct reclaim while 6403 * committing a transaction where throttling it could forcing other 6404 * processes to block on log_wait_commit(). 6405 */ 6406 if (current->flags & PF_KTHREAD) 6407 goto out; 6408 6409 /* 6410 * If a fatal signal is pending, this process should not throttle. 6411 * It should return quickly so it can exit and free its memory 6412 */ 6413 if (fatal_signal_pending(current)) 6414 goto out; 6415 6416 /* 6417 * Check if the pfmemalloc reserves are ok by finding the first node 6418 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6419 * GFP_KERNEL will be required for allocating network buffers when 6420 * swapping over the network so ZONE_HIGHMEM is unusable. 6421 * 6422 * Throttling is based on the first usable node and throttled processes 6423 * wait on a queue until kswapd makes progress and wakes them. There 6424 * is an affinity then between processes waking up and where reclaim 6425 * progress has been made assuming the process wakes on the same node. 6426 * More importantly, processes running on remote nodes will not compete 6427 * for remote pfmemalloc reserves and processes on different nodes 6428 * should make reasonable progress. 6429 */ 6430 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6431 gfp_zone(gfp_mask), nodemask) { 6432 if (zone_idx(zone) > ZONE_NORMAL) 6433 continue; 6434 6435 /* Throttle based on the first usable node */ 6436 pgdat = zone->zone_pgdat; 6437 if (allow_direct_reclaim(pgdat)) 6438 goto out; 6439 break; 6440 } 6441 6442 /* If no zone was usable by the allocation flags then do not throttle */ 6443 if (!pgdat) 6444 goto out; 6445 6446 /* Account for the throttling */ 6447 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6448 6449 /* 6450 * If the caller cannot enter the filesystem, it's possible that it 6451 * is due to the caller holding an FS lock or performing a journal 6452 * transaction in the case of a filesystem like ext[3|4]. In this case, 6453 * it is not safe to block on pfmemalloc_wait as kswapd could be 6454 * blocked waiting on the same lock. Instead, throttle for up to a 6455 * second before continuing. 6456 */ 6457 if (!(gfp_mask & __GFP_FS)) 6458 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6459 allow_direct_reclaim(pgdat), HZ); 6460 else 6461 /* Throttle until kswapd wakes the process */ 6462 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6463 allow_direct_reclaim(pgdat)); 6464 6465 if (fatal_signal_pending(current)) 6466 return true; 6467 6468 out: 6469 return false; 6470 } 6471 6472 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6473 gfp_t gfp_mask, nodemask_t *nodemask) 6474 { 6475 unsigned long nr_reclaimed; 6476 struct scan_control sc = { 6477 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6478 .gfp_mask = current_gfp_context(gfp_mask), 6479 .reclaim_idx = gfp_zone(gfp_mask), 6480 .order = order, 6481 .nodemask = nodemask, 6482 .priority = DEF_PRIORITY, 6483 .may_writepage = !laptop_mode, 6484 .may_unmap = 1, 6485 .may_swap = 1, 6486 }; 6487 6488 /* 6489 * scan_control uses s8 fields for order, priority, and reclaim_idx. 6490 * Confirm they are large enough for max values. 6491 */ 6492 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX); 6493 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 6494 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 6495 6496 /* 6497 * Do not enter reclaim if fatal signal was delivered while throttled. 6498 * 1 is returned so that the page allocator does not OOM kill at this 6499 * point. 6500 */ 6501 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 6502 return 1; 6503 6504 set_task_reclaim_state(current, &sc.reclaim_state); 6505 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 6506 6507 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6508 6509 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 6510 set_task_reclaim_state(current, NULL); 6511 6512 return nr_reclaimed; 6513 } 6514 6515 #ifdef CONFIG_MEMCG 6516 6517 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 6518 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 6519 gfp_t gfp_mask, bool noswap, 6520 pg_data_t *pgdat, 6521 unsigned long *nr_scanned) 6522 { 6523 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6524 struct scan_control sc = { 6525 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6526 .target_mem_cgroup = memcg, 6527 .may_writepage = !laptop_mode, 6528 .may_unmap = 1, 6529 .reclaim_idx = MAX_NR_ZONES - 1, 6530 .may_swap = !noswap, 6531 }; 6532 6533 WARN_ON_ONCE(!current->reclaim_state); 6534 6535 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 6536 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 6537 6538 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 6539 sc.gfp_mask); 6540 6541 /* 6542 * NOTE: Although we can get the priority field, using it 6543 * here is not a good idea, since it limits the pages we can scan. 6544 * if we don't