xref: /linux/mm/vmscan.c (revision 544029862cbb1d7903e19f2e58f48d4884e1201b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60 
61 #include "internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65 
66 struct scan_control {
67 	/* How many pages shrink_list() should reclaim */
68 	unsigned long nr_to_reclaim;
69 
70 	/*
71 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 	 * are scanned.
73 	 */
74 	nodemask_t	*nodemask;
75 
76 	/*
77 	 * The memory cgroup that hit its limit and as a result is the
78 	 * primary target of this reclaim invocation.
79 	 */
80 	struct mem_cgroup *target_mem_cgroup;
81 
82 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
83 	unsigned int may_writepage:1;
84 
85 	/* Can mapped pages be reclaimed? */
86 	unsigned int may_unmap:1;
87 
88 	/* Can pages be swapped as part of reclaim? */
89 	unsigned int may_swap:1;
90 
91 	/* e.g. boosted watermark reclaim leaves slabs alone */
92 	unsigned int may_shrinkslab:1;
93 
94 	/*
95 	 * Cgroups are not reclaimed below their configured memory.low,
96 	 * unless we threaten to OOM. If any cgroups are skipped due to
97 	 * memory.low and nothing was reclaimed, go back for memory.low.
98 	 */
99 	unsigned int memcg_low_reclaim:1;
100 	unsigned int memcg_low_skipped:1;
101 
102 	unsigned int hibernation_mode:1;
103 
104 	/* One of the zones is ready for compaction */
105 	unsigned int compaction_ready:1;
106 
107 	/* Allocation order */
108 	s8 order;
109 
110 	/* Scan (total_size >> priority) pages at once */
111 	s8 priority;
112 
113 	/* The highest zone to isolate pages for reclaim from */
114 	s8 reclaim_idx;
115 
116 	/* This context's GFP mask */
117 	gfp_t gfp_mask;
118 
119 	/* Incremented by the number of inactive pages that were scanned */
120 	unsigned long nr_scanned;
121 
122 	/* Number of pages freed so far during a call to shrink_zones() */
123 	unsigned long nr_reclaimed;
124 
125 	struct {
126 		unsigned int dirty;
127 		unsigned int unqueued_dirty;
128 		unsigned int congested;
129 		unsigned int writeback;
130 		unsigned int immediate;
131 		unsigned int file_taken;
132 		unsigned int taken;
133 	} nr;
134 };
135 
136 #ifdef ARCH_HAS_PREFETCH
137 #define prefetch_prev_lru_page(_page, _base, _field)			\
138 	do {								\
139 		if ((_page)->lru.prev != _base) {			\
140 			struct page *prev;				\
141 									\
142 			prev = lru_to_page(&(_page->lru));		\
143 			prefetch(&prev->_field);			\
144 		}							\
145 	} while (0)
146 #else
147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
148 #endif
149 
150 #ifdef ARCH_HAS_PREFETCHW
151 #define prefetchw_prev_lru_page(_page, _base, _field)			\
152 	do {								\
153 		if ((_page)->lru.prev != _base) {			\
154 			struct page *prev;				\
155 									\
156 			prev = lru_to_page(&(_page->lru));		\
157 			prefetchw(&prev->_field);			\
158 		}							\
159 	} while (0)
160 #else
161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
162 #endif
163 
164 /*
165  * From 0 .. 100.  Higher means more swappy.
166  */
167 int vm_swappiness = 60;
168 /*
169  * The total number of pages which are beyond the high watermark within all
170  * zones.
171  */
172 unsigned long vm_total_pages;
173 
174 static LIST_HEAD(shrinker_list);
175 static DECLARE_RWSEM(shrinker_rwsem);
176 
177 #ifdef CONFIG_MEMCG_KMEM
178 
179 /*
180  * We allow subsystems to populate their shrinker-related
181  * LRU lists before register_shrinker_prepared() is called
182  * for the shrinker, since we don't want to impose
183  * restrictions on their internal registration order.
184  * In this case shrink_slab_memcg() may find corresponding
185  * bit is set in the shrinkers map.
186  *
187  * This value is used by the function to detect registering
188  * shrinkers and to skip do_shrink_slab() calls for them.
189  */
190 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
191 
192 static DEFINE_IDR(shrinker_idr);
193 static int shrinker_nr_max;
194 
195 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
196 {
197 	int id, ret = -ENOMEM;
198 
199 	down_write(&shrinker_rwsem);
200 	/* This may call shrinker, so it must use down_read_trylock() */
201 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
202 	if (id < 0)
203 		goto unlock;
204 
205 	if (id >= shrinker_nr_max) {
206 		if (memcg_expand_shrinker_maps(id)) {
207 			idr_remove(&shrinker_idr, id);
208 			goto unlock;
209 		}
210 
211 		shrinker_nr_max = id + 1;
212 	}
213 	shrinker->id = id;
214 	ret = 0;
215 unlock:
216 	up_write(&shrinker_rwsem);
217 	return ret;
218 }
219 
220 static void unregister_memcg_shrinker(struct shrinker *shrinker)
221 {
222 	int id = shrinker->id;
223 
224 	BUG_ON(id < 0);
225 
226 	down_write(&shrinker_rwsem);
227 	idr_remove(&shrinker_idr, id);
228 	up_write(&shrinker_rwsem);
229 }
230 #else /* CONFIG_MEMCG_KMEM */
231 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
232 {
233 	return 0;
234 }
235 
236 static void unregister_memcg_shrinker(struct shrinker *shrinker)
237 {
238 }
239 #endif /* CONFIG_MEMCG_KMEM */
240 
241 #ifdef CONFIG_MEMCG
242 static bool global_reclaim(struct scan_control *sc)
243 {
244 	return !sc->target_mem_cgroup;
245 }
246 
247 /**
248  * sane_reclaim - is the usual dirty throttling mechanism operational?
249  * @sc: scan_control in question
250  *
251  * The normal page dirty throttling mechanism in balance_dirty_pages() is
252  * completely broken with the legacy memcg and direct stalling in
253  * shrink_page_list() is used for throttling instead, which lacks all the
254  * niceties such as fairness, adaptive pausing, bandwidth proportional
255  * allocation and configurability.
256  *
257  * This function tests whether the vmscan currently in progress can assume
258  * that the normal dirty throttling mechanism is operational.
259  */
260 static bool sane_reclaim(struct scan_control *sc)
261 {
262 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
263 
264 	if (!memcg)
265 		return true;
266 #ifdef CONFIG_CGROUP_WRITEBACK
267 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
268 		return true;
269 #endif
270 	return false;
271 }
272 
273 static void set_memcg_congestion(pg_data_t *pgdat,
274 				struct mem_cgroup *memcg,
275 				bool congested)
276 {
277 	struct mem_cgroup_per_node *mn;
278 
279 	if (!memcg)
280 		return;
281 
282 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
283 	WRITE_ONCE(mn->congested, congested);
284 }
285 
286 static bool memcg_congested(pg_data_t *pgdat,
287 			struct mem_cgroup *memcg)
288 {
289 	struct mem_cgroup_per_node *mn;
290 
291 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
292 	return READ_ONCE(mn->congested);
293 
294 }
295 #else
296 static bool global_reclaim(struct scan_control *sc)
297 {
298 	return true;
299 }
300 
301 static bool sane_reclaim(struct scan_control *sc)
302 {
303 	return true;
304 }
305 
306 static inline void set_memcg_congestion(struct pglist_data *pgdat,
307 				struct mem_cgroup *memcg, bool congested)
308 {
309 }
310 
311 static inline bool memcg_congested(struct pglist_data *pgdat,
312 			struct mem_cgroup *memcg)
313 {
314 	return false;
315 
316 }
317 #endif
318 
319 /*
320  * This misses isolated pages which are not accounted for to save counters.
321  * As the data only determines if reclaim or compaction continues, it is
322  * not expected that isolated pages will be a dominating factor.
323  */
324 unsigned long zone_reclaimable_pages(struct zone *zone)
325 {
326 	unsigned long nr;
327 
328 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
329 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
330 	if (get_nr_swap_pages() > 0)
331 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
332 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
333 
334 	return nr;
335 }
336 
337 /**
338  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
339  * @lruvec: lru vector
340  * @lru: lru to use
341  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
342  */
343 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
344 {
345 	unsigned long lru_size;
346 	int zid;
347 
348 	if (!mem_cgroup_disabled())
349 		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
350 	else
351 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
352 
353 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
354 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
355 		unsigned long size;
356 
357 		if (!managed_zone(zone))
358 			continue;
359 
360 		if (!mem_cgroup_disabled())
361 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
362 		else
363 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
364 				       NR_ZONE_LRU_BASE + lru);
365 		lru_size -= min(size, lru_size);
366 	}
367 
368 	return lru_size;
369 
370 }
371 
372 /*
373  * Add a shrinker callback to be called from the vm.
374  */
375 int prealloc_shrinker(struct shrinker *shrinker)
376 {
377 	size_t size = sizeof(*shrinker->nr_deferred);
378 
379 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
380 		size *= nr_node_ids;
381 
382 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
383 	if (!shrinker->nr_deferred)
384 		return -ENOMEM;
385 
386 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
387 		if (prealloc_memcg_shrinker(shrinker))
388 			goto free_deferred;
389 	}
390 
391 	return 0;
392 
393 free_deferred:
394 	kfree(shrinker->nr_deferred);
395 	shrinker->nr_deferred = NULL;
396 	return -ENOMEM;
397 }
398 
399 void free_prealloced_shrinker(struct shrinker *shrinker)
400 {
401 	if (!shrinker->nr_deferred)
402 		return;
403 
404 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
405 		unregister_memcg_shrinker(shrinker);
406 
407 	kfree(shrinker->nr_deferred);
408 	shrinker->nr_deferred = NULL;
409 }
410 
411 void register_shrinker_prepared(struct shrinker *shrinker)
412 {
413 	down_write(&shrinker_rwsem);
414 	list_add_tail(&shrinker->list, &shrinker_list);
415 #ifdef CONFIG_MEMCG_KMEM
416 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
417 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
418 #endif
419 	up_write(&shrinker_rwsem);
420 }
421 
422 int register_shrinker(struct shrinker *shrinker)
423 {
424 	int err = prealloc_shrinker(shrinker);
425 
426 	if (err)
427 		return err;
428 	register_shrinker_prepared(shrinker);
429 	return 0;
430 }
431 EXPORT_SYMBOL(register_shrinker);
432 
433 /*
434  * Remove one
435  */
436 void unregister_shrinker(struct shrinker *shrinker)
437 {
438 	if (!shrinker->nr_deferred)
439 		return;
440 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
441 		unregister_memcg_shrinker(shrinker);
442 	down_write(&shrinker_rwsem);
443 	list_del(&shrinker->list);
444 	up_write(&shrinker_rwsem);
445 	kfree(shrinker->nr_deferred);
446 	shrinker->nr_deferred = NULL;
447 }
448 EXPORT_SYMBOL(unregister_shrinker);
449 
450 #define SHRINK_BATCH 128
451 
452 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
453 				    struct shrinker *shrinker, int priority)
454 {
455 	unsigned long freed = 0;
456 	unsigned long long delta;
457 	long total_scan;
458 	long freeable;
459 	long nr;
460 	long new_nr;
461 	int nid = shrinkctl->nid;
462 	long batch_size = shrinker->batch ? shrinker->batch
463 					  : SHRINK_BATCH;
464 	long scanned = 0, next_deferred;
465 
466 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
467 		nid = 0;
468 
469 	freeable = shrinker->count_objects(shrinker, shrinkctl);
470 	if (freeable == 0 || freeable == SHRINK_EMPTY)
471 		return freeable;
472 
473 	/*
474 	 * copy the current shrinker scan count into a local variable
475 	 * and zero it so that other concurrent shrinker invocations
476 	 * don't also do this scanning work.
477 	 */
478 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
479 
480 	total_scan = nr;
481 	if (shrinker->seeks) {
482 		delta = freeable >> priority;
483 		delta *= 4;
484 		do_div(delta, shrinker->seeks);
485 	} else {
486 		/*
487 		 * These objects don't require any IO to create. Trim
488 		 * them aggressively under memory pressure to keep
489 		 * them from causing refetches in the IO caches.
490 		 */
491 		delta = freeable / 2;
492 	}
493 
494 	total_scan += delta;
495 	if (total_scan < 0) {
496 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
497 		       shrinker->scan_objects, total_scan);
498 		total_scan = freeable;
499 		next_deferred = nr;
500 	} else
501 		next_deferred = total_scan;
502 
503 	/*
504 	 * We need to avoid excessive windup on filesystem shrinkers
505 	 * due to large numbers of GFP_NOFS allocations causing the
506 	 * shrinkers to return -1 all the time. This results in a large
507 	 * nr being built up so when a shrink that can do some work
508 	 * comes along it empties the entire cache due to nr >>>
509 	 * freeable. This is bad for sustaining a working set in
510 	 * memory.
511 	 *
512 	 * Hence only allow the shrinker to scan the entire cache when
513 	 * a large delta change is calculated directly.
514 	 */
515 	if (delta < freeable / 4)
516 		total_scan = min(total_scan, freeable / 2);
517 
518 	/*
519 	 * Avoid risking looping forever due to too large nr value:
520 	 * never try to free more than twice the estimate number of
521 	 * freeable entries.
522 	 */
523 	if (total_scan > freeable * 2)
524 		total_scan = freeable * 2;
525 
526 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
527 				   freeable, delta, total_scan, priority);
528 
529 	/*
530 	 * Normally, we should not scan less than batch_size objects in one
531 	 * pass to avoid too frequent shrinker calls, but if the slab has less
532 	 * than batch_size objects in total and we are really tight on memory,
533 	 * we will try to reclaim all available objects, otherwise we can end
534 	 * up failing allocations although there are plenty of reclaimable
535 	 * objects spread over several slabs with usage less than the
536 	 * batch_size.
537 	 *
538 	 * We detect the "tight on memory" situations by looking at the total
539 	 * number of objects we want to scan (total_scan). If it is greater
540 	 * than the total number of objects on slab (freeable), we must be
541 	 * scanning at high prio and therefore should try to reclaim as much as
542 	 * possible.
543 	 */
544 	while (total_scan >= batch_size ||
545 	       total_scan >= freeable) {
546 		unsigned long ret;
547 		unsigned long nr_to_scan = min(batch_size, total_scan);
548 
549 		shrinkctl->nr_to_scan = nr_to_scan;
550 		shrinkctl->nr_scanned = nr_to_scan;
551 		ret = shrinker->scan_objects(shrinker, shrinkctl);
552 		if (ret == SHRINK_STOP)
553 			break;
554 		freed += ret;
555 
556 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
557 		total_scan -= shrinkctl->nr_scanned;
558 		scanned += shrinkctl->nr_scanned;
559 
560 		cond_resched();
561 	}
562 
563 	if (next_deferred >= scanned)
564 		next_deferred -= scanned;
565 	else
566 		next_deferred = 0;
567 	/*
568 	 * move the unused scan count back into the shrinker in a
569 	 * manner that handles concurrent updates. If we exhausted the
570 	 * scan, there is no need to do an update.
571 	 */
572 	if (next_deferred > 0)
573 		new_nr = atomic_long_add_return(next_deferred,
574 						&shrinker->nr_deferred[nid]);
575 	else
576 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
577 
578 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
579 	return freed;
580 }
581 
582 #ifdef CONFIG_MEMCG_KMEM
583 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
584 			struct mem_cgroup *memcg, int priority)
585 {
586 	struct memcg_shrinker_map *map;
587 	unsigned long ret, freed = 0;
588 	int i;
589 
590 	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
591 		return 0;
592 
593 	if (!down_read_trylock(&shrinker_rwsem))
594 		return 0;
595 
596 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
597 					true);
598 	if (unlikely(!map))
599 		goto unlock;
600 
601 	for_each_set_bit(i, map->map, shrinker_nr_max) {
602 		struct shrink_control sc = {
603 			.gfp_mask = gfp_mask,
604 			.nid = nid,
605 			.memcg = memcg,
606 		};
607 		struct shrinker *shrinker;
608 
609 		shrinker = idr_find(&shrinker_idr, i);
610 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
611 			if (!shrinker)
612 				clear_bit(i, map->map);
613 			continue;
614 		}
615 
616 		ret = do_shrink_slab(&sc, shrinker, priority);
617 		if (ret == SHRINK_EMPTY) {
618 			clear_bit(i, map->map);
619 			/*
620 			 * After the shrinker reported that it had no objects to
621 			 * free, but before we cleared the corresponding bit in
622 			 * the memcg shrinker map, a new object might have been
623 			 * added. To make sure, we have the bit set in this
624 			 * case, we invoke the shrinker one more time and reset
625 			 * the bit if it reports that it is not empty anymore.
