1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/migrate.h> 43 #include <linux/delayacct.h> 44 #include <linux/sysctl.h> 45 #include <linux/memory-tiers.h> 46 #include <linux/oom.h> 47 #include <linux/pagevec.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 #include <linux/psi.h> 52 #include <linux/pagewalk.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/ctype.h> 55 #include <linux/debugfs.h> 56 #include <linux/khugepaged.h> 57 #include <linux/rculist_nulls.h> 58 #include <linux/random.h> 59 60 #include <asm/tlbflush.h> 61 #include <asm/div64.h> 62 63 #include <linux/swapops.h> 64 #include <linux/balloon_compaction.h> 65 #include <linux/sched/sysctl.h> 66 67 #include "internal.h" 68 #include "swap.h" 69 70 #define CREATE_TRACE_POINTS 71 #include <trace/events/vmscan.h> 72 73 struct scan_control { 74 /* How many pages shrink_list() should reclaim */ 75 unsigned long nr_to_reclaim; 76 77 /* 78 * Nodemask of nodes allowed by the caller. If NULL, all nodes 79 * are scanned. 80 */ 81 nodemask_t *nodemask; 82 83 /* 84 * The memory cgroup that hit its limit and as a result is the 85 * primary target of this reclaim invocation. 86 */ 87 struct mem_cgroup *target_mem_cgroup; 88 89 /* 90 * Scan pressure balancing between anon and file LRUs 91 */ 92 unsigned long anon_cost; 93 unsigned long file_cost; 94 95 /* Can active folios be deactivated as part of reclaim? */ 96 #define DEACTIVATE_ANON 1 97 #define DEACTIVATE_FILE 2 98 unsigned int may_deactivate:2; 99 unsigned int force_deactivate:1; 100 unsigned int skipped_deactivate:1; 101 102 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 103 unsigned int may_writepage:1; 104 105 /* Can mapped folios be reclaimed? */ 106 unsigned int may_unmap:1; 107 108 /* Can folios be swapped as part of reclaim? */ 109 unsigned int may_swap:1; 110 111 /* Not allow cache_trim_mode to be turned on as part of reclaim? */ 112 unsigned int no_cache_trim_mode:1; 113 114 /* Has cache_trim_mode failed at least once? */ 115 unsigned int cache_trim_mode_failed:1; 116 117 /* Proactive reclaim invoked by userspace through memory.reclaim */ 118 unsigned int proactive:1; 119 120 /* 121 * Cgroup memory below memory.low is protected as long as we 122 * don't threaten to OOM. If any cgroup is reclaimed at 123 * reduced force or passed over entirely due to its memory.low 124 * setting (memcg_low_skipped), and nothing is reclaimed as a 125 * result, then go back for one more cycle that reclaims the protected 126 * memory (memcg_low_reclaim) to avert OOM. 127 */ 128 unsigned int memcg_low_reclaim:1; 129 unsigned int memcg_low_skipped:1; 130 131 unsigned int hibernation_mode:1; 132 133 /* One of the zones is ready for compaction */ 134 unsigned int compaction_ready:1; 135 136 /* There is easily reclaimable cold cache in the current node */ 137 unsigned int cache_trim_mode:1; 138 139 /* The file folios on the current node are dangerously low */ 140 unsigned int file_is_tiny:1; 141 142 /* Always discard instead of demoting to lower tier memory */ 143 unsigned int no_demotion:1; 144 145 /* Allocation order */ 146 s8 order; 147 148 /* Scan (total_size >> priority) pages at once */ 149 s8 priority; 150 151 /* The highest zone to isolate folios for reclaim from */ 152 s8 reclaim_idx; 153 154 /* This context's GFP mask */ 155 gfp_t gfp_mask; 156 157 /* Incremented by the number of inactive pages that were scanned */ 158 unsigned long nr_scanned; 159 160 /* Number of pages freed so far during a call to shrink_zones() */ 161 unsigned long nr_reclaimed; 162 163 struct { 164 unsigned int dirty; 165 unsigned int unqueued_dirty; 166 unsigned int congested; 167 unsigned int writeback; 168 unsigned int immediate; 169 unsigned int file_taken; 170 unsigned int taken; 171 } nr; 172 173 /* for recording the reclaimed slab by now */ 174 struct reclaim_state reclaim_state; 175 }; 176 177 #ifdef ARCH_HAS_PREFETCHW 178 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 179 do { \ 180 if ((_folio)->lru.prev != _base) { \ 181 struct folio *prev; \ 182 \ 183 prev = lru_to_folio(&(_folio->lru)); \ 184 prefetchw(&prev->_field); \ 185 } \ 186 } while (0) 187 #else 188 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 189 #endif 190 191 /* 192 * From 0 .. 200. Higher means more swappy. 193 */ 194 int vm_swappiness = 60; 195 196 #ifdef CONFIG_MEMCG 197 198 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */ 199 static bool cgroup_reclaim(struct scan_control *sc) 200 { 201 return sc->target_mem_cgroup; 202 } 203 204 /* 205 * Returns true for reclaim on the root cgroup. This is true for direct 206 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup. 207 */ 208 static bool root_reclaim(struct scan_control *sc) 209 { 210 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 211 } 212 213 /** 214 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 215 * @sc: scan_control in question 216 * 217 * The normal page dirty throttling mechanism in balance_dirty_pages() is 218 * completely broken with the legacy memcg and direct stalling in 219 * shrink_folio_list() is used for throttling instead, which lacks all the 220 * niceties such as fairness, adaptive pausing, bandwidth proportional 221 * allocation and configurability. 222 * 223 * This function tests whether the vmscan currently in progress can assume 224 * that the normal dirty throttling mechanism is operational. 225 */ 226 static bool writeback_throttling_sane(struct scan_control *sc) 227 { 228 if (!cgroup_reclaim(sc)) 229 return true; 230 #ifdef CONFIG_CGROUP_WRITEBACK 231 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 232 return true; 233 #endif 234 return false; 235 } 236 #else 237 static bool cgroup_reclaim(struct scan_control *sc) 238 { 239 return false; 240 } 241 242 static bool root_reclaim(struct scan_control *sc) 243 { 244 return true; 245 } 246 247 static bool writeback_throttling_sane(struct scan_control *sc) 248 { 249 return true; 250 } 251 #endif 252 253 static void set_task_reclaim_state(struct task_struct *task, 254 struct reclaim_state *rs) 255 { 256 /* Check for an overwrite */ 257 WARN_ON_ONCE(rs && task->reclaim_state); 258 259 /* Check for the nulling of an already-nulled member */ 260 WARN_ON_ONCE(!rs && !task->reclaim_state); 261 262 task->reclaim_state = rs; 263 } 264 265 /* 266 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to 267 * scan_control->nr_reclaimed. 268 */ 269 static void flush_reclaim_state(struct scan_control *sc) 270 { 271 /* 272 * Currently, reclaim_state->reclaimed includes three types of pages 273 * freed outside of vmscan: 274 * (1) Slab pages. 275 * (2) Clean file pages from pruned inodes (on highmem systems). 276 * (3) XFS freed buffer pages. 277 * 278 * For all of these cases, we cannot universally link the pages to a 279 * single memcg. For example, a memcg-aware shrinker can free one object 280 * charged to the target memcg, causing an entire page to be freed. 281 * If we count the entire page as reclaimed from the memcg, we end up 282 * overestimating the reclaimed amount (potentially under-reclaiming). 283 * 284 * Only count such pages for global reclaim to prevent under-reclaiming 285 * from the target memcg; preventing unnecessary retries during memcg 286 * charging and false positives from proactive reclaim. 287 * 288 * For uncommon cases where the freed pages were actually mostly 289 * charged to the target memcg, we end up underestimating the reclaimed 290 * amount. This should be fine. The freed pages will be uncharged 291 * anyway, even if they are not counted here properly, and we will be 292 * able to make forward progress in charging (which is usually in a 293 * retry loop). 294 * 295 * We can go one step further, and report the uncharged objcg pages in 296 * memcg reclaim, to make reporting more accurate and reduce 297 * underestimation, but it's probably not worth the complexity for now. 298 */ 299 if (current->reclaim_state && root_reclaim(sc)) { 300 sc->nr_reclaimed += current->reclaim_state->reclaimed; 301 current->reclaim_state->reclaimed = 0; 302 } 303 } 304 305 static bool can_demote(int nid, struct scan_control *sc) 306 { 307 if (!numa_demotion_enabled) 308 return false; 309 if (sc && sc->no_demotion) 310 return false; 311 if (next_demotion_node(nid) == NUMA_NO_NODE) 312 return false; 313 314 return true; 315 } 316 317 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 318 int nid, 319 struct scan_control *sc) 320 { 321 if (memcg == NULL) { 322 /* 323 * For non-memcg reclaim, is there 324 * space in any swap device? 325 */ 326 if (get_nr_swap_pages() > 0) 327 return true; 328 } else { 329 /* Is the memcg below its swap limit? */ 330 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 331 return true; 332 } 333 334 /* 335 * The page can not be swapped. 336 * 337 * Can it be reclaimed from this node via demotion? 338 */ 339 return can_demote(nid, sc); 340 } 341 342 /* 343 * This misses isolated folios which are not accounted for to save counters. 344 * As the data only determines if reclaim or compaction continues, it is 345 * not expected that isolated folios will be a dominating factor. 346 */ 347 unsigned long zone_reclaimable_pages(struct zone *zone) 348 { 349 unsigned long nr; 350 351 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 352 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 353 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 354 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 355 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 356 357 return nr; 358 } 359 360 /** 361 * lruvec_lru_size - Returns the number of pages on the given LRU list. 362 * @lruvec: lru vector 363 * @lru: lru to use 364 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 365 */ 366 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 367 int zone_idx) 368 { 369 unsigned long size = 0; 370 int zid; 371 372 for (zid = 0; zid <= zone_idx; zid++) { 373 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 374 375 if (!managed_zone(zone)) 376 continue; 377 378 if (!mem_cgroup_disabled()) 379 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 380 else 381 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 382 } 383 return size; 384 } 385 386 static unsigned long drop_slab_node(int nid) 387 { 388 unsigned long freed = 0; 389 struct mem_cgroup *memcg = NULL; 390 391 memcg = mem_cgroup_iter(NULL, NULL, NULL); 392 do { 393 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 394 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 395 396 return freed; 397 } 398 399 void drop_slab(void) 400 { 401 int nid; 402 int shift = 0; 403 unsigned long freed; 404 405 do { 406 freed = 0; 407 for_each_online_node(nid) { 408 if (fatal_signal_pending(current)) 409 return; 410 411 freed += drop_slab_node(nid); 412 } 413 } while ((freed >> shift++) > 1); 414 } 415 416 static int reclaimer_offset(void) 417 { 418 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 419 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD); 420 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 421 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD); 422 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 423 PGSCAN_DIRECT - PGSCAN_KSWAPD); 424 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 425 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD); 426 427 if (current_is_kswapd()) 428 return 0; 429 if (current_is_khugepaged()) 430 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 431 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 432 } 433 434 static inline int is_page_cache_freeable(struct folio *folio) 435 { 436 /* 437 * A freeable page cache folio is referenced only by the caller 438 * that isolated the folio, the page cache and optional filesystem 439 * private data at folio->private. 440 */ 441 return folio_ref_count(folio) - folio_test_private(folio) == 442 1 + folio_nr_pages(folio); 443 } 444 445 /* 446 * We detected a synchronous write error writing a folio out. Probably 447 * -ENOSPC. We need to propagate that into the address_space for a subsequent 448 * fsync(), msync() or close(). 449 * 450 * The tricky part is that after writepage we cannot touch the mapping: nothing 451 * prevents it from being freed up. But we have a ref on the folio and once 452 * that folio is locked, the mapping is pinned. 453 * 454 * We're allowed to run sleeping folio_lock() here because we know the caller has 455 * __GFP_FS. 456 */ 457 static void handle_write_error(struct address_space *mapping, 458 struct folio *folio, int error) 459 { 460 folio_lock(folio); 461 if (folio_mapping(folio) == mapping) 462 mapping_set_error(mapping, error); 463 folio_unlock(folio); 464 } 465 466 static bool skip_throttle_noprogress(pg_data_t *pgdat) 467 { 468 int reclaimable = 0, write_pending = 0; 469 int i; 470 471 /* 472 * If kswapd is disabled, reschedule if necessary but do not 473 * throttle as the system is likely near OOM. 474 */ 475 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 476 return true; 477 478 /* 479 * If there are a lot of dirty/writeback folios then do not 480 * throttle as throttling will occur when the folios cycle 481 * towards the end of the LRU if still under writeback. 482 */ 483 for (i = 0; i < MAX_NR_ZONES; i++) { 484 struct zone *zone = pgdat->node_zones + i; 485 486 if (!managed_zone(zone)) 487 continue; 488 489 reclaimable += zone_reclaimable_pages(zone); 490 write_pending += zone_page_state_snapshot(zone, 491 NR_ZONE_WRITE_PENDING); 492 } 493 if (2 * write_pending <= reclaimable) 494 return true; 495 496 return false; 497 } 498 499 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 500 { 501 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 502 long timeout, ret; 503 DEFINE_WAIT(wait); 504 505 /* 506 * Do not throttle user workers, kthreads other than kswapd or 507 * workqueues. They may be required for reclaim to make 508 * forward progress (e.g. journalling workqueues or kthreads). 