1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/migrate.h> 43 #include <linux/delayacct.h> 44 #include <linux/sysctl.h> 45 #include <linux/memory-tiers.h> 46 #include <linux/oom.h> 47 #include <linux/pagevec.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 #include <linux/psi.h> 52 #include <linux/pagewalk.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/ctype.h> 55 #include <linux/debugfs.h> 56 #include <linux/khugepaged.h> 57 #include <linux/rculist_nulls.h> 58 #include <linux/random.h> 59 60 #include <asm/tlbflush.h> 61 #include <asm/div64.h> 62 63 #include <linux/swapops.h> 64 #include <linux/balloon_compaction.h> 65 #include <linux/sched/sysctl.h> 66 67 #include "internal.h" 68 #include "swap.h" 69 70 #define CREATE_TRACE_POINTS 71 #include <trace/events/vmscan.h> 72 73 struct scan_control { 74 /* How many pages shrink_list() should reclaim */ 75 unsigned long nr_to_reclaim; 76 77 /* 78 * Nodemask of nodes allowed by the caller. If NULL, all nodes 79 * are scanned. 80 */ 81 nodemask_t *nodemask; 82 83 /* 84 * The memory cgroup that hit its limit and as a result is the 85 * primary target of this reclaim invocation. 86 */ 87 struct mem_cgroup *target_mem_cgroup; 88 89 /* 90 * Scan pressure balancing between anon and file LRUs 91 */ 92 unsigned long anon_cost; 93 unsigned long file_cost; 94 95 #ifdef CONFIG_MEMCG 96 /* Swappiness value for proactive reclaim. Always use sc_swappiness()! */ 97 int *proactive_swappiness; 98 #endif 99 100 /* Can active folios be deactivated as part of reclaim? */ 101 #define DEACTIVATE_ANON 1 102 #define DEACTIVATE_FILE 2 103 unsigned int may_deactivate:2; 104 unsigned int force_deactivate:1; 105 unsigned int skipped_deactivate:1; 106 107 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 108 unsigned int may_writepage:1; 109 110 /* Can mapped folios be reclaimed? */ 111 unsigned int may_unmap:1; 112 113 /* Can folios be swapped as part of reclaim? */ 114 unsigned int may_swap:1; 115 116 /* Not allow cache_trim_mode to be turned on as part of reclaim? */ 117 unsigned int no_cache_trim_mode:1; 118 119 /* Has cache_trim_mode failed at least once? */ 120 unsigned int cache_trim_mode_failed:1; 121 122 /* Proactive reclaim invoked by userspace through memory.reclaim */ 123 unsigned int proactive:1; 124 125 /* 126 * Cgroup memory below memory.low is protected as long as we 127 * don't threaten to OOM. If any cgroup is reclaimed at 128 * reduced force or passed over entirely due to its memory.low 129 * setting (memcg_low_skipped), and nothing is reclaimed as a 130 * result, then go back for one more cycle that reclaims the protected 131 * memory (memcg_low_reclaim) to avert OOM. 132 */ 133 unsigned int memcg_low_reclaim:1; 134 unsigned int memcg_low_skipped:1; 135 136 /* Shared cgroup tree walk failed, rescan the whole tree */ 137 unsigned int memcg_full_walk:1; 138 139 unsigned int hibernation_mode:1; 140 141 /* One of the zones is ready for compaction */ 142 unsigned int compaction_ready:1; 143 144 /* There is easily reclaimable cold cache in the current node */ 145 unsigned int cache_trim_mode:1; 146 147 /* The file folios on the current node are dangerously low */ 148 unsigned int file_is_tiny:1; 149 150 /* Always discard instead of demoting to lower tier memory */ 151 unsigned int no_demotion:1; 152 153 /* Allocation order */ 154 s8 order; 155 156 /* Scan (total_size >> priority) pages at once */ 157 s8 priority; 158 159 /* The highest zone to isolate folios for reclaim from */ 160 s8 reclaim_idx; 161 162 /* This context's GFP mask */ 163 gfp_t gfp_mask; 164 165 /* Incremented by the number of inactive pages that were scanned */ 166 unsigned long nr_scanned; 167 168 /* Number of pages freed so far during a call to shrink_zones() */ 169 unsigned long nr_reclaimed; 170 171 struct { 172 unsigned int dirty; 173 unsigned int unqueued_dirty; 174 unsigned int congested; 175 unsigned int writeback; 176 unsigned int immediate; 177 unsigned int file_taken; 178 unsigned int taken; 179 } nr; 180 181 /* for recording the reclaimed slab by now */ 182 struct reclaim_state reclaim_state; 183 }; 184 185 #ifdef ARCH_HAS_PREFETCHW 186 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 187 do { \ 188 if ((_folio)->lru.prev != _base) { \ 189 struct folio *prev; \ 190 \ 191 prev = lru_to_folio(&(_folio->lru)); \ 192 prefetchw(&prev->_field); \ 193 } \ 194 } while (0) 195 #else 196 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 197 #endif 198 199 /* 200 * From 0 .. MAX_SWAPPINESS. Higher means more swappy. 201 */ 202 int vm_swappiness = 60; 203 204 #ifdef CONFIG_MEMCG 205 206 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */ 207 static bool cgroup_reclaim(struct scan_control *sc) 208 { 209 return sc->target_mem_cgroup; 210 } 211 212 /* 213 * Returns true for reclaim on the root cgroup. This is true for direct 214 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup. 215 */ 216 static bool root_reclaim(struct scan_control *sc) 217 { 218 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 219 } 220 221 /** 222 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 223 * @sc: scan_control in question 224 * 225 * The normal page dirty throttling mechanism in balance_dirty_pages() is 226 * completely broken with the legacy memcg and direct stalling in 227 * shrink_folio_list() is used for throttling instead, which lacks all the 228 * niceties such as fairness, adaptive pausing, bandwidth proportional 229 * allocation and configurability. 230 * 231 * This function tests whether the vmscan currently in progress can assume 232 * that the normal dirty throttling mechanism is operational. 233 */ 234 static bool writeback_throttling_sane(struct scan_control *sc) 235 { 236 if (!cgroup_reclaim(sc)) 237 return true; 238 #ifdef CONFIG_CGROUP_WRITEBACK 239 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 240 return true; 241 #endif 242 return false; 243 } 244 245 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 246 { 247 if (sc->proactive && sc->proactive_swappiness) 248 return *sc->proactive_swappiness; 249 return mem_cgroup_swappiness(memcg); 250 } 251 #else 252 static bool cgroup_reclaim(struct scan_control *sc) 253 { 254 return false; 255 } 256 257 static bool root_reclaim(struct scan_control *sc) 258 { 259 return true; 260 } 261 262 static bool writeback_throttling_sane(struct scan_control *sc) 263 { 264 return true; 265 } 266 267 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 268 { 269 return READ_ONCE(vm_swappiness); 270 } 271 #endif 272 273 static void set_task_reclaim_state(struct task_struct *task, 274 struct reclaim_state *rs) 275 { 276 /* Check for an overwrite */ 277 WARN_ON_ONCE(rs && task->reclaim_state); 278 279 /* Check for the nulling of an already-nulled member */ 280 WARN_ON_ONCE(!rs && !task->reclaim_state); 281 282 task->reclaim_state = rs; 283 } 284 285 /* 286 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to 287 * scan_control->nr_reclaimed. 288 */ 289 static void flush_reclaim_state(struct scan_control *sc) 290 { 291 /* 292 * Currently, reclaim_state->reclaimed includes three types of pages 293 * freed outside of vmscan: 294 * (1) Slab pages. 295 * (2) Clean file pages from pruned inodes (on highmem systems). 296 * (3) XFS freed buffer pages. 297 * 298 * For all of these cases, we cannot universally link the pages to a 299 * single memcg. For example, a memcg-aware shrinker can free one object 300 * charged to the target memcg, causing an entire page to be freed. 301 * If we count the entire page as reclaimed from the memcg, we end up 302 * overestimating the reclaimed amount (potentially under-reclaiming). 303 * 304 * Only count such pages for global reclaim to prevent under-reclaiming 305 * from the target memcg; preventing unnecessary retries during memcg 306 * charging and false positives from proactive reclaim. 307 * 308 * For uncommon cases where the freed pages were actually mostly 309 * charged to the target memcg, we end up underestimating the reclaimed 310 * amount. This should be fine. The freed pages will be uncharged 311 * anyway, even if they are not counted here properly, and we will be 312 * able to make forward progress in charging (which is usually in a 313 * retry loop). 314 * 315 * We can go one step further, and report the uncharged objcg pages in 316 * memcg reclaim, to make reporting more accurate and reduce 317 * underestimation, but it's probably not worth the complexity for now. 318 */ 319 if (current->reclaim_state && root_reclaim(sc)) { 320 sc->nr_reclaimed += current->reclaim_state->reclaimed; 321 current->reclaim_state->reclaimed = 0; 322 } 323 } 324 325 static bool can_demote(int nid, struct scan_control *sc) 326 { 327 if (!numa_demotion_enabled) 328 return false; 329 if (sc && sc->no_demotion) 330 return false; 331 if (next_demotion_node(nid) == NUMA_NO_NODE) 332 return false; 333 334 return true; 335 } 336 337 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 338 int nid, 339 struct scan_control *sc) 340 { 341 if (memcg == NULL) { 342 /* 343 * For non-memcg reclaim, is there 344 * space in any swap device? 345 */ 346 if (get_nr_swap_pages() > 0) 347 return true; 348 } else { 349 /* Is the memcg below its swap limit? */ 350 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 351 return true; 352 } 353 354 /* 355 * The page can not be swapped. 356 * 357 * Can it be reclaimed from this node via demotion? 358 */ 359 return can_demote(nid, sc); 360 } 361 362 /* 363 * This misses isolated folios which are not accounted for to save counters. 364 * As the data only determines if reclaim or compaction continues, it is 365 * not expected that isolated folios will be a dominating factor. 366 */ 367 unsigned long zone_reclaimable_pages(struct zone *zone) 368 { 369 unsigned long nr; 370 371 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 372 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 373 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 374 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 375 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 376 377 return nr; 378 } 379 380 /** 381 * lruvec_lru_size - Returns the number of pages on the given LRU list. 382 * @lruvec: lru vector 383 * @lru: lru to use 384 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 385 */ 386 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 387 int zone_idx) 388 { 389 unsigned long size = 0; 390 int zid; 391 392 for (zid = 0; zid <= zone_idx; zid++) { 393 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 394 395 if (!managed_zone(zone)) 396 continue; 397 398 if (!mem_cgroup_disabled()) 399 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 400 else 401 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 402 } 403 return size; 404 } 405 406 static unsigned long drop_slab_node(int nid) 407 { 408 unsigned long freed = 0; 409 struct mem_cgroup *memcg = NULL; 410 411 memcg = mem_cgroup_iter(NULL, NULL, NULL); 412 do { 413 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 414 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 415 416 return freed; 417 } 418 419 void drop_slab(void) 420 { 421 int nid; 422 int shift = 0; 423 unsigned long freed; 424 425 do { 426 freed = 0; 427 for_each_online_node(nid) { 428 if (fatal_signal_pending(current)) 429 return; 430 431 freed += drop_slab_node(nid); 432 } 433 } while ((freed >> shift++) > 1); 434 } 435 436 static int reclaimer_offset(void) 437 { 438 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 439 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD); 440 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 441 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD); 442 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 443 PGSCAN_DIRECT - PGSCAN_KSWAPD); 444 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 445 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD); 446 447 if (current_is_kswapd()) 448 return 0; 449 if (current_is_khugepaged()) 450 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 451 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 452 } 453 454 static inline int is_page_cache_freeable(struct folio *folio) 455 { 456 /* 457 * A freeable page cache folio is referenced only by the caller 458 * that isolated the folio, the page cache and optional filesystem 459 * private data at folio->private. 460 */ 461 return folio_ref_count(folio) - folio_test_private(folio) == 462 1 + folio_nr_pages(folio); 463 } 464 465 /* 466 * We detected a synchronous write error writing a folio out. Probably 467 * -ENOSPC. We need to propagate that into the address_space for a subsequent 468 * fsync(), msync() or close(). 469 * 470 * The tricky part is that after writepage we cannot touch the mapping: nothing 471 * prevents it from being freed up. But we have a ref on the folio and once 472 * that folio is locked, the mapping is pinned. 473 * 474 * We're allowed to run sleeping folio_lock() here because we know the caller has 475 * __GFP_FS. 476 */ 477 static void handle_write_error(struct address_space *mapping, 478 struct folio *folio, int error) 479 { 480 folio_lock(folio); 481 if (folio_mapping(folio) == mapping) 482 mapping_set_error(mapping, error); 483 folio_unlock(folio); 484 } 485 486 static bool skip_throttle_noprogress(pg_data_t *pgdat) 487 { 488 int reclaimable = 0, write_pending = 0; 489 int i; 490 491 /* 492 * If kswapd is disabled, reschedule if necessary but do not 493 * throttle as the system is likely near OOM. 494 */ 495 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 496 return true; 497 498 /* 499 * If there are a lot of dirty/writeback folios then do not 500 * throttle as throttling will occur when the folios cycle 501 * towards the end of the LRU if still under writeback. 502 */ 503 for (i = 0; i < MAX_NR_ZONES; i++) { 504 struct zone *zone = pgdat->node_zones + i; 505 506 if (!managed_zone(zone)) 507 continue; 508 509 reclaimable += zone_reclaimable_pages(zone); 510 write_pending += zone_page_state_snapshot(zone, 511 NR_ZONE_WRITE_PENDING); 512 } 513 if (2 * write_pending <= reclaimable) 514 return true; 515 516 return false; 517 } 518 519 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 520 { 521 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 522 long timeout, ret; 523 DEFINE_WAIT(wait); 524 525 /* 526 * Do not throttle user workers, kthreads other than kswapd or 527 * workqueues. They may be required for reclaim to make 528 * forward progress (e.g. journalling workqueues or kthreads). 529 */ 530 if (!current_is_kswapd() && 531 current->flags & (PF_USER_WORKER|PF_KTHREAD)) { 532 cond_resched(); 533 return; 534 } 535 536 /* 537 * These figures are pulled out of thin air. 538 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 539 * parallel reclaimers which is a short-lived event so the timeout is 540 * short. Failing to make progress or waiting on writeback are 541 * potentially long-lived events so use a longer timeout. This is shaky 542 * logic as a failure to make progress could be due to anything from 543 * writeback to a slow device to excessive referenced folios at the tail 544 * of the inactive LRU. 545 */ 546 switch(reason) { 547 case VMSCAN_THROTTLE_WRITEBACK: 548 timeout = HZ/10; 549 550 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 551 WRITE_ONCE(pgdat->nr_reclaim_start, 552 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 553 } 554 555 break; 556 case VMSCAN_THROTTLE_CONGESTED: 557 fallthrough; 558 case VMSCAN_THROTTLE_NOPROGRESS: 559 if (skip_throttle_noprogress(pgdat)) { 560 cond_resched(); 561 return; 562 } 563 564 timeout = 1; 565 566 break; 567 case VMSCAN_THROTTLE_ISOLATED: 568 timeout = HZ/50; 569 break; 570 default: 571 WARN_ON_ONCE(1); 572 timeout = HZ; 573 break; 574 } 575 576 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 577 ret = schedule_timeout(timeout); 578 finish_wait(wqh, &wait); 579 580 if (reason == VMSCAN_THROTTLE_WRITEBACK) 581 atomic_dec(&pgdat->nr_writeback_throttled); 582 583 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 584 jiffies_to_usecs(timeout - ret), 585 reason); 586 } 587 588 /* 589 * Account for folios written if tasks are throttled waiting on dirty 590 * folios to clean. If enough folios have been cleaned since throttling 591 * started then wakeup the throttled tasks. 592 */ 593 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 594 int nr_throttled) 595 { 596 unsigned long nr_written; 597 598 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 599 600 /* 601 * This is an inaccurate read as the per-cpu deltas may not 602 * be synchronised. However, given that the system is 603 * writeback throttled, it is not worth taking the penalty 604 * of getting an accurate count. At worst, the throttle 605 * timeout guarantees forward progress. 606 */ 607 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 608 READ_ONCE(pgdat->nr_reclaim_start); 609 610 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 611 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 612 } 613 614 /* possible outcome of pageout() */ 615 typedef enum { 616 /* failed to write folio out, folio is locked */ 617 PAGE_KEEP, 618 /* move folio to the active list, folio is locked */ 619 PAGE_ACTIVATE, 620 /* folio has been sent to the disk successfully, folio is unlocked */ 621 PAGE_SUCCESS, 622 /* folio is clean and locked */ 623 PAGE_CLEAN, 624 } pageout_t; 625 626 /* 627 * pageout is called by shrink_folio_list() for each dirty folio. 628 * Calls ->writepage(). 629 */ 630 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 631 struct swap_iocb **plug, struct list_head *folio_list) 632 { 633 /* 634 * If the folio is dirty, only perform writeback if that write 635 * will be non-blocking. To prevent this allocation from being 636 * stalled by pagecache activity. But note that there may be 637 * stalls if we need to run get_block(). We could test 638 * PagePrivate for that. 639 * 640 * If this process is currently in __generic_file_write_iter() against 641 * this folio's queue, we can perform writeback even if that 642 * will block. 643 * 644 * If the folio is swapcache, write it back even if that would 645 * block, for some throttling. This happens by accident, because 646 * swap_backing_dev_info is bust: it doesn't reflect the 647 * congestion state of the swapdevs. Easy to fix, if needed. 648 */ 649 if (!is_page_cache_freeable(folio)) 650 return PAGE_KEEP; 651 if (!mapping) { 652 /* 653 * Some data journaling orphaned folios can have 654 * folio->mapping == NULL while being dirty with clean buffers. 655 */ 656 if (folio_test_private(folio)) { 657 if (try_to_free_buffers(folio)) { 658 folio_clear_dirty(folio); 659 pr_info("%s: orphaned folio\n", __func__); 660 return PAGE_CLEAN; 661 } 662 } 663 return PAGE_KEEP; 664 } 665 if (mapping->a_ops->writepage == NULL) 666 return PAGE_ACTIVATE; 667 668 if (folio_clear_dirty_for_io(folio)) { 669 int res; 670 struct writeback_control wbc = { 671 .sync_mode = WB_SYNC_NONE, 672 .nr_to_write = SWAP_CLUSTER_MAX, 673 .range_start = 0, 674 .range_end = LLONG_MAX, 675 .for_reclaim = 1, 676 .swap_plug = plug, 677 }; 678 679 /* 680 * The large shmem folio can be split if CONFIG_THP_SWAP is 681 * not enabled or contiguous swap entries are failed to 682 * allocate. 683 */ 684 if (shmem_mapping(mapping) && folio_test_large(folio)) 685 wbc.list = folio_list; 686 687 folio_set_reclaim(folio); 688 res = mapping->a_ops->writepage(&folio->page, &wbc); 689 if (res < 0) 690 handle_write_error(mapping, folio, res); 691 if (res == AOP_WRITEPAGE_ACTIVATE) { 692 folio_clear_reclaim(folio); 693 return PAGE_ACTIVATE; 694 } 695 696 if (!folio_test_writeback(folio)) { 697 /* synchronous write or broken a_ops? */ 698 folio_clear_reclaim(folio); 699 } 700 trace_mm_vmscan_write_folio(folio); 701 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 702 return PAGE_SUCCESS; 703 } 704 705 return PAGE_CLEAN; 706 } 707 708 /* 709 * Same as remove_mapping, but if the folio is removed from the mapping, it 710 * gets returned with a refcount of 0. 711 */ 712 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 713 bool reclaimed, struct mem_cgroup *target_memcg) 714 { 715 int refcount; 716 void *shadow = NULL; 717 718 BUG_ON(!folio_test_locked(folio)); 719 BUG_ON(mapping != folio_mapping(folio)); 720 721 if (!folio_test_swapcache(folio)) 722 spin_lock(&mapping->host->i_lock); 723 xa_lock_irq(&mapping->i_pages); 724 /* 725 * The non racy check for a busy folio. 726 * 727 * Must be careful with the order of the tests. When someone has 728 * a ref to the folio, it may be possible that they dirty it then 729 * drop the reference. So if the dirty flag is tested before the 730 * refcount here, then the following race may occur: 731 * 732 * get_user_pages(&page); 733 * [user mapping goes away] 734 * write_to(page); 735 * !folio_test_dirty(folio) [good] 736 * folio_set_dirty(folio); 737 * folio_put(folio); 738 * !refcount(folio) [good, discard it] 739 * 740 * [oops, our write_to data is lost] 741 * 742 * Reversing the order of the tests ensures such a situation cannot 743 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 744 * load is not satisfied before that of folio->_refcount. 745 * 746 * Note that if the dirty flag is always set via folio_mark_dirty, 747 * and thus under the i_pages lock, then this ordering is not required. 748 */ 749 refcount = 1 + folio_nr_pages(folio); 750 if (!folio_ref_freeze(folio, refcount)) 751 goto cannot_free; 752 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 753 if (unlikely(folio_test_dirty(folio))) { 754 folio_ref_unfreeze(folio, refcount); 755 goto cannot_free; 756 } 757 758 if (folio_test_swapcache(folio)) { 759 swp_entry_t swap = folio->swap; 760 761 if (reclaimed && !mapping_exiting(mapping)) 762 shadow = workingset_eviction(folio, target_memcg); 763 __delete_from_swap_cache(folio, swap, shadow); 764 mem_cgroup_swapout(folio, swap); 765 xa_unlock_irq(&mapping->i_pages); 766 put_swap_folio(folio, swap); 767 } else { 768 void (*free_folio)(struct folio *); 769 770 free_folio = mapping->a_ops->free_folio; 771 /* 772 * Remember a shadow entry for reclaimed file cache in 773 * order to detect refaults, thus thrashing, later on. 774 * 775 * But don't store shadows in an address space that is 776 * already exiting. This is not just an optimization, 777 * inode reclaim needs to empty out the radix tree or 778 * the nodes are lost. Don't plant shadows behind its 779 * back. 780 * 781 * We also don't store shadows for DAX mappings because the 782 * only page cache folios found in these are zero pages 783 * covering holes, and because we don't want to mix DAX 784 * exceptional entries and shadow exceptional entries in the 785 * same address_space. 786 */ 787 if (reclaimed && folio_is_file_lru(folio) && 788 !mapping_exiting(mapping) && !dax_mapping(mapping)) 789 shadow = workingset_eviction(folio, target_memcg); 790 __filemap_remove_folio(folio, shadow); 791 xa_unlock_irq(&mapping->i_pages); 792 if (mapping_shrinkable(mapping)) 793 inode_add_lru(mapping->host); 794 spin_unlock(&mapping->host->i_lock); 795 796 if (free_folio) 797 free_folio(folio); 798 } 799 800 return 1; 801 802 cannot_free: 803 xa_unlock_irq(&mapping->i_pages); 804 if (!folio_test_swapcache(folio)) 805 spin_unlock(&mapping->host->i_lock); 806 return 0; 807 } 808 809 /** 810 * remove_mapping() - Attempt to remove a folio from its mapping. 811 * @mapping: The address space. 812 * @folio: The folio to remove. 813 * 814 * If the folio is dirty, under writeback or if someone else has a ref 815 * on it, removal will fail. 816 * Return: The number of pages removed from the mapping. 0 if the folio 817 * could not be removed. 818 * Context: The caller should have a single refcount on the folio and 819 * hold its lock. 820 */ 821 long remove_mapping(struct address_space *mapping, struct folio *folio) 822 { 823 if (__remove_mapping(mapping, folio, false, NULL)) { 824 /* 825 * Unfreezing the refcount with 1 effectively 826 * drops the pagecache ref for us without requiring another 827 * atomic operation. 828 */ 829 folio_ref_unfreeze(folio, 1); 830 return folio_nr_pages(folio); 831 } 832 return 0; 833 } 834 835 /** 836 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 837 * @folio: Folio to be returned to an LRU list. 838 * 839 * Add previously isolated @folio to appropriate LRU list. 840 * The folio may still be unevictable for other reasons. 841 * 842 * Context: lru_lock must not be held, interrupts must be enabled. 843 */ 844 void folio_putback_lru(struct folio *folio) 845 { 846 folio_add_lru(folio); 847 folio_put(folio); /* drop ref from isolate */ 848 } 849 850 enum folio_references { 851 FOLIOREF_RECLAIM, 852 FOLIOREF_RECLAIM_CLEAN, 853 FOLIOREF_KEEP, 854 FOLIOREF_ACTIVATE, 855 }; 856 857 static enum folio_references folio_check_references(struct folio *folio, 858 struct scan_control *sc) 859 { 860 int referenced_ptes, referenced_folio; 861 unsigned long vm_flags; 862 863 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 864 &vm_flags); 865 referenced_folio = folio_test_clear_referenced(folio); 866 867 /* 868 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 869 * Let the folio, now marked Mlocked, be moved to the unevictable list. 870 */ 871 if (vm_flags & VM_LOCKED) 872 return FOLIOREF_ACTIVATE; 873 874 /* 875 * There are two cases to consider. 876 * 1) Rmap lock contention: rotate. 877 * 2) Skip the non-shared swapbacked folio mapped solely by 878 * the exiting or OOM-reaped process. 879 */ 880 if (referenced_ptes == -1) 881 return FOLIOREF_KEEP; 882 883 if (referenced_ptes) { 884 /* 885 * All mapped folios start out with page table 886 * references from the instantiating fault, so we need 887 * to look twice if a mapped file/anon folio is used more 888 * than once. 889 * 890 * Mark it and spare it for another trip around the 891 * inactive list. Another page table reference will 892 * lead to its activation. 893 * 894 * Note: the mark is set for activated folios as well 895 * so that recently deactivated but used folios are 896 * quickly recovered. 897 */ 898 folio_set_referenced(folio); 899 900 if (referenced_folio || referenced_ptes > 1) 901 return FOLIOREF_ACTIVATE; 902 903 /* 904 * Activate file-backed executable folios after first usage. 905 */ 906 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 907 return FOLIOREF_ACTIVATE; 908 909 return FOLIOREF_KEEP; 910 } 911 912 /* Reclaim if clean, defer dirty folios to writeback */ 913 if (referenced_folio && folio_is_file_lru(folio)) 914 return FOLIOREF_RECLAIM_CLEAN; 915 916 return FOLIOREF_RECLAIM; 917 } 918 919 /* Check if a folio is dirty or under writeback */ 920 static void folio_check_dirty_writeback(struct folio *folio, 921 bool *dirty, bool *writeback) 922 { 923 struct address_space *mapping; 924 925 /* 926 * Anonymous folios are not handled by flushers and must be written 927 * from reclaim context. Do not stall reclaim based on them. 928 * MADV_FREE anonymous folios are put into inactive file list too. 929 * They could be mistakenly treated as file lru. So further anon 930 * test is needed. 931 */ 932 if (!folio_is_file_lru(folio) || 933 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 934 *dirty = false; 935 *writeback = false; 936 return; 937 } 938 939 /* By default assume that the folio flags are accurate */ 940 *dirty = folio_test_dirty(folio); 941 *writeback = folio_test_writeback(folio); 942 943 /* Verify dirty/writeback state if the filesystem supports it */ 944 if (!folio_test_private(folio)) 945 return; 946 947 mapping = folio_mapping(folio); 948 if (mapping && mapping->a_ops->is_dirty_writeback) 949 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 950 } 951 952 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private) 953 { 954 struct folio *dst; 955 nodemask_t *allowed_mask; 956 struct migration_target_control *mtc; 957 958 mtc = (struct migration_target_control *)private; 959 960 allowed_mask = mtc->nmask; 961 /* 962 * make sure we allocate from the target node first also trying to 963 * demote or reclaim pages from the target node via kswapd if we are 964 * low on free memory on target node. If we don't do this and if 965 * we have free memory on the slower(lower) memtier, we would start 966 * allocating pages from slower(lower) memory tiers without even forcing 967 * a demotion of cold pages from the target memtier. This can result 968 * in the kernel placing hot pages in slower(lower) memory tiers. 969 */ 970 mtc->nmask = NULL; 971 mtc->gfp_mask |= __GFP_THISNODE; 972 dst = alloc_migration_target(src, (unsigned long)mtc); 973 if (dst) 974 return dst; 975 976 mtc->gfp_mask &= ~__GFP_THISNODE; 977 mtc->nmask = allowed_mask; 978 979 return alloc_migration_target(src, (unsigned long)mtc); 980 } 981 982 /* 983 * Take folios on @demote_folios and attempt to demote them to another node. 984 * Folios which are not demoted are left on @demote_folios. 985 */ 986 static unsigned int demote_folio_list(struct list_head *demote_folios, 987 struct pglist_data *pgdat) 988 { 989 int target_nid = next_demotion_node(pgdat->node_id); 990 unsigned int nr_succeeded; 991 nodemask_t allowed_mask; 992 993 struct migration_target_control mtc = { 994 /* 995 * Allocate from 'node', or fail quickly and quietly. 