626 			 * The memory barrier here pairs with the barrier in
627 			 * memcg_set_shrinker_bit():
628 			 *
629 			 * list_lru_add()     shrink_slab_memcg()
630 			 *   list_add_tail()    clear_bit()
631 			 *   <MB>               <MB>
632 			 *   set_bit()          do_shrink_slab()
633 			 */
634 			smp_mb__after_atomic();
635 			ret = do_shrink_slab(&sc, shrinker, priority);
636 			if (ret == SHRINK_EMPTY)
637 				ret = 0;
638 			else
639 				memcg_set_shrinker_bit(memcg, nid, i);
640 		}
641 		freed += ret;
642 
643 		if (rwsem_is_contended(&shrinker_rwsem)) {
644 			freed = freed ? : 1;
645 			break;
646 		}
647 	}
648 unlock:
649 	up_read(&shrinker_rwsem);
650 	return freed;
651 }
652 #else /* CONFIG_MEMCG_KMEM */
653 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
654 			struct mem_cgroup *memcg, int priority)
655 {
656 	return 0;
657 }
658 #endif /* CONFIG_MEMCG_KMEM */
659 
660 /**
661  * shrink_slab - shrink slab caches
662  * @gfp_mask: allocation context
663  * @nid: node whose slab caches to target
664  * @memcg: memory cgroup whose slab caches to target
665  * @priority: the reclaim priority
666  *
667  * Call the shrink functions to age shrinkable caches.
668  *
669  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
670  * unaware shrinkers will receive a node id of 0 instead.
671  *
672  * @memcg specifies the memory cgroup to target. Unaware shrinkers
673  * are called only if it is the root cgroup.
674  *
675  * @priority is sc->priority, we take the number of objects and >> by priority
676  * in order to get the scan target.
677  *
678  * Returns the number of reclaimed slab objects.
679  */
680 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
681 				 struct mem_cgroup *memcg,
682 				 int priority)
683 {
684 	unsigned long ret, freed = 0;
685 	struct shrinker *shrinker;
686 
687 	if (!mem_cgroup_is_root(memcg))
688 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
689 
690 	if (!down_read_trylock(&shrinker_rwsem))
691 		goto out;
692 
693 	list_for_each_entry(shrinker, &shrinker_list, list) {
694 		struct shrink_control sc = {
695 			.gfp_mask = gfp_mask,
696 			.nid = nid,
697 			.memcg = memcg,
698 		};
699 
700 		ret = do_shrink_slab(&sc, shrinker, priority);
701 		if (ret == SHRINK_EMPTY)
702 			ret = 0;
703 		freed += ret;
704 		/*
705 		 * Bail out if someone want to register a new shrinker to
706 		 * prevent the regsitration from being stalled for long periods
707 		 * by parallel ongoing shrinking.
708 		 */
709 		if (rwsem_is_contended(&shrinker_rwsem)) {
710 			freed = freed ? : 1;
711 			break;
712 		}
713 	}
714 
715 	up_read(&shrinker_rwsem);
716 out:
717 	cond_resched();
718 	return freed;
719 }
720 
721 void drop_slab_node(int nid)
722 {
723 	unsigned long freed;
724 
725 	do {
726 		struct mem_cgroup *memcg = NULL;
727 
728 		freed = 0;
729 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
730 		do {
731 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
732 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
733 	} while (freed > 10);
734 }
735 
736 void drop_slab(void)
737 {
738 	int nid;
739 
740 	for_each_online_node(nid)
741 		drop_slab_node(nid);
742 }
743 
744 static inline int is_page_cache_freeable(struct page *page)
745 {
746 	/*
747 	 * A freeable page cache page is referenced only by the caller
748 	 * that isolated the page, the page cache and optional buffer
749 	 * heads at page->private.
750 	 */
751 	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
752 		HPAGE_PMD_NR : 1;
753 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
754 }
755 
756 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
757 {
758 	if (current->flags & PF_SWAPWRITE)
759 		return 1;
760 	if (!inode_write_congested(inode))
761 		return 1;
762 	if (inode_to_bdi(inode) == current->backing_dev_info)
763 		return 1;
764 	return 0;
765 }
766 
767 /*
768  * We detected a synchronous write error writing a page out.  Probably
769  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
770  * fsync(), msync() or close().
771  *
772  * The tricky part is that after writepage we cannot touch the mapping: nothing
773  * prevents it from being freed up.  But we have a ref on the page and once
774  * that page is locked, the mapping is pinned.
775  *
776  * We're allowed to run sleeping lock_page() here because we know the caller has
777  * __GFP_FS.
778  */
779 static void handle_write_error(struct address_space *mapping,
780 				struct page *page, int error)
781 {
782 	lock_page(page);
783 	if (page_mapping(page) == mapping)
784 		mapping_set_error(mapping, error);
785 	unlock_page(page);
786 }
787 
788 /* possible outcome of pageout() */
789 typedef enum {
790 	/* failed to write page out, page is locked */
791 	PAGE_KEEP,
792 	/* move page to the active list, page is locked */
793 	PAGE_ACTIVATE,
794 	/* page has been sent to the disk successfully, page is unlocked */
795 	PAGE_SUCCESS,
796 	/* page is clean and locked */
797 	PAGE_CLEAN,
798 } pageout_t;
799 
800 /*
801  * pageout is called by shrink_page_list() for each dirty page.
802  * Calls ->writepage().
803  */
804 static pageout_t pageout(struct page *page, struct address_space *mapping,
805 			 struct scan_control *sc)
806 {
807 	/*
808 	 * If the page is dirty, only perform writeback if that write
809 	 * will be non-blocking.  To prevent this allocation from being
810 	 * stalled by pagecache activity.  But note that there may be
811 	 * stalls if we need to run get_block().  We could test
812 	 * PagePrivate for that.
813 	 *
814 	 * If this process is currently in __generic_file_write_iter() against
815 	 * this page's queue, we can perform writeback even if that
816 	 * will block.
817 	 *
818 	 * If the page is swapcache, write it back even if that would
819 	 * block, for some throttling. This happens by accident, because
820 	 * swap_backing_dev_info is bust: it doesn't reflect the
821 	 * congestion state of the swapdevs.  Easy to fix, if needed.
822 	 */
823 	if (!is_page_cache_freeable(page))
824 		return PAGE_KEEP;
825 	if (!mapping) {
826 		/*
827 		 * Some data journaling orphaned pages can have
828 		 * page->mapping == NULL while being dirty with clean buffers.
829 		 */
830 		if (page_has_private(page)) {
831 			if (try_to_free_buffers(page)) {
832 				ClearPageDirty(page);
833 				pr_info("%s: orphaned page\n", __func__);
834 				return PAGE_CLEAN;
835 			}
836 		}
837 		return PAGE_KEEP;
838 	}
839 	if (mapping->a_ops->writepage == NULL)
840 		return PAGE_ACTIVATE;
841 	if (!may_write_to_inode(mapping->host, sc))
842 		return PAGE_KEEP;
843 
844 	if (clear_page_dirty_for_io(page)) {
845 		int res;
846 		struct writeback_control wbc = {
847 			.sync_mode = WB_SYNC_NONE,
848 			.nr_to_write = SWAP_CLUSTER_MAX,
849 			.range_start = 0,
850 			.range_end = LLONG_MAX,
851 			.for_reclaim = 1,
852 		};
853 
854 		SetPageReclaim(page);
855 		res = mapping->a_ops->writepage(page, &wbc);
856 		if (res < 0)
857 			handle_write_error(mapping, page, res);
858 		if (res == AOP_WRITEPAGE_ACTIVATE) {
859 			ClearPageReclaim(page);
860 			return PAGE_ACTIVATE;
861 		}
862 
863 		if (!PageWriteback(page)) {
864 			/* synchronous write or broken a_ops? */
865 			ClearPageReclaim(page);
866 		}
867 		trace_mm_vmscan_writepage(page);
868 		inc_node_page_state(page, NR_VMSCAN_WRITE);
869 		return PAGE_SUCCESS;
870 	}
871 
872 	return PAGE_CLEAN;
873 }
874 
875 /*
876  * Same as remove_mapping, but if the page is removed from the mapping, it
877  * gets returned with a refcount of 0.
878  */
879 static int __remove_mapping(struct address_space *mapping, struct page *page,
880 			    bool reclaimed)
881 {
882 	unsigned long flags;
883 	int refcount;
884 
885 	BUG_ON(!PageLocked(page));
886 	BUG_ON(mapping != page_mapping(page));
887 
888 	xa_lock_irqsave(&mapping->i_pages, flags);
889 	/*
890 	 * The non racy check for a busy page.
891 	 *
892 	 * Must be careful with the order of the tests. When someone has
893 	 * a ref to the page, it may be possible that they dirty it then
894 	 * drop the reference. So if PageDirty is tested before page_count
895 	 * here, then the following race may occur:
896 	 *
897 	 * get_user_pages(&page);
898 	 * [user mapping goes away]
899 	 * write_to(page);
900 	 *				!PageDirty(page)    [good]
901 	 * SetPageDirty(page);
902 	 * put_page(page);
903 	 *				!page_count(page)   [good, discard it]
904 	 *
905 	 * [oops, our write_to data is lost]
906 	 *
907 	 * Reversing the order of the tests ensures such a situation cannot
908 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
909 	 * load is not satisfied before that of page->_refcount.
910 	 *
911 	 * Note that if SetPageDirty is always performed via set_page_dirty,
912 	 * and thus under the i_pages lock, then this ordering is not required.
913 	 */
914 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
915 		refcount = 1 + HPAGE_PMD_NR;
916 	else
917 		refcount = 2;
918 	if (!page_ref_freeze(page, refcount))
919 		goto cannot_free;
920 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
921 	if (unlikely(PageDirty(page))) {
922 		page_ref_unfreeze(page, refcount);
923 		goto cannot_free;
924 	}
925 
926 	if (PageSwapCache(page)) {
927 		swp_entry_t swap = { .val = page_private(page) };
928 		mem_cgroup_swapout(page, swap);
929 		__delete_from_swap_cache(page, swap);
930 		xa_unlock_irqrestore(&mapping->i_pages, flags);
931 		put_swap_page(page, swap);
932 	} else {
933 		void (*freepage)(struct page *);
934 		void *shadow = NULL;
935 
936 		freepage = mapping->a_ops->freepage;
937 		/*
938 		 * Remember a shadow entry for reclaimed file cache in
939 		 * order to detect refaults, thus thrashing, later on.
940 		 *
941 		 * But don't store shadows in an address space that is
942 		 * already exiting.  This is not just an optizimation,
943 		 * inode reclaim needs to empty out the radix tree or
944 		 * the nodes are lost.  Don't plant shadows behind its
945 		 * back.
946 		 *
947 		 * We also don't store shadows for DAX mappings because the
948 		 * only page cache pages found in these are zero pages
949 		 * covering holes, and because we don't want to mix DAX
950 		 * exceptional entries and shadow exceptional entries in the
951 		 * same address_space.
952 		 */
953 		if (reclaimed && page_is_file_cache(page) &&
954 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
955 			shadow = workingset_eviction(mapping, page);
956 		__delete_from_page_cache(page, shadow);
957 		xa_unlock_irqrestore(&mapping->i_pages, flags);
958 
959 		if (freepage != NULL)
960 			freepage(page);
961 	}
962 
963 	return 1;
964 
965 cannot_free:
966 	xa_unlock_irqrestore(&mapping->i_pages, flags);
967 	return 0;
968 }
969 
970 /*
971  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
972  * someone else has a ref on the page, abort and return 0.  If it was
973  * successfully detached, return 1.  Assumes the caller has a single ref on
974  * this page.
975  */
976 int remove_mapping(struct address_space *mapping, struct page *page)
977 {
978 	if (__remove_mapping(mapping, page, false)) {
979 		/*
980 		 * Unfreezing the refcount with 1 rather than 2 effectively
981 		 * drops the pagecache ref for us without requiring another
982 		 * atomic operation.
983 		 */
984 		page_ref_unfreeze(page, 1);
985 		return 1;
986 	}
987 	return 0;
988 }
989 
990 /**
991  * putback_lru_page - put previously isolated page onto appropriate LRU list
992  * @page: page to be put back to appropriate lru list
993  *
994  * Add previously isolated @page to appropriate LRU list.
995  * Page may still be unevictable for other reasons.
996  *
997  * lru_lock must not be held, interrupts must be enabled.
998  */
999 void putback_lru_page(struct page *page)
1000 {
1001 	lru_cache_add(page);
1002 	put_page(page);		/* drop ref from isolate */
1003 }
1004 
1005 enum page_references {
1006 	PAGEREF_RECLAIM,
1007 	PAGEREF_RECLAIM_CLEAN,
1008 	PAGEREF_KEEP,
1009 	PAGEREF_ACTIVATE,
1010 };
1011 
1012 static enum page_references page_check_references(struct page *page,
1013 						  struct scan_control *sc)
1014 {
1015 	int referenced_ptes, referenced_page;
1016 	unsigned long vm_flags;
1017 
1018 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1019 					  &vm_flags);
1020 	referenced_page = TestClearPageReferenced(page);
1021 
1022 	/*
1023 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1024 	 * move the page to the unevictable list.
1025 	 */
1026 	if (vm_flags & VM_LOCKED)
1027 		return PAGEREF_RECLAIM;
1028 
1029 	if (referenced_ptes) {
1030 		if (PageSwapBacked(page))
1031 			return PAGEREF_ACTIVATE;
1032 		/*
1033 		 * All mapped pages start out with page table
1034 		 * references from the instantiating fault, so we need
1035 		 * to look twice if a mapped file page is used more
1036 		 * than once.
1037 		 *
1038 		 * Mark it and spare it for another trip around the
1039 		 * inactive list.  Another page table reference will
1040 		 * lead to its activation.
1041 		 *
1042 		 * Note: the mark is set for activated pages as well
1043 		 * so that recently deactivated but used pages are
1044 		 * quickly recovered.
1045 		 */
1046 		SetPageReferenced(page);
1047 
1048 		if (referenced_page || referenced_ptes > 1)
1049 			return PAGEREF_ACTIVATE;
1050 
1051 		/*
1052 		 * Activate file-backed executable pages after first usage.
1053 		 */
1054 		if (vm_flags & VM_EXEC)
1055 			return PAGEREF_ACTIVATE;
1056 
1057 		return PAGEREF_KEEP;
1058 	}
1059 
1060 	/* Reclaim if clean, defer dirty pages to writeback */
1061 	if (referenced_page && !PageSwapBacked(page))
1062 		return PAGEREF_RECLAIM_CLEAN;
1063 
1064 	return PAGEREF_RECLAIM;
1065 }
1066 
1067 /* Check if a page is dirty or under writeback */
1068 static void page_check_dirty_writeback(struct page *page,
1069 				       bool *dirty, bool *writeback)
1070 {
1071 	struct address_space *mapping;
1072 
1073 	/*
1074 	 * Anonymous pages are not handled by flushers and must be written
1075 	 * from reclaim context. Do not stall reclaim based on them
1076 	 */
1077 	if (!page_is_file_cache(page) ||
1078 	    (PageAnon(page) && !PageSwapBacked(page))) {
1079 		*dirty = false;
1080 		*writeback = false;
1081 		return;
1082 	}
1083 
1084 	/* By default assume that the page flags are accurate */
1085 	*dirty = PageDirty(page);
1086 	*writeback = PageWriteback(page);
1087 
1088 	/* Verify dirty/writeback state if the filesystem supports it */
1089 	if (!page_has_private(page))
1090 		return;
1091 
1092 	mapping = page_mapping(page);
1093 	if (mapping && mapping->a_ops->is_dirty_writeback)
1094 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1095 }
1096 
1097 /*
1098  * shrink_page_list() returns the number of reclaimed pages
1099  */
1100 static unsigned long shrink_page_list(struct list_head *page_list,
1101 				      struct pglist_data *pgdat,
1102 				      struct scan_control *sc,
1103 				      enum ttu_flags ttu_flags,
1104 				      struct reclaim_stat *stat,
1105 				      bool force_reclaim)
1106 {
1107 	LIST_HEAD(ret_pages);
1108 	LIST_HEAD(free_pages);
1109 	int pgactivate = 0;
1110 	unsigned nr_unqueued_dirty = 0;
1111 	unsigned nr_dirty = 0;
1112 	unsigned nr_congested = 0;
1113 	unsigned nr_reclaimed = 0;
1114 	unsigned nr_writeback = 0;
1115 	unsigned nr_immediate = 0;
1116 	unsigned nr_ref_keep = 0;
1117 	unsigned nr_unmap_fail = 0;
1118 
1119 	cond_resched();
1120 
1121 	while (!list_empty(page_list)) {
1122 		struct address_space *mapping;
1123 		struct page *page;
1124 		int may_enter_fs;
1125 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1126 		bool dirty, writeback;
1127 
1128 		cond_resched();
1129 
1130 		page = lru_to_page(page_list);
1131 		list_del(&page->lru);
1132 
1133 		if (!trylock_page(page))
1134 			goto keep;
1135 
1136 		VM_BUG_ON_PAGE(PageActive(page), page);
1137 
1138 		sc->nr_scanned++;
1139 
1140 		if (unlikely(!page_evictable(page)))
1141 			goto activate_locked;
1142 
1143 		if (!sc->may_unmap && page_mapped(page))
1144 			goto keep_locked;
1145 
1146 		/* Double the slab pressure for mapped and swapcache pages */
1147 		if ((page_mapped(page) || PageSwapCache(page)) &&
1148 		    !(PageAnon(page) && !PageSwapBacked(page)))
1149 			sc->nr_scanned++;
1150 
1151 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1152 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1153 
1154 		/*
1155 		 * The number of dirty pages determines if a node is marked
1156 		 * reclaim_congested which affects wait_iff_congested. kswapd
1157 		 * will stall and start writing pages if the tail of the LRU
1158 		 * is all dirty unqueued pages.
