1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/sched/mm.h> 18 #include <linux/module.h> 19 #include <linux/gfp.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/swap.h> 22 #include <linux/pagemap.h> 23 #include <linux/init.h> 24 #include <linux/highmem.h> 25 #include <linux/vmpressure.h> 26 #include <linux/vmstat.h> 27 #include <linux/file.h> 28 #include <linux/writeback.h> 29 #include <linux/blkdev.h> 30 #include <linux/buffer_head.h> /* for try_to_release_page(), 31 buffer_heads_over_limit */ 32 #include <linux/mm_inline.h> 33 #include <linux/backing-dev.h> 34 #include <linux/rmap.h> 35 #include <linux/topology.h> 36 #include <linux/cpu.h> 37 #include <linux/cpuset.h> 38 #include <linux/compaction.h> 39 #include <linux/notifier.h> 40 #include <linux/rwsem.h> 41 #include <linux/delay.h> 42 #include <linux/kthread.h> 43 #include <linux/freezer.h> 44 #include <linux/memcontrol.h> 45 #include <linux/delayacct.h> 46 #include <linux/sysctl.h> 47 #include <linux/oom.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 52 #include <asm/tlbflush.h> 53 #include <asm/div64.h> 54 55 #include <linux/swapops.h> 56 #include <linux/balloon_compaction.h> 57 58 #include "internal.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/vmscan.h> 62 63 struct scan_control { 64 /* How many pages shrink_list() should reclaim */ 65 unsigned long nr_to_reclaim; 66 67 /* This context's GFP mask */ 68 gfp_t gfp_mask; 69 70 /* Allocation order */ 71 int order; 72 73 /* 74 * Nodemask of nodes allowed by the caller. If NULL, all nodes 75 * are scanned. 76 */ 77 nodemask_t *nodemask; 78 79 /* 80 * The memory cgroup that hit its limit and as a result is the 81 * primary target of this reclaim invocation. 82 */ 83 struct mem_cgroup *target_mem_cgroup; 84 85 /* Scan (total_size >> priority) pages at once */ 86 int priority; 87 88 /* The highest zone to isolate pages for reclaim from */ 89 enum zone_type reclaim_idx; 90 91 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 92 unsigned int may_writepage:1; 93 94 /* Can mapped pages be reclaimed? */ 95 unsigned int may_unmap:1; 96 97 /* Can pages be swapped as part of reclaim? */ 98 unsigned int may_swap:1; 99 100 /* 101 * Cgroups are not reclaimed below their configured memory.low, 102 * unless we threaten to OOM. If any cgroups are skipped due to 103 * memory.low and nothing was reclaimed, go back for memory.low. 104 */ 105 unsigned int memcg_low_reclaim:1; 106 unsigned int memcg_low_skipped:1; 107 108 unsigned int hibernation_mode:1; 109 110 /* One of the zones is ready for compaction */ 111 unsigned int compaction_ready:1; 112 113 /* Incremented by the number of inactive pages that were scanned */ 114 unsigned long nr_scanned; 115 116 /* Number of pages freed so far during a call to shrink_zones() */ 117 unsigned long nr_reclaimed; 118 }; 119 120 #ifdef ARCH_HAS_PREFETCH 121 #define prefetch_prev_lru_page(_page, _base, _field) \ 122 do { \ 123 if ((_page)->lru.prev != _base) { \ 124 struct page *prev; \ 125 \ 126 prev = lru_to_page(&(_page->lru)); \ 127 prefetch(&prev->_field); \ 128 } \ 129 } while (0) 130 #else 131 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 132 #endif 133 134 #ifdef ARCH_HAS_PREFETCHW 135 #define prefetchw_prev_lru_page(_page, _base, _field) \ 136 do { \ 137 if ((_page)->lru.prev != _base) { \ 138 struct page *prev; \ 139 \ 140 prev = lru_to_page(&(_page->lru)); \ 141 prefetchw(&prev->_field); \ 142 } \ 143 } while (0) 144 #else 145 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 146 #endif 147 148 /* 149 * From 0 .. 100. Higher means more swappy. 150 */ 151 int vm_swappiness = 60; 152 /* 153 * The total number of pages which are beyond the high watermark within all 154 * zones. 155 */ 156 unsigned long vm_total_pages; 157 158 static LIST_HEAD(shrinker_list); 159 static DECLARE_RWSEM(shrinker_rwsem); 160 161 #ifdef CONFIG_MEMCG 162 static bool global_reclaim(struct scan_control *sc) 163 { 164 return !sc->target_mem_cgroup; 165 } 166 167 /** 168 * sane_reclaim - is the usual dirty throttling mechanism operational? 169 * @sc: scan_control in question 170 * 171 * The normal page dirty throttling mechanism in balance_dirty_pages() is 172 * completely broken with the legacy memcg and direct stalling in 173 * shrink_page_list() is used for throttling instead, which lacks all the 174 * niceties such as fairness, adaptive pausing, bandwidth proportional 175 * allocation and configurability. 176 * 177 * This function tests whether the vmscan currently in progress can assume 178 * that the normal dirty throttling mechanism is operational. 179 */ 180 static bool sane_reclaim(struct scan_control *sc) 181 { 182 struct mem_cgroup *memcg = sc->target_mem_cgroup; 183 184 if (!memcg) 185 return true; 186 #ifdef CONFIG_CGROUP_WRITEBACK 187 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 188 return true; 189 #endif 190 return false; 191 } 192 #else 193 static bool global_reclaim(struct scan_control *sc) 194 { 195 return true; 196 } 197 198 static bool sane_reclaim(struct scan_control *sc) 199 { 200 return true; 201 } 202 #endif 203 204 /* 205 * This misses isolated pages which are not accounted for to save counters. 206 * As the data only determines if reclaim or compaction continues, it is 207 * not expected that isolated pages will be a dominating factor. 208 */ 209 unsigned long zone_reclaimable_pages(struct zone *zone) 210 { 211 unsigned long nr; 212 213 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 214 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 215 if (get_nr_swap_pages() > 0) 216 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 217 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 218 219 return nr; 220 } 221 222 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat) 223 { 224 unsigned long nr; 225 226 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) + 227 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) + 228 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE); 229 230 if (get_nr_swap_pages() > 0) 231 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) + 232 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) + 233 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON); 234 235 return nr; 236 } 237 238 /** 239 * lruvec_lru_size - Returns the number of pages on the given LRU list. 240 * @lruvec: lru vector 241 * @lru: lru to use 242 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 243 */ 244 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 245 { 246 unsigned long lru_size; 247 int zid; 248 249 if (!mem_cgroup_disabled()) 250 lru_size = mem_cgroup_get_lru_size(lruvec, lru); 251 else 252 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 253 254 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 255 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 256 unsigned long size; 257 258 if (!managed_zone(zone)) 259 continue; 260 261 if (!mem_cgroup_disabled()) 262 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 263 else 264 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 265 NR_ZONE_LRU_BASE + lru); 266 lru_size -= min(size, lru_size); 267 } 268 269 return lru_size; 270 271 } 272 273 /* 274 * Add a shrinker callback to be called from the vm. 275 */ 276 int register_shrinker(struct shrinker *shrinker) 277 { 278 size_t size = sizeof(*shrinker->nr_deferred); 279 280 if (shrinker->flags & SHRINKER_NUMA_AWARE) 281 size *= nr_node_ids; 282 283 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 284 if (!shrinker->nr_deferred) 285 return -ENOMEM; 286 287 down_write(&shrinker_rwsem); 288 list_add_tail(&shrinker->list, &shrinker_list); 289 up_write(&shrinker_rwsem); 290 return 0; 291 } 292 EXPORT_SYMBOL(register_shrinker); 293 294 /* 295 * Remove one 296 */ 297 void unregister_shrinker(struct shrinker *shrinker) 298 { 299 down_write(&shrinker_rwsem); 300 list_del(&shrinker->list); 301 up_write(&shrinker_rwsem); 302 kfree(shrinker->nr_deferred); 303 } 304 EXPORT_SYMBOL(unregister_shrinker); 305 306 #define SHRINK_BATCH 128 307 308 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 309 struct shrinker *shrinker, 310 unsigned long nr_scanned, 311 unsigned long nr_eligible) 312 { 313 unsigned long freed = 0; 314 unsigned long long delta; 315 long total_scan; 316 long freeable; 317 long nr; 318 long new_nr; 319 int nid = shrinkctl->nid; 320 long batch_size = shrinker->batch ? shrinker->batch 321 : SHRINK_BATCH; 322 long scanned = 0, next_deferred; 323 324 freeable = shrinker->count_objects(shrinker, shrinkctl); 325 if (freeable == 0) 326 return 0; 327 328 /* 329 * copy the current shrinker scan count into a local variable 330 * and zero it so that other concurrent shrinker invocations 331 * don't also do this scanning work. 332 */ 333 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 334 335 total_scan = nr; 336 delta = (4 * nr_scanned) / shrinker->seeks; 337 delta *= freeable; 338 do_div(delta, nr_eligible + 1); 339 total_scan += delta; 340 if (total_scan < 0) { 341 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 342 shrinker->scan_objects, total_scan); 343 total_scan = freeable; 344 next_deferred = nr; 345 } else 346 next_deferred = total_scan; 347 348 /* 349 * We need to avoid excessive windup on filesystem shrinkers 350 * due to large numbers of GFP_NOFS allocations causing the 351 * shrinkers to return -1 all the time. This results in a large 352 * nr being built up so when a shrink that can do some work 353 * comes along it empties the entire cache due to nr >>> 354 * freeable. This is bad for sustaining a working set in 355 * memory. 356 * 357 * Hence only allow the shrinker to scan the entire cache when 358 * a large delta change is calculated directly. 359 */ 360 if (delta < freeable / 4) 361 total_scan = min(total_scan, freeable / 2); 362 363 /* 364 * Avoid risking looping forever due to too large nr value: 365 * never try to free more than twice the estimate number of 366 * freeable entries. 367 */ 368 if (total_scan > freeable * 2) 369 total_scan = freeable * 2; 370 371 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 372 nr_scanned, nr_eligible, 373 freeable, delta, total_scan); 374 375 /* 376 * Normally, we should not scan less than batch_size objects in one 377 * pass to avoid too frequent shrinker calls, but if the slab has less 378 * than batch_size objects in total and we are really tight on memory, 379 * we will try to reclaim all available objects, otherwise we can end 380 * up failing allocations although there are plenty of reclaimable 381 * objects spread over several slabs with usage less than the 382 * batch_size. 383 * 384 * We detect the "tight on memory" situations by looking at the total 385 * number of objects we want to scan (total_scan). If it is greater 386 * than the total number of objects on slab (freeable), we must be 387 * scanning at high prio and therefore should try to reclaim as much as 388 * possible. 389 */ 390 while (total_scan >= batch_size || 391 total_scan >= freeable) { 392 unsigned long ret; 393 unsigned long nr_to_scan = min(batch_size, total_scan); 394 395 shrinkctl->nr_to_scan = nr_to_scan; 396 shrinkctl->nr_scanned = nr_to_scan; 397 ret = shrinker->scan_objects(shrinker, shrinkctl); 398 if (ret == SHRINK_STOP) 399 break; 400 freed += ret; 401 402 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 403 total_scan -= shrinkctl->nr_scanned; 404 scanned += shrinkctl->nr_scanned; 405 406 cond_resched(); 407 } 408 409 if (next_deferred >= scanned) 410 next_deferred -= scanned; 411 else 412 next_deferred = 0; 413 /* 414 * move the unused scan count back into the shrinker in a 415 * manner that handles concurrent updates. If we exhausted the 416 * scan, there is no need to do an update. 417 */ 418 if (next_deferred > 0) 419 new_nr = atomic_long_add_return(next_deferred, 420 &shrinker->nr_deferred[nid]); 421 else 422 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 423 424 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 425 return freed; 426 } 427 428 /** 429 * shrink_slab - shrink slab caches 430 * @gfp_mask: allocation context 431 * @nid: node whose slab caches to target 432 * @memcg: memory cgroup whose slab caches to target 433 * @nr_scanned: pressure numerator 434 * @nr_eligible: pressure denominator 435 * 436 * Call the shrink functions to age shrinkable caches. 437 * 438 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 439 * unaware shrinkers will receive a node id of 0 instead. 440 * 441 * @memcg specifies the memory cgroup to target. If it is not NULL, 442 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 443 * objects from the memory cgroup specified. Otherwise, only unaware 444 * shrinkers are called. 445 * 446 * @nr_scanned and @nr_eligible form a ratio that indicate how much of 447 * the available objects should be scanned. Page reclaim for example 448 * passes the number of pages scanned and the number of pages on the 449 * LRU lists that it considered on @nid, plus a bias in @nr_scanned 450 * when it encountered mapped pages. The ratio is further biased by 451 * the ->seeks setting of the shrink function, which indicates the 452 * cost to recreate an object relative to that of an LRU page. 453 * 454 * Returns the number of reclaimed slab objects. 455 */ 456 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 457 struct mem_cgroup *memcg, 458 unsigned long nr_scanned, 459 unsigned long nr_eligible) 460 { 461 struct shrinker *shrinker; 462 unsigned long freed = 0; 463 464 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))) 465 return 0; 466 467 if (nr_scanned == 0) 468 nr_scanned = SWAP_CLUSTER_MAX; 469 470 if (!down_read_trylock(&shrinker_rwsem)) { 471 /* 472 * If we would return 0, our callers would understand that we 473 * have nothing else to shrink and give up trying. By returning 474 * 1 we keep it going and assume we'll be able to shrink next 475 * time. 476 */ 477 freed = 1; 478 goto out; 479 } 480 481 list_for_each_entry(shrinker, &shrinker_list, list) { 482 struct shrink_control sc = { 483 .gfp_mask = gfp_mask, 484 .nid = nid, 485 .memcg = memcg, 486 }; 487 488 /* 489 * If kernel memory accounting is disabled, we ignore 490 * SHRINKER_MEMCG_AWARE flag and call all shrinkers 491 * passing NULL for memcg. 492 */ 493 if (memcg_kmem_enabled() && 494 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE)) 495 continue; 496 497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 498 sc.nid = 0; 499 500 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); 501 } 502 503 up_read(&shrinker_rwsem); 504 out: 505 cond_resched(); 506 return freed; 507 } 508 509 void drop_slab_node(int nid) 510 { 511 unsigned long freed; 512 513 do { 514 struct mem_cgroup *memcg = NULL; 515 516 freed = 0; 517 do { 518 freed += shrink_slab(GFP_KERNEL, nid, memcg, 519 1000, 1000); 520 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 521 } while (freed > 10); 522 } 523 524 void drop_slab(void) 525 { 526 int nid; 527 528 for_each_online_node(nid) 529 drop_slab_node(nid); 530 } 531 532 static inline int is_page_cache_freeable(struct page *page) 533 { 534 /* 535 * A freeable page cache page is referenced only by the caller 536 * that isolated the page, the page cache radix tree and 537 * optional buffer heads at page->private. 538 */ 539 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ? 540 HPAGE_PMD_NR : 1; 541 return page_count(page) - page_has_private(page) == 1 + radix_pins; 542 } 543 544 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 545 { 546 if (current->flags & PF_SWAPWRITE) 547 return 1; 548 if (!inode_write_congested(inode)) 549 return 1; 550 if (inode_to_bdi(inode) == current->backing_dev_info) 551 return 1; 552 return 0; 553 } 554 555 /* 556 * We detected a synchronous write error writing a page out. Probably 557 * -ENOSPC. We need to propagate that into the address_space for a subsequent 558 * fsync(), msync() or close(). 