reclaim here, the shrink_node from balance_pgdat 6545 * will pick up pages from other mem cgroup's as well. We hack 6546 * the priority and make it zero. 6547 */ 6548 shrink_lruvec(lruvec, &sc); 6549 6550 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 6551 6552 *nr_scanned = sc.nr_scanned; 6553 6554 return sc.nr_reclaimed; 6555 } 6556 6557 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 6558 unsigned long nr_pages, 6559 gfp_t gfp_mask, 6560 unsigned int reclaim_options, 6561 int *swappiness) 6562 { 6563 unsigned long nr_reclaimed; 6564 unsigned int noreclaim_flag; 6565 struct scan_control sc = { 6566 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 6567 .proactive_swappiness = swappiness, 6568 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 6569 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 6570 .reclaim_idx = MAX_NR_ZONES - 1, 6571 .target_mem_cgroup = memcg, 6572 .priority = DEF_PRIORITY, 6573 .may_writepage = !laptop_mode, 6574 .may_unmap = 1, 6575 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 6576 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 6577 }; 6578 /* 6579 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 6580 * equal pressure on all the nodes. This is based on the assumption that 6581 * the reclaim does not bail out early. 6582 */ 6583 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 6584 6585 set_task_reclaim_state(current, &sc.reclaim_state); 6586 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 6587 noreclaim_flag = memalloc_noreclaim_save(); 6588 6589 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6590 6591 memalloc_noreclaim_restore(noreclaim_flag); 6592 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 6593 set_task_reclaim_state(current, NULL); 6594 6595 return nr_reclaimed; 6596 } 6597 #endif 6598 6599 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6600 { 6601 struct mem_cgroup *memcg; 6602 struct lruvec *lruvec; 6603 6604 if (lru_gen_enabled()) { 6605 lru_gen_age_node(pgdat, sc); 6606 return; 6607 } 6608 6609 if (!can_age_anon_pages(pgdat, sc)) 6610 return; 6611 6612 lruvec = mem_cgroup_lruvec(NULL, pgdat); 6613 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6614 return; 6615 6616 memcg = mem_cgroup_iter(NULL, NULL, NULL); 6617 do { 6618 lruvec = mem_cgroup_lruvec(memcg, pgdat); 6619 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6620 sc, LRU_ACTIVE_ANON); 6621 memcg = mem_cgroup_iter(NULL, memcg, NULL); 6622 } while (memcg); 6623 } 6624 6625 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 6626 { 6627 int i; 6628 struct zone *zone; 6629 6630 /* 6631 * Check for watermark boosts top-down as the higher zones 6632 * are more likely to be boosted. Both watermarks and boosts 6633 * should not be checked at the same time as reclaim would 6634 * start prematurely when there is no boosting and a lower 6635 * zone is balanced. 6636 */ 6637 for (i = highest_zoneidx; i >= 0; i--) { 6638 zone = pgdat->node_zones + i; 6639 if (!managed_zone(zone)) 6640 continue; 6641 6642 if (zone->watermark_boost) 6643 return true; 6644 } 6645 6646 return false; 6647 } 6648 6649 /* 6650 * Returns true if there is an eligible zone balanced for the request order 6651 * and highest_zoneidx 6652 */ 6653 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 6654 { 6655 int i; 6656 unsigned long mark = -1; 6657 struct zone *zone; 6658 6659 /* 6660 * Check watermarks bottom-up as lower zones are more likely to 6661 * meet watermarks. 6662 */ 6663 for (i = 0; i <= highest_zoneidx; i++) { 6664 zone = pgdat->node_zones + i; 6665 6666 if (!managed_zone(zone)) 6667 continue; 6668 6669 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 6670 mark = promo_wmark_pages(zone); 6671 else 6672 mark = high_wmark_pages(zone); 6673 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 6674 return true; 6675 } 6676 6677 /* 6678 * If a node has no managed zone within highest_zoneidx, it does not 6679 * need balancing by definition. This can happen if a zone-restricted 6680 * allocation tries to wake a remote kswapd. 6681 */ 6682 if (mark == -1) 6683 return true; 6684 6685 return false; 6686 } 6687 6688 /* Clear pgdat state for congested, dirty or under writeback. */ 6689 static void clear_pgdat_congested(pg_data_t *pgdat) 6690 { 6691 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 6692 6693 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags); 6694 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6695 clear_bit(PGDAT_DIRTY, &pgdat->flags); 6696 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 6697 } 6698 6699 /* 6700 * Prepare kswapd for sleeping. This verifies that there are no processes 6701 * waiting in throttle_direct_reclaim() and that watermarks have been met. 6702 * 6703 * Returns true if kswapd is ready to sleep 6704 */ 6705 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 6706 int highest_zoneidx) 6707 { 6708 /* 