996 * When this happens, 'page' will likely just be discarded 997 * instead of migrated. 998 */ 999 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 1000 __GFP_NOMEMALLOC | GFP_NOWAIT, 1001 .nid = target_nid, 1002 .nmask = &allowed_mask, 1003 .reason = MR_DEMOTION, 1004 }; 1005 1006 if (list_empty(demote_folios)) 1007 return 0; 1008 1009 if (target_nid == NUMA_NO_NODE) 1010 return 0; 1011 1012 node_get_allowed_targets(pgdat, &allowed_mask); 1013 1014 /* Demotion ignores all cpuset and mempolicy settings */ 1015 migrate_pages(demote_folios, alloc_migrate_folio, NULL, 1016 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1017 &nr_succeeded); 1018 1019 return nr_succeeded; 1020 } 1021 1022 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1023 { 1024 if (gfp_mask & __GFP_FS) 1025 return true; 1026 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1027 return false; 1028 /* 1029 * We can "enter_fs" for swap-cache with only __GFP_IO 1030 * providing this isn't SWP_FS_OPS. 1031 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1032 * but that will never affect SWP_FS_OPS, so the data_race 1033 * is safe. 1034 */ 1035 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1036 } 1037 1038 /* 1039 * shrink_folio_list() returns the number of reclaimed pages 1040 */ 1041 static unsigned int shrink_folio_list(struct list_head *folio_list, 1042 struct pglist_data *pgdat, struct scan_control *sc, 1043 struct reclaim_stat *stat, bool ignore_references) 1044 { 1045 struct folio_batch free_folios; 1046 LIST_HEAD(ret_folios); 1047 LIST_HEAD(demote_folios); 1048 unsigned int nr_reclaimed = 0; 1049 unsigned int pgactivate = 0; 1050 bool do_demote_pass; 1051 struct swap_iocb *plug = NULL; 1052 1053 folio_batch_init(&free_folios); 1054 memset(stat, 0, sizeof(*stat)); 1055 cond_resched(); 1056 do_demote_pass = can_demote(pgdat->node_id, sc); 1057 1058 retry: 1059 while (!list_empty(folio_list)) { 1060 struct address_space *mapping; 1061 struct folio *folio; 1062 enum folio_references references = FOLIOREF_RECLAIM; 1063 bool dirty, writeback; 1064 unsigned int nr_pages; 1065 1066 cond_resched(); 1067 1068 folio = lru_to_folio(folio_list); 1069 list_del(&folio->lru); 1070 1071 if (!folio_trylock(folio)) 1072 goto keep; 1073 1074 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1075 1076 nr_pages = folio_nr_pages(folio); 1077 1078 /* Account the number of base pages */ 1079 sc->nr_scanned += nr_pages; 1080 1081 if (unlikely(!folio_evictable(folio))) 1082 goto activate_locked; 1083 1084 if (!sc->may_unmap && folio_mapped(folio)) 1085 goto keep_locked; 1086 1087 /* folio_update_gen() tried to promote this page? */ 1088 if (lru_gen_enabled() && !ignore_references && 1089 folio_mapped(folio) && folio_test_referenced(folio)) 1090 goto keep_locked; 1091 1092 /* 1093 * The number of dirty pages determines if a node is marked 1094 * reclaim_congested. kswapd will stall and start writing 1095 * folios if the tail of the LRU is all dirty unqueued folios. 1096 */ 1097 folio_check_dirty_writeback(folio, &dirty, &writeback); 1098 if (dirty || writeback) 1099 stat->nr_dirty += nr_pages; 1100 1101 if (dirty && !writeback) 1102 stat->nr_unqueued_dirty += nr_pages; 1103 1104 /* 1105 * Treat this folio as congested if folios are cycling 1106 * through the LRU so quickly that the folios marked 1107 * for immediate reclaim are making it to the end of 1108 * the LRU a second time. 1109 */ 1110 if (writeback && folio_test_reclaim(folio)) 1111 stat->nr_congested += nr_pages; 1112 1113 /* 1114 * If a folio at the tail of the LRU is under writeback, there 1115 * are three cases to consider. 1116 * 1117 * 1) If reclaim is encountering an excessive number 1118 * of folios under writeback and this folio has both 1119 * the writeback and reclaim flags set, then it 1120 * indicates that folios are being queued for I/O but 1121 * are being recycled through the LRU before the I/O 1122 * can complete. Waiting on the folio itself risks an 1123 * indefinite stall if it is impossible to writeback 1124 * the folio due to I/O error or disconnected storage 1125 * so instead note that the LRU is being scanned too 1126 * quickly and the caller can stall after the folio 1127 * list has been processed. 1128 * 1129 * 2) Global or new memcg reclaim encounters a folio that is 1130 * not marked for immediate reclaim, or the caller does not 1131 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1132 * not to fs). In this case mark the folio for immediate 1133 * reclaim and continue scanning. 1134 * 1135 * Require may_enter_fs() because we would wait on fs, which 1136 * may not have submitted I/O yet. And the loop driver might 1137 * enter reclaim, and deadlock if it waits on a folio for 1138 * which it is needed to do the write (loop masks off 1139 * __GFP_IO|__GFP_FS for this reason); but more thought 1140 * would probably show more reasons. 1141 * 1142 * 3) Legacy memcg encounters a folio that already has the 1143 * reclaim flag set. memcg does not have any dirty folio 1144 * throttling so we could easily OOM just because too many 1145 * folios are in writeback and there is nothing else to 1146 * reclaim. Wait for the writeback to complete. 1147 * 1148 * In cases 1) and 2) we activate the folios to get them out of 1149 * the way while we continue scanning for clean folios on the 1150 * inactive list and refilling from the active list. The 1151 * observation here is that waiting for disk writes is more 1152 * expensive than potentially causing reloads down the line. 1153 * Since they're marked for immediate reclaim, they won't put 1154 * memory pressure on the cache working set any longer than it 1155 * takes to write them to disk. 1156 */ 1157 if (folio_test_writeback(folio)) { 1158 /* Case 1 above */ 1159 if (current_is_kswapd() && 1160 folio_test_reclaim(folio) && 1161 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1162 stat->nr_immediate += nr_pages; 1163 goto activate_locked; 1164 1165 /* Case 2 above */ 1166 } else if (writeback_throttling_sane(sc) || 1167 !folio_test_reclaim(folio) || 1168 !may_enter_fs(folio, sc->gfp_mask)) { 1169 /* 1170 * This is slightly racy - 1171 * folio_end_writeback() might have 1172 * just cleared the reclaim flag, then 1173 * setting the reclaim flag here ends up 1174 * interpreted as the readahead flag - but 1175 * that does not matter enough to care. 1176 * What we do want is for this folio to 1177 * have the reclaim flag set next time 1178 * memcg reclaim reaches the tests above, 1179 * so it will then wait for writeback to 1180 * avoid OOM; and it's also appropriate 1181 * in global reclaim. 1182 */ 1183 folio_set_reclaim(folio); 1184 stat->nr_writeback += nr_pages; 1185 goto activate_locked; 1186 1187 /* Case 3 above */ 1188 } else { 1189 folio_unlock(folio); 1190 folio_wait_writeback(folio); 1191 /* then go back and try same folio again */ 1192 list_add_tail(&folio->lru, folio_list); 1193 continue; 1194 } 1195 } 1196 1197 if (!ignore_references) 1198 references = folio_check_references(folio, sc); 1199 1200 switch (references) { 1201 case FOLIOREF_ACTIVATE: 1202 goto activate_locked; 1203 case FOLIOREF_KEEP: 1204 stat->nr_ref_keep += nr_pages; 1205 goto keep_locked; 1206 case FOLIOREF_RECLAIM: 1207 case FOLIOREF_RECLAIM_CLEAN: 1208 ; /* try to reclaim the folio below */ 1209 } 1210 1211 /* 1212 * Before reclaiming the folio, try to relocate 1213 * its contents to another node. 1214 */ 1215 if (do_demote_pass && 1216 (thp_migration_supported() || !folio_test_large(folio))) { 1217 list_add(&folio->lru, &demote_folios); 1218 folio_unlock(folio); 1219 continue; 1220 } 1221 1222 /* 1223 * Anonymous process memory has backing store? 1224 * Try to allocate it some swap space here. 1225 * Lazyfree folio could be freed directly 1226 */ 1227 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1228 if (!folio_test_swapcache(folio)) { 1229 if (!(sc->gfp_mask & __GFP_IO)) 1230 goto keep_locked; 1231 if (folio_maybe_dma_pinned(folio)) 1232 goto keep_locked; 1233 if (folio_test_large(folio)) { 1234 /* cannot split folio, skip it */ 1235 if (!can_split_folio(folio, 1, NULL)) 1236 goto activate_locked; 1237 /* 1238 * Split partially mapped folios right away. 1239 * We can free the unmapped pages without IO. 1240 */ 1241 if (data_race(!list_empty(&folio->_deferred_list) && 1242 folio_test_partially_mapped(folio)) && 1243 split_folio_to_list(folio, folio_list)) 1244 goto activate_locked; 1245 } 1246 if (!add_to_swap(folio)) { 1247 int __maybe_unused order = folio_order(folio); 1248 1249 if (!folio_test_large(folio)) 1250 goto activate_locked_split; 1251 /* Fallback to swap normal pages */ 1252 if (split_folio_to_list(folio, folio_list)) 1253 goto activate_locked; 1254 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1255 if (nr_pages >= HPAGE_PMD_NR) { 1256 count_memcg_folio_events(folio, 1257 THP_SWPOUT_FALLBACK, 1); 1258 count_vm_event(THP_SWPOUT_FALLBACK); 1259 } 1260 count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK); 1261 #endif 1262 if (!add_to_swap(folio)) 1263 goto activate_locked_split; 1264 } 1265 } 1266 } 1267 1268 /* 1269 * If the folio was split above, the tail pages will make 1270 * their own pass through this function and be accounted 1271 * then. 1272 */ 1273 if ((nr_pages > 1) && !folio_test_large(folio)) { 1274 sc->nr_scanned -= (nr_pages - 1); 1275 nr_pages = 1; 1276 } 1277 1278 /* 1279 * The folio is mapped into the page tables of one or more 1280 * processes. Try to unmap it here. 1281 */ 1282 if (folio_mapped(folio)) { 1283 enum ttu_flags flags = TTU_BATCH_FLUSH; 1284 bool was_swapbacked = folio_test_swapbacked(folio); 1285 1286 if (folio_test_pmd_mappable(folio)) 1287 flags |= TTU_SPLIT_HUGE_PMD; 1288 /* 1289 * Without TTU_SYNC, try_to_unmap will only begin to 1290 * hold PTL from the first present PTE within a large 1291 * folio. Some initial PTEs might be skipped due to 1292 * races with parallel PTE writes in which PTEs can be 1293 * cleared temporarily before being written new present 1294 * values. This will lead to a large folio is still 1295 * mapped while some subpages have been partially 1296 * unmapped after try_to_unmap; TTU_SYNC helps 1297 * try_to_unmap acquire PTL from the first PTE, 1298 * eliminating the influence of temporary PTE values. 1299 */ 1300 if (folio_test_large(folio)) 1301 flags |= TTU_SYNC; 1302 1303 try_to_unmap(folio, flags); 1304 if (folio_mapped(folio)) { 1305 stat->nr_unmap_fail += nr_pages; 1306 if (!was_swapbacked && 1307 folio_test_swapbacked(folio)) 1308 stat->nr_lazyfree_fail += nr_pages; 1309 goto activate_locked; 1310 } 1311 } 1312 1313 /* 1314 * Folio is unmapped now so it cannot be newly pinned anymore. 1315 * No point in trying to reclaim folio if it is pinned. 1316 * Furthermore we don't want to reclaim underlying fs metadata 1317 * if the folio is pinned and thus potentially modified by the 1318 * pinning process as that may upset the filesystem. 1319 */ 1320 if (folio_maybe_dma_pinned(folio)) 1321 goto activate_locked; 1322 1323 mapping = folio_mapping(folio); 1324 if (folio_test_dirty(folio)) { 1325 /* 1326 * Only kswapd can writeback filesystem folios 1327 * to avoid risk of stack overflow. But avoid 1328 * injecting inefficient single-folio I/O into 1329 * flusher writeback as much as possible: only 1330 * write folios when we've encountered many 1331 * dirty folios, and when we've already scanned 1332 * the rest of the LRU for clean folios and see 1333 * the same dirty folios again (with the reclaim 1334 * flag set). 1335 */ 1336 if (folio_is_file_lru(folio) && 1337 (!current_is_kswapd() || 1338 !folio_test_reclaim(folio) || 1339 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1340 /* 1341 * Immediately reclaim when written back. 1342 * Similar in principle to folio_deactivate() 1343 * except we already have the folio isolated 1344 * and know it's dirty 1345 */ 1346 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1347 nr_pages); 1348 folio_set_reclaim(folio); 1349 1350 goto activate_locked; 1351 } 1352 1353 if (references == FOLIOREF_RECLAIM_CLEAN) 1354 goto keep_locked; 1355 if (!may_enter_fs(folio, sc->gfp_mask)) 1356 goto keep_locked; 1357 if (!sc->may_writepage) 1358 goto keep_locked; 1359 1360 /* 1361 * Folio is dirty. Flush the TLB if a writable entry 1362 * potentially exists to avoid CPU writes after I/O 1363 * starts and then write it out here. 1364 */ 1365 try_to_unmap_flush_dirty(); 1366 switch (pageout(folio, mapping, &plug, folio_list)) { 1367 case PAGE_KEEP: 1368 goto keep_locked; 1369 case PAGE_ACTIVATE: 1370 /* 1371 * If shmem folio is split when writeback to swap, 1372 * the tail pages will make their own pass through 1373 * this function and be accounted then. 1374 */ 1375 if (nr_pages > 1 && !folio_test_large(folio)) { 1376 sc->nr_scanned -= (nr_pages - 1); 1377 nr_pages = 1; 1378 } 1379 goto activate_locked; 1380 case PAGE_SUCCESS: 1381 if (nr_pages > 1 && !folio_test_large(folio)) { 1382 sc->nr_scanned -= (nr_pages - 1); 1383 nr_pages = 1; 1384 } 1385 stat->nr_pageout += nr_pages; 1386 1387 if (folio_test_writeback(folio)) 1388 goto keep; 1389 if (folio_test_dirty(folio)) 1390 goto keep; 1391 1392 /* 1393 * A synchronous write - probably a ramdisk. Go 1394 * ahead and try to reclaim the folio. 1395 */ 1396 if (!folio_trylock(folio)) 1397 goto keep; 1398 if (folio_test_dirty(folio) || 1399 folio_test_writeback(folio)) 1400 goto keep_locked; 1401 mapping = folio_mapping(folio); 1402 fallthrough; 1403 case PAGE_CLEAN: 1404 ; /* try to free the folio below */ 1405 } 1406 } 1407 1408 /* 1409 * If the folio has buffers, try to free the buffer 1410 * mappings associated with this folio. If we succeed 1411 * we try to free the folio as well. 1412 * 1413 * We do this even if the folio is dirty. 1414 * filemap_release_folio() does not perform I/O, but it 1415 * is possible for a folio to have the dirty flag set, 1416 * but it is actually clean (all its buffers are clean). 1417 * This happens if the buffers were written out directly, 1418 * with submit_bh(). ext3 will do this, as well as 1419 * the blockdev mapping. filemap_release_folio() will 1420 * discover that cleanness and will drop the buffers 1421 * and mark the folio clean - it can be freed. 1422 * 1423 * Rarely, folios can have buffers and no ->mapping. 1424 * These are the folios which were not successfully 1425 * invalidated in truncate_cleanup_folio(). We try to 1426 * drop those buffers here and if that worked, and the 1427 * folio is no longer mapped into process address space 1428 * (refcount == 1) it can be freed. Otherwise, leave 1429 * the folio on the LRU so it is swappable. 1430 */ 1431 if (folio_needs_release(folio)) { 1432 if (!filemap_release_folio(folio, sc->gfp_mask)) 1433 goto activate_locked; 1434 if (!mapping && folio_ref_count(folio) == 1) { 1435 folio_unlock(folio); 1436 if (folio_put_testzero(folio)) 1437 goto free_it; 1438 else { 1439 /* 1440 * rare race with speculative reference. 1441 * the speculative reference will free 1442 * this folio shortly, so we may 1443 * increment nr_reclaimed here (and 1444 * leave it off the LRU). 1445 */ 1446 nr_reclaimed += nr_pages; 1447 continue; 1448 } 1449 } 1450 } 1451 1452 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 1453 /* follow __remove_mapping for reference */ 1454 if (!folio_ref_freeze(folio, 1)) 1455 goto keep_locked; 1456 /* 1457 * The folio has only one reference left, which is 1458 * from the isolation. After the caller puts the 1459 * folio back on the lru and drops the reference, the 1460 * folio will be freed anyway. It doesn't matter 1461 * which lru it goes on. So we don't bother checking 1462 * the dirty flag here. 1463 */ 1464 count_vm_events(PGLAZYFREED, nr_pages); 1465 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 1466 } else if (!mapping || !__remove_mapping(mapping, folio, true, 1467 sc->target_mem_cgroup)) 1468 goto keep_locked; 1469 1470 folio_unlock(folio); 1471 free_it: 1472 /* 1473 * Folio may get swapped out as a whole, need to account 1474 * all pages in it. 1475 */ 1476 nr_reclaimed += nr_pages; 1477 1478 folio_undo_large_rmappable(folio); 1479 if (folio_batch_add(&free_folios, folio) == 0) { 1480 mem_cgroup_uncharge_folios(&free_folios); 1481 try_to_unmap_flush(); 1482 free_unref_folios(&free_folios); 1483 } 1484 continue; 1485 1486 activate_locked_split: 1487 /* 1488 * The tail pages that are failed to add into swap cache 1489 * reach here. Fixup nr_scanned and nr_pages. 1490 */ 1491 if (nr_pages > 1) { 1492 sc->nr_scanned -= (nr_pages - 1); 1493 nr_pages = 1; 1494 } 1495 activate_locked: 1496 /* Not a candidate for swapping, so reclaim swap space. */ 1497 if (folio_test_swapcache(folio) && 1498 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 1499 folio_free_swap(folio); 1500 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1501 if (!folio_test_mlocked(folio)) { 1502 int type = folio_is_file_lru(folio); 1503 folio_set_active(folio); 1504 stat->nr_activate[type] += nr_pages; 1505 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 1506 } 1507 keep_locked: 1508 folio_unlock(folio); 1509 keep: 1510 list_add(&folio->lru, &ret_folios); 1511 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 1512 folio_test_unevictable(folio), folio); 1513 } 1514 /* 'folio_list' is always empty here */ 1515 1516 /* Migrate folios selected for demotion */ 1517 stat->nr_demoted = demote_folio_list(&demote_folios, pgdat); 1518 nr_reclaimed += stat->nr_demoted; 1519 /* Folios that could not be demoted are still in @demote_folios */ 1520 if (!list_empty(&demote_folios)) { 1521 /* Folios which weren't demoted go back on @folio_list */ 1522 list_splice_init(&demote_folios, folio_list); 1523 1524 /* 1525 * goto retry to reclaim the undemoted folios in folio_list if 1526 * desired. 1527 * 1528 * Reclaiming directly from top tier nodes is not often desired 1529 * due to it breaking the LRU ordering: in general memory 1530 * should be reclaimed from lower tier nodes and demoted from 1531 * top tier nodes. 1532 * 1533 * However, disabling reclaim from top tier nodes entirely 1534 * would cause ooms in edge scenarios where lower tier memory 1535 * is unreclaimable for whatever reason, eg memory being 1536 * mlocked or too hot to reclaim. We can disable reclaim 1537 * from top tier nodes in proactive reclaim though as that is 1538 * not real memory pressure. 1539 */ 1540 if (!sc->proactive) { 1541 do_demote_pass = false; 1542 goto retry; 1543 } 1544 } 1545 1546 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1547 1548 mem_cgroup_uncharge_folios(&free_folios); 1549 try_to_unmap_flush(); 1550 free_unref_folios(&free_folios); 1551 1552 list_splice(&ret_folios, folio_list); 1553 count_vm_events(PGACTIVATE, pgactivate); 1554 1555 if (plug) 1556 swap_write_unplug(plug); 1557 return nr_reclaimed; 1558 } 1559 1560 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1561 struct list_head *folio_list) 1562 { 1563 struct scan_control sc = { 1564 .gfp_mask = GFP_KERNEL, 1565 .may_unmap = 1, 1566 }; 1567 struct reclaim_stat stat; 1568 unsigned int nr_reclaimed; 1569 struct folio *folio, *next; 1570 LIST_HEAD(clean_folios); 1571 unsigned int noreclaim_flag; 1572 1573 list_for_each_entry_safe(folio, next, folio_list, lru) { 1574 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 1575 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 1576 !folio_test_unevictable(folio)) { 1577 folio_clear_active(folio); 1578 list_move(&folio->lru, &clean_folios); 1579 } 1580 } 1581 1582 /* 1583 * We should be safe here since we are only dealing with file pages and 1584 * we are not kswapd and therefore cannot write dirty file pages. But 1585 * call memalloc_noreclaim_save() anyway, just in case these conditions 1586 * change in the future. 1587 */ 1588 noreclaim_flag = memalloc_noreclaim_save(); 1589 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 1590 &stat, true); 1591 memalloc_noreclaim_restore(noreclaim_flag); 1592 1593 list_splice(&clean_folios, folio_list); 1594 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1595 -(long)nr_reclaimed); 1596 /* 1597 * Since lazyfree pages are isolated from file LRU from the beginning, 1598 * they will rotate back to anonymous LRU in the end if it failed to 1599 * discard so isolated count will be mismatched. 1600 * Compensate the isolated count for both LRU lists. 1601 */ 1602 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1603 stat.nr_lazyfree_fail); 1604 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1605 -(long)stat.nr_lazyfree_fail); 1606 return nr_reclaimed; 1607 } 1608 1609 /* 1610 * Update LRU sizes after isolating pages. The LRU size updates must 1611 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1612 */ 1613 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1614 enum lru_list lru, unsigned long *nr_zone_taken) 1615 { 1616 int zid; 1617 1618 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1619 if (!nr_zone_taken[zid]) 1620 continue; 1621 1622 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1623 } 1624 1625 } 1626 1627 #ifdef CONFIG_CMA 1628 /* 1629 * It is waste of effort to scan and reclaim CMA pages if it is not available 1630 * for current allocation context. Kswapd can not be enrolled as it can not 1631 * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL 1632 */ 1633 static bool skip_cma(struct folio *folio, struct scan_control *sc) 1634 { 1635 return !current_is_kswapd() && 1636 gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE && 1637 folio_migratetype(folio) == MIGRATE_CMA; 1638 } 1639 #else 1640 static bool skip_cma(struct folio *folio, struct scan_control *sc) 1641 { 1642 return false; 1643 } 1644 #endif 1645 1646 /* 1647 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1648 * 1649 * lruvec->lru_lock is heavily contended. Some of the functions that 1650 * shrink the lists perform better by taking out a batch of pages 1651 * and working on them outside the LRU lock. 1652 * 1653 * For pagecache intensive workloads, this function is the hottest 1654 * spot in the kernel (apart from copy_*_user functions). 1655 * 1656 * Lru_lock must be held before calling this function. 1657 * 1658 * @nr_to_scan: The number of eligible pages to look through on the list. 1659 * @lruvec: The LRU vector to pull pages from. 1660 * @dst: The temp list to put pages on to. 1661 * @nr_scanned: The number of pages that were scanned. 1662 * @sc: The scan_control struct for this reclaim session 1663 * @lru: LRU list id for isolating 1664 * 1665 * returns how many pages were moved onto *@dst. 1666 */ 1667 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 1668 struct lruvec *lruvec, struct list_head *dst, 1669 unsigned long *nr_scanned, struct scan_control *sc, 1670 enum lru_list lru) 1671 { 1672 struct list_head *src = &lruvec->lists[lru]; 1673 unsigned long nr_taken = 0; 1674 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1675 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1676 unsigned long skipped = 0; 1677 unsigned long scan, total_scan, nr_pages; 1678 LIST_HEAD(folios_skipped); 1679 1680 total_scan = 0; 1681 scan = 0; 1682 while (scan < nr_to_scan && !list_empty(src)) { 1683 struct list_head *move_to = src; 1684 struct folio *folio; 1685 1686 folio = lru_to_folio(src); 1687 prefetchw_prev_lru_folio(folio, src, flags); 1688 1689 nr_pages = folio_nr_pages(folio); 1690 total_scan += nr_pages; 1691 1692 if (folio_zonenum(folio) > sc->reclaim_idx || 1693 skip_cma(folio, sc)) { 1694 nr_skipped[folio_zonenum(folio)] += nr_pages; 1695 move_to = &folios_skipped; 1696 goto move; 1697 } 1698 1699 /* 1700 * Do not count skipped folios because that makes the function 1701 * return with no isolated folios if the LRU mostly contains 1702 * ineligible folios. This causes the VM to not reclaim any 1703 * folios, triggering a premature OOM. 1704 * Account all pages in a folio. 1705 */ 1706 scan += nr_pages; 1707 1708 if (!folio_test_lru(folio)) 1709 goto move; 1710 if (!sc->may_unmap && folio_mapped(folio)) 1711 goto move; 1712 1713 /* 1714 * Be careful not to clear the lru flag until after we're 1715 * sure the folio is not being freed elsewhere -- the 1716 * folio release code relies on it. 1717 */ 1718 if (unlikely(!folio_try_get(folio))) 1719 goto move; 1720 1721 if (!folio_test_clear_lru(folio)) { 1722 /* Another thread is already isolating this folio */ 1723 folio_put(folio); 1724 goto move; 1725 } 1726 1727 nr_taken += nr_pages; 1728 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 1729 move_to = dst; 1730 move: 1731 list_move(&folio->lru, move_to); 1732 } 1733 1734 /* 1735 * Splice any skipped folios to the start of the LRU list. Note that 1736 * this disrupts the LRU order when reclaiming for lower zones but 1737 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1738 * scanning would soon rescan the same folios to skip and waste lots 1739 * of cpu cycles. 1740 */ 1741 if (!list_empty(&folios_skipped)) { 1742 int zid; 1743 1744 list_splice(&folios_skipped, src); 1745 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1746 if (!nr_skipped[zid]) 1747 continue; 1748 1749 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1750 skipped += nr_skipped[zid]; 1751 } 1752 } 1753 *nr_scanned = total_scan; 1754 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1755 total_scan, skipped, nr_taken, lru); 1756 update_lru_sizes(lruvec, lru, nr_zone_taken); 1757 return nr_taken; 1758 } 1759 1760 /** 1761 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 1762 * @folio: Folio to isolate from its LRU list. 1763 * 1764 * Isolate a @folio from an LRU list and adjust the vmstat statistic 1765 * corresponding to whatever LRU list the folio was on. 1766 * 1767 * The folio will have its LRU flag cleared. If it was found on the 1768 * active list, it will have the Active flag set. If it was found on the 1769 * unevictable list, it will have the Unevictable flag set. These flags 1770 * may need to be cleared by the caller before letting the page go. 1771 * 1772 * Context: 1773 * 1774 * (1) Must be called with an elevated refcount on the folio. This is a 1775 * fundamental difference from isolate_lru_folios() (which is called 1776 * without a stable reference). 1777 * (2) The lru_lock must not be held. 1778 * (3) Interrupts must be enabled. 1779 * 1780 * Return: true if the folio was removed from an LRU list. 1781 * false if the folio was not on an LRU list. 1782 */ 1783 bool folio_isolate_lru(struct folio *folio) 1784 { 1785 bool ret = false; 1786 1787 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 1788 1789 if (folio_test_clear_lru(folio)) { 1790 struct lruvec *lruvec; 1791 1792 folio_get(folio); 1793 lruvec = folio_lruvec_lock_irq(folio); 1794 lruvec_del_folio(lruvec, folio); 1795 unlock_page_lruvec_irq(lruvec); 1796 ret = true; 1797 } 1798 1799 return ret; 1800 } 1801 1802 /* 1803 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1804 * then get rescheduled. When there are massive number of tasks doing page 1805 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1806 * the LRU list will go small and be scanned faster than necessary, leading to 1807 * unnecessary swapping, thrashing and OOM. 1808 */ 1809 static bool too_many_isolated(struct pglist_data *pgdat, int file, 1810 struct scan_control *sc) 1811 { 1812 unsigned long inactive, isolated; 1813 bool too_many; 1814 1815 if (current_is_kswapd()) 1816 return false; 1817 1818 if (!writeback_throttling_sane(sc)) 1819 return false; 1820 1821 if (file) { 1822 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1823 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1824 } else { 1825 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1826 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1827 } 1828 1829 /* 1830 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1831 * won't get blocked by normal direct-reclaimers, forming a circular 1832 * deadlock. 1833 */ 1834 if (gfp_has_io_fs(sc->gfp_mask)) 1835 inactive >>= 3; 1836 1837 too_many = isolated > inactive; 1838 1839 /* Wake up tasks throttled due to too_many_isolated. */ 1840 if (!too_many) 1841 wake_throttle_isolated(pgdat); 1842 1843 return too_many; 1844 } 1845 1846 /* 1847 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 1848 * 1849 * Returns the number of pages moved to the given lruvec. 1850 */ 1851 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 1852 struct list_head *list) 1853 { 1854 int nr_pages, nr_moved = 0; 1855 struct folio_batch free_folios; 1856 1857 folio_batch_init(&free_folios); 1858 while (!list_empty(list)) { 1859 struct folio *folio = lru_to_folio(list); 1860 1861 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 1862 list_del(&folio->lru); 1863 if (unlikely(!folio_evictable(folio))) { 1864 spin_unlock_irq(&lruvec->lru_lock); 1865 folio_putback_lru(folio); 1866 spin_lock_irq(&lruvec->lru_lock); 1867 continue; 1868 } 1869 1870 /* 1871 * The folio_set_lru needs to be kept here for list integrity. 