1159 		 */
1160 		page_check_dirty_writeback(page, &dirty, &writeback);
1161 		if (dirty || writeback)
1162 			nr_dirty++;
1163 
1164 		if (dirty && !writeback)
1165 			nr_unqueued_dirty++;
1166 
1167 		/*
1168 		 * Treat this page as congested if the underlying BDI is or if
1169 		 * pages are cycling through the LRU so quickly that the
1170 		 * pages marked for immediate reclaim are making it to the
1171 		 * end of the LRU a second time.
1172 		 */
1173 		mapping = page_mapping(page);
1174 		if (((dirty || writeback) && mapping &&
1175 		     inode_write_congested(mapping->host)) ||
1176 		    (writeback && PageReclaim(page)))
1177 			nr_congested++;
1178 
1179 		/*
1180 		 * If a page at the tail of the LRU is under writeback, there
1181 		 * are three cases to consider.
1182 		 *
1183 		 * 1) If reclaim is encountering an excessive number of pages
1184 		 *    under writeback and this page is both under writeback and
1185 		 *    PageReclaim then it indicates that pages are being queued
1186 		 *    for IO but are being recycled through the LRU before the
1187 		 *    IO can complete. Waiting on the page itself risks an
1188 		 *    indefinite stall if it is impossible to writeback the
1189 		 *    page due to IO error or disconnected storage so instead
1190 		 *    note that the LRU is being scanned too quickly and the
1191 		 *    caller can stall after page list has been processed.
1192 		 *
1193 		 * 2) Global or new memcg reclaim encounters a page that is
1194 		 *    not marked for immediate reclaim, or the caller does not
1195 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1196 		 *    not to fs). In this case mark the page for immediate
1197 		 *    reclaim and continue scanning.
1198 		 *
1199 		 *    Require may_enter_fs because we would wait on fs, which
1200 		 *    may not have submitted IO yet. And the loop driver might
1201 		 *    enter reclaim, and deadlock if it waits on a page for
1202 		 *    which it is needed to do the write (loop masks off
1203 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1204 		 *    would probably show more reasons.
1205 		 *
1206 		 * 3) Legacy memcg encounters a page that is already marked
1207 		 *    PageReclaim. memcg does not have any dirty pages
1208 		 *    throttling so we could easily OOM just because too many
1209 		 *    pages are in writeback and there is nothing else to
1210 		 *    reclaim. Wait for the writeback to complete.
1211 		 *
1212 		 * In cases 1) and 2) we activate the pages to get them out of
1213 		 * the way while we continue scanning for clean pages on the
1214 		 * inactive list and refilling from the active list. The
1215 		 * observation here is that waiting for disk writes is more
1216 		 * expensive than potentially causing reloads down the line.
1217 		 * Since they're marked for immediate reclaim, they won't put
1218 		 * memory pressure on the cache working set any longer than it
1219 		 * takes to write them to disk.
1220 		 */
1221 		if (PageWriteback(page)) {
1222 			/* Case 1 above */
1223 			if (current_is_kswapd() &&
1224 			    PageReclaim(page) &&
1225 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1226 				nr_immediate++;
1227 				goto activate_locked;
1228 
1229 			/* Case 2 above */
1230 			} else if (sane_reclaim(sc) ||
1231 			    !PageReclaim(page) || !may_enter_fs) {
1232 				/*
1233 				 * This is slightly racy - end_page_writeback()
1234 				 * might have just cleared PageReclaim, then
1235 				 * setting PageReclaim here end up interpreted
1236 				 * as PageReadahead - but that does not matter
1237 				 * enough to care.  What we do want is for this
1238 				 * page to have PageReclaim set next time memcg
1239 				 * reclaim reaches the tests above, so it will
1240 				 * then wait_on_page_writeback() to avoid OOM;
1241 				 * and it's also appropriate in global reclaim.
1242 				 */
1243 				SetPageReclaim(page);
1244 				nr_writeback++;
1245 				goto activate_locked;
1246 
1247 			/* Case 3 above */
1248 			} else {
1249 				unlock_page(page);
1250 				wait_on_page_writeback(page);
1251 				/* then go back and try same page again */
1252 				list_add_tail(&page->lru, page_list);
1253 				continue;
1254 			}
1255 		}
1256 
1257 		if (!force_reclaim)
1258 			references = page_check_references(page, sc);
1259 
1260 		switch (references) {
1261 		case PAGEREF_ACTIVATE:
1262 			goto activate_locked;
1263 		case PAGEREF_KEEP:
1264 			nr_ref_keep++;
1265 			goto keep_locked;
1266 		case PAGEREF_RECLAIM:
1267 		case PAGEREF_RECLAIM_CLEAN:
1268 			; /* try to reclaim the page below */
1269 		}
1270 
1271 		/*
1272 		 * Anonymous process memory has backing store?
1273 		 * Try to allocate it some swap space here.
1274 		 * Lazyfree page could be freed directly
1275 		 */
1276 		if (PageAnon(page) && PageSwapBacked(page)) {
1277 			if (!PageSwapCache(page)) {
1278 				if (!(sc->gfp_mask & __GFP_IO))
1279 					goto keep_locked;
1280 				if (PageTransHuge(page)) {
1281 					/* cannot split THP, skip it */
1282 					if (!can_split_huge_page(page, NULL))
1283 						goto activate_locked;
1284 					/*
1285 					 * Split pages without a PMD map right
1286 					 * away. Chances are some or all of the
1287 					 * tail pages can be freed without IO.
1288 					 */
1289 					if (!compound_mapcount(page) &&
1290 					    split_huge_page_to_list(page,
1291 								    page_list))
1292 						goto activate_locked;
1293 				}
1294 				if (!add_to_swap(page)) {
1295 					if (!PageTransHuge(page))
1296 						goto activate_locked;
1297 					/* Fallback to swap normal pages */
1298 					if (split_huge_page_to_list(page,
1299 								    page_list))
1300 						goto activate_locked;
1301 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1302 					count_vm_event(THP_SWPOUT_FALLBACK);
1303 #endif
1304 					if (!add_to_swap(page))
1305 						goto activate_locked;
1306 				}
1307 
1308 				may_enter_fs = 1;
1309 
1310 				/* Adding to swap updated mapping */
1311 				mapping = page_mapping(page);
1312 			}
1313 		} else if (unlikely(PageTransHuge(page))) {
1314 			/* Split file THP */
1315 			if (split_huge_page_to_list(page, page_list))
1316 				goto keep_locked;
1317 		}
1318 
1319 		/*
1320 		 * The page is mapped into the page tables of one or more
1321 		 * processes. Try to unmap it here.
1322 		 */
1323 		if (page_mapped(page)) {
1324 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1325 
1326 			if (unlikely(PageTransHuge(page)))
1327 				flags |= TTU_SPLIT_HUGE_PMD;
1328 			if (!try_to_unmap(page, flags)) {
1329 				nr_unmap_fail++;
1330 				goto activate_locked;
1331 			}
1332 		}
1333 
1334 		if (PageDirty(page)) {
1335 			/*
1336 			 * Only kswapd can writeback filesystem pages
1337 			 * to avoid risk of stack overflow. But avoid
1338 			 * injecting inefficient single-page IO into
1339 			 * flusher writeback as much as possible: only
1340 			 * write pages when we've encountered many
1341 			 * dirty pages, and when we've already scanned
1342 			 * the rest of the LRU for clean pages and see
1343 			 * the same dirty pages again (PageReclaim).
1344 			 */
1345 			if (page_is_file_cache(page) &&
1346 			    (!current_is_kswapd() || !PageReclaim(page) ||
1347 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1348 				/*
1349 				 * Immediately reclaim when written back.
1350 				 * Similar in principal to deactivate_page()
1351 				 * except we already have the page isolated
1352 				 * and know it's dirty
1353 				 */
1354 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1355 				SetPageReclaim(page);
1356 
1357 				goto activate_locked;
1358 			}
1359 
1360 			if (references == PAGEREF_RECLAIM_CLEAN)
1361 				goto keep_locked;
1362 			if (!may_enter_fs)
1363 				goto keep_locked;
1364 			if (!sc->may_writepage)
1365 				goto keep_locked;
1366 
1367 			/*
1368 			 * Page is dirty. Flush the TLB if a writable entry
1369 			 * potentially exists to avoid CPU writes after IO
1370 			 * starts and then write it out here.
1371 			 */
1372 			try_to_unmap_flush_dirty();
1373 			switch (pageout(page, mapping, sc)) {
1374 			case PAGE_KEEP:
1375 				goto keep_locked;
1376 			case PAGE_ACTIVATE:
1377 				goto activate_locked;
1378 			case PAGE_SUCCESS:
1379 				if (PageWriteback(page))
1380 					goto keep;
1381 				if (PageDirty(page))
1382 					goto keep;
1383 
1384 				/*
1385 				 * A synchronous write - probably a ramdisk.  Go
1386 				 * ahead and try to reclaim the page.
1387 				 */
1388 				if (!trylock_page(page))
1389 					goto keep;
1390 				if (PageDirty(page) || PageWriteback(page))
1391 					goto keep_locked;
1392 				mapping = page_mapping(page);
1393 			case PAGE_CLEAN:
1394 				; /* try to free the page below */
1395 			}
1396 		}
1397 
1398 		/*
1399 		 * If the page has buffers, try to free the buffer mappings
1400 		 * associated with this page. If we succeed we try to free
1401 		 * the page as well.
1402 		 *
1403 		 * We do this even if the page is PageDirty().
1404 		 * try_to_release_page() does not perform I/O, but it is
1405 		 * possible for a page to have PageDirty set, but it is actually
1406 		 * clean (all its buffers are clean).  This happens if the
1407 		 * buffers were written out directly, with submit_bh(). ext3
1408 		 * will do this, as well as the blockdev mapping.
1409 		 * try_to_release_page() will discover that cleanness and will
1410 		 * drop the buffers and mark the page clean - it can be freed.
1411 		 *
1412 		 * Rarely, pages can have buffers and no ->mapping.  These are
1413 		 * the pages which were not successfully invalidated in
1414 		 * truncate_complete_page().  We try to drop those buffers here
1415 		 * and if that worked, and the page is no longer mapped into
1416 		 * process address space (page_count == 1) it can be freed.
1417 		 * Otherwise, leave the page on the LRU so it is swappable.
1418 		 */
1419 		if (page_has_private(page)) {
1420 			if (!try_to_release_page(page, sc->gfp_mask))
1421 				goto activate_locked;
1422 			if (!mapping && page_count(page) == 1) {
1423 				unlock_page(page);
1424 				if (put_page_testzero(page))
1425 					goto free_it;
1426 				else {
1427 					/*
1428 					 * rare race with speculative reference.
1429 					 * the speculative reference will free
1430 					 * this page shortly, so we may
1431 					 * increment nr_reclaimed here (and
1432 					 * leave it off the LRU).
1433 					 */
1434 					nr_reclaimed++;
1435 					continue;
1436 				}
1437 			}
1438 		}
1439 
1440 		if (PageAnon(page) && !PageSwapBacked(page)) {
1441 			/* follow __remove_mapping for reference */
1442 			if (!page_ref_freeze(page, 1))
1443 				goto keep_locked;
1444 			if (PageDirty(page)) {
1445 				page_ref_unfreeze(page, 1);
1446 				goto keep_locked;
1447 			}
1448 
1449 			count_vm_event(PGLAZYFREED);
1450 			count_memcg_page_event(page, PGLAZYFREED);
1451 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1452 			goto keep_locked;
1453 
1454 		unlock_page(page);
1455 free_it:
1456 		nr_reclaimed++;
1457 
1458 		/*
1459 		 * Is there need to periodically free_page_list? It would
1460 		 * appear not as the counts should be low
1461 		 */
1462 		if (unlikely(PageTransHuge(page))) {
1463 			mem_cgroup_uncharge(page);
1464 			(*get_compound_page_dtor(page))(page);
1465 		} else
1466 			list_add(&page->lru, &free_pages);
1467 		continue;
1468 
1469 activate_locked:
1470 		/* Not a candidate for swapping, so reclaim swap space. */
1471 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1472 						PageMlocked(page)))
1473 			try_to_free_swap(page);
1474 		VM_BUG_ON_PAGE(PageActive(page), page);
1475 		if (!PageMlocked(page)) {
1476 			SetPageActive(page);
1477 			pgactivate++;
1478 			count_memcg_page_event(page, PGACTIVATE);
1479 		}
1480 keep_locked:
1481 		unlock_page(page);
1482 keep:
1483 		list_add(&page->lru, &ret_pages);
1484 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1485 	}
1486 
1487 	mem_cgroup_uncharge_list(&free_pages);
1488 	try_to_unmap_flush();
1489 	free_unref_page_list(&free_pages);
1490 
1491 	list_splice(&ret_pages, page_list);
1492 	count_vm_events(PGACTIVATE, pgactivate);
1493 
1494 	if (stat) {
1495 		stat->nr_dirty = nr_dirty;
1496 		stat->nr_congested = nr_congested;
1497 		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1498 		stat->nr_writeback = nr_writeback;
1499 		stat->nr_immediate = nr_immediate;
1500 		stat->nr_activate = pgactivate;
1501 		stat->nr_ref_keep = nr_ref_keep;
1502 		stat->nr_unmap_fail = nr_unmap_fail;
1503 	}
1504 	return nr_reclaimed;
1505 }
1506 
1507 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1508 					    struct list_head *page_list)
1509 {
1510 	struct scan_control sc = {
1511 		.gfp_mask = GFP_KERNEL,
1512 		.priority = DEF_PRIORITY,
1513 		.may_unmap = 1,
1514 	};
1515 	unsigned long ret;
1516 	struct page *page, *next;
1517 	LIST_HEAD(clean_pages);
1518 
1519 	list_for_each_entry_safe(page, next, page_list, lru) {
1520 		if (page_is_file_cache(page) && !PageDirty(page) &&
1521 		    !__PageMovable(page)) {
1522 			ClearPageActive(page);
1523 			list_move(&page->lru, &clean_pages);
1524 		}
1525 	}
1526 
1527 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1528 			TTU_IGNORE_ACCESS, NULL, true);
1529 	list_splice(&clean_pages, page_list);
1530 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1531 	return ret;
1532 }
1533 
1534 /*
1535  * Attempt to remove the specified page from its LRU.  Only take this page
1536  * if it is of the appropriate PageActive status.  Pages which are being
1537  * freed elsewhere are also ignored.
1538  *
1539  * page:	page to consider
1540  * mode:	one of the LRU isolation modes defined above
1541  *
1542  * returns 0 on success, -ve errno on failure.
1543  */
1544 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1545 {
1546 	int ret = -EINVAL;
1547 
1548 	/* Only take pages on the LRU. */
1549 	if (!PageLRU(page))
1550 		return ret;
1551 
1552 	/* Compaction should not handle unevictable pages but CMA can do so */
1553 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1554 		return ret;
1555 
1556 	ret = -EBUSY;
1557 
1558 	/*
1559 	 * To minimise LRU disruption, the caller can indicate that it only
1560 	 * wants to isolate pages it will be able to operate on without
1561 	 * blocking - clean pages for the most part.
1562 	 *
1563 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1564 	 * that it is possible to migrate without blocking
1565 	 */
1566 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1567 		/* All the caller can do on PageWriteback is block */
1568 		if (PageWriteback(page))
1569 			return ret;
1570 
1571 		if (PageDirty(page)) {
1572 			struct address_space *mapping;
1573 			bool migrate_dirty;
1574 
1575 			/*
1576 			 * Only pages without mappings or that have a
1577 			 * ->migratepage callback are possible to migrate
1578 			 * without blocking. However, we can be racing with
1579 			 * truncation so it's necessary to lock the page
1580 			 * to stabilise the mapping as truncation holds
1581 			 * the page lock until after the page is removed
1582 			 * from the page cache.
1583 			 */
1584 			if (!trylock_page(page))
1585 				return ret;
1586 
1587 			mapping = page_mapping(page);
1588 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1589 			unlock_page(page);
1590 			if (!migrate_dirty)
1591 				return ret;
1592 		}
1593 	}
1594 
1595 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1596 		return ret;
1597 
1598 	if (likely(get_page_unless_zero(page))) {
1599 		/*
1600 		 * Be careful not to clear PageLRU until after we're
1601 		 * sure the page is not being freed elsewhere -- the
1602 		 * page release code relies on it.
1603 		 */
1604 		ClearPageLRU(page);
1605 		ret = 0;
1606 	}
1607 
1608 	return ret;
1609 }
1610 
1611 
1612 /*
1613  * Update LRU sizes after isolating pages. The LRU size updates must
1614  * be complete before mem_cgroup_update_lru_size due to a santity check.
1615  */
1616 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1617 			enum lru_list lru, unsigned long *nr_zone_taken)
1618 {
1619 	int zid;
1620 
1621 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1622 		if (!nr_zone_taken[zid])
1623 			continue;
1624 
1625 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1626 #ifdef CONFIG_MEMCG
1627 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1628 #endif
1629 	}
1630 
1631 }
1632 
1633 /*
1634  * zone_lru_lock is heavily contended.  Some of the functions that
1635  * shrink the lists perform better by taking out a batch of pages
1636  * and working on them outside the LRU lock.
1637  *
1638  * For pagecache intensive workloads, this function is the hottest
1639  * spot in the kernel (apart from copy_*_user functions).
1640  *
1641  * Appropriate locks must be held before calling this function.
1642  *
1643  * @nr_to_scan:	The number of eligible pages to look through on the list.
1644  * @lruvec:	The LRU vector to pull pages from.