6709 * The throttled processes are normally woken up in balance_pgdat() as 6710 * soon as allow_direct_reclaim() is true. But there is a potential 6711 * race between when kswapd checks the watermarks and a process gets 6712 * throttled. There is also a potential race if processes get 6713 * throttled, kswapd wakes, a large process exits thereby balancing the 6714 * zones, which causes kswapd to exit balance_pgdat() before reaching 6715 * the wake up checks. If kswapd is going to sleep, no process should 6716 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 6717 * the wake up is premature, processes will wake kswapd and get 6718 * throttled again. The difference from wake ups in balance_pgdat() is 6719 * that here we are under prepare_to_wait(). 6720 */ 6721 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 6722 wake_up_all(&pgdat->pfmemalloc_wait); 6723 6724 /* Hopeless node, leave it to direct reclaim */ 6725 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6726 return true; 6727 6728 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 6729 clear_pgdat_congested(pgdat); 6730 return true; 6731 } 6732 6733 return false; 6734 } 6735 6736 /* 6737 * kswapd shrinks a node of pages that are at or below the highest usable 6738 * zone that is currently unbalanced. 6739 * 6740 * Returns true if kswapd scanned at least the requested number of pages to 6741 * reclaim or if the lack of progress was due to pages under writeback. 6742 * This is used to determine if the scanning priority needs to be raised. 6743 */ 6744 static bool kswapd_shrink_node(pg_data_t *pgdat, 6745 struct scan_control *sc) 6746 { 6747 struct zone *zone; 6748 int z; 6749 unsigned long nr_reclaimed = sc->nr_reclaimed; 6750 6751 /* Reclaim a number of pages proportional to the number of zones */ 6752 sc->nr_to_reclaim = 0; 6753 for (z = 0; z <= sc->reclaim_idx; z++) { 6754 zone = pgdat->node_zones + z; 6755 if (!managed_zone(zone)) 6756 continue; 6757 6758 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 6759 } 6760 6761 /* 6762 * Historically care was taken to put equal pressure on all zones but 6763 * now pressure is applied based on node LRU order. 6764 */ 6765 shrink_node(pgdat, sc); 6766 6767 /* 6768 * Fragmentation may mean that the system cannot be rebalanced for 6769 * high-order allocations. If twice the allocation size has been 6770 * reclaimed then recheck watermarks only at order-0 to prevent 6771 * excessive reclaim. Assume that a process requested a high-order 6772 * can direct reclaim/compact. 6773 */ 6774 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 6775 sc->order = 0; 6776 6777 /* account for progress from mm_account_reclaimed_pages() */ 6778 return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim; 6779 } 6780 6781 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 6782 static inline void 6783 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 6784 { 6785 int i; 6786 struct zone *zone; 6787 6788 for (i = 0; i <= highest_zoneidx; i++) { 6789 zone = pgdat->node_zones + i; 6790 6791 if (!managed_zone(zone)) 6792 continue; 6793 6794 if (active) 6795 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6796 else 6797 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6798 } 6799 } 6800 6801 static inline void 6802 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6803 { 6804 update_reclaim_active(pgdat, highest_zoneidx, true); 6805 } 6806 6807 static inline void 6808 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6809 { 6810 update_reclaim_active(pgdat, highest_zoneidx, false); 6811 } 6812 6813 /* 6814 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 6815 * that are eligible for use by the caller until at least one zone is 6816 * balanced. 6817 * 6818 * Returns the order kswapd finished reclaiming at. 6819 * 6820 * kswapd scans the zones in the highmem->normal->dma direction. It skips 6821 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 6822 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 6823 * or lower is eligible for reclaim until at least one usable zone is 6824 * balanced. 6825 */ 6826 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 6827 { 6828 int i; 6829 unsigned long nr_soft_reclaimed; 6830 unsigned long nr_soft_scanned; 6831 unsigned long pflags; 6832 unsigned long nr_boost_reclaim; 6833 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 6834 bool boosted; 6835 struct zone *zone; 6836 struct scan_control sc = { 6837 .gfp_mask = GFP_KERNEL, 6838 .order = order, 6839 .may_unmap = 1, 6840 }; 6841 6842 set_task_reclaim_state(current, &sc.reclaim_state); 6843 psi_memstall_enter(&pflags); 6844 __fs_reclaim_acquire(_THIS_IP_); 6845 6846 count_vm_event(PAGEOUTRUN); 6847 6848 /* 6849 * Account for the reclaim boost. Note that the zone boost is left in 6850 * place so that parallel allocations that are near the watermark will 6851 * stall or direct reclaim until kswapd is finished. 