1872 * Otherwise: 1873 * #0 move_folios_to_lru #1 release_pages 1874 * if (!folio_put_testzero()) 1875 * if (folio_put_testzero()) 1876 * !lru //skip lru_lock 1877 * folio_set_lru() 1878 * list_add(&folio->lru,) 1879 * list_add(&folio->lru,) 1880 */ 1881 folio_set_lru(folio); 1882 1883 if (unlikely(folio_put_testzero(folio))) { 1884 __folio_clear_lru_flags(folio); 1885 1886 folio_undo_large_rmappable(folio); 1887 if (folio_batch_add(&free_folios, folio) == 0) { 1888 spin_unlock_irq(&lruvec->lru_lock); 1889 mem_cgroup_uncharge_folios(&free_folios); 1890 free_unref_folios(&free_folios); 1891 spin_lock_irq(&lruvec->lru_lock); 1892 } 1893 1894 continue; 1895 } 1896 1897 /* 1898 * All pages were isolated from the same lruvec (and isolation 1899 * inhibits memcg migration). 1900 */ 1901 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 1902 lruvec_add_folio(lruvec, folio); 1903 nr_pages = folio_nr_pages(folio); 1904 nr_moved += nr_pages; 1905 if (folio_test_active(folio)) 1906 workingset_age_nonresident(lruvec, nr_pages); 1907 } 1908 1909 if (free_folios.nr) { 1910 spin_unlock_irq(&lruvec->lru_lock); 1911 mem_cgroup_uncharge_folios(&free_folios); 1912 free_unref_folios(&free_folios); 1913 spin_lock_irq(&lruvec->lru_lock); 1914 } 1915 1916 return nr_moved; 1917 } 1918 1919 /* 1920 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 1921 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 1922 * we should not throttle. Otherwise it is safe to do so. 1923 */ 1924 static int current_may_throttle(void) 1925 { 1926 return !(current->flags & PF_LOCAL_THROTTLE); 1927 } 1928 1929 /* 1930 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1931 * of reclaimed pages 1932 */ 1933 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 1934 struct lruvec *lruvec, struct scan_control *sc, 1935 enum lru_list lru) 1936 { 1937 LIST_HEAD(folio_list); 1938 unsigned long nr_scanned; 1939 unsigned int nr_reclaimed = 0; 1940 unsigned long nr_taken; 1941 struct reclaim_stat stat; 1942 bool file = is_file_lru(lru); 1943 enum vm_event_item item; 1944 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1945 bool stalled = false; 1946 1947 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1948 if (stalled) 1949 return 0; 1950 1951 /* wait a bit for the reclaimer. */ 1952 stalled = true; 1953 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 1954 1955 /* We are about to die and free our memory. Return now. */ 1956 if (fatal_signal_pending(current)) 1957 return SWAP_CLUSTER_MAX; 1958 } 1959 1960 lru_add_drain(); 1961 1962 spin_lock_irq(&lruvec->lru_lock); 1963 1964 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 1965 &nr_scanned, sc, lru); 1966 1967 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1968 item = PGSCAN_KSWAPD + reclaimer_offset(); 1969 if (!cgroup_reclaim(sc)) 1970 __count_vm_events(item, nr_scanned); 1971 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1972 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 1973 1974 spin_unlock_irq(&lruvec->lru_lock); 1975 1976 if (nr_taken == 0) 1977 return 0; 1978 1979 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 1980 1981 spin_lock_irq(&lruvec->lru_lock); 1982 move_folios_to_lru(lruvec, &folio_list); 1983 1984 __mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(), 1985 stat.nr_demoted); 1986 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1987 item = PGSTEAL_KSWAPD + reclaimer_offset(); 1988 if (!cgroup_reclaim(sc)) 1989 __count_vm_events(item, nr_reclaimed); 1990 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1991 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 1992 spin_unlock_irq(&lruvec->lru_lock); 1993 1994 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); 1995 1996 /* 1997 * If dirty folios are scanned that are not queued for IO, it 1998 * implies that flushers are not doing their job. This can 1999 * happen when memory pressure pushes dirty folios to the end of 2000 * the LRU before the dirty limits are breached and the dirty 2001 * data has expired. It can also happen when the proportion of 2002 * dirty folios grows not through writes but through memory 2003 * pressure reclaiming all the clean cache. And in some cases, 2004 * the flushers simply cannot keep up with the allocation 2005 * rate. Nudge the flusher threads in case they are asleep. 2006 */ 2007 if (stat.nr_unqueued_dirty == nr_taken) { 2008 wakeup_flusher_threads(WB_REASON_VMSCAN); 2009 /* 2010 * For cgroupv1 dirty throttling is achieved by waking up 2011 * the kernel flusher here and later waiting on folios 2012 * which are in writeback to finish (see shrink_folio_list()). 2013 * 2014 * Flusher may not be able to issue writeback quickly 2015 * enough for cgroupv1 writeback throttling to work 2016 * on a large system. 2017 */ 2018 if (!writeback_throttling_sane(sc)) 2019 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 2020 } 2021 2022 sc->nr.dirty += stat.nr_dirty; 2023 sc->nr.congested += stat.nr_congested; 2024 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2025 sc->nr.writeback += stat.nr_writeback; 2026 sc->nr.immediate += stat.nr_immediate; 2027 sc->nr.taken += nr_taken; 2028 if (file) 2029 sc->nr.file_taken += nr_taken; 2030 2031 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2032 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2033 return nr_reclaimed; 2034 } 2035 2036 /* 2037 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2038 * 2039 * We move them the other way if the folio is referenced by one or more 2040 * processes. 2041 * 2042 * If the folios are mostly unmapped, the processing is fast and it is 2043 * appropriate to hold lru_lock across the whole operation. But if 2044 * the folios are mapped, the processing is slow (folio_referenced()), so 2045 * we should drop lru_lock around each folio. It's impossible to balance 2046 * this, so instead we remove the folios from the LRU while processing them. 2047 * It is safe to rely on the active flag against the non-LRU folios in here 2048 * because nobody will play with that bit on a non-LRU folio. 2049 * 2050 * The downside is that we have to touch folio->_refcount against each folio. 2051 * But we had to alter folio->flags anyway. 2052 */ 2053 static void shrink_active_list(unsigned long nr_to_scan, 2054 struct lruvec *lruvec, 2055 struct scan_control *sc, 2056 enum lru_list lru) 2057 { 2058 unsigned long nr_taken; 2059 unsigned long nr_scanned; 2060 unsigned long vm_flags; 2061 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2062 LIST_HEAD(l_active); 2063 LIST_HEAD(l_inactive); 2064 unsigned nr_deactivate, nr_activate; 2065 unsigned nr_rotated = 0; 2066 bool file = is_file_lru(lru); 2067 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2068 2069 lru_add_drain(); 2070 2071 spin_lock_irq(&lruvec->lru_lock); 2072 2073 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2074 &nr_scanned, sc, lru); 2075 2076 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2077 2078 if (!cgroup_reclaim(sc)) 2079 __count_vm_events(PGREFILL, nr_scanned); 2080 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2081 2082 spin_unlock_irq(&lruvec->lru_lock); 2083 2084 while (!list_empty(&l_hold)) { 2085 struct folio *folio; 2086 2087 cond_resched(); 2088 folio = lru_to_folio(&l_hold); 2089 list_del(&folio->lru); 2090 2091 if (unlikely(!folio_evictable(folio))) { 2092 folio_putback_lru(folio); 2093 continue; 2094 } 2095 2096 if (unlikely(buffer_heads_over_limit)) { 2097 if (folio_needs_release(folio) && 2098 folio_trylock(folio)) { 2099 filemap_release_folio(folio, 0); 2100 folio_unlock(folio); 2101 } 2102 } 2103 2104 /* Referenced or rmap lock contention: rotate */ 2105 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2106 &vm_flags) != 0) { 2107 /* 2108 * Identify referenced, file-backed active folios and 2109 * give them one more trip around the active list. So 2110 * that executable code get better chances to stay in 2111 * memory under moderate memory pressure. Anon folios 2112 * are not likely to be evicted by use-once streaming 2113 * IO, plus JVM can create lots of anon VM_EXEC folios, 2114 * so we ignore them here. 2115 */ 2116 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2117 nr_rotated += folio_nr_pages(folio); 2118 list_add(&folio->lru, &l_active); 2119 continue; 2120 } 2121 } 2122 2123 folio_clear_active(folio); /* we are de-activating */ 2124 folio_set_workingset(folio); 2125 list_add(&folio->lru, &l_inactive); 2126 } 2127 2128 /* 2129 * Move folios back to the lru list. 2130 */ 2131 spin_lock_irq(&lruvec->lru_lock); 2132 2133 nr_activate = move_folios_to_lru(lruvec, &l_active); 2134 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2135 2136 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2137 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2138 2139 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2140 spin_unlock_irq(&lruvec->lru_lock); 2141 2142 if (nr_rotated) 2143 lru_note_cost(lruvec, file, 0, nr_rotated); 2144 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2145 nr_deactivate, nr_rotated, sc->priority, file); 2146 } 2147 2148 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2149 struct pglist_data *pgdat) 2150 { 2151 struct reclaim_stat dummy_stat; 2152 unsigned int nr_reclaimed; 2153 struct folio *folio; 2154 struct scan_control sc = { 2155 .gfp_mask = GFP_KERNEL, 2156 .may_writepage = 1, 2157 .may_unmap = 1, 2158 .may_swap = 1, 2159 .no_demotion = 1, 2160 }; 2161 2162 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, true); 2163 while (!list_empty(folio_list)) { 2164 folio = lru_to_folio(folio_list); 2165 list_del(&folio->lru); 2166 folio_putback_lru(folio); 2167 } 2168 2169 return nr_reclaimed; 2170 } 2171 2172 unsigned long reclaim_pages(struct list_head *folio_list) 2173 { 2174 int nid; 2175 unsigned int nr_reclaimed = 0; 2176 LIST_HEAD(node_folio_list); 2177 unsigned int noreclaim_flag; 2178 2179 if (list_empty(folio_list)) 2180 return nr_reclaimed; 2181 2182 noreclaim_flag = memalloc_noreclaim_save(); 2183 2184 nid = folio_nid(lru_to_folio(folio_list)); 2185 do { 2186 struct folio *folio = lru_to_folio(folio_list); 2187 2188 if (nid == folio_nid(folio)) { 2189 folio_clear_active(folio); 2190 list_move(&folio->lru, &node_folio_list); 2191 continue; 2192 } 2193 2194 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2195 nid = folio_nid(lru_to_folio(folio_list)); 2196 } while (!list_empty(folio_list)); 2197 2198 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2199 2200 memalloc_noreclaim_restore(noreclaim_flag); 2201 2202 return nr_reclaimed; 2203 } 2204 2205 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2206 struct lruvec *lruvec, struct scan_control *sc) 2207 { 2208 if (is_active_lru(lru)) { 2209 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2210 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2211 else 2212 sc->skipped_deactivate = 1; 2213 return 0; 2214 } 2215 2216 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2217 } 2218 2219 /* 2220 * The inactive anon list should be small enough that the VM never has 2221 * to do too much work. 2222 * 2223 * The inactive file list should be small enough to leave most memory 2224 * to the established workingset on the scan-resistant active list, 2225 * but large enough to avoid thrashing the aggregate readahead window. 2226 * 2227 * Both inactive lists should also be large enough that each inactive 2228 * folio has a chance to be referenced again before it is reclaimed. 2229 * 2230 * If that fails and refaulting is observed, the inactive list grows. 2231 * 2232 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2233 * on this LRU, maintained by the pageout code. An inactive_ratio 2234 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2235 * 2236 * total target max 2237 * memory ratio inactive 2238 * ------------------------------------- 2239 * 10MB 1 5MB 2240 * 100MB 1 50MB 2241 * 1GB 3 250MB 2242 * 10GB 10 0.9GB 2243 * 100GB 31 3GB 2244 * 1TB 101 10GB 2245 * 10TB 320 32GB 2246 */ 2247 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2248 { 2249 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2250 unsigned long inactive, active; 2251 unsigned long inactive_ratio; 2252 unsigned long gb; 2253 2254 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2255 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2256 2257 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2258 if (gb) 2259 inactive_ratio = int_sqrt(10 * gb); 2260 else 2261 inactive_ratio = 1; 2262 2263 return inactive * inactive_ratio < active; 2264 } 2265 2266 enum scan_balance { 2267 SCAN_EQUAL, 2268 SCAN_FRACT, 2269 SCAN_ANON, 2270 SCAN_FILE, 2271 }; 2272 2273 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc) 2274 { 2275 unsigned long file; 2276 struct lruvec *target_lruvec; 2277 2278 if (lru_gen_enabled()) 2279 return; 2280 2281 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2282 2283 /* 2284 * Flush the memory cgroup stats in rate-limited way as we don't need 2285 * most accurate stats here. We may switch to regular stats flushing 2286 * in the future once it is cheap enough. 2287 */ 2288 mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup); 2289 2290 /* 2291 * Determine the scan balance between anon and file LRUs. 2292 */ 2293 spin_lock_irq(&target_lruvec->lru_lock); 2294 sc->anon_cost = target_lruvec->anon_cost; 2295 sc->file_cost = target_lruvec->file_cost; 2296 spin_unlock_irq(&target_lruvec->lru_lock); 2297 2298 /* 2299 * Target desirable inactive:active list ratios for the anon 2300 * and file LRU lists. 2301 */ 2302 if (!sc->force_deactivate) { 2303 unsigned long refaults; 2304 2305 /* 2306 * When refaults are being observed, it means a new 2307 * workingset is being established. Deactivate to get 2308 * rid of any stale active pages quickly. 2309 */ 2310 refaults = lruvec_page_state(target_lruvec, 2311 WORKINGSET_ACTIVATE_ANON); 2312 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2313 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2314 sc->may_deactivate |= DEACTIVATE_ANON; 2315 else 2316 sc->may_deactivate &= ~DEACTIVATE_ANON; 2317 2318 refaults = lruvec_page_state(target_lruvec, 2319 WORKINGSET_ACTIVATE_FILE); 2320 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2321 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2322 sc->may_deactivate |= DEACTIVATE_FILE; 2323 else 2324 sc->may_deactivate &= ~DEACTIVATE_FILE; 2325 } else 2326 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2327 2328 /* 2329 * If we have plenty of inactive file pages that aren't 2330 * thrashing, try to reclaim those first before touching 2331 * anonymous pages. 2332 */ 2333 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2334 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) && 2335 !sc->no_cache_trim_mode) 2336 sc->cache_trim_mode = 1; 2337 else 2338 sc->cache_trim_mode = 0; 2339 2340 /* 2341 * Prevent the reclaimer from falling into the cache trap: as 2342 * cache pages start out inactive, every cache fault will tip 2343 * the scan balance towards the file LRU. And as the file LRU 2344 * shrinks, so does the window for rotation from references. 2345 * This means we have a runaway feedback loop where a tiny 2346 * thrashing file LRU becomes infinitely more attractive than 2347 * anon pages. Try to detect this based on file LRU size. 2348 */ 2349 if (!cgroup_reclaim(sc)) { 2350 unsigned long total_high_wmark = 0; 2351 unsigned long free, anon; 2352 int z; 2353 2354 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2355 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2356 node_page_state(pgdat, NR_INACTIVE_FILE); 2357 2358 for (z = 0; z < MAX_NR_ZONES; z++) { 2359 struct zone *zone = &pgdat->node_zones[z]; 2360 2361 if (!managed_zone(zone)) 2362 continue; 2363 2364 total_high_wmark += high_wmark_pages(zone); 2365 } 2366 2367 /* 2368 * Consider anon: if that's low too, this isn't a 2369 * runaway file reclaim problem, but rather just 2370 * extreme pressure. Reclaim as per usual then. 2371 */ 2372 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2373 2374 sc->file_is_tiny = 2375 file + free <= total_high_wmark && 2376 !(sc->may_deactivate & DEACTIVATE_ANON) && 2377 anon >> sc->priority; 2378 } 2379 } 2380 2381 /* 2382 * Determine how aggressively the anon and file LRU lists should be 2383 * scanned. 2384 * 2385 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 2386 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 2387 */ 2388 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2389 unsigned long *nr) 2390 { 2391 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2392 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2393 unsigned long anon_cost, file_cost, total_cost; 2394 int swappiness = sc_swappiness(sc, memcg); 2395 u64 fraction[ANON_AND_FILE]; 2396 u64 denominator = 0; /* gcc */ 2397 enum scan_balance scan_balance; 2398 unsigned long ap, fp; 2399 enum lru_list lru; 2400 2401 /* If we have no swap space, do not bother scanning anon folios. */ 2402 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2403 scan_balance = SCAN_FILE; 2404 goto out; 2405 } 2406 2407 /* 2408 * Global reclaim will swap to prevent OOM even with no 2409 * swappiness, but memcg users want to use this knob to 2410 * disable swapping for individual groups completely when 2411 * using the memory controller's swap limit feature would be 2412 * too expensive. 2413 */ 2414 if (cgroup_reclaim(sc) && !swappiness) { 2415 scan_balance = SCAN_FILE; 2416 goto out; 2417 } 2418 2419 /* 2420 * Do not apply any pressure balancing cleverness when the 2421 * system is close to OOM, scan both anon and file equally 2422 * (unless the swappiness setting disagrees with swapping). 2423 */ 2424 if (!sc->priority && swappiness) { 2425 scan_balance = SCAN_EQUAL; 2426 goto out; 2427 } 2428 2429 /* 2430 * If the system is almost out of file pages, force-scan anon. 2431 */ 2432 if (sc->file_is_tiny) { 2433 scan_balance = SCAN_ANON; 2434 goto out; 2435 } 2436 2437 /* 2438 * If there is enough inactive page cache, we do not reclaim 2439 * anything from the anonymous working right now. 2440 */ 2441 if (sc->cache_trim_mode) { 2442 scan_balance = SCAN_FILE; 2443 goto out; 2444 } 2445 2446 scan_balance = SCAN_FRACT; 2447 /* 2448 * Calculate the pressure balance between anon and file pages. 2449 * 2450 * The amount of pressure we put on each LRU is inversely 2451 * proportional to the cost of reclaiming each list, as 2452 * determined by the share of pages that are refaulting, times 2453 * the relative IO cost of bringing back a swapped out 2454 * anonymous page vs reloading a filesystem page (swappiness). 2455 * 2456 * Although we limit that influence to ensure no list gets 2457 * left behind completely: at least a third of the pressure is 2458 * applied, before swappiness. 2459 * 2460 * With swappiness at 100, anon and file have equal IO cost. 2461 */ 2462 total_cost = sc->anon_cost + sc->file_cost; 2463 anon_cost = total_cost + sc->anon_cost; 2464 file_cost = total_cost + sc->file_cost; 2465 total_cost = anon_cost + file_cost; 2466 2467 ap = swappiness * (total_cost + 1); 2468 ap /= anon_cost + 1; 2469 2470 fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1); 2471 fp /= file_cost + 1; 2472 2473 fraction[0] = ap; 2474 fraction[1] = fp; 2475 denominator = ap + fp; 2476 out: 2477 for_each_evictable_lru(lru) { 2478 bool file = is_file_lru(lru); 2479 unsigned long lruvec_size; 2480 unsigned long low, min; 2481 unsigned long scan; 2482 2483 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2484 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2485 &min, &low); 2486 2487 if (min || low) { 2488 /* 2489 * Scale a cgroup's reclaim pressure by proportioning 2490 * its current usage to its memory.low or memory.min 2491 * setting. 2492 * 2493 * This is important, as otherwise scanning aggression 2494 * becomes extremely binary -- from nothing as we 2495 * approach the memory protection threshold, to totally 2496 * nominal as we exceed it. This results in requiring 2497 * setting extremely liberal protection thresholds. It 2498 * also means we simply get no protection at all if we 2499 * set it too low, which is not ideal. 2500 * 2501 * If there is any protection in place, we reduce scan 2502 * pressure by how much of the total memory used is 2503 * within protection thresholds. 2504 * 2505 * There is one special case: in the first reclaim pass, 2506 * we skip over all groups that are within their low 2507 * protection. If that fails to reclaim enough pages to 2508 * satisfy the reclaim goal, we come back and override 2509 * the best-effort low protection. However, we still 2510 * ideally want to honor how well-behaved groups are in 2511 * that case instead of simply punishing them all 2512 * equally. As such, we reclaim them based on how much 2513 * memory they are using, reducing the scan pressure 2514 * again by how much of the total memory used is under 2515 * hard protection. 2516 */ 2517 unsigned long cgroup_size = mem_cgroup_size(memcg); 2518 unsigned long protection; 2519 2520 /* memory.low scaling, make sure we retry before OOM */ 2521 if (!sc->memcg_low_reclaim && low > min) { 2522 protection = low; 2523 sc->memcg_low_skipped = 1; 2524 } else { 2525 protection = min; 2526 } 2527 2528 /* Avoid TOCTOU with earlier protection check */ 2529 cgroup_size = max(cgroup_size, protection); 2530 2531 scan = lruvec_size - lruvec_size * protection / 2532 (cgroup_size + 1); 2533 2534 /* 2535 * Minimally target SWAP_CLUSTER_MAX pages to keep 2536 * reclaim moving forwards, avoiding decrementing 2537 * sc->priority further than desirable. 2538 */ 2539 scan = max(scan, SWAP_CLUSTER_MAX); 2540 } else { 2541 scan = lruvec_size; 2542 } 2543 2544 scan >>= sc->priority; 2545 2546 /* 2547 * If the cgroup's already been deleted, make sure to 2548 * scrape out the remaining cache. 2549 */ 2550 if (!scan && !mem_cgroup_online(memcg)) 2551 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2552 2553 switch (scan_balance) { 2554 case SCAN_EQUAL: 2555 /* Scan lists relative to size */ 2556 break; 2557 case SCAN_FRACT: 2558 /* 2559 * Scan types proportional to swappiness and 2560 * their relative recent reclaim efficiency. 2561 * Make sure we don't miss the last page on 2562 * the offlined memory cgroups because of a 2563 * round-off error. 2564 */ 2565 scan = mem_cgroup_online(memcg) ? 2566 div64_u64(scan * fraction[file], denominator) : 2567 DIV64_U64_ROUND_UP(scan * fraction[file], 2568 denominator); 2569 break; 2570 case SCAN_FILE: 2571 case SCAN_ANON: 2572 /* Scan one type exclusively */ 2573 if ((scan_balance == SCAN_FILE) != file) 2574 scan = 0; 2575 break; 2576 default: 2577 /* Look ma, no brain */ 2578 BUG(); 2579 } 2580 2581 nr[lru] = scan; 2582 } 2583 } 2584 2585 /* 2586 * Anonymous LRU management is a waste if there is 2587 * ultimately no way to reclaim the memory. 2588 */ 2589 static bool can_age_anon_pages(struct pglist_data *pgdat, 2590 struct scan_control *sc) 2591 { 2592 /* Aging the anon LRU is valuable if swap is present: */ 2593 if (total_swap_pages > 0) 2594 return true; 2595 2596 /* Also valuable if anon pages can be demoted: */ 2597 return can_demote(pgdat->node_id, sc); 2598 } 2599 2600 #ifdef CONFIG_LRU_GEN 2601 2602 #ifdef CONFIG_LRU_GEN_ENABLED 2603 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 2604 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 2605 #else 2606 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 2607 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 2608 #endif 2609 2610 static bool should_walk_mmu(void) 2611 { 2612 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK); 2613 } 2614 2615 static bool should_clear_pmd_young(void) 2616 { 2617 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG); 2618 } 2619 2620 /****************************************************************************** 2621 * shorthand helpers 2622 ******************************************************************************/ 2623 2624 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 2625 2626 #define DEFINE_MAX_SEQ(lruvec) \ 2627 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 2628 2629 #define DEFINE_MIN_SEQ(lruvec) \ 2630 unsigned long min_seq[ANON_AND_FILE] = { \ 2631 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 2632 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 2633 } 2634 2635 #define for_each_gen_type_zone(gen, type, zone) \ 2636 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 2637 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 2638 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 2639 2640 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 2641 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 2642 2643 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 2644 { 2645 struct pglist_data *pgdat = NODE_DATA(nid); 2646 2647 #ifdef CONFIG_MEMCG 2648 if (memcg) { 2649 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 2650 2651 /* see the comment in mem_cgroup_lruvec() */ 2652 if (!lruvec->pgdat) 2653 lruvec->pgdat = pgdat; 2654 2655 return lruvec; 2656 } 2657 #endif 2658 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2659 2660 return &pgdat->__lruvec; 2661 } 2662 2663 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 2664 { 2665 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2666 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2667 2668 if (!sc->may_swap) 2669 return 0; 2670 2671 if (!can_demote(pgdat->node_id, sc) && 2672 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 2673 return 0; 2674 2675 return sc_swappiness(sc, memcg); 2676 } 2677 2678 static int get_nr_gens(struct lruvec *lruvec, int type) 2679 { 2680 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 2681 } 2682 2683 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 2684 { 2685 /* see the comment on lru_gen_folio */ 2686 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS && 2687 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) && 2688 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS; 2689 } 2690 2691 /****************************************************************************** 2692 * Bloom filters 2693 ******************************************************************************/ 2694 2695 /* 2696 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 2697 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 2698 * bits in a bitmap, k is the number of hash functions and n is the number of 2699 * inserted items. 2700 * 2701 * Page table walkers use one of the two filters to reduce their search space. 2702 * To get rid of non-leaf entries that no longer have enough leaf entries, the 2703 * aging uses the double-buffering technique to flip to the other filter each 2704 * time it produces a new generation. For non-leaf entries that have enough 2705 * leaf entries, the aging carries them over to the next generation in 2706 * walk_pmd_range(); the eviction also report them when walking the rmap 2707 * in lru_gen_look_around(). 2708 * 2709 * For future optimizations: 2710 * 1. It's not necessary to keep both filters all the time. The spare one can be 2711 * freed after the RCU grace period and reallocated if needed again. 2712 * 2. And when reallocating, it's worth scaling its size according to the number 2713 * of inserted entries in the other filter, to reduce the memory overhead on 2714 * small systems and false positives on large systems. 