559 * 560 * The tricky part is that after writepage we cannot touch the mapping: nothing 561 * prevents it from being freed up. But we have a ref on the page and once 562 * that page is locked, the mapping is pinned. 563 * 564 * We're allowed to run sleeping lock_page() here because we know the caller has 565 * __GFP_FS. 566 */ 567 static void handle_write_error(struct address_space *mapping, 568 struct page *page, int error) 569 { 570 lock_page(page); 571 if (page_mapping(page) == mapping) 572 mapping_set_error(mapping, error); 573 unlock_page(page); 574 } 575 576 /* possible outcome of pageout() */ 577 typedef enum { 578 /* failed to write page out, page is locked */ 579 PAGE_KEEP, 580 /* move page to the active list, page is locked */ 581 PAGE_ACTIVATE, 582 /* page has been sent to the disk successfully, page is unlocked */ 583 PAGE_SUCCESS, 584 /* page is clean and locked */ 585 PAGE_CLEAN, 586 } pageout_t; 587 588 /* 589 * pageout is called by shrink_page_list() for each dirty page. 590 * Calls ->writepage(). 591 */ 592 static pageout_t pageout(struct page *page, struct address_space *mapping, 593 struct scan_control *sc) 594 { 595 /* 596 * If the page is dirty, only perform writeback if that write 597 * will be non-blocking. To prevent this allocation from being 598 * stalled by pagecache activity. But note that there may be 599 * stalls if we need to run get_block(). We could test 600 * PagePrivate for that. 601 * 602 * If this process is currently in __generic_file_write_iter() against 603 * this page's queue, we can perform writeback even if that 604 * will block. 605 * 606 * If the page is swapcache, write it back even if that would 607 * block, for some throttling. This happens by accident, because 608 * swap_backing_dev_info is bust: it doesn't reflect the 609 * congestion state of the swapdevs. Easy to fix, if needed. 610 */ 611 if (!is_page_cache_freeable(page)) 612 return PAGE_KEEP; 613 if (!mapping) { 614 /* 615 * Some data journaling orphaned pages can have 616 * page->mapping == NULL while being dirty with clean buffers. 617 */ 618 if (page_has_private(page)) { 619 if (try_to_free_buffers(page)) { 620 ClearPageDirty(page); 621 pr_info("%s: orphaned page\n", __func__); 622 return PAGE_CLEAN; 623 } 624 } 625 return PAGE_KEEP; 626 } 627 if (mapping->a_ops->writepage == NULL) 628 return PAGE_ACTIVATE; 629 if (!may_write_to_inode(mapping->host, sc)) 630 return PAGE_KEEP; 631 632 if (clear_page_dirty_for_io(page)) { 633 int res; 634 struct writeback_control wbc = { 635 .sync_mode = WB_SYNC_NONE, 636 .nr_to_write = SWAP_CLUSTER_MAX, 637 .range_start = 0, 638 .range_end = LLONG_MAX, 639 .for_reclaim = 1, 640 }; 641 642 SetPageReclaim(page); 643 res = mapping->a_ops->writepage(page, &wbc); 644 if (res < 0) 645 handle_write_error(mapping, page, res); 646 if (res == AOP_WRITEPAGE_ACTIVATE) { 647 ClearPageReclaim(page); 648 return PAGE_ACTIVATE; 649 } 650 651 if (!PageWriteback(page)) { 652 /* synchronous write or broken a_ops? */ 653 ClearPageReclaim(page); 654 } 655 trace_mm_vmscan_writepage(page); 656 inc_node_page_state(page, NR_VMSCAN_WRITE); 657 return PAGE_SUCCESS; 658 } 659 660 return PAGE_CLEAN; 661 } 662 663 /* 664 * Same as remove_mapping, but if the page is removed from the mapping, it 665 * gets returned with a refcount of 0. 666 */ 667 static int __remove_mapping(struct address_space *mapping, struct page *page, 668 bool reclaimed) 669 { 670 unsigned long flags; 671 int refcount; 672 673 BUG_ON(!PageLocked(page)); 674 BUG_ON(mapping != page_mapping(page)); 675 676 spin_lock_irqsave(&mapping->tree_lock, flags); 677 /* 678 * The non racy check for a busy page. 679 * 680 * Must be careful with the order of the tests. When someone has 681 * a ref to the page, it may be possible that they dirty it then 682 * drop the reference. So if PageDirty is tested before page_count 683 * here, then the following race may occur: 684 * 685 * get_user_pages(&page); 686 * [user mapping goes away] 687 * write_to(page); 688 * !PageDirty(page) [good] 689 * SetPageDirty(page); 690 * put_page(page); 691 * !page_count(page) [good, discard it] 692 * 693 * [oops, our write_to data is lost] 694 * 695 * Reversing the order of the tests ensures such a situation cannot 696 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 697 * load is not satisfied before that of page->_refcount. 698 * 699 * Note that if SetPageDirty is always performed via set_page_dirty, 700 * and thus under tree_lock, then this ordering is not required. 701 */ 702 if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) 703 refcount = 1 + HPAGE_PMD_NR; 704 else 705 refcount = 2; 706 if (!page_ref_freeze(page, refcount)) 707 goto cannot_free; 708 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 709 if (unlikely(PageDirty(page))) { 710 page_ref_unfreeze(page, refcount); 711 goto cannot_free; 712 } 713 714 if (PageSwapCache(page)) { 715 swp_entry_t swap = { .val = page_private(page) }; 716 mem_cgroup_swapout(page, swap); 717 __delete_from_swap_cache(page); 718 spin_unlock_irqrestore(&mapping->tree_lock, flags); 719 put_swap_page(page, swap); 720 } else { 721 void (*freepage)(struct page *); 722 void *shadow = NULL; 723 724 freepage = mapping->a_ops->freepage; 725 /* 726 * Remember a shadow entry for reclaimed file cache in 727 * order to detect refaults, thus thrashing, later on. 728 * 729 * But don't store shadows in an address space that is 730 * already exiting. This is not just an optizimation, 731 * inode reclaim needs to empty out the radix tree or 732 * the nodes are lost. Don't plant shadows behind its 733 * back. 734 * 735 * We also don't store shadows for DAX mappings because the 736 * only page cache pages found in these are zero pages 737 * covering holes, and because we don't want to mix DAX 738 * exceptional entries and shadow exceptional entries in the 739 * same page_tree. 740 */ 741 if (reclaimed && page_is_file_cache(page) && 742 !mapping_exiting(mapping) && !dax_mapping(mapping)) 743 shadow = workingset_eviction(mapping, page); 744 __delete_from_page_cache(page, shadow); 745 spin_unlock_irqrestore(&mapping->tree_lock, flags); 746 747 if (freepage != NULL) 748 freepage(page); 749 } 750 751 return 1; 752 753 cannot_free: 754 spin_unlock_irqrestore(&mapping->tree_lock, flags); 755 return 0; 756 } 757 758 /* 759 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 760 * someone else has a ref on the page, abort and return 0. If it was 761 * successfully detached, return 1. Assumes the caller has a single ref on 762 * this page. 763 */ 764 int remove_mapping(struct address_space *mapping, struct page *page) 765 { 766 if (__remove_mapping(mapping, page, false)) { 767 /* 768 * Unfreezing the refcount with 1 rather than 2 effectively 769 * drops the pagecache ref for us without requiring another 770 * atomic operation. 771 */ 772 page_ref_unfreeze(page, 1); 773 return 1; 774 } 775 return 0; 776 } 777 778 /** 779 * putback_lru_page - put previously isolated page onto appropriate LRU list 780 * @page: page to be put back to appropriate lru list 781 * 782 * Add previously isolated @page to appropriate LRU list. 783 * Page may still be unevictable for other reasons. 784 * 785 * lru_lock must not be held, interrupts must be enabled. 786 */ 787 void putback_lru_page(struct page *page) 788 { 789 bool is_unevictable; 790 int was_unevictable = PageUnevictable(page); 791 792 VM_BUG_ON_PAGE(PageLRU(page), page); 793 794 redo: 795 ClearPageUnevictable(page); 796 797 if (page_evictable(page)) { 798 /* 799 * For evictable pages, we can use the cache. 800 * In event of a race, worst case is we end up with an 801 * unevictable page on [in]active list. 802 * We know how to handle that. 803 */ 804 is_unevictable = false; 805 lru_cache_add(page); 806 } else { 807 /* 808 * Put unevictable pages directly on zone's unevictable 809 * list. 810 */ 811 is_unevictable = true; 812 add_page_to_unevictable_list(page); 813 /* 814 * When racing with an mlock or AS_UNEVICTABLE clearing 815 * (page is unlocked) make sure that if the other thread 816 * does not observe our setting of PG_lru and fails 817 * isolation/check_move_unevictable_pages, 818 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 819 * the page back to the evictable list. 820 * 821 * The other side is TestClearPageMlocked() or shmem_lock(). 822 */ 823 smp_mb(); 824 } 825 826 /* 827 * page's status can change while we move it among lru. If an evictable 828 * page is on unevictable list, it never be freed. To avoid that, 829 * check after we added it to the list, again. 830 */ 831 if (is_unevictable && page_evictable(page)) { 832 if (!isolate_lru_page(page)) { 833 put_page(page); 834 goto redo; 835 } 836 /* This means someone else dropped this page from LRU 837 * So, it will be freed or putback to LRU again. There is 838 * nothing to do here. 839 */ 840 } 841 842 if (was_unevictable && !is_unevictable) 843 count_vm_event(UNEVICTABLE_PGRESCUED); 844 else if (!was_unevictable && is_unevictable) 845 count_vm_event(UNEVICTABLE_PGCULLED); 846 847 put_page(page); /* drop ref from isolate */ 848 } 849 850 enum page_references { 851 PAGEREF_RECLAIM, 852 PAGEREF_RECLAIM_CLEAN, 853 PAGEREF_KEEP, 854 PAGEREF_ACTIVATE, 855 }; 856 857 static enum page_references page_check_references(struct page *page, 858 struct scan_control *sc) 859 { 860 int referenced_ptes, referenced_page; 861 unsigned long vm_flags; 862 863 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 864 &vm_flags); 865 referenced_page = TestClearPageReferenced(page); 866 867 /* 868 * Mlock lost the isolation race with us. Let try_to_unmap() 869 * move the page to the unevictable list. 870 */ 871 if (vm_flags & VM_LOCKED) 872 return PAGEREF_RECLAIM; 873 874 if (referenced_ptes) { 875 if (PageSwapBacked(page)) 876 return PAGEREF_ACTIVATE; 877 /* 878 * All mapped pages start out with page table 879 * references from the instantiating fault, so we need 880 * to look twice if a mapped file page is used more 881 * than once. 882 * 883 * Mark it and spare it for another trip around the 884 * inactive list. Another page table reference will 885 * lead to its activation. 886 * 887 * Note: the mark is set for activated pages as well 888 * so that recently deactivated but used pages are 889 * quickly recovered. 890 */ 891 SetPageReferenced(page); 892 893 if (referenced_page || referenced_ptes > 1) 894 return PAGEREF_ACTIVATE; 895 896 /* 897 * Activate file-backed executable pages after first usage. 898 */ 899 if (vm_flags & VM_EXEC) 900 return PAGEREF_ACTIVATE; 901 902 return PAGEREF_KEEP; 903 } 904 905 /* Reclaim if clean, defer dirty pages to writeback */ 906 if (referenced_page && !PageSwapBacked(page)) 907 return PAGEREF_RECLAIM_CLEAN; 908 909 return PAGEREF_RECLAIM; 910 } 911 912 /* Check if a page is dirty or under writeback */ 913 static void page_check_dirty_writeback(struct page *page, 914 bool *dirty, bool *writeback) 915 { 916 struct address_space *mapping; 917 918 /* 919 * Anonymous pages are not handled by flushers and must be written 920 * from reclaim context. Do not stall reclaim based on them 921 */ 922 if (!page_is_file_cache(page) || 923 (PageAnon(page) && !PageSwapBacked(page))) { 924 *dirty = false; 925 *writeback = false; 926 return; 927 } 928 929 /* By default assume that the page flags are accurate */ 930 *dirty = PageDirty(page); 931 *writeback = PageWriteback(page); 932 933 /* Verify dirty/writeback state if the filesystem supports it */ 934 if (!page_has_private(page)) 935 return; 936 937 mapping = page_mapping(page); 938 if (mapping && mapping->a_ops->is_dirty_writeback) 939 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 940 } 941 942 struct reclaim_stat { 943 unsigned nr_dirty; 944 unsigned nr_unqueued_dirty; 945 unsigned nr_congested; 946 unsigned nr_writeback; 947 unsigned nr_immediate; 948 unsigned nr_activate; 949 unsigned nr_ref_keep; 950 unsigned nr_unmap_fail; 951 }; 952 953 /* 954 * shrink_page_list() returns the number of reclaimed pages 955 */ 956 static unsigned long shrink_page_list(struct list_head *page_list, 957 struct pglist_data *pgdat, 958 struct scan_control *sc, 959 enum ttu_flags ttu_flags, 960 struct reclaim_stat *stat, 961 bool force_reclaim) 962 { 963 LIST_HEAD(ret_pages); 964 LIST_HEAD(free_pages); 965 int pgactivate = 0; 966 unsigned nr_unqueued_dirty = 0; 967 unsigned nr_dirty = 0; 968 unsigned nr_congested = 0; 969 unsigned nr_reclaimed = 0; 970 unsigned nr_writeback = 0; 971 unsigned nr_immediate = 0; 972 unsigned nr_ref_keep = 0; 973 unsigned nr_unmap_fail = 0; 974 975 cond_resched(); 976 977 while (!list_empty(page_list)) { 978 struct address_space *mapping; 979 struct page *page; 980 int may_enter_fs; 981 enum page_references references = PAGEREF_RECLAIM_CLEAN; 982 bool dirty, writeback; 983 984 cond_resched(); 985 986 page = lru_to_page(page_list); 987 list_del(&page->lru); 988 989 if (!trylock_page(page)) 990 goto keep; 991 992 VM_BUG_ON_PAGE(PageActive(page), page); 993 994 sc->nr_scanned++; 995 996 if (unlikely(!page_evictable(page))) 997 goto activate_locked; 998 999 if (!sc->may_unmap && page_mapped(page)) 1000 goto keep_locked; 1001 1002 /* Double the slab pressure for mapped and swapcache pages */ 1003 if ((page_mapped(page) || PageSwapCache(page)) && 1004 !(PageAnon(page) && !PageSwapBacked(page))) 1005 sc->nr_scanned++; 1006 1007 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1008 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1009 1010 /* 1011 * The number of dirty pages determines if a zone is marked 1012 * reclaim_congested which affects wait_iff_congested. kswapd 1013 * will stall and start writing pages if the tail of the LRU 1014 * is all dirty unqueued pages. 1015 */ 1016 page_check_dirty_writeback(page, &dirty, &writeback); 1017 if (dirty || writeback) 1018 nr_dirty++; 1019 1020 if (dirty && !writeback) 1021 nr_unqueued_dirty++; 1022 1023 /* 1024 * Treat this page as congested if the underlying BDI is or if 1025 * pages are cycling through the LRU so quickly that the 1026 * pages marked for immediate reclaim are making it to the 1027 * end of the LRU a second time. 1028 */ 1029 mapping = page_mapping(page); 1030 if (((dirty || writeback) && mapping && 1031 inode_write_congested(mapping->host)) || 1032 (writeback && PageReclaim(page))) 1033 nr_congested++; 1034 1035 /* 1036 * If a page at the tail of the LRU is under writeback, there 1037 * are three cases to consider. 1038 * 1039 * 1) If reclaim is encountering an excessive number of pages 1040 * under writeback and this page is both under writeback and 1041 * PageReclaim then it indicates that pages are being queued 1042 * for IO but are being recycled through the LRU before the 1043 * IO can complete. Waiting on the page itself risks an 1044 * indefinite stall if it is impossible to writeback the 1045 * page due to IO error or disconnected storage so instead 1046 * note that the LRU is being scanned too quickly and the 1047 * caller can stall after page list has been processed. 1048 * 1049 * 2) Global or new memcg reclaim encounters a page that is 1050 * not marked for immediate reclaim, or the caller does not 1051 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1052 * not to fs). In this case mark the page for immediate 1053 * reclaim and continue scanning. 1054 * 1055 * Require may_enter_fs because we would wait on fs, which 1056 * may not have submitted IO yet. And the loop driver might 1057 * enter reclaim, and deadlock if it waits on a page for 1058 * which it is needed to do the write (loop masks off 1059 * __GFP_IO|__GFP_FS for this reason); but more thought 1060 * would probably show more reasons. 1061 * 1062 * 3) Legacy memcg encounters a page that is already marked 1063 * PageReclaim. memcg does not have any dirty pages 1064 * throttling so we could easily OOM just because too many 1065 * pages are in writeback and there is nothing else to 1066 * reclaim. Wait for the writeback to complete. 