6852 */ 6853 nr_boost_reclaim = 0; 6854 for (i = 0; i <= highest_zoneidx; i++) { 6855 zone = pgdat->node_zones + i; 6856 if (!managed_zone(zone)) 6857 continue; 6858 6859 nr_boost_reclaim += zone->watermark_boost; 6860 zone_boosts[i] = zone->watermark_boost; 6861 } 6862 boosted = nr_boost_reclaim; 6863 6864 restart: 6865 set_reclaim_active(pgdat, highest_zoneidx); 6866 sc.priority = DEF_PRIORITY; 6867 do { 6868 unsigned long nr_reclaimed = sc.nr_reclaimed; 6869 bool raise_priority = true; 6870 bool balanced; 6871 bool ret; 6872 bool was_frozen; 6873 6874 sc.reclaim_idx = highest_zoneidx; 6875 6876 /* 6877 * If the number of buffer_heads exceeds the maximum allowed 6878 * then consider reclaiming from all zones. This has a dual 6879 * purpose -- on 64-bit systems it is expected that 6880 * buffer_heads are stripped during active rotation. On 32-bit 6881 * systems, highmem pages can pin lowmem memory and shrinking 6882 * buffers can relieve lowmem pressure. Reclaim may still not 6883 * go ahead if all eligible zones for the original allocation 6884 * request are balanced to avoid excessive reclaim from kswapd. 6885 */ 6886 if (buffer_heads_over_limit) { 6887 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 6888 zone = pgdat->node_zones + i; 6889 if (!managed_zone(zone)) 6890 continue; 6891 6892 sc.reclaim_idx = i; 6893 break; 6894 } 6895 } 6896 6897 /* 6898 * If the pgdat is imbalanced then ignore boosting and preserve 6899 * the watermarks for a later time and restart. Note that the 6900 * zone watermarks will be still reset at the end of balancing 6901 * on the grounds that the normal reclaim should be enough to 6902 * re-evaluate if boosting is required when kswapd next wakes. 6903 */ 6904 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 6905 if (!balanced && nr_boost_reclaim) { 6906 nr_boost_reclaim = 0; 6907 goto restart; 6908 } 6909 6910 /* 6911 * If boosting is not active then only reclaim if there are no 6912 * eligible zones. Note that sc.reclaim_idx is not used as 6913 * buffer_heads_over_limit may have adjusted it. 6914 */ 6915 if (!nr_boost_reclaim && balanced) 6916 goto out; 6917 6918 /* Limit the priority of boosting to avoid reclaim writeback */ 6919 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 6920 raise_priority = false; 6921 6922 /* 6923 * Do not writeback or swap pages for boosted reclaim. The 6924 * intent is to relieve pressure not issue sub-optimal IO 6925 * from reclaim context. If no pages are reclaimed, the 6926 * reclaim will be aborted. 6927 */ 6928 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 6929 sc.may_swap = !nr_boost_reclaim; 6930 6931 /* 6932 * Do some background aging, to give pages a chance to be 6933 * referenced before reclaiming. All pages are rotated 6934 * regardless of classzone as this is about consistent aging. 6935 */ 6936 kswapd_age_node(pgdat, &sc); 6937 6938 /* 6939 * If we're getting trouble reclaiming, start doing writepage 6940 * even in laptop mode. 6941 */ 6942 if (sc.priority < DEF_PRIORITY - 2) 6943 sc.may_writepage = 1; 6944 6945 /* Call soft limit reclaim before calling shrink_node. */ 6946 sc.nr_scanned = 0; 6947 nr_soft_scanned = 0; 6948 nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order, 6949 sc.gfp_mask, &nr_soft_scanned); 6950 sc.nr_reclaimed += nr_soft_reclaimed; 6951 6952 /* 6953 * There should be no need to raise the scanning priority if 6954 * enough pages are already being scanned that that high 6955 * watermark would be met at 100% efficiency. 6956 */ 6957 if (kswapd_shrink_node(pgdat, &sc)) 6958 raise_priority = false; 6959 6960 /* 6961 * If the low watermark is met there is no need for processes 6962 * to be throttled on pfmemalloc_wait as they should not be 6963 * able to safely make forward progress. Wake them 6964 */ 6965 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 6966 allow_direct_reclaim(pgdat)) 6967 wake_up_all(&pgdat->pfmemalloc_wait); 6968 6969 /* Check if kswapd should be suspending */ 6970 __fs_reclaim_release(_THIS_IP_); 6971 ret = kthread_freezable_should_stop(&was_frozen); 6972 __fs_reclaim_acquire(_THIS_IP_); 6973 if (was_frozen || ret) 6974 break; 6975 6976 /* 6977 * Raise priority if scanning rate is too low or there was no 6978 * progress in reclaiming pages 6979 */ 6980 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 6981 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 6982 6983 /* 6984 * If reclaim made no progress for a boost, stop reclaim as 6985 * IO cannot be queued and it could be an infinite loop in 6986 * extreme circumstances. 6987 */ 6988 if (nr_boost_reclaim && !nr_reclaimed) 6989 break; 6990 6991 if (raise_priority || !nr_reclaimed) 6992 sc.priority--; 6993 } while (sc.priority >= 1); 6994 6995 /* 6996 * Restart only if it went through the priority loop all the way, 6997 * but cache_trim_mode didn't work. 6998 */ 6999 if (!sc.nr_reclaimed && sc.priority < 1 && 7000 !