2715 * 3. Jenkins' hash function is an alternative to Knuth's. 2716 */ 2717 #define BLOOM_FILTER_SHIFT 15 2718 2719 static inline int filter_gen_from_seq(unsigned long seq) 2720 { 2721 return seq % NR_BLOOM_FILTERS; 2722 } 2723 2724 static void get_item_key(void *item, int *key) 2725 { 2726 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 2727 2728 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 2729 2730 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 2731 key[1] = hash >> BLOOM_FILTER_SHIFT; 2732 } 2733 2734 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2735 void *item) 2736 { 2737 int key[2]; 2738 unsigned long *filter; 2739 int gen = filter_gen_from_seq(seq); 2740 2741 filter = READ_ONCE(mm_state->filters[gen]); 2742 if (!filter) 2743 return true; 2744 2745 get_item_key(item, key); 2746 2747 return test_bit(key[0], filter) && test_bit(key[1], filter); 2748 } 2749 2750 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2751 void *item) 2752 { 2753 int key[2]; 2754 unsigned long *filter; 2755 int gen = filter_gen_from_seq(seq); 2756 2757 filter = READ_ONCE(mm_state->filters[gen]); 2758 if (!filter) 2759 return; 2760 2761 get_item_key(item, key); 2762 2763 if (!test_bit(key[0], filter)) 2764 set_bit(key[0], filter); 2765 if (!test_bit(key[1], filter)) 2766 set_bit(key[1], filter); 2767 } 2768 2769 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq) 2770 { 2771 unsigned long *filter; 2772 int gen = filter_gen_from_seq(seq); 2773 2774 filter = mm_state->filters[gen]; 2775 if (filter) { 2776 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 2777 return; 2778 } 2779 2780 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 2781 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 2782 WRITE_ONCE(mm_state->filters[gen], filter); 2783 } 2784 2785 /****************************************************************************** 2786 * mm_struct list 2787 ******************************************************************************/ 2788 2789 #ifdef CONFIG_LRU_GEN_WALKS_MMU 2790 2791 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2792 { 2793 static struct lru_gen_mm_list mm_list = { 2794 .fifo = LIST_HEAD_INIT(mm_list.fifo), 2795 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 2796 }; 2797 2798 #ifdef CONFIG_MEMCG 2799 if (memcg) 2800 return &memcg->mm_list; 2801 #endif 2802 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2803 2804 return &mm_list; 2805 } 2806 2807 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2808 { 2809 return &lruvec->mm_state; 2810 } 2811 2812 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2813 { 2814 int key; 2815 struct mm_struct *mm; 2816 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 2817 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 2818 2819 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 2820 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 2821 2822 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 2823 return NULL; 2824 2825 clear_bit(key, &mm->lru_gen.bitmap); 2826 2827 return mmget_not_zero(mm) ? mm : NULL; 2828 } 2829 2830 void lru_gen_add_mm(struct mm_struct *mm) 2831 { 2832 int nid; 2833 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 2834 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2835 2836 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 2837 #ifdef CONFIG_MEMCG 2838 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 2839 mm->lru_gen.memcg = memcg; 2840 #endif 2841 spin_lock(&mm_list->lock); 2842 2843 for_each_node_state(nid, N_MEMORY) { 2844 struct lruvec *lruvec = get_lruvec(memcg, nid); 2845 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2846 2847 /* the first addition since the last iteration */ 2848 if (mm_state->tail == &mm_list->fifo) 2849 mm_state->tail = &mm->lru_gen.list; 2850 } 2851 2852 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 2853 2854 spin_unlock(&mm_list->lock); 2855 } 2856 2857 void lru_gen_del_mm(struct mm_struct *mm) 2858 { 2859 int nid; 2860 struct lru_gen_mm_list *mm_list; 2861 struct mem_cgroup *memcg = NULL; 2862 2863 if (list_empty(&mm->lru_gen.list)) 2864 return; 2865 2866 #ifdef CONFIG_MEMCG 2867 memcg = mm->lru_gen.memcg; 2868 #endif 2869 mm_list = get_mm_list(memcg); 2870 2871 spin_lock(&mm_list->lock); 2872 2873 for_each_node(nid) { 2874 struct lruvec *lruvec = get_lruvec(memcg, nid); 2875 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2876 2877 /* where the current iteration continues after */ 2878 if (mm_state->head == &mm->lru_gen.list) 2879 mm_state->head = mm_state->head->prev; 2880 2881 /* where the last iteration ended before */ 2882 if (mm_state->tail == &mm->lru_gen.list) 2883 mm_state->tail = mm_state->tail->next; 2884 } 2885 2886 list_del_init(&mm->lru_gen.list); 2887 2888 spin_unlock(&mm_list->lock); 2889 2890 #ifdef CONFIG_MEMCG 2891 mem_cgroup_put(mm->lru_gen.memcg); 2892 mm->lru_gen.memcg = NULL; 2893 #endif 2894 } 2895 2896 #ifdef CONFIG_MEMCG 2897 void lru_gen_migrate_mm(struct mm_struct *mm) 2898 { 2899 struct mem_cgroup *memcg; 2900 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 2901 2902 VM_WARN_ON_ONCE(task->mm != mm); 2903 lockdep_assert_held(&task->alloc_lock); 2904 2905 /* for mm_update_next_owner() */ 2906 if (mem_cgroup_disabled()) 2907 return; 2908 2909 /* migration can happen before addition */ 2910 if (!mm->lru_gen.memcg) 2911 return; 2912 2913 rcu_read_lock(); 2914 memcg = mem_cgroup_from_task(task); 2915 rcu_read_unlock(); 2916 if (memcg == mm->lru_gen.memcg) 2917 return; 2918 2919 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 2920 2921 lru_gen_del_mm(mm); 2922 lru_gen_add_mm(mm); 2923 } 2924 #endif 2925 2926 #else /* !CONFIG_LRU_GEN_WALKS_MMU */ 2927 2928 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2929 { 2930 return NULL; 2931 } 2932 2933 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2934 { 2935 return NULL; 2936 } 2937 2938 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2939 { 2940 return NULL; 2941 } 2942 2943 #endif 2944 2945 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last) 2946 { 2947 int i; 2948 int hist; 2949 struct lruvec *lruvec = walk->lruvec; 2950 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2951 2952 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 2953 2954 hist = lru_hist_from_seq(walk->seq); 2955 2956 for (i = 0; i < NR_MM_STATS; i++) { 2957 WRITE_ONCE(mm_state->stats[hist][i], 2958 mm_state->stats[hist][i] + walk->mm_stats[i]); 2959 walk->mm_stats[i] = 0; 2960 } 2961 2962 if (NR_HIST_GENS > 1 && last) { 2963 hist = lru_hist_from_seq(walk->seq + 1); 2964 2965 for (i = 0; i < NR_MM_STATS; i++) 2966 WRITE_ONCE(mm_state->stats[hist][i], 0); 2967 } 2968 } 2969 2970 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter) 2971 { 2972 bool first = false; 2973 bool last = false; 2974 struct mm_struct *mm = NULL; 2975 struct lruvec *lruvec = walk->lruvec; 2976 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2977 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2978 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2979 2980 /* 2981 * mm_state->seq is incremented after each iteration of mm_list. There 2982 * are three interesting cases for this page table walker: 2983 * 1. It tries to start a new iteration with a stale max_seq: there is 2984 * nothing left to do. 2985 * 2. It started the next iteration: it needs to reset the Bloom filter 2986 * so that a fresh set of PTE tables can be recorded. 2987 * 3. It ended the current iteration: it needs to reset the mm stats 2988 * counters and tell its caller to increment max_seq. 2989 */ 2990 spin_lock(&mm_list->lock); 2991 2992 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq); 2993 2994 if (walk->seq <= mm_state->seq) 2995 goto done; 2996 2997 if (!mm_state->head) 2998 mm_state->head = &mm_list->fifo; 2999 3000 if (mm_state->head == &mm_list->fifo) 3001 first = true; 3002 3003 do { 3004 mm_state->head = mm_state->head->next; 3005 if (mm_state->head == &mm_list->fifo) { 3006 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3007 last = true; 3008 break; 3009 } 3010 3011 /* force scan for those added after the last iteration */ 3012 if (!mm_state->tail || mm_state->tail == mm_state->head) { 3013 mm_state->tail = mm_state->head->next; 3014 walk->force_scan = true; 3015 } 3016 } while (!(mm = get_next_mm(walk))); 3017 done: 3018 if (*iter || last) 3019 reset_mm_stats(walk, last); 3020 3021 spin_unlock(&mm_list->lock); 3022 3023 if (mm && first) 3024 reset_bloom_filter(mm_state, walk->seq + 1); 3025 3026 if (*iter) 3027 mmput_async(*iter); 3028 3029 *iter = mm; 3030 3031 return last; 3032 } 3033 3034 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq) 3035 { 3036 bool success = false; 3037 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3038 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3039 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3040 3041 spin_lock(&mm_list->lock); 3042 3043 VM_WARN_ON_ONCE(mm_state->seq + 1 < seq); 3044 3045 if (seq > mm_state->seq) { 3046 mm_state->head = NULL; 3047 mm_state->tail = NULL; 3048 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3049 success = true; 3050 } 3051 3052 spin_unlock(&mm_list->lock); 3053 3054 return success; 3055 } 3056 3057 /****************************************************************************** 3058 * PID controller 3059 ******************************************************************************/ 3060 3061 /* 3062 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3063 * 3064 * The P term is refaulted/(evicted+protected) from a tier in the generation 3065 * currently being evicted; the I term is the exponential moving average of the 3066 * P term over the generations previously evicted, using the smoothing factor 3067 * 1/2; the D term isn't supported. 3068 * 3069 * The setpoint (SP) is always the first tier of one type; the process variable 3070 * (PV) is either any tier of the other type or any other tier of the same 3071 * type. 3072 * 3073 * The error is the difference between the SP and the PV; the correction is to 3074 * turn off protection when SP>PV or turn on protection when SP<PV. 3075 * 3076 * For future optimizations: 3077 * 1. The D term may discount the other two terms over time so that long-lived 3078 * generations can resist stale information. 3079 */ 3080 struct ctrl_pos { 3081 unsigned long refaulted; 3082 unsigned long total; 3083 int gain; 3084 }; 3085 3086 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3087 struct ctrl_pos *pos) 3088 { 3089 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3090 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3091 3092 pos->refaulted = lrugen->avg_refaulted[type][tier] + 3093 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3094 pos->total = lrugen->avg_total[type][tier] + 3095 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3096 if (tier) 3097 pos->total += lrugen->protected[hist][type][tier - 1]; 3098 pos->gain = gain; 3099 } 3100 3101 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3102 { 3103 int hist, tier; 3104 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3105 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3106 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3107 3108 lockdep_assert_held(&lruvec->lru_lock); 3109 3110 if (!carryover && !clear) 3111 return; 3112 3113 hist = lru_hist_from_seq(seq); 3114 3115 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3116 if (carryover) { 3117 unsigned long sum; 3118 3119 sum = lrugen->avg_refaulted[type][tier] + 3120 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3121 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3122 3123 sum = lrugen->avg_total[type][tier] + 3124 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3125 if (tier) 3126 sum += lrugen->protected[hist][type][tier - 1]; 3127 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3128 } 3129 3130 if (clear) { 3131 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3132 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3133 if (tier) 3134 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0); 3135 } 3136 } 3137 } 3138 3139 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3140 { 3141 /* 3142 * Return true if the PV has a limited number of refaults or a lower 3143 * refaulted/total than the SP. 3144 */ 3145 return pv->refaulted < MIN_LRU_BATCH || 3146 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3147 (sp->refaulted + 1) * pv->total * pv->gain; 3148 } 3149 3150 /****************************************************************************** 3151 * the aging 3152 ******************************************************************************/ 3153 3154 /* promote pages accessed through page tables */ 3155 static int folio_update_gen(struct folio *folio, int gen) 3156 { 3157 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3158 3159 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3160 VM_WARN_ON_ONCE(!rcu_read_lock_held()); 3161 3162 do { 3163 /* lru_gen_del_folio() has isolated this page? */ 3164 if (!(old_flags & LRU_GEN_MASK)) { 3165 /* for shrink_folio_list() */ 3166 new_flags = old_flags | BIT(PG_referenced); 3167 continue; 3168 } 3169 3170 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3171 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF; 3172 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3173 3174 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3175 } 3176 3177 /* protect pages accessed multiple times through file descriptors */ 3178 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3179 { 3180 int type = folio_is_file_lru(folio); 3181 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3182 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3183 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3184 3185 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3186 3187 do { 3188 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3189 /* folio_update_gen() has promoted this page? */ 3190 if (new_gen >= 0 && new_gen != old_gen) 3191 return new_gen; 3192 3193 new_gen = (old_gen + 1) % MAX_NR_GENS; 3194 3195 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3196 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3197 /* for folio_end_writeback() */ 3198 if (reclaiming) 3199 new_flags |= BIT(PG_reclaim); 3200 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3201 3202 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3203 3204 return new_gen; 3205 } 3206 3207 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3208 int old_gen, int new_gen) 3209 { 3210 int type = folio_is_file_lru(folio); 3211 int zone = folio_zonenum(folio); 3212 int delta = folio_nr_pages(folio); 3213 3214 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3215 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3216 3217 walk->batched++; 3218 3219 walk->nr_pages[old_gen][type][zone] -= delta; 3220 walk->nr_pages[new_gen][type][zone] += delta; 3221 } 3222 3223 static void reset_batch_size(struct lru_gen_mm_walk *walk) 3224 { 3225 int gen, type, zone; 3226 struct lruvec *lruvec = walk->lruvec; 3227 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3228 3229 walk->batched = 0; 3230 3231 for_each_gen_type_zone(gen, type, zone) { 3232 enum lru_list lru = type * LRU_INACTIVE_FILE; 3233 int delta = walk->nr_pages[gen][type][zone]; 3234 3235 if (!delta) 3236 continue; 3237 3238 walk->nr_pages[gen][type][zone] = 0; 3239 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3240 lrugen->nr_pages[gen][type][zone] + delta); 3241 3242 if (lru_gen_is_active(lruvec, gen)) 3243 lru += LRU_ACTIVE; 3244 __update_lru_size(lruvec, lru, zone, delta); 3245 } 3246 } 3247 3248 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3249 { 3250 struct address_space *mapping; 3251 struct vm_area_struct *vma = args->vma; 3252 struct lru_gen_mm_walk *walk = args->private; 3253 3254 if (!vma_is_accessible(vma)) 3255 return true; 3256 3257 if (is_vm_hugetlb_page(vma)) 3258 return true; 3259 3260 if (!vma_has_recency(vma)) 3261 return true; 3262 3263 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) 3264 return true; 3265 3266 if (vma == get_gate_vma(vma->vm_mm)) 3267 return true; 3268 3269 if (vma_is_anonymous(vma)) 3270 return !walk->can_swap; 3271 3272 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3273 return true; 3274 3275 mapping = vma->vm_file->f_mapping; 3276 if (mapping_unevictable(mapping)) 3277 return true; 3278 3279 if (shmem_mapping(mapping)) 3280 return !walk->can_swap; 3281 3282 /* to exclude special mappings like dax, etc. */ 3283 return !mapping->a_ops->read_folio; 3284 } 3285 3286 /* 3287 * Some userspace memory allocators map many single-page VMAs. Instead of 3288 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3289 * table to reduce zigzags and improve cache performance. 3290 */ 3291 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3292 unsigned long *vm_start, unsigned long *vm_end) 3293 { 3294 unsigned long start = round_up(*vm_end, size); 3295 unsigned long end = (start | ~mask) + 1; 3296 VMA_ITERATOR(vmi, args->mm, start); 3297 3298 VM_WARN_ON_ONCE(mask & size); 3299 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3300 3301 for_each_vma(vmi, args->vma) { 3302 if (end && end <= args->vma->vm_start) 3303 return false; 3304 3305 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3306 continue; 3307 3308 *vm_start = max(start, args->vma->vm_start); 3309 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3310 3311 return true; 3312 } 3313 3314 return false; 3315 } 3316 3317 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr) 3318 { 3319 unsigned long pfn = pte_pfn(pte); 3320 3321 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3322 3323 if (!pte_present(pte) || is_zero_pfn(pfn)) 3324 return -1; 3325 3326 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3327 return -1; 3328 3329 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3330 return -1; 3331 3332 return pfn; 3333 } 3334 3335 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr) 3336 { 3337 unsigned long pfn = pmd_pfn(pmd); 3338 3339 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3340 3341 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3342 return -1; 3343 3344 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3345 return -1; 3346 3347 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3348 return -1; 3349 3350 return pfn; 3351 } 3352 3353 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3354 struct pglist_data *pgdat, bool can_swap) 3355 { 3356 struct folio *folio; 3357 3358 /* try to avoid unnecessary memory loads */ 3359 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3360 return NULL; 3361 3362 folio = pfn_folio(pfn); 3363 if (folio_nid(folio) != pgdat->node_id) 3364 return NULL; 3365 3366 if (folio_memcg_rcu(folio) != memcg) 3367 return NULL; 3368 3369 /* file VMAs can contain anon pages from COW */ 3370 if (!folio_is_file_lru(folio) && !can_swap) 3371 return NULL; 3372 3373 return folio; 3374 } 3375 3376 static bool suitable_to_scan(int total, int young) 3377 { 3378 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3379 3380 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3381 return young * n >= total; 3382 } 3383 3384 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3385 struct mm_walk *args) 3386 { 3387 int i; 3388 pte_t *pte; 3389 spinlock_t *ptl; 3390 unsigned long addr; 3391 int total = 0; 3392 int young = 0; 3393 struct lru_gen_mm_walk *walk = args->private; 3394 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3395 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3396 DEFINE_MAX_SEQ(walk->lruvec); 3397 int old_gen, new_gen = lru_gen_from_seq(max_seq); 3398 3399 pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl); 3400 if (!pte) 3401 return false; 3402 if (!spin_trylock(ptl)) { 3403 pte_unmap(pte); 3404 return false; 3405 } 3406 3407 arch_enter_lazy_mmu_mode(); 3408 restart: 3409 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3410 unsigned long pfn; 3411 struct folio *folio; 3412 pte_t ptent = ptep_get(pte + i); 3413 3414 total++; 3415 walk->mm_stats[MM_LEAF_TOTAL]++; 3416 3417 pfn = get_pte_pfn(ptent, args->vma, addr); 3418 if (pfn == -1) 3419 continue; 3420 3421 if (!pte_young(ptent)) { 3422 walk->mm_stats[MM_LEAF_OLD]++; 3423 continue; 3424 } 3425 3426 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3427 if (!folio) 3428 continue; 3429 3430 if (!ptep_test_and_clear_young(args->vma, addr, pte + i)) 3431 VM_WARN_ON_ONCE(true); 3432 3433 young++; 3434 walk->mm_stats[MM_LEAF_YOUNG]++; 3435 3436 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 3437 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3438 !folio_test_swapcache(folio))) 3439 folio_mark_dirty(folio); 3440 3441 old_gen = folio_update_gen(folio, new_gen); 3442 if (old_gen >= 0 && old_gen != new_gen) 3443 update_batch_size(walk, folio, old_gen, new_gen); 3444 } 3445 3446 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 3447 goto restart; 3448 3449 arch_leave_lazy_mmu_mode(); 3450 pte_unmap_unlock(pte, ptl); 3451 3452 return suitable_to_scan(total, young); 3453 } 3454 3455 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 3456 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 3457 { 3458 int i; 3459 pmd_t *pmd; 3460 spinlock_t *ptl; 3461 struct lru_gen_mm_walk *walk = args->private; 3462 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3463 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3464 DEFINE_MAX_SEQ(walk->lruvec); 3465 int old_gen, new_gen = lru_gen_from_seq(max_seq); 3466 3467 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3468 3469 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 3470 if (*first == -1) { 3471 *first = addr; 3472 bitmap_zero(bitmap, MIN_LRU_BATCH); 3473 return; 3474 } 3475 3476 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); 3477 if (i && i <= MIN_LRU_BATCH) { 3478 __set_bit(i - 1, bitmap); 3479 return; 3480 } 3481 3482 pmd = pmd_offset(pud, *first); 3483 3484 ptl = pmd_lockptr(args->mm, pmd); 3485 if (!spin_trylock(ptl)) 3486 goto done; 3487 3488 arch_enter_lazy_mmu_mode(); 3489 3490 do { 3491 unsigned long pfn; 3492 struct folio *folio; 3493 3494 /* don't round down the first address */ 3495 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; 3496 3497 pfn = get_pmd_pfn(pmd[i], vma, addr); 3498 if (pfn == -1) 3499 goto next; 3500 3501 if (!pmd_trans_huge(pmd[i])) { 3502 if (!walk->force_scan && should_clear_pmd_young()) 3503 pmdp_test_and_clear_young(vma, addr, pmd + i); 3504 goto next; 3505 } 3506 3507 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3508 if (!folio) 3509 goto next; 3510 3511 if (!pmdp_test_and_clear_young(vma, addr, pmd + i)) 3512 goto next; 3513 3514 walk->mm_stats[MM_LEAF_YOUNG]++; 3515 3516 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) && 3517 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3518 !folio_test_swapcache(folio))) 3519 folio_mark_dirty(folio); 3520 3521 old_gen = folio_update_gen(folio, new_gen); 3522 if (old_gen >= 0 && old_gen != new_gen) 3523 update_batch_size(walk, folio, old_gen, new_gen); 3524 next: 3525 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 3526 } while (i <= MIN_LRU_BATCH); 3527 3528 arch_leave_lazy_mmu_mode(); 3529 spin_unlock(ptl); 3530 done: 3531 *first = -1; 3532 } 3533 3534 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 3535 struct mm_walk *args) 3536 { 3537 int i; 3538 pmd_t *pmd; 3539 unsigned long next; 3540 unsigned long addr; 3541 struct vm_area_struct *vma; 3542 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH); 3543 unsigned long first = -1; 3544 struct lru_gen_mm_walk *walk = args->private; 3545 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 3546 3547 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3548 3549 /* 3550 * Finish an entire PMD in two passes: the first only reaches to PTE 3551 * tables to avoid taking the PMD lock; the second, if necessary, takes 3552 * the PMD lock to clear the accessed bit in PMD entries. 3553 */ 3554 pmd = pmd_offset(pud, start & PUD_MASK); 3555 restart: 3556 /* walk_pte_range() may call get_next_vma() */ 3557 vma = args->vma; 3558 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 3559 pmd_t val = pmdp_get_lockless(pmd + i); 3560 3561 next = pmd_addr_end(addr, end); 3562 3563 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 3564 walk->mm_stats[MM_LEAF_TOTAL]++; 3565 continue; 3566 } 3567 3568 if (pmd_trans_huge(val)) { 3569 unsigned long pfn = pmd_pfn(val); 3570 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3571 3572 walk->mm_stats[MM_LEAF_TOTAL]++; 3573 3574 if (!pmd_young(val)) { 3575 walk->mm_stats[MM_LEAF_OLD]++; 3576 continue; 3577 } 3578 3579 /* try to avoid unnecessary memory loads */ 3580 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3581 continue; 3582 3583 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3584 continue; 3585 } 3586 3587 walk->mm_stats[MM_NONLEAF_TOTAL]++; 3588 3589 if (!walk->force_scan && should_clear_pmd_young()) { 3590 if (!pmd_young(val)) 3591 continue; 3592 3593 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3594 } 3595 3596 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i)) 3597 continue; 3598 3599 walk->mm_stats[MM_NONLEAF_FOUND]++; 3600 3601 if (!walk_pte_range(&val, addr, next, args)) 3602 continue; 3603 3604 walk->mm_stats[MM_NONLEAF_ADDED]++; 3605 3606 /* carry over to the next generation */ 3607 update_bloom_filter(mm_state, walk->seq + 1, pmd + i); 3608 } 3609 3610 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); 3611 3612 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 3613 goto restart; 3614 } 3615 3616 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 3617 struct mm_walk *args) 3618 { 3619 int i; 3620 pud_t *pud; 3621 unsigned long addr; 3622 unsigned long next; 3623 struct lru_gen_mm_walk *walk = args->private; 3624 3625 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 3626 3627 pud = pud_offset(p4d, start & P4D_MASK); 3628 restart: 3629 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 3630 pud_t val = READ_ONCE(pud[i]); 3631 3632 next = pud_addr_end(addr, end); 3633 3634 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 3635 continue; 3636 3637 walk_pmd_range(&val, addr, next, args); 3638 3639 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 3640 end = (addr | ~PUD_MASK) + 1; 3641 goto done; 3642 } 3643 } 3644 3645 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 3646 goto restart; 3647 3648 end = round_up(end, P4D_SIZE); 3649 done: 3650 if (!end || !args->vma) 3651 return 1; 3652 3653 walk->next_addr = max(end, args->vma->vm_start); 3654 3655 return -EAGAIN; 3656 } 3657 3658 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3659 { 3660 static const struct mm_walk_ops mm_walk_ops = { 3661 .test_walk = should_skip_vma, 3662 .p4d_entry = walk_pud_range, 3663 .walk_lock = PGWALK_RDLOCK, 3664 }; 3665 3666 int err; 3667 struct lruvec *lruvec = walk->lruvec; 3668 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3669 3670 walk->next_addr = FIRST_USER_ADDRESS; 3671 3672 do { 3673 DEFINE_MAX_SEQ(lruvec); 3674 3675 err = -EBUSY; 3676 3677 /* another thread might have called inc_max_seq() */ 3678 if (walk->seq != max_seq) 3679 break; 3680 3681 /* folio_update_gen() requires stable folio_memcg() */ 3682 if (!mem_cgroup_trylock_pages(memcg)) 3683 break; 3684 3685 /* the caller might be holding the lock for write */ 3686 if (mmap_read_trylock(mm)) { 3687 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 3688 3689 mmap_read_unlock(mm); 3690 } 3691 3692 mem_cgroup_unlock_pages(); 3693 3694 if (walk->batched) { 3695 spin_lock_irq(&lruvec->lru_lock); 3696 reset_batch_size(walk); 3697 spin_unlock_irq(&lruvec->lru_lock); 3698 } 3699 3700 cond_resched(); 3701 } while (err == -EAGAIN); 3702 } 3703 3704 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 3705 { 3706 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3707 3708 if (pgdat && current_is_kswapd()) { 3709 VM_WARN_ON_ONCE(walk); 3710 3711 walk = &pgdat->mm_walk; 3712 } else if (!walk && force_alloc) { 3713 VM_WARN_ON_ONCE(current_is_kswapd()); 3714 3715 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3716 } 3717 3718 current->reclaim_state->mm_walk = walk; 3719 3720 return walk; 3721 } 3722 3723 static void clear_mm_walk(void) 3724 { 3725 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3726 3727 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 3728 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 3729 3730 current->reclaim_state->mm_walk = NULL; 3731 3732 if (!current_is_kswapd()) 3733 kfree(walk); 3734 } 3735 3736 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap) 3737 { 3738 int zone; 3739 int remaining = MAX_LRU_BATCH; 3740 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3741 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3742 3743 if (type == LRU_GEN_ANON && !can_swap) 3744 goto done; 3745 3746 /* prevent cold/hot inversion if force_scan is true */ 3747 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3748 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 3749 3750 while (!list_empty(head)) { 3751 struct folio *folio = lru_to_folio(head); 3752 3753 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 3754 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 3755 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 3756 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 3757 3758 new_gen = folio_inc_gen(lruvec, folio, false); 3759 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 3760 3761 if (!