1067 * 1068 * In cases 1) and 2) we activate the pages to get them out of 1069 * the way while we continue scanning for clean pages on the 1070 * inactive list and refilling from the active list. The 1071 * observation here is that waiting for disk writes is more 1072 * expensive than potentially causing reloads down the line. 1073 * Since they're marked for immediate reclaim, they won't put 1074 * memory pressure on the cache working set any longer than it 1075 * takes to write them to disk. 1076 */ 1077 if (PageWriteback(page)) { 1078 /* Case 1 above */ 1079 if (current_is_kswapd() && 1080 PageReclaim(page) && 1081 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1082 nr_immediate++; 1083 goto activate_locked; 1084 1085 /* Case 2 above */ 1086 } else if (sane_reclaim(sc) || 1087 !PageReclaim(page) || !may_enter_fs) { 1088 /* 1089 * This is slightly racy - end_page_writeback() 1090 * might have just cleared PageReclaim, then 1091 * setting PageReclaim here end up interpreted 1092 * as PageReadahead - but that does not matter 1093 * enough to care. What we do want is for this 1094 * page to have PageReclaim set next time memcg 1095 * reclaim reaches the tests above, so it will 1096 * then wait_on_page_writeback() to avoid OOM; 1097 * and it's also appropriate in global reclaim. 1098 */ 1099 SetPageReclaim(page); 1100 nr_writeback++; 1101 goto activate_locked; 1102 1103 /* Case 3 above */ 1104 } else { 1105 unlock_page(page); 1106 wait_on_page_writeback(page); 1107 /* then go back and try same page again */ 1108 list_add_tail(&page->lru, page_list); 1109 continue; 1110 } 1111 } 1112 1113 if (!force_reclaim) 1114 references = page_check_references(page, sc); 1115 1116 switch (references) { 1117 case PAGEREF_ACTIVATE: 1118 goto activate_locked; 1119 case PAGEREF_KEEP: 1120 nr_ref_keep++; 1121 goto keep_locked; 1122 case PAGEREF_RECLAIM: 1123 case PAGEREF_RECLAIM_CLEAN: 1124 ; /* try to reclaim the page below */ 1125 } 1126 1127 /* 1128 * Anonymous process memory has backing store? 1129 * Try to allocate it some swap space here. 1130 * Lazyfree page could be freed directly 1131 */ 1132 if (PageAnon(page) && PageSwapBacked(page)) { 1133 if (!PageSwapCache(page)) { 1134 if (!(sc->gfp_mask & __GFP_IO)) 1135 goto keep_locked; 1136 if (PageTransHuge(page)) { 1137 /* cannot split THP, skip it */ 1138 if (!can_split_huge_page(page, NULL)) 1139 goto activate_locked; 1140 /* 1141 * Split pages without a PMD map right 1142 * away. Chances are some or all of the 1143 * tail pages can be freed without IO. 1144 */ 1145 if (!compound_mapcount(page) && 1146 split_huge_page_to_list(page, 1147 page_list)) 1148 goto activate_locked; 1149 } 1150 if (!add_to_swap(page)) { 1151 if (!PageTransHuge(page)) 1152 goto activate_locked; 1153 /* Fallback to swap normal pages */ 1154 if (split_huge_page_to_list(page, 1155 page_list)) 1156 goto activate_locked; 1157 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1158 count_vm_event(THP_SWPOUT_FALLBACK); 1159 #endif 1160 if (!add_to_swap(page)) 1161 goto activate_locked; 1162 } 1163 1164 may_enter_fs = 1; 1165 1166 /* Adding to swap updated mapping */ 1167 mapping = page_mapping(page); 1168 } 1169 } else if (unlikely(PageTransHuge(page))) { 1170 /* Split file THP */ 1171 if (split_huge_page_to_list(page, page_list)) 1172 goto keep_locked; 1173 } 1174 1175 /* 1176 * The page is mapped into the page tables of one or more 1177 * processes. Try to unmap it here. 1178 */ 1179 if (page_mapped(page)) { 1180 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1181 1182 if (unlikely(PageTransHuge(page))) 1183 flags |= TTU_SPLIT_HUGE_PMD; 1184 if (!try_to_unmap(page, flags)) { 1185 nr_unmap_fail++; 1186 goto activate_locked; 1187 } 1188 } 1189 1190 if (PageDirty(page)) { 1191 /* 1192 * Only kswapd can writeback filesystem pages 1193 * to avoid risk of stack overflow. But avoid 1194 * injecting inefficient single-page IO into 1195 * flusher writeback as much as possible: only 1196 * write pages when we've encountered many 1197 * dirty pages, and when we've already scanned 1198 * the rest of the LRU for clean pages and see 1199 * the same dirty pages again (PageReclaim). 1200 */ 1201 if (page_is_file_cache(page) && 1202 (!current_is_kswapd() || !PageReclaim(page) || 1203 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1204 /* 1205 * Immediately reclaim when written back. 1206 * Similar in principal to deactivate_page() 1207 * except we already have the page isolated 1208 * and know it's dirty 1209 */ 1210 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1211 SetPageReclaim(page); 1212 1213 goto activate_locked; 1214 } 1215 1216 if (references == PAGEREF_RECLAIM_CLEAN) 1217 goto keep_locked; 1218 if (!may_enter_fs) 1219 goto keep_locked; 1220 if (!sc->may_writepage) 1221 goto keep_locked; 1222 1223 /* 1224 * Page is dirty. Flush the TLB if a writable entry 1225 * potentially exists to avoid CPU writes after IO 1226 * starts and then write it out here. 1227 */ 1228 try_to_unmap_flush_dirty(); 1229 switch (pageout(page, mapping, sc)) { 1230 case PAGE_KEEP: 1231 goto keep_locked; 1232 case PAGE_ACTIVATE: 1233 goto activate_locked; 1234 case PAGE_SUCCESS: 1235 if (PageWriteback(page)) 1236 goto keep; 1237 if (PageDirty(page)) 1238 goto keep; 1239 1240 /* 1241 * A synchronous write - probably a ramdisk. Go 1242 * ahead and try to reclaim the page. 1243 */ 1244 if (!trylock_page(page)) 1245 goto keep; 1246 if (PageDirty(page) || PageWriteback(page)) 1247 goto keep_locked; 1248 mapping = page_mapping(page); 1249 case PAGE_CLEAN: 1250 ; /* try to free the page below */ 1251 } 1252 } 1253 1254 /* 1255 * If the page has buffers, try to free the buffer mappings 1256 * associated with this page. If we succeed we try to free 1257 * the page as well. 1258 * 1259 * We do this even if the page is PageDirty(). 1260 * try_to_release_page() does not perform I/O, but it is 1261 * possible for a page to have PageDirty set, but it is actually 1262 * clean (all its buffers are clean). This happens if the 1263 * buffers were written out directly, with submit_bh(). ext3 1264 * will do this, as well as the blockdev mapping. 1265 * try_to_release_page() will discover that cleanness and will 1266 * drop the buffers and mark the page clean - it can be freed. 1267 * 1268 * Rarely, pages can have buffers and no ->mapping. These are 1269 * the pages which were not successfully invalidated in 1270 * truncate_complete_page(). We try to drop those buffers here 1271 * and if that worked, and the page is no longer mapped into 1272 * process address space (page_count == 1) it can be freed. 1273 * Otherwise, leave the page on the LRU so it is swappable. 1274 */ 1275 if (page_has_private(page)) { 1276 if (!try_to_release_page(page, sc->gfp_mask)) 1277 goto activate_locked; 1278 if (!mapping && page_count(page) == 1) { 1279 unlock_page(page); 1280 if (put_page_testzero(page)) 1281 goto free_it; 1282 else { 1283 /* 1284 * rare race with speculative reference. 1285 * the speculative reference will free 1286 * this page shortly, so we may 1287 * increment nr_reclaimed here (and 1288 * leave it off the LRU). 1289 */ 1290 nr_reclaimed++; 1291 continue; 1292 } 1293 } 1294 } 1295 1296 if (PageAnon(page) && !PageSwapBacked(page)) { 1297 /* follow __remove_mapping for reference */ 1298 if (!page_ref_freeze(page, 1)) 1299 goto keep_locked; 1300 if (PageDirty(page)) { 1301 page_ref_unfreeze(page, 1); 1302 goto keep_locked; 1303 } 1304 1305 count_vm_event(PGLAZYFREED); 1306 count_memcg_page_event(page, PGLAZYFREED); 1307 } else if (!mapping || !__remove_mapping(mapping, page, true)) 1308 goto keep_locked; 1309 /* 1310 * At this point, we have no other references and there is 1311 * no way to pick any more up (removed from LRU, removed 1312 * from pagecache). Can use non-atomic bitops now (and 1313 * we obviously don't have to worry about waking up a process 1314 * waiting on the page lock, because there are no references. 1315 */ 1316 __ClearPageLocked(page); 1317 free_it: 1318 nr_reclaimed++; 1319 1320 /* 1321 * Is there need to periodically free_page_list? It would 1322 * appear not as the counts should be low 1323 */ 1324 if (unlikely(PageTransHuge(page))) { 1325 mem_cgroup_uncharge(page); 1326 (*get_compound_page_dtor(page))(page); 1327 } else 1328 list_add(&page->lru, &free_pages); 1329 continue; 1330 1331 activate_locked: 1332 /* Not a candidate for swapping, so reclaim swap space. */ 1333 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1334 PageMlocked(page))) 1335 try_to_free_swap(page); 1336 VM_BUG_ON_PAGE(PageActive(page), page); 1337 if (!PageMlocked(page)) { 1338 SetPageActive(page); 1339 pgactivate++; 1340 count_memcg_page_event(page, PGACTIVATE); 1341 } 1342 keep_locked: 1343 unlock_page(page); 1344 keep: 1345 list_add(&page->lru, &ret_pages); 1346 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1347 } 1348 1349 mem_cgroup_uncharge_list(&free_pages); 1350 try_to_unmap_flush(); 1351 free_hot_cold_page_list(&free_pages, true); 1352 1353 list_splice(&ret_pages, page_list); 1354 count_vm_events(PGACTIVATE, pgactivate); 1355 1356 if (stat) { 1357 stat->nr_dirty = nr_dirty; 1358 stat->nr_congested = nr_congested; 1359 stat->nr_unqueued_dirty = nr_unqueued_dirty; 1360 stat->nr_writeback = nr_writeback; 1361 stat->nr_immediate = nr_immediate; 1362 stat->nr_activate = pgactivate; 1363 stat->nr_ref_keep = nr_ref_keep; 1364 stat->nr_unmap_fail = nr_unmap_fail; 1365 } 1366 return nr_reclaimed; 1367 } 1368 1369 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1370 struct list_head *page_list) 1371 { 1372 struct scan_control sc = { 1373 .gfp_mask = GFP_KERNEL, 1374 .priority = DEF_PRIORITY, 1375 .may_unmap = 1, 1376 }; 1377 unsigned long ret; 1378 struct page *page, *next; 1379 LIST_HEAD(clean_pages); 1380 1381 list_for_each_entry_safe(page, next, page_list, lru) { 1382 if (page_is_file_cache(page) && !PageDirty(page) && 1383 !__PageMovable(page)) { 1384 ClearPageActive(page); 1385 list_move(&page->lru, &clean_pages); 1386 } 1387 } 1388 1389 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1390 TTU_IGNORE_ACCESS, NULL, true); 1391 list_splice(&clean_pages, page_list); 1392 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1393 return ret; 1394 } 1395 1396 /* 1397 * Attempt to remove the specified page from its LRU. Only take this page 1398 * if it is of the appropriate PageActive status. Pages which are being 1399 * freed elsewhere are also ignored. 1400 * 1401 * page: page to consider 1402 * mode: one of the LRU isolation modes defined above 1403 * 1404 * returns 0 on success, -ve errno on failure. 1405 */ 1406 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1407 { 1408 int ret = -EINVAL; 1409 1410 /* Only take pages on the LRU. */ 1411 if (!PageLRU(page)) 1412 return ret; 1413 1414 /* Compaction should not handle unevictable pages but CMA can do so */ 1415 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1416 return ret; 1417 1418 ret = -EBUSY; 1419 1420 /* 1421 * To minimise LRU disruption, the caller can indicate that it only 1422 * wants to isolate pages it will be able to operate on without 1423 * blocking - clean pages for the most part. 1424 * 1425 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1426 * that it is possible to migrate without blocking 1427 */ 1428 if (mode & ISOLATE_ASYNC_MIGRATE) { 1429 /* All the caller can do on PageWriteback is block */ 1430 if (PageWriteback(page)) 1431 return ret; 1432 1433 if (PageDirty(page)) { 1434 struct address_space *mapping; 1435 1436 /* 1437 * Only pages without mappings or that have a 1438 * ->migratepage callback are possible to migrate 1439 * without blocking 1440 */ 1441 mapping = page_mapping(page); 1442 if (mapping && !mapping->a_ops->migratepage) 1443 return ret; 1444 } 1445 } 1446 1447 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1448 return ret; 1449 1450 if (likely(get_page_unless_zero(page))) { 1451 /* 1452 * Be careful not to clear PageLRU until after we're 1453 * sure the page is not being freed elsewhere -- the 1454 * page release code relies on it. 1455 */ 1456 ClearPageLRU(page); 1457 ret = 0; 1458 } 1459 1460 return ret; 1461 } 1462 1463 1464 /* 1465 * Update LRU sizes after isolating pages. The LRU size updates must 1466 * be complete before mem_cgroup_update_lru_size due to a santity check. 1467 */ 1468 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1469 enum lru_list lru, unsigned long *nr_zone_taken) 1470 { 1471 int zid; 1472 1473 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1474 if (!nr_zone_taken[zid]) 1475 continue; 1476 1477 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1478 #ifdef CONFIG_MEMCG 1479 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1480 #endif 1481 } 1482 1483 } 1484 1485 /* 1486 * zone_lru_lock is heavily contended. Some of the functions that 1487 * shrink the lists perform better by taking out a batch of pages 1488 * and working on them outside the LRU lock. 1489 * 1490 * For pagecache intensive workloads, this function is the hottest 1491 * spot in the kernel (apart from copy_*_user functions). 1492 * 1493 * Appropriate locks must be held before calling this function. 1494 * 1495 * @nr_to_scan: The number of eligible pages to look through on the list. 1496 * @lruvec: The LRU vector to pull pages from. 1497 * @dst: The temp list to put pages on to. 1498 * @nr_scanned: The number of pages that were scanned. 1499 * @sc: The scan_control struct for this reclaim session 1500 * @mode: One of the LRU isolation modes 1501 * @lru: LRU list id for isolating 1502 * 1503 * returns how many pages were moved onto *@dst. 1504 */ 1505 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1506 struct lruvec *lruvec, struct list_head *dst, 1507 unsigned long *nr_scanned, struct scan_control *sc, 1508 isolate_mode_t mode, enum lru_list lru) 1509 { 1510 struct list_head *src = &lruvec->lists[lru]; 1511 unsigned long nr_taken = 0; 1512 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1513 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1514 unsigned long skipped = 0; 1515 unsigned long scan, total_scan, nr_pages; 1516 LIST_HEAD(pages_skipped); 1517 1518 scan = 0; 1519 for (total_scan = 0; 1520 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src); 1521 total_scan++) { 1522 struct page *page; 1523 1524 page = lru_to_page(src); 1525 prefetchw_prev_lru_page(page, src, flags); 1526 1527 VM_BUG_ON_PAGE(!PageLRU(page), page); 1528 1529 if (page_zonenum(page) > sc->reclaim_idx) { 1530 list_move(&page->lru, &pages_skipped); 1531 nr_skipped[page_zonenum(page)]++; 1532 continue; 1533 } 1534 1535 /* 1536 * Do not count skipped pages because that makes the function 1537 * return with no isolated pages if the LRU mostly contains 1538 * ineligible pages. This causes the VM to not reclaim any 1539 * pages, triggering a premature OOM. 1540 */ 1541 scan++; 1542 switch (__isolate_lru_page(page, mode)) { 1543 case 0: 1544 nr_pages = hpage_nr_pages(page); 1545 nr_taken += nr_pages; 1546 nr_zone_taken[page_zonenum(page)] += nr_pages; 1547 list_move(&page->lru, dst); 1548 break; 1549 1550 case -EBUSY: 1551 /* else it is being freed elsewhere */ 1552 list_move(&page->lru, src); 1553 continue; 1554 1555 default: 1556 BUG(); 1557 } 1558 } 1559 1560 /* 1561 * Splice any skipped pages to the start of the LRU list. Note that 1562 * this disrupts the LRU order when reclaiming for lower zones but 1563 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1564 * scanning would soon rescan the same pages to skip and put the 1565 * system at risk of premature OOM. 1566 */ 1567 if (!list_empty(&pages_skipped)) { 1568 int zid; 1569 1570 list_splice(&pages_skipped, src); 1571 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1572 if (!nr_skipped[zid]) 1573 continue; 1574 1575 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1576 skipped += nr_skipped[zid]; 1577 } 1578 } 1579 *nr_scanned = total_scan; 1580 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1581 total_scan, skipped, nr_taken, mode, lru); 1582 update_lru_sizes(lruvec, lru, nr_zone_taken); 1583 return nr_taken; 1584 } 1585 1586 /** 1587 * isolate_lru_page - tries to isolate a page from its LRU list 1588 * @page: page to isolate from its LRU list 1589 * 1590 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1591 * vmstat statistic corresponding to whatever LRU list the page was on. 1592 * 1593 * Returns 0 if the page was removed from an LRU list. 1594 * Returns -EBUSY if the page was not on an LRU list. 1595 * 1596 * The returned page will have PageLRU() cleared. If it was found on 1597 * the active list, it will have PageActive set. If it was found on 1598 * the unevictable list, it will have the PageUnevictable bit set. That flag 1599 * may need to be cleared by the caller before letting the page go. 1600 * 1601 * The vmstat statistic corresponding to the list on which the page was 1602 * found will be decremented. 