509 */ 510 if (!current_is_kswapd() && 511 current->flags & (PF_USER_WORKER|PF_KTHREAD)) { 512 cond_resched(); 513 return; 514 } 515 516 /* 517 * These figures are pulled out of thin air. 518 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 519 * parallel reclaimers which is a short-lived event so the timeout is 520 * short. Failing to make progress or waiting on writeback are 521 * potentially long-lived events so use a longer timeout. This is shaky 522 * logic as a failure to make progress could be due to anything from 523 * writeback to a slow device to excessive referenced folios at the tail 524 * of the inactive LRU. 525 */ 526 switch(reason) { 527 case VMSCAN_THROTTLE_WRITEBACK: 528 timeout = HZ/10; 529 530 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 531 WRITE_ONCE(pgdat->nr_reclaim_start, 532 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 533 } 534 535 break; 536 case VMSCAN_THROTTLE_CONGESTED: 537 fallthrough; 538 case VMSCAN_THROTTLE_NOPROGRESS: 539 if (skip_throttle_noprogress(pgdat)) { 540 cond_resched(); 541 return; 542 } 543 544 timeout = 1; 545 546 break; 547 case VMSCAN_THROTTLE_ISOLATED: 548 timeout = HZ/50; 549 break; 550 default: 551 WARN_ON_ONCE(1); 552 timeout = HZ; 553 break; 554 } 555 556 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 557 ret = schedule_timeout(timeout); 558 finish_wait(wqh, &wait); 559 560 if (reason == VMSCAN_THROTTLE_WRITEBACK) 561 atomic_dec(&pgdat->nr_writeback_throttled); 562 563 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 564 jiffies_to_usecs(timeout - ret), 565 reason); 566 } 567 568 /* 569 * Account for folios written if tasks are throttled waiting on dirty 570 * folios to clean. If enough folios have been cleaned since throttling 571 * started then wakeup the throttled tasks. 572 */ 573 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 574 int nr_throttled) 575 { 576 unsigned long nr_written; 577 578 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 579 580 /* 581 * This is an inaccurate read as the per-cpu deltas may not 582 * be synchronised. However, given that the system is 583 * writeback throttled, it is not worth taking the penalty 584 * of getting an accurate count. At worst, the throttle 585 * timeout guarantees forward progress. 586 */ 587 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 588 READ_ONCE(pgdat->nr_reclaim_start); 589 590 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 591 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 592 } 593 594 /* possible outcome of pageout() */ 595 typedef enum { 596 /* failed to write folio out, folio is locked */ 597 PAGE_KEEP, 598 /* move folio to the active list, folio is locked */ 599 PAGE_ACTIVATE, 600 /* folio has been sent to the disk successfully, folio is unlocked */ 601 PAGE_SUCCESS, 602 /* folio is clean and locked */ 603 PAGE_CLEAN, 604 } pageout_t; 605 606 /* 607 * pageout is called by shrink_folio_list() for each dirty folio. 608 * Calls ->writepage(). 609 */ 610 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 611 struct swap_iocb **plug) 612 { 613 /* 614 * If the folio is dirty, only perform writeback if that write 615 * will be non-blocking. To prevent this allocation from being 616 * stalled by pagecache activity. But note that there may be 617 * stalls if we need to run get_block(). We could test 618 * PagePrivate for that. 619 * 620 * If this process is currently in __generic_file_write_iter() against 621 * this folio's queue, we can perform writeback even if that 622 * will block. 623 * 624 * If the folio is swapcache, write it back even if that would 625 * block, for some throttling. This happens by accident, because 626 * swap_backing_dev_info is bust: it doesn't reflect the 627 * congestion state of the swapdevs. Easy to fix, if needed. 628 */ 629 if (!is_page_cache_freeable(folio)) 630 return PAGE_KEEP; 631 if (!mapping) { 632 /* 633 * Some data journaling orphaned folios can have 634 * folio->mapping == NULL while being dirty with clean buffers. 635 */ 636 if (folio_test_private(folio)) { 637 if (try_to_free_buffers(folio)) { 638 folio_clear_dirty(folio); 639 pr_info("%s: orphaned folio\n", __func__); 640 return PAGE_CLEAN; 641 } 642 } 643 return PAGE_KEEP; 644 } 645 if (mapping->a_ops->writepage == NULL) 646 return PAGE_ACTIVATE; 647 648 if (folio_clear_dirty_for_io(folio)) { 649 int res; 650 struct writeback_control wbc = { 651 .sync_mode = WB_SYNC_NONE, 652 .nr_to_write = SWAP_CLUSTER_MAX, 653 .range_start = 0, 654 .range_end = LLONG_MAX, 655 .for_reclaim = 1, 656 .swap_plug = plug, 657 }; 658 659 folio_set_reclaim(folio); 660 res = mapping->a_ops->writepage(&folio->page, &wbc); 661 if (res < 0) 662 handle_write_error(mapping, folio, res); 663 if (res == AOP_WRITEPAGE_ACTIVATE) { 664 folio_clear_reclaim(folio); 665 return PAGE_ACTIVATE; 666 } 667 668 if (!folio_test_writeback(folio)) { 669 /* synchronous write or broken a_ops? */ 670 folio_clear_reclaim(folio); 671 } 672 trace_mm_vmscan_write_folio(folio); 673 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 674 return PAGE_SUCCESS; 675 } 676 677 return PAGE_CLEAN; 678 } 679 680 /* 681 * Same as remove_mapping, but if the folio is removed from the mapping, it 682 * gets returned with a refcount of 0. 683 */ 684 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 685 bool reclaimed, struct mem_cgroup *target_memcg) 686 { 687 int refcount; 688 void *shadow = NULL; 689 690 BUG_ON(!folio_test_locked(folio)); 691 BUG_ON(mapping != folio_mapping(folio)); 692 693 if (!folio_test_swapcache(folio)) 694 spin_lock(&mapping->host->i_lock); 695 xa_lock_irq(&mapping->i_pages); 696 /* 697 * The non racy check for a busy folio. 698 * 699 * Must be careful with the order of the tests. When someone has 700 * a ref to the folio, it may be possible that they dirty it then 701 * drop the reference. So if the dirty flag is tested before the 702 * refcount here, then the following race may occur: 703 * 704 * get_user_pages(&page); 705 * [user mapping goes away] 706 * write_to(page); 707 * !folio_test_dirty(folio) [good] 708 * folio_set_dirty(folio); 709 * folio_put(folio); 710 * !refcount(folio) [good, discard it] 711 * 712 * [oops, our write_to data is lost] 713 * 714 * Reversing the order of the tests ensures such a situation cannot 715 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 716 * load is not satisfied before that of folio->_refcount. 717 * 718 * Note that if the dirty flag is always set via folio_mark_dirty, 719 * and thus under the i_pages lock, then this ordering is not required. 720 */ 721 refcount = 1 + folio_nr_pages(folio); 722 if (!folio_ref_freeze(folio, refcount)) 723 goto cannot_free; 724 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 725 if (unlikely(folio_test_dirty(folio))) { 726 folio_ref_unfreeze(folio, refcount); 727 goto cannot_free; 728 } 729 730 if (folio_test_swapcache(folio)) { 731 swp_entry_t swap = folio->swap; 732 733 if (reclaimed && !mapping_exiting(mapping)) 734 shadow = workingset_eviction(folio, target_memcg); 735 __delete_from_swap_cache(folio, swap, shadow); 736 mem_cgroup_swapout(folio, swap); 737 xa_unlock_irq(&mapping->i_pages); 738 put_swap_folio(folio, swap); 739 } else { 740 void (*free_folio)(struct folio *); 741 742 free_folio = mapping->a_ops->free_folio; 743 /* 744 * Remember a shadow entry for reclaimed file cache in 745 * order to detect refaults, thus thrashing, later on. 746 * 747 * But don't store shadows in an address space that is 748 * already exiting. This is not just an optimization, 749 * inode reclaim needs to empty out the radix tree or 750 * the nodes are lost. Don't plant shadows behind its 751 * back. 752 * 753 * We also don't store shadows for DAX mappings because the 754 * only page cache folios found in these are zero pages 755 * covering holes, and because we don't want to mix DAX 756 * exceptional entries and shadow exceptional entries in the 757 * same address_space. 758 */ 759 if (reclaimed && folio_is_file_lru(folio) && 760 !mapping_exiting(mapping) && !dax_mapping(mapping)) 761 shadow = workingset_eviction(folio, target_memcg); 762 __filemap_remove_folio(folio, shadow); 763 xa_unlock_irq(&mapping->i_pages); 764 if (mapping_shrinkable(mapping)) 765 inode_add_lru(mapping->host); 766 spin_unlock(&mapping->host->i_lock); 767 768 if (free_folio) 769 free_folio(folio); 770 } 771 772 return 1; 773 774 cannot_free: 775 xa_unlock_irq(&mapping->i_pages); 776 if (!folio_test_swapcache(folio)) 777 spin_unlock(&mapping->host->i_lock); 778 return 0; 779 } 780 781 /** 782 * remove_mapping() - Attempt to remove a folio from its mapping. 783 * @mapping: The address space. 784 * @folio: The folio to remove. 785 * 786 * If the folio is dirty, under writeback or if someone else has a ref 787 * on it, removal will fail. 788 * Return: The number of pages removed from the mapping. 0 if the folio 789 * could not be removed. 790 * Context: The caller should have a single refcount on the folio and 791 * hold its lock. 792 */ 793 long remove_mapping(struct address_space *mapping, struct folio *folio) 794 { 795 if (__remove_mapping(mapping, folio, false, NULL)) { 796 /* 797 * Unfreezing the refcount with 1 effectively 798 * drops the pagecache ref for us without requiring another 799 * atomic operation. 800 */ 801 folio_ref_unfreeze(folio, 1); 802 return folio_nr_pages(folio); 803 } 804 return 0; 805 } 806 807 /** 808 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 809 * @folio: Folio to be returned to an LRU list. 810 * 811 * Add previously isolated @folio to appropriate LRU list. 812 * The folio may still be unevictable for other reasons. 813 * 814 * Context: lru_lock must not be held, interrupts must be enabled. 815 */ 816 void folio_putback_lru(struct folio *folio) 817 { 818 folio_add_lru(folio); 819 folio_put(folio); /* drop ref from isolate */ 820 } 821 822 enum folio_references { 823 FOLIOREF_RECLAIM, 824 FOLIOREF_RECLAIM_CLEAN, 825 FOLIOREF_KEEP, 826 FOLIOREF_ACTIVATE, 827 }; 828 829 static enum folio_references folio_check_references(struct folio *folio, 830 struct scan_control *sc) 831 { 832 int referenced_ptes, referenced_folio; 833 unsigned long vm_flags; 834 835 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 836 &vm_flags); 837 referenced_folio = folio_test_clear_referenced(folio); 838 839 /* 840 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 841 * Let the folio, now marked Mlocked, be moved to the unevictable list. 842 */ 843 if (vm_flags & VM_LOCKED) 844 return FOLIOREF_ACTIVATE; 845 846 /* rmap lock contention: rotate */ 847 if (referenced_ptes == -1) 848 return FOLIOREF_KEEP; 849 850 if (referenced_ptes) { 851 /* 852 * All mapped folios start out with page table 853 * references from the instantiating fault, so we need 854 * to look twice if a mapped file/anon folio is used more 855 * than once. 856 * 857 * Mark it and spare it for another trip around the 858 * inactive list. Another page table reference will 859 * lead to its activation. 860 * 861 * Note: the mark is set for activated folios as well 862 * so that recently deactivated but used folios are 863 * quickly recovered. 864 */ 865 folio_set_referenced(folio); 866 867 if (referenced_folio || referenced_ptes > 1) 868 return FOLIOREF_ACTIVATE; 869 870 /* 871 * Activate file-backed executable folios after first usage. 872 */ 873 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 874 return FOLIOREF_ACTIVATE; 875 876 return FOLIOREF_KEEP; 877 } 878 879 /* Reclaim if clean, defer dirty folios to writeback */ 880 if (referenced_folio && folio_is_file_lru(folio)) 881 return FOLIOREF_RECLAIM_CLEAN; 882 883 return FOLIOREF_RECLAIM; 884 } 885 886 /* Check if a folio is dirty or under writeback */ 887 static void folio_check_dirty_writeback(struct folio *folio, 888 bool *dirty, bool *writeback) 889 { 890 struct address_space *mapping; 891 892 /* 893 * Anonymous folios are not handled by flushers and must be written 894 * from reclaim context. Do not stall reclaim based on them. 895 * MADV_FREE anonymous folios are put into inactive file list too. 896 * They could be mistakenly treated as file lru. So further anon 897 * test is needed. 898 */ 899 if (!folio_is_file_lru(folio) || 900 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 901 *dirty = false; 902 *writeback = false; 903 return; 904 } 905 906 /* By default assume that the folio flags are accurate */ 907 *dirty = folio_test_dirty(folio); 908 *writeback = folio_test_writeback(folio); 909 910 /* Verify dirty/writeback state if the filesystem supports it */ 911 if (!folio_test_private(folio)) 912 return; 913 914 mapping = folio_mapping(folio); 915 if (mapping && mapping->a_ops->is_dirty_writeback) 916 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 917 } 918 919 static struct folio *alloc_demote_folio(struct folio *src, 920 unsigned long private) 921 { 922 struct folio *dst; 923 nodemask_t *allowed_mask; 924 struct migration_target_control *mtc; 925 926 mtc = (struct migration_target_control *)private; 927 928 allowed_mask = mtc->nmask; 929 /* 930 * make sure we allocate from the target node first also trying to 931 * demote or reclaim pages from the target node via kswapd if we are 932 * low on free memory on target node. If we don't do this and if 933 * we have free memory on the slower(lower) memtier, we would start 934 * allocating pages from slower(lower) memory tiers without even forcing 935 * a demotion of cold pages from the target memtier. This can result 936 * in the kernel placing hot pages in slower(lower) memory tiers. 937 */ 938 mtc->nmask = NULL; 939 mtc->gfp_mask |= __GFP_THISNODE; 940 dst = alloc_migration_target(src, (unsigned long)mtc); 941 if (dst) 942 return dst; 943 944 mtc->gfp_mask &= ~__GFP_THISNODE; 945 mtc->nmask = allowed_mask; 946 947 return alloc_migration_target(src, (unsigned long)mtc); 948 } 949 950 /* 951 * Take folios on @demote_folios and attempt to demote them to another node. 952 * Folios which are not demoted are left on @demote_folios. 953 */ 954 static unsigned int demote_folio_list(struct list_head *demote_folios, 955 struct pglist_data *pgdat) 956 { 957 int target_nid = next_demotion_node(pgdat->node_id); 958 unsigned int nr_succeeded; 959 nodemask_t allowed_mask; 960 961 struct migration_target_control mtc = { 962 /* 963 * Allocate from 'node', or fail quickly and quietly. 964 * When this happens, 'page' will likely just be discarded 965 * instead of migrated. 