--remaining) 3762 return false; 3763 } 3764 } 3765 done: 3766 reset_ctrl_pos(lruvec, type, true); 3767 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 3768 3769 return true; 3770 } 3771 3772 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap) 3773 { 3774 int gen, type, zone; 3775 bool success = false; 3776 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3777 DEFINE_MIN_SEQ(lruvec); 3778 3779 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3780 3781 /* find the oldest populated generation */ 3782 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3783 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 3784 gen = lru_gen_from_seq(min_seq[type]); 3785 3786 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3787 if (!list_empty(&lrugen->folios[gen][type][zone])) 3788 goto next; 3789 } 3790 3791 min_seq[type]++; 3792 } 3793 next: 3794 ; 3795 } 3796 3797 /* see the comment on lru_gen_folio */ 3798 if (can_swap) { 3799 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]); 3800 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]); 3801 } 3802 3803 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3804 if (min_seq[type] == lrugen->min_seq[type]) 3805 continue; 3806 3807 reset_ctrl_pos(lruvec, type, true); 3808 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 3809 success = true; 3810 } 3811 3812 return success; 3813 } 3814 3815 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, 3816 bool can_swap, bool force_scan) 3817 { 3818 bool success; 3819 int prev, next; 3820 int type, zone; 3821 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3822 restart: 3823 if (seq < READ_ONCE(lrugen->max_seq)) 3824 return false; 3825 3826 spin_lock_irq(&lruvec->lru_lock); 3827 3828 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3829 3830 success = seq == lrugen->max_seq; 3831 if (!success) 3832 goto unlock; 3833 3834 for (type = ANON_AND_FILE - 1; type >= 0; type--) { 3835 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 3836 continue; 3837 3838 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap)); 3839 3840 if (inc_min_seq(lruvec, type, can_swap)) 3841 continue; 3842 3843 spin_unlock_irq(&lruvec->lru_lock); 3844 cond_resched(); 3845 goto restart; 3846 } 3847 3848 /* 3849 * Update the active/inactive LRU sizes for compatibility. Both sides of 3850 * the current max_seq need to be covered, since max_seq+1 can overlap 3851 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 3852 * overlap, cold/hot inversion happens. 3853 */ 3854 prev = lru_gen_from_seq(lrugen->max_seq - 1); 3855 next = lru_gen_from_seq(lrugen->max_seq + 1); 3856 3857 for (type = 0; type < ANON_AND_FILE; type++) { 3858 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3859 enum lru_list lru = type * LRU_INACTIVE_FILE; 3860 long delta = lrugen->nr_pages[prev][type][zone] - 3861 lrugen->nr_pages[next][type][zone]; 3862 3863 if (!delta) 3864 continue; 3865 3866 __update_lru_size(lruvec, lru, zone, delta); 3867 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 3868 } 3869 } 3870 3871 for (type = 0; type < ANON_AND_FILE; type++) 3872 reset_ctrl_pos(lruvec, type, false); 3873 3874 WRITE_ONCE(lrugen->timestamps[next], jiffies); 3875 /* make sure preceding modifications appear */ 3876 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 3877 unlock: 3878 spin_unlock_irq(&lruvec->lru_lock); 3879 3880 return success; 3881 } 3882 3883 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq, 3884 bool can_swap, bool force_scan) 3885 { 3886 bool success; 3887 struct lru_gen_mm_walk *walk; 3888 struct mm_struct *mm = NULL; 3889 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3890 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3891 3892 VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq)); 3893 3894 if (!mm_state) 3895 return inc_max_seq(lruvec, seq, can_swap, force_scan); 3896 3897 /* see the comment in iterate_mm_list() */ 3898 if (seq <= READ_ONCE(mm_state->seq)) 3899 return false; 3900 3901 /* 3902 * If the hardware doesn't automatically set the accessed bit, fallback 3903 * to lru_gen_look_around(), which only clears the accessed bit in a 3904 * handful of PTEs. Spreading the work out over a period of time usually 3905 * is less efficient, but it avoids bursty page faults. 3906 */ 3907 if (!should_walk_mmu()) { 3908 success = iterate_mm_list_nowalk(lruvec, seq); 3909 goto done; 3910 } 3911 3912 walk = set_mm_walk(NULL, true); 3913 if (!walk) { 3914 success = iterate_mm_list_nowalk(lruvec, seq); 3915 goto done; 3916 } 3917 3918 walk->lruvec = lruvec; 3919 walk->seq = seq; 3920 walk->can_swap = can_swap; 3921 walk->force_scan = force_scan; 3922 3923 do { 3924 success = iterate_mm_list(walk, &mm); 3925 if (mm) 3926 walk_mm(mm, walk); 3927 } while (mm); 3928 done: 3929 if (success) { 3930 success = inc_max_seq(lruvec, seq, can_swap, force_scan); 3931 WARN_ON_ONCE(!success); 3932 } 3933 3934 return success; 3935 } 3936 3937 /****************************************************************************** 3938 * working set protection 3939 ******************************************************************************/ 3940 3941 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 3942 { 3943 int priority; 3944 unsigned long reclaimable; 3945 3946 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 3947 return; 3948 /* 3949 * Determine the initial priority based on 3950 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, 3951 * where reclaimed_to_scanned_ratio = inactive / total. 3952 */ 3953 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 3954 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 3955 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 3956 3957 /* round down reclaimable and round up sc->nr_to_reclaim */ 3958 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 3959 3960 /* 3961 * The estimation is based on LRU pages only, so cap it to prevent 3962 * overshoots of shrinker objects by large margins. 3963 */ 3964 sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY); 3965 } 3966 3967 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 3968 { 3969 int gen, type, zone; 3970 unsigned long total = 0; 3971 bool can_swap = get_swappiness(lruvec, sc); 3972 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3973 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3974 DEFINE_MAX_SEQ(lruvec); 3975 DEFINE_MIN_SEQ(lruvec); 3976 3977 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3978 unsigned long seq; 3979 3980 for (seq = min_seq[type]; seq <= max_seq; seq++) { 3981 gen = lru_gen_from_seq(seq); 3982 3983 for (zone = 0; zone < MAX_NR_ZONES; zone++) 3984 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 3985 } 3986 } 3987 3988 /* whether the size is big enough to be helpful */ 3989 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 3990 } 3991 3992 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 3993 unsigned long min_ttl) 3994 { 3995 int gen; 3996 unsigned long birth; 3997 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3998 DEFINE_MIN_SEQ(lruvec); 3999 4000 if (mem_cgroup_below_min(NULL, memcg)) 4001 return false; 4002 4003 if (!lruvec_is_sizable(lruvec, sc)) 4004 return false; 4005 4006 /* see the comment on lru_gen_folio */ 4007 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]); 4008 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 4009 4010 return time_is_before_jiffies(birth + min_ttl); 4011 } 4012 4013 /* to protect the working set of the last N jiffies */ 4014 static unsigned long lru_gen_min_ttl __read_mostly; 4015 4016 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 4017 { 4018 struct mem_cgroup *memcg; 4019 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 4020 bool reclaimable = !min_ttl; 4021 4022 VM_WARN_ON_ONCE(!current_is_kswapd()); 4023 4024 set_initial_priority(pgdat, sc); 4025 4026 memcg = mem_cgroup_iter(NULL, NULL, NULL); 4027 do { 4028 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4029 4030 mem_cgroup_calculate_protection(NULL, memcg); 4031 4032 if (!reclaimable) 4033 reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl); 4034 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 4035 4036 /* 4037 * The main goal is to OOM kill if every generation from all memcgs is 4038 * younger than min_ttl. However, another possibility is all memcgs are 4039 * either too small or below min. 4040 */ 4041 if (!reclaimable && mutex_trylock(&oom_lock)) { 4042 struct oom_control oc = { 4043 .gfp_mask = sc->gfp_mask, 4044 }; 4045 4046 out_of_memory(&oc); 4047 4048 mutex_unlock(&oom_lock); 4049 } 4050 } 4051 4052 /****************************************************************************** 4053 * rmap/PT walk feedback 4054 ******************************************************************************/ 4055 4056 /* 4057 * This function exploits spatial locality when shrink_folio_list() walks the 4058 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4059 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4060 * the PTE table to the Bloom filter. This forms a feedback loop between the 4061 * eviction and the aging. 4062 */ 4063 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4064 { 4065 int i; 4066 unsigned long start; 4067 unsigned long end; 4068 struct lru_gen_mm_walk *walk; 4069 int young = 0; 4070 pte_t *pte = pvmw->pte; 4071 unsigned long addr = pvmw->address; 4072 struct vm_area_struct *vma = pvmw->vma; 4073 struct folio *folio = pfn_folio(pvmw->pfn); 4074 bool can_swap = !folio_is_file_lru(folio); 4075 struct mem_cgroup *memcg = folio_memcg(folio); 4076 struct pglist_data *pgdat = folio_pgdat(folio); 4077 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4078 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 4079 DEFINE_MAX_SEQ(lruvec); 4080 int old_gen, new_gen = lru_gen_from_seq(max_seq); 4081 4082 lockdep_assert_held(pvmw->ptl); 4083 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4084 4085 if (spin_is_contended(pvmw->ptl)) 4086 return; 4087 4088 /* exclude special VMAs containing anon pages from COW */ 4089 if (vma->vm_flags & VM_SPECIAL) 4090 return; 4091 4092 /* avoid taking the LRU lock under the PTL when possible */ 4093 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4094 4095 start = max(addr & PMD_MASK, vma->vm_start); 4096 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1; 4097 4098 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4099 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4100 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4101 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) 4102 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4103 else { 4104 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; 4105 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; 4106 } 4107 } 4108 4109 /* folio_update_gen() requires stable folio_memcg() */ 4110 if (!mem_cgroup_trylock_pages(memcg)) 4111 return; 4112 4113 arch_enter_lazy_mmu_mode(); 4114 4115 pte -= (addr - start) / PAGE_SIZE; 4116 4117 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4118 unsigned long pfn; 4119 pte_t ptent = ptep_get(pte + i); 4120 4121 pfn = get_pte_pfn(ptent, vma, addr); 4122 if (pfn == -1) 4123 continue; 4124 4125 if (!pte_young(ptent)) 4126 continue; 4127 4128 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap); 4129 if (!folio) 4130 continue; 4131 4132 if (!ptep_test_and_clear_young(vma, addr, pte + i)) 4133 VM_WARN_ON_ONCE(true); 4134 4135 young++; 4136 4137 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 4138 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4139 !folio_test_swapcache(folio))) 4140 folio_mark_dirty(folio); 4141 4142 if (walk) { 4143 old_gen = folio_update_gen(folio, new_gen); 4144 if (old_gen >= 0 && old_gen != new_gen) 4145 update_batch_size(walk, folio, old_gen, new_gen); 4146 4147 continue; 4148 } 4149 4150 old_gen = folio_lru_gen(folio); 4151 if (old_gen < 0) 4152 folio_set_referenced(folio); 4153 else if (old_gen != new_gen) 4154 folio_activate(folio); 4155 } 4156 4157 arch_leave_lazy_mmu_mode(); 4158 mem_cgroup_unlock_pages(); 4159 4160 /* feedback from rmap walkers to page table walkers */ 4161 if (mm_state && suitable_to_scan(i, young)) 4162 update_bloom_filter(mm_state, max_seq, pvmw->pmd); 4163 } 4164 4165 /****************************************************************************** 4166 * memcg LRU 4167 ******************************************************************************/ 4168 4169 /* see the comment on MEMCG_NR_GENS */ 4170 enum { 4171 MEMCG_LRU_NOP, 4172 MEMCG_LRU_HEAD, 4173 MEMCG_LRU_TAIL, 4174 MEMCG_LRU_OLD, 4175 MEMCG_LRU_YOUNG, 4176 }; 4177 4178 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 4179 { 4180 int seg; 4181 int old, new; 4182 unsigned long flags; 4183 int bin = get_random_u32_below(MEMCG_NR_BINS); 4184 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4185 4186 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags); 4187 4188 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4189 4190 seg = 0; 4191 new = old = lruvec->lrugen.gen; 4192 4193 /* see the comment on MEMCG_NR_GENS */ 4194 if (op == MEMCG_LRU_HEAD) 4195 seg = MEMCG_LRU_HEAD; 4196 else if (op == MEMCG_LRU_TAIL) 4197 seg = MEMCG_LRU_TAIL; 4198 else if (op == MEMCG_LRU_OLD) 4199 new = get_memcg_gen(pgdat->memcg_lru.seq); 4200 else if (op == MEMCG_LRU_YOUNG) 4201 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 4202 else 4203 VM_WARN_ON_ONCE(true); 4204 4205 WRITE_ONCE(lruvec->lrugen.seg, seg); 4206 WRITE_ONCE(lruvec->lrugen.gen, new); 4207 4208 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4209 4210 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 4211 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4212 else 4213 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4214 4215 pgdat->memcg_lru.nr_memcgs[old]--; 4216 pgdat->memcg_lru.nr_memcgs[new]++; 4217 4218 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 4219 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4220 4221 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags); 4222 } 4223 4224 #ifdef CONFIG_MEMCG 4225 4226 void lru_gen_online_memcg(struct mem_cgroup *memcg) 4227 { 4228 int gen; 4229 int nid; 4230 int bin = get_random_u32_below(MEMCG_NR_BINS); 4231 4232 for_each_node(nid) { 4233 struct pglist_data *pgdat = NODE_DATA(nid); 4234 struct lruvec *lruvec = get_lruvec(memcg, nid); 4235 4236 spin_lock_irq(&pgdat->memcg_lru.lock); 4237 4238 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 4239 4240 gen = get_memcg_gen(pgdat->memcg_lru.seq); 4241 4242 lruvec->lrugen.gen = gen; 4243 4244 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 4245 pgdat->memcg_lru.nr_memcgs[gen]++; 4246 4247 spin_unlock_irq(&pgdat->memcg_lru.lock); 4248 } 4249 } 4250 4251 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 4252 { 4253 int nid; 4254 4255 for_each_node(nid) { 4256 struct lruvec *lruvec = get_lruvec(memcg, nid); 4257 4258 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 4259 } 4260 } 4261 4262 void lru_gen_release_memcg(struct mem_cgroup *memcg) 4263 { 4264 int gen; 4265 int nid; 4266 4267 for_each_node(nid) { 4268 struct pglist_data *pgdat = NODE_DATA(nid); 4269 struct lruvec *lruvec = get_lruvec(memcg, nid); 4270 4271 spin_lock_irq(&pgdat->memcg_lru.lock); 4272 4273 if (hlist_nulls_unhashed(&lruvec->lrugen.list)) 4274 goto unlock; 4275 4276 gen = lruvec->lrugen.gen; 4277 4278 hlist_nulls_del_init_rcu(&lruvec->lrugen.list); 4279 pgdat->memcg_lru.nr_memcgs[gen]--; 4280 4281 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 4282 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4283 unlock: 4284 spin_unlock_irq(&pgdat->memcg_lru.lock); 4285 } 4286 } 4287 4288 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 4289 { 4290 struct lruvec *lruvec = get_lruvec(memcg, nid); 4291 4292 /* see the comment on MEMCG_NR_GENS */ 4293 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD) 4294 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 4295 } 4296 4297 #endif /* CONFIG_MEMCG */ 4298 4299 /****************************************************************************** 4300 * the eviction 4301 ******************************************************************************/ 4302 4303 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc, 4304 int tier_idx) 4305 { 4306 bool success; 4307 int gen = folio_lru_gen(folio); 4308 int type = folio_is_file_lru(folio); 4309 int zone = folio_zonenum(folio); 4310 int delta = folio_nr_pages(folio); 4311 int refs = folio_lru_refs(folio); 4312 int tier = lru_tier_from_refs(refs); 4313 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4314 4315 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4316 4317 /* unevictable */ 4318 if (!folio_evictable(folio)) { 4319 success = lru_gen_del_folio(lruvec, folio, true); 4320 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4321 folio_set_unevictable(folio); 4322 lruvec_add_folio(lruvec, folio); 4323 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4324 return true; 4325 } 4326 4327 /* promoted */ 4328 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4329 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4330 return true; 4331 } 4332 4333 /* protected */ 4334 if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) { 4335 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4336 4337 gen = folio_inc_gen(lruvec, folio, false); 4338 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4339 4340 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 4341 lrugen->protected[hist][type][tier - 1] + delta); 4342 return true; 4343 } 4344 4345 /* ineligible */ 4346 if (zone > sc->reclaim_idx || skip_cma(folio, sc)) { 4347 gen = folio_inc_gen(lruvec, folio, false); 4348 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4349 return true; 4350 } 4351 4352 /* waiting for writeback */ 4353 if (folio_test_locked(folio) || folio_test_writeback(folio) || 4354 (type == LRU_GEN_FILE && folio_test_dirty(folio))) { 4355 gen = folio_inc_gen(lruvec, folio, true); 4356 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4357 return true; 4358 } 4359 4360 return false; 4361 } 4362 4363 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4364 { 4365 bool success; 4366 4367 /* swap constrained */ 4368 if (!(sc->gfp_mask & __GFP_IO) && 4369 (folio_test_dirty(folio) || 4370 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4371 return false; 4372 4373 /* raced with release_pages() */ 4374 if (!folio_try_get(folio)) 4375 return false; 4376 4377 /* raced with another isolation */ 4378 if (!folio_test_clear_lru(folio)) { 4379 folio_put(folio); 4380 return false; 4381 } 4382 4383 /* see the comment on MAX_NR_TIERS */ 4384 if (!folio_test_referenced(folio)) 4385 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); 4386 4387 /* for shrink_folio_list() */ 4388 folio_clear_reclaim(folio); 4389 folio_clear_referenced(folio); 4390 4391 success = lru_gen_del_folio(lruvec, folio, true); 4392 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4393 4394 return true; 4395 } 4396 4397 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 4398 int type, int tier, struct list_head *list) 4399 { 4400 int i; 4401 int gen; 4402 enum vm_event_item item; 4403 int sorted = 0; 4404 int scanned = 0; 4405 int isolated = 0; 4406 int skipped = 0; 4407 int remaining = MAX_LRU_BATCH; 4408 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4409 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4410 4411 VM_WARN_ON_ONCE(!list_empty(list)); 4412 4413 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4414 return 0; 4415 4416 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4417 4418 for (i = MAX_NR_ZONES; i > 0; i--) { 4419 LIST_HEAD(moved); 4420 int skipped_zone = 0; 4421 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES; 4422 struct list_head *head = &lrugen->folios[gen][type][zone]; 4423 4424 while (!list_empty(head)) { 4425 struct folio *folio = lru_to_folio(head); 4426 int delta = folio_nr_pages(folio); 4427 4428 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4429 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4430 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4431 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4432 4433 scanned += delta; 4434 4435 if (sort_folio(lruvec, folio, sc, tier)) 4436 sorted += delta; 4437 else if (isolate_folio(lruvec, folio, sc)) { 4438 list_add(&folio->lru, list); 4439 isolated += delta; 4440 } else { 4441 list_move(&folio->lru, &moved); 4442 skipped_zone += delta; 4443 } 4444 4445 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH) 4446 break; 4447 } 4448 4449 if (skipped_zone) { 4450 list_splice(&moved, head); 4451 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone); 4452 skipped += skipped_zone; 4453 } 4454 4455 if (!remaining || isolated >= MIN_LRU_BATCH) 4456 break; 4457 } 4458 4459 item = PGSCAN_KSWAPD + reclaimer_offset(); 4460 if (!cgroup_reclaim(sc)) { 4461 __count_vm_events(item, isolated); 4462 __count_vm_events(PGREFILL, sorted); 4463 } 4464 __count_memcg_events(memcg, item, isolated); 4465 __count_memcg_events(memcg, PGREFILL, sorted); 4466 __count_vm_events(PGSCAN_ANON + type, isolated); 4467 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH, 4468 scanned, skipped, isolated, 4469 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4470 4471 /* 4472 * There might not be eligible folios due to reclaim_idx. Check the 4473 * remaining to prevent livelock if it's not making progress. 4474 */ 4475 return isolated || !remaining ? scanned : 0; 4476 } 4477 4478 static int get_tier_idx(struct lruvec *lruvec, int type) 4479 { 4480 int tier; 4481 struct ctrl_pos sp, pv; 4482 4483 /* 4484 * To leave a margin for fluctuations, use a larger gain factor (1:2). 4485 * This value is chosen because any other tier would have at least twice 4486 * as many refaults as the first tier. 4487 */ 4488 read_ctrl_pos(lruvec, type, 0, 1, &sp); 4489 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4490 read_ctrl_pos(lruvec, type, tier, 2, &pv); 4491 if (!positive_ctrl_err(&sp, &pv)) 4492 break; 4493 } 4494 4495 return tier - 1; 4496 } 4497 4498 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx) 4499 { 4500 int type, tier; 4501 struct ctrl_pos sp, pv; 4502 int gain[ANON_AND_FILE] = { swappiness, MAX_SWAPPINESS - swappiness }; 4503 4504 /* 4505 * Compare the first tier of anon with that of file to determine which 4506 * type to scan. Also need to compare other tiers of the selected type 4507 * with the first tier of the other type to determine the last tier (of 4508 * the selected type) to evict. 4509 */ 4510 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp); 4511 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv); 4512 type = positive_ctrl_err(&sp, &pv); 4513 4514 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp); 4515 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4516 read_ctrl_pos(lruvec, type, tier, gain[type], &pv); 4517 if (!positive_ctrl_err(&sp, &pv)) 4518 break; 4519 } 4520 4521 *tier_idx = tier - 1; 4522 4523 return type; 4524 } 4525 4526 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 4527 int *type_scanned, struct list_head *list) 4528 { 4529 int i; 4530 int type; 4531 int scanned; 4532 int tier = -1; 4533 DEFINE_MIN_SEQ(lruvec); 4534 4535 /* 4536 * Try to make the obvious choice first, and if anon and file are both 4537 * available from the same generation, 4538 * 1. Interpret swappiness 1 as file first and MAX_SWAPPINESS as anon 4539 * first. 4540 * 2. If !__GFP_IO, file first since clean pagecache is more likely to 4541 * exist than clean swapcache. 4542 */ 4543 if (!swappiness) 4544 type = LRU_GEN_FILE; 4545 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE]) 4546 type = LRU_GEN_ANON; 4547 else if (swappiness == 1) 4548 type = LRU_GEN_FILE; 4549 else if (swappiness == MAX_SWAPPINESS) 4550 type = LRU_GEN_ANON; 4551 else if (!(sc->gfp_mask & __GFP_IO)) 4552 type = LRU_GEN_FILE; 4553 else 4554 type = get_type_to_scan(lruvec, swappiness, &tier); 4555 4556 for (i = !swappiness; i < ANON_AND_FILE; i++) { 4557 if (tier < 0) 4558 tier = get_tier_idx(lruvec, type); 4559 4560 scanned = scan_folios(lruvec, sc, type, tier, list); 4561 if (scanned) 4562 break; 4563 4564 type = !type; 4565 tier = -1; 4566 } 4567 4568 *type_scanned = type; 4569 4570 return scanned; 4571 } 4572 4573 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 4574 { 4575 int type; 4576 int scanned; 4577 int reclaimed; 4578 LIST_HEAD(list); 4579 LIST_HEAD(clean); 4580 struct folio *folio; 4581 struct folio *next; 4582 enum vm_event_item item; 4583 struct reclaim_stat stat; 4584 struct lru_gen_mm_walk *walk; 4585 bool skip_retry = false; 4586 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4587 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4588 4589 spin_lock_irq(&lruvec->lru_lock); 4590 4591 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 4592 4593 scanned += try_to_inc_min_seq(lruvec, swappiness); 4594 4595 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS) 4596 scanned = 0; 4597 4598 spin_unlock_irq(&lruvec->lru_lock); 4599 4600 if (list_empty(&list)) 4601 return scanned; 4602 retry: 4603 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 4604 sc->nr_reclaimed += reclaimed; 4605 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 4606 scanned, reclaimed, &stat, sc->priority, 4607 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4608 4609 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 4610 if (!folio_evictable(folio)) { 4611 list_del(&folio->lru); 4612 folio_putback_lru(folio); 4613 continue; 4614 } 4615 4616 if (folio_test_reclaim(folio) && 4617 (folio_test_dirty(folio) || folio_test_writeback(folio))) { 4618 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */ 4619 if (folio_test_workingset(folio)) 4620 folio_set_referenced(folio); 4621 continue; 4622 } 4623 4624 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) || 4625 folio_mapped(folio) || folio_test_locked(folio) || 4626 folio_test_dirty(folio) || folio_test_writeback(folio)) { 4627 /* don't add rejected folios to the oldest generation */ 4628 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 4629 BIT(PG_active)); 4630 continue; 4631 } 4632 4633 /* retry folios that may have missed folio_rotate_reclaimable() */ 4634 list_move(&folio->lru, &clean); 4635 } 4636 4637 spin_lock_irq(&lruvec->lru_lock); 4638 4639 move_folios_to_lru(lruvec, &list); 4640 4641 walk = current->reclaim_state->mm_walk; 4642 if (walk && walk->batched) { 4643 walk->lruvec = lruvec; 4644 reset_batch_size(walk); 4645 } 4646 4647 item = PGSTEAL_KSWAPD + reclaimer_offset(); 4648 if (!cgroup_reclaim(sc)) 4649 __count_vm_events(item, reclaimed); 4650 __count_memcg_events(memcg, item, reclaimed); 4651 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 4652 4653 spin_unlock_irq(&lruvec->lru_lock); 4654 4655 list_splice_init(&clean, &list); 4656 4657 if (!list_empty(&list)) { 4658 skip_retry = true; 4659 goto retry; 4660 } 4661 4662 return scanned; 4663 } 4664 4665 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 4666 bool can_swap, unsigned long *nr_to_scan) 4667 { 4668 int gen, type, zone; 4669 unsigned long old = 0; 4670 unsigned long young = 0; 4671 unsigned long total = 0; 4672 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4673 DEFINE_MIN_SEQ(lruvec); 4674 4675 /* whether this lruvec is completely out of cold folios */ 4676 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) { 4677 *nr_to_scan = 0; 4678 return true; 4679 } 4680 4681 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4682 unsigned long seq; 4683 4684 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4685 unsigned long size = 0; 4686 4687 gen = lru_gen_from_seq(seq); 4688 4689 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4690 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4691 4692 total += size; 4693 if (seq == max_seq) 4694 young += size; 4695 else if (seq + MIN_NR_GENS == max_seq) 4696 old += size; 4697 } 4698 } 4699 4700 *nr_to_scan = total; 4701 4702 /* 4703 * The aging tries to be lazy to reduce the overhead, while the eviction 4704 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the 4705 * ideal number of generations is MIN_NR_GENS+1. 4706 */ 4707 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq) 4708 return false; 4709 4710 /* 4711 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1) 4712 * of the total number of pages for each generation. A reasonable range 4713 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The 4714 * aging cares about the upper bound of hot pages, while the eviction 4715 * cares about the lower bound of cold pages. 4716 */ 4717 if (young * MIN_NR_GENS > total) 4718 return true; 4719 if (old * (MIN_NR_GENS + 2) < total) 4720 return true; 4721 4722 return false; 4723 } 4724 4725 /* 4726 * For future optimizations: 4727 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 4728 * reclaim. 4729 */ 4730 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap) 4731 { 4732 bool success; 4733 unsigned long nr_to_scan; 4734 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4735 DEFINE_MAX_SEQ(lruvec); 4736 4737 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 4738 return -1; 4739 4740 success = should_run_aging(lruvec, max_seq, can_swap, &nr_to_scan); 4741 4742 /* try to scrape all its memory if this memcg was deleted */ 4743 if (nr_to_scan && !mem_cgroup_online(memcg)) 4744 return nr_to_scan; 4745 4746 /* try to get away with not aging at the default priority */ 4747 if (!success || sc->priority == DEF_PRIORITY) 4748 return nr_to_scan >> sc->priority; 4749 4750 /* stop scanning this lruvec as it's low on cold folios */ 4751 return try_to_inc_max_seq(lruvec, max_seq, can_swap, false) ? -1 : 0; 4752 } 4753 4754 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc) 4755 { 4756 int i; 4757 enum zone_watermarks mark; 4758 4759 /* don't abort memcg reclaim to ensure fairness */ 4760 if (!root_reclaim(sc)) 4761 return false; 4762 4763 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order))) 4764 return true; 4765 4766 /* check the order to exclude compaction-induced reclaim */ 4767 if (!current_is_kswapd() || sc->order) 4768 return false; 4769 4770 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ? 