1645  * @dst:	The temp list to put pages on to.
1646  * @nr_scanned:	The number of pages that were scanned.
1647  * @sc:		The scan_control struct for this reclaim session
1648  * @mode:	One of the LRU isolation modes
1649  * @lru:	LRU list id for isolating
1650  *
1651  * returns how many pages were moved onto *@dst.
1652  */
1653 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1654 		struct lruvec *lruvec, struct list_head *dst,
1655 		unsigned long *nr_scanned, struct scan_control *sc,
1656 		enum lru_list lru)
1657 {
1658 	struct list_head *src = &lruvec->lists[lru];
1659 	unsigned long nr_taken = 0;
1660 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1661 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1662 	unsigned long skipped = 0;
1663 	unsigned long scan, total_scan, nr_pages;
1664 	LIST_HEAD(pages_skipped);
1665 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1666 
1667 	scan = 0;
1668 	for (total_scan = 0;
1669 	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1670 	     total_scan++) {
1671 		struct page *page;
1672 
1673 		page = lru_to_page(src);
1674 		prefetchw_prev_lru_page(page, src, flags);
1675 
1676 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1677 
1678 		if (page_zonenum(page) > sc->reclaim_idx) {
1679 			list_move(&page->lru, &pages_skipped);
1680 			nr_skipped[page_zonenum(page)]++;
1681 			continue;
1682 		}
1683 
1684 		/*
1685 		 * Do not count skipped pages because that makes the function
1686 		 * return with no isolated pages if the LRU mostly contains
1687 		 * ineligible pages.  This causes the VM to not reclaim any
1688 		 * pages, triggering a premature OOM.
1689 		 */
1690 		scan++;
1691 		switch (__isolate_lru_page(page, mode)) {
1692 		case 0:
1693 			nr_pages = hpage_nr_pages(page);
1694 			nr_taken += nr_pages;
1695 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1696 			list_move(&page->lru, dst);
1697 			break;
1698 
1699 		case -EBUSY:
1700 			/* else it is being freed elsewhere */
1701 			list_move(&page->lru, src);
1702 			continue;
1703 
1704 		default:
1705 			BUG();
1706 		}
1707 	}
1708 
1709 	/*
1710 	 * Splice any skipped pages to the start of the LRU list. Note that
1711 	 * this disrupts the LRU order when reclaiming for lower zones but
1712 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1713 	 * scanning would soon rescan the same pages to skip and put the
1714 	 * system at risk of premature OOM.
1715 	 */
1716 	if (!list_empty(&pages_skipped)) {
1717 		int zid;
1718 
1719 		list_splice(&pages_skipped, src);
1720 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1721 			if (!nr_skipped[zid])
1722 				continue;
1723 
1724 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1725 			skipped += nr_skipped[zid];
1726 		}
1727 	}
1728 	*nr_scanned = total_scan;
1729 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1730 				    total_scan, skipped, nr_taken, mode, lru);
1731 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1732 	return nr_taken;
1733 }
1734 
1735 /**
1736  * isolate_lru_page - tries to isolate a page from its LRU list
1737  * @page: page to isolate from its LRU list
1738  *
1739  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1740  * vmstat statistic corresponding to whatever LRU list the page was on.
1741  *
1742  * Returns 0 if the page was removed from an LRU list.
1743  * Returns -EBUSY if the page was not on an LRU list.
1744  *
1745  * The returned page will have PageLRU() cleared.  If it was found on
1746  * the active list, it will have PageActive set.  If it was found on
1747  * the unevictable list, it will have the PageUnevictable bit set. That flag
1748  * may need to be cleared by the caller before letting the page go.
1749  *
1750  * The vmstat statistic corresponding to the list on which the page was
1751  * found will be decremented.
1752  *
1753  * Restrictions:
1754  *
1755  * (1) Must be called with an elevated refcount on the page. This is a
1756  *     fundamentnal difference from isolate_lru_pages (which is called
1757  *     without a stable reference).
1758  * (2) the lru_lock must not be held.
1759  * (3) interrupts must be enabled.
1760  */
1761 int isolate_lru_page(struct page *page)
1762 {
1763 	int ret = -EBUSY;
1764 
1765 	VM_BUG_ON_PAGE(!page_count(page), page);
1766 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1767 
1768 	if (PageLRU(page)) {
1769 		struct zone *zone = page_zone(page);
1770 		struct lruvec *lruvec;
1771 
1772 		spin_lock_irq(zone_lru_lock(zone));
1773 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1774 		if (PageLRU(page)) {
1775 			int lru = page_lru(page);
1776 			get_page(page);
1777 			ClearPageLRU(page);
1778 			del_page_from_lru_list(page, lruvec, lru);
1779 			ret = 0;
1780 		}
1781 		spin_unlock_irq(zone_lru_lock(zone));
1782 	}
1783 	return ret;
1784 }
1785 
1786 /*
1787  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1788  * then get resheduled. When there are massive number of tasks doing page
1789  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1790  * the LRU list will go small and be scanned faster than necessary, leading to
1791  * unnecessary swapping, thrashing and OOM.
1792  */
1793 static int too_many_isolated(struct pglist_data *pgdat, int file,
1794 		struct scan_control *sc)
1795 {
1796 	unsigned long inactive, isolated;
1797 
1798 	if (current_is_kswapd())
1799 		return 0;
1800 
1801 	if (!sane_reclaim(sc))
1802 		return 0;
1803 
1804 	if (file) {
1805 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1806 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1807 	} else {
1808 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1809 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1810 	}
1811 
1812 	/*
1813 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1814 	 * won't get blocked by normal direct-reclaimers, forming a circular
1815 	 * deadlock.
1816 	 */
1817 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1818 		inactive >>= 3;
1819 
1820 	return isolated > inactive;
1821 }
1822 
1823 static noinline_for_stack void
1824 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1825 {
1826 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1827 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1828 	LIST_HEAD(pages_to_free);
1829 
1830 	/*
1831 	 * Put back any unfreeable pages.
1832 	 */
1833 	while (!list_empty(page_list)) {
1834 		struct page *page = lru_to_page(page_list);
1835 		int lru;
1836 
1837 		VM_BUG_ON_PAGE(PageLRU(page), page);
1838 		list_del(&page->lru);
1839 		if (unlikely(!page_evictable(page))) {
1840 			spin_unlock_irq(&pgdat->lru_lock);
1841 			putback_lru_page(page);
1842 			spin_lock_irq(&pgdat->lru_lock);
1843 			continue;
1844 		}
1845 
1846 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1847 
1848 		SetPageLRU(page);
1849 		lru = page_lru(page);
1850 		add_page_to_lru_list(page, lruvec, lru);
1851 
1852 		if (is_active_lru(lru)) {
1853 			int file = is_file_lru(lru);
1854 			int numpages = hpage_nr_pages(page);
1855 			reclaim_stat->recent_rotated[file] += numpages;
1856 		}
1857 		if (put_page_testzero(page)) {
1858 			__ClearPageLRU(page);
1859 			__ClearPageActive(page);
1860 			del_page_from_lru_list(page, lruvec, lru);
1861 
1862 			if (unlikely(PageCompound(page))) {
1863 				spin_unlock_irq(&pgdat->lru_lock);
1864 				mem_cgroup_uncharge(page);
1865 				(*get_compound_page_dtor(page))(page);
1866 				spin_lock_irq(&pgdat->lru_lock);
1867 			} else
1868 				list_add(&page->lru, &pages_to_free);
1869 		}
1870 	}
1871 
1872 	/*
1873 	 * To save our caller's stack, now use input list for pages to free.
1874 	 */
1875 	list_splice(&pages_to_free, page_list);
1876 }
1877 
1878 /*
1879  * If a kernel thread (such as nfsd for loop-back mounts) services
1880  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1881  * In that case we should only throttle if the backing device it is
1882  * writing to is congested.  In other cases it is safe to throttle.
1883  */
1884 static int current_may_throttle(void)
1885 {
1886 	return !(current->flags & PF_LESS_THROTTLE) ||
1887 		current->backing_dev_info == NULL ||
1888 		bdi_write_congested(current->backing_dev_info);
1889 }
1890 
1891 /*
1892  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1893  * of reclaimed pages
1894  */
1895 static noinline_for_stack unsigned long
1896 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1897 		     struct scan_control *sc, enum lru_list lru)
1898 {
1899 	LIST_HEAD(page_list);
1900 	unsigned long nr_scanned;
1901 	unsigned long nr_reclaimed = 0;
1902 	unsigned long nr_taken;
1903 	struct reclaim_stat stat = {};
1904 	int file = is_file_lru(lru);
1905 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1906 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1907 	bool stalled = false;
1908 
1909 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1910 		if (stalled)
1911 			return 0;
1912 
1913 		/* wait a bit for the reclaimer. */
1914 		msleep(100);
1915 		stalled = true;
1916 
1917 		/* We are about to die and free our memory. Return now. */
1918 		if (fatal_signal_pending(current))
1919 			return SWAP_CLUSTER_MAX;
1920 	}
1921 
1922 	lru_add_drain();
1923 
1924 	spin_lock_irq(&pgdat->lru_lock);
1925 
1926 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1927 				     &nr_scanned, sc, lru);
1928 
1929 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1930 	reclaim_stat->recent_scanned[file] += nr_taken;
1931 
1932 	if (current_is_kswapd()) {
1933 		if (global_reclaim(sc))
1934 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1935 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1936 				   nr_scanned);
1937 	} else {
1938 		if (global_reclaim(sc))
1939 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1940 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1941 				   nr_scanned);
1942 	}
1943 	spin_unlock_irq(&pgdat->lru_lock);
1944 
1945 	if (nr_taken == 0)
1946 		return 0;
1947 
1948 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1949 				&stat, false);
1950 
1951 	spin_lock_irq(&pgdat->lru_lock);
1952 
1953 	if (current_is_kswapd()) {
1954 		if (global_reclaim(sc))
1955 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1956 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1957 				   nr_reclaimed);
1958 	} else {
1959 		if (global_reclaim(sc))
1960 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1961 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1962 				   nr_reclaimed);
1963 	}
1964 
1965 	putback_inactive_pages(lruvec, &page_list);
1966 
1967 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1968 
1969 	spin_unlock_irq(&pgdat->lru_lock);
1970 
1971 	mem_cgroup_uncharge_list(&page_list);
1972 	free_unref_page_list(&page_list);
1973 
1974 	/*
1975 	 * If dirty pages are scanned that are not queued for IO, it
1976 	 * implies that flushers are not doing their job. This can
1977 	 * happen when memory pressure pushes dirty pages to the end of
1978 	 * the LRU before the dirty limits are breached and the dirty
1979 	 * data has expired. It can also happen when the proportion of
1980 	 * dirty pages grows not through writes but through memory
1981 	 * pressure reclaiming all the clean cache. And in some cases,
1982 	 * the flushers simply cannot keep up with the allocation
1983 	 * rate. Nudge the flusher threads in case they are asleep.
1984 	 */
1985 	if (stat.nr_unqueued_dirty == nr_taken)
1986 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1987 
1988 	sc->nr.dirty += stat.nr_dirty;
1989 	sc->nr.congested += stat.nr_congested;
1990 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1991 	sc->nr.writeback += stat.nr_writeback;
1992 	sc->nr.immediate += stat.nr_immediate;
1993 	sc->nr.taken += nr_taken;
1994 	if (file)
1995 		sc->nr.file_taken += nr_taken;
1996 
1997 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1998 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1999 	return nr_reclaimed;
2000 }
2001 
2002 /*
2003  * This moves pages from the active list to the inactive list.
2004  *
2005  * We move them the other way if the page is referenced by one or more
2006  * processes, from rmap.
2007  *
2008  * If the pages are mostly unmapped, the processing is fast and it is
2009  * appropriate to hold zone_lru_lock across the whole operation.  But if
2010  * the pages are mapped, the processing is slow (page_referenced()) so we
2011  * should drop zone_lru_lock around each page.  It's impossible to balance
2012  * this, so instead we remove the pages from the LRU while processing them.
2013  * It is safe to rely on PG_active against the non-LRU pages in here because
2014  * nobody will play with that bit on a non-LRU page.
2015  *
2016  * The downside is that we have to touch page->_refcount against each page.
2017  * But we had to alter page->flags anyway.
2018  *
2019  * Returns the number of pages moved to the given lru.
2020  */
2021 
2022 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2023 				     struct list_head *list,
2024 				     struct list_head *pages_to_free,
2025 				     enum lru_list lru)
2026 {
2027 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2028 	struct page *page;
2029 	int nr_pages;
2030 	int nr_moved = 0;
2031 
2032 	while (!list_empty(list)) {
2033 		page = lru_to_page(list);
2034 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2035 
2036 		VM_BUG_ON_PAGE(PageLRU(page), page);
2037 		SetPageLRU(page);
2038 
2039 		nr_pages = hpage_nr_pages(page);
2040 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2041 		list_move(&page->lru, &lruvec->lists[lru]);
2042 
2043 		if (put_page_testzero(page)) {
2044 			__ClearPageLRU(page);
2045 			__ClearPageActive(page);
2046 			del_page_from_lru_list(page, lruvec, lru);
2047 
2048 			if (unlikely(PageCompound(page))) {
2049 				spin_unlock_irq(&pgdat->lru_lock);
2050 				mem_cgroup_uncharge(page);
2051 				(*get_compound_page_dtor(page))(page);
2052 				spin_lock_irq(&pgdat->lru_lock);
2053 			} else
2054 				list_add(&page->lru, pages_to_free);
2055 		} else {
2056 			nr_moved += nr_pages;
2057 		}
2058 	}
2059 
2060 	if (!is_active_lru(lru)) {
2061 		__count_vm_events(PGDEACTIVATE, nr_moved);
2062 		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2063 				   nr_moved);
2064 	}
2065 
2066 	return nr_moved;
2067 }
2068 
2069 static void shrink_active_list(unsigned long nr_to_scan,
2070 			       struct lruvec *lruvec,
2071 			       struct scan_control *sc,
2072 			       enum lru_list lru)
2073 {
2074 	unsigned long nr_taken;
2075 	unsigned long nr_scanned;
2076 	unsigned long vm_flags;
2077 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2078 	LIST_HEAD(l_active);
2079 	LIST_HEAD(l_inactive);
2080 	struct page *page;
2081 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2082 	unsigned nr_deactivate, nr_activate;
2083 	unsigned nr_rotated = 0;
2084 	int file = is_file_lru(lru);
2085 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2086 
2087 	lru_add_drain();
2088 
2089 	spin_lock_irq(&pgdat->lru_lock);
2090 
2091 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2092 				     &nr_scanned, sc, lru);
2093 
2094 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2095 	reclaim_stat->recent_scanned[file] += nr_taken;
2096 
2097 	__count_vm_events(PGREFILL, nr_scanned);
2098 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2099 
2100 	spin_unlock_irq(&pgdat->lru_lock);
2101 
2102 	while (!list_empty(&l_hold)) {
2103 		cond_resched();
2104 		page = lru_to_page(&l_hold);
2105 		list_del(&page->lru);
2106 
2107 		if (unlikely(!page_evictable(page))) {
2108 			putback_lru_page(page);
2109 			continue;
2110 		}
2111 
2112 		if (unlikely(buffer_heads_over_limit)) {
2113 			if (page_has_private(page) && trylock_page(page)) {
2114 				if (page_has_private(page))
2115 					try_to_release_page(page, 0);
2116 				unlock_page(page);
2117 			}
2118 		}
2119 
2120 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2121 				    &vm_flags)) {
2122 			nr_rotated += hpage_nr_pages(page);
2123 			/*
2124 			 * Identify referenced, file-backed active pages and
2125 			 * give them one more trip around the active list. So
2126 			 * that executable code get better chances to stay in
2127 			 * memory under moderate memory pressure.  Anon pages
2128 			 * are not likely to be evicted by use-once streaming
2129 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2130 			 * so we ignore them here.
2131 			 */
2132 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2133 				list_add(&page->lru, &l_active);
2134 				continue;
2135 			}
2136 		}
2137 
2138 		ClearPageActive(page);	/* we are de-activating */
2139 		SetPageWorkingset(page);
2140 		list_add(&page->lru, &l_inactive);
2141 	}
2142 
2143 	/*
2144 	 * Move pages back to the lru list.
2145 	 */
2146 	spin_lock_irq(&pgdat->lru_lock);
2147 	/*
2148 	 * Count referenced pages from currently used mappings as rotated,
2149 	 * even though only some of them are actually re-activated.  This
2150 	 * helps balance scan pressure between file and anonymous pages in
2151 	 * get_scan_count.
2152 	 */
2153 	reclaim_stat->recent_rotated[file] += nr_rotated;
2154 
2155 	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2156 	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2157 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2158 	spin_unlock_irq(&pgdat->lru_lock);
2159 
2160 	mem_cgroup_uncharge_list(&l_hold);
2161 	free_unref_page_list(&l_hold);
2162 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2163 			nr_deactivate, nr_rotated, sc->priority, file);
2164 }
2165 
2166 /*
2167  * The inactive anon list should be small enough that the VM never has
2168  * to do too much work.
2169  *
2170  * The inactive file list should be small enough to leave most memory
2171  * to the established workingset on the scan-resistant active list,
2172  * but large enough to avoid thrashing the aggregate readahead window.
2173  *
2174  * Both inactive lists should also be large enough that each inactive
2175  * page has a chance to be referenced again before it is reclaimed.