966 */ 967 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 968 __GFP_NOMEMALLOC | GFP_NOWAIT, 969 .nid = target_nid, 970 .nmask = &allowed_mask, 971 .reason = MR_DEMOTION, 972 }; 973 974 if (list_empty(demote_folios)) 975 return 0; 976 977 if (target_nid == NUMA_NO_NODE) 978 return 0; 979 980 node_get_allowed_targets(pgdat, &allowed_mask); 981 982 /* Demotion ignores all cpuset and mempolicy settings */ 983 migrate_pages(demote_folios, alloc_demote_folio, NULL, 984 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 985 &nr_succeeded); 986 987 mod_node_page_state(pgdat, PGDEMOTE_KSWAPD + reclaimer_offset(), 988 nr_succeeded); 989 990 return nr_succeeded; 991 } 992 993 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 994 { 995 if (gfp_mask & __GFP_FS) 996 return true; 997 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 998 return false; 999 /* 1000 * We can "enter_fs" for swap-cache with only __GFP_IO 1001 * providing this isn't SWP_FS_OPS. 1002 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1003 * but that will never affect SWP_FS_OPS, so the data_race 1004 * is safe. 1005 */ 1006 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1007 } 1008 1009 /* 1010 * shrink_folio_list() returns the number of reclaimed pages 1011 */ 1012 static unsigned int shrink_folio_list(struct list_head *folio_list, 1013 struct pglist_data *pgdat, struct scan_control *sc, 1014 struct reclaim_stat *stat, bool ignore_references) 1015 { 1016 struct folio_batch free_folios; 1017 LIST_HEAD(ret_folios); 1018 LIST_HEAD(demote_folios); 1019 unsigned int nr_reclaimed = 0; 1020 unsigned int pgactivate = 0; 1021 bool do_demote_pass; 1022 struct swap_iocb *plug = NULL; 1023 1024 folio_batch_init(&free_folios); 1025 memset(stat, 0, sizeof(*stat)); 1026 cond_resched(); 1027 do_demote_pass = can_demote(pgdat->node_id, sc); 1028 1029 retry: 1030 while (!list_empty(folio_list)) { 1031 struct address_space *mapping; 1032 struct folio *folio; 1033 enum folio_references references = FOLIOREF_RECLAIM; 1034 bool dirty, writeback; 1035 unsigned int nr_pages; 1036 1037 cond_resched(); 1038 1039 folio = lru_to_folio(folio_list); 1040 list_del(&folio->lru); 1041 1042 if (!folio_trylock(folio)) 1043 goto keep; 1044 1045 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1046 1047 nr_pages = folio_nr_pages(folio); 1048 1049 /* Account the number of base pages */ 1050 sc->nr_scanned += nr_pages; 1051 1052 if (unlikely(!folio_evictable(folio))) 1053 goto activate_locked; 1054 1055 if (!sc->may_unmap && folio_mapped(folio)) 1056 goto keep_locked; 1057 1058 /* folio_update_gen() tried to promote this page? */ 1059 if (lru_gen_enabled() && !ignore_references && 1060 folio_mapped(folio) && folio_test_referenced(folio)) 1061 goto keep_locked; 1062 1063 /* 1064 * The number of dirty pages determines if a node is marked 1065 * reclaim_congested. kswapd will stall and start writing 1066 * folios if the tail of the LRU is all dirty unqueued folios. 1067 */ 1068 folio_check_dirty_writeback(folio, &dirty, &writeback); 1069 if (dirty || writeback) 1070 stat->nr_dirty += nr_pages; 1071 1072 if (dirty && !writeback) 1073 stat->nr_unqueued_dirty += nr_pages; 1074 1075 /* 1076 * Treat this folio as congested if folios are cycling 1077 * through the LRU so quickly that the folios marked 1078 * for immediate reclaim are making it to the end of 1079 * the LRU a second time. 1080 */ 1081 if (writeback && folio_test_reclaim(folio)) 1082 stat->nr_congested += nr_pages; 1083 1084 /* 1085 * If a folio at the tail of the LRU is under writeback, there 1086 * are three cases to consider. 1087 * 1088 * 1) If reclaim is encountering an excessive number 1089 * of folios under writeback and this folio has both 1090 * the writeback and reclaim flags set, then it 1091 * indicates that folios are being queued for I/O but 1092 * are being recycled through the LRU before the I/O 1093 * can complete. Waiting on the folio itself risks an 1094 * indefinite stall if it is impossible to writeback 1095 * the folio due to I/O error or disconnected storage 1096 * so instead note that the LRU is being scanned too 1097 * quickly and the caller can stall after the folio 1098 * list has been processed. 1099 * 1100 * 2) Global or new memcg reclaim encounters a folio that is 1101 * not marked for immediate reclaim, or the caller does not 1102 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1103 * not to fs). In this case mark the folio for immediate 1104 * reclaim and continue scanning. 1105 * 1106 * Require may_enter_fs() because we would wait on fs, which 1107 * may not have submitted I/O yet. And the loop driver might 1108 * enter reclaim, and deadlock if it waits on a folio for 1109 * which it is needed to do the write (loop masks off 1110 * __GFP_IO|__GFP_FS for this reason); but more thought 1111 * would probably show more reasons. 1112 * 1113 * 3) Legacy memcg encounters a folio that already has the 1114 * reclaim flag set. memcg does not have any dirty folio 1115 * throttling so we could easily OOM just because too many 1116 * folios are in writeback and there is nothing else to 1117 * reclaim. Wait for the writeback to complete. 1118 * 1119 * In cases 1) and 2) we activate the folios to get them out of 1120 * the way while we continue scanning for clean folios on the 1121 * inactive list and refilling from the active list. The 1122 * observation here is that waiting for disk writes is more 1123 * expensive than potentially causing reloads down the line. 1124 * Since they're marked for immediate reclaim, they won't put 1125 * memory pressure on the cache working set any longer than it 1126 * takes to write them to disk. 1127 */ 1128 if (folio_test_writeback(folio)) { 1129 /* Case 1 above */ 1130 if (current_is_kswapd() && 1131 folio_test_reclaim(folio) && 1132 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1133 stat->nr_immediate += nr_pages; 1134 goto activate_locked; 1135 1136 /* Case 2 above */ 1137 } else if (writeback_throttling_sane(sc) || 1138 !folio_test_reclaim(folio) || 1139 !may_enter_fs(folio, sc->gfp_mask)) { 1140 /* 1141 * This is slightly racy - 1142 * folio_end_writeback() might have 1143 * just cleared the reclaim flag, then 1144 * setting the reclaim flag here ends up 1145 * interpreted as the readahead flag - but 1146 * that does not matter enough to care. 1147 * What we do want is for this folio to 1148 * have the reclaim flag set next time 1149 * memcg reclaim reaches the tests above, 1150 * so it will then wait for writeback to 1151 * avoid OOM; and it's also appropriate 1152 * in global reclaim. 1153 */ 1154 folio_set_reclaim(folio); 1155 stat->nr_writeback += nr_pages; 1156 goto activate_locked; 1157 1158 /* Case 3 above */ 1159 } else { 1160 folio_unlock(folio); 1161 folio_wait_writeback(folio); 1162 /* then go back and try same folio again */ 1163 list_add_tail(&folio->lru, folio_list); 1164 continue; 1165 } 1166 } 1167 1168 if (!ignore_references) 1169 references = folio_check_references(folio, sc); 1170 1171 switch (references) { 1172 case FOLIOREF_ACTIVATE: 1173 goto activate_locked; 1174 case FOLIOREF_KEEP: 1175 stat->nr_ref_keep += nr_pages; 1176 goto keep_locked; 1177 case FOLIOREF_RECLAIM: 1178 case FOLIOREF_RECLAIM_CLEAN: 1179 ; /* try to reclaim the folio below */ 1180 } 1181 1182 /* 1183 * Before reclaiming the folio, try to relocate 1184 * its contents to another node. 1185 */ 1186 if (do_demote_pass && 1187 (thp_migration_supported() || !folio_test_large(folio))) { 1188 list_add(&folio->lru, &demote_folios); 1189 folio_unlock(folio); 1190 continue; 1191 } 1192 1193 /* 1194 * Anonymous process memory has backing store? 1195 * Try to allocate it some swap space here. 1196 * Lazyfree folio could be freed directly 1197 */ 1198 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1199 if (!folio_test_swapcache(folio)) { 1200 if (!(sc->gfp_mask & __GFP_IO)) 1201 goto keep_locked; 1202 if (folio_maybe_dma_pinned(folio)) 1203 goto keep_locked; 1204 if (folio_test_large(folio)) { 1205 /* cannot split folio, skip it */ 1206 if (!can_split_folio(folio, NULL)) 1207 goto activate_locked; 1208 /* 1209 * Split partially mapped folios right away. 1210 * We can free the unmapped pages without IO. 1211 */ 1212 if (data_race(!list_empty(&folio->_deferred_list)) && 1213 split_folio_to_list(folio, folio_list)) 1214 goto activate_locked; 1215 } 1216 if (!add_to_swap(folio)) { 1217 int __maybe_unused order = folio_order(folio); 1218 1219 if (!folio_test_large(folio)) 1220 goto activate_locked_split; 1221 /* Fallback to swap normal pages */ 1222 if (split_folio_to_list(folio, folio_list)) 1223 goto activate_locked; 1224 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1225 if (nr_pages >= HPAGE_PMD_NR) { 1226 count_memcg_folio_events(folio, 1227 THP_SWPOUT_FALLBACK, 1); 1228 count_vm_event(THP_SWPOUT_FALLBACK); 1229 } 1230 count_mthp_stat(order, MTHP_STAT_ANON_SWPOUT_FALLBACK); 1231 #endif 1232 if (!add_to_swap(folio)) 1233 goto activate_locked_split; 1234 } 1235 } 1236 } else if (folio_test_swapbacked(folio) && 1237 folio_test_large(folio)) { 1238 /* Split shmem folio */ 1239 if (split_folio_to_list(folio, folio_list)) 1240 goto keep_locked; 1241 } 1242 1243 /* 1244 * If the folio was split above, the tail pages will make 1245 * their own pass through this function and be accounted 1246 * then. 1247 */ 1248 if ((nr_pages > 1) && !folio_test_large(folio)) { 1249 sc->nr_scanned -= (nr_pages - 1); 1250 nr_pages = 1; 1251 } 1252 1253 /* 1254 * The folio is mapped into the page tables of one or more 1255 * processes. Try to unmap it here. 1256 */ 1257 if (folio_mapped(folio)) { 1258 enum ttu_flags flags = TTU_BATCH_FLUSH; 1259 bool was_swapbacked = folio_test_swapbacked(folio); 1260 1261 if (folio_test_pmd_mappable(folio)) 1262 flags |= TTU_SPLIT_HUGE_PMD; 1263 /* 1264 * Without TTU_SYNC, try_to_unmap will only begin to 1265 * hold PTL from the first present PTE within a large 1266 * folio. Some initial PTEs might be skipped due to 1267 * races with parallel PTE writes in which PTEs can be 1268 * cleared temporarily before being written new present 1269 * values. This will lead to a large folio is still 1270 * mapped while some subpages have been partially 1271 * unmapped after try_to_unmap; TTU_SYNC helps 1272 * try_to_unmap acquire PTL from the first PTE, 1273 * eliminating the influence of temporary PTE values. 1274 */ 1275 if (folio_test_large(folio) && list_empty(&folio->_deferred_list)) 1276 flags |= TTU_SYNC; 1277 1278 try_to_unmap(folio, flags); 1279 if (folio_mapped(folio)) { 1280 stat->nr_unmap_fail += nr_pages; 1281 if (!was_swapbacked && 1282 folio_test_swapbacked(folio)) 1283 stat->nr_lazyfree_fail += nr_pages; 1284 goto activate_locked; 1285 } 1286 } 1287 1288 /* 1289 * Folio is unmapped now so it cannot be newly pinned anymore. 1290 * No point in trying to reclaim folio if it is pinned. 1291 * Furthermore we don't want to reclaim underlying fs metadata 1292 * if the folio is pinned and thus potentially modified by the 1293 * pinning process as that may upset the filesystem. 1294 */ 1295 if (folio_maybe_dma_pinned(folio)) 1296 goto activate_locked; 1297 1298 mapping = folio_mapping(folio); 1299 if (folio_test_dirty(folio)) { 1300 /* 1301 * Only kswapd can writeback filesystem folios 1302 * to avoid risk of stack overflow. But avoid 1303 * injecting inefficient single-folio I/O into 1304 * flusher writeback as much as possible: only 1305 * write folios when we've encountered many 1306 * dirty folios, and when we've already scanned 1307 * the rest of the LRU for clean folios and see 1308 * the same dirty folios again (with the reclaim 1309 * flag set). 1310 */ 1311 if (folio_is_file_lru(folio) && 1312 (!current_is_kswapd() || 1313 !folio_test_reclaim(folio) || 1314 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1315 /* 1316 * Immediately reclaim when written back. 1317 * Similar in principle to folio_deactivate() 1318 * except we already have the folio isolated 1319 * and know it's dirty 1320 */ 1321 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1322 nr_pages); 1323 folio_set_reclaim(folio); 1324 1325 goto activate_locked; 1326 } 1327 1328 if (references == FOLIOREF_RECLAIM_CLEAN) 1329 goto keep_locked; 1330 if (!may_enter_fs(folio, sc->gfp_mask)) 1331 goto keep_locked; 1332 if (!sc->may_writepage) 1333 goto keep_locked; 1334 1335 /* 1336 * Folio is dirty. Flush the TLB if a writable entry 1337 * potentially exists to avoid CPU writes after I/O 1338 * starts and then write it out here. 1339 */ 1340 try_to_unmap_flush_dirty(); 1341 switch (pageout(folio, mapping, &plug)) { 1342 case PAGE_KEEP: 1343 goto keep_locked; 1344 case PAGE_ACTIVATE: 1345 goto activate_locked; 1346 case PAGE_SUCCESS: 1347 stat->nr_pageout += nr_pages; 1348 1349 if (folio_test_writeback(folio)) 1350 goto keep; 1351 if (folio_test_dirty(folio)) 1352 goto keep; 1353 1354 /* 1355 * A synchronous write - probably a ramdisk. Go 1356 * ahead and try to reclaim the folio. 1357 */ 1358 if (!folio_trylock(folio)) 1359 goto keep; 1360 if (folio_test_dirty(folio) || 1361 folio_test_writeback(folio)) 1362 goto keep_locked; 1363 mapping = folio_mapping(folio); 1364 fallthrough; 1365 case PAGE_CLEAN: 1366 ; /* try to free the folio below */ 1367 } 1368 } 1369 1370 /* 1371 * If the folio has buffers, try to free the buffer 1372 * mappings associated with this folio. If we succeed 1373 * we try to free the folio as well. 1374 * 1375 * We do this even if the folio is dirty. 1376 * filemap_release_folio() does not perform I/O, but it 1377 * is possible for a folio to have the dirty flag set, 1378 * but it is actually clean (all its buffers are clean). 1379 * This happens if the buffers were written out directly, 1380 * with submit_bh(). ext3 will do this, as well as 1381 * the blockdev mapping. filemap_release_folio() will 1382 * discover that cleanness and will drop the buffers 1383 * and mark the folio clean - it can be freed. 1384 * 1385 * Rarely, folios can have buffers and no ->mapping. 1386 * These are the folios which were not successfully 1387 * invalidated in truncate_cleanup_folio(). We try to 1388 * drop those buffers here and if that worked, and the 1389 * folio is no longer mapped into process address space 1390 * (refcount == 1) it can be freed. Otherwise, leave 1391 * the folio on the LRU so it is swappable. 