1603 * 1604 * Restrictions: 1605 * (1) Must be called with an elevated refcount on the page. This is a 1606 * fundamentnal difference from isolate_lru_pages (which is called 1607 * without a stable reference). 1608 * (2) the lru_lock must not be held. 1609 * (3) interrupts must be enabled. 1610 */ 1611 int isolate_lru_page(struct page *page) 1612 { 1613 int ret = -EBUSY; 1614 1615 VM_BUG_ON_PAGE(!page_count(page), page); 1616 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1617 1618 if (PageLRU(page)) { 1619 struct zone *zone = page_zone(page); 1620 struct lruvec *lruvec; 1621 1622 spin_lock_irq(zone_lru_lock(zone)); 1623 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 1624 if (PageLRU(page)) { 1625 int lru = page_lru(page); 1626 get_page(page); 1627 ClearPageLRU(page); 1628 del_page_from_lru_list(page, lruvec, lru); 1629 ret = 0; 1630 } 1631 spin_unlock_irq(zone_lru_lock(zone)); 1632 } 1633 return ret; 1634 } 1635 1636 /* 1637 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1638 * then get resheduled. When there are massive number of tasks doing page 1639 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1640 * the LRU list will go small and be scanned faster than necessary, leading to 1641 * unnecessary swapping, thrashing and OOM. 1642 */ 1643 static int too_many_isolated(struct pglist_data *pgdat, int file, 1644 struct scan_control *sc) 1645 { 1646 unsigned long inactive, isolated; 1647 1648 if (current_is_kswapd()) 1649 return 0; 1650 1651 if (!sane_reclaim(sc)) 1652 return 0; 1653 1654 if (file) { 1655 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1656 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1657 } else { 1658 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1659 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1660 } 1661 1662 /* 1663 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1664 * won't get blocked by normal direct-reclaimers, forming a circular 1665 * deadlock. 1666 */ 1667 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1668 inactive >>= 3; 1669 1670 return isolated > inactive; 1671 } 1672 1673 static noinline_for_stack void 1674 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1675 { 1676 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1677 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1678 LIST_HEAD(pages_to_free); 1679 1680 /* 1681 * Put back any unfreeable pages. 1682 */ 1683 while (!list_empty(page_list)) { 1684 struct page *page = lru_to_page(page_list); 1685 int lru; 1686 1687 VM_BUG_ON_PAGE(PageLRU(page), page); 1688 list_del(&page->lru); 1689 if (unlikely(!page_evictable(page))) { 1690 spin_unlock_irq(&pgdat->lru_lock); 1691 putback_lru_page(page); 1692 spin_lock_irq(&pgdat->lru_lock); 1693 continue; 1694 } 1695 1696 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1697 1698 SetPageLRU(page); 1699 lru = page_lru(page); 1700 add_page_to_lru_list(page, lruvec, lru); 1701 1702 if (is_active_lru(lru)) { 1703 int file = is_file_lru(lru); 1704 int numpages = hpage_nr_pages(page); 1705 reclaim_stat->recent_rotated[file] += numpages; 1706 } 1707 if (put_page_testzero(page)) { 1708 __ClearPageLRU(page); 1709 __ClearPageActive(page); 1710 del_page_from_lru_list(page, lruvec, lru); 1711 1712 if (unlikely(PageCompound(page))) { 1713 spin_unlock_irq(&pgdat->lru_lock); 1714 mem_cgroup_uncharge(page); 1715 (*get_compound_page_dtor(page))(page); 1716 spin_lock_irq(&pgdat->lru_lock); 1717 } else 1718 list_add(&page->lru, &pages_to_free); 1719 } 1720 } 1721 1722 /* 1723 * To save our caller's stack, now use input list for pages to free. 1724 */ 1725 list_splice(&pages_to_free, page_list); 1726 } 1727 1728 /* 1729 * If a kernel thread (such as nfsd for loop-back mounts) services 1730 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1731 * In that case we should only throttle if the backing device it is 1732 * writing to is congested. In other cases it is safe to throttle. 1733 */ 1734 static int current_may_throttle(void) 1735 { 1736 return !(current->flags & PF_LESS_THROTTLE) || 1737 current->backing_dev_info == NULL || 1738 bdi_write_congested(current->backing_dev_info); 1739 } 1740 1741 /* 1742 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1743 * of reclaimed pages 1744 */ 1745 static noinline_for_stack unsigned long 1746 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1747 struct scan_control *sc, enum lru_list lru) 1748 { 1749 LIST_HEAD(page_list); 1750 unsigned long nr_scanned; 1751 unsigned long nr_reclaimed = 0; 1752 unsigned long nr_taken; 1753 struct reclaim_stat stat = {}; 1754 isolate_mode_t isolate_mode = 0; 1755 int file = is_file_lru(lru); 1756 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1757 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1758 bool stalled = false; 1759 1760 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1761 if (stalled) 1762 return 0; 1763 1764 /* wait a bit for the reclaimer. */ 1765 msleep(100); 1766 stalled = true; 1767 1768 /* We are about to die and free our memory. Return now. */ 1769 if (fatal_signal_pending(current)) 1770 return SWAP_CLUSTER_MAX; 1771 } 1772 1773 lru_add_drain(); 1774 1775 if (!sc->may_unmap) 1776 isolate_mode |= ISOLATE_UNMAPPED; 1777 1778 spin_lock_irq(&pgdat->lru_lock); 1779 1780 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1781 &nr_scanned, sc, isolate_mode, lru); 1782 1783 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1784 reclaim_stat->recent_scanned[file] += nr_taken; 1785 1786 if (current_is_kswapd()) { 1787 if (global_reclaim(sc)) 1788 __count_vm_events(PGSCAN_KSWAPD, nr_scanned); 1789 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD, 1790 nr_scanned); 1791 } else { 1792 if (global_reclaim(sc)) 1793 __count_vm_events(PGSCAN_DIRECT, nr_scanned); 1794 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT, 1795 nr_scanned); 1796 } 1797 spin_unlock_irq(&pgdat->lru_lock); 1798 1799 if (nr_taken == 0) 1800 return 0; 1801 1802 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1803 &stat, false); 1804 1805 spin_lock_irq(&pgdat->lru_lock); 1806 1807 if (current_is_kswapd()) { 1808 if (global_reclaim(sc)) 1809 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); 1810 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD, 1811 nr_reclaimed); 1812 } else { 1813 if (global_reclaim(sc)) 1814 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); 1815 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT, 1816 nr_reclaimed); 1817 } 1818 1819 putback_inactive_pages(lruvec, &page_list); 1820 1821 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1822 1823 spin_unlock_irq(&pgdat->lru_lock); 1824 1825 mem_cgroup_uncharge_list(&page_list); 1826 free_hot_cold_page_list(&page_list, true); 1827 1828 /* 1829 * If reclaim is isolating dirty pages under writeback, it implies 1830 * that the long-lived page allocation rate is exceeding the page 1831 * laundering rate. Either the global limits are not being effective 1832 * at throttling processes due to the page distribution throughout 1833 * zones or there is heavy usage of a slow backing device. The 1834 * only option is to throttle from reclaim context which is not ideal 1835 * as there is no guarantee the dirtying process is throttled in the 1836 * same way balance_dirty_pages() manages. 1837 * 1838 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1839 * of pages under pages flagged for immediate reclaim and stall if any 1840 * are encountered in the nr_immediate check below. 1841 */ 1842 if (stat.nr_writeback && stat.nr_writeback == nr_taken) 1843 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 1844 1845 /* 1846 * Legacy memcg will stall in page writeback so avoid forcibly 1847 * stalling here. 1848 */ 1849 if (sane_reclaim(sc)) { 1850 /* 1851 * Tag a zone as congested if all the dirty pages scanned were 1852 * backed by a congested BDI and wait_iff_congested will stall. 1853 */ 1854 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested) 1855 set_bit(PGDAT_CONGESTED, &pgdat->flags); 1856 1857 /* 1858 * If dirty pages are scanned that are not queued for IO, it 1859 * implies that flushers are not doing their job. This can 1860 * happen when memory pressure pushes dirty pages to the end of 1861 * the LRU before the dirty limits are breached and the dirty 1862 * data has expired. It can also happen when the proportion of 1863 * dirty pages grows not through writes but through memory 1864 * pressure reclaiming all the clean cache. And in some cases, 1865 * the flushers simply cannot keep up with the allocation 1866 * rate. Nudge the flusher threads in case they are asleep, but 1867 * also allow kswapd to start writing pages during reclaim. 1868 */ 1869 if (stat.nr_unqueued_dirty == nr_taken) { 1870 wakeup_flusher_threads(0, WB_REASON_VMSCAN); 1871 set_bit(PGDAT_DIRTY, &pgdat->flags); 1872 } 1873 1874 /* 1875 * If kswapd scans pages marked marked for immediate 1876 * reclaim and under writeback (nr_immediate), it implies 1877 * that pages are cycling through the LRU faster than 1878 * they are written so also forcibly stall. 1879 */ 1880 if (stat.nr_immediate && current_may_throttle()) 1881 congestion_wait(BLK_RW_ASYNC, HZ/10); 1882 } 1883 1884 /* 1885 * Stall direct reclaim for IO completions if underlying BDIs or zone 1886 * is congested. Allow kswapd to continue until it starts encountering 1887 * unqueued dirty pages or cycling through the LRU too quickly. 1888 */ 1889 if (!sc->hibernation_mode && !current_is_kswapd() && 1890 current_may_throttle()) 1891 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10); 1892 1893 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1894 nr_scanned, nr_reclaimed, 1895 stat.nr_dirty, stat.nr_writeback, 1896 stat.nr_congested, stat.nr_immediate, 1897 stat.nr_activate, stat.nr_ref_keep, 1898 stat.nr_unmap_fail, 1899 sc->priority, file); 1900 return nr_reclaimed; 1901 } 1902 1903 /* 1904 * This moves pages from the active list to the inactive list. 1905 * 1906 * We move them the other way if the page is referenced by one or more 1907 * processes, from rmap. 1908 * 1909 * If the pages are mostly unmapped, the processing is fast and it is 1910 * appropriate to hold zone_lru_lock across the whole operation. But if 1911 * the pages are mapped, the processing is slow (page_referenced()) so we 1912 * should drop zone_lru_lock around each page. It's impossible to balance 1913 * this, so instead we remove the pages from the LRU while processing them. 1914 * It is safe to rely on PG_active against the non-LRU pages in here because 1915 * nobody will play with that bit on a non-LRU page. 1916 * 1917 * The downside is that we have to touch page->_refcount against each page. 1918 * But we had to alter page->flags anyway. 1919 * 1920 * Returns the number of pages moved to the given lru. 1921 */ 1922 1923 static unsigned move_active_pages_to_lru(struct lruvec *lruvec, 1924 struct list_head *list, 1925 struct list_head *pages_to_free, 1926 enum lru_list lru) 1927 { 1928 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1929 struct page *page; 1930 int nr_pages; 1931 int nr_moved = 0; 1932 1933 while (!list_empty(list)) { 1934 page = lru_to_page(list); 1935 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1936 1937 VM_BUG_ON_PAGE(PageLRU(page), page); 1938 SetPageLRU(page); 1939 1940 nr_pages = hpage_nr_pages(page); 1941 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1942 list_move(&page->lru, &lruvec->lists[lru]); 1943 1944 if (put_page_testzero(page)) { 1945 __ClearPageLRU(page); 1946 __ClearPageActive(page); 1947 del_page_from_lru_list(page, lruvec, lru); 1948 1949 if (unlikely(PageCompound(page))) { 1950 spin_unlock_irq(&pgdat->lru_lock); 1951 mem_cgroup_uncharge(page); 1952 (*get_compound_page_dtor(page))(page); 1953 spin_lock_irq(&pgdat->lru_lock); 1954 } else 1955 list_add(&page->lru, pages_to_free); 1956 } else { 1957 nr_moved += nr_pages; 1958 } 1959 } 1960 1961 if (!is_active_lru(lru)) { 1962 __count_vm_events(PGDEACTIVATE, nr_moved); 1963 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 1964 nr_moved); 1965 } 1966 1967 return nr_moved; 1968 } 1969 1970 static void shrink_active_list(unsigned long nr_to_scan, 1971 struct lruvec *lruvec, 1972 struct scan_control *sc, 1973 enum lru_list lru) 1974 { 1975 unsigned long nr_taken; 1976 unsigned long nr_scanned; 1977 unsigned long vm_flags; 1978 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1979 LIST_HEAD(l_active); 1980 LIST_HEAD(l_inactive); 1981 struct page *page; 1982 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1983 unsigned nr_deactivate, nr_activate; 1984 unsigned nr_rotated = 0; 1985 isolate_mode_t isolate_mode = 0; 1986 int file = is_file_lru(lru); 1987 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1988 1989 lru_add_drain(); 1990 1991 if (!sc->may_unmap) 1992 isolate_mode |= ISOLATE_UNMAPPED; 1993 1994 spin_lock_irq(&pgdat->lru_lock); 1995 1996 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1997 &nr_scanned, sc, isolate_mode, lru); 1998 1999 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2000 reclaim_stat->recent_scanned[file] += nr_taken; 2001 2002 __count_vm_events(PGREFILL, nr_scanned); 2003 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2004 2005 spin_unlock_irq(&pgdat->lru_lock); 2006 2007 while (!list_empty(&l_hold)) { 2008 cond_resched(); 2009 page = lru_to_page(&l_hold); 2010 list_del(&page->lru); 2011 2012 if (unlikely(!page_evictable(page))) { 2013 putback_lru_page(page); 2014 continue; 2015 } 2016 2017 if (unlikely(buffer_heads_over_limit)) { 2018 if (page_has_private(page) && trylock_page(page)) { 2019 if (page_has_private(page)) 2020 try_to_release_page(page, 0); 2021 unlock_page(page); 2022 } 2023 } 2024 2025 if (page_referenced(page, 0, sc->target_mem_cgroup, 2026 &vm_flags)) { 2027 nr_rotated += hpage_nr_pages(page); 2028 /* 2029 * Identify referenced, file-backed active pages and 2030 * give them one more trip around the active list. So 2031 * that executable code get better chances to stay in 2032 * memory under moderate memory pressure. Anon pages 2033 * are not likely to be evicted by use-once streaming 2034 * IO, plus JVM can create lots of anon VM_EXEC pages, 2035 * so we ignore them here. 2036 */ 2037 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 2038 list_add(&page->lru, &l_active); 2039 continue; 2040 } 2041 } 2042 2043 ClearPageActive(page); /* we are de-activating */ 2044 list_add(&page->lru, &l_inactive); 2045 } 2046 2047 /* 2048 * Move pages back to the lru list. 2049 */ 2050 spin_lock_irq(&pgdat->lru_lock); 2051 /* 2052 * Count referenced pages from currently used mappings as rotated, 2053 * even though only some of them are actually re-activated. This 2054 * helps balance scan pressure between file and anonymous pages in 2055 * get_scan_count. 