4771 WMARK_PROMO : WMARK_HIGH; 4772 4773 for (i = 0; i <= sc->reclaim_idx; i++) { 4774 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i; 4775 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH; 4776 4777 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0)) 4778 return false; 4779 } 4780 4781 /* kswapd should abort if all eligible zones are safe */ 4782 return true; 4783 } 4784 4785 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4786 { 4787 long nr_to_scan; 4788 unsigned long scanned = 0; 4789 int swappiness = get_swappiness(lruvec, sc); 4790 4791 while (true) { 4792 int delta; 4793 4794 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 4795 if (nr_to_scan <= 0) 4796 break; 4797 4798 delta = evict_folios(lruvec, sc, swappiness); 4799 if (!delta) 4800 break; 4801 4802 scanned += delta; 4803 if (scanned >= nr_to_scan) 4804 break; 4805 4806 if (should_abort_scan(lruvec, sc)) 4807 break; 4808 4809 cond_resched(); 4810 } 4811 4812 /* whether this lruvec should be rotated */ 4813 return nr_to_scan < 0; 4814 } 4815 4816 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 4817 { 4818 bool success; 4819 unsigned long scanned = sc->nr_scanned; 4820 unsigned long reclaimed = sc->nr_reclaimed; 4821 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4822 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4823 4824 /* lru_gen_age_node() called mem_cgroup_calculate_protection() */ 4825 if (mem_cgroup_below_min(NULL, memcg)) 4826 return MEMCG_LRU_YOUNG; 4827 4828 if (mem_cgroup_below_low(NULL, memcg)) { 4829 /* see the comment on MEMCG_NR_GENS */ 4830 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL) 4831 return MEMCG_LRU_TAIL; 4832 4833 memcg_memory_event(memcg, MEMCG_LOW); 4834 } 4835 4836 success = try_to_shrink_lruvec(lruvec, sc); 4837 4838 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 4839 4840 if (!sc->proactive) 4841 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 4842 sc->nr_reclaimed - reclaimed); 4843 4844 flush_reclaim_state(sc); 4845 4846 if (success && mem_cgroup_online(memcg)) 4847 return MEMCG_LRU_YOUNG; 4848 4849 if (!success && lruvec_is_sizable(lruvec, sc)) 4850 return 0; 4851 4852 /* one retry if offlined or too small */ 4853 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ? 4854 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 4855 } 4856 4857 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 4858 { 4859 int op; 4860 int gen; 4861 int bin; 4862 int first_bin; 4863 struct lruvec *lruvec; 4864 struct lru_gen_folio *lrugen; 4865 struct mem_cgroup *memcg; 4866 struct hlist_nulls_node *pos; 4867 4868 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 4869 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 4870 restart: 4871 op = 0; 4872 memcg = NULL; 4873 4874 rcu_read_lock(); 4875 4876 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 4877 if (op) { 4878 lru_gen_rotate_memcg(lruvec, op); 4879 op = 0; 4880 } 4881 4882 mem_cgroup_put(memcg); 4883 memcg = NULL; 4884 4885 if (gen != READ_ONCE(lrugen->gen)) 4886 continue; 4887 4888 lruvec = container_of(lrugen, struct lruvec, lrugen); 4889 memcg = lruvec_memcg(lruvec); 4890 4891 if (!mem_cgroup_tryget(memcg)) { 4892 lru_gen_release_memcg(memcg); 4893 memcg = NULL; 4894 continue; 4895 } 4896 4897 rcu_read_unlock(); 4898 4899 op = shrink_one(lruvec, sc); 4900 4901 rcu_read_lock(); 4902 4903 if (should_abort_scan(lruvec, sc)) 4904 break; 4905 } 4906 4907 rcu_read_unlock(); 4908 4909 if (op) 4910 lru_gen_rotate_memcg(lruvec, op); 4911 4912 mem_cgroup_put(memcg); 4913 4914 if (!is_a_nulls(pos)) 4915 return; 4916 4917 /* restart if raced with lru_gen_rotate_memcg() */ 4918 if (gen != get_nulls_value(pos)) 4919 goto restart; 4920 4921 /* try the rest of the bins of the current generation */ 4922 bin = get_memcg_bin(bin + 1); 4923 if (bin != first_bin) 4924 goto restart; 4925 } 4926 4927 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4928 { 4929 struct blk_plug plug; 4930 4931 VM_WARN_ON_ONCE(root_reclaim(sc)); 4932 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 4933 4934 lru_add_drain(); 4935 4936 blk_start_plug(&plug); 4937 4938 set_mm_walk(NULL, sc->proactive); 4939 4940 if (try_to_shrink_lruvec(lruvec, sc)) 4941 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 4942 4943 clear_mm_walk(); 4944 4945 blk_finish_plug(&plug); 4946 } 4947 4948 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 4949 { 4950 struct blk_plug plug; 4951 unsigned long reclaimed = sc->nr_reclaimed; 4952 4953 VM_WARN_ON_ONCE(!root_reclaim(sc)); 4954 4955 /* 4956 * Unmapped clean folios are already prioritized. Scanning for more of 4957 * them is likely futile and can cause high reclaim latency when there 4958 * is a large number of memcgs. 4959 */ 4960 if (!sc->may_writepage || !sc->may_unmap) 4961 goto done; 4962 4963 lru_add_drain(); 4964 4965 blk_start_plug(&plug); 4966 4967 set_mm_walk(pgdat, sc->proactive); 4968 4969 set_initial_priority(pgdat, sc); 4970 4971 if (current_is_kswapd()) 4972 sc->nr_reclaimed = 0; 4973 4974 if (mem_cgroup_disabled()) 4975 shrink_one(&pgdat->__lruvec, sc); 4976 else 4977 shrink_many(pgdat, sc); 4978 4979 if (current_is_kswapd()) 4980 sc->nr_reclaimed += reclaimed; 4981 4982 clear_mm_walk(); 4983 4984 blk_finish_plug(&plug); 4985 done: 4986 /* kswapd should never fail */ 4987 pgdat->kswapd_failures = 0; 4988 } 4989 4990 /****************************************************************************** 4991 * state change 4992 ******************************************************************************/ 4993 4994 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 4995 { 4996 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4997 4998 if (lrugen->enabled) { 4999 enum lru_list lru; 5000 5001 for_each_evictable_lru(lru) { 5002 if (!list_empty(&lruvec->lists[lru])) 5003 return false; 5004 } 5005 } else { 5006 int gen, type, zone; 5007 5008 for_each_gen_type_zone(gen, type, zone) { 5009 if (!list_empty(&lrugen->folios[gen][type][zone])) 5010 return false; 5011 } 5012 } 5013 5014 return true; 5015 } 5016 5017 static bool fill_evictable(struct lruvec *lruvec) 5018 { 5019 enum lru_list lru; 5020 int remaining = MAX_LRU_BATCH; 5021 5022 for_each_evictable_lru(lru) { 5023 int type = is_file_lru(lru); 5024 bool active = is_active_lru(lru); 5025 struct list_head *head = &lruvec->lists[lru]; 5026 5027 while (!list_empty(head)) { 5028 bool success; 5029 struct folio *folio = lru_to_folio(head); 5030 5031 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5032 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5033 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5034 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5035 5036 lruvec_del_folio(lruvec, folio); 5037 success = lru_gen_add_folio(lruvec, folio, false); 5038 VM_WARN_ON_ONCE(!success); 5039 5040 if (!--remaining) 5041 return false; 5042 } 5043 } 5044 5045 return true; 5046 } 5047 5048 static bool drain_evictable(struct lruvec *lruvec) 5049 { 5050 int gen, type, zone; 5051 int remaining = MAX_LRU_BATCH; 5052 5053 for_each_gen_type_zone(gen, type, zone) { 5054 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5055 5056 while (!list_empty(head)) { 5057 bool success; 5058 struct folio *folio = lru_to_folio(head); 5059 5060 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5061 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5062 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5063 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5064 5065 success = lru_gen_del_folio(lruvec, folio, false); 5066 VM_WARN_ON_ONCE(!success); 5067 lruvec_add_folio(lruvec, folio); 5068 5069 if (!--remaining) 5070 return false; 5071 } 5072 } 5073 5074 return true; 5075 } 5076 5077 static void lru_gen_change_state(bool enabled) 5078 { 5079 static DEFINE_MUTEX(state_mutex); 5080 5081 struct mem_cgroup *memcg; 5082 5083 cgroup_lock(); 5084 cpus_read_lock(); 5085 get_online_mems(); 5086 mutex_lock(&state_mutex); 5087 5088 if (enabled == lru_gen_enabled()) 5089 goto unlock; 5090 5091 if (enabled) 5092 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5093 else 5094 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5095 5096 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5097 do { 5098 int nid; 5099 5100 for_each_node(nid) { 5101 struct lruvec *lruvec = get_lruvec(memcg, nid); 5102 5103 spin_lock_irq(&lruvec->lru_lock); 5104 5105 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5106 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5107 5108 lruvec->lrugen.enabled = enabled; 5109 5110 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5111 spin_unlock_irq(&lruvec->lru_lock); 5112 cond_resched(); 5113 spin_lock_irq(&lruvec->lru_lock); 5114 } 5115 5116 spin_unlock_irq(&lruvec->lru_lock); 5117 } 5118 5119 cond_resched(); 5120 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5121 unlock: 5122 mutex_unlock(&state_mutex); 5123 put_online_mems(); 5124 cpus_read_unlock(); 5125 cgroup_unlock(); 5126 } 5127 5128 /****************************************************************************** 5129 * sysfs interface 5130 ******************************************************************************/ 5131 5132 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5133 { 5134 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5135 } 5136 5137 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5138 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, 5139 const char *buf, size_t len) 5140 { 5141 unsigned int msecs; 5142 5143 if (kstrtouint(buf, 0, &msecs)) 5144 return -EINVAL; 5145 5146 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5147 5148 return len; 5149 } 5150 5151 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); 5152 5153 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5154 { 5155 unsigned int caps = 0; 5156 5157 if (get_cap(LRU_GEN_CORE)) 5158 caps |= BIT(LRU_GEN_CORE); 5159 5160 if (should_walk_mmu()) 5161 caps |= BIT(LRU_GEN_MM_WALK); 5162 5163 if (should_clear_pmd_young()) 5164 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5165 5166 return sysfs_emit(buf, "0x%04x\n", caps); 5167 } 5168 5169 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5170 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 5171 const char *buf, size_t len) 5172 { 5173 int i; 5174 unsigned int caps; 5175 5176 if (tolower(*buf) == 'n') 5177 caps = 0; 5178 else if (tolower(*buf) == 'y') 5179 caps = -1; 5180 else if (kstrtouint(buf, 0, &caps)) 5181 return -EINVAL; 5182 5183 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5184 bool enabled = caps & BIT(i); 5185 5186 if (i == LRU_GEN_CORE) 5187 lru_gen_change_state(enabled); 5188 else if (enabled) 5189 static_branch_enable(&lru_gen_caps[i]); 5190 else 5191 static_branch_disable(&lru_gen_caps[i]); 5192 } 5193 5194 return len; 5195 } 5196 5197 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); 5198 5199 static struct attribute *lru_gen_attrs[] = { 5200 &lru_gen_min_ttl_attr.attr, 5201 &lru_gen_enabled_attr.attr, 5202 NULL 5203 }; 5204 5205 static const struct attribute_group lru_gen_attr_group = { 5206 .name = "lru_gen", 5207 .attrs = lru_gen_attrs, 5208 }; 5209 5210 /****************************************************************************** 5211 * debugfs interface 5212 ******************************************************************************/ 5213 5214 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5215 { 5216 struct mem_cgroup *memcg; 5217 loff_t nr_to_skip = *pos; 5218 5219 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5220 if (!m->private) 5221 return ERR_PTR(-ENOMEM); 5222 5223 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5224 do { 5225 int nid; 5226 5227 for_each_node_state(nid, N_MEMORY) { 5228 if (!nr_to_skip--) 5229 return get_lruvec(memcg, nid); 5230 } 5231 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5232 5233 return NULL; 5234 } 5235 5236 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5237 { 5238 if (!IS_ERR_OR_NULL(v)) 5239 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5240 5241 kvfree(m->private); 5242 m->private = NULL; 5243 } 5244 5245 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5246 { 5247 int nid = lruvec_pgdat(v)->node_id; 5248 struct mem_cgroup *memcg = lruvec_memcg(v); 5249 5250 ++*pos; 5251 5252 nid = next_memory_node(nid); 5253 if (nid == MAX_NUMNODES) { 5254 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5255 if (!memcg) 5256 return NULL; 5257 5258 nid = first_memory_node; 5259 } 5260 5261 return get_lruvec(memcg, nid); 5262 } 5263 5264 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5265 unsigned long max_seq, unsigned long *min_seq, 5266 unsigned long seq) 5267 { 5268 int i; 5269 int type, tier; 5270 int hist = lru_hist_from_seq(seq); 5271 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5272 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5273 5274 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5275 seq_printf(m, " %10d", tier); 5276 for (type = 0; type < ANON_AND_FILE; type++) { 5277 const char *s = " "; 5278 unsigned long n[3] = {}; 5279 5280 if (seq == max_seq) { 5281 s = "RT "; 5282 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5283 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5284 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5285 s = "rep"; 5286 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5287 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5288 if (tier) 5289 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]); 5290 } 5291 5292 for (i = 0; i < 3; i++) 5293 seq_printf(m, " %10lu%c", n[i], s[i]); 5294 } 5295 seq_putc(m, '\n'); 5296 } 5297 5298 if (!mm_state) 5299 return; 5300 5301 seq_puts(m, " "); 5302 for (i = 0; i < NR_MM_STATS; i++) { 5303 const char *s = " "; 5304 unsigned long n = 0; 5305 5306 if (seq == max_seq && NR_HIST_GENS == 1) { 5307 s = "LOYNFA"; 5308 n = READ_ONCE(mm_state->stats[hist][i]); 5309 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5310 s = "loynfa"; 5311 n = READ_ONCE(mm_state->stats[hist][i]); 5312 } 5313 5314 seq_printf(m, " %10lu%c", n, s[i]); 5315 } 5316 seq_putc(m, '\n'); 5317 } 5318 5319 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5320 static int lru_gen_seq_show(struct seq_file *m, void *v) 5321 { 5322 unsigned long seq; 5323 bool full = !debugfs_real_fops(m->file)->write; 5324 struct lruvec *lruvec = v; 5325 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5326 int nid = lruvec_pgdat(lruvec)->node_id; 5327 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5328 DEFINE_MAX_SEQ(lruvec); 5329 DEFINE_MIN_SEQ(lruvec); 5330 5331 if (nid == first_memory_node) { 5332 const char *path = memcg ? m->private : ""; 5333 5334 #ifdef CONFIG_MEMCG 5335 if (memcg) 5336 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5337 #endif 5338 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5339 } 5340 5341 seq_printf(m, " node %5d\n", nid); 5342 5343 if (!full) 5344 seq = min_seq[LRU_GEN_ANON]; 5345 else if (max_seq >= MAX_NR_GENS) 5346 seq = max_seq - MAX_NR_GENS + 1; 5347 else 5348 seq = 0; 5349 5350 for (; seq <= max_seq; seq++) { 5351 int type, zone; 5352 int gen = lru_gen_from_seq(seq); 5353 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5354 5355 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5356 5357 for (type = 0; type < ANON_AND_FILE; type++) { 5358 unsigned long size = 0; 5359 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5360 5361 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5362 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5363 5364 seq_printf(m, " %10lu%c", size, mark); 5365 } 5366 5367 seq_putc(m, '\n'); 5368 5369 if (full) 5370 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5371 } 5372 5373 return 0; 5374 } 5375 5376 static const struct seq_operations lru_gen_seq_ops = { 5377 .start = lru_gen_seq_start, 5378 .stop = lru_gen_seq_stop, 5379 .next = lru_gen_seq_next, 5380 .show = lru_gen_seq_show, 5381 }; 5382 5383 static int run_aging(struct lruvec *lruvec, unsigned long seq, 5384 bool can_swap, bool force_scan) 5385 { 5386 DEFINE_MAX_SEQ(lruvec); 5387 DEFINE_MIN_SEQ(lruvec); 5388 5389 if (seq < max_seq) 5390 return 0; 5391 5392 if (seq > max_seq) 5393 return -EINVAL; 5394 5395 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq) 5396 return -ERANGE; 5397 5398 try_to_inc_max_seq(lruvec, max_seq, can_swap, force_scan); 5399 5400 return 0; 5401 } 5402 5403 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5404 int swappiness, unsigned long nr_to_reclaim) 5405 { 5406 DEFINE_MAX_SEQ(lruvec); 5407 5408 if (seq + MIN_NR_GENS > max_seq) 5409 return -EINVAL; 5410 5411 sc->nr_reclaimed = 0; 5412 5413 while (!signal_pending(current)) { 5414 DEFINE_MIN_SEQ(lruvec); 5415 5416 if (seq < min_seq[!swappiness]) 5417 return 0; 5418 5419 if (sc->nr_reclaimed >= nr_to_reclaim) 5420 return 0; 5421 5422 if (!evict_folios(lruvec, sc, swappiness)) 5423 return 0; 5424 5425 cond_resched(); 5426 } 5427 5428 return -EINTR; 5429 } 5430 5431 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5432 struct scan_control *sc, int swappiness, unsigned long opt) 5433 { 5434 struct lruvec *lruvec; 5435 int err = -EINVAL; 5436 struct mem_cgroup *memcg = NULL; 5437 5438 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5439 return -EINVAL; 5440 5441 if (!mem_cgroup_disabled()) { 5442 rcu_read_lock(); 5443 5444 memcg = mem_cgroup_from_id(memcg_id); 5445 if (!mem_cgroup_tryget(memcg)) 5446 memcg = NULL; 5447 5448 rcu_read_unlock(); 5449 5450 if (!memcg) 5451 return -EINVAL; 5452 } 5453 5454 if (memcg_id != mem_cgroup_id(memcg)) 5455 goto done; 5456 5457 lruvec = get_lruvec(memcg, nid); 5458 5459 if (swappiness < MIN_SWAPPINESS) 5460 swappiness = get_swappiness(lruvec, sc); 5461 else if (swappiness > MAX_SWAPPINESS) 5462 goto done; 5463 5464 switch (cmd) { 5465 case '+': 5466 err = run_aging(lruvec, seq, swappiness, opt); 5467 break; 5468 case '-': 5469 err = run_eviction(lruvec, seq, sc, swappiness, opt); 5470 break; 5471 } 5472 done: 5473 mem_cgroup_put(memcg); 5474 5475 return err; 5476 } 5477 5478 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5479 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 5480 size_t len, loff_t *pos) 5481 { 5482 void *buf; 5483 char *cur, *next; 5484 unsigned int flags; 5485 struct blk_plug plug; 5486 int err = -EINVAL; 5487 struct scan_control sc = { 5488 .may_writepage = true, 5489 .may_unmap = true, 5490 .may_swap = true, 5491 .reclaim_idx = MAX_NR_ZONES - 1, 5492 .gfp_mask = GFP_KERNEL, 5493 }; 5494 5495 buf = kvmalloc(len + 1, GFP_KERNEL); 5496 if (!buf) 5497 return -ENOMEM; 5498 5499 if (copy_from_user(buf, src, len)) { 5500 kvfree(buf); 5501 return -EFAULT; 5502 } 5503 5504 set_task_reclaim_state(current, &sc.reclaim_state); 5505 flags = memalloc_noreclaim_save(); 5506 blk_start_plug(&plug); 5507 if (!set_mm_walk(NULL, true)) { 5508 err = -ENOMEM; 5509 goto done; 5510 } 5511 5512 next = buf; 5513 next[len] = '\0'; 5514 5515 while ((cur = strsep(&next, ",;\n"))) { 5516 int n; 5517 int end; 5518 char cmd; 5519 unsigned int memcg_id; 5520 unsigned int nid; 5521 unsigned long seq; 5522 unsigned int swappiness = -1; 5523 unsigned long opt = -1; 5524 5525 cur = skip_spaces(cur); 5526 if (!*cur) 5527 continue; 5528 5529 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 5530 &seq, &end, &swappiness, &end, &opt, &end); 5531 if (n < 4 || cur[end]) { 5532 err = -EINVAL; 5533 break; 5534 } 5535 5536 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 5537 if (err) 5538 break; 5539 } 5540 done: 5541 clear_mm_walk(); 5542 blk_finish_plug(&plug); 5543 memalloc_noreclaim_restore(flags); 5544 set_task_reclaim_state(current, NULL); 5545 5546 kvfree(buf); 5547 5548 return err ? : len; 5549 } 5550 5551 static int lru_gen_seq_open(struct inode *inode, struct file *file) 5552 { 5553 return seq_open(file, &lru_gen_seq_ops); 5554 } 5555 5556 static const struct file_operations lru_gen_rw_fops = { 5557 .open = lru_gen_seq_open, 5558 .read = seq_read, 5559 .write = lru_gen_seq_write, 5560 .llseek = seq_lseek, 5561 .release = seq_release, 5562 }; 5563 5564 static const struct file_operations lru_gen_ro_fops = { 5565 .open = lru_gen_seq_open, 5566 .read = seq_read, 5567 .llseek = seq_lseek, 5568 .release = seq_release, 5569 }; 5570 5571 /****************************************************************************** 5572 * initialization 5573 ******************************************************************************/ 5574 5575 void lru_gen_init_pgdat(struct pglist_data *pgdat) 5576 { 5577 int i, j; 5578 5579 spin_lock_init(&pgdat->memcg_lru.lock); 5580 5581 for (i = 0; i < MEMCG_NR_GENS; i++) { 5582 for (j = 0; j < MEMCG_NR_BINS; j++) 5583 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 5584 } 5585 } 5586 5587 void lru_gen_init_lruvec(struct lruvec *lruvec) 5588 { 5589 int i; 5590 int gen, type, zone; 5591 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5592 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5593 5594 lrugen->max_seq = MIN_NR_GENS + 1; 5595 lrugen->enabled = lru_gen_enabled(); 5596 5597 for (i = 0; i <= MIN_NR_GENS + 1; i++) 5598 lrugen->timestamps[i] = jiffies; 5599 5600 for_each_gen_type_zone(gen, type, zone) 5601 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 5602 5603 if (mm_state) 5604 mm_state->seq = MIN_NR_GENS; 5605 } 5606 5607 #ifdef CONFIG_MEMCG 5608 5609 void lru_gen_init_memcg(struct mem_cgroup *memcg) 5610 { 5611 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5612 5613 if (!mm_list) 5614 return; 5615 5616 INIT_LIST_HEAD(&mm_list->fifo); 5617 spin_lock_init(&mm_list->lock); 5618 } 5619 5620 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 5621 { 5622 int i; 5623 int nid; 5624 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5625 5626 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo)); 5627 5628 for_each_node(nid) { 5629 struct lruvec *lruvec = get_lruvec(memcg, nid); 5630 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5631 5632 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 5633 sizeof(lruvec->lrugen.nr_pages))); 5634 5635 lruvec->lrugen.list.next = LIST_POISON1; 5636 5637 if (!mm_state) 5638 continue; 5639 5640 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 5641 bitmap_free(mm_state->filters[i]); 5642 mm_state->filters[i] = NULL; 5643 } 5644 } 5645 } 5646 5647 #endif /* CONFIG_MEMCG */ 5648 5649 static int __init init_lru_gen(void) 5650 { 5651 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 5652 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 5653 5654 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 5655 pr_err("lru_gen: failed to create sysfs group\n"); 5656 5657 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 5658 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 5659 5660 return 0; 5661 }; 5662 late_initcall(init_lru_gen); 5663 5664 #else /* !CONFIG_LRU_GEN */ 5665 5666 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 5667 { 5668 BUILD_BUG(); 5669 } 5670 5671 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5672 { 5673 BUILD_BUG(); 5674 } 5675 5676 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5677 { 5678 BUILD_BUG(); 5679 } 5680 5681 #endif /* CONFIG_LRU_GEN */ 5682 5683 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5684 { 5685 unsigned long nr[NR_LRU_LISTS]; 5686 unsigned long targets[NR_LRU_LISTS]; 5687 unsigned long nr_to_scan; 5688 enum lru_list lru; 5689 unsigned long nr_reclaimed = 0; 5690 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 5691 bool proportional_reclaim; 5692 struct blk_plug plug; 5693 5694 if (lru_gen_enabled() && !root_reclaim(sc)) { 5695 lru_gen_shrink_lruvec(lruvec, sc); 5696 return; 5697 } 5698 5699 get_scan_count(lruvec, sc, nr); 5700 5701 /* Record the original scan target for proportional adjustments later */ 5702 memcpy(targets, nr, sizeof(nr)); 5703 5704 /* 5705 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 5706 * event that can occur when there is little memory pressure e.g. 5707 * multiple streaming readers/writers. Hence, we do not abort scanning 5708 * when the requested number of pages are reclaimed when scanning at 5709 * DEF_PRIORITY on the assumption that the fact we are direct 5710 * reclaiming implies that kswapd is not keeping up and it is best to 5711 * do a batch of work at once. For memcg reclaim one check is made to 5712 * abort proportional reclaim if either the file or anon lru has already 5713 * dropped to zero at the first pass. 5714 */ 5715 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 5716 sc->priority == DEF_PRIORITY); 5717 5718 blk_start_plug(&plug); 5719 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 5720 nr[LRU_INACTIVE_FILE]) { 5721 unsigned long nr_anon, nr_file, percentage; 5722 unsigned long nr_scanned; 5723 5724 for_each_evictable_lru(lru) { 5725 if (nr[lru]) { 5726 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 5727 nr[lru] -= nr_to_scan; 5728 5729 nr_reclaimed += shrink_list(lru, nr_to_scan, 5730 lruvec, sc); 5731 } 5732 } 5733 5734 cond_resched(); 5735 5736 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 5737 continue; 5738 5739 /* 5740 * For kswapd and memcg, reclaim at least the number of pages 5741 * requested. Ensure that the anon and file LRUs are scanned 5742 * proportionally what was requested by get_scan_count(). We 5743 * stop reclaiming one LRU and reduce the amount scanning 5744 * proportional to the original scan target. 5745 */ 5746 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 5747 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 5748 5749 /* 5750 * It's just vindictive to attack the larger once the smaller 5751 * has gone to zero. And given the way we stop scanning the 5752 * smaller below, this makes sure that we only make one nudge 5753 * towards proportionality once we've got nr_to_reclaim. 5754 */ 5755 if (!nr_file || !nr_anon) 5756 break; 5757 5758 if (nr_file > nr_anon) { 5759 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 5760 targets[LRU_ACTIVE_ANON] + 1; 5761 lru = LRU_BASE; 5762 percentage = nr_anon * 100 / scan_target; 5763 } else { 5764 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 5765 targets[LRU_ACTIVE_FILE] + 1; 5766 lru = LRU_FILE; 5767 percentage = nr_file * 100 / scan_target; 5768 } 5769 5770 /* Stop scanning the smaller of the LRU */ 5771 nr[lru] = 0; 5772 nr[lru + LRU_ACTIVE] = 0; 5773 5774 /* 5775 * Recalculate the other LRU scan count based on its original 5776 * scan target and the percentage scanning already complete 5777 */ 5778 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 5779 nr_scanned = targets[lru] - nr[lru]; 5780 nr[lru] = targets[lru] * (100 - percentage) / 100; 5781 nr[lru] -= min(nr[lru], nr_scanned); 5782 5783 lru += LRU_ACTIVE; 5784 nr_scanned = targets[lru] - nr[lru]; 5785 nr[lru] = targets[lru] * (100 - percentage) / 100; 5786 nr[lru] -= min(nr[lru], nr_scanned); 5787 } 5788 blk_finish_plug(&plug); 5789 sc->nr_reclaimed += nr_reclaimed; 5790 5791 /* 5792 * Even if we did not try to evict anon pages at all, we want to 5793 * rebalance the anon lru active/inactive ratio. 5794 */ 5795 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 5796 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 5797 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 5798 sc, LRU_ACTIVE_ANON); 5799 } 5800 5801 /* Use reclaim/compaction for costly allocs or under memory pressure */ 5802 static bool in_reclaim_compaction(struct scan_control *sc) 5803 { 5804 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order && 5805 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 5806 sc->priority < DEF_PRIORITY - 2)) 5807 return true; 5808 5809 return false; 5810 } 5811 5812 /* 5813 * Reclaim/compaction is used for high-order allocation requests. It reclaims 5814 * order-0 pages before compacting the zone. should_continue_reclaim() returns 5815 * true if more pages should be reclaimed such that when the page allocator 5816 * calls try_to_compact_pages() that it will have enough free pages to succeed. 5817 * It will give up earlier than that if there is difficulty reclaiming pages. 5818 */ 5819 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 5820 unsigned long nr_reclaimed, 5821 struct scan_control *sc) 5822 { 5823 unsigned long pages_for_compaction; 5824 unsigned long inactive_lru_pages; 5825 int z; 5826 5827 /* If not in reclaim/compaction mode, stop */ 5828 if (!in_reclaim_compaction(sc)) 5829 return false; 5830 5831 /* 5832 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 5833 * number of pages that were scanned. This will return to the caller 5834 * with the risk reclaim/compaction and the resulting allocation attempt 5835 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 5836 * allocations through requiring that the full LRU list has been scanned 5837 * first, by assuming that zero delta of sc->nr_scanned means full LRU 5838 * scan, but that approximation was wrong, and there were corner cases 5839 * where always a non-zero amount of pages were scanned. 