1392 */ 1393 if (folio_needs_release(folio)) { 1394 if (!filemap_release_folio(folio, sc->gfp_mask)) 1395 goto activate_locked; 1396 if (!mapping && folio_ref_count(folio) == 1) { 1397 folio_unlock(folio); 1398 if (folio_put_testzero(folio)) 1399 goto free_it; 1400 else { 1401 /* 1402 * rare race with speculative reference. 1403 * the speculative reference will free 1404 * this folio shortly, so we may 1405 * increment nr_reclaimed here (and 1406 * leave it off the LRU). 1407 */ 1408 nr_reclaimed += nr_pages; 1409 continue; 1410 } 1411 } 1412 } 1413 1414 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 1415 /* follow __remove_mapping for reference */ 1416 if (!folio_ref_freeze(folio, 1)) 1417 goto keep_locked; 1418 /* 1419 * The folio has only one reference left, which is 1420 * from the isolation. After the caller puts the 1421 * folio back on the lru and drops the reference, the 1422 * folio will be freed anyway. It doesn't matter 1423 * which lru it goes on. So we don't bother checking 1424 * the dirty flag here. 1425 */ 1426 count_vm_events(PGLAZYFREED, nr_pages); 1427 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 1428 } else if (!mapping || !__remove_mapping(mapping, folio, true, 1429 sc->target_mem_cgroup)) 1430 goto keep_locked; 1431 1432 folio_unlock(folio); 1433 free_it: 1434 /* 1435 * Folio may get swapped out as a whole, need to account 1436 * all pages in it. 1437 */ 1438 nr_reclaimed += nr_pages; 1439 1440 if (folio_test_large(folio) && 1441 folio_test_large_rmappable(folio)) 1442 folio_undo_large_rmappable(folio); 1443 if (folio_batch_add(&free_folios, folio) == 0) { 1444 mem_cgroup_uncharge_folios(&free_folios); 1445 try_to_unmap_flush(); 1446 free_unref_folios(&free_folios); 1447 } 1448 continue; 1449 1450 activate_locked_split: 1451 /* 1452 * The tail pages that are failed to add into swap cache 1453 * reach here. Fixup nr_scanned and nr_pages. 1454 */ 1455 if (nr_pages > 1) { 1456 sc->nr_scanned -= (nr_pages - 1); 1457 nr_pages = 1; 1458 } 1459 activate_locked: 1460 /* Not a candidate for swapping, so reclaim swap space. */ 1461 if (folio_test_swapcache(folio) && 1462 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 1463 folio_free_swap(folio); 1464 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1465 if (!folio_test_mlocked(folio)) { 1466 int type = folio_is_file_lru(folio); 1467 folio_set_active(folio); 1468 stat->nr_activate[type] += nr_pages; 1469 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 1470 } 1471 keep_locked: 1472 folio_unlock(folio); 1473 keep: 1474 list_add(&folio->lru, &ret_folios); 1475 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 1476 folio_test_unevictable(folio), folio); 1477 } 1478 /* 'folio_list' is always empty here */ 1479 1480 /* Migrate folios selected for demotion */ 1481 nr_reclaimed += demote_folio_list(&demote_folios, pgdat); 1482 /* Folios that could not be demoted are still in @demote_folios */ 1483 if (!list_empty(&demote_folios)) { 1484 /* Folios which weren't demoted go back on @folio_list */ 1485 list_splice_init(&demote_folios, folio_list); 1486 1487 /* 1488 * goto retry to reclaim the undemoted folios in folio_list if 1489 * desired. 1490 * 1491 * Reclaiming directly from top tier nodes is not often desired 1492 * due to it breaking the LRU ordering: in general memory 1493 * should be reclaimed from lower tier nodes and demoted from 1494 * top tier nodes. 1495 * 1496 * However, disabling reclaim from top tier nodes entirely 1497 * would cause ooms in edge scenarios where lower tier memory 1498 * is unreclaimable for whatever reason, eg memory being 1499 * mlocked or too hot to reclaim. We can disable reclaim 1500 * from top tier nodes in proactive reclaim though as that is 1501 * not real memory pressure. 1502 */ 1503 if (!sc->proactive) { 1504 do_demote_pass = false; 1505 goto retry; 1506 } 1507 } 1508 1509 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1510 1511 mem_cgroup_uncharge_folios(&free_folios); 1512 try_to_unmap_flush(); 1513 free_unref_folios(&free_folios); 1514 1515 list_splice(&ret_folios, folio_list); 1516 count_vm_events(PGACTIVATE, pgactivate); 1517 1518 if (plug) 1519 swap_write_unplug(plug); 1520 return nr_reclaimed; 1521 } 1522 1523 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1524 struct list_head *folio_list) 1525 { 1526 struct scan_control sc = { 1527 .gfp_mask = GFP_KERNEL, 1528 .may_unmap = 1, 1529 }; 1530 struct reclaim_stat stat; 1531 unsigned int nr_reclaimed; 1532 struct folio *folio, *next; 1533 LIST_HEAD(clean_folios); 1534 unsigned int noreclaim_flag; 1535 1536 list_for_each_entry_safe(folio, next, folio_list, lru) { 1537 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 1538 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 1539 !folio_test_unevictable(folio)) { 1540 folio_clear_active(folio); 1541 list_move(&folio->lru, &clean_folios); 1542 } 1543 } 1544 1545 /* 1546 * We should be safe here since we are only dealing with file pages and 1547 * we are not kswapd and therefore cannot write dirty file pages. But 1548 * call memalloc_noreclaim_save() anyway, just in case these conditions 1549 * change in the future. 1550 */ 1551 noreclaim_flag = memalloc_noreclaim_save(); 1552 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 1553 &stat, true); 1554 memalloc_noreclaim_restore(noreclaim_flag); 1555 1556 list_splice(&clean_folios, folio_list); 1557 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1558 -(long)nr_reclaimed); 1559 /* 1560 * Since lazyfree pages are isolated from file LRU from the beginning, 1561 * they will rotate back to anonymous LRU in the end if it failed to 1562 * discard so isolated count will be mismatched. 1563 * Compensate the isolated count for both LRU lists. 1564 */ 1565 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1566 stat.nr_lazyfree_fail); 1567 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1568 -(long)stat.nr_lazyfree_fail); 1569 return nr_reclaimed; 1570 } 1571 1572 /* 1573 * Update LRU sizes after isolating pages. The LRU size updates must 1574 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1575 */ 1576 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1577 enum lru_list lru, unsigned long *nr_zone_taken) 1578 { 1579 int zid; 1580 1581 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1582 if (!nr_zone_taken[zid]) 1583 continue; 1584 1585 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1586 } 1587 1588 } 1589 1590 #ifdef CONFIG_CMA 1591 /* 1592 * It is waste of effort to scan and reclaim CMA pages if it is not available 1593 * for current allocation context. Kswapd can not be enrolled as it can not 1594 * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL 1595 */ 1596 static bool skip_cma(struct folio *folio, struct scan_control *sc) 1597 { 1598 return !current_is_kswapd() && 1599 gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE && 1600 folio_migratetype(folio) == MIGRATE_CMA; 1601 } 1602 #else 1603 static bool skip_cma(struct folio *folio, struct scan_control *sc) 1604 { 1605 return false; 1606 } 1607 #endif 1608 1609 /* 1610 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1611 * 1612 * lruvec->lru_lock is heavily contended. Some of the functions that 1613 * shrink the lists perform better by taking out a batch of pages 1614 * and working on them outside the LRU lock. 1615 * 1616 * For pagecache intensive workloads, this function is the hottest 1617 * spot in the kernel (apart from copy_*_user functions). 1618 * 1619 * Lru_lock must be held before calling this function. 1620 * 1621 * @nr_to_scan: The number of eligible pages to look through on the list. 1622 * @lruvec: The LRU vector to pull pages from. 1623 * @dst: The temp list to put pages on to. 1624 * @nr_scanned: The number of pages that were scanned. 1625 * @sc: The scan_control struct for this reclaim session 1626 * @lru: LRU list id for isolating 1627 * 1628 * returns how many pages were moved onto *@dst. 1629 */ 1630 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 1631 struct lruvec *lruvec, struct list_head *dst, 1632 unsigned long *nr_scanned, struct scan_control *sc, 1633 enum lru_list lru) 1634 { 1635 struct list_head *src = &lruvec->lists[lru]; 1636 unsigned long nr_taken = 0; 1637 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1638 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1639 unsigned long skipped = 0; 1640 unsigned long scan, total_scan, nr_pages; 1641 LIST_HEAD(folios_skipped); 1642 1643 total_scan = 0; 1644 scan = 0; 1645 while (scan < nr_to_scan && !list_empty(src)) { 1646 struct list_head *move_to = src; 1647 struct folio *folio; 1648 1649 folio = lru_to_folio(src); 1650 prefetchw_prev_lru_folio(folio, src, flags); 1651 1652 nr_pages = folio_nr_pages(folio); 1653 total_scan += nr_pages; 1654 1655 if (folio_zonenum(folio) > sc->reclaim_idx || 1656 skip_cma(folio, sc)) { 1657 nr_skipped[folio_zonenum(folio)] += nr_pages; 1658 move_to = &folios_skipped; 1659 goto move; 1660 } 1661 1662 /* 1663 * Do not count skipped folios because that makes the function 1664 * return with no isolated folios if the LRU mostly contains 1665 * ineligible folios. This causes the VM to not reclaim any 1666 * folios, triggering a premature OOM. 1667 * Account all pages in a folio. 1668 */ 1669 scan += nr_pages; 1670 1671 if (!folio_test_lru(folio)) 1672 goto move; 1673 if (!sc->may_unmap && folio_mapped(folio)) 1674 goto move; 1675 1676 /* 1677 * Be careful not to clear the lru flag until after we're 1678 * sure the folio is not being freed elsewhere -- the 1679 * folio release code relies on it. 1680 */ 1681 if (unlikely(!folio_try_get(folio))) 1682 goto move; 1683 1684 if (!folio_test_clear_lru(folio)) { 1685 /* Another thread is already isolating this folio */ 1686 folio_put(folio); 1687 goto move; 1688 } 1689 1690 nr_taken += nr_pages; 1691 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 1692 move_to = dst; 1693 move: 1694 list_move(&folio->lru, move_to); 1695 } 1696 1697 /* 1698 * Splice any skipped folios to the start of the LRU list. Note that 1699 * this disrupts the LRU order when reclaiming for lower zones but 1700 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1701 * scanning would soon rescan the same folios to skip and waste lots 1702 * of cpu cycles. 1703 */ 1704 if (!list_empty(&folios_skipped)) { 1705 int zid; 1706 1707 list_splice(&folios_skipped, src); 1708 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1709 if (!nr_skipped[zid]) 1710 continue; 1711 1712 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1713 skipped += nr_skipped[zid]; 1714 } 1715 } 1716 *nr_scanned = total_scan; 1717 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1718 total_scan, skipped, nr_taken, lru); 1719 update_lru_sizes(lruvec, lru, nr_zone_taken); 1720 return nr_taken; 1721 } 1722 1723 /** 1724 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 1725 * @folio: Folio to isolate from its LRU list. 1726 * 1727 * Isolate a @folio from an LRU list and adjust the vmstat statistic 1728 * corresponding to whatever LRU list the folio was on. 1729 * 1730 * The folio will have its LRU flag cleared. If it was found on the 1731 * active list, it will have the Active flag set. If it was found on the 1732 * unevictable list, it will have the Unevictable flag set. These flags 1733 * may need to be cleared by the caller before letting the page go. 1734 * 1735 * Context: 1736 * 1737 * (1) Must be called with an elevated refcount on the folio. This is a 1738 * fundamental difference from isolate_lru_folios() (which is called 1739 * without a stable reference). 1740 * (2) The lru_lock must not be held. 1741 * (3) Interrupts must be enabled. 1742 * 1743 * Return: true if the folio was removed from an LRU list. 1744 * false if the folio was not on an LRU list. 1745 */ 1746 bool folio_isolate_lru(struct folio *folio) 1747 { 1748 bool ret = false; 1749 1750 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 1751 1752 if (folio_test_clear_lru(folio)) { 1753 struct lruvec *lruvec; 1754 1755 folio_get(folio); 1756 lruvec = folio_lruvec_lock_irq(folio); 1757 lruvec_del_folio(lruvec, folio); 1758 unlock_page_lruvec_irq(lruvec); 1759 ret = true; 1760 } 1761 1762 return ret; 1763 } 1764 1765 /* 1766 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1767 * then get rescheduled. When there are massive number of tasks doing page 1768 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1769 * the LRU list will go small and be scanned faster than necessary, leading to 1770 * unnecessary swapping, thrashing and OOM. 1771 */ 1772 static bool too_many_isolated(struct pglist_data *pgdat, int file, 1773 struct scan_control *sc) 1774 { 1775 unsigned long inactive, isolated; 1776 bool too_many; 1777 1778 if (current_is_kswapd()) 1779 return false; 1780 1781 if (!writeback_throttling_sane(sc)) 1782 return false; 1783 1784 if (file) { 1785 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1786 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1787 } else { 1788 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1789 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1790 } 1791 1792 /* 1793 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1794 * won't get blocked by normal direct-reclaimers, forming a circular 1795 * deadlock. 1796 */ 1797 if (gfp_has_io_fs(sc->gfp_mask)) 1798 inactive >>= 3; 1799 1800 too_many = isolated > inactive; 1801 1802 /* Wake up tasks throttled due to too_many_isolated. */ 1803 if (!too_many) 1804 wake_throttle_isolated(pgdat); 1805 1806 return too_many; 1807 } 1808 1809 /* 1810 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 1811 * 1812 * Returns the number of pages moved to the given lruvec. 1813 */ 1814 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 1815 struct list_head *list) 1816 { 1817 int nr_pages, nr_moved = 0; 1818 struct folio_batch free_folios; 1819 1820 folio_batch_init(&free_folios); 1821 while (!list_empty(list)) { 1822 struct folio *folio = lru_to_folio(list); 1823 1824 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 1825 list_del(&folio->lru); 1826 if (unlikely(!folio_evictable(folio))) { 1827 spin_unlock_irq(&lruvec->lru_lock); 1828 folio_putback_lru(folio); 1829 spin_lock_irq(&lruvec->lru_lock); 1830 continue; 1831 } 1832 1833 /* 1834 * The folio_set_lru needs to be kept here for list integrity. 