2176  *
2177  * If that fails and refaulting is observed, the inactive list grows.
2178  *
2179  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2180  * on this LRU, maintained by the pageout code. An inactive_ratio
2181  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2182  *
2183  * total     target    max
2184  * memory    ratio     inactive
2185  * -------------------------------------
2186  *   10MB       1         5MB
2187  *  100MB       1        50MB
2188  *    1GB       3       250MB
2189  *   10GB      10       0.9GB
2190  *  100GB      31         3GB
2191  *    1TB     101        10GB
2192  *   10TB     320        32GB
2193  */
2194 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2195 				 struct mem_cgroup *memcg,
2196 				 struct scan_control *sc, bool actual_reclaim)
2197 {
2198 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2199 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2200 	enum lru_list inactive_lru = file * LRU_FILE;
2201 	unsigned long inactive, active;
2202 	unsigned long inactive_ratio;
2203 	unsigned long refaults;
2204 	unsigned long gb;
2205 
2206 	/*
2207 	 * If we don't have swap space, anonymous page deactivation
2208 	 * is pointless.
2209 	 */
2210 	if (!file && !total_swap_pages)
2211 		return false;
2212 
2213 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2214 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2215 
2216 	if (memcg)
2217 		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2218 	else
2219 		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2220 
2221 	/*
2222 	 * When refaults are being observed, it means a new workingset
2223 	 * is being established. Disable active list protection to get
2224 	 * rid of the stale workingset quickly.
2225 	 */
2226 	if (file && actual_reclaim && lruvec->refaults != refaults) {
2227 		inactive_ratio = 0;
2228 	} else {
2229 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2230 		if (gb)
2231 			inactive_ratio = int_sqrt(10 * gb);
2232 		else
2233 			inactive_ratio = 1;
2234 	}
2235 
2236 	if (actual_reclaim)
2237 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2238 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2239 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2240 			inactive_ratio, file);
2241 
2242 	return inactive * inactive_ratio < active;
2243 }
2244 
2245 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2246 				 struct lruvec *lruvec, struct mem_cgroup *memcg,
2247 				 struct scan_control *sc)
2248 {
2249 	if (is_active_lru(lru)) {
2250 		if (inactive_list_is_low(lruvec, is_file_lru(lru),
2251 					 memcg, sc, true))
2252 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2253 		return 0;
2254 	}
2255 
2256 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2257 }
2258 
2259 enum scan_balance {
2260 	SCAN_EQUAL,
2261 	SCAN_FRACT,
2262 	SCAN_ANON,
2263 	SCAN_FILE,
2264 };
2265 
2266 /*
2267  * Determine how aggressively the anon and file LRU lists should be
2268  * scanned.  The relative value of each set of LRU lists is determined
2269  * by looking at the fraction of the pages scanned we did rotate back
2270  * onto the active list instead of evict.
2271  *
2272  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2273  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2274  */
2275 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2276 			   struct scan_control *sc, unsigned long *nr,
2277 			   unsigned long *lru_pages)
2278 {
2279 	int swappiness = mem_cgroup_swappiness(memcg);
2280 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2281 	u64 fraction[2];
2282 	u64 denominator = 0;	/* gcc */
2283 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2284 	unsigned long anon_prio, file_prio;
2285 	enum scan_balance scan_balance;
2286 	unsigned long anon, file;
2287 	unsigned long ap, fp;
2288 	enum lru_list lru;
2289 
2290 	/* If we have no swap space, do not bother scanning anon pages. */
2291 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2292 		scan_balance = SCAN_FILE;
2293 		goto out;
2294 	}
2295 
2296 	/*
2297 	 * Global reclaim will swap to prevent OOM even with no
2298 	 * swappiness, but memcg users want to use this knob to
2299 	 * disable swapping for individual groups completely when
2300 	 * using the memory controller's swap limit feature would be
2301 	 * too expensive.
2302 	 */
2303 	if (!global_reclaim(sc) && !swappiness) {
2304 		scan_balance = SCAN_FILE;
2305 		goto out;
2306 	}
2307 
2308 	/*
2309 	 * Do not apply any pressure balancing cleverness when the
2310 	 * system is close to OOM, scan both anon and file equally
2311 	 * (unless the swappiness setting disagrees with swapping).
2312 	 */
2313 	if (!sc->priority && swappiness) {
2314 		scan_balance = SCAN_EQUAL;
2315 		goto out;
2316 	}
2317 
2318 	/*
2319 	 * Prevent the reclaimer from falling into the cache trap: as
2320 	 * cache pages start out inactive, every cache fault will tip
2321 	 * the scan balance towards the file LRU.  And as the file LRU
2322 	 * shrinks, so does the window for rotation from references.
2323 	 * This means we have a runaway feedback loop where a tiny
2324 	 * thrashing file LRU becomes infinitely more attractive than
2325 	 * anon pages.  Try to detect this based on file LRU size.
2326 	 */
2327 	if (global_reclaim(sc)) {
2328 		unsigned long pgdatfile;
2329 		unsigned long pgdatfree;
2330 		int z;
2331 		unsigned long total_high_wmark = 0;
2332 
2333 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2334 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2335 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2336 
2337 		for (z = 0; z < MAX_NR_ZONES; z++) {
2338 			struct zone *zone = &pgdat->node_zones[z];
2339 			if (!managed_zone(zone))
2340 				continue;
2341 
2342 			total_high_wmark += high_wmark_pages(zone);
2343 		}
2344 
2345 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2346 			/*
2347 			 * Force SCAN_ANON if there are enough inactive
2348 			 * anonymous pages on the LRU in eligible zones.
2349 			 * Otherwise, the small LRU gets thrashed.
2350 			 */
2351 			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2352 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2353 					>> sc->priority) {
2354 				scan_balance = SCAN_ANON;
2355 				goto out;
2356 			}
2357 		}
2358 	}
2359 
2360 	/*
2361 	 * If there is enough inactive page cache, i.e. if the size of the
2362 	 * inactive list is greater than that of the active list *and* the
2363 	 * inactive list actually has some pages to scan on this priority, we
2364 	 * do not reclaim anything from the anonymous working set right now.
2365 	 * Without the second condition we could end up never scanning an
2366 	 * lruvec even if it has plenty of old anonymous pages unless the
2367 	 * system is under heavy pressure.
2368 	 */
2369 	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2370 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2371 		scan_balance = SCAN_FILE;
2372 		goto out;
2373 	}
2374 
2375 	scan_balance = SCAN_FRACT;
2376 
2377 	/*
2378 	 * With swappiness at 100, anonymous and file have the same priority.
2379 	 * This scanning priority is essentially the inverse of IO cost.
2380 	 */
2381 	anon_prio = swappiness;
2382 	file_prio = 200 - anon_prio;
2383 
2384 	/*
2385 	 * OK, so we have swap space and a fair amount of page cache
2386 	 * pages.  We use the recently rotated / recently scanned
2387 	 * ratios to determine how valuable each cache is.
2388 	 *
2389 	 * Because workloads change over time (and to avoid overflow)
2390 	 * we keep these statistics as a floating average, which ends
2391 	 * up weighing recent references more than old ones.
2392 	 *
2393 	 * anon in [0], file in [1]
2394 	 */
2395 
2396 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2397 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2398 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2399 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2400 
2401 	spin_lock_irq(&pgdat->lru_lock);
2402 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2403 		reclaim_stat->recent_scanned[0] /= 2;
2404 		reclaim_stat->recent_rotated[0] /= 2;
2405 	}
2406 
2407 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2408 		reclaim_stat->recent_scanned[1] /= 2;
2409 		reclaim_stat->recent_rotated[1] /= 2;
2410 	}
2411 
2412 	/*
2413 	 * The amount of pressure on anon vs file pages is inversely
2414 	 * proportional to the fraction of recently scanned pages on
2415 	 * each list that were recently referenced and in active use.
2416 	 */
2417 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2418 	ap /= reclaim_stat->recent_rotated[0] + 1;
2419 
2420 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2421 	fp /= reclaim_stat->recent_rotated[1] + 1;
2422 	spin_unlock_irq(&pgdat->lru_lock);
2423 
2424 	fraction[0] = ap;
2425 	fraction[1] = fp;
2426 	denominator = ap + fp + 1;
2427 out:
2428 	*lru_pages = 0;
2429 	for_each_evictable_lru(lru) {
2430 		int file = is_file_lru(lru);
2431 		unsigned long size;
2432 		unsigned long scan;
2433 
2434 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2435 		scan = size >> sc->priority;
2436 		/*
2437 		 * If the cgroup's already been deleted, make sure to
2438 		 * scrape out the remaining cache.
2439 		 */
2440 		if (!scan && !mem_cgroup_online(memcg))
2441 			scan = min(size, SWAP_CLUSTER_MAX);
2442 
2443 		switch (scan_balance) {
2444 		case SCAN_EQUAL:
2445 			/* Scan lists relative to size */
2446 			break;
2447 		case SCAN_FRACT:
2448 			/*
2449 			 * Scan types proportional to swappiness and
2450 			 * their relative recent reclaim efficiency.
2451 			 * Make sure we don't miss the last page
2452 			 * because of a round-off error.
2453 			 */
2454 			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2455 						  denominator);
2456 			break;
2457 		case SCAN_FILE:
2458 		case SCAN_ANON:
2459 			/* Scan one type exclusively */
2460 			if ((scan_balance == SCAN_FILE) != file) {
2461 				size = 0;
2462 				scan = 0;
2463 			}
2464 			break;
2465 		default:
2466 			/* Look ma, no brain */
2467 			BUG();
2468 		}
2469 
2470 		*lru_pages += size;
2471 		nr[lru] = scan;
2472 	}
2473 }
2474 
2475 /*
2476  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2477  */
2478 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2479 			      struct scan_control *sc, unsigned long *lru_pages)
2480 {
2481 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2482 	unsigned long nr[NR_LRU_LISTS];
2483 	unsigned long targets[NR_LRU_LISTS];
2484 	unsigned long nr_to_scan;
2485 	enum lru_list lru;
2486 	unsigned long nr_reclaimed = 0;
2487 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2488 	struct blk_plug plug;
2489 	bool scan_adjusted;
2490 
2491 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2492 
2493 	/* Record the original scan target for proportional adjustments later */
2494 	memcpy(targets, nr, sizeof(nr));
2495 
2496 	/*
2497 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2498 	 * event that can occur when there is little memory pressure e.g.
2499 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2500 	 * when the requested number of pages are reclaimed when scanning at
2501 	 * DEF_PRIORITY on the assumption that the fact we are direct
2502 	 * reclaiming implies that kswapd is not keeping up and it is best to
2503 	 * do a batch of work at once. For memcg reclaim one check is made to
2504 	 * abort proportional reclaim if either the file or anon lru has already
2505 	 * dropped to zero at the first pass.
2506 	 */
2507 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2508 			 sc->priority == DEF_PRIORITY);
2509 
2510 	blk_start_plug(&plug);
2511 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2512 					nr[LRU_INACTIVE_FILE]) {
2513 		unsigned long nr_anon, nr_file, percentage;
2514 		unsigned long nr_scanned;
2515 
2516 		for_each_evictable_lru(lru) {
2517 			if (nr[lru]) {
2518 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2519 				nr[lru] -= nr_to_scan;
2520 
2521 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2522 							    lruvec, memcg, sc);
2523 			}
2524 		}
2525 
2526 		cond_resched();
2527 
2528 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2529 			continue;
2530 
2531 		/*
2532 		 * For kswapd and memcg, reclaim at least the number of pages
2533 		 * requested. Ensure that the anon and file LRUs are scanned
2534 		 * proportionally what was requested by get_scan_count(). We
2535 		 * stop reclaiming one LRU and reduce the amount scanning
2536 		 * proportional to the original scan target.
2537 		 */
2538 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2539 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2540 
2541 		/*
2542 		 * It's just vindictive to attack the larger once the smaller
2543 		 * has gone to zero.  And given the way we stop scanning the
2544 		 * smaller below, this makes sure that we only make one nudge
2545 		 * towards proportionality once we've got nr_to_reclaim.
2546 		 */
2547 		if (!nr_file || !nr_anon)
2548 			break;
2549 
2550 		if (nr_file > nr_anon) {
2551 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2552 						targets[LRU_ACTIVE_ANON] + 1;
2553 			lru = LRU_BASE;
2554 			percentage = nr_anon * 100 / scan_target;
2555 		} else {
2556 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2557 						targets[LRU_ACTIVE_FILE] + 1;
2558 			lru = LRU_FILE;
2559 			percentage = nr_file * 100 / scan_target;
2560 		}
2561 
2562 		/* Stop scanning the smaller of the LRU */
2563 		nr[lru] = 0;
2564 		nr[lru + LRU_ACTIVE] = 0;
2565 
2566 		/*
2567 		 * Recalculate the other LRU scan count based on its original
2568 		 * scan target and the percentage scanning already complete
2569 		 */
2570 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2571 		nr_scanned = targets[lru] - nr[lru];
2572 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2573 		nr[lru] -= min(nr[lru], nr_scanned);
2574 
2575 		lru += LRU_ACTIVE;
2576 		nr_scanned = targets[lru] - nr[lru];
2577 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2578 		nr[lru] -= min(nr[lru], nr_scanned);
2579 
2580 		scan_adjusted = true;
2581 	}
2582 	blk_finish_plug(&plug);
2583 	sc->nr_reclaimed += nr_reclaimed;
2584 
2585 	/*
2586 	 * Even if we did not try to evict anon pages at all, we want to
2587 	 * rebalance the anon lru active/inactive ratio.
2588 	 */
2589 	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2590 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2591 				   sc, LRU_ACTIVE_ANON);
2592 }
2593 
2594 /* Use reclaim/compaction for costly allocs or under memory pressure */
2595 static bool in_reclaim_compaction(struct scan_control *sc)
2596 {
2597 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2598 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2599 			 sc->priority < DEF_PRIORITY - 2))
2600 		return true;
2601 
2602 	return false;
2603 }
2604 
2605 /*
2606  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2607  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2608  * true if more pages should be reclaimed such that when the page allocator
2609  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2610  * It will give up earlier than that if there is difficulty reclaiming pages.
2611  */
2612 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2613 					unsigned long nr_reclaimed,
2614 					unsigned long nr_scanned,
2615 					struct scan_control *sc)
2616 {
2617 	unsigned long pages_for_compaction;
2618 	unsigned long inactive_lru_pages;
2619 	int z;
2620 
2621 	/* If not in reclaim/compaction mode, stop */
2622 	if (!in_reclaim_compaction(sc))
2623 		return false;
2624 
2625 	/* Consider stopping depending on scan and reclaim activity */
2626 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2627 		/*
2628 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2629 		 * full LRU list has been scanned and we are still failing
2630 		 * to reclaim pages. This full LRU scan is potentially
2631 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2632 		 */
2633 		if (!nr_reclaimed && !nr_scanned)
2634 			return false;
2635 	} else {
2636 		/*
2637 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2638 		 * fail without consequence, stop if we failed to reclaim
2639 		 * any pages from the last SWAP_CLUSTER_MAX number of
2640 		 * pages that were scanned. This will return to the
2641 		 * caller faster at the risk reclaim/compaction and
2642 		 * the resulting allocation attempt fails
2643 		 */
2644 		if (!nr_reclaimed)
2645 			return false;
2646 	}
2647 
2648 	/*
2649 	 * If we have not reclaimed enough pages for compaction and the
2650 	 * inactive lists are large enough, continue reclaiming
2651 	 */
2652 	pages_for_compaction = compact_gap(sc->order);
2653 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2654 	if (get_nr_swap_pages() > 0)
2655 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2656 	if (sc->nr_reclaimed < pages_for_compaction &&
2657 			inactive_lru_pages > pages_for_compaction)
2658 		return true;
2659 
2660 	/* If compaction would go ahead or the allocation would succeed, stop */
2661 	for (z = 0; z <= sc->reclaim_idx; z++) {
2662 		struct zone *zone = &pgdat->node_zones[z];
2663 		if (!managed_zone(zone))
2664 			continue;
2665 
2666 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2667 		case COMPACT_SUCCESS:
2668 		case COMPACT_CONTINUE:
2669 			return false;
2670 		default:
2671 			/* check next zone */
2672 			;
2673 		}
2674 	}
2675 	return true;
2676 }
2677 
2678 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2679 {
2680 	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2681 		(memcg && memcg_congested(pgdat, memcg));
2682 }
2683 
2684 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2685 {
2686 	struct reclaim_state *reclaim_state = current->reclaim_state;
2687 	unsigned long nr_reclaimed, nr_scanned;
2688 	bool reclaimable = false;
2689 
2690 	do {
2691 		struct mem_cgroup *root = sc->target_mem_cgroup;
2692 		struct mem_cgroup_reclaim_cookie reclaim = {
2693 			.pgdat = pgdat,
2694 			.priority = sc->priority,
2695 		};
2696 		unsigned long node_lru_pages = 0;
2697 		struct mem_cgroup *memcg;
2698 
2699 		memset(&sc->nr, 0, sizeof(sc->nr));
2700 
2701 		nr_reclaimed = sc->nr_reclaimed;
2702 		nr_scanned = sc->nr_scanned;
2703 
2704 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2705 		do {
2706 			unsigned long lru_pages;
2707 			unsigned long reclaimed;
2708 			unsigned long scanned;
2709 
2710 			switch (mem_cgroup_protected(root, memcg)) {
2711 			case MEMCG_PROT_MIN:
2712 				/*
2713 				 * Hard protection.