5840 */ 5841 if (!nr_reclaimed) 5842 return false; 5843 5844 /* If compaction would go ahead or the allocation would succeed, stop */ 5845 for (z = 0; z <= sc->reclaim_idx; z++) { 5846 struct zone *zone = &pgdat->node_zones[z]; 5847 if (!managed_zone(zone)) 5848 continue; 5849 5850 /* Allocation can already succeed, nothing to do */ 5851 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 5852 sc->reclaim_idx, 0)) 5853 return false; 5854 5855 if (compaction_suitable(zone, sc->order, sc->reclaim_idx)) 5856 return false; 5857 } 5858 5859 /* 5860 * If we have not reclaimed enough pages for compaction and the 5861 * inactive lists are large enough, continue reclaiming 5862 */ 5863 pages_for_compaction = compact_gap(sc->order); 5864 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 5865 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 5866 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 5867 5868 return inactive_lru_pages > pages_for_compaction; 5869 } 5870 5871 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 5872 { 5873 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 5874 struct mem_cgroup_reclaim_cookie reclaim = { 5875 .pgdat = pgdat, 5876 }; 5877 struct mem_cgroup_reclaim_cookie *partial = &reclaim; 5878 struct mem_cgroup *memcg; 5879 5880 /* 5881 * In most cases, direct reclaimers can do partial walks 5882 * through the cgroup tree, using an iterator state that 5883 * persists across invocations. This strikes a balance between 5884 * fairness and allocation latency. 5885 * 5886 * For kswapd, reliable forward progress is more important 5887 * than a quick return to idle. Always do full walks. 5888 */ 5889 if (current_is_kswapd() || sc->memcg_full_walk) 5890 partial = NULL; 5891 5892 memcg = mem_cgroup_iter(target_memcg, NULL, partial); 5893 do { 5894 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 5895 unsigned long reclaimed; 5896 unsigned long scanned; 5897 5898 /* 5899 * This loop can become CPU-bound when target memcgs 5900 * aren't eligible for reclaim - either because they 5901 * don't have any reclaimable pages, or because their 5902 * memory is explicitly protected. Avoid soft lockups. 5903 */ 5904 cond_resched(); 5905 5906 mem_cgroup_calculate_protection(target_memcg, memcg); 5907 5908 if (mem_cgroup_below_min(target_memcg, memcg)) { 5909 /* 5910 * Hard protection. 5911 * If there is no reclaimable memory, OOM. 5912 */ 5913 continue; 5914 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 5915 /* 5916 * Soft protection. 5917 * Respect the protection only as long as 5918 * there is an unprotected supply 5919 * of reclaimable memory from other cgroups. 5920 */ 5921 if (!sc->memcg_low_reclaim) { 5922 sc->memcg_low_skipped = 1; 5923 continue; 5924 } 5925 memcg_memory_event(memcg, MEMCG_LOW); 5926 } 5927 5928 reclaimed = sc->nr_reclaimed; 5929 scanned = sc->nr_scanned; 5930 5931 shrink_lruvec(lruvec, sc); 5932 5933 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 5934 sc->priority); 5935 5936 /* Record the group's reclaim efficiency */ 5937 if (!sc->proactive) 5938 vmpressure(sc->gfp_mask, memcg, false, 5939 sc->nr_scanned - scanned, 5940 sc->nr_reclaimed - reclaimed); 5941 5942 /* If partial walks are allowed, bail once goal is reached */ 5943 if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) { 5944 mem_cgroup_iter_break(target_memcg, memcg); 5945 break; 5946 } 5947 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial))); 5948 } 5949 5950 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 5951 { 5952 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; 5953 struct lruvec *target_lruvec; 5954 bool reclaimable = false; 5955 5956 if (lru_gen_enabled() && root_reclaim(sc)) { 5957 lru_gen_shrink_node(pgdat, sc); 5958 return; 5959 } 5960 5961 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 5962 5963 again: 5964 memset(&sc->nr, 0, sizeof(sc->nr)); 5965 5966 nr_reclaimed = sc->nr_reclaimed; 5967 nr_scanned = sc->nr_scanned; 5968 5969 prepare_scan_control(pgdat, sc); 5970 5971 shrink_node_memcgs(pgdat, sc); 5972 5973 flush_reclaim_state(sc); 5974 5975 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; 5976 5977 /* Record the subtree's reclaim efficiency */ 5978 if (!sc->proactive) 5979 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 5980 sc->nr_scanned - nr_scanned, nr_node_reclaimed); 5981 5982 if (nr_node_reclaimed) 5983 reclaimable = true; 5984 5985 if (current_is_kswapd()) { 5986 /* 5987 * If reclaim is isolating dirty pages under writeback, 5988 * it implies that the long-lived page allocation rate 5989 * is exceeding the page laundering rate. Either the 5990 * global limits are not being effective at throttling 5991 * processes due to the page distribution throughout 5992 * zones or there is heavy usage of a slow backing 5993 * device. The only option is to throttle from reclaim 5994 * context which is not ideal as there is no guarantee 5995 * the dirtying process is throttled in the same way 5996 * balance_dirty_pages() manages. 5997 * 5998 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 5999 * count the number of pages under pages flagged for 6000 * immediate reclaim and stall if any are encountered 6001 * in the nr_immediate check below. 6002 */ 6003 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 6004 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 6005 6006 /* Allow kswapd to start writing pages during reclaim.*/ 6007 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 6008 set_bit(PGDAT_DIRTY, &pgdat->flags); 6009 6010 /* 6011 * If kswapd scans pages marked for immediate 6012 * reclaim and under writeback (nr_immediate), it 6013 * implies that pages are cycling through the LRU 6014 * faster than they are written so forcibly stall 6015 * until some pages complete writeback. 6016 */ 6017 if (sc->nr.immediate) 6018 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 6019 } 6020 6021 /* 6022 * Tag a node/memcg as congested if all the dirty pages were marked 6023 * for writeback and immediate reclaim (counted in nr.congested). 6024 * 6025 * Legacy memcg will stall in page writeback so avoid forcibly 6026 * stalling in reclaim_throttle(). 6027 */ 6028 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) { 6029 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc)) 6030 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags); 6031 6032 if (current_is_kswapd()) 6033 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags); 6034 } 6035 6036 /* 6037 * Stall direct reclaim for IO completions if the lruvec is 6038 * node is congested. Allow kswapd to continue until it 6039 * starts encountering unqueued dirty pages or cycling through 6040 * the LRU too quickly. 6041 */ 6042 if (!current_is_kswapd() && current_may_throttle() && 6043 !sc->hibernation_mode && 6044 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) || 6045 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags))) 6046 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6047 6048 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) 6049 goto again; 6050 6051 /* 6052 * Kswapd gives up on balancing particular nodes after too 6053 * many failures to reclaim anything from them and goes to 6054 * sleep. On reclaim progress, reset the failure counter. A 6055 * successful direct reclaim run will revive a dormant kswapd. 6056 */ 6057 if (reclaimable) 6058 pgdat->kswapd_failures = 0; 6059 else if (sc->cache_trim_mode) 6060 sc->cache_trim_mode_failed = 1; 6061 } 6062 6063 /* 6064 * Returns true if compaction should go ahead for a costly-order request, or 6065 * the allocation would already succeed without compaction. Return false if we 6066 * should reclaim first. 6067 */ 6068 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6069 { 6070 unsigned long watermark; 6071 6072 if (!gfp_compaction_allowed(sc->gfp_mask)) 6073 return false; 6074 6075 /* Allocation can already succeed, nothing to do */ 6076 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 6077 sc->reclaim_idx, 0)) 6078 return true; 6079 6080 /* Compaction cannot yet proceed. Do reclaim. */ 6081 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx)) 6082 return false; 6083 6084 /* 6085 * Compaction is already possible, but it takes time to run and there 6086 * are potentially other callers using the pages just freed. So proceed 6087 * with reclaim to make a buffer of free pages available to give 6088 * compaction a reasonable chance of completing and allocating the page. 6089 * Note that we won't actually reclaim the whole buffer in one attempt 6090 * as the target watermark in should_continue_reclaim() is lower. But if 6091 * we are already above the high+gap watermark, don't reclaim at all. 6092 */ 6093 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 6094 6095 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 6096 } 6097 6098 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6099 { 6100 /* 6101 * If reclaim is making progress greater than 12% efficiency then 6102 * wake all the NOPROGRESS throttled tasks. 6103 */ 6104 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6105 wait_queue_head_t *wqh; 6106 6107 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6108 if (waitqueue_active(wqh)) 6109 wake_up(wqh); 6110 6111 return; 6112 } 6113 6114 /* 6115 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6116 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6117 * under writeback and marked for immediate reclaim at the tail of the 6118 * LRU. 6119 */ 6120 if (current_is_kswapd() || cgroup_reclaim(sc)) 6121 return; 6122 6123 /* Throttle if making no progress at high prioities. */ 6124 if (sc->priority == 1 && !sc->nr_reclaimed) 6125 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6126 } 6127 6128 /* 6129 * This is the direct reclaim path, for page-allocating processes. We only 6130 * try to reclaim pages from zones which will satisfy the caller's allocation 6131 * request. 6132 * 6133 * If a zone is deemed to be full of pinned pages then just give it a light 6134 * scan then give up on it. 6135 */ 6136 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6137 { 6138 struct zoneref *z; 6139 struct zone *zone; 6140 unsigned long nr_soft_reclaimed; 6141 unsigned long nr_soft_scanned; 6142 gfp_t orig_mask; 6143 pg_data_t *last_pgdat = NULL; 6144 pg_data_t *first_pgdat = NULL; 6145 6146 /* 6147 * If the number of buffer_heads in the machine exceeds the maximum 6148 * allowed level, force direct reclaim to scan the highmem zone as 6149 * highmem pages could be pinning lowmem pages storing buffer_heads 6150 */ 6151 orig_mask = sc->gfp_mask; 6152 if (buffer_heads_over_limit) { 6153 sc->gfp_mask |= __GFP_HIGHMEM; 6154 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6155 } 6156 6157 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6158 sc->reclaim_idx, sc->nodemask) { 6159 /* 6160 * Take care memory controller reclaiming has small influence 6161 * to global LRU. 6162 */ 6163 if (!cgroup_reclaim(sc)) { 6164 if (!cpuset_zone_allowed(zone, 6165 GFP_KERNEL | __GFP_HARDWALL)) 6166 continue; 6167 6168 /* 6169 * If we already have plenty of memory free for 6170 * compaction in this zone, don't free any more. 6171 * Even though compaction is invoked for any 6172 * non-zero order, only frequent costly order 6173 * reclamation is disruptive enough to become a 6174 * noticeable problem, like transparent huge 6175 * page allocations. 6176 */ 6177 if (IS_ENABLED(CONFIG_COMPACTION) && 6178 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6179 compaction_ready(zone, sc)) { 6180 sc->compaction_ready = true; 6181 continue; 6182 } 6183 6184 /* 6185 * Shrink each node in the zonelist once. If the 6186 * zonelist is ordered by zone (not the default) then a 6187 * node may be shrunk multiple times but in that case 6188 * the user prefers lower zones being preserved. 6189 */ 6190 if (zone->zone_pgdat == last_pgdat) 6191 continue; 6192 6193 /* 6194 * This steals pages from memory cgroups over softlimit 6195 * and returns the number of reclaimed pages and 6196 * scanned pages. This works for global memory pressure 6197 * and balancing, not for a memcg's limit. 6198 */ 6199 nr_soft_scanned = 0; 6200 nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat, 6201 sc->order, sc->gfp_mask, 6202 &nr_soft_scanned); 6203 sc->nr_reclaimed += nr_soft_reclaimed; 6204 sc->nr_scanned += nr_soft_scanned; 6205 /* need some check for avoid more shrink_zone() */ 6206 } 6207 6208 if (!first_pgdat) 6209 first_pgdat = zone->zone_pgdat; 6210 6211 /* See comment about same check for global reclaim above */ 6212 if (zone->zone_pgdat == last_pgdat) 6213 continue; 6214 last_pgdat = zone->zone_pgdat; 6215 shrink_node(zone->zone_pgdat, sc); 6216 } 6217 6218 if (first_pgdat) 6219 consider_reclaim_throttle(first_pgdat, sc); 6220 6221 /* 6222 * Restore to original mask to avoid the impact on the caller if we 6223 * promoted it to __GFP_HIGHMEM. 6224 */ 6225 sc->gfp_mask = orig_mask; 6226 } 6227 6228 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6229 { 6230 struct lruvec *target_lruvec; 6231 unsigned long refaults; 6232 6233 if (lru_gen_enabled()) 6234 return; 6235 6236 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6237 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6238 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6239 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6240 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6241 } 6242 6243 /* 6244 * This is the main entry point to direct page reclaim. 6245 * 6246 * If a full scan of the inactive list fails to free enough memory then we 6247 * are "out of memory" and something needs to be killed. 6248 * 6249 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6250 * high - the zone may be full of dirty or under-writeback pages, which this 6251 * caller can't do much about. We kick the writeback threads and take explicit 6252 * naps in the hope that some of these pages can be written. But if the 6253 * allocating task holds filesystem locks which prevent writeout this might not 6254 * work, and the allocation attempt will fail. 6255 * 6256 * returns: 0, if no pages reclaimed 6257 * else, the number of pages reclaimed 6258 */ 6259 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6260 struct scan_control *sc) 6261 { 6262 int initial_priority = sc->priority; 6263 pg_data_t *last_pgdat; 6264 struct zoneref *z; 6265 struct zone *zone; 6266 retry: 6267 delayacct_freepages_start(); 6268 6269 if (!cgroup_reclaim(sc)) 6270 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6271 6272 do { 6273 if (!sc->proactive) 6274 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6275 sc->priority); 6276 sc->nr_scanned = 0; 6277 shrink_zones(zonelist, sc); 6278 6279 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6280 break; 6281 6282 if (sc->compaction_ready) 6283 break; 6284 6285 /* 6286 * If we're getting trouble reclaiming, start doing 6287 * writepage even in laptop mode. 6288 */ 6289 if (sc->priority < DEF_PRIORITY - 2) 6290 sc->may_writepage = 1; 6291 } while (--sc->priority >= 0); 6292 6293 last_pgdat = NULL; 6294 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6295 sc->nodemask) { 6296 if (zone->zone_pgdat == last_pgdat) 6297 continue; 6298 last_pgdat = zone->zone_pgdat; 6299 6300 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6301 6302 if (cgroup_reclaim(sc)) { 6303 struct lruvec *lruvec; 6304 6305 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6306 zone->zone_pgdat); 6307 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6308 } 6309 } 6310 6311 delayacct_freepages_end(); 6312 6313 if (sc->nr_reclaimed) 6314 return sc->nr_reclaimed; 6315 6316 /* Aborted reclaim to try compaction? don't OOM, then */ 6317 if (sc->compaction_ready) 6318 return 1; 6319 6320 /* 6321 * In most cases, direct reclaimers can do partial walks 6322 * through the cgroup tree to meet the reclaim goal while 6323 * keeping latency low. Since the iterator state is shared 6324 * among all direct reclaim invocations (to retain fairness 6325 * among cgroups), though, high concurrency can result in 6326 * individual threads not seeing enough cgroups to make 6327 * meaningful forward progress. Avoid false OOMs in this case. 6328 */ 6329 if (!sc->memcg_full_walk) { 6330 sc->priority = initial_priority; 6331 sc->memcg_full_walk = 1; 6332 goto retry; 6333 } 6334 6335 /* 6336 * We make inactive:active ratio decisions based on the node's 6337 * composition of memory, but a restrictive reclaim_idx or a 6338 * memory.low cgroup setting can exempt large amounts of 6339 * memory from reclaim. Neither of which are very common, so 6340 * instead of doing costly eligibility calculations of the 6341 * entire cgroup subtree up front, we assume the estimates are 6342 * good, and retry with forcible deactivation if that fails. 6343 */ 6344 if (sc->skipped_deactivate) { 6345 sc->priority = initial_priority; 6346 sc->force_deactivate = 1; 6347 sc->skipped_deactivate = 0; 6348 goto retry; 6349 } 6350 6351 /* Untapped cgroup reserves? Don't OOM, retry. */ 6352 if (sc->memcg_low_skipped) { 6353 sc->priority = initial_priority; 6354 sc->force_deactivate = 0; 6355 sc->memcg_low_reclaim = 1; 6356 sc->memcg_low_skipped = 0; 6357 goto retry; 6358 } 6359 6360 return 0; 6361 } 6362 6363 static bool allow_direct_reclaim(pg_data_t *pgdat) 6364 { 6365 struct zone *zone; 6366 unsigned long pfmemalloc_reserve = 0; 6367 unsigned long free_pages = 0; 6368 int i; 6369 bool wmark_ok; 6370 6371 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6372 return true; 6373 6374 for (i = 0; i <= ZONE_NORMAL; i++) { 6375 zone = &pgdat->node_zones[i]; 6376 if (!managed_zone(zone)) 6377 continue; 6378 6379 if (!zone_reclaimable_pages(zone)) 6380 continue; 6381 6382 pfmemalloc_reserve += min_wmark_pages(zone); 6383 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES); 6384 } 6385 6386 /* If there are no reserves (unexpected config) then do not throttle */ 6387 if (!pfmemalloc_reserve) 6388 return true; 6389 6390 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6391 6392 /* kswapd must be awake if processes are being throttled */ 6393 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6394 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6395 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6396 6397 wake_up_interruptible(&pgdat->kswapd_wait); 6398 } 6399 6400 return wmark_ok; 6401 } 6402 6403 /* 6404 * Throttle direct reclaimers if backing storage is backed by the network 6405 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6406 * depleted. kswapd will continue to make progress and wake the processes 6407 * when the low watermark is reached. 6408 * 6409 * Returns true if a fatal signal was delivered during throttling. If this 6410 * happens, the page allocator should not consider triggering the OOM killer. 6411 */ 6412 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6413 nodemask_t *nodemask) 6414 { 6415 struct zoneref *z; 6416 struct zone *zone; 6417 pg_data_t *pgdat = NULL; 6418 6419 /* 6420 * Kernel threads should not be throttled as they may be indirectly 6421 * responsible for cleaning pages necessary for reclaim to make forward 6422 * progress. kjournald for example may enter direct reclaim while 6423 * committing a transaction where throttling it could forcing other 6424 * processes to block on log_wait_commit(). 6425 */ 6426 if (current->flags & PF_KTHREAD) 6427 goto out; 6428 6429 /* 6430 * If a fatal signal is pending, this process should not throttle. 6431 * It should return quickly so it can exit and free its memory 6432 */ 6433 if (fatal_signal_pending(current)) 6434 goto out; 6435 6436 /* 6437 * Check if the pfmemalloc reserves are ok by finding the first node 6438 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6439 * GFP_KERNEL will be required for allocating network buffers when 6440 * swapping over the network so ZONE_HIGHMEM is unusable. 6441 * 6442 * Throttling is based on the first usable node and throttled processes 6443 * wait on a queue until kswapd makes progress and wakes them. There 6444 * is an affinity then between processes waking up and where reclaim 6445 * progress has been made assuming the process wakes on the same node. 6446 * More importantly, processes running on remote nodes will not compete 6447 * for remote pfmemalloc reserves and processes on different nodes 6448 * should make reasonable progress. 6449 */ 6450 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6451 gfp_zone(gfp_mask), nodemask) { 6452 if (zone_idx(zone) > ZONE_NORMAL) 6453 continue; 6454 6455 /* Throttle based on the first usable node */ 6456 pgdat = zone->zone_pgdat; 6457 if (allow_direct_reclaim(pgdat)) 6458 goto out; 6459 break; 6460 } 6461 6462 /* If no zone was usable by the allocation flags then do not throttle */ 6463 if (!pgdat) 6464 goto out; 6465 6466 /* Account for the throttling */ 6467 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6468 6469 /* 6470 * If the caller cannot enter the filesystem, it's possible that it 6471 * is due to the caller holding an FS lock or performing a journal 6472 * transaction in the case of a filesystem like ext[3|4]. In this case, 6473 * it is not safe to block on pfmemalloc_wait as kswapd could be 6474 * blocked waiting on the same lock. Instead, throttle for up to a 6475 * second before continuing. 6476 */ 6477 if (!(gfp_mask & __GFP_FS)) 6478 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6479 allow_direct_reclaim(pgdat), HZ); 6480 else 6481 /* Throttle until kswapd wakes the process */ 6482 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6483 allow_direct_reclaim(pgdat)); 6484 6485 if (fatal_signal_pending(current)) 6486 return true; 6487 6488 out: 6489 return false; 6490 } 6491 6492 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6493 gfp_t gfp_mask, nodemask_t *nodemask) 6494 { 6495 unsigned long nr_reclaimed; 6496 struct scan_control sc = { 6497 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6498 .gfp_mask = current_gfp_context(gfp_mask), 6499 .reclaim_idx = gfp_zone(gfp_mask), 6500 .order = order, 6501 .nodemask = nodemask, 6502 .priority = DEF_PRIORITY, 6503 .may_writepage = !laptop_mode, 6504 .may_unmap = 1, 6505 .may_swap = 1, 6506 }; 6507 6508 /* 6509 * scan_control uses s8 fields for order, priority, and reclaim_idx. 6510 * Confirm they are large enough for max values. 6511 */ 6512 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX); 6513 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 6514 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 6515 6516 /* 6517 * Do not enter reclaim if fatal signal was delivered while throttled. 6518 * 1 is returned so that the page allocator does not OOM kill at this 6519 * point. 6520 */ 6521 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 6522 return 1; 6523 6524 set_task_reclaim_state(current, &sc.reclaim_state); 6525 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 6526 6527 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6528 6529 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 6530 set_task_reclaim_state(current, NULL); 6531 6532 return nr_reclaimed; 6533 } 6534 6535 #ifdef CONFIG_MEMCG 6536 6537 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 6538 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 6539 gfp_t gfp_mask, bool noswap, 6540 pg_data_t *pgdat, 6541 unsigned long *nr_scanned) 6542 { 6543 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6544 struct scan_control sc = { 6545 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6546 .target_mem_cgroup = memcg, 6547 .may_writepage = !laptop_mode, 6548 .may_unmap = 1, 6549 .reclaim_idx = MAX_NR_ZONES - 1, 6550 .may_swap = !noswap, 6551 }; 6552 6553 WARN_ON_ONCE(!current->reclaim_state); 6554 6555 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 6556 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 6557 6558 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 6559 sc.gfp_mask); 6560 6561 /* 6562 * NOTE: Although we can get the priority field, using it 6563 * here is not a good idea, since it limits the pages we can scan. 6564 * if we don't reclaim here, the shrink_node from balance_pgdat 6565 * will pick up pages from other mem cgroup's as well. We hack 6566 * the priority and make it zero. 6567 */ 6568 shrink_lruvec(lruvec, &sc); 6569 6570 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 6571 6572 *nr_scanned = sc.nr_scanned; 6573 6574 return sc.nr_reclaimed; 6575 } 6576 6577 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 6578 unsigned long nr_pages, 6579 gfp_t gfp_mask, 6580 unsigned int reclaim_options, 6581 int *swappiness) 6582 { 6583 unsigned long nr_reclaimed; 6584 unsigned int noreclaim_flag; 6585 struct scan_control sc = { 6586 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 6587 .proactive_swappiness = swappiness, 6588 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 6589 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 6590 .reclaim_idx = MAX_NR_ZONES - 1, 6591 .target_mem_cgroup = memcg, 6592 .priority = DEF_PRIORITY, 6593 .may_writepage = !laptop_mode, 6594 .may_unmap = 1, 6595 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 6596 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 6597 }; 6598 /* 6599 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 6600 * equal pressure on all the nodes. This is based on the assumption that 6601 * the reclaim does not bail out early. 6602 */ 6603 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 6604 6605 set_task_reclaim_state(current, &sc.reclaim_state); 6606 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 6607 noreclaim_flag = memalloc_noreclaim_save(); 6608 6609 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6610 6611 memalloc_noreclaim_restore(noreclaim_flag); 6612 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 6613 set_task_reclaim_state(current, NULL); 6614 6615 return nr_reclaimed; 6616 } 6617 #endif 6618 6619 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6620 { 6621 struct mem_cgroup *memcg; 6622 struct lruvec *lruvec; 6623 6624 if (lru_gen_enabled()) { 6625 lru_gen_age_node(pgdat, sc); 6626 return; 6627 } 6628 6629 if (!can_age_anon_pages(pgdat, sc)) 6630 return; 6631 6632 lruvec = mem_cgroup_lruvec(NULL, pgdat); 6633 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6634 return; 6635 6636 memcg = mem_cgroup_iter(NULL, NULL, NULL); 6637 do { 6638 lruvec = mem_cgroup_lruvec(memcg, pgdat); 6639 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6640 sc, LRU_ACTIVE_ANON); 6641 memcg = mem_cgroup_iter(NULL, memcg, NULL); 6642 } while (memcg); 6643 } 6644 6645 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 6646 { 6647 int i; 6648 struct zone *zone; 6649 6650 /* 6651 * Check for watermark boosts top-down as the higher zones 6652 * are more likely to be boosted. Both watermarks and boosts 6653 * should not be checked at the same time as reclaim would 6654 * start prematurely when there is no boosting and a lower 6655 * zone is balanced. 6656 */ 6657 for (i = highest_zoneidx; i >= 0; i--) { 6658 zone = pgdat->node_zones + i; 6659 if (!managed_zone(zone)) 6660 continue; 6661 6662 if (zone->watermark_boost) 6663 return true; 6664 } 6665 6666 return false; 6667 } 6668 6669 /* 6670 * Returns true if there is an eligible zone balanced for the request order 6671 * and highest_zoneidx 6672 */ 6673 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 6674 { 6675 int i; 6676 unsigned long mark = -1; 6677 struct zone *zone; 6678 6679 /* 6680 * Check watermarks bottom-up as lower zones are more likely to 6681 * meet watermarks. 6682 */ 6683 for (i = 0; i <= highest_zoneidx; i++) { 6684 zone = pgdat->node_zones + i; 6685 6686 if (!managed_zone(zone)) 6687 continue; 6688 6689 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 6690 mark = promo_wmark_pages(zone); 6691 else 6692 mark = high_wmark_pages(zone); 6693 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 6694 return true; 6695 } 6696 6697 /* 6698 * If a node has no managed zone within highest_zoneidx, it does not 6699 * need balancing by definition. This can happen if a zone-restricted 6700 * allocation tries to wake a remote kswapd. 6701 */ 6702 if (mark == -1) 6703 return true; 6704 6705 return false; 6706 } 6707 6708 /* Clear pgdat state for congested, dirty or under writeback. */ 6709 static void clear_pgdat_congested(pg_data_t *pgdat) 6710 { 6711 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 6712 6713 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags); 6714 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6715 clear_bit(PGDAT_DIRTY, &pgdat->flags); 6716 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 6717 } 6718 6719 /* 6720 * Prepare kswapd for sleeping. This verifies that there are no processes 6721 * waiting in throttle_direct_reclaim() and that watermarks have been met. 6722 * 6723 * Returns true if kswapd is ready to sleep 6724 */ 6725 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 6726 int highest_zoneidx) 6727 { 6728 /* 6729 * The throttled processes are normally woken up in balance_pgdat() as 6730 * soon as allow_direct_reclaim() is true. But there is a potential 6731 * race between when kswapd checks the watermarks and a process gets 6732 * throttled. There is also a potential race if processes get 6733 * throttled, kswapd wakes, a large process exits thereby balancing the 6734 * zones, which causes kswapd to exit balance_pgdat() before reaching 6735 * the wake up checks. If kswapd is going to sleep, no process should 6736 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 6737 * the wake up is premature, processes will wake kswapd and get 6738 * throttled again. The difference from wake ups in balance_pgdat() is 6739 * that here we are under prepare_to_wait(). 