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) { 7001 sc.no_cache_trim_mode = 1; 7002 goto restart; 7003 } 7004 7005 if (!sc.nr_reclaimed) 7006 pgdat->kswapd_failures++; 7007 7008 out: 7009 clear_reclaim_active(pgdat, highest_zoneidx); 7010 7011 /* If reclaim was boosted, account for the reclaim done in this pass */ 7012 if (boosted) { 7013 unsigned long flags; 7014 7015 for (i = 0; i <= highest_zoneidx; i++) { 7016 if (!zone_boosts[i]) 7017 continue; 7018 7019 /* Increments are under the zone lock */ 7020 zone = pgdat->node_zones + i; 7021 spin_lock_irqsave(&zone->lock, flags); 7022 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7023 spin_unlock_irqrestore(&zone->lock, flags); 7024 } 7025 7026 /* 7027 * As there is now likely space, wakeup kcompact to defragment 7028 * pageblocks. 7029 */ 7030 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7031 } 7032 7033 snapshot_refaults(NULL, pgdat); 7034 __fs_reclaim_release(_THIS_IP_); 7035 psi_memstall_leave(&pflags); 7036 set_task_reclaim_state(current, NULL); 7037 7038 /* 7039 * Return the order kswapd stopped reclaiming at as 7040 * prepare_kswapd_sleep() takes it into account. If another caller 7041 * entered the allocator slow path while kswapd was awake, order will 7042 * remain at the higher level. 7043 */ 7044 return sc.order; 7045 } 7046 7047 /* 7048 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7049 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7050 * not a valid index then either kswapd runs for first time or kswapd couldn't 7051 * sleep after previous reclaim attempt (node is still unbalanced). In that 7052 * case return the zone index of the previous kswapd reclaim cycle. 7053 */ 7054 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7055 enum zone_type prev_highest_zoneidx) 7056 { 7057 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7058 7059 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7060 } 7061 7062 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7063 unsigned int highest_zoneidx) 7064 { 7065 long remaining = 0; 7066 DEFINE_WAIT(wait); 7067 7068 if (freezing(current) || kthread_should_stop()) 7069 return; 7070 7071 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7072 7073 /* 7074 * Try to sleep for a short interval. Note that kcompactd will only be 7075 * woken if it is possible to sleep for a short interval. This is 7076 * deliberate on the assumption that if reclaim cannot keep an 7077 * eligible zone balanced that it's also unlikely that compaction will 7078 * succeed. 7079 */ 7080 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7081 /* 7082 * Compaction records what page blocks it recently failed to 7083 * isolate pages from and skips them in the future scanning. 7084 * When kswapd is going to sleep, it is reasonable to assume 7085 * that pages and compaction may succeed so reset the cache. 7086 */ 7087 reset_isolation_suitable(pgdat); 7088 7089 /* 7090 * We have freed the memory, now we should compact it to make 7091 * allocation of the requested order possible. 7092 */ 7093 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7094 7095 remaining = schedule_timeout(HZ/10); 7096 7097 /* 7098 * If woken prematurely then reset kswapd_highest_zoneidx and 7099 * order. The values will either be from a wakeup request or 7100 * the previous request that slept prematurely. 7101 */ 7102 if (remaining) { 7103 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7104 kswapd_highest_zoneidx(pgdat, 7105 highest_zoneidx)); 7106 7107 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7108 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7109 } 7110 7111 finish_wait(&pgdat->kswapd_wait, &wait); 7112 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7113 } 7114 7115 /* 7116 * After a short sleep, check if it was a premature sleep. If not, then 7117 * go fully to sleep until explicitly woken up. 7118 */ 7119 if (!remaining && 7120 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7121 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7122 7123 /* 7124 * vmstat counters are not perfectly accurate and the estimated 7125 * value for counters such as NR_FREE_PAGES can deviate from the 7126 * true value by nr_online_cpus * threshold. To avoid the zone 7127 * watermarks being breached while under pressure, we reduce the 7128 * per-cpu vmstat threshold while kswapd is awake and restore 7129 * them before going back to sleep. 7130 */ 7131 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7132 7133 if (!kthread_should_stop()) 7134 schedule(); 7135 7136 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7137 } else { 7138 if (remaining) 7139 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7140 else 7141 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7142 } 7143 finish_wait(&pgdat->kswapd_wait, &wait); 7144 } 7145 7146 /* 7147 * The background pageout daemon, started as a kernel thread 7148 * from the init process. 