2714 				 * If there is no reclaimable memory, OOM.
2715 				 */
2716 				continue;
2717 			case MEMCG_PROT_LOW:
2718 				/*
2719 				 * Soft protection.
2720 				 * Respect the protection only as long as
2721 				 * there is an unprotected supply
2722 				 * of reclaimable memory from other cgroups.
2723 				 */
2724 				if (!sc->memcg_low_reclaim) {
2725 					sc->memcg_low_skipped = 1;
2726 					continue;
2727 				}
2728 				memcg_memory_event(memcg, MEMCG_LOW);
2729 				break;
2730 			case MEMCG_PROT_NONE:
2731 				break;
2732 			}
2733 
2734 			reclaimed = sc->nr_reclaimed;
2735 			scanned = sc->nr_scanned;
2736 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2737 			node_lru_pages += lru_pages;
2738 
2739 			if (sc->may_shrinkslab) {
2740 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2741 				    memcg, sc->priority);
2742 			}
2743 
2744 			/* Record the group's reclaim efficiency */
2745 			vmpressure(sc->gfp_mask, memcg, false,
2746 				   sc->nr_scanned - scanned,
2747 				   sc->nr_reclaimed - reclaimed);
2748 
2749 			/*
2750 			 * Direct reclaim and kswapd have to scan all memory
2751 			 * cgroups to fulfill the overall scan target for the
2752 			 * node.
2753 			 *
2754 			 * Limit reclaim, on the other hand, only cares about
2755 			 * nr_to_reclaim pages to be reclaimed and it will
2756 			 * retry with decreasing priority if one round over the
2757 			 * whole hierarchy is not sufficient.
2758 			 */
2759 			if (!global_reclaim(sc) &&
2760 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2761 				mem_cgroup_iter_break(root, memcg);
2762 				break;
2763 			}
2764 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2765 
2766 		if (reclaim_state) {
2767 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2768 			reclaim_state->reclaimed_slab = 0;
2769 		}
2770 
2771 		/* Record the subtree's reclaim efficiency */
2772 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2773 			   sc->nr_scanned - nr_scanned,
2774 			   sc->nr_reclaimed - nr_reclaimed);
2775 
2776 		if (sc->nr_reclaimed - nr_reclaimed)
2777 			reclaimable = true;
2778 
2779 		if (current_is_kswapd()) {
2780 			/*
2781 			 * If reclaim is isolating dirty pages under writeback,
2782 			 * it implies that the long-lived page allocation rate
2783 			 * is exceeding the page laundering rate. Either the
2784 			 * global limits are not being effective at throttling
2785 			 * processes due to the page distribution throughout
2786 			 * zones or there is heavy usage of a slow backing
2787 			 * device. The only option is to throttle from reclaim
2788 			 * context which is not ideal as there is no guarantee
2789 			 * the dirtying process is throttled in the same way
2790 			 * balance_dirty_pages() manages.
2791 			 *
2792 			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2793 			 * count the number of pages under pages flagged for
2794 			 * immediate reclaim and stall if any are encountered
2795 			 * in the nr_immediate check below.
2796 			 */
2797 			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2798 				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2799 
2800 			/*
2801 			 * Tag a node as congested if all the dirty pages
2802 			 * scanned were backed by a congested BDI and
2803 			 * wait_iff_congested will stall.
2804 			 */
2805 			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2806 				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2807 
2808 			/* Allow kswapd to start writing pages during reclaim.*/
2809 			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2810 				set_bit(PGDAT_DIRTY, &pgdat->flags);
2811 
2812 			/*
2813 			 * If kswapd scans pages marked marked for immediate
2814 			 * reclaim and under writeback (nr_immediate), it
2815 			 * implies that pages are cycling through the LRU
2816 			 * faster than they are written so also forcibly stall.
2817 			 */
2818 			if (sc->nr.immediate)
2819 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2820 		}
2821 
2822 		/*
2823 		 * Legacy memcg will stall in page writeback so avoid forcibly
2824 		 * stalling in wait_iff_congested().
2825 		 */
2826 		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2827 		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2828 			set_memcg_congestion(pgdat, root, true);
2829 
2830 		/*
2831 		 * Stall direct reclaim for IO completions if underlying BDIs
2832 		 * and node is congested. Allow kswapd to continue until it
2833 		 * starts encountering unqueued dirty pages or cycling through
2834 		 * the LRU too quickly.
2835 		 */
2836 		if (!sc->hibernation_mode && !current_is_kswapd() &&
2837 		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2838 			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2839 
2840 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2841 					 sc->nr_scanned - nr_scanned, sc));
2842 
2843 	/*
2844 	 * Kswapd gives up on balancing particular nodes after too
2845 	 * many failures to reclaim anything from them and goes to
2846 	 * sleep. On reclaim progress, reset the failure counter. A
2847 	 * successful direct reclaim run will revive a dormant kswapd.
2848 	 */
2849 	if (reclaimable)
2850 		pgdat->kswapd_failures = 0;
2851 
2852 	return reclaimable;
2853 }
2854 
2855 /*
2856  * Returns true if compaction should go ahead for a costly-order request, or
2857  * the allocation would already succeed without compaction. Return false if we
2858  * should reclaim first.
2859  */
2860 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2861 {
2862 	unsigned long watermark;
2863 	enum compact_result suitable;
2864 
2865 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2866 	if (suitable == COMPACT_SUCCESS)
2867 		/* Allocation should succeed already. Don't reclaim. */
2868 		return true;
2869 	if (suitable == COMPACT_SKIPPED)
2870 		/* Compaction cannot yet proceed. Do reclaim. */
2871 		return false;
2872 
2873 	/*
2874 	 * Compaction is already possible, but it takes time to run and there
2875 	 * are potentially other callers using the pages just freed. So proceed
2876 	 * with reclaim to make a buffer of free pages available to give
2877 	 * compaction a reasonable chance of completing and allocating the page.
2878 	 * Note that we won't actually reclaim the whole buffer in one attempt
2879 	 * as the target watermark in should_continue_reclaim() is lower. But if
2880 	 * we are already above the high+gap watermark, don't reclaim at all.
2881 	 */
2882 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2883 
2884 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2885 }
2886 
2887 /*
2888  * This is the direct reclaim path, for page-allocating processes.  We only
2889  * try to reclaim pages from zones which will satisfy the caller's allocation
2890  * request.
2891  *
2892  * If a zone is deemed to be full of pinned pages then just give it a light
2893  * scan then give up on it.
2894  */
2895 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2896 {
2897 	struct zoneref *z;
2898 	struct zone *zone;
2899 	unsigned long nr_soft_reclaimed;
2900 	unsigned long nr_soft_scanned;
2901 	gfp_t orig_mask;
2902 	pg_data_t *last_pgdat = NULL;
2903 
2904 	/*
2905 	 * If the number of buffer_heads in the machine exceeds the maximum
2906 	 * allowed level, force direct reclaim to scan the highmem zone as
2907 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2908 	 */
2909 	orig_mask = sc->gfp_mask;
2910 	if (buffer_heads_over_limit) {
2911 		sc->gfp_mask |= __GFP_HIGHMEM;
2912 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2913 	}
2914 
2915 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2916 					sc->reclaim_idx, sc->nodemask) {
2917 		/*
2918 		 * Take care memory controller reclaiming has small influence
2919 		 * to global LRU.
2920 		 */
2921 		if (global_reclaim(sc)) {
2922 			if (!cpuset_zone_allowed(zone,
2923 						 GFP_KERNEL | __GFP_HARDWALL))
2924 				continue;
2925 
2926 			/*
2927 			 * If we already have plenty of memory free for
2928 			 * compaction in this zone, don't free any more.
2929 			 * Even though compaction is invoked for any
2930 			 * non-zero order, only frequent costly order
2931 			 * reclamation is disruptive enough to become a
2932 			 * noticeable problem, like transparent huge
2933 			 * page allocations.
2934 			 */
2935 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2936 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2937 			    compaction_ready(zone, sc)) {
2938 				sc->compaction_ready = true;
2939 				continue;
2940 			}
2941 
2942 			/*
2943 			 * Shrink each node in the zonelist once. If the
2944 			 * zonelist is ordered by zone (not the default) then a
2945 			 * node may be shrunk multiple times but in that case
2946 			 * the user prefers lower zones being preserved.
2947 			 */
2948 			if (zone->zone_pgdat == last_pgdat)
2949 				continue;
2950 
2951 			/*
2952 			 * This steals pages from memory cgroups over softlimit
2953 			 * and returns the number of reclaimed pages and
2954 			 * scanned pages. This works for global memory pressure
2955 			 * and balancing, not for a memcg's limit.
2956 			 */
2957 			nr_soft_scanned = 0;
2958 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2959 						sc->order, sc->gfp_mask,
2960 						&nr_soft_scanned);
2961 			sc->nr_reclaimed += nr_soft_reclaimed;
2962 			sc->nr_scanned += nr_soft_scanned;
2963 			/* need some check for avoid more shrink_zone() */
2964 		}
2965 
2966 		/* See comment about same check for global reclaim above */
2967 		if (zone->zone_pgdat == last_pgdat)
2968 			continue;
2969 		last_pgdat = zone->zone_pgdat;
2970 		shrink_node(zone->zone_pgdat, sc);
2971 	}
2972 
2973 	/*
2974 	 * Restore to original mask to avoid the impact on the caller if we
2975 	 * promoted it to __GFP_HIGHMEM.
2976 	 */
2977 	sc->gfp_mask = orig_mask;
2978 }
2979 
2980 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2981 {
2982 	struct mem_cgroup *memcg;
2983 
2984 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2985 	do {
2986 		unsigned long refaults;
2987 		struct lruvec *lruvec;
2988 
2989 		if (memcg)
2990 			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2991 		else
2992 			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2993 
2994 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2995 		lruvec->refaults = refaults;
2996 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2997 }
2998 
2999 /*
3000  * This is the main entry point to direct page reclaim.
3001  *
3002  * If a full scan of the inactive list fails to free enough memory then we
3003  * are "out of memory" and something needs to be killed.
3004  *
3005  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3006  * high - the zone may be full of dirty or under-writeback pages, which this
3007  * caller can't do much about.  We kick the writeback threads and take explicit
3008  * naps in the hope that some of these pages can be written.  But if the
3009  * allocating task holds filesystem locks which prevent writeout this might not
3010  * work, and the allocation attempt will fail.
3011  *
3012  * returns:	0, if no pages reclaimed
3013  * 		else, the number of pages reclaimed
3014  */
3015 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3016 					  struct scan_control *sc)
3017 {
3018 	int initial_priority = sc->priority;
3019 	pg_data_t *last_pgdat;
3020 	struct zoneref *z;
3021 	struct zone *zone;
3022 retry:
3023 	delayacct_freepages_start();
3024 
3025 	if (global_reclaim(sc))
3026 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3027 
3028 	do {
3029 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3030 				sc->priority);
3031 		sc->nr_scanned = 0;
3032 		shrink_zones(zonelist, sc);
3033 
3034 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3035 			break;
3036 
3037 		if (sc->compaction_ready)
3038 			break;
3039 
3040 		/*
3041 		 * If we're getting trouble reclaiming, start doing
3042 		 * writepage even in laptop mode.
3043 		 */
3044 		if (sc->priority < DEF_PRIORITY - 2)
3045 			sc->may_writepage = 1;
3046 	} while (--sc->priority >= 0);
3047 
3048 	last_pgdat = NULL;
3049 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3050 					sc->nodemask) {
3051 		if (zone->zone_pgdat == last_pgdat)
3052 			continue;
3053 		last_pgdat = zone->zone_pgdat;
3054 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3055 		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3056 	}
3057 
3058 	delayacct_freepages_end();
3059 
3060 	if (sc->nr_reclaimed)
3061 		return sc->nr_reclaimed;
3062 
3063 	/* Aborted reclaim to try compaction? don't OOM, then */
3064 	if (sc->compaction_ready)
3065 		return 1;
3066 
3067 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3068 	if (sc->memcg_low_skipped) {
3069 		sc->priority = initial_priority;
3070 		sc->memcg_low_reclaim = 1;
3071 		sc->memcg_low_skipped = 0;
3072 		goto retry;
3073 	}
3074 
3075 	return 0;
3076 }
3077 
3078 static bool allow_direct_reclaim(pg_data_t *pgdat)
3079 {
3080 	struct zone *zone;
3081 	unsigned long pfmemalloc_reserve = 0;
3082 	unsigned long free_pages = 0;
3083 	int i;
3084 	bool wmark_ok;
3085 
3086 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3087 		return true;
3088 
3089 	for (i = 0; i <= ZONE_NORMAL; i++) {
3090 		zone = &pgdat->node_zones[i];
3091 		if (!managed_zone(zone))
3092 			continue;
3093 
3094 		if (!zone_reclaimable_pages(zone))
3095 			continue;
3096 
3097 		pfmemalloc_reserve += min_wmark_pages(zone);
3098 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3099 	}
3100 
3101 	/* If there are no reserves (unexpected config) then do not throttle */
3102 	if (!pfmemalloc_reserve)
3103 		return true;
3104 
3105 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3106 
3107 	/* kswapd must be awake if processes are being throttled */
3108 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3109 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3110 						(enum zone_type)ZONE_NORMAL);
3111 		wake_up_interruptible(&pgdat->kswapd_wait);
3112 	}
3113 
3114 	return wmark_ok;
3115 }
3116 
3117 /*
3118  * Throttle direct reclaimers if backing storage is backed by the network
3119  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3120  * depleted. kswapd will continue to make progress and wake the processes
3121  * when the low watermark is reached.
3122  *
3123  * Returns true if a fatal signal was delivered during throttling. If this
3124  * happens, the page allocator should not consider triggering the OOM killer.
3125  */
3126 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3127 					nodemask_t *nodemask)
3128 {
3129 	struct zoneref *z;
3130 	struct zone *zone;
3131 	pg_data_t *pgdat = NULL;
3132 
3133 	/*
3134 	 * Kernel threads should not be throttled as they may be indirectly
3135 	 * responsible for cleaning pages necessary for reclaim to make forward
3136 	 * progress. kjournald for example may enter direct reclaim while
3137 	 * committing a transaction where throttling it could forcing other
3138 	 * processes to block on log_wait_commit().
3139 	 */
3140 	if (current->flags & PF_KTHREAD)
3141 		goto out;
3142 
3143 	/*
3144 	 * If a fatal signal is pending, this process should not throttle.
3145 	 * It should return quickly so it can exit and free its memory
3146 	 */
3147 	if (fatal_signal_pending(current))
3148 		goto out;
3149 
3150 	/*
3151 	 * Check if the pfmemalloc reserves are ok by finding the first node
3152 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3153 	 * GFP_KERNEL will be required for allocating network buffers when
3154 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3155 	 *
3156 	 * Throttling is based on the first usable node and throttled processes
3157 	 * wait on a queue until kswapd makes progress and wakes them. There
3158 	 * is an affinity then between processes waking up and where reclaim
3159 	 * progress has been made assuming the process wakes on the same node.
3160 	 * More importantly, processes running on remote nodes will not compete
3161 	 * for remote pfmemalloc reserves and processes on different nodes
3162 	 * should make reasonable progress.
3163 	 */
3164 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3165 					gfp_zone(gfp_mask), nodemask) {
3166 		if (zone_idx(zone) > ZONE_NORMAL)
3167 			continue;
3168 
3169 		/* Throttle based on the first usable node */
3170 		pgdat = zone->zone_pgdat;
3171 		if (allow_direct_reclaim(pgdat))
3172 			goto out;
3173 		break;
3174 	}
3175 
3176 	/* If no zone was usable by the allocation flags then do not throttle */
3177 	if (!pgdat)
3178 		goto out;
3179 
3180 	/* Account for the throttling */
3181 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3182 
3183 	/*
3184 	 * If the caller cannot enter the filesystem, it's possible that it
3185 	 * is due to the caller holding an FS lock or performing a journal
3186 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3187 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3188 	 * blocked waiting on the same lock. Instead, throttle for up to a
3189 	 * second before continuing.
3190 	 */
3191 	if (!(gfp_mask & __GFP_FS)) {
3192 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3193 			allow_direct_reclaim(pgdat), HZ);
3194 
3195 		goto check_pending;
3196 	}
3197 
3198 	/* Throttle until kswapd wakes the process */
3199 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3200 		allow_direct_reclaim(pgdat));
3201 
3202 check_pending:
3203 	if (fatal_signal_pending(current))
3204 		return true;
3205 
3206 out:
3207 	return false;
3208 }
3209 
3210 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3211 				gfp_t gfp_mask, nodemask_t *nodemask)
3212 {
3213 	unsigned long nr_reclaimed;
3214 	struct scan_control sc = {
3215 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3216 		.gfp_mask = current_gfp_context(gfp_mask),
3217 		.reclaim_idx = gfp_zone(gfp_mask),
3218 		.order = order,
3219 		.nodemask = nodemask,
3220 		.priority = DEF_PRIORITY,
3221 		.may_writepage = !laptop_mode,
3222 		.may_unmap = 1,
3223 		.may_swap = 1,
3224 		.may_shrinkslab = 1,
3225 	};
3226 
3227 	/*
3228 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3229 	 * Confirm they are large enough for max values.