2056 */ 2057 reclaim_stat->recent_rotated[file] += nr_rotated; 2058 2059 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 2060 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 2061 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2062 spin_unlock_irq(&pgdat->lru_lock); 2063 2064 mem_cgroup_uncharge_list(&l_hold); 2065 free_hot_cold_page_list(&l_hold, true); 2066 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2067 nr_deactivate, nr_rotated, sc->priority, file); 2068 } 2069 2070 /* 2071 * The inactive anon list should be small enough that the VM never has 2072 * to do too much work. 2073 * 2074 * The inactive file list should be small enough to leave most memory 2075 * to the established workingset on the scan-resistant active list, 2076 * but large enough to avoid thrashing the aggregate readahead window. 2077 * 2078 * Both inactive lists should also be large enough that each inactive 2079 * page has a chance to be referenced again before it is reclaimed. 2080 * 2081 * If that fails and refaulting is observed, the inactive list grows. 2082 * 2083 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2084 * on this LRU, maintained by the pageout code. A zone->inactive_ratio 2085 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2086 * 2087 * total target max 2088 * memory ratio inactive 2089 * ------------------------------------- 2090 * 10MB 1 5MB 2091 * 100MB 1 50MB 2092 * 1GB 3 250MB 2093 * 10GB 10 0.9GB 2094 * 100GB 31 3GB 2095 * 1TB 101 10GB 2096 * 10TB 320 32GB 2097 */ 2098 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2099 struct mem_cgroup *memcg, 2100 struct scan_control *sc, bool actual_reclaim) 2101 { 2102 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2103 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2104 enum lru_list inactive_lru = file * LRU_FILE; 2105 unsigned long inactive, active; 2106 unsigned long inactive_ratio; 2107 unsigned long refaults; 2108 unsigned long gb; 2109 2110 /* 2111 * If we don't have swap space, anonymous page deactivation 2112 * is pointless. 2113 */ 2114 if (!file && !total_swap_pages) 2115 return false; 2116 2117 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2118 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2119 2120 if (memcg) 2121 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2122 else 2123 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2124 2125 /* 2126 * When refaults are being observed, it means a new workingset 2127 * is being established. Disable active list protection to get 2128 * rid of the stale workingset quickly. 2129 */ 2130 if (file && actual_reclaim && lruvec->refaults != refaults) { 2131 inactive_ratio = 0; 2132 } else { 2133 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2134 if (gb) 2135 inactive_ratio = int_sqrt(10 * gb); 2136 else 2137 inactive_ratio = 1; 2138 } 2139 2140 if (actual_reclaim) 2141 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, 2142 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2143 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2144 inactive_ratio, file); 2145 2146 return inactive * inactive_ratio < active; 2147 } 2148 2149 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2150 struct lruvec *lruvec, struct mem_cgroup *memcg, 2151 struct scan_control *sc) 2152 { 2153 if (is_active_lru(lru)) { 2154 if (inactive_list_is_low(lruvec, is_file_lru(lru), 2155 memcg, sc, true)) 2156 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2157 return 0; 2158 } 2159 2160 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2161 } 2162 2163 enum scan_balance { 2164 SCAN_EQUAL, 2165 SCAN_FRACT, 2166 SCAN_ANON, 2167 SCAN_FILE, 2168 }; 2169 2170 /* 2171 * Determine how aggressively the anon and file LRU lists should be 2172 * scanned. The relative value of each set of LRU lists is determined 2173 * by looking at the fraction of the pages scanned we did rotate back 2174 * onto the active list instead of evict. 2175 * 2176 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2177 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2178 */ 2179 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2180 struct scan_control *sc, unsigned long *nr, 2181 unsigned long *lru_pages) 2182 { 2183 int swappiness = mem_cgroup_swappiness(memcg); 2184 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2185 u64 fraction[2]; 2186 u64 denominator = 0; /* gcc */ 2187 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2188 unsigned long anon_prio, file_prio; 2189 enum scan_balance scan_balance; 2190 unsigned long anon, file; 2191 unsigned long ap, fp; 2192 enum lru_list lru; 2193 2194 /* If we have no swap space, do not bother scanning anon pages. */ 2195 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2196 scan_balance = SCAN_FILE; 2197 goto out; 2198 } 2199 2200 /* 2201 * Global reclaim will swap to prevent OOM even with no 2202 * swappiness, but memcg users want to use this knob to 2203 * disable swapping for individual groups completely when 2204 * using the memory controller's swap limit feature would be 2205 * too expensive. 2206 */ 2207 if (!global_reclaim(sc) && !swappiness) { 2208 scan_balance = SCAN_FILE; 2209 goto out; 2210 } 2211 2212 /* 2213 * Do not apply any pressure balancing cleverness when the 2214 * system is close to OOM, scan both anon and file equally 2215 * (unless the swappiness setting disagrees with swapping). 2216 */ 2217 if (!sc->priority && swappiness) { 2218 scan_balance = SCAN_EQUAL; 2219 goto out; 2220 } 2221 2222 /* 2223 * Prevent the reclaimer from falling into the cache trap: as 2224 * cache pages start out inactive, every cache fault will tip 2225 * the scan balance towards the file LRU. And as the file LRU 2226 * shrinks, so does the window for rotation from references. 2227 * This means we have a runaway feedback loop where a tiny 2228 * thrashing file LRU becomes infinitely more attractive than 2229 * anon pages. Try to detect this based on file LRU size. 2230 */ 2231 if (global_reclaim(sc)) { 2232 unsigned long pgdatfile; 2233 unsigned long pgdatfree; 2234 int z; 2235 unsigned long total_high_wmark = 0; 2236 2237 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2238 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2239 node_page_state(pgdat, NR_INACTIVE_FILE); 2240 2241 for (z = 0; z < MAX_NR_ZONES; z++) { 2242 struct zone *zone = &pgdat->node_zones[z]; 2243 if (!managed_zone(zone)) 2244 continue; 2245 2246 total_high_wmark += high_wmark_pages(zone); 2247 } 2248 2249 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2250 /* 2251 * Force SCAN_ANON if there are enough inactive 2252 * anonymous pages on the LRU in eligible zones. 2253 * Otherwise, the small LRU gets thrashed. 2254 */ 2255 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) && 2256 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) 2257 >> sc->priority) { 2258 scan_balance = SCAN_ANON; 2259 goto out; 2260 } 2261 } 2262 } 2263 2264 /* 2265 * If there is enough inactive page cache, i.e. if the size of the 2266 * inactive list is greater than that of the active list *and* the 2267 * inactive list actually has some pages to scan on this priority, we 2268 * do not reclaim anything from the anonymous working set right now. 2269 * Without the second condition we could end up never scanning an 2270 * lruvec even if it has plenty of old anonymous pages unless the 2271 * system is under heavy pressure. 2272 */ 2273 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) && 2274 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2275 scan_balance = SCAN_FILE; 2276 goto out; 2277 } 2278 2279 scan_balance = SCAN_FRACT; 2280 2281 /* 2282 * With swappiness at 100, anonymous and file have the same priority. 2283 * This scanning priority is essentially the inverse of IO cost. 2284 */ 2285 anon_prio = swappiness; 2286 file_prio = 200 - anon_prio; 2287 2288 /* 2289 * OK, so we have swap space and a fair amount of page cache 2290 * pages. We use the recently rotated / recently scanned 2291 * ratios to determine how valuable each cache is. 2292 * 2293 * Because workloads change over time (and to avoid overflow) 2294 * we keep these statistics as a floating average, which ends 2295 * up weighing recent references more than old ones. 2296 * 2297 * anon in [0], file in [1] 2298 */ 2299 2300 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2301 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2302 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2303 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2304 2305 spin_lock_irq(&pgdat->lru_lock); 2306 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2307 reclaim_stat->recent_scanned[0] /= 2; 2308 reclaim_stat->recent_rotated[0] /= 2; 2309 } 2310 2311 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2312 reclaim_stat->recent_scanned[1] /= 2; 2313 reclaim_stat->recent_rotated[1] /= 2; 2314 } 2315 2316 /* 2317 * The amount of pressure on anon vs file pages is inversely 2318 * proportional to the fraction of recently scanned pages on 2319 * each list that were recently referenced and in active use. 2320 */ 2321 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2322 ap /= reclaim_stat->recent_rotated[0] + 1; 2323 2324 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2325 fp /= reclaim_stat->recent_rotated[1] + 1; 2326 spin_unlock_irq(&pgdat->lru_lock); 2327 2328 fraction[0] = ap; 2329 fraction[1] = fp; 2330 denominator = ap + fp + 1; 2331 out: 2332 *lru_pages = 0; 2333 for_each_evictable_lru(lru) { 2334 int file = is_file_lru(lru); 2335 unsigned long size; 2336 unsigned long scan; 2337 2338 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2339 scan = size >> sc->priority; 2340 /* 2341 * If the cgroup's already been deleted, make sure to 2342 * scrape out the remaining cache. 2343 */ 2344 if (!scan && !mem_cgroup_online(memcg)) 2345 scan = min(size, SWAP_CLUSTER_MAX); 2346 2347 switch (scan_balance) { 2348 case SCAN_EQUAL: 2349 /* Scan lists relative to size */ 2350 break; 2351 case SCAN_FRACT: 2352 /* 2353 * Scan types proportional to swappiness and 2354 * their relative recent reclaim efficiency. 2355 */ 2356 scan = div64_u64(scan * fraction[file], 2357 denominator); 2358 break; 2359 case SCAN_FILE: 2360 case SCAN_ANON: 2361 /* Scan one type exclusively */ 2362 if ((scan_balance == SCAN_FILE) != file) { 2363 size = 0; 2364 scan = 0; 2365 } 2366 break; 2367 default: 2368 /* Look ma, no brain */ 2369 BUG(); 2370 } 2371 2372 *lru_pages += size; 2373 nr[lru] = scan; 2374 } 2375 } 2376 2377 /* 2378 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2379 */ 2380 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2381 struct scan_control *sc, unsigned long *lru_pages) 2382 { 2383 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2384 unsigned long nr[NR_LRU_LISTS]; 2385 unsigned long targets[NR_LRU_LISTS]; 2386 unsigned long nr_to_scan; 2387 enum lru_list lru; 2388 unsigned long nr_reclaimed = 0; 2389 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2390 struct blk_plug plug; 2391 bool scan_adjusted; 2392 2393 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2394 2395 /* Record the original scan target for proportional adjustments later */ 2396 memcpy(targets, nr, sizeof(nr)); 2397 2398 /* 2399 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2400 * event that can occur when there is little memory pressure e.g. 2401 * multiple streaming readers/writers. Hence, we do not abort scanning 2402 * when the requested number of pages are reclaimed when scanning at 2403 * DEF_PRIORITY on the assumption that the fact we are direct 2404 * reclaiming implies that kswapd is not keeping up and it is best to 2405 * do a batch of work at once. For memcg reclaim one check is made to 2406 * abort proportional reclaim if either the file or anon lru has already 2407 * dropped to zero at the first pass. 2408 */ 2409 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2410 sc->priority == DEF_PRIORITY); 2411 2412 blk_start_plug(&plug); 2413 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2414 nr[LRU_INACTIVE_FILE]) { 2415 unsigned long nr_anon, nr_file, percentage; 2416 unsigned long nr_scanned; 2417 2418 for_each_evictable_lru(lru) { 2419 if (nr[lru]) { 2420 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2421 nr[lru] -= nr_to_scan; 2422 2423 nr_reclaimed += shrink_list(lru, nr_to_scan, 2424 lruvec, memcg, sc); 2425 } 2426 } 2427 2428 cond_resched(); 2429 2430 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2431 continue; 2432 2433 /* 2434 * For kswapd and memcg, reclaim at least the number of pages 2435 * requested. Ensure that the anon and file LRUs are scanned 2436 * proportionally what was requested by get_scan_count(). We 2437 * stop reclaiming one LRU and reduce the amount scanning 2438 * proportional to the original scan target. 2439 */ 2440 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2441 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2442 2443 /* 2444 * It's just vindictive to attack the larger once the smaller 2445 * has gone to zero. And given the way we stop scanning the 2446 * smaller below, this makes sure that we only make one nudge 2447 * towards proportionality once we've got nr_to_reclaim. 2448 */ 2449 if (!nr_file || !nr_anon) 2450 break; 2451 2452 if (nr_file > nr_anon) { 2453 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2454 targets[LRU_ACTIVE_ANON] + 1; 2455 lru = LRU_BASE; 2456 percentage = nr_anon * 100 / scan_target; 2457 } else { 2458 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2459 targets[LRU_ACTIVE_FILE] + 1; 2460 lru = LRU_FILE; 2461 percentage = nr_file * 100 / scan_target; 2462 } 2463 2464 /* Stop scanning the smaller of the LRU */ 2465 nr[lru] = 0; 2466 nr[lru + LRU_ACTIVE] = 0; 2467 2468 /* 2469 * Recalculate the other LRU scan count based on its original 2470 * scan target and the percentage scanning already complete 2471 */ 2472 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2473 nr_scanned = targets[lru] - nr[lru]; 2474 nr[lru] = targets[lru] * (100 - percentage) / 100; 2475 nr[lru] -= min(nr[lru], nr_scanned); 2476 2477 lru += LRU_ACTIVE; 2478 nr_scanned = targets[lru] - nr[lru]; 2479 nr[lru] = targets[lru] * (100 - percentage) / 100; 2480 nr[lru] -= min(nr[lru], nr_scanned); 2481 2482 scan_adjusted = true; 2483 } 2484 blk_finish_plug(&plug); 2485 sc->nr_reclaimed += nr_reclaimed; 2486 2487 /* 2488 * Even if we did not try to evict anon pages at all, we want to 2489 * rebalance the anon lru active/inactive ratio. 2490 */ 2491 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 2492 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2493 sc, LRU_ACTIVE_ANON); 2494 } 2495 2496 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2497 static bool in_reclaim_compaction(struct scan_control *sc) 2498 { 2499 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2500 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2501 sc->priority < DEF_PRIORITY - 2)) 2502 return true; 2503 2504 return false; 2505 } 2506 2507 /* 2508 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2509 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2510 * true if more pages should be reclaimed such that when the page allocator 2511 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2512 * It will give up earlier than that if there is difficulty reclaiming pages. 