7149 * 7150 * This basically trickles out pages so that we have _some_ 7151 * free memory available even if there is no other activity 7152 * that frees anything up. This is needed for things like routing 7153 * etc, where we otherwise might have all activity going on in 7154 * asynchronous contexts that cannot page things out. 7155 * 7156 * If there are applications that are active memory-allocators 7157 * (most normal use), this basically shouldn't matter. 7158 */ 7159 static int kswapd(void *p) 7160 { 7161 unsigned int alloc_order, reclaim_order; 7162 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7163 pg_data_t *pgdat = (pg_data_t *)p; 7164 struct task_struct *tsk = current; 7165 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 7166 7167 if (!cpumask_empty(cpumask)) 7168 set_cpus_allowed_ptr(tsk, cpumask); 7169 7170 /* 7171 * Tell the memory management that we're a "memory allocator", 7172 * and that if we need more memory we should get access to it 7173 * regardless (see "__alloc_pages()"). "kswapd" should 7174 * never get caught in the normal page freeing logic. 7175 * 7176 * (Kswapd normally doesn't need memory anyway, but sometimes 7177 * you need a small amount of memory in order to be able to 7178 * page out something else, and this flag essentially protects 7179 * us from recursively trying to free more memory as we're 7180 * trying to free the first piece of memory in the first place). 7181 */ 7182 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7183 set_freezable(); 7184 7185 WRITE_ONCE(pgdat->kswapd_order, 0); 7186 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7187 atomic_set(&pgdat->nr_writeback_throttled, 0); 7188 for ( ; ; ) { 7189 bool was_frozen; 7190 7191 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7192 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7193 highest_zoneidx); 7194 7195 kswapd_try_sleep: 7196 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7197 highest_zoneidx); 7198 7199 /* Read the new order and highest_zoneidx */ 7200 alloc_order = READ_ONCE(pgdat->kswapd_order); 7201 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7202 highest_zoneidx); 7203 WRITE_ONCE(pgdat->kswapd_order, 0); 7204 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7205 7206 if (kthread_freezable_should_stop(&was_frozen)) 7207 break; 7208 7209 /* 7210 * We can speed up thawing tasks if we don't call balance_pgdat 7211 * after returning from the refrigerator 7212 */ 7213 if (was_frozen) 7214 continue; 7215 7216 /* 7217 * Reclaim begins at the requested order but if a high-order 7218 * reclaim fails then kswapd falls back to reclaiming for 7219 * order-0. If that happens, kswapd will consider sleeping 7220 * for the order it finished reclaiming at (reclaim_order) 7221 * but kcompactd is woken to compact for the original 7222 * request (alloc_order). 7223 */ 7224 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7225 alloc_order); 7226 reclaim_order = balance_pgdat(pgdat, alloc_order, 7227 highest_zoneidx); 7228 if (reclaim_order < alloc_order) 7229 goto kswapd_try_sleep; 7230 } 7231 7232 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7233 7234 return 0; 7235 } 7236 7237 /* 7238 * A zone is low on free memory or too fragmented for high-order memory. If 7239 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7240 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7241 * has failed or is not needed, still wake up kcompactd if only compaction is 7242 * needed. 7243 */ 7244 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7245 enum zone_type highest_zoneidx) 7246 { 7247 pg_data_t *pgdat; 7248 enum zone_type curr_idx; 7249 7250 if (!managed_zone(zone)) 7251 return; 7252 7253 if (!cpuset_zone_allowed(zone, gfp_flags)) 7254 return; 7255 7256 pgdat = zone->zone_pgdat; 7257 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7258 7259 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7260 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7261 7262 if (READ_ONCE(pgdat->kswapd_order) < order) 7263 WRITE_ONCE(pgdat->kswapd_order, order); 7264 7265 if (!waitqueue_active(&pgdat->kswapd_wait)) 7266 return; 7267 7268 /* Hopeless node, leave it to direct reclaim if possible */ 7269 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7270 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7271 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7272 /* 7273 * There may be plenty of free memory available, but it's too 7274 * fragmented for high-order allocations. Wake up kcompactd 7275 * and rely on compaction_suitable() to determine if it's 7276 * needed. If it fails, it will defer subsequent attempts to 7277 * ratelimit its work. 7278 */ 7279 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7280 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7281 return; 7282 } 7283 7284 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7285 gfp_flags); 7286 wake_up_interruptible(&pgdat->kswapd_wait); 7287 } 7288 7289 #ifdef CONFIG_HIBERNATION 7290 /* 7291 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7292 * freed pages. 