3230 	 */
3231 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3232 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3233 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3234 
3235 	/*
3236 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3237 	 * 1 is returned so that the page allocator does not OOM kill at this
3238 	 * point.
3239 	 */
3240 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3241 		return 1;
3242 
3243 	trace_mm_vmscan_direct_reclaim_begin(order,
3244 				sc.may_writepage,
3245 				sc.gfp_mask,
3246 				sc.reclaim_idx);
3247 
3248 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3249 
3250 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3251 
3252 	return nr_reclaimed;
3253 }
3254 
3255 #ifdef CONFIG_MEMCG
3256 
3257 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3258 						gfp_t gfp_mask, bool noswap,
3259 						pg_data_t *pgdat,
3260 						unsigned long *nr_scanned)
3261 {
3262 	struct scan_control sc = {
3263 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3264 		.target_mem_cgroup = memcg,
3265 		.may_writepage = !laptop_mode,
3266 		.may_unmap = 1,
3267 		.reclaim_idx = MAX_NR_ZONES - 1,
3268 		.may_swap = !noswap,
3269 		.may_shrinkslab = 1,
3270 	};
3271 	unsigned long lru_pages;
3272 
3273 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3274 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3275 
3276 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3277 						      sc.may_writepage,
3278 						      sc.gfp_mask,
3279 						      sc.reclaim_idx);
3280 
3281 	/*
3282 	 * NOTE: Although we can get the priority field, using it
3283 	 * here is not a good idea, since it limits the pages we can scan.
3284 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3285 	 * will pick up pages from other mem cgroup's as well. We hack
3286 	 * the priority and make it zero.
3287 	 */
3288 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3289 
3290 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3291 
3292 	*nr_scanned = sc.nr_scanned;
3293 	return sc.nr_reclaimed;
3294 }
3295 
3296 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3297 					   unsigned long nr_pages,
3298 					   gfp_t gfp_mask,
3299 					   bool may_swap)
3300 {
3301 	struct zonelist *zonelist;
3302 	unsigned long nr_reclaimed;
3303 	unsigned long pflags;
3304 	int nid;
3305 	unsigned int noreclaim_flag;
3306 	struct scan_control sc = {
3307 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3308 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3309 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3310 		.reclaim_idx = MAX_NR_ZONES - 1,
3311 		.target_mem_cgroup = memcg,
3312 		.priority = DEF_PRIORITY,
3313 		.may_writepage = !laptop_mode,
3314 		.may_unmap = 1,
3315 		.may_swap = may_swap,
3316 		.may_shrinkslab = 1,
3317 	};
3318 
3319 	/*
3320 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3321 	 * take care of from where we get pages. So the node where we start the
3322 	 * scan does not need to be the current node.
3323 	 */
3324 	nid = mem_cgroup_select_victim_node(memcg);
3325 
3326 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3327 
3328 	trace_mm_vmscan_memcg_reclaim_begin(0,
3329 					    sc.may_writepage,
3330 					    sc.gfp_mask,
3331 					    sc.reclaim_idx);
3332 
3333 	psi_memstall_enter(&pflags);
3334 	noreclaim_flag = memalloc_noreclaim_save();
3335 
3336 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3337 
3338 	memalloc_noreclaim_restore(noreclaim_flag);
3339 	psi_memstall_leave(&pflags);
3340 
3341 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3342 
3343 	return nr_reclaimed;
3344 }
3345 #endif
3346 
3347 static void age_active_anon(struct pglist_data *pgdat,
3348 				struct scan_control *sc)
3349 {
3350 	struct mem_cgroup *memcg;
3351 
3352 	if (!total_swap_pages)
3353 		return;
3354 
3355 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3356 	do {
3357 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3358 
3359 		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3360 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3361 					   sc, LRU_ACTIVE_ANON);
3362 
3363 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3364 	} while (memcg);
3365 }
3366 
3367 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3368 {
3369 	int i;
3370 	struct zone *zone;
3371 
3372 	/*
3373 	 * Check for watermark boosts top-down as the higher zones
3374 	 * are more likely to be boosted. Both watermarks and boosts
3375 	 * should not be checked at the time time as reclaim would
3376 	 * start prematurely when there is no boosting and a lower
3377 	 * zone is balanced.
3378 	 */
3379 	for (i = classzone_idx; i >= 0; i--) {
3380 		zone = pgdat->node_zones + i;
3381 		if (!managed_zone(zone))
3382 			continue;
3383 
3384 		if (zone->watermark_boost)
3385 			return true;
3386 	}
3387 
3388 	return false;
3389 }
3390 
3391 /*
3392  * Returns true if there is an eligible zone balanced for the request order
3393  * and classzone_idx
3394  */
3395 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3396 {
3397 	int i;
3398 	unsigned long mark = -1;
3399 	struct zone *zone;
3400 
3401 	/*
3402 	 * Check watermarks bottom-up as lower zones are more likely to
3403 	 * meet watermarks.
3404 	 */
3405 	for (i = 0; i <= classzone_idx; i++) {
3406 		zone = pgdat->node_zones + i;
3407 
3408 		if (!managed_zone(zone))
3409 			continue;
3410 
3411 		mark = high_wmark_pages(zone);
3412 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3413 			return true;
3414 	}
3415 
3416 	/*
3417 	 * If a node has no populated zone within classzone_idx, it does not
3418 	 * need balancing by definition. This can happen if a zone-restricted
3419 	 * allocation tries to wake a remote kswapd.
3420 	 */
3421 	if (mark == -1)
3422 		return true;
3423 
3424 	return false;
3425 }
3426 
3427 /* Clear pgdat state for congested, dirty or under writeback. */
3428 static void clear_pgdat_congested(pg_data_t *pgdat)
3429 {
3430 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3431 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3432 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3433 }
3434 
3435 /*
3436  * Prepare kswapd for sleeping. This verifies that there are no processes
3437  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3438  *
3439  * Returns true if kswapd is ready to sleep
3440  */
3441 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3442 {
3443 	/*
3444 	 * The throttled processes are normally woken up in balance_pgdat() as
3445 	 * soon as allow_direct_reclaim() is true. But there is a potential
3446 	 * race between when kswapd checks the watermarks and a process gets
3447 	 * throttled. There is also a potential race if processes get
3448 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3449 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3450 	 * the wake up checks. If kswapd is going to sleep, no process should
3451 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3452 	 * the wake up is premature, processes will wake kswapd and get
3453 	 * throttled again. The difference from wake ups in balance_pgdat() is
3454 	 * that here we are under prepare_to_wait().
3455 	 */
3456 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3457 		wake_up_all(&pgdat->pfmemalloc_wait);
3458 
3459 	/* Hopeless node, leave it to direct reclaim */
3460 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3461 		return true;
3462 
3463 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3464 		clear_pgdat_congested(pgdat);
3465 		return true;
3466 	}
3467 
3468 	return false;
3469 }
3470 
3471 /*
3472  * kswapd shrinks a node of pages that are at or below the highest usable
3473  * zone that is currently unbalanced.
3474  *
3475  * Returns true if kswapd scanned at least the requested number of pages to
3476  * reclaim or if the lack of progress was due to pages under writeback.
3477  * This is used to determine if the scanning priority needs to be raised.
3478  */
3479 static bool kswapd_shrink_node(pg_data_t *pgdat,
3480 			       struct scan_control *sc)
3481 {
3482 	struct zone *zone;
3483 	int z;
3484 
3485 	/* Reclaim a number of pages proportional to the number of zones */
3486 	sc->nr_to_reclaim = 0;
3487 	for (z = 0; z <= sc->reclaim_idx; z++) {
3488 		zone = pgdat->node_zones + z;
3489 		if (!managed_zone(zone))
3490 			continue;
3491 
3492 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3493 	}
3494 
3495 	/*
3496 	 * Historically care was taken to put equal pressure on all zones but
3497 	 * now pressure is applied based on node LRU order.
3498 	 */
3499 	shrink_node(pgdat, sc);
3500 
3501 	/*
3502 	 * Fragmentation may mean that the system cannot be rebalanced for
3503 	 * high-order allocations. If twice the allocation size has been
3504 	 * reclaimed then recheck watermarks only at order-0 to prevent
3505 	 * excessive reclaim. Assume that a process requested a high-order
3506 	 * can direct reclaim/compact.
3507 	 */
3508 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3509 		sc->order = 0;
3510 
3511 	return sc->nr_scanned >= sc->nr_to_reclaim;
3512 }
3513 
3514 /*
3515  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3516  * that are eligible for use by the caller until at least one zone is
3517  * balanced.
3518  *
3519  * Returns the order kswapd finished reclaiming at.
3520  *
3521  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3522  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3523  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3524  * or lower is eligible for reclaim until at least one usable zone is
3525  * balanced.
3526  */
3527 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3528 {
3529 	int i;
3530 	unsigned long nr_soft_reclaimed;
3531 	unsigned long nr_soft_scanned;
3532 	unsigned long pflags;
3533 	unsigned long nr_boost_reclaim;
3534 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3535 	bool boosted;
3536 	struct zone *zone;
3537 	struct scan_control sc = {
3538 		.gfp_mask = GFP_KERNEL,
3539 		.order = order,
3540 		.may_unmap = 1,
3541 	};
3542 
3543 	psi_memstall_enter(&pflags);
3544 	__fs_reclaim_acquire();
3545 
3546 	count_vm_event(PAGEOUTRUN);
3547 
3548 	/*
3549 	 * Account for the reclaim boost. Note that the zone boost is left in
3550 	 * place so that parallel allocations that are near the watermark will
3551 	 * stall or direct reclaim until kswapd is finished.
3552 	 */
3553 	nr_boost_reclaim = 0;
3554 	for (i = 0; i <= classzone_idx; i++) {
3555 		zone = pgdat->node_zones + i;
3556 		if (!managed_zone(zone))
3557 			continue;
3558 
3559 		nr_boost_reclaim += zone->watermark_boost;
3560 		zone_boosts[i] = zone->watermark_boost;
3561 	}
3562 	boosted = nr_boost_reclaim;
3563 
3564 restart:
3565 	sc.priority = DEF_PRIORITY;
3566 	do {
3567 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3568 		bool raise_priority = true;
3569 		bool balanced;
3570 		bool ret;
3571 
3572 		sc.reclaim_idx = classzone_idx;
3573 
3574 		/*
3575 		 * If the number of buffer_heads exceeds the maximum allowed
3576 		 * then consider reclaiming from all zones. This has a dual
3577 		 * purpose -- on 64-bit systems it is expected that
3578 		 * buffer_heads are stripped during active rotation. On 32-bit
3579 		 * systems, highmem pages can pin lowmem memory and shrinking
3580 		 * buffers can relieve lowmem pressure. Reclaim may still not
3581 		 * go ahead if all eligible zones for the original allocation
3582 		 * request are balanced to avoid excessive reclaim from kswapd.
3583 		 */
3584 		if (buffer_heads_over_limit) {
3585 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3586 				zone = pgdat->node_zones + i;
3587 				if (!managed_zone(zone))
3588 					continue;
3589 
3590 				sc.reclaim_idx = i;
3591 				break;
3592 			}
3593 		}
3594 
3595 		/*
3596 		 * If the pgdat is imbalanced then ignore boosting and preserve
3597 		 * the watermarks for a later time and restart. Note that the
3598 		 * zone watermarks will be still reset at the end of balancing
3599 		 * on the grounds that the normal reclaim should be enough to
3600 		 * re-evaluate if boosting is required when kswapd next wakes.
3601 		 */
3602 		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3603 		if (!balanced && nr_boost_reclaim) {
3604 			nr_boost_reclaim = 0;
3605 			goto restart;
3606 		}
3607 
3608 		/*
3609 		 * If boosting is not active then only reclaim if there are no
3610 		 * eligible zones. Note that sc.reclaim_idx is not used as
3611 		 * buffer_heads_over_limit may have adjusted it.
3612 		 */
3613 		if (!nr_boost_reclaim && balanced)
3614 			goto out;
3615 
3616 		/* Limit the priority of boosting to avoid reclaim writeback */
3617 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3618 			raise_priority = false;
3619 
3620 		/*
3621 		 * Do not writeback or swap pages for boosted reclaim. The
3622 		 * intent is to relieve pressure not issue sub-optimal IO
3623 		 * from reclaim context. If no pages are reclaimed, the
3624 		 * reclaim will be aborted.
3625 		 */
3626 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3627 		sc.may_swap = !nr_boost_reclaim;
3628 		sc.may_shrinkslab = !nr_boost_reclaim;
3629 
3630 		/*
3631 		 * Do some background aging of the anon list, to give
3632 		 * pages a chance to be referenced before reclaiming. All
3633 		 * pages are rotated regardless of classzone as this is
3634 		 * about consistent aging.
3635 		 */
3636 		age_active_anon(pgdat, &sc);
3637 
3638 		/*
3639 		 * If we're getting trouble reclaiming, start doing writepage
3640 		 * even in laptop mode.
3641 		 */
3642 		if (sc.priority < DEF_PRIORITY - 2)
3643 			sc.may_writepage = 1;
3644 
3645 		/* Call soft limit reclaim before calling shrink_node. */
3646 		sc.nr_scanned = 0;
3647 		nr_soft_scanned = 0;
3648 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3649 						sc.gfp_mask, &nr_soft_scanned);
3650 		sc.nr_reclaimed += nr_soft_reclaimed;
3651 
3652 		/*
3653 		 * There should be no need to raise the scanning priority if
3654 		 * enough pages are already being scanned that that high
3655 		 * watermark would be met at 100% efficiency.
3656 		 */
3657 		if (kswapd_shrink_node(pgdat, &sc))
3658 			raise_priority = false;
3659 
3660 		/*
3661 		 * If the low watermark is met there is no need for processes
3662 		 * to be throttled on pfmemalloc_wait as they should not be
3663 		 * able to safely make forward progress. Wake them
3664 		 */
3665 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3666 				allow_direct_reclaim(pgdat))
3667 			wake_up_all(&pgdat->pfmemalloc_wait);
3668 
3669 		/* Check if kswapd should be suspending */
3670 		__fs_reclaim_release();
3671 		ret = try_to_freeze();
3672 		__fs_reclaim_acquire();
3673 		if (ret || kthread_should_stop())
3674 			break;
3675 
3676 		/*
3677 		 * Raise priority if scanning rate is too low or there was no
3678 		 * progress in reclaiming pages
3679 		 */
3680 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3681 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3682 
3683 		/*
3684 		 * If reclaim made no progress for a boost, stop reclaim as
3685 		 * IO cannot be queued and it could be an infinite loop in
3686 		 * extreme circumstances.
3687 		 */
3688 		if (nr_boost_reclaim && !nr_reclaimed)
3689 			break;
3690 
3691 		if (raise_priority || !nr_reclaimed)
3692 			sc.priority--;
3693 	} while (sc.priority >= 1);
3694 
3695 	if (!sc.nr_reclaimed)
3696 		pgdat->kswapd_failures++;
3697 
3698 out:
3699 	/* If reclaim was boosted, account for the reclaim done in this pass */
3700 	if (boosted) {
3701 		unsigned long flags;
3702 
3703 		for (i = 0; i <= classzone_idx; i++) {
3704 			if (!zone_boosts[i])
3705 				continue;
3706 
3707 			/* Increments are under the zone lock */
3708 			zone = pgdat->node_zones + i;
3709 			spin_lock_irqsave(&zone->lock, flags);
3710 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3711 			spin_unlock_irqrestore(&zone->lock, flags);
3712 		}
3713 
3714 		/*
3715 		 * As there is now likely space, wakeup kcompact to defragment
3716 		 * pageblocks.
3717 		 */
3718 		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3719 	}
3720 
3721 	snapshot_refaults(NULL, pgdat);
3722 	__fs_reclaim_release();
3723 	psi_memstall_leave(&pflags);
3724 	/*
3725 	 * Return the order kswapd stopped reclaiming at as
3726 	 * prepare_kswapd_sleep() takes it into account. If another caller
3727 	 * entered the allocator slow path while kswapd was awake, order will
3728 	 * remain at the higher level.
3729 	 */
3730 	return sc.order;
3731 }
3732 
3733 /*
3734  * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3735  * allocation request woke kswapd for. When kswapd has not woken recently,
3736  * the value is MAX_NR_ZONES which is not a valid index. This compares a
3737  * given classzone and returns it or the highest classzone index kswapd
3738  * was recently woke for.
3739  */
3740 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3741 					   enum zone_type classzone_idx)
3742 {
3743 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3744 		return classzone_idx;
3745 
3746 	return max(pgdat->kswapd_classzone_idx, classzone_idx);
3747 }
3748 
3749 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3750 				unsigned int classzone_idx)
3751 {
3752 	long remaining = 0;
3753 	DEFINE_WAIT(wait);
3754 
3755 	if (freezing(current) || kthread_should_stop())
3756 		return;
3757 
3758 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3759 
3760 	/*
3761 	 * Try to sleep for a short interval. Note that kcompactd will only be
3762 	 * woken if it is possible to sleep for a short interval. This is
3763 	 * deliberate on the assumption that if reclaim cannot keep an
3764 	 * eligible zone balanced that it's also unlikely that compaction will
3765 	 * succeed.
3766 	 */
3767 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3768 		/*
3769 		 * Compaction records what page blocks it recently failed to
3770 		 * isolate pages from and skips them in the future scanning.
3771 		 * When kswapd is going to sleep, it is reasonable to assume
3772 		 * that pages and compaction may succeed so reset the cache.