6740 */ 6741 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 6742 wake_up_all(&pgdat->pfmemalloc_wait); 6743 6744 /* Hopeless node, leave it to direct reclaim */ 6745 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6746 return true; 6747 6748 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 6749 clear_pgdat_congested(pgdat); 6750 return true; 6751 } 6752 6753 return false; 6754 } 6755 6756 /* 6757 * kswapd shrinks a node of pages that are at or below the highest usable 6758 * zone that is currently unbalanced. 6759 * 6760 * Returns true if kswapd scanned at least the requested number of pages to 6761 * reclaim or if the lack of progress was due to pages under writeback. 6762 * This is used to determine if the scanning priority needs to be raised. 6763 */ 6764 static bool kswapd_shrink_node(pg_data_t *pgdat, 6765 struct scan_control *sc) 6766 { 6767 struct zone *zone; 6768 int z; 6769 unsigned long nr_reclaimed = sc->nr_reclaimed; 6770 6771 /* Reclaim a number of pages proportional to the number of zones */ 6772 sc->nr_to_reclaim = 0; 6773 for (z = 0; z <= sc->reclaim_idx; z++) { 6774 zone = pgdat->node_zones + z; 6775 if (!managed_zone(zone)) 6776 continue; 6777 6778 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 6779 } 6780 6781 /* 6782 * Historically care was taken to put equal pressure on all zones but 6783 * now pressure is applied based on node LRU order. 6784 */ 6785 shrink_node(pgdat, sc); 6786 6787 /* 6788 * Fragmentation may mean that the system cannot be rebalanced for 6789 * high-order allocations. If twice the allocation size has been 6790 * reclaimed then recheck watermarks only at order-0 to prevent 6791 * excessive reclaim. Assume that a process requested a high-order 6792 * can direct reclaim/compact. 6793 */ 6794 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 6795 sc->order = 0; 6796 6797 /* account for progress from mm_account_reclaimed_pages() */ 6798 return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim; 6799 } 6800 6801 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 6802 static inline void 6803 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 6804 { 6805 int i; 6806 struct zone *zone; 6807 6808 for (i = 0; i <= highest_zoneidx; i++) { 6809 zone = pgdat->node_zones + i; 6810 6811 if (!managed_zone(zone)) 6812 continue; 6813 6814 if (active) 6815 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6816 else 6817 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6818 } 6819 } 6820 6821 static inline void 6822 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6823 { 6824 update_reclaim_active(pgdat, highest_zoneidx, true); 6825 } 6826 6827 static inline void 6828 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6829 { 6830 update_reclaim_active(pgdat, highest_zoneidx, false); 6831 } 6832 6833 /* 6834 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 6835 * that are eligible for use by the caller until at least one zone is 6836 * balanced. 6837 * 6838 * Returns the order kswapd finished reclaiming at. 6839 * 6840 * kswapd scans the zones in the highmem->normal->dma direction. It skips 6841 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 6842 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 6843 * or lower is eligible for reclaim until at least one usable zone is 6844 * balanced. 6845 */ 6846 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 6847 { 6848 int i; 6849 unsigned long nr_soft_reclaimed; 6850 unsigned long nr_soft_scanned; 6851 unsigned long pflags; 6852 unsigned long nr_boost_reclaim; 6853 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 6854 bool boosted; 6855 struct zone *zone; 6856 struct scan_control sc = { 6857 .gfp_mask = GFP_KERNEL, 6858 .order = order, 6859 .may_unmap = 1, 6860 }; 6861 6862 set_task_reclaim_state(current, &sc.reclaim_state); 6863 psi_memstall_enter(&pflags); 6864 __fs_reclaim_acquire(_THIS_IP_); 6865 6866 count_vm_event(PAGEOUTRUN); 6867 6868 /* 6869 * Account for the reclaim boost. Note that the zone boost is left in 6870 * place so that parallel allocations that are near the watermark will 6871 * stall or direct reclaim until kswapd is finished. 6872 */ 6873 nr_boost_reclaim = 0; 6874 for (i = 0; i <= highest_zoneidx; i++) { 6875 zone = pgdat->node_zones + i; 6876 if (!managed_zone(zone)) 6877 continue; 6878 6879 nr_boost_reclaim += zone->watermark_boost; 6880 zone_boosts[i] = zone->watermark_boost; 6881 } 6882 boosted = nr_boost_reclaim; 6883 6884 restart: 6885 set_reclaim_active(pgdat, highest_zoneidx); 6886 sc.priority = DEF_PRIORITY; 6887 do { 6888 unsigned long nr_reclaimed = sc.nr_reclaimed; 6889 bool raise_priority = true; 6890 bool balanced; 6891 bool ret; 6892 bool was_frozen; 6893 6894 sc.reclaim_idx = highest_zoneidx; 6895 6896 /* 6897 * If the number of buffer_heads exceeds the maximum allowed 6898 * then consider reclaiming from all zones. This has a dual 6899 * purpose -- on 64-bit systems it is expected that 6900 * buffer_heads are stripped during active rotation. On 32-bit 6901 * systems, highmem pages can pin lowmem memory and shrinking 6902 * buffers can relieve lowmem pressure. Reclaim may still not 6903 * go ahead if all eligible zones for the original allocation 6904 * request are balanced to avoid excessive reclaim from kswapd. 6905 */ 6906 if (buffer_heads_over_limit) { 6907 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 6908 zone = pgdat->node_zones + i; 6909 if (!managed_zone(zone)) 6910 continue; 6911 6912 sc.reclaim_idx = i; 6913 break; 6914 } 6915 } 6916 6917 /* 6918 * If the pgdat is imbalanced then ignore boosting and preserve 6919 * the watermarks for a later time and restart. Note that the 6920 * zone watermarks will be still reset at the end of balancing 6921 * on the grounds that the normal reclaim should be enough to 6922 * re-evaluate if boosting is required when kswapd next wakes. 6923 */ 6924 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 6925 if (!balanced && nr_boost_reclaim) { 6926 nr_boost_reclaim = 0; 6927 goto restart; 6928 } 6929 6930 /* 6931 * If boosting is not active then only reclaim if there are no 6932 * eligible zones. Note that sc.reclaim_idx is not used as 6933 * buffer_heads_over_limit may have adjusted it. 6934 */ 6935 if (!nr_boost_reclaim && balanced) 6936 goto out; 6937 6938 /* Limit the priority of boosting to avoid reclaim writeback */ 6939 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 6940 raise_priority = false; 6941 6942 /* 6943 * Do not writeback or swap pages for boosted reclaim. The 6944 * intent is to relieve pressure not issue sub-optimal IO 6945 * from reclaim context. If no pages are reclaimed, the 6946 * reclaim will be aborted. 6947 */ 6948 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 6949 sc.may_swap = !nr_boost_reclaim; 6950 6951 /* 6952 * Do some background aging, to give pages a chance to be 6953 * referenced before reclaiming. All pages are rotated 6954 * regardless of classzone as this is about consistent aging. 6955 */ 6956 kswapd_age_node(pgdat, &sc); 6957 6958 /* 6959 * If we're getting trouble reclaiming, start doing writepage 6960 * even in laptop mode. 6961 */ 6962 if (sc.priority < DEF_PRIORITY - 2) 6963 sc.may_writepage = 1; 6964 6965 /* Call soft limit reclaim before calling shrink_node. */ 6966 sc.nr_scanned = 0; 6967 nr_soft_scanned = 0; 6968 nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order, 6969 sc.gfp_mask, &nr_soft_scanned); 6970 sc.nr_reclaimed += nr_soft_reclaimed; 6971 6972 /* 6973 * There should be no need to raise the scanning priority if 6974 * enough pages are already being scanned that that high 6975 * watermark would be met at 100% efficiency. 6976 */ 6977 if (kswapd_shrink_node(pgdat, &sc)) 6978 raise_priority = false; 6979 6980 /* 6981 * If the low watermark is met there is no need for processes 6982 * to be throttled on pfmemalloc_wait as they should not be 6983 * able to safely make forward progress. Wake them 6984 */ 6985 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 6986 allow_direct_reclaim(pgdat)) 6987 wake_up_all(&pgdat->pfmemalloc_wait); 6988 6989 /* Check if kswapd should be suspending */ 6990 __fs_reclaim_release(_THIS_IP_); 6991 ret = kthread_freezable_should_stop(&was_frozen); 6992 __fs_reclaim_acquire(_THIS_IP_); 6993 if (was_frozen || ret) 6994 break; 6995 6996 /* 6997 * Raise priority if scanning rate is too low or there was no 6998 * progress in reclaiming pages 6999 */ 7000 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 7001 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 7002 7003 /* 7004 * If reclaim made no progress for a boost, stop reclaim as 7005 * IO cannot be queued and it could be an infinite loop in 7006 * extreme circumstances. 7007 */ 7008 if (nr_boost_reclaim && !nr_reclaimed) 7009 break; 7010 7011 if (raise_priority || !nr_reclaimed) 7012 sc.priority--; 7013 } while (sc.priority >= 1); 7014 7015 /* 7016 * Restart only if it went through the priority loop all the way, 7017 * but cache_trim_mode didn't work. 7018 */ 7019 if (!sc.nr_reclaimed && sc.priority < 1 && 7020 !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) { 7021 sc.no_cache_trim_mode = 1; 7022 goto restart; 7023 } 7024 7025 if (!sc.nr_reclaimed) 7026 pgdat->kswapd_failures++; 7027 7028 out: 7029 clear_reclaim_active(pgdat, highest_zoneidx); 7030 7031 /* If reclaim was boosted, account for the reclaim done in this pass */ 7032 if (boosted) { 7033 unsigned long flags; 7034 7035 for (i = 0; i <= highest_zoneidx; i++) { 7036 if (!zone_boosts[i]) 7037 continue; 7038 7039 /* Increments are under the zone lock */ 7040 zone = pgdat->node_zones + i; 7041 spin_lock_irqsave(&zone->lock, flags); 7042 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7043 spin_unlock_irqrestore(&zone->lock, flags); 7044 } 7045 7046 /* 7047 * As there is now likely space, wakeup kcompact to defragment 7048 * pageblocks. 7049 */ 7050 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7051 } 7052 7053 snapshot_refaults(NULL, pgdat); 7054 __fs_reclaim_release(_THIS_IP_); 7055 psi_memstall_leave(&pflags); 7056 set_task_reclaim_state(current, NULL); 7057 7058 /* 7059 * Return the order kswapd stopped reclaiming at as 7060 * prepare_kswapd_sleep() takes it into account. If another caller 7061 * entered the allocator slow path while kswapd was awake, order will 7062 * remain at the higher level. 7063 */ 7064 return sc.order; 7065 } 7066 7067 /* 7068 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7069 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7070 * not a valid index then either kswapd runs for first time or kswapd couldn't 7071 * sleep after previous reclaim attempt (node is still unbalanced). In that 7072 * case return the zone index of the previous kswapd reclaim cycle. 7073 */ 7074 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7075 enum zone_type prev_highest_zoneidx) 7076 { 7077 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7078 7079 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7080 } 7081 7082 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7083 unsigned int highest_zoneidx) 7084 { 7085 long remaining = 0; 7086 DEFINE_WAIT(wait); 7087 7088 if (freezing(current) || kthread_should_stop()) 7089 return; 7090 7091 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7092 7093 /* 7094 * Try to sleep for a short interval. Note that kcompactd will only be 7095 * woken if it is possible to sleep for a short interval. This is 7096 * deliberate on the assumption that if reclaim cannot keep an 7097 * eligible zone balanced that it's also unlikely that compaction will 7098 * succeed. 7099 */ 7100 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7101 /* 7102 * Compaction records what page blocks it recently failed to 7103 * isolate pages from and skips them in the future scanning. 7104 * When kswapd is going to sleep, it is reasonable to assume 7105 * that pages and compaction may succeed so reset the cache. 7106 */ 7107 reset_isolation_suitable(pgdat); 7108 7109 /* 7110 * We have freed the memory, now we should compact it to make 7111 * allocation of the requested order possible. 7112 */ 7113 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7114 7115 remaining = schedule_timeout(HZ/10); 7116 7117 /* 7118 * If woken prematurely then reset kswapd_highest_zoneidx and 7119 * order. The values will either be from a wakeup request or 7120 * the previous request that slept prematurely. 7121 */ 7122 if (remaining) { 7123 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7124 kswapd_highest_zoneidx(pgdat, 7125 highest_zoneidx)); 7126 7127 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7128 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7129 } 7130 7131 finish_wait(&pgdat->kswapd_wait, &wait); 7132 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7133 } 7134 7135 /* 7136 * After a short sleep, check if it was a premature sleep. If not, then 7137 * go fully to sleep until explicitly woken up. 7138 */ 7139 if (!remaining && 7140 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7141 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7142 7143 /* 7144 * vmstat counters are not perfectly accurate and the estimated 7145 * value for counters such as NR_FREE_PAGES can deviate from the 7146 * true value by nr_online_cpus * threshold. To avoid the zone 7147 * watermarks being breached while under pressure, we reduce the 7148 * per-cpu vmstat threshold while kswapd is awake and restore 7149 * them before going back to sleep. 7150 */ 7151 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7152 7153 if (!kthread_should_stop()) 7154 schedule(); 7155 7156 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7157 } else { 7158 if (remaining) 7159 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7160 else 7161 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7162 } 7163 finish_wait(&pgdat->kswapd_wait, &wait); 7164 } 7165 7166 /* 7167 * The background pageout daemon, started as a kernel thread 7168 * from the init process. 7169 * 7170 * This basically trickles out pages so that we have _some_ 7171 * free memory available even if there is no other activity 7172 * that frees anything up. This is needed for things like routing 7173 * etc, where we otherwise might have all activity going on in 7174 * asynchronous contexts that cannot page things out. 7175 * 7176 * If there are applications that are active memory-allocators 7177 * (most normal use), this basically shouldn't matter. 7178 */ 7179 static int kswapd(void *p) 7180 { 7181 unsigned int alloc_order, reclaim_order; 7182 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7183 pg_data_t *pgdat = (pg_data_t *)p; 7184 struct task_struct *tsk = current; 7185 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 7186 7187 if (!cpumask_empty(cpumask)) 7188 set_cpus_allowed_ptr(tsk, cpumask); 7189 7190 /* 7191 * Tell the memory management that we're a "memory allocator", 7192 * and that if we need more memory we should get access to it 7193 * regardless (see "__alloc_pages()"). "kswapd" should 7194 * never get caught in the normal page freeing logic. 7195 * 7196 * (Kswapd normally doesn't need memory anyway, but sometimes 7197 * you need a small amount of memory in order to be able to 7198 * page out something else, and this flag essentially protects 7199 * us from recursively trying to free more memory as we're 7200 * trying to free the first piece of memory in the first place). 7201 */ 7202 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7203 set_freezable(); 7204 7205 WRITE_ONCE(pgdat->kswapd_order, 0); 7206 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7207 atomic_set(&pgdat->nr_writeback_throttled, 0); 7208 for ( ; ; ) { 7209 bool was_frozen; 7210 7211 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7212 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7213 highest_zoneidx); 7214 7215 kswapd_try_sleep: 7216 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7217 highest_zoneidx); 7218 7219 /* Read the new order and highest_zoneidx */ 7220 alloc_order = READ_ONCE(pgdat->kswapd_order); 7221 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7222 highest_zoneidx); 7223 WRITE_ONCE(pgdat->kswapd_order, 0); 7224 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7225 7226 if (kthread_freezable_should_stop(&was_frozen)) 7227 break; 7228 7229 /* 7230 * We can speed up thawing tasks if we don't call balance_pgdat 7231 * after returning from the refrigerator 7232 */ 7233 if (was_frozen) 7234 continue; 7235 7236 /* 7237 * Reclaim begins at the requested order but if a high-order 7238 * reclaim fails then kswapd falls back to reclaiming for 7239 * order-0. If that happens, kswapd will consider sleeping 7240 * for the order it finished reclaiming at (reclaim_order) 7241 * but kcompactd is woken to compact for the original 7242 * request (alloc_order). 7243 */ 7244 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7245 alloc_order); 7246 reclaim_order = balance_pgdat(pgdat, alloc_order, 7247 highest_zoneidx); 7248 if (reclaim_order < alloc_order) 7249 goto kswapd_try_sleep; 7250 } 7251 7252 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7253 7254 return 0; 7255 } 7256 7257 /* 7258 * A zone is low on free memory or too fragmented for high-order memory. If 7259 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7260 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7261 * has failed or is not needed, still wake up kcompactd if only compaction is 7262 * needed. 7263 */ 7264 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7265 enum zone_type highest_zoneidx) 7266 { 7267 pg_data_t *pgdat; 7268 enum zone_type curr_idx; 7269 7270 if (!managed_zone(zone)) 7271 return; 7272 7273 if (!cpuset_zone_allowed(zone, gfp_flags)) 7274 return; 7275 7276 pgdat = zone->zone_pgdat; 7277 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7278 7279 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7280 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7281 7282 if (READ_ONCE(pgdat->kswapd_order) < order) 7283 WRITE_ONCE(pgdat->kswapd_order, order); 7284 7285 if (!waitqueue_active(&pgdat->kswapd_wait)) 7286 return; 7287 7288 /* Hopeless node, leave it to direct reclaim if possible */ 7289 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7290 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7291 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7292 /* 7293 * There may be plenty of free memory available, but it's too 7294 * fragmented for high-order allocations. Wake up kcompactd 7295 * and rely on compaction_suitable() to determine if it's 7296 * needed. If it fails, it will defer subsequent attempts to 7297 * ratelimit its work. 7298 */ 7299 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7300 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7301 return; 7302 } 7303 7304 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7305 gfp_flags); 7306 wake_up_interruptible(&pgdat->kswapd_wait); 7307 } 7308 7309 #ifdef CONFIG_HIBERNATION 7310 /* 7311 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7312 * freed pages. 7313 * 7314 * Rather than trying to age LRUs the aim is to preserve the overall 7315 * LRU order by reclaiming preferentially 7316 * inactive > active > active referenced > active mapped 7317 */ 7318 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7319 { 7320 struct scan_control sc = { 7321 .nr_to_reclaim = nr_to_reclaim, 7322 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7323 .reclaim_idx = MAX_NR_ZONES - 1, 7324 .priority = DEF_PRIORITY, 7325 .may_writepage = 1, 7326 .may_unmap = 1, 7327 .may_swap = 1, 7328 .hibernation_mode = 1, 7329 }; 7330 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7331 unsigned long nr_reclaimed; 7332 unsigned int noreclaim_flag; 7333 7334 fs_reclaim_acquire(sc.gfp_mask); 7335 noreclaim_flag = memalloc_noreclaim_save(); 7336 set_task_reclaim_state(current, &sc.reclaim_state); 7337 7338 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7339 7340 set_task_reclaim_state(current, NULL); 7341 memalloc_noreclaim_restore(noreclaim_flag); 7342 fs_reclaim_release(sc.gfp_mask); 7343 7344 return nr_reclaimed; 7345 } 7346 #endif /* CONFIG_HIBERNATION */ 7347 7348 /* 7349 * This kswapd start function will be called by init and node-hot-add. 7350 */ 7351 void __meminit kswapd_run(int nid) 7352 { 7353 pg_data_t *pgdat = NODE_DATA(nid); 7354 7355 pgdat_kswapd_lock(pgdat); 7356 if (!pgdat->kswapd) { 7357 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 7358 if (IS_ERR(pgdat->kswapd)) { 7359 /* failure at boot is fatal */ 7360 pr_err("Failed to start kswapd on node %d,ret=%ld\n", 7361 nid, PTR_ERR(pgdat->kswapd)); 7362 BUG_ON(system_state < SYSTEM_RUNNING); 7363 pgdat->kswapd = NULL; 7364 } 7365 } 7366 pgdat_kswapd_unlock(pgdat); 7367 } 7368 7369 /* 7370 * Called by memory hotplug when all memory in a node is offlined. Caller must 7371 * be holding mem_hotplug_begin/done(). 7372 */ 7373 void __meminit kswapd_stop(int nid) 7374 { 7375 pg_data_t *pgdat = NODE_DATA(nid); 7376 struct task_struct *kswapd; 7377 7378 pgdat_kswapd_lock(pgdat); 7379 kswapd = pgdat->kswapd; 7380 if (kswapd) { 7381 kthread_stop(kswapd); 7382 pgdat->kswapd = NULL; 7383 } 7384 pgdat_kswapd_unlock(pgdat); 7385 } 7386 7387 static int __init kswapd_init(void) 7388 { 7389 int nid; 7390 7391 swap_setup(); 7392 for_each_node_state(nid, N_MEMORY) 7393 kswapd_run(nid); 7394 return 0; 7395 } 7396 7397 module_init(kswapd_init) 7398 7399 #ifdef CONFIG_NUMA 7400 /* 7401 * Node reclaim mode 7402 * 7403 * If non-zero call node_reclaim when the number of free pages falls below 7404 * the watermarks. 7405 */ 7406 int node_reclaim_mode __read_mostly; 7407 7408 /* 7409 * Priority for NODE_RECLAIM. This determines the fraction of pages 7410 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7411 * a zone. 7412 */ 7413 #define NODE_RECLAIM_PRIORITY 4 7414 7415 /* 7416 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7417 * occur. 7418 */ 7419 int sysctl_min_unmapped_ratio = 1; 7420 7421 /* 7422 * If the number of slab pages in a zone grows beyond this percentage then 7423 * slab reclaim needs to occur. 7424 */ 7425 int sysctl_min_slab_ratio = 5; 7426 7427 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7428 { 7429 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7430 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7431 node_page_state(pgdat, NR_ACTIVE_FILE); 7432 7433 /* 7434 * It's possible for there to be more file mapped pages than 7435 * accounted for by the pages on the file LRU lists because 7436 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7437 */ 7438 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7439 } 7440 7441 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7442 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7443 { 7444 unsigned long nr_pagecache_reclaimable; 7445 unsigned long delta = 0; 7446 7447 /* 7448 * If RECLAIM_UNMAP is set, then all file pages are considered 7449 * potentially reclaimable. Otherwise, we have to worry about 7450 * pages like swapcache and node_unmapped_file_pages() provides 7451 * a better estimate 7452 */ 7453 if (node_reclaim_mode & RECLAIM_UNMAP) 7454 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7455 else 7456 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7457 7458 /* If we can't clean pages, remove dirty pages from consideration */ 7459 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7460 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7461 7462 /* Watch for any possible underflows due to delta */ 7463 if (unlikely(delta > nr_pagecache_reclaimable)) 7464 delta = nr_pagecache_reclaimable; 7465 7466 return nr_pagecache_reclaimable - delta; 7467 } 7468 7469 /* 7470 * Try to free up some pages from this node through reclaim. 7471 */ 7472 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7473 { 7474 /* Minimum pages needed in order to stay on node */ 7475 const unsigned long nr_pages = 1 << order; 7476 struct task_struct *p = current; 7477 unsigned int noreclaim_flag; 7478 struct scan_control sc = { 7479 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7480 .gfp_mask = current_gfp_context(gfp_mask), 7481 .order = order, 7482 .priority = NODE_RECLAIM_PRIORITY, 7483 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7484 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7485 .may_swap = 1, 7486 .reclaim_idx = gfp_zone(gfp_mask), 7487 }; 7488 unsigned long pflags; 7489 7490 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 7491 sc.gfp_mask); 7492 7493 cond_resched(); 7494 psi_memstall_enter(&pflags); 7495 delayacct_freepages_start(); 7496 fs_reclaim_acquire(sc.gfp_mask); 7497 /* 7498 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7499 */ 7500 noreclaim_flag = memalloc_noreclaim_save(); 7501 set_task_reclaim_state(p, &sc.reclaim_state); 7502 7503 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7504 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7505 /* 7506 * Free memory by calling shrink node with increasing 7507 * priorities until we have enough memory freed. 7508 */ 7509 do { 7510 shrink_node(pgdat, &sc); 7511 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 7512 } 7513 7514 set_task_reclaim_state(p, NULL); 7515 memalloc_noreclaim_restore(noreclaim_flag); 7516 fs_reclaim_release(sc.gfp_mask); 7517 psi_memstall_leave(&pflags); 7518 delayacct_freepages_end(); 7519 7520 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 7521 7522 return sc.nr_reclaimed >= nr_pages; 7523 } 7524 7525 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7526 { 7527 int ret; 7528 7529 /* 7530 * Node reclaim reclaims unmapped file backed pages and 7531 * slab pages if we are over the defined limits. 7532 * 7533 * A small portion of unmapped file backed pages is needed for 7534 * file I/O otherwise pages read by file I/O will be immediately 7535 * thrown out if the node is overallocated. So we do not reclaim 7536 * if less than a specified percentage of the node is used by 7537 * unmapped file backed pages. 7538 */ 7539 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 7540 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 7541 pgdat->min_slab_pages) 7542 return NODE_RECLAIM_FULL; 7543 7544 /* 7545 * Do not scan if the allocation should not be delayed. 7546 */ 7547 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 7548 return NODE_RECLAIM_NOSCAN; 7549 7550 /* 7551 * Only run node reclaim on the local node or on nodes that do not 7552 * have associated processors. This will favor the local processor 7553 * over remote processors and spread off node memory allocations 7554 * as wide as possible. 7555 */ 7556 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 7557 return NODE_RECLAIM_NOSCAN; 7558 7559 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 7560 return NODE_RECLAIM_NOSCAN; 7561 7562 ret = __node_reclaim(pgdat, gfp_mask, order); 7563 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7564 7565 if (ret) 7566 count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS); 7567 else 7568 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 7569 7570 return ret; 7571 } 7572 #endif 7573 7574 /** 7575 * check_move_unevictable_folios - Move evictable folios to appropriate zone 7576 * lru list 7577 * @fbatch: Batch of lru folios to check. 7578 * 7579 * Checks folios for evictability, if an evictable folio is in the unevictable 7580 * lru list, moves it to the appropriate evictable lru list. This function 7581 * should be only used for lru folios. 7582 */ 7583 void check_move_unevictable_folios(struct folio_batch *fbatch) 7584 { 7585 struct lruvec *lruvec = NULL; 7586 int pgscanned = 0; 7587 int pgrescued = 0; 7588 int i; 7589 7590 for (i = 0; i < fbatch->nr; i++) { 7591 struct folio *folio = fbatch->folios[i]; 7592 int nr_pages = folio_nr_pages(folio); 7593 7594 pgscanned += nr_pages; 7595 7596 /* block memcg migration while the folio moves between lrus */ 7597 if (!folio_test_clear_lru(folio)) 7598 continue; 7599 7600 lruvec = folio_lruvec_relock_irq(folio, lruvec); 7601 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 7602 lruvec_del_folio(lruvec, folio); 7603 folio_clear_unevictable(folio); 7604 lruvec_add_folio(lruvec, folio); 7605 pgrescued += nr_pages; 7606 } 7607 folio_set_lru(folio); 7608 } 7609 7610 if (lruvec) { 7611 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 7612 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7613 unlock_page_lruvec_irq(lruvec); 7614 } else if (pgscanned) { 7615 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7616 } 7617 } 7618 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 7619