7293 * 7294 * Rather than trying to age LRUs the aim is to preserve the overall 7295 * LRU order by reclaiming preferentially 7296 * inactive > active > active referenced > active mapped 7297 */ 7298 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7299 { 7300 struct scan_control sc = { 7301 .nr_to_reclaim = nr_to_reclaim, 7302 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7303 .reclaim_idx = MAX_NR_ZONES - 1, 7304 .priority = DEF_PRIORITY, 7305 .may_writepage = 1, 7306 .may_unmap = 1, 7307 .may_swap = 1, 7308 .hibernation_mode = 1, 7309 }; 7310 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7311 unsigned long nr_reclaimed; 7312 unsigned int noreclaim_flag; 7313 7314 fs_reclaim_acquire(sc.gfp_mask); 7315 noreclaim_flag = memalloc_noreclaim_save(); 7316 set_task_reclaim_state(current, &sc.reclaim_state); 7317 7318 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7319 7320 set_task_reclaim_state(current, NULL); 7321 memalloc_noreclaim_restore(noreclaim_flag); 7322 fs_reclaim_release(sc.gfp_mask); 7323 7324 return nr_reclaimed; 7325 } 7326 #endif /* CONFIG_HIBERNATION */ 7327 7328 /* 7329 * This kswapd start function will be called by init and node-hot-add. 7330 */ 7331 void __meminit kswapd_run(int nid) 7332 { 7333 pg_data_t *pgdat = NODE_DATA(nid); 7334 7335 pgdat_kswapd_lock(pgdat); 7336 if (!pgdat->kswapd) { 7337 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 7338 if (IS_ERR(pgdat->kswapd)) { 7339 /* failure at boot is fatal */ 7340 pr_err("Failed to start kswapd on node %d,ret=%ld\n", 7341 nid, PTR_ERR(pgdat->kswapd)); 7342 BUG_ON(system_state < SYSTEM_RUNNING); 7343 pgdat->kswapd = NULL; 7344 } 7345 } 7346 pgdat_kswapd_unlock(pgdat); 7347 } 7348 7349 /* 7350 * Called by memory hotplug when all memory in a node is offlined. Caller must 7351 * be holding mem_hotplug_begin/done(). 7352 */ 7353 void __meminit kswapd_stop(int nid) 7354 { 7355 pg_data_t *pgdat = NODE_DATA(nid); 7356 struct task_struct *kswapd; 7357 7358 pgdat_kswapd_lock(pgdat); 7359 kswapd = pgdat->kswapd; 7360 if (kswapd) { 7361 kthread_stop(kswapd); 7362 pgdat->kswapd = NULL; 7363 } 7364 pgdat_kswapd_unlock(pgdat); 7365 } 7366 7367 static int __init kswapd_init(void) 7368 { 7369 int nid; 7370 7371 swap_setup(); 7372 for_each_node_state(nid, N_MEMORY) 7373 kswapd_run(nid); 7374 return 0; 7375 } 7376 7377 module_init(kswapd_init) 7378 7379 #ifdef CONFIG_NUMA 7380 /* 7381 * Node reclaim mode 7382 * 7383 * If non-zero call node_reclaim when the number of free pages falls below 7384 * the watermarks. 7385 */ 7386 int node_reclaim_mode __read_mostly; 7387 7388 /* 7389 * Priority for NODE_RECLAIM. This determines the fraction of pages 7390 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7391 * a zone. 7392 */ 7393 #define NODE_RECLAIM_PRIORITY 4 7394 7395 /* 7396 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7397 * occur. 7398 */ 7399 int sysctl_min_unmapped_ratio = 1; 7400 7401 /* 7402 * If the number of slab pages in a zone grows beyond this percentage then 7403 * slab reclaim needs to occur. 7404 */ 7405 int sysctl_min_slab_ratio = 5; 7406 7407 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7408 { 7409 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7410 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7411 node_page_state(pgdat, NR_ACTIVE_FILE); 7412 7413 /* 7414 * It's possible for there to be more file mapped pages than 7415 * accounted for by the pages on the file LRU lists because 7416 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7417 */ 7418 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7419 } 7420 7421 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7422 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7423 { 7424 unsigned long nr_pagecache_reclaimable; 7425 unsigned long delta = 0; 7426 7427 /* 7428 * If RECLAIM_UNMAP is set, then all file pages are considered 7429 * potentially reclaimable. Otherwise, we have to worry about 7430 * pages like swapcache and node_unmapped_file_pages() provides 7431 * a better estimate 7432 */ 7433 if (node_reclaim_mode & RECLAIM_UNMAP) 7434 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7435 else 7436 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7437 7438 /* If we can't clean pages, remove dirty pages from consideration */ 7439 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7440 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7441 7442 /* Watch for any possible underflows due to delta */ 7443 if (unlikely(delta > nr_pagecache_reclaimable)) 7444 delta = nr_pagecache_reclaimable; 7445 7446 return nr_pagecache_reclaimable - delta; 7447 } 7448 7449 /* 7450 * Try to free up some pages from this node through reclaim. 