3773 		 */
3774 		reset_isolation_suitable(pgdat);
3775 
3776 		/*
3777 		 * We have freed the memory, now we should compact it to make
3778 		 * allocation of the requested order possible.
3779 		 */
3780 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3781 
3782 		remaining = schedule_timeout(HZ/10);
3783 
3784 		/*
3785 		 * If woken prematurely then reset kswapd_classzone_idx and
3786 		 * order. The values will either be from a wakeup request or
3787 		 * the previous request that slept prematurely.
3788 		 */
3789 		if (remaining) {
3790 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3791 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3792 		}
3793 
3794 		finish_wait(&pgdat->kswapd_wait, &wait);
3795 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3796 	}
3797 
3798 	/*
3799 	 * After a short sleep, check if it was a premature sleep. If not, then
3800 	 * go fully to sleep until explicitly woken up.
3801 	 */
3802 	if (!remaining &&
3803 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3804 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3805 
3806 		/*
3807 		 * vmstat counters are not perfectly accurate and the estimated
3808 		 * value for counters such as NR_FREE_PAGES can deviate from the
3809 		 * true value by nr_online_cpus * threshold. To avoid the zone
3810 		 * watermarks being breached while under pressure, we reduce the
3811 		 * per-cpu vmstat threshold while kswapd is awake and restore
3812 		 * them before going back to sleep.
3813 		 */
3814 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3815 
3816 		if (!kthread_should_stop())
3817 			schedule();
3818 
3819 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3820 	} else {
3821 		if (remaining)
3822 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3823 		else
3824 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3825 	}
3826 	finish_wait(&pgdat->kswapd_wait, &wait);
3827 }
3828 
3829 /*
3830  * The background pageout daemon, started as a kernel thread
3831  * from the init process.
3832  *
3833  * This basically trickles out pages so that we have _some_
3834  * free memory available even if there is no other activity
3835  * that frees anything up. This is needed for things like routing
3836  * etc, where we otherwise might have all activity going on in
3837  * asynchronous contexts that cannot page things out.
3838  *
3839  * If there are applications that are active memory-allocators
3840  * (most normal use), this basically shouldn't matter.
3841  */
3842 static int kswapd(void *p)
3843 {
3844 	unsigned int alloc_order, reclaim_order;
3845 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3846 	pg_data_t *pgdat = (pg_data_t*)p;
3847 	struct task_struct *tsk = current;
3848 
3849 	struct reclaim_state reclaim_state = {
3850 		.reclaimed_slab = 0,
3851 	};
3852 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3853 
3854 	if (!cpumask_empty(cpumask))
3855 		set_cpus_allowed_ptr(tsk, cpumask);
3856 	current->reclaim_state = &reclaim_state;
3857 
3858 	/*
3859 	 * Tell the memory management that we're a "memory allocator",
3860 	 * and that if we need more memory we should get access to it
3861 	 * regardless (see "__alloc_pages()"). "kswapd" should
3862 	 * never get caught in the normal page freeing logic.
3863 	 *
3864 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3865 	 * you need a small amount of memory in order to be able to
3866 	 * page out something else, and this flag essentially protects
3867 	 * us from recursively trying to free more memory as we're
3868 	 * trying to free the first piece of memory in the first place).
3869 	 */
3870 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3871 	set_freezable();
3872 
3873 	pgdat->kswapd_order = 0;
3874 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3875 	for ( ; ; ) {
3876 		bool ret;
3877 
3878 		alloc_order = reclaim_order = pgdat->kswapd_order;
3879 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3880 
3881 kswapd_try_sleep:
3882 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3883 					classzone_idx);
3884 
3885 		/* Read the new order and classzone_idx */
3886 		alloc_order = reclaim_order = pgdat->kswapd_order;
3887 		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3888 		pgdat->kswapd_order = 0;
3889 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3890 
3891 		ret = try_to_freeze();
3892 		if (kthread_should_stop())
3893 			break;
3894 
3895 		/*
3896 		 * We can speed up thawing tasks if we don't call balance_pgdat
3897 		 * after returning from the refrigerator
3898 		 */
3899 		if (ret)
3900 			continue;
3901 
3902 		/*
3903 		 * Reclaim begins at the requested order but if a high-order
3904 		 * reclaim fails then kswapd falls back to reclaiming for
3905 		 * order-0. If that happens, kswapd will consider sleeping
3906 		 * for the order it finished reclaiming at (reclaim_order)
3907 		 * but kcompactd is woken to compact for the original
3908 		 * request (alloc_order).
3909 		 */
3910 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3911 						alloc_order);
3912 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3913 		if (reclaim_order < alloc_order)
3914 			goto kswapd_try_sleep;
3915 	}
3916 
3917 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3918 	current->reclaim_state = NULL;
3919 
3920 	return 0;
3921 }
3922 
3923 /*
3924  * A zone is low on free memory or too fragmented for high-order memory.  If
3925  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3926  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3927  * has failed or is not needed, still wake up kcompactd if only compaction is
3928  * needed.
3929  */
3930 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3931 		   enum zone_type classzone_idx)
3932 {
3933 	pg_data_t *pgdat;
3934 
3935 	if (!managed_zone(zone))
3936 		return;
3937 
3938 	if (!cpuset_zone_allowed(zone, gfp_flags))
3939 		return;
3940 	pgdat = zone->zone_pgdat;
3941 	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3942 							   classzone_idx);
3943 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3944 	if (!waitqueue_active(&pgdat->kswapd_wait))
3945 		return;
3946 
3947 	/* Hopeless node, leave it to direct reclaim if possible */
3948 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3949 	    (pgdat_balanced(pgdat, order, classzone_idx) &&
3950 	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3951 		/*
3952 		 * There may be plenty of free memory available, but it's too
3953 		 * fragmented for high-order allocations.  Wake up kcompactd
3954 		 * and rely on compaction_suitable() to determine if it's
3955 		 * needed.  If it fails, it will defer subsequent attempts to
3956 		 * ratelimit its work.
3957 		 */
3958 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3959 			wakeup_kcompactd(pgdat, order, classzone_idx);
3960 		return;
3961 	}
3962 
3963 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3964 				      gfp_flags);
3965 	wake_up_interruptible(&pgdat->kswapd_wait);
3966 }
3967 
3968 #ifdef CONFIG_HIBERNATION
3969 /*
3970  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3971  * freed pages.
3972  *
3973  * Rather than trying to age LRUs the aim is to preserve the overall
3974  * LRU order by reclaiming preferentially
3975  * inactive > active > active referenced > active mapped
3976  */
3977 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3978 {
3979 	struct reclaim_state reclaim_state;
3980 	struct scan_control sc = {
3981 		.nr_to_reclaim = nr_to_reclaim,
3982 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3983 		.reclaim_idx = MAX_NR_ZONES - 1,
3984 		.priority = DEF_PRIORITY,
3985 		.may_writepage = 1,
3986 		.may_unmap = 1,
3987 		.may_swap = 1,
3988 		.hibernation_mode = 1,
3989 	};
3990 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3991 	struct task_struct *p = current;
3992 	unsigned long nr_reclaimed;
3993 	unsigned int noreclaim_flag;
3994 
3995 	fs_reclaim_acquire(sc.gfp_mask);
3996 	noreclaim_flag = memalloc_noreclaim_save();
3997 	reclaim_state.reclaimed_slab = 0;
3998 	p->reclaim_state = &reclaim_state;
3999 
4000 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4001 
4002 	p->reclaim_state = NULL;
4003 	memalloc_noreclaim_restore(noreclaim_flag);
4004 	fs_reclaim_release(sc.gfp_mask);
4005 
4006 	return nr_reclaimed;
4007 }
4008 #endif /* CONFIG_HIBERNATION */
4009 
4010 /* It's optimal to keep kswapds on the same CPUs as their memory, but
4011    not required for correctness.  So if the last cpu in a node goes
4012    away, we get changed to run anywhere: as the first one comes back,
4013    restore their cpu bindings. */
4014 static int kswapd_cpu_online(unsigned int cpu)
4015 {
4016 	int nid;
4017 
4018 	for_each_node_state(nid, N_MEMORY) {
4019 		pg_data_t *pgdat = NODE_DATA(nid);
4020 		const struct cpumask *mask;
4021 
4022 		mask = cpumask_of_node(pgdat->node_id);
4023 
4024 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
4025 			/* One of our CPUs online: restore mask */
4026 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
4027 	}
4028 	return 0;
4029 }
4030 
4031 /*
4032  * This kswapd start function will be called by init and node-hot-add.
4033  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4034  */
4035 int kswapd_run(int nid)
4036 {
4037 	pg_data_t *pgdat = NODE_DATA(nid);
4038 	int ret = 0;
4039 
4040 	if (pgdat->kswapd)
4041 		return 0;
4042 
4043 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4044 	if (IS_ERR(pgdat->kswapd)) {
4045 		/* failure at boot is fatal */
4046 		BUG_ON(system_state < SYSTEM_RUNNING);
4047 		pr_err("Failed to start kswapd on node %d\n", nid);
4048 		ret = PTR_ERR(pgdat->kswapd);
4049 		pgdat->kswapd = NULL;
4050 	}
4051 	return ret;
4052 }
4053 
4054 /*
4055  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4056  * hold mem_hotplug_begin/end().
4057  */
4058 void kswapd_stop(int nid)
4059 {
4060 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4061 
4062 	if (kswapd) {
4063 		kthread_stop(kswapd);
4064 		NODE_DATA(nid)->kswapd = NULL;
4065 	}
4066 }
4067 
4068 static int __init kswapd_init(void)
4069 {
4070 	int nid, ret;
4071 
4072 	swap_setup();
4073 	for_each_node_state(nid, N_MEMORY)
4074  		kswapd_run(nid);
4075 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4076 					"mm/vmscan:online", kswapd_cpu_online,
4077 					NULL);
4078 	WARN_ON(ret < 0);
4079 	return 0;
4080 }
4081 
4082 module_init(kswapd_init)
4083 
4084 #ifdef CONFIG_NUMA
4085 /*
4086  * Node reclaim mode
4087  *
4088  * If non-zero call node_reclaim when the number of free pages falls below
4089  * the watermarks.
4090  */
4091 int node_reclaim_mode __read_mostly;
4092 
4093 #define RECLAIM_OFF 0
4094 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4095 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4096 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4097 
4098 /*
4099  * Priority for NODE_RECLAIM. This determines the fraction of pages
4100  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4101  * a zone.
4102  */
4103 #define NODE_RECLAIM_PRIORITY 4
4104 
4105 /*
4106  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4107  * occur.
4108  */
4109 int sysctl_min_unmapped_ratio = 1;
4110 
4111 /*
4112  * If the number of slab pages in a zone grows beyond this percentage then
4113  * slab reclaim needs to occur.
4114  */
4115 int sysctl_min_slab_ratio = 5;
4116 
4117 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4118 {
4119 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4120 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4121 		node_page_state(pgdat, NR_ACTIVE_FILE);
4122 
4123 	/*
4124 	 * It's possible for there to be more file mapped pages than
4125 	 * accounted for by the pages on the file LRU lists because
4126 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4127 	 */
4128 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4129 }
4130 
4131 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4132 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4133 {
4134 	unsigned long nr_pagecache_reclaimable;
4135 	unsigned long delta = 0;
4136 
4137 	/*
4138 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4139 	 * potentially reclaimable. Otherwise, we have to worry about
4140 	 * pages like swapcache and node_unmapped_file_pages() provides
4141 	 * a better estimate
4142 	 */
4143 	if (node_reclaim_mode & RECLAIM_UNMAP)
4144 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4145 	else
4146 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4147 
4148 	/* If we can't clean pages, remove dirty pages from consideration */
4149 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4150 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4151 
4152 	/* Watch for any possible underflows due to delta */
4153 	if (unlikely(delta > nr_pagecache_reclaimable))
4154 		delta = nr_pagecache_reclaimable;
4155 
4156 	return nr_pagecache_reclaimable - delta;
4157 }
4158 
4159 /*
4160  * Try to free up some pages from this node through reclaim.
4161  */
4162 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4163 {
4164 	/* Minimum pages needed in order to stay on node */
4165 	const unsigned long nr_pages = 1 << order;
4166 	struct task_struct *p = current;
4167 	struct reclaim_state reclaim_state;
4168 	unsigned int noreclaim_flag;
4169 	struct scan_control sc = {
4170 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4171 		.gfp_mask = current_gfp_context(gfp_mask),
4172 		.order = order,
4173 		.priority = NODE_RECLAIM_PRIORITY,
4174 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4175 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4176 		.may_swap = 1,
4177 		.reclaim_idx = gfp_zone(gfp_mask),
4178 	};
4179 
4180 	cond_resched();
4181 	fs_reclaim_acquire(sc.gfp_mask);
4182 	/*
4183 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4184 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4185 	 * and RECLAIM_UNMAP.
4186 	 */
4187 	noreclaim_flag = memalloc_noreclaim_save();
4188 	p->flags |= PF_SWAPWRITE;
4189 	reclaim_state.reclaimed_slab = 0;
4190 	p->reclaim_state = &reclaim_state;
4191 
4192 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4193 		/*
4194 		 * Free memory by calling shrink node with increasing
4195 		 * priorities until we have enough memory freed.
4196 		 */
4197 		do {
4198 			shrink_node(pgdat, &sc);
4199 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4200 	}
4201 
4202 	p->reclaim_state = NULL;
4203 	current->flags &= ~PF_SWAPWRITE;
4204 	memalloc_noreclaim_restore(noreclaim_flag);
4205 	fs_reclaim_release(sc.gfp_mask);
4206 	return sc.nr_reclaimed >= nr_pages;
4207 }
4208 
4209 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4210 {
4211 	int ret;
4212 
4213 	/*
4214 	 * Node reclaim reclaims unmapped file backed pages and
4215 	 * slab pages if we are over the defined limits.
4216 	 *
4217 	 * A small portion of unmapped file backed pages is needed for
4218 	 * file I/O otherwise pages read by file I/O will be immediately
4219 	 * thrown out if the node is overallocated. So we do not reclaim
4220 	 * if less than a specified percentage of the node is used by
4221 	 * unmapped file backed pages.
4222 	 */
4223 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4224 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4225 		return NODE_RECLAIM_FULL;
4226 
4227 	/*
4228 	 * Do not scan if the allocation should not be delayed.
4229 	 */
4230 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4231 		return NODE_RECLAIM_NOSCAN;
4232 
4233 	/*
4234 	 * Only run node reclaim on the local node or on nodes that do not
4235 	 * have associated processors. This will favor the local processor
4236 	 * over remote processors and spread off node memory allocations
4237 	 * as wide as possible.
4238 	 */
4239 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4240 		return NODE_RECLAIM_NOSCAN;
4241 
4242 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4243 		return NODE_RECLAIM_NOSCAN;
4244 
4245 	ret = __node_reclaim(pgdat, gfp_mask, order);
4246 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4247 
4248 	if (!ret)
4249 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4250 
4251 	return ret;
4252 }
4253 #endif
4254 
4255 /*
4256  * page_evictable - test whether a page is evictable
4257  * @page: the page to test
4258  *
4259  * Test whether page is evictable--i.e., should be placed on active/inactive
4260  * lists vs unevictable list.
4261  *
4262  * Reasons page might not be evictable:
4263  * (1) page's mapping marked unevictable
4264  * (2) page is part of an mlocked VMA
4265  *
4266  */
4267 int page_evictable(struct page *page)
4268 {
4269 	int ret;
4270 
4271 	/* Prevent address_space of inode and swap cache from being freed */
4272 	rcu_read_lock();
4273 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4274 	rcu_read_unlock();
4275 	return ret;
4276 }
4277 
4278 /**
4279  * check_move_unevictable_pages - check pages for evictability and move to
4280  * appropriate zone lru list
4281  * @pvec: pagevec with lru pages to check
4282  *
4283  * Checks pages for evictability, if an evictable page is in the unevictable
4284  * lru list, moves it to the appropriate evictable lru list. This function
4285  * should be only used for lru pages.
4286  */
4287 void check_move_unevictable_pages(struct pagevec *pvec)
4288 {
4289 	struct lruvec *lruvec;
4290 	struct pglist_data *pgdat = NULL;
4291 	int pgscanned = 0;
4292 	int pgrescued = 0;
4293 	int i;
4294 
4295 	for (i = 0; i < pvec->nr; i++) {
4296 		struct page *page = pvec->pages[i];
4297 		struct pglist_data *pagepgdat = page_pgdat(page);
4298 
4299 		pgscanned++;
4300 		if (pagepgdat != pgdat) {
4301 			if (pgdat)
4302 				spin_unlock_irq(&pgdat->lru_lock);
4303 			pgdat = pagepgdat;
4304 			spin_lock_irq(&pgdat->lru_lock);
4305 		}
4306 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4307 
4308 		if (!PageLRU(page) || !PageUnevictable(page))
4309 			continue;
4310 
4311 		if (page_evictable(page)) {
4312 			enum lru_list lru = page_lru_base_type(page);
4313 
4314 			VM_BUG_ON_PAGE(PageActive(page), page);
4315 			ClearPageUnevictable(page);
4316 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4317 			add_page_to_lru_list(page, lruvec, lru);
4318 			pgrescued++;
4319 		}
4320 	}
4321 
4322 	if (pgdat) {
4323 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4324 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4325 		spin_unlock_irq(&pgdat->lru_lock);
4326 	}
4327 }
4328 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4329