2513 */ 2514 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2515 unsigned long nr_reclaimed, 2516 unsigned long nr_scanned, 2517 struct scan_control *sc) 2518 { 2519 unsigned long pages_for_compaction; 2520 unsigned long inactive_lru_pages; 2521 int z; 2522 2523 /* If not in reclaim/compaction mode, stop */ 2524 if (!in_reclaim_compaction(sc)) 2525 return false; 2526 2527 /* Consider stopping depending on scan and reclaim activity */ 2528 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) { 2529 /* 2530 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the 2531 * full LRU list has been scanned and we are still failing 2532 * to reclaim pages. This full LRU scan is potentially 2533 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed 2534 */ 2535 if (!nr_reclaimed && !nr_scanned) 2536 return false; 2537 } else { 2538 /* 2539 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably 2540 * fail without consequence, stop if we failed to reclaim 2541 * any pages from the last SWAP_CLUSTER_MAX number of 2542 * pages that were scanned. This will return to the 2543 * caller faster at the risk reclaim/compaction and 2544 * the resulting allocation attempt fails 2545 */ 2546 if (!nr_reclaimed) 2547 return false; 2548 } 2549 2550 /* 2551 * If we have not reclaimed enough pages for compaction and the 2552 * inactive lists are large enough, continue reclaiming 2553 */ 2554 pages_for_compaction = compact_gap(sc->order); 2555 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2556 if (get_nr_swap_pages() > 0) 2557 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2558 if (sc->nr_reclaimed < pages_for_compaction && 2559 inactive_lru_pages > pages_for_compaction) 2560 return true; 2561 2562 /* If compaction would go ahead or the allocation would succeed, stop */ 2563 for (z = 0; z <= sc->reclaim_idx; z++) { 2564 struct zone *zone = &pgdat->node_zones[z]; 2565 if (!managed_zone(zone)) 2566 continue; 2567 2568 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2569 case COMPACT_SUCCESS: 2570 case COMPACT_CONTINUE: 2571 return false; 2572 default: 2573 /* check next zone */ 2574 ; 2575 } 2576 } 2577 return true; 2578 } 2579 2580 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2581 { 2582 struct reclaim_state *reclaim_state = current->reclaim_state; 2583 unsigned long nr_reclaimed, nr_scanned; 2584 bool reclaimable = false; 2585 2586 do { 2587 struct mem_cgroup *root = sc->target_mem_cgroup; 2588 struct mem_cgroup_reclaim_cookie reclaim = { 2589 .pgdat = pgdat, 2590 .priority = sc->priority, 2591 }; 2592 unsigned long node_lru_pages = 0; 2593 struct mem_cgroup *memcg; 2594 2595 nr_reclaimed = sc->nr_reclaimed; 2596 nr_scanned = sc->nr_scanned; 2597 2598 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2599 do { 2600 unsigned long lru_pages; 2601 unsigned long reclaimed; 2602 unsigned long scanned; 2603 2604 if (mem_cgroup_low(root, memcg)) { 2605 if (!sc->memcg_low_reclaim) { 2606 sc->memcg_low_skipped = 1; 2607 continue; 2608 } 2609 mem_cgroup_event(memcg, MEMCG_LOW); 2610 } 2611 2612 reclaimed = sc->nr_reclaimed; 2613 scanned = sc->nr_scanned; 2614 2615 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2616 node_lru_pages += lru_pages; 2617 2618 if (memcg) 2619 shrink_slab(sc->gfp_mask, pgdat->node_id, 2620 memcg, sc->nr_scanned - scanned, 2621 lru_pages); 2622 2623 /* Record the group's reclaim efficiency */ 2624 vmpressure(sc->gfp_mask, memcg, false, 2625 sc->nr_scanned - scanned, 2626 sc->nr_reclaimed - reclaimed); 2627 2628 /* 2629 * Direct reclaim and kswapd have to scan all memory 2630 * cgroups to fulfill the overall scan target for the 2631 * node. 2632 * 2633 * Limit reclaim, on the other hand, only cares about 2634 * nr_to_reclaim pages to be reclaimed and it will 2635 * retry with decreasing priority if one round over the 2636 * whole hierarchy is not sufficient. 2637 */ 2638 if (!global_reclaim(sc) && 2639 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2640 mem_cgroup_iter_break(root, memcg); 2641 break; 2642 } 2643 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2644 2645 /* 2646 * Shrink the slab caches in the same proportion that 2647 * the eligible LRU pages were scanned. 2648 */ 2649 if (global_reclaim(sc)) 2650 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL, 2651 sc->nr_scanned - nr_scanned, 2652 node_lru_pages); 2653 2654 if (reclaim_state) { 2655 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2656 reclaim_state->reclaimed_slab = 0; 2657 } 2658 2659 /* Record the subtree's reclaim efficiency */ 2660 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2661 sc->nr_scanned - nr_scanned, 2662 sc->nr_reclaimed - nr_reclaimed); 2663 2664 if (sc->nr_reclaimed - nr_reclaimed) 2665 reclaimable = true; 2666 2667 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2668 sc->nr_scanned - nr_scanned, sc)); 2669 2670 /* 2671 * Kswapd gives up on balancing particular nodes after too 2672 * many failures to reclaim anything from them and goes to 2673 * sleep. On reclaim progress, reset the failure counter. A 2674 * successful direct reclaim run will revive a dormant kswapd. 2675 */ 2676 if (reclaimable) 2677 pgdat->kswapd_failures = 0; 2678 2679 return reclaimable; 2680 } 2681 2682 /* 2683 * Returns true if compaction should go ahead for a costly-order request, or 2684 * the allocation would already succeed without compaction. Return false if we 2685 * should reclaim first. 2686 */ 2687 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2688 { 2689 unsigned long watermark; 2690 enum compact_result suitable; 2691 2692 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2693 if (suitable == COMPACT_SUCCESS) 2694 /* Allocation should succeed already. Don't reclaim. */ 2695 return true; 2696 if (suitable == COMPACT_SKIPPED) 2697 /* Compaction cannot yet proceed. Do reclaim. */ 2698 return false; 2699 2700 /* 2701 * Compaction is already possible, but it takes time to run and there 2702 * are potentially other callers using the pages just freed. So proceed 2703 * with reclaim to make a buffer of free pages available to give 2704 * compaction a reasonable chance of completing and allocating the page. 2705 * Note that we won't actually reclaim the whole buffer in one attempt 2706 * as the target watermark in should_continue_reclaim() is lower. But if 2707 * we are already above the high+gap watermark, don't reclaim at all. 2708 */ 2709 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2710 2711 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2712 } 2713 2714 /* 2715 * This is the direct reclaim path, for page-allocating processes. We only 2716 * try to reclaim pages from zones which will satisfy the caller's allocation 2717 * request. 2718 * 2719 * If a zone is deemed to be full of pinned pages then just give it a light 2720 * scan then give up on it. 2721 */ 2722 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2723 { 2724 struct zoneref *z; 2725 struct zone *zone; 2726 unsigned long nr_soft_reclaimed; 2727 unsigned long nr_soft_scanned; 2728 gfp_t orig_mask; 2729 pg_data_t *last_pgdat = NULL; 2730 2731 /* 2732 * If the number of buffer_heads in the machine exceeds the maximum 2733 * allowed level, force direct reclaim to scan the highmem zone as 2734 * highmem pages could be pinning lowmem pages storing buffer_heads 2735 */ 2736 orig_mask = sc->gfp_mask; 2737 if (buffer_heads_over_limit) { 2738 sc->gfp_mask |= __GFP_HIGHMEM; 2739 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2740 } 2741 2742 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2743 sc->reclaim_idx, sc->nodemask) { 2744 /* 2745 * Take care memory controller reclaiming has small influence 2746 * to global LRU. 2747 */ 2748 if (global_reclaim(sc)) { 2749 if (!cpuset_zone_allowed(zone, 2750 GFP_KERNEL | __GFP_HARDWALL)) 2751 continue; 2752 2753 /* 2754 * If we already have plenty of memory free for 2755 * compaction in this zone, don't free any more. 2756 * Even though compaction is invoked for any 2757 * non-zero order, only frequent costly order 2758 * reclamation is disruptive enough to become a 2759 * noticeable problem, like transparent huge 2760 * page allocations. 2761 */ 2762 if (IS_ENABLED(CONFIG_COMPACTION) && 2763 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2764 compaction_ready(zone, sc)) { 2765 sc->compaction_ready = true; 2766 continue; 2767 } 2768 2769 /* 2770 * Shrink each node in the zonelist once. If the 2771 * zonelist is ordered by zone (not the default) then a 2772 * node may be shrunk multiple times but in that case 2773 * the user prefers lower zones being preserved. 2774 */ 2775 if (zone->zone_pgdat == last_pgdat) 2776 continue; 2777 2778 /* 2779 * This steals pages from memory cgroups over softlimit 2780 * and returns the number of reclaimed pages and 2781 * scanned pages. This works for global memory pressure 2782 * and balancing, not for a memcg's limit. 2783 */ 2784 nr_soft_scanned = 0; 2785 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2786 sc->order, sc->gfp_mask, 2787 &nr_soft_scanned); 2788 sc->nr_reclaimed += nr_soft_reclaimed; 2789 sc->nr_scanned += nr_soft_scanned; 2790 /* need some check for avoid more shrink_zone() */ 2791 } 2792 2793 /* See comment about same check for global reclaim above */ 2794 if (zone->zone_pgdat == last_pgdat) 2795 continue; 2796 last_pgdat = zone->zone_pgdat; 2797 shrink_node(zone->zone_pgdat, sc); 2798 } 2799 2800 /* 2801 * Restore to original mask to avoid the impact on the caller if we 2802 * promoted it to __GFP_HIGHMEM. 2803 */ 2804 sc->gfp_mask = orig_mask; 2805 } 2806 2807 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) 2808 { 2809 struct mem_cgroup *memcg; 2810 2811 memcg = mem_cgroup_iter(root_memcg, NULL, NULL); 2812 do { 2813 unsigned long refaults; 2814 struct lruvec *lruvec; 2815 2816 if (memcg) 2817 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2818 else 2819 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2820 2821 lruvec = mem_cgroup_lruvec(pgdat, memcg); 2822 lruvec->refaults = refaults; 2823 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); 2824 } 2825 2826 /* 2827 * This is the main entry point to direct page reclaim. 2828 * 2829 * If a full scan of the inactive list fails to free enough memory then we 2830 * are "out of memory" and something needs to be killed. 2831 * 2832 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2833 * high - the zone may be full of dirty or under-writeback pages, which this 2834 * caller can't do much about. We kick the writeback threads and take explicit 2835 * naps in the hope that some of these pages can be written. But if the 2836 * allocating task holds filesystem locks which prevent writeout this might not 2837 * work, and the allocation attempt will fail. 2838 * 2839 * returns: 0, if no pages reclaimed 2840 * else, the number of pages reclaimed 2841 */ 2842 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2843 struct scan_control *sc) 2844 { 2845 int initial_priority = sc->priority; 2846 pg_data_t *last_pgdat; 2847 struct zoneref *z; 2848 struct zone *zone; 2849 retry: 2850 delayacct_freepages_start(); 2851 2852 if (global_reclaim(sc)) 2853 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 2854 2855 do { 2856 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2857 sc->priority); 2858 sc->nr_scanned = 0; 2859 shrink_zones(zonelist, sc); 2860 2861 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2862 break; 2863 2864 if (sc->compaction_ready) 2865 break; 2866 2867 /* 2868 * If we're getting trouble reclaiming, start doing 2869 * writepage even in laptop mode. 2870 */ 2871 if (sc->priority < DEF_PRIORITY - 2) 2872 sc->may_writepage = 1; 2873 } while (--sc->priority >= 0); 2874 2875 last_pgdat = NULL; 2876 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 2877 sc->nodemask) { 2878 if (zone->zone_pgdat == last_pgdat) 2879 continue; 2880 last_pgdat = zone->zone_pgdat; 2881 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 2882 } 2883 2884 delayacct_freepages_end(); 2885 2886 if (sc->nr_reclaimed) 2887 return sc->nr_reclaimed; 2888 2889 /* Aborted reclaim to try compaction? don't OOM, then */ 2890 if (sc->compaction_ready) 2891 return 1; 2892 2893 /* Untapped cgroup reserves? Don't OOM, retry. */ 2894 if (sc->memcg_low_skipped) { 2895 sc->priority = initial_priority; 2896 sc->memcg_low_reclaim = 1; 2897 sc->memcg_low_skipped = 0; 2898 goto retry; 2899 } 2900 2901 return 0; 2902 } 2903 2904 static bool allow_direct_reclaim(pg_data_t *pgdat) 2905 { 2906 struct zone *zone; 2907 unsigned long pfmemalloc_reserve = 0; 2908 unsigned long free_pages = 0; 2909 int i; 2910 bool wmark_ok; 2911 2912 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 2913 return true; 2914 2915 for (i = 0; i <= ZONE_NORMAL; i++) { 2916 zone = &pgdat->node_zones[i]; 2917 if (!managed_zone(zone)) 2918 continue; 2919 2920 if (!zone_reclaimable_pages(zone)) 2921 continue; 2922 2923 pfmemalloc_reserve += min_wmark_pages(zone); 2924 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2925 } 2926 2927 /* If there are no reserves (unexpected config) then do not throttle */ 2928 if (!pfmemalloc_reserve) 2929 return true; 2930 2931 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2932 2933 /* kswapd must be awake if processes are being throttled */ 2934 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2935 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 2936 (enum zone_type)ZONE_NORMAL); 2937 wake_up_interruptible(&pgdat->kswapd_wait); 2938 } 2939 2940 return wmark_ok; 2941 } 2942 2943 /* 2944 * Throttle direct reclaimers if backing storage is backed by the network 2945 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2946 * depleted. kswapd will continue to make progress and wake the processes 2947 * when the low watermark is reached. 2948 * 2949 * Returns true if a fatal signal was delivered during throttling. If this 2950 * happens, the page allocator should not consider triggering the OOM killer. 2951 */ 2952 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2953 nodemask_t *nodemask) 2954 { 2955 struct zoneref *z; 2956 struct zone *zone; 2957 pg_data_t *pgdat = NULL; 2958 2959 /* 2960 * Kernel threads should not be throttled as they may be indirectly 2961 * responsible for cleaning pages necessary for reclaim to make forward 2962 * progress. kjournald for example may enter direct reclaim while 2963 * committing a transaction where throttling it could forcing other 2964 * processes to block on log_wait_commit(). 2965 */ 2966 if (current->flags & PF_KTHREAD) 2967 goto out; 2968 2969 /* 2970 * If a fatal signal is pending, this process should not throttle. 2971 * It should return quickly so it can exit and free its memory 2972 */ 2973 if (fatal_signal_pending(current)) 2974 goto out; 2975 2976 /* 2977 * Check if the pfmemalloc reserves are ok by finding the first node 2978 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2979 * GFP_KERNEL will be required for allocating network buffers when 2980 * swapping over the network so ZONE_HIGHMEM is unusable. 2981 * 2982 * Throttling is based on the first usable node and throttled processes 2983 * wait on a queue until kswapd makes progress and wakes them. There 2984 * is an affinity then between processes waking up and where reclaim 2985 * progress has been made assuming the process wakes on the same node. 2986 * More importantly, processes running on remote nodes will not compete 2987 * for remote pfmemalloc reserves and processes on different nodes 2988 * should make reasonable progress. 2989 */ 2990 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2991 gfp_zone(gfp_mask), nodemask) { 2992 if (zone_idx(zone) > ZONE_NORMAL) 2993 continue; 2994 2995 /* Throttle based on the first usable node */ 2996 pgdat = zone->zone_pgdat; 2997 if (allow_direct_reclaim(pgdat)) 2998 goto out; 2999 break; 3000 } 3001 3002 /* If no zone was usable by the allocation flags then do not throttle */ 3003 if (!pgdat) 3004 goto out; 3005 3006 /* Account for the throttling */ 3007 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3008 3009 /* 3010 * If the caller cannot enter the filesystem, it's possible that it 3011 * is due to the caller holding an FS lock or performing a journal 3012 * transaction in the case of a filesystem like ext[3|4]. In this case, 3013 * it is not safe to block on pfmemalloc_wait as kswapd could be 3014 * blocked waiting on the same lock. Instead, throttle for up to a 3015 * second before continuing. 