1835 * Otherwise: 1836 * #0 move_folios_to_lru #1 release_pages 1837 * if (!folio_put_testzero()) 1838 * if (folio_put_testzero()) 1839 * !lru //skip lru_lock 1840 * folio_set_lru() 1841 * list_add(&folio->lru,) 1842 * list_add(&folio->lru,) 1843 */ 1844 folio_set_lru(folio); 1845 1846 if (unlikely(folio_put_testzero(folio))) { 1847 __folio_clear_lru_flags(folio); 1848 1849 if (folio_test_large(folio) && 1850 folio_test_large_rmappable(folio)) 1851 folio_undo_large_rmappable(folio); 1852 if (folio_batch_add(&free_folios, folio) == 0) { 1853 spin_unlock_irq(&lruvec->lru_lock); 1854 mem_cgroup_uncharge_folios(&free_folios); 1855 free_unref_folios(&free_folios); 1856 spin_lock_irq(&lruvec->lru_lock); 1857 } 1858 1859 continue; 1860 } 1861 1862 /* 1863 * All pages were isolated from the same lruvec (and isolation 1864 * inhibits memcg migration). 1865 */ 1866 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 1867 lruvec_add_folio(lruvec, folio); 1868 nr_pages = folio_nr_pages(folio); 1869 nr_moved += nr_pages; 1870 if (folio_test_active(folio)) 1871 workingset_age_nonresident(lruvec, nr_pages); 1872 } 1873 1874 if (free_folios.nr) { 1875 spin_unlock_irq(&lruvec->lru_lock); 1876 mem_cgroup_uncharge_folios(&free_folios); 1877 free_unref_folios(&free_folios); 1878 spin_lock_irq(&lruvec->lru_lock); 1879 } 1880 1881 return nr_moved; 1882 } 1883 1884 /* 1885 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 1886 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 1887 * we should not throttle. Otherwise it is safe to do so. 1888 */ 1889 static int current_may_throttle(void) 1890 { 1891 return !(current->flags & PF_LOCAL_THROTTLE); 1892 } 1893 1894 /* 1895 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1896 * of reclaimed pages 1897 */ 1898 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 1899 struct lruvec *lruvec, struct scan_control *sc, 1900 enum lru_list lru) 1901 { 1902 LIST_HEAD(folio_list); 1903 unsigned long nr_scanned; 1904 unsigned int nr_reclaimed = 0; 1905 unsigned long nr_taken; 1906 struct reclaim_stat stat; 1907 bool file = is_file_lru(lru); 1908 enum vm_event_item item; 1909 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1910 bool stalled = false; 1911 1912 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1913 if (stalled) 1914 return 0; 1915 1916 /* wait a bit for the reclaimer. */ 1917 stalled = true; 1918 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 1919 1920 /* We are about to die and free our memory. Return now. */ 1921 if (fatal_signal_pending(current)) 1922 return SWAP_CLUSTER_MAX; 1923 } 1924 1925 lru_add_drain(); 1926 1927 spin_lock_irq(&lruvec->lru_lock); 1928 1929 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 1930 &nr_scanned, sc, lru); 1931 1932 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1933 item = PGSCAN_KSWAPD + reclaimer_offset(); 1934 if (!cgroup_reclaim(sc)) 1935 __count_vm_events(item, nr_scanned); 1936 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1937 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 1938 1939 spin_unlock_irq(&lruvec->lru_lock); 1940 1941 if (nr_taken == 0) 1942 return 0; 1943 1944 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 1945 1946 spin_lock_irq(&lruvec->lru_lock); 1947 move_folios_to_lru(lruvec, &folio_list); 1948 1949 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1950 item = PGSTEAL_KSWAPD + reclaimer_offset(); 1951 if (!cgroup_reclaim(sc)) 1952 __count_vm_events(item, nr_reclaimed); 1953 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1954 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 1955 spin_unlock_irq(&lruvec->lru_lock); 1956 1957 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); 1958 1959 /* 1960 * If dirty folios are scanned that are not queued for IO, it 1961 * implies that flushers are not doing their job. This can 1962 * happen when memory pressure pushes dirty folios to the end of 1963 * the LRU before the dirty limits are breached and the dirty 1964 * data has expired. It can also happen when the proportion of 1965 * dirty folios grows not through writes but through memory 1966 * pressure reclaiming all the clean cache. And in some cases, 1967 * the flushers simply cannot keep up with the allocation 1968 * rate. Nudge the flusher threads in case they are asleep. 1969 */ 1970 if (stat.nr_unqueued_dirty == nr_taken) { 1971 wakeup_flusher_threads(WB_REASON_VMSCAN); 1972 /* 1973 * For cgroupv1 dirty throttling is achieved by waking up 1974 * the kernel flusher here and later waiting on folios 1975 * which are in writeback to finish (see shrink_folio_list()). 1976 * 1977 * Flusher may not be able to issue writeback quickly 1978 * enough for cgroupv1 writeback throttling to work 1979 * on a large system. 1980 */ 1981 if (!writeback_throttling_sane(sc)) 1982 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 1983 } 1984 1985 sc->nr.dirty += stat.nr_dirty; 1986 sc->nr.congested += stat.nr_congested; 1987 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 1988 sc->nr.writeback += stat.nr_writeback; 1989 sc->nr.immediate += stat.nr_immediate; 1990 sc->nr.taken += nr_taken; 1991 if (file) 1992 sc->nr.file_taken += nr_taken; 1993 1994 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1995 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 1996 return nr_reclaimed; 1997 } 1998 1999 /* 2000 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2001 * 2002 * We move them the other way if the folio is referenced by one or more 2003 * processes. 2004 * 2005 * If the folios are mostly unmapped, the processing is fast and it is 2006 * appropriate to hold lru_lock across the whole operation. But if 2007 * the folios are mapped, the processing is slow (folio_referenced()), so 2008 * we should drop lru_lock around each folio. It's impossible to balance 2009 * this, so instead we remove the folios from the LRU while processing them. 2010 * It is safe to rely on the active flag against the non-LRU folios in here 2011 * because nobody will play with that bit on a non-LRU folio. 2012 * 2013 * The downside is that we have to touch folio->_refcount against each folio. 2014 * But we had to alter folio->flags anyway. 2015 */ 2016 static void shrink_active_list(unsigned long nr_to_scan, 2017 struct lruvec *lruvec, 2018 struct scan_control *sc, 2019 enum lru_list lru) 2020 { 2021 unsigned long nr_taken; 2022 unsigned long nr_scanned; 2023 unsigned long vm_flags; 2024 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2025 LIST_HEAD(l_active); 2026 LIST_HEAD(l_inactive); 2027 unsigned nr_deactivate, nr_activate; 2028 unsigned nr_rotated = 0; 2029 bool file = is_file_lru(lru); 2030 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2031 2032 lru_add_drain(); 2033 2034 spin_lock_irq(&lruvec->lru_lock); 2035 2036 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2037 &nr_scanned, sc, lru); 2038 2039 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2040 2041 if (!cgroup_reclaim(sc)) 2042 __count_vm_events(PGREFILL, nr_scanned); 2043 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2044 2045 spin_unlock_irq(&lruvec->lru_lock); 2046 2047 while (!list_empty(&l_hold)) { 2048 struct folio *folio; 2049 2050 cond_resched(); 2051 folio = lru_to_folio(&l_hold); 2052 list_del(&folio->lru); 2053 2054 if (unlikely(!folio_evictable(folio))) { 2055 folio_putback_lru(folio); 2056 continue; 2057 } 2058 2059 if (unlikely(buffer_heads_over_limit)) { 2060 if (folio_needs_release(folio) && 2061 folio_trylock(folio)) { 2062 filemap_release_folio(folio, 0); 2063 folio_unlock(folio); 2064 } 2065 } 2066 2067 /* Referenced or rmap lock contention: rotate */ 2068 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2069 &vm_flags) != 0) { 2070 /* 2071 * Identify referenced, file-backed active folios and 2072 * give them one more trip around the active list. So 2073 * that executable code get better chances to stay in 2074 * memory under moderate memory pressure. Anon folios 2075 * are not likely to be evicted by use-once streaming 2076 * IO, plus JVM can create lots of anon VM_EXEC folios, 2077 * so we ignore them here. 2078 */ 2079 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2080 nr_rotated += folio_nr_pages(folio); 2081 list_add(&folio->lru, &l_active); 2082 continue; 2083 } 2084 } 2085 2086 folio_clear_active(folio); /* we are de-activating */ 2087 folio_set_workingset(folio); 2088 list_add(&folio->lru, &l_inactive); 2089 } 2090 2091 /* 2092 * Move folios back to the lru list. 2093 */ 2094 spin_lock_irq(&lruvec->lru_lock); 2095 2096 nr_activate = move_folios_to_lru(lruvec, &l_active); 2097 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2098 2099 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2100 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2101 2102 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2103 spin_unlock_irq(&lruvec->lru_lock); 2104 2105 if (nr_rotated) 2106 lru_note_cost(lruvec, file, 0, nr_rotated); 2107 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2108 nr_deactivate, nr_rotated, sc->priority, file); 2109 } 2110 2111 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2112 struct pglist_data *pgdat) 2113 { 2114 struct reclaim_stat dummy_stat; 2115 unsigned int nr_reclaimed; 2116 struct folio *folio; 2117 struct scan_control sc = { 2118 .gfp_mask = GFP_KERNEL, 2119 .may_writepage = 1, 2120 .may_unmap = 1, 2121 .may_swap = 1, 2122 .no_demotion = 1, 2123 }; 2124 2125 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, true); 2126 while (!list_empty(folio_list)) { 2127 folio = lru_to_folio(folio_list); 2128 list_del(&folio->lru); 2129 folio_putback_lru(folio); 2130 } 2131 2132 return nr_reclaimed; 2133 } 2134 2135 unsigned long reclaim_pages(struct list_head *folio_list) 2136 { 2137 int nid; 2138 unsigned int nr_reclaimed = 0; 2139 LIST_HEAD(node_folio_list); 2140 unsigned int noreclaim_flag; 2141 2142 if (list_empty(folio_list)) 2143 return nr_reclaimed; 2144 2145 noreclaim_flag = memalloc_noreclaim_save(); 2146 2147 nid = folio_nid(lru_to_folio(folio_list)); 2148 do { 2149 struct folio *folio = lru_to_folio(folio_list); 2150 2151 if (nid == folio_nid(folio)) { 2152 folio_clear_active(folio); 2153 list_move(&folio->lru, &node_folio_list); 2154 continue; 2155 } 2156 2157 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2158 nid = folio_nid(lru_to_folio(folio_list)); 2159 } while (!list_empty(folio_list)); 2160 2161 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2162 2163 memalloc_noreclaim_restore(noreclaim_flag); 2164 2165 return nr_reclaimed; 2166 } 2167 2168 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2169 struct lruvec *lruvec, struct scan_control *sc) 2170 { 2171 if (is_active_lru(lru)) { 2172 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2173 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2174 else 2175 sc->skipped_deactivate = 1; 2176 return 0; 2177 } 2178 2179 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2180 } 2181 2182 /* 2183 * The inactive anon list should be small enough that the VM never has 2184 * to do too much work. 2185 * 2186 * The inactive file list should be small enough to leave most memory 2187 * to the established workingset on the scan-resistant active list, 2188 * but large enough to avoid thrashing the aggregate readahead window. 2189 * 2190 * Both inactive lists should also be large enough that each inactive 2191 * folio has a chance to be referenced again before it is reclaimed. 2192 * 2193 * If that fails and refaulting is observed, the inactive list grows. 2194 * 2195 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2196 * on this LRU, maintained by the pageout code. An inactive_ratio 2197 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2198 * 2199 * total target max 2200 * memory ratio inactive 2201 * ------------------------------------- 2202 * 10MB 1 5MB 2203 * 100MB 1 50MB 2204 * 1GB 3 250MB 2205 * 10GB 10 0.9GB 2206 * 100GB 31 3GB 2207 * 1TB 101 10GB 2208 * 10TB 320 32GB 2209 */ 2210 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2211 { 2212 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2213 unsigned long inactive, active; 2214 unsigned long inactive_ratio; 2215 unsigned long gb; 2216 2217 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2218 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2219 2220 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2221 if (gb) 2222 inactive_ratio = int_sqrt(10 * gb); 2223 else 2224 inactive_ratio = 1; 2225 2226 return inactive * inactive_ratio < active; 2227 } 2228 2229 enum scan_balance { 2230 SCAN_EQUAL, 2231 SCAN_FRACT, 2232 SCAN_ANON, 2233 SCAN_FILE, 2234 }; 2235 2236 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc) 2237 { 2238 unsigned long file; 2239 struct lruvec *target_lruvec; 2240 2241 if (lru_gen_enabled()) 2242 return; 2243 2244 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2245 2246 /* 2247 * Flush the memory cgroup stats, so that we read accurate per-memcg 2248 * lruvec stats for heuristics. 2249 */ 2250 mem_cgroup_flush_stats(sc->target_mem_cgroup); 2251 2252 /* 2253 * Determine the scan balance between anon and file LRUs. 2254 */ 2255 spin_lock_irq(&target_lruvec->lru_lock); 2256 sc->anon_cost = target_lruvec->anon_cost; 2257 sc->file_cost = target_lruvec->file_cost; 2258 spin_unlock_irq(&target_lruvec->lru_lock); 2259 2260 /* 2261 * Target desirable inactive:active list ratios for the anon 2262 * and file LRU lists. 2263 */ 2264 if (!sc->force_deactivate) { 2265 unsigned long refaults; 2266 2267 /* 2268 * When refaults are being observed, it means a new 2269 * workingset is being established. Deactivate to get 2270 * rid of any stale active pages quickly. 2271 */ 2272 refaults = lruvec_page_state(target_lruvec, 2273 WORKINGSET_ACTIVATE_ANON); 2274 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2275 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2276 sc->may_deactivate |= DEACTIVATE_ANON; 2277 else 2278 sc->may_deactivate &= ~DEACTIVATE_ANON; 2279 2280 refaults = lruvec_page_state(target_lruvec, 2281 WORKINGSET_ACTIVATE_FILE); 2282 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2283 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2284 sc->may_deactivate |= DEACTIVATE_FILE; 2285 else 2286 sc->may_deactivate &= ~DEACTIVATE_FILE; 2287 } else 2288 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2289 2290 /* 2291 * If we have plenty of inactive file pages that aren't 2292 * thrashing, try to reclaim those first before touching 2293 * anonymous pages. 