7451 */ 7452 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7453 { 7454 /* Minimum pages needed in order to stay on node */ 7455 const unsigned long nr_pages = 1 << order; 7456 struct task_struct *p = current; 7457 unsigned int noreclaim_flag; 7458 struct scan_control sc = { 7459 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7460 .gfp_mask = current_gfp_context(gfp_mask), 7461 .order = order, 7462 .priority = NODE_RECLAIM_PRIORITY, 7463 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7464 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7465 .may_swap = 1, 7466 .reclaim_idx = gfp_zone(gfp_mask), 7467 }; 7468 unsigned long pflags; 7469 7470 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 7471 sc.gfp_mask); 7472 7473 cond_resched(); 7474 psi_memstall_enter(&pflags); 7475 delayacct_freepages_start(); 7476 fs_reclaim_acquire(sc.gfp_mask); 7477 /* 7478 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7479 */ 7480 noreclaim_flag = memalloc_noreclaim_save(); 7481 set_task_reclaim_state(p, &sc.reclaim_state); 7482 7483 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7484 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7485 /* 7486 * Free memory by calling shrink node with increasing 7487 * priorities until we have enough memory freed. 7488 */ 7489 do { 7490 shrink_node(pgdat, &sc); 7491 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 7492 } 7493 7494 set_task_reclaim_state(p, NULL); 7495 memalloc_noreclaim_restore(noreclaim_flag); 7496 fs_reclaim_release(sc.gfp_mask); 7497 psi_memstall_leave(&pflags); 7498 delayacct_freepages_end(); 7499 7500 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 7501 7502 return sc.nr_reclaimed >= nr_pages; 7503 } 7504 7505 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7506 { 7507 int ret; 7508 7509 /* 7510 * Node reclaim reclaims unmapped file backed pages and 7511 * slab pages if we are over the defined limits. 7512 * 7513 * A small portion of unmapped file backed pages is needed for 7514 * file I/O otherwise pages read by file I/O will be immediately 7515 * thrown out if the node is overallocated. So we do not reclaim 7516 * if less than a specified percentage of the node is used by 7517 * unmapped file backed pages. 7518 */ 7519 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 7520 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 7521 pgdat->min_slab_pages) 7522 return NODE_RECLAIM_FULL; 7523 7524 /* 7525 * Do not scan if the allocation should not be delayed. 7526 */ 7527 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 7528 return NODE_RECLAIM_NOSCAN; 7529 7530 /* 7531 * Only run node reclaim on the local node or on nodes that do not 7532 * have associated processors. This will favor the local processor 7533 * over remote processors and spread off node memory allocations 7534 * as wide as possible. 7535 */ 7536 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 7537 return NODE_RECLAIM_NOSCAN; 7538 7539 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 7540 return NODE_RECLAIM_NOSCAN; 7541 7542 ret = __node_reclaim(pgdat, gfp_mask, order); 7543 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7544 7545 if (ret) 7546 count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS); 7547 else 7548 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 7549 7550 return ret; 7551 } 7552 #endif 7553 7554 /** 7555 * check_move_unevictable_folios - Move evictable folios to appropriate zone 7556 * lru list 7557 * @fbatch: Batch of lru folios to check. 7558 * 7559 * Checks folios for evictability, if an evictable folio is in the unevictable 7560 * lru list, moves it to the appropriate evictable lru list. This function 7561 * should be only used for lru folios. 7562 */ 7563 void check_move_unevictable_folios(struct folio_batch *fbatch) 7564 { 7565 struct lruvec *lruvec = NULL; 7566 int pgscanned = 0; 7567 int pgrescued = 0; 7568 int i; 7569 7570 for (i = 0; i < fbatch->nr; i++) { 7571 struct folio *folio = fbatch->folios[i]; 7572 int nr_pages = folio_nr_pages(folio); 7573 7574 pgscanned += nr_pages; 7575 7576 /* block memcg migration while the folio moves between lrus */ 7577 if (!folio_test_clear_lru(folio)) 7578 continue; 7579 7580 lruvec = folio_lruvec_relock_irq(folio, lruvec); 7581 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 7582 lruvec_del_folio(lruvec, folio); 7583 folio_clear_unevictable(folio); 7584 lruvec_add_folio(lruvec, folio); 7585 pgrescued += nr_pages; 7586 } 7587 folio_set_lru(folio); 7588 } 7589 7590 if (lruvec) { 7591 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 7592 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7593 unlock_page_lruvec_irq(lruvec); 7594 } else if (pgscanned) { 7595 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7596 } 7597 } 7598 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 7599