3016 */ 3017 if (!(gfp_mask & __GFP_FS)) { 3018 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3019 allow_direct_reclaim(pgdat), HZ); 3020 3021 goto check_pending; 3022 } 3023 3024 /* Throttle until kswapd wakes the process */ 3025 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3026 allow_direct_reclaim(pgdat)); 3027 3028 check_pending: 3029 if (fatal_signal_pending(current)) 3030 return true; 3031 3032 out: 3033 return false; 3034 } 3035 3036 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3037 gfp_t gfp_mask, nodemask_t *nodemask) 3038 { 3039 unsigned long nr_reclaimed; 3040 struct scan_control sc = { 3041 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3042 .gfp_mask = current_gfp_context(gfp_mask), 3043 .reclaim_idx = gfp_zone(gfp_mask), 3044 .order = order, 3045 .nodemask = nodemask, 3046 .priority = DEF_PRIORITY, 3047 .may_writepage = !laptop_mode, 3048 .may_unmap = 1, 3049 .may_swap = 1, 3050 }; 3051 3052 /* 3053 * Do not enter reclaim if fatal signal was delivered while throttled. 3054 * 1 is returned so that the page allocator does not OOM kill at this 3055 * point. 3056 */ 3057 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3058 return 1; 3059 3060 trace_mm_vmscan_direct_reclaim_begin(order, 3061 sc.may_writepage, 3062 sc.gfp_mask, 3063 sc.reclaim_idx); 3064 3065 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3066 3067 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3068 3069 return nr_reclaimed; 3070 } 3071 3072 #ifdef CONFIG_MEMCG 3073 3074 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3075 gfp_t gfp_mask, bool noswap, 3076 pg_data_t *pgdat, 3077 unsigned long *nr_scanned) 3078 { 3079 struct scan_control sc = { 3080 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3081 .target_mem_cgroup = memcg, 3082 .may_writepage = !laptop_mode, 3083 .may_unmap = 1, 3084 .reclaim_idx = MAX_NR_ZONES - 1, 3085 .may_swap = !noswap, 3086 }; 3087 unsigned long lru_pages; 3088 3089 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3090 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3091 3092 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3093 sc.may_writepage, 3094 sc.gfp_mask, 3095 sc.reclaim_idx); 3096 3097 /* 3098 * NOTE: Although we can get the priority field, using it 3099 * here is not a good idea, since it limits the pages we can scan. 3100 * if we don't reclaim here, the shrink_node from balance_pgdat 3101 * will pick up pages from other mem cgroup's as well. We hack 3102 * the priority and make it zero. 3103 */ 3104 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3105 3106 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3107 3108 *nr_scanned = sc.nr_scanned; 3109 return sc.nr_reclaimed; 3110 } 3111 3112 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3113 unsigned long nr_pages, 3114 gfp_t gfp_mask, 3115 bool may_swap) 3116 { 3117 struct zonelist *zonelist; 3118 unsigned long nr_reclaimed; 3119 int nid; 3120 unsigned int noreclaim_flag; 3121 struct scan_control sc = { 3122 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3123 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3124 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3125 .reclaim_idx = MAX_NR_ZONES - 1, 3126 .target_mem_cgroup = memcg, 3127 .priority = DEF_PRIORITY, 3128 .may_writepage = !laptop_mode, 3129 .may_unmap = 1, 3130 .may_swap = may_swap, 3131 }; 3132 3133 /* 3134 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3135 * take care of from where we get pages. So the node where we start the 3136 * scan does not need to be the current node. 3137 */ 3138 nid = mem_cgroup_select_victim_node(memcg); 3139 3140 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3141 3142 trace_mm_vmscan_memcg_reclaim_begin(0, 3143 sc.may_writepage, 3144 sc.gfp_mask, 3145 sc.reclaim_idx); 3146 3147 noreclaim_flag = memalloc_noreclaim_save(); 3148 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3149 memalloc_noreclaim_restore(noreclaim_flag); 3150 3151 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3152 3153 return nr_reclaimed; 3154 } 3155 #endif 3156 3157 static void age_active_anon(struct pglist_data *pgdat, 3158 struct scan_control *sc) 3159 { 3160 struct mem_cgroup *memcg; 3161 3162 if (!total_swap_pages) 3163 return; 3164 3165 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3166 do { 3167 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3168 3169 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 3170 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3171 sc, LRU_ACTIVE_ANON); 3172 3173 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3174 } while (memcg); 3175 } 3176 3177 /* 3178 * Returns true if there is an eligible zone balanced for the request order 3179 * and classzone_idx 3180 */ 3181 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3182 { 3183 int i; 3184 unsigned long mark = -1; 3185 struct zone *zone; 3186 3187 for (i = 0; i <= classzone_idx; i++) { 3188 zone = pgdat->node_zones + i; 3189 3190 if (!managed_zone(zone)) 3191 continue; 3192 3193 mark = high_wmark_pages(zone); 3194 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3195 return true; 3196 } 3197 3198 /* 3199 * If a node has no populated zone within classzone_idx, it does not 3200 * need balancing by definition. This can happen if a zone-restricted 3201 * allocation tries to wake a remote kswapd. 3202 */ 3203 if (mark == -1) 3204 return true; 3205 3206 return false; 3207 } 3208 3209 /* Clear pgdat state for congested, dirty or under writeback. */ 3210 static void clear_pgdat_congested(pg_data_t *pgdat) 3211 { 3212 clear_bit(PGDAT_CONGESTED, &pgdat->flags); 3213 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3214 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3215 } 3216 3217 /* 3218 * Prepare kswapd for sleeping. This verifies that there are no processes 3219 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3220 * 3221 * Returns true if kswapd is ready to sleep 3222 */ 3223 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3224 { 3225 /* 3226 * The throttled processes are normally woken up in balance_pgdat() as 3227 * soon as allow_direct_reclaim() is true. But there is a potential 3228 * race between when kswapd checks the watermarks and a process gets 3229 * throttled. There is also a potential race if processes get 3230 * throttled, kswapd wakes, a large process exits thereby balancing the 3231 * zones, which causes kswapd to exit balance_pgdat() before reaching 3232 * the wake up checks. If kswapd is going to sleep, no process should 3233 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3234 * the wake up is premature, processes will wake kswapd and get 3235 * throttled again. The difference from wake ups in balance_pgdat() is 3236 * that here we are under prepare_to_wait(). 3237 */ 3238 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3239 wake_up_all(&pgdat->pfmemalloc_wait); 3240 3241 /* Hopeless node, leave it to direct reclaim */ 3242 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3243 return true; 3244 3245 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3246 clear_pgdat_congested(pgdat); 3247 return true; 3248 } 3249 3250 return false; 3251 } 3252 3253 /* 3254 * kswapd shrinks a node of pages that are at or below the highest usable 3255 * zone that is currently unbalanced. 3256 * 3257 * Returns true if kswapd scanned at least the requested number of pages to 3258 * reclaim or if the lack of progress was due to pages under writeback. 3259 * This is used to determine if the scanning priority needs to be raised. 3260 */ 3261 static bool kswapd_shrink_node(pg_data_t *pgdat, 3262 struct scan_control *sc) 3263 { 3264 struct zone *zone; 3265 int z; 3266 3267 /* Reclaim a number of pages proportional to the number of zones */ 3268 sc->nr_to_reclaim = 0; 3269 for (z = 0; z <= sc->reclaim_idx; z++) { 3270 zone = pgdat->node_zones + z; 3271 if (!managed_zone(zone)) 3272 continue; 3273 3274 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3275 } 3276 3277 /* 3278 * Historically care was taken to put equal pressure on all zones but 3279 * now pressure is applied based on node LRU order. 3280 */ 3281 shrink_node(pgdat, sc); 3282 3283 /* 3284 * Fragmentation may mean that the system cannot be rebalanced for 3285 * high-order allocations. If twice the allocation size has been 3286 * reclaimed then recheck watermarks only at order-0 to prevent 3287 * excessive reclaim. Assume that a process requested a high-order 3288 * can direct reclaim/compact. 3289 */ 3290 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3291 sc->order = 0; 3292 3293 return sc->nr_scanned >= sc->nr_to_reclaim; 3294 } 3295 3296 /* 3297 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3298 * that are eligible for use by the caller until at least one zone is 3299 * balanced. 3300 * 3301 * Returns the order kswapd finished reclaiming at. 3302 * 3303 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3304 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3305 * found to have free_pages <= high_wmark_pages(zone), any page is that zone 3306 * or lower is eligible for reclaim until at least one usable zone is 3307 * balanced. 3308 */ 3309 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3310 { 3311 int i; 3312 unsigned long nr_soft_reclaimed; 3313 unsigned long nr_soft_scanned; 3314 struct zone *zone; 3315 struct scan_control sc = { 3316 .gfp_mask = GFP_KERNEL, 3317 .order = order, 3318 .priority = DEF_PRIORITY, 3319 .may_writepage = !laptop_mode, 3320 .may_unmap = 1, 3321 .may_swap = 1, 3322 }; 3323 count_vm_event(PAGEOUTRUN); 3324 3325 do { 3326 unsigned long nr_reclaimed = sc.nr_reclaimed; 3327 bool raise_priority = true; 3328 3329 sc.reclaim_idx = classzone_idx; 3330 3331 /* 3332 * If the number of buffer_heads exceeds the maximum allowed 3333 * then consider reclaiming from all zones. This has a dual 3334 * purpose -- on 64-bit systems it is expected that 3335 * buffer_heads are stripped during active rotation. On 32-bit 3336 * systems, highmem pages can pin lowmem memory and shrinking 3337 * buffers can relieve lowmem pressure. Reclaim may still not 3338 * go ahead if all eligible zones for the original allocation 3339 * request are balanced to avoid excessive reclaim from kswapd. 3340 */ 3341 if (buffer_heads_over_limit) { 3342 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3343 zone = pgdat->node_zones + i; 3344 if (!managed_zone(zone)) 3345 continue; 3346 3347 sc.reclaim_idx = i; 3348 break; 3349 } 3350 } 3351 3352 /* 3353 * Only reclaim if there are no eligible zones. Note that 3354 * sc.reclaim_idx is not used as buffer_heads_over_limit may 3355 * have adjusted it. 3356 */ 3357 if (pgdat_balanced(pgdat, sc.order, classzone_idx)) 3358 goto out; 3359 3360 /* 3361 * Do some background aging of the anon list, to give 3362 * pages a chance to be referenced before reclaiming. All 3363 * pages are rotated regardless of classzone as this is 3364 * about consistent aging. 3365 */ 3366 age_active_anon(pgdat, &sc); 3367 3368 /* 3369 * If we're getting trouble reclaiming, start doing writepage 3370 * even in laptop mode. 3371 */ 3372 if (sc.priority < DEF_PRIORITY - 2) 3373 sc.may_writepage = 1; 3374 3375 /* Call soft limit reclaim before calling shrink_node. */ 3376 sc.nr_scanned = 0; 3377 nr_soft_scanned = 0; 3378 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3379 sc.gfp_mask, &nr_soft_scanned); 3380 sc.nr_reclaimed += nr_soft_reclaimed; 3381 3382 /* 3383 * There should be no need to raise the scanning priority if 3384 * enough pages are already being scanned that that high 3385 * watermark would be met at 100% efficiency. 3386 */ 3387 if (kswapd_shrink_node(pgdat, &sc)) 3388 raise_priority = false; 3389 3390 /* 3391 * If the low watermark is met there is no need for processes 3392 * to be throttled on pfmemalloc_wait as they should not be 3393 * able to safely make forward progress. Wake them 3394 */ 3395 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3396 allow_direct_reclaim(pgdat)) 3397 wake_up_all(&pgdat->pfmemalloc_wait); 3398 3399 /* Check if kswapd should be suspending */ 3400 if (try_to_freeze() || kthread_should_stop()) 3401 break; 3402 3403 /* 3404 * Raise priority if scanning rate is too low or there was no 3405 * progress in reclaiming pages 3406 */ 3407 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3408 if (raise_priority || !nr_reclaimed) 3409 sc.priority--; 3410 } while (sc.priority >= 1); 3411 3412 if (!sc.nr_reclaimed) 3413 pgdat->kswapd_failures++; 3414 3415 out: 3416 snapshot_refaults(NULL, pgdat); 3417 /* 3418 * Return the order kswapd stopped reclaiming at as 3419 * prepare_kswapd_sleep() takes it into account. If another caller 3420 * entered the allocator slow path while kswapd was awake, order will 3421 * remain at the higher level. 3422 */ 3423 return sc.order; 3424 } 3425 3426 /* 3427 * pgdat->kswapd_classzone_idx is the highest zone index that a recent 3428 * allocation request woke kswapd for. When kswapd has not woken recently, 3429 * the value is MAX_NR_ZONES which is not a valid index. This compares a 3430 * given classzone and returns it or the highest classzone index kswapd 3431 * was recently woke for. 3432 */ 3433 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3434 enum zone_type classzone_idx) 3435 { 3436 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3437 return classzone_idx; 3438 3439 return max(pgdat->kswapd_classzone_idx, classzone_idx); 3440 } 3441 3442 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3443 unsigned int classzone_idx) 3444 { 3445 long remaining = 0; 3446 DEFINE_WAIT(wait); 3447 3448 if (freezing(current) || kthread_should_stop()) 3449 return; 3450 3451 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3452 3453 /* 3454 * Try to sleep for a short interval. Note that kcompactd will only be 3455 * woken if it is possible to sleep for a short interval. This is 3456 * deliberate on the assumption that if reclaim cannot keep an 3457 * eligible zone balanced that it's also unlikely that compaction will 3458 * succeed. 3459 */ 3460 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3461 /* 3462 * Compaction records what page blocks it recently failed to 3463 * isolate pages from and skips them in the future scanning. 3464 * When kswapd is going to sleep, it is reasonable to assume 3465 * that pages and compaction may succeed so reset the cache. 3466 */ 3467 reset_isolation_suitable(pgdat); 3468 3469 /* 3470 * We have freed the memory, now we should compact it to make 3471 * allocation of the requested order possible. 3472 */ 3473 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3474 3475 remaining = schedule_timeout(HZ/10); 3476 3477 /* 3478 * If woken prematurely then reset kswapd_classzone_idx and 3479 * order. The values will either be from a wakeup request or 3480 * the previous request that slept prematurely. 3481 */ 3482 if (remaining) { 3483 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3484 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3485 } 3486 3487 finish_wait(&pgdat->kswapd_wait, &wait); 3488 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3489 } 3490 3491 /* 3492 * After a short sleep, check if it was a premature sleep. If not, then 3493 * go fully to sleep until explicitly woken up. 3494 */ 3495 if (!remaining && 3496 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3497 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3498 3499 /* 3500 * vmstat counters are not perfectly accurate and the estimated 3501 * value for counters such as NR_FREE_PAGES can deviate from the 3502 * true value by nr_online_cpus * threshold. To avoid the zone 3503 * watermarks being breached while under pressure, we reduce the 3504 * per-cpu vmstat threshold while kswapd is awake and restore 3505 * them before going back to sleep. 