2294 */ 2295 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2296 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) && 2297 !sc->no_cache_trim_mode) 2298 sc->cache_trim_mode = 1; 2299 else 2300 sc->cache_trim_mode = 0; 2301 2302 /* 2303 * Prevent the reclaimer from falling into the cache trap: as 2304 * cache pages start out inactive, every cache fault will tip 2305 * the scan balance towards the file LRU. And as the file LRU 2306 * shrinks, so does the window for rotation from references. 2307 * This means we have a runaway feedback loop where a tiny 2308 * thrashing file LRU becomes infinitely more attractive than 2309 * anon pages. Try to detect this based on file LRU size. 2310 */ 2311 if (!cgroup_reclaim(sc)) { 2312 unsigned long total_high_wmark = 0; 2313 unsigned long free, anon; 2314 int z; 2315 2316 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2317 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2318 node_page_state(pgdat, NR_INACTIVE_FILE); 2319 2320 for (z = 0; z < MAX_NR_ZONES; z++) { 2321 struct zone *zone = &pgdat->node_zones[z]; 2322 2323 if (!managed_zone(zone)) 2324 continue; 2325 2326 total_high_wmark += high_wmark_pages(zone); 2327 } 2328 2329 /* 2330 * Consider anon: if that's low too, this isn't a 2331 * runaway file reclaim problem, but rather just 2332 * extreme pressure. Reclaim as per usual then. 2333 */ 2334 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2335 2336 sc->file_is_tiny = 2337 file + free <= total_high_wmark && 2338 !(sc->may_deactivate & DEACTIVATE_ANON) && 2339 anon >> sc->priority; 2340 } 2341 } 2342 2343 /* 2344 * Determine how aggressively the anon and file LRU lists should be 2345 * scanned. 2346 * 2347 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 2348 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 2349 */ 2350 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2351 unsigned long *nr) 2352 { 2353 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2354 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2355 unsigned long anon_cost, file_cost, total_cost; 2356 int swappiness = mem_cgroup_swappiness(memcg); 2357 u64 fraction[ANON_AND_FILE]; 2358 u64 denominator = 0; /* gcc */ 2359 enum scan_balance scan_balance; 2360 unsigned long ap, fp; 2361 enum lru_list lru; 2362 2363 /* If we have no swap space, do not bother scanning anon folios. */ 2364 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2365 scan_balance = SCAN_FILE; 2366 goto out; 2367 } 2368 2369 /* 2370 * Global reclaim will swap to prevent OOM even with no 2371 * swappiness, but memcg users want to use this knob to 2372 * disable swapping for individual groups completely when 2373 * using the memory controller's swap limit feature would be 2374 * too expensive. 2375 */ 2376 if (cgroup_reclaim(sc) && !swappiness) { 2377 scan_balance = SCAN_FILE; 2378 goto out; 2379 } 2380 2381 /* 2382 * Do not apply any pressure balancing cleverness when the 2383 * system is close to OOM, scan both anon and file equally 2384 * (unless the swappiness setting disagrees with swapping). 2385 */ 2386 if (!sc->priority && swappiness) { 2387 scan_balance = SCAN_EQUAL; 2388 goto out; 2389 } 2390 2391 /* 2392 * If the system is almost out of file pages, force-scan anon. 2393 */ 2394 if (sc->file_is_tiny) { 2395 scan_balance = SCAN_ANON; 2396 goto out; 2397 } 2398 2399 /* 2400 * If there is enough inactive page cache, we do not reclaim 2401 * anything from the anonymous working right now. 2402 */ 2403 if (sc->cache_trim_mode) { 2404 scan_balance = SCAN_FILE; 2405 goto out; 2406 } 2407 2408 scan_balance = SCAN_FRACT; 2409 /* 2410 * Calculate the pressure balance between anon and file pages. 2411 * 2412 * The amount of pressure we put on each LRU is inversely 2413 * proportional to the cost of reclaiming each list, as 2414 * determined by the share of pages that are refaulting, times 2415 * the relative IO cost of bringing back a swapped out 2416 * anonymous page vs reloading a filesystem page (swappiness). 2417 * 2418 * Although we limit that influence to ensure no list gets 2419 * left behind completely: at least a third of the pressure is 2420 * applied, before swappiness. 2421 * 2422 * With swappiness at 100, anon and file have equal IO cost. 2423 */ 2424 total_cost = sc->anon_cost + sc->file_cost; 2425 anon_cost = total_cost + sc->anon_cost; 2426 file_cost = total_cost + sc->file_cost; 2427 total_cost = anon_cost + file_cost; 2428 2429 ap = swappiness * (total_cost + 1); 2430 ap /= anon_cost + 1; 2431 2432 fp = (200 - swappiness) * (total_cost + 1); 2433 fp /= file_cost + 1; 2434 2435 fraction[0] = ap; 2436 fraction[1] = fp; 2437 denominator = ap + fp; 2438 out: 2439 for_each_evictable_lru(lru) { 2440 bool file = is_file_lru(lru); 2441 unsigned long lruvec_size; 2442 unsigned long low, min; 2443 unsigned long scan; 2444 2445 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2446 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2447 &min, &low); 2448 2449 if (min || low) { 2450 /* 2451 * Scale a cgroup's reclaim pressure by proportioning 2452 * its current usage to its memory.low or memory.min 2453 * setting. 2454 * 2455 * This is important, as otherwise scanning aggression 2456 * becomes extremely binary -- from nothing as we 2457 * approach the memory protection threshold, to totally 2458 * nominal as we exceed it. This results in requiring 2459 * setting extremely liberal protection thresholds. It 2460 * also means we simply get no protection at all if we 2461 * set it too low, which is not ideal. 2462 * 2463 * If there is any protection in place, we reduce scan 2464 * pressure by how much of the total memory used is 2465 * within protection thresholds. 2466 * 2467 * There is one special case: in the first reclaim pass, 2468 * we skip over all groups that are within their low 2469 * protection. If that fails to reclaim enough pages to 2470 * satisfy the reclaim goal, we come back and override 2471 * the best-effort low protection. However, we still 2472 * ideally want to honor how well-behaved groups are in 2473 * that case instead of simply punishing them all 2474 * equally. As such, we reclaim them based on how much 2475 * memory they are using, reducing the scan pressure 2476 * again by how much of the total memory used is under 2477 * hard protection. 2478 */ 2479 unsigned long cgroup_size = mem_cgroup_size(memcg); 2480 unsigned long protection; 2481 2482 /* memory.low scaling, make sure we retry before OOM */ 2483 if (!sc->memcg_low_reclaim && low > min) { 2484 protection = low; 2485 sc->memcg_low_skipped = 1; 2486 } else { 2487 protection = min; 2488 } 2489 2490 /* Avoid TOCTOU with earlier protection check */ 2491 cgroup_size = max(cgroup_size, protection); 2492 2493 scan = lruvec_size - lruvec_size * protection / 2494 (cgroup_size + 1); 2495 2496 /* 2497 * Minimally target SWAP_CLUSTER_MAX pages to keep 2498 * reclaim moving forwards, avoiding decrementing 2499 * sc->priority further than desirable. 2500 */ 2501 scan = max(scan, SWAP_CLUSTER_MAX); 2502 } else { 2503 scan = lruvec_size; 2504 } 2505 2506 scan >>= sc->priority; 2507 2508 /* 2509 * If the cgroup's already been deleted, make sure to 2510 * scrape out the remaining cache. 2511 */ 2512 if (!scan && !mem_cgroup_online(memcg)) 2513 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2514 2515 switch (scan_balance) { 2516 case SCAN_EQUAL: 2517 /* Scan lists relative to size */ 2518 break; 2519 case SCAN_FRACT: 2520 /* 2521 * Scan types proportional to swappiness and 2522 * their relative recent reclaim efficiency. 2523 * Make sure we don't miss the last page on 2524 * the offlined memory cgroups because of a 2525 * round-off error. 2526 */ 2527 scan = mem_cgroup_online(memcg) ? 2528 div64_u64(scan * fraction[file], denominator) : 2529 DIV64_U64_ROUND_UP(scan * fraction[file], 2530 denominator); 2531 break; 2532 case SCAN_FILE: 2533 case SCAN_ANON: 2534 /* Scan one type exclusively */ 2535 if ((scan_balance == SCAN_FILE) != file) 2536 scan = 0; 2537 break; 2538 default: 2539 /* Look ma, no brain */ 2540 BUG(); 2541 } 2542 2543 nr[lru] = scan; 2544 } 2545 } 2546 2547 /* 2548 * Anonymous LRU management is a waste if there is 2549 * ultimately no way to reclaim the memory. 2550 */ 2551 static bool can_age_anon_pages(struct pglist_data *pgdat, 2552 struct scan_control *sc) 2553 { 2554 /* Aging the anon LRU is valuable if swap is present: */ 2555 if (total_swap_pages > 0) 2556 return true; 2557 2558 /* Also valuable if anon pages can be demoted: */ 2559 return can_demote(pgdat->node_id, sc); 2560 } 2561 2562 #ifdef CONFIG_LRU_GEN 2563 2564 #ifdef CONFIG_LRU_GEN_ENABLED 2565 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 2566 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 2567 #else 2568 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 2569 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 2570 #endif 2571 2572 static bool should_walk_mmu(void) 2573 { 2574 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK); 2575 } 2576 2577 static bool should_clear_pmd_young(void) 2578 { 2579 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG); 2580 } 2581 2582 /****************************************************************************** 2583 * shorthand helpers 2584 ******************************************************************************/ 2585 2586 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 2587 2588 #define DEFINE_MAX_SEQ(lruvec) \ 2589 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 2590 2591 #define DEFINE_MIN_SEQ(lruvec) \ 2592 unsigned long min_seq[ANON_AND_FILE] = { \ 2593 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 2594 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 2595 } 2596 2597 #define for_each_gen_type_zone(gen, type, zone) \ 2598 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 2599 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 2600 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 2601 2602 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 2603 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 2604 2605 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 2606 { 2607 struct pglist_data *pgdat = NODE_DATA(nid); 2608 2609 #ifdef CONFIG_MEMCG 2610 if (memcg) { 2611 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 2612 2613 /* see the comment in mem_cgroup_lruvec() */ 2614 if (!lruvec->pgdat) 2615 lruvec->pgdat = pgdat; 2616 2617 return lruvec; 2618 } 2619 #endif 2620 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2621 2622 return &pgdat->__lruvec; 2623 } 2624 2625 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 2626 { 2627 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2628 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2629 2630 if (!sc->may_swap) 2631 return 0; 2632 2633 if (!can_demote(pgdat->node_id, sc) && 2634 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 2635 return 0; 2636 2637 return mem_cgroup_swappiness(memcg); 2638 } 2639 2640 static int get_nr_gens(struct lruvec *lruvec, int type) 2641 { 2642 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 2643 } 2644 2645 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 2646 { 2647 /* see the comment on lru_gen_folio */ 2648 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS && 2649 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) && 2650 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS; 2651 } 2652 2653 /****************************************************************************** 2654 * Bloom filters 2655 ******************************************************************************/ 2656 2657 /* 2658 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 2659 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 2660 * bits in a bitmap, k is the number of hash functions and n is the number of 2661 * inserted items. 2662 * 2663 * Page table walkers use one of the two filters to reduce their search space. 2664 * To get rid of non-leaf entries that no longer have enough leaf entries, the 2665 * aging uses the double-buffering technique to flip to the other filter each 2666 * time it produces a new generation. For non-leaf entries that have enough 2667 * leaf entries, the aging carries them over to the next generation in 2668 * walk_pmd_range(); the eviction also report them when walking the rmap 2669 * in lru_gen_look_around(). 2670 * 2671 * For future optimizations: 2672 * 1. It's not necessary to keep both filters all the time. The spare one can be 2673 * freed after the RCU grace period and reallocated if needed again. 2674 * 2. And when reallocating, it's worth scaling its size according to the number 2675 * of inserted entries in the other filter, to reduce the memory overhead on 2676 * small systems and false positives on large systems. 