3506 */ 3507 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3508 3509 if (!kthread_should_stop()) 3510 schedule(); 3511 3512 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3513 } else { 3514 if (remaining) 3515 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3516 else 3517 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3518 } 3519 finish_wait(&pgdat->kswapd_wait, &wait); 3520 } 3521 3522 /* 3523 * The background pageout daemon, started as a kernel thread 3524 * from the init process. 3525 * 3526 * This basically trickles out pages so that we have _some_ 3527 * free memory available even if there is no other activity 3528 * that frees anything up. This is needed for things like routing 3529 * etc, where we otherwise might have all activity going on in 3530 * asynchronous contexts that cannot page things out. 3531 * 3532 * If there are applications that are active memory-allocators 3533 * (most normal use), this basically shouldn't matter. 3534 */ 3535 static int kswapd(void *p) 3536 { 3537 unsigned int alloc_order, reclaim_order; 3538 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3539 pg_data_t *pgdat = (pg_data_t*)p; 3540 struct task_struct *tsk = current; 3541 3542 struct reclaim_state reclaim_state = { 3543 .reclaimed_slab = 0, 3544 }; 3545 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3546 3547 if (!cpumask_empty(cpumask)) 3548 set_cpus_allowed_ptr(tsk, cpumask); 3549 current->reclaim_state = &reclaim_state; 3550 3551 /* 3552 * Tell the memory management that we're a "memory allocator", 3553 * and that if we need more memory we should get access to it 3554 * regardless (see "__alloc_pages()"). "kswapd" should 3555 * never get caught in the normal page freeing logic. 3556 * 3557 * (Kswapd normally doesn't need memory anyway, but sometimes 3558 * you need a small amount of memory in order to be able to 3559 * page out something else, and this flag essentially protects 3560 * us from recursively trying to free more memory as we're 3561 * trying to free the first piece of memory in the first place). 3562 */ 3563 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3564 set_freezable(); 3565 3566 pgdat->kswapd_order = 0; 3567 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3568 for ( ; ; ) { 3569 bool ret; 3570 3571 alloc_order = reclaim_order = pgdat->kswapd_order; 3572 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3573 3574 kswapd_try_sleep: 3575 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3576 classzone_idx); 3577 3578 /* Read the new order and classzone_idx */ 3579 alloc_order = reclaim_order = pgdat->kswapd_order; 3580 classzone_idx = kswapd_classzone_idx(pgdat, 0); 3581 pgdat->kswapd_order = 0; 3582 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3583 3584 ret = try_to_freeze(); 3585 if (kthread_should_stop()) 3586 break; 3587 3588 /* 3589 * We can speed up thawing tasks if we don't call balance_pgdat 3590 * after returning from the refrigerator 3591 */ 3592 if (ret) 3593 continue; 3594 3595 /* 3596 * Reclaim begins at the requested order but if a high-order 3597 * reclaim fails then kswapd falls back to reclaiming for 3598 * order-0. If that happens, kswapd will consider sleeping 3599 * for the order it finished reclaiming at (reclaim_order) 3600 * but kcompactd is woken to compact for the original 3601 * request (alloc_order). 3602 */ 3603 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3604 alloc_order); 3605 fs_reclaim_acquire(GFP_KERNEL); 3606 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3607 fs_reclaim_release(GFP_KERNEL); 3608 if (reclaim_order < alloc_order) 3609 goto kswapd_try_sleep; 3610 } 3611 3612 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3613 current->reclaim_state = NULL; 3614 3615 return 0; 3616 } 3617 3618 /* 3619 * A zone is low on free memory, so wake its kswapd task to service it. 3620 */ 3621 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3622 { 3623 pg_data_t *pgdat; 3624 3625 if (!managed_zone(zone)) 3626 return; 3627 3628 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3629 return; 3630 pgdat = zone->zone_pgdat; 3631 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, 3632 classzone_idx); 3633 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3634 if (!waitqueue_active(&pgdat->kswapd_wait)) 3635 return; 3636 3637 /* Hopeless node, leave it to direct reclaim */ 3638 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3639 return; 3640 3641 if (pgdat_balanced(pgdat, order, classzone_idx)) 3642 return; 3643 3644 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order); 3645 wake_up_interruptible(&pgdat->kswapd_wait); 3646 } 3647 3648 #ifdef CONFIG_HIBERNATION 3649 /* 3650 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3651 * freed pages. 3652 * 3653 * Rather than trying to age LRUs the aim is to preserve the overall 3654 * LRU order by reclaiming preferentially 3655 * inactive > active > active referenced > active mapped 3656 */ 3657 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3658 { 3659 struct reclaim_state reclaim_state; 3660 struct scan_control sc = { 3661 .nr_to_reclaim = nr_to_reclaim, 3662 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3663 .reclaim_idx = MAX_NR_ZONES - 1, 3664 .priority = DEF_PRIORITY, 3665 .may_writepage = 1, 3666 .may_unmap = 1, 3667 .may_swap = 1, 3668 .hibernation_mode = 1, 3669 }; 3670 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3671 struct task_struct *p = current; 3672 unsigned long nr_reclaimed; 3673 unsigned int noreclaim_flag; 3674 3675 noreclaim_flag = memalloc_noreclaim_save(); 3676 fs_reclaim_acquire(sc.gfp_mask); 3677 reclaim_state.reclaimed_slab = 0; 3678 p->reclaim_state = &reclaim_state; 3679 3680 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3681 3682 p->reclaim_state = NULL; 3683 fs_reclaim_release(sc.gfp_mask); 3684 memalloc_noreclaim_restore(noreclaim_flag); 3685 3686 return nr_reclaimed; 3687 } 3688 #endif /* CONFIG_HIBERNATION */ 3689 3690 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3691 not required for correctness. So if the last cpu in a node goes 3692 away, we get changed to run anywhere: as the first one comes back, 3693 restore their cpu bindings. */ 3694 static int kswapd_cpu_online(unsigned int cpu) 3695 { 3696 int nid; 3697 3698 for_each_node_state(nid, N_MEMORY) { 3699 pg_data_t *pgdat = NODE_DATA(nid); 3700 const struct cpumask *mask; 3701 3702 mask = cpumask_of_node(pgdat->node_id); 3703 3704 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3705 /* One of our CPUs online: restore mask */ 3706 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3707 } 3708 return 0; 3709 } 3710 3711 /* 3712 * This kswapd start function will be called by init and node-hot-add. 3713 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3714 */ 3715 int kswapd_run(int nid) 3716 { 3717 pg_data_t *pgdat = NODE_DATA(nid); 3718 int ret = 0; 3719 3720 if (pgdat->kswapd) 3721 return 0; 3722 3723 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3724 if (IS_ERR(pgdat->kswapd)) { 3725 /* failure at boot is fatal */ 3726 BUG_ON(system_state < SYSTEM_RUNNING); 3727 pr_err("Failed to start kswapd on node %d\n", nid); 3728 ret = PTR_ERR(pgdat->kswapd); 3729 pgdat->kswapd = NULL; 3730 } 3731 return ret; 3732 } 3733 3734 /* 3735 * Called by memory hotplug when all memory in a node is offlined. Caller must 3736 * hold mem_hotplug_begin/end(). 3737 */ 3738 void kswapd_stop(int nid) 3739 { 3740 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3741 3742 if (kswapd) { 3743 kthread_stop(kswapd); 3744 NODE_DATA(nid)->kswapd = NULL; 3745 } 3746 } 3747 3748 static int __init kswapd_init(void) 3749 { 3750 int nid, ret; 3751 3752 swap_setup(); 3753 for_each_node_state(nid, N_MEMORY) 3754 kswapd_run(nid); 3755 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3756 "mm/vmscan:online", kswapd_cpu_online, 3757 NULL); 3758 WARN_ON(ret < 0); 3759 return 0; 3760 } 3761 3762 module_init(kswapd_init) 3763 3764 #ifdef CONFIG_NUMA 3765 /* 3766 * Node reclaim mode 3767 * 3768 * If non-zero call node_reclaim when the number of free pages falls below 3769 * the watermarks. 3770 */ 3771 int node_reclaim_mode __read_mostly; 3772 3773 #define RECLAIM_OFF 0 3774 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3775 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3776 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3777 3778 /* 3779 * Priority for NODE_RECLAIM. This determines the fraction of pages 3780 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3781 * a zone. 3782 */ 3783 #define NODE_RECLAIM_PRIORITY 4 3784 3785 /* 3786 * Percentage of pages in a zone that must be unmapped for node_reclaim to 3787 * occur. 3788 */ 3789 int sysctl_min_unmapped_ratio = 1; 3790 3791 /* 3792 * If the number of slab pages in a zone grows beyond this percentage then 3793 * slab reclaim needs to occur. 3794 */ 3795 int sysctl_min_slab_ratio = 5; 3796 3797 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 3798 { 3799 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 3800 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 3801 node_page_state(pgdat, NR_ACTIVE_FILE); 3802 3803 /* 3804 * It's possible for there to be more file mapped pages than 3805 * accounted for by the pages on the file LRU lists because 3806 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3807 */ 3808 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3809 } 3810 3811 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3812 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 3813 { 3814 unsigned long nr_pagecache_reclaimable; 3815 unsigned long delta = 0; 3816 3817 /* 3818 * If RECLAIM_UNMAP is set, then all file pages are considered 3819 * potentially reclaimable. Otherwise, we have to worry about 3820 * pages like swapcache and node_unmapped_file_pages() provides 3821 * a better estimate 3822 */ 3823 if (node_reclaim_mode & RECLAIM_UNMAP) 3824 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 3825 else 3826 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 3827 3828 /* If we can't clean pages, remove dirty pages from consideration */ 3829 if (!(node_reclaim_mode & RECLAIM_WRITE)) 3830 delta += node_page_state(pgdat, NR_FILE_DIRTY); 3831 3832 /* Watch for any possible underflows due to delta */ 3833 if (unlikely(delta > nr_pagecache_reclaimable)) 3834 delta = nr_pagecache_reclaimable; 3835 3836 return nr_pagecache_reclaimable - delta; 3837 } 3838 3839 /* 3840 * Try to free up some pages from this node through reclaim. 3841 */ 3842 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3843 { 3844 /* Minimum pages needed in order to stay on node */ 3845 const unsigned long nr_pages = 1 << order; 3846 struct task_struct *p = current; 3847 struct reclaim_state reclaim_state; 3848 unsigned int noreclaim_flag; 3849 struct scan_control sc = { 3850 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3851 .gfp_mask = current_gfp_context(gfp_mask), 3852 .order = order, 3853 .priority = NODE_RECLAIM_PRIORITY, 3854 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 3855 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 3856 .may_swap = 1, 3857 .reclaim_idx = gfp_zone(gfp_mask), 3858 }; 3859 3860 cond_resched(); 3861 /* 3862 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3863 * and we also need to be able to write out pages for RECLAIM_WRITE 3864 * and RECLAIM_UNMAP. 3865 */ 3866 noreclaim_flag = memalloc_noreclaim_save(); 3867 p->flags |= PF_SWAPWRITE; 3868 fs_reclaim_acquire(sc.gfp_mask); 3869 reclaim_state.reclaimed_slab = 0; 3870 p->reclaim_state = &reclaim_state; 3871 3872 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 3873 /* 3874 * Free memory by calling shrink zone with increasing 3875 * priorities until we have enough memory freed. 3876 */ 3877 do { 3878 shrink_node(pgdat, &sc); 3879 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3880 } 3881 3882 p->reclaim_state = NULL; 3883 fs_reclaim_release(gfp_mask); 3884 current->flags &= ~PF_SWAPWRITE; 3885 memalloc_noreclaim_restore(noreclaim_flag); 3886 return sc.nr_reclaimed >= nr_pages; 3887 } 3888 3889 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3890 { 3891 int ret; 3892 3893 /* 3894 * Node reclaim reclaims unmapped file backed pages and 3895 * slab pages if we are over the defined limits. 3896 * 3897 * A small portion of unmapped file backed pages is needed for 3898 * file I/O otherwise pages read by file I/O will be immediately 3899 * thrown out if the node is overallocated. So we do not reclaim 3900 * if less than a specified percentage of the node is used by 3901 * unmapped file backed pages. 3902 */ 3903 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 3904 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 3905 return NODE_RECLAIM_FULL; 3906 3907 /* 3908 * Do not scan if the allocation should not be delayed. 3909 */ 3910 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 3911 return NODE_RECLAIM_NOSCAN; 3912 3913 /* 3914 * Only run node reclaim on the local node or on nodes that do not 3915 * have associated processors. This will favor the local processor 3916 * over remote processors and spread off node memory allocations 3917 * as wide as possible. 3918 */ 3919 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 3920 return NODE_RECLAIM_NOSCAN; 3921 3922 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 3923 return NODE_RECLAIM_NOSCAN; 3924 3925 ret = __node_reclaim(pgdat, gfp_mask, order); 3926 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 3927 3928 if (!ret) 3929 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3930 3931 return ret; 3932 } 3933 #endif 3934 3935 /* 3936 * page_evictable - test whether a page is evictable 3937 * @page: the page to test 3938 * 3939 * Test whether page is evictable--i.e., should be placed on active/inactive 3940 * lists vs unevictable list. 3941 * 3942 * Reasons page might not be evictable: 3943 * (1) page's mapping marked unevictable 3944 * (2) page is part of an mlocked VMA 3945 * 3946 */ 3947 int page_evictable(struct page *page) 3948 { 3949 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3950 } 3951 3952 #ifdef CONFIG_SHMEM 3953 /** 3954 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3955 * @pages: array of pages to check 3956 * @nr_pages: number of pages to check 3957 * 3958 * Checks pages for evictability and moves them to the appropriate lru list. 3959 * 3960 * This function is only used for SysV IPC SHM_UNLOCK. 3961 */ 3962 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3963 { 3964 struct lruvec *lruvec; 3965 struct pglist_data *pgdat = NULL; 3966 int pgscanned = 0; 3967 int pgrescued = 0; 3968 int i; 3969 3970 for (i = 0; i < nr_pages; i++) { 3971 struct page *page = pages[i]; 3972 struct pglist_data *pagepgdat = page_pgdat(page); 3973 3974 pgscanned++; 3975 if (pagepgdat != pgdat) { 3976 if (pgdat) 3977 spin_unlock_irq(&pgdat->lru_lock); 3978 pgdat = pagepgdat; 3979 spin_lock_irq(&pgdat->lru_lock); 3980 } 3981 lruvec = mem_cgroup_page_lruvec(page, pgdat); 3982 3983 if (!PageLRU(page) || !PageUnevictable(page)) 3984 continue; 3985 3986 if (page_evictable(page)) { 3987 enum lru_list lru = page_lru_base_type(page); 3988 3989 VM_BUG_ON_PAGE(PageActive(page), page); 3990 ClearPageUnevictable(page); 3991 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3992 add_page_to_lru_list(page, lruvec, lru); 3993 pgrescued++; 3994 } 3995 } 3996 3997 if (pgdat) { 3998 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3999 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4000 spin_unlock_irq(&pgdat->lru_lock); 4001 } 4002 } 4003 #endif /* CONFIG_SHMEM */ 4004