2677 * 3. Jenkins' hash function is an alternative to Knuth's. 2678 */ 2679 #define BLOOM_FILTER_SHIFT 15 2680 2681 static inline int filter_gen_from_seq(unsigned long seq) 2682 { 2683 return seq % NR_BLOOM_FILTERS; 2684 } 2685 2686 static void get_item_key(void *item, int *key) 2687 { 2688 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 2689 2690 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 2691 2692 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 2693 key[1] = hash >> BLOOM_FILTER_SHIFT; 2694 } 2695 2696 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2697 void *item) 2698 { 2699 int key[2]; 2700 unsigned long *filter; 2701 int gen = filter_gen_from_seq(seq); 2702 2703 filter = READ_ONCE(mm_state->filters[gen]); 2704 if (!filter) 2705 return true; 2706 2707 get_item_key(item, key); 2708 2709 return test_bit(key[0], filter) && test_bit(key[1], filter); 2710 } 2711 2712 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2713 void *item) 2714 { 2715 int key[2]; 2716 unsigned long *filter; 2717 int gen = filter_gen_from_seq(seq); 2718 2719 filter = READ_ONCE(mm_state->filters[gen]); 2720 if (!filter) 2721 return; 2722 2723 get_item_key(item, key); 2724 2725 if (!test_bit(key[0], filter)) 2726 set_bit(key[0], filter); 2727 if (!test_bit(key[1], filter)) 2728 set_bit(key[1], filter); 2729 } 2730 2731 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq) 2732 { 2733 unsigned long *filter; 2734 int gen = filter_gen_from_seq(seq); 2735 2736 filter = mm_state->filters[gen]; 2737 if (filter) { 2738 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 2739 return; 2740 } 2741 2742 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 2743 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 2744 WRITE_ONCE(mm_state->filters[gen], filter); 2745 } 2746 2747 /****************************************************************************** 2748 * mm_struct list 2749 ******************************************************************************/ 2750 2751 #ifdef CONFIG_LRU_GEN_WALKS_MMU 2752 2753 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2754 { 2755 static struct lru_gen_mm_list mm_list = { 2756 .fifo = LIST_HEAD_INIT(mm_list.fifo), 2757 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 2758 }; 2759 2760 #ifdef CONFIG_MEMCG 2761 if (memcg) 2762 return &memcg->mm_list; 2763 #endif 2764 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2765 2766 return &mm_list; 2767 } 2768 2769 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2770 { 2771 return &lruvec->mm_state; 2772 } 2773 2774 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2775 { 2776 int key; 2777 struct mm_struct *mm; 2778 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 2779 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 2780 2781 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 2782 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 2783 2784 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 2785 return NULL; 2786 2787 clear_bit(key, &mm->lru_gen.bitmap); 2788 2789 return mmget_not_zero(mm) ? mm : NULL; 2790 } 2791 2792 void lru_gen_add_mm(struct mm_struct *mm) 2793 { 2794 int nid; 2795 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 2796 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2797 2798 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 2799 #ifdef CONFIG_MEMCG 2800 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 2801 mm->lru_gen.memcg = memcg; 2802 #endif 2803 spin_lock(&mm_list->lock); 2804 2805 for_each_node_state(nid, N_MEMORY) { 2806 struct lruvec *lruvec = get_lruvec(memcg, nid); 2807 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2808 2809 /* the first addition since the last iteration */ 2810 if (mm_state->tail == &mm_list->fifo) 2811 mm_state->tail = &mm->lru_gen.list; 2812 } 2813 2814 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 2815 2816 spin_unlock(&mm_list->lock); 2817 } 2818 2819 void lru_gen_del_mm(struct mm_struct *mm) 2820 { 2821 int nid; 2822 struct lru_gen_mm_list *mm_list; 2823 struct mem_cgroup *memcg = NULL; 2824 2825 if (list_empty(&mm->lru_gen.list)) 2826 return; 2827 2828 #ifdef CONFIG_MEMCG 2829 memcg = mm->lru_gen.memcg; 2830 #endif 2831 mm_list = get_mm_list(memcg); 2832 2833 spin_lock(&mm_list->lock); 2834 2835 for_each_node(nid) { 2836 struct lruvec *lruvec = get_lruvec(memcg, nid); 2837 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2838 2839 /* where the current iteration continues after */ 2840 if (mm_state->head == &mm->lru_gen.list) 2841 mm_state->head = mm_state->head->prev; 2842 2843 /* where the last iteration ended before */ 2844 if (mm_state->tail == &mm->lru_gen.list) 2845 mm_state->tail = mm_state->tail->next; 2846 } 2847 2848 list_del_init(&mm->lru_gen.list); 2849 2850 spin_unlock(&mm_list->lock); 2851 2852 #ifdef CONFIG_MEMCG 2853 mem_cgroup_put(mm->lru_gen.memcg); 2854 mm->lru_gen.memcg = NULL; 2855 #endif 2856 } 2857 2858 #ifdef CONFIG_MEMCG 2859 void lru_gen_migrate_mm(struct mm_struct *mm) 2860 { 2861 struct mem_cgroup *memcg; 2862 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 2863 2864 VM_WARN_ON_ONCE(task->mm != mm); 2865 lockdep_assert_held(&task->alloc_lock); 2866 2867 /* for mm_update_next_owner() */ 2868 if (mem_cgroup_disabled()) 2869 return; 2870 2871 /* migration can happen before addition */ 2872 if (!mm->lru_gen.memcg) 2873 return; 2874 2875 rcu_read_lock(); 2876 memcg = mem_cgroup_from_task(task); 2877 rcu_read_unlock(); 2878 if (memcg == mm->lru_gen.memcg) 2879 return; 2880 2881 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 2882 2883 lru_gen_del_mm(mm); 2884 lru_gen_add_mm(mm); 2885 } 2886 #endif 2887 2888 #else /* !CONFIG_LRU_GEN_WALKS_MMU */ 2889 2890 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2891 { 2892 return NULL; 2893 } 2894 2895 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2896 { 2897 return NULL; 2898 } 2899 2900 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2901 { 2902 return NULL; 2903 } 2904 2905 #endif 2906 2907 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last) 2908 { 2909 int i; 2910 int hist; 2911 struct lruvec *lruvec = walk->lruvec; 2912 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2913 2914 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 2915 2916 hist = lru_hist_from_seq(walk->seq); 2917 2918 for (i = 0; i < NR_MM_STATS; i++) { 2919 WRITE_ONCE(mm_state->stats[hist][i], 2920 mm_state->stats[hist][i] + walk->mm_stats[i]); 2921 walk->mm_stats[i] = 0; 2922 } 2923 2924 if (NR_HIST_GENS > 1 && last) { 2925 hist = lru_hist_from_seq(walk->seq + 1); 2926 2927 for (i = 0; i < NR_MM_STATS; i++) 2928 WRITE_ONCE(mm_state->stats[hist][i], 0); 2929 } 2930 } 2931 2932 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter) 2933 { 2934 bool first = false; 2935 bool last = false; 2936 struct mm_struct *mm = NULL; 2937 struct lruvec *lruvec = walk->lruvec; 2938 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2939 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2940 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2941 2942 /* 2943 * mm_state->seq is incremented after each iteration of mm_list. There 2944 * are three interesting cases for this page table walker: 2945 * 1. It tries to start a new iteration with a stale max_seq: there is 2946 * nothing left to do. 2947 * 2. It started the next iteration: it needs to reset the Bloom filter 2948 * so that a fresh set of PTE tables can be recorded. 2949 * 3. It ended the current iteration: it needs to reset the mm stats 2950 * counters and tell its caller to increment max_seq. 2951 */ 2952 spin_lock(&mm_list->lock); 2953 2954 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq); 2955 2956 if (walk->seq <= mm_state->seq) 2957 goto done; 2958 2959 if (!mm_state->head) 2960 mm_state->head = &mm_list->fifo; 2961 2962 if (mm_state->head == &mm_list->fifo) 2963 first = true; 2964 2965 do { 2966 mm_state->head = mm_state->head->next; 2967 if (mm_state->head == &mm_list->fifo) { 2968 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 2969 last = true; 2970 break; 2971 } 2972 2973 /* force scan for those added after the last iteration */ 2974 if (!mm_state->tail || mm_state->tail == mm_state->head) { 2975 mm_state->tail = mm_state->head->next; 2976 walk->force_scan = true; 2977 } 2978 } while (!(mm = get_next_mm(walk))); 2979 done: 2980 if (*iter || last) 2981 reset_mm_stats(walk, last); 2982 2983 spin_unlock(&mm_list->lock); 2984 2985 if (mm && first) 2986 reset_bloom_filter(mm_state, walk->seq + 1); 2987 2988 if (*iter) 2989 mmput_async(*iter); 2990 2991 *iter = mm; 2992 2993 return last; 2994 } 2995 2996 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq) 2997 { 2998 bool success = false; 2999 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3000 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3001 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3002 3003 spin_lock(&mm_list->lock); 3004 3005 VM_WARN_ON_ONCE(mm_state->seq + 1 < seq); 3006 3007 if (seq > mm_state->seq) { 3008 mm_state->head = NULL; 3009 mm_state->tail = NULL; 3010 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3011 success = true; 3012 } 3013 3014 spin_unlock(&mm_list->lock); 3015 3016 return success; 3017 } 3018 3019 /****************************************************************************** 3020 * PID controller 3021 ******************************************************************************/ 3022 3023 /* 3024 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3025 * 3026 * The P term is refaulted/(evicted+protected) from a tier in the generation 3027 * currently being evicted; the I term is the exponential moving average of the 3028 * P term over the generations previously evicted, using the smoothing factor 3029 * 1/2; the D term isn't supported. 3030 * 3031 * The setpoint (SP) is always the first tier of one type; the process variable 3032 * (PV) is either any tier of the other type or any other tier of the same 3033 * type. 3034 * 3035 * The error is the difference between the SP and the PV; the correction is to 3036 * turn off protection when SP>PV or turn on protection when SP<PV. 3037 * 3038 * For future optimizations: 3039 * 1. The D term may discount the other two terms over time so that long-lived 3040 * generations can resist stale information. 3041 */ 3042 struct ctrl_pos { 3043 unsigned long refaulted; 3044 unsigned long total; 3045 int gain; 3046 }; 3047 3048 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3049 struct ctrl_pos *pos) 3050 { 3051 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3052 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3053 3054 pos->refaulted = lrugen->avg_refaulted[type][tier] + 3055 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3056 pos->total = lrugen->avg_total[type][tier] + 3057 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3058 if (tier) 3059 pos->total += lrugen->protected[hist][type][tier - 1]; 3060 pos->gain = gain; 3061 } 3062 3063 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3064 { 3065 int hist, tier; 3066 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3067 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3068 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3069 3070 lockdep_assert_held(&lruvec->lru_lock); 3071 3072 if (!carryover && !clear) 3073 return; 3074 3075 hist = lru_hist_from_seq(seq); 3076 3077 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3078 if (carryover) { 3079 unsigned long sum; 3080 3081 sum = lrugen->avg_refaulted[type][tier] + 3082 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3083 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3084 3085 sum = lrugen->avg_total[type][tier] + 3086 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3087 if (tier) 3088 sum += lrugen->protected[hist][type][tier - 1]; 3089 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3090 } 3091 3092 if (clear) { 3093 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3094 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3095 if (tier) 3096 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0); 3097 } 3098 } 3099 } 3100 3101 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3102 { 3103 /* 3104 * Return true if the PV has a limited number of refaults or a lower 3105 * refaulted/total than the SP. 3106 */ 3107 return pv->refaulted < MIN_LRU_BATCH || 3108 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3109 (sp->refaulted + 1) * pv->total * pv->gain; 3110 } 3111 3112 /****************************************************************************** 3113 * the aging 3114 ******************************************************************************/ 3115 3116 /* promote pages accessed through page tables */ 3117 static int folio_update_gen(struct folio *folio, int gen) 3118 { 3119 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3120 3121 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3122 VM_WARN_ON_ONCE(!rcu_read_lock_held()); 3123 3124 do { 3125 /* lru_gen_del_folio() has isolated this page? */ 3126 if (!(old_flags & LRU_GEN_MASK)) { 3127 /* for shrink_folio_list() */ 3128 new_flags = old_flags | BIT(PG_referenced); 3129 continue; 3130 } 3131 3132 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3133 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF; 3134 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3135 3136 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3137 } 3138 3139 /* protect pages accessed multiple times through file descriptors */ 3140 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3141 { 3142 int type = folio_is_file_lru(folio); 3143 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3144 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3145 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3146 3147 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3148 3149 do { 3150 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3151 /* folio_update_gen() has promoted this page? */ 3152 if (new_gen >= 0 && new_gen != old_gen) 3153 return new_gen; 3154 3155 new_gen = (old_gen + 1) % MAX_NR_GENS; 3156 3157 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3158 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3159 /* for folio_end_writeback() */ 3160 if (reclaiming) 3161 new_flags |= BIT(PG_reclaim); 3162 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3163 3164 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3165 3166 return new_gen; 3167 } 3168 3169 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3170 int old_gen, int new_gen) 3171 { 3172 int type = folio_is_file_lru(folio); 3173 int zone = folio_zonenum(folio); 3174 int delta = folio_nr_pages(folio); 3175 3176 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3177 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3178 3179 walk->batched++; 3180 3181 walk->nr_pages[old_gen][type][zone] -= delta; 3182 walk->nr_pages[new_gen][type][zone] += delta; 3183 } 3184 3185 static void reset_batch_size(struct lru_gen_mm_walk *walk) 3186 { 3187 int gen, type, zone; 3188 struct lruvec *lruvec = walk->lruvec; 3189 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3190 3191 walk->batched = 0; 3192 3193 for_each_gen_type_zone(gen, type, zone) { 3194 enum lru_list lru = type * LRU_INACTIVE_FILE; 3195 int delta = walk->nr_pages[gen][type][zone]; 3196 3197 if (!delta) 3198 continue; 3199 3200 walk->nr_pages[gen][type][zone] = 0; 3201 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3202 lrugen->nr_pages[gen][type][zone] + delta); 3203 3204 if (lru_gen_is_active(lruvec, gen)) 3205 lru += LRU_ACTIVE; 3206 __update_lru_size(lruvec, lru, zone, delta); 3207 } 3208 } 3209 3210 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3211 { 3212 struct address_space *mapping; 3213 struct vm_area_struct *vma = args->vma; 3214 struct lru_gen_mm_walk *walk = args->private; 3215 3216 if (!vma_is_accessible(vma)) 3217 return true; 3218 3219 if (is_vm_hugetlb_page(vma)) 3220 return true; 3221 3222 if (!vma_has_recency(vma)) 3223 return true; 3224 3225 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) 3226 return true; 3227 3228 if (vma == get_gate_vma(vma->vm_mm)) 3229 return true; 3230 3231 if (vma_is_anonymous(vma)) 3232 return !walk->can_swap; 3233 3234 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3235 return true; 3236 3237 mapping = vma->vm_file->f_mapping; 3238 if (mapping_unevictable(mapping)) 3239 return true; 3240 3241 if (shmem_mapping(mapping)) 3242 return !walk->can_swap; 3243 3244 /* to exclude special mappings like dax, etc. */ 3245 return !mapping->a_ops->read_folio; 3246 } 3247 3248 /* 3249 * Some userspace memory allocators map many single-page VMAs. Instead of 3250 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3251 * table to reduce zigzags and improve cache performance. 3252 */ 3253 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3254 unsigned long *vm_start, unsigned long *vm_end) 3255 { 3256 unsigned long start = round_up(*vm_end, size); 3257 unsigned long end = (start | ~mask) + 1; 3258 VMA_ITERATOR(vmi, args->mm, start); 3259 3260 VM_WARN_ON_ONCE(mask & size); 3261 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3262 3263 for_each_vma(vmi, args->vma) { 3264 if (end && end <= args->vma->vm_start) 3265 return false; 3266 3267 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3268 continue; 3269 3270 *vm_start = max(start, args->vma->vm_start); 3271 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3272 3273 return true; 3274 } 3275 3276 return false; 3277 } 3278 3279 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr) 3280 { 3281 unsigned long pfn = pte_pfn(pte); 3282 3283 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3284 3285 if (!pte_present(pte) || is_zero_pfn(pfn)) 3286 return -1; 3287 3288 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3289 return -1; 3290 3291 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3292 return -1; 3293 3294 return pfn; 3295 } 3296 3297 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr) 3298 { 3299 unsigned long pfn = pmd_pfn(pmd); 3300 3301 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3302 3303 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3304 return -1; 3305 3306 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3307 return -1; 3308 3309 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3310 return -1; 3311 3312 return pfn; 3313 } 3314 3315 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3316 struct pglist_data *pgdat, bool can_swap) 3317 { 3318 struct folio *folio; 3319 3320 /* try to avoid unnecessary memory loads */ 3321 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3322 return NULL; 3323 3324 folio = pfn_folio(pfn); 3325 if (folio_nid(folio) != pgdat->node_id) 3326 return NULL; 3327 3328 if (folio_memcg_rcu(folio) != memcg) 3329 return NULL; 3330 3331 /* file VMAs can contain anon pages from COW */ 3332 if (!folio_is_file_lru(folio) && !can_swap) 3333 return NULL; 3334 3335 return folio; 3336 } 3337 3338 static bool suitable_to_scan(int total, int young) 3339 { 3340 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3341 3342 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3343 return young * n >= total; 3344 } 3345 3346 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3347 struct mm_walk *args) 3348 { 3349 int i; 3350 pte_t *pte; 3351 spinlock_t *ptl; 3352 unsigned long addr; 3353 int total = 0; 3354 int young = 0; 3355 struct lru_gen_mm_walk *walk = args->private; 3356 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3357 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3358 DEFINE_MAX_SEQ(walk->lruvec); 3359 int old_gen, new_gen = lru_gen_from_seq(max_seq); 3360 3361 pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl); 3362 if (!pte) 3363 return false; 3364 if (!spin_trylock(ptl)) { 3365 pte_unmap(pte); 3366 return false; 3367 } 3368 3369 arch_enter_lazy_mmu_mode(); 3370 restart: 3371 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3372 unsigned long pfn; 3373 struct folio *folio; 3374 pte_t ptent = ptep_get(pte + i); 3375 3376 total++; 3377 walk->mm_stats[MM_LEAF_TOTAL]++; 3378 3379 pfn = get_pte_pfn(ptent, args->vma, addr); 3380 if (pfn == -1) 3381 continue; 3382 3383 if (!pte_young(ptent)) { 3384 walk->mm_stats[MM_LEAF_OLD]++; 3385 continue; 3386 } 3387 3388 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3389 if (!folio) 3390 continue; 3391 3392 if (!ptep_test_and_clear_young(args->vma, addr, pte + i)) 3393 VM_WARN_ON_ONCE(true); 3394 3395 young++; 3396 walk->mm_stats[MM_LEAF_YOUNG]++; 3397 3398 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 3399 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3400 !folio_test_swapcache(folio))) 3401 folio_mark_dirty(folio); 3402 3403 old_gen = folio_update_gen(folio, new_gen); 3404 if (old_gen >= 0 && old_gen != new_gen) 3405 update_batch_size(walk, folio, old_gen, new_gen); 3406 } 3407 3408 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 3409 goto restart; 3410 3411 arch_leave_lazy_mmu_mode(); 3412 pte_unmap_unlock(pte, ptl); 3413 3414 return suitable_to_scan(total, young); 3415 } 3416 3417 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 3418 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 3419 { 3420 int i; 3421 pmd_t *pmd; 3422 spinlock_t *ptl; 3423 struct lru_gen_mm_walk *walk = args->private; 3424 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3425 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3426 DEFINE_MAX_SEQ(walk->lruvec); 3427 int old_gen, new_gen = lru_gen_from_seq(max_seq); 3428 3429 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3430 3431 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 3432 if (*first == -1) { 3433 *first = addr; 3434 bitmap_zero(bitmap, MIN_LRU_BATCH); 3435 return; 3436 } 3437 3438 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); 3439 if (i && i <= MIN_LRU_BATCH) { 3440 __set_bit(i - 1, bitmap); 3441 return; 3442 } 3443 3444 pmd = pmd_offset(pud, *first); 3445 3446 ptl = pmd_lockptr(args->mm, pmd); 3447 if (!spin_trylock(ptl)) 3448 goto done; 3449 3450 arch_enter_lazy_mmu_mode(); 3451 3452 do { 3453 unsigned long pfn; 3454 struct folio *folio; 3455 3456 /* don't round down the first address */ 3457 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; 3458 3459 pfn = get_pmd_pfn(pmd[i], vma, addr); 3460 if (pfn == -1) 3461 goto next; 3462 3463 if (!pmd_trans_huge(pmd[i])) { 3464 if (should_clear_pmd_young()) 3465 pmdp_test_and_clear_young(vma, addr, pmd + i); 3466 goto next; 3467 } 3468 3469 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3470 if (!folio) 3471 goto next; 3472 3473 if (!pmdp_test_and_clear_young(vma, addr, pmd + i)) 3474 goto next; 3475 3476 walk->mm_stats[MM_LEAF_YOUNG]++; 3477 3478 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) && 3479 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3480 !folio_test_swapcache(folio))) 3481 folio_mark_dirty(folio); 3482 3483 old_gen = folio_update_gen(folio, new_gen); 3484 if (old_gen >= 0 && old_gen != new_gen) 3485 update_batch_size(walk, folio, old_gen, new_gen); 3486 next: 3487 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 3488 } while (i <= MIN_LRU_BATCH); 3489 3490 arch_leave_lazy_mmu_mode(); 3491 spin_unlock(ptl); 3492 done: 3493 *first = -1; 3494 } 3495 3496 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 3497 struct mm_walk *args) 3498 { 3499 int i; 3500 pmd_t *pmd; 3501 unsigned long next; 3502 unsigned long addr; 3503 struct vm_area_struct *vma; 3504 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH); 3505 unsigned long first = -1; 3506 struct lru_gen_mm_walk *walk = args->private; 3507 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 3508 3509 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3510 3511 /* 3512 * Finish an entire PMD in two passes: the first only reaches to PTE 3513 * tables to avoid taking the PMD lock; the second, if necessary, takes 3514 * the PMD lock to clear the accessed bit in PMD entries. 3515 */ 3516 pmd = pmd_offset(pud, start & PUD_MASK); 3517 restart: 3518 /* walk_pte_range() may call get_next_vma() */ 3519 vma = args->vma; 3520 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 3521 pmd_t val = pmdp_get_lockless(pmd + i); 3522 3523 next = pmd_addr_end(addr, end); 3524 3525 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 3526 walk->mm_stats[MM_LEAF_TOTAL]++; 3527 continue; 3528 } 3529 3530 if (pmd_trans_huge(val)) { 3531 unsigned long pfn = pmd_pfn(val); 3532 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3533 3534 walk->mm_stats[MM_LEAF_TOTAL]++; 3535 3536 if (!pmd_young(val)) { 3537 walk->mm_stats[MM_LEAF_OLD]++; 3538 continue; 3539 } 3540 3541 /* try to avoid unnecessary memory loads */ 3542 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3543 continue; 3544 3545 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3546 continue; 3547 } 3548 3549 walk->mm_stats[MM_NONLEAF_TOTAL]++; 3550 3551 if (should_clear_pmd_young()) { 3552 if (!pmd_young(val)) 3553 continue; 3554 3555 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3556 } 3557 3558 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i)) 3559 continue; 3560 3561 walk->mm_stats[MM_NONLEAF_FOUND]++; 3562 3563 if (!walk_pte_range(&val, addr, next, args)) 3564 continue; 3565 3566 walk->mm_stats[MM_NONLEAF_ADDED]++; 3567 3568 /* carry over to the next generation */ 3569 update_bloom_filter(mm_state, walk->seq + 1, pmd + i); 3570 } 3571 3572 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); 3573 3574 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 3575 goto restart; 3576 } 3577 3578 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 3579 struct mm_walk *args) 3580 { 3581 int i; 3582 pud_t *pud; 3583 unsigned long addr; 3584 unsigned long next; 3585 struct lru_gen_mm_walk *walk = args->private; 3586 3587 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 3588 3589 pud = pud_offset(p4d, start & P4D_MASK); 3590 restart: 3591 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 3592 pud_t val = READ_ONCE(pud[i]); 3593 3594 next = pud_addr_end(addr, end); 3595 3596 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 3597 continue; 3598 3599 walk_pmd_range(&val, addr, next, args); 3600 3601 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 3602 end = (addr | ~PUD_MASK) + 1; 3603 goto done; 3604 } 3605 } 3606 3607 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 3608 goto restart; 3609 3610 end = round_up(end, P4D_SIZE); 3611 done: 3612 if (!end || !args->vma) 3613 return 1; 3614 3615 walk->next_addr = max(end, args->vma->vm_start); 3616 3617 return -EAGAIN; 3618 } 3619 3620 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3621 { 3622 static const struct mm_walk_ops mm_walk_ops = { 3623 .test_walk = should_skip_vma, 3624 .p4d_entry = walk_pud_range, 3625 .walk_lock = PGWALK_RDLOCK, 3626 }; 3627 3628 int err; 3629 struct lruvec *lruvec = walk->lruvec; 3630 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3631 3632 walk->next_addr = FIRST_USER_ADDRESS; 3633 3634 do { 3635 DEFINE_MAX_SEQ(lruvec); 3636 3637 err = -EBUSY; 3638 3639 /* another thread might have called inc_max_seq() */ 3640 if (walk->seq != max_seq) 3641 break; 3642 3643 /* folio_update_gen() requires stable folio_memcg() */ 3644 if (!mem_cgroup_trylock_pages(memcg)) 3645 break; 3646 3647 /* the caller might be holding the lock for write */ 3648 if (mmap_read_trylock(mm)) { 3649 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 3650 3651 mmap_read_unlock(mm); 3652 } 3653 3654 mem_cgroup_unlock_pages(); 3655 3656 if (walk->batched) { 3657 spin_lock_irq(&lruvec->lru_lock); 3658 reset_batch_size(walk); 3659 spin_unlock_irq(&lruvec->lru_lock); 3660 } 3661 3662 cond_resched(); 3663 } while (err == -EAGAIN); 3664 } 3665 3666 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 3667 { 3668 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3669 3670 if (pgdat && current_is_kswapd()) { 3671 VM_WARN_ON_ONCE(walk); 3672 3673 walk = &pgdat->mm_walk; 3674 } else if (!walk && force_alloc) { 3675 VM_WARN_ON_ONCE(current_is_kswapd()); 3676 3677 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3678 } 3679 3680 current->reclaim_state->mm_walk = walk; 3681 3682 return walk; 3683 } 3684 3685 static void clear_mm_walk(void) 3686 { 3687 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3688 3689 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 3690 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 3691 3692 current->reclaim_state->mm_walk = NULL; 3693 3694 if (!current_is_kswapd()) 3695 kfree(walk); 3696 } 3697 3698 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap) 3699 { 3700 int zone; 3701 int remaining = MAX_LRU_BATCH; 3702 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3703 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3704 3705 if (type == LRU_GEN_ANON && !can_swap) 3706 goto done; 3707 3708 /* prevent cold/hot inversion if force_scan is true */ 3709 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3710 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 3711 3712 while (!list_empty(head)) { 3713 struct folio *folio = lru_to_folio(head); 3714 3715 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 3716 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 3717 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 3718 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 3719 3720 new_gen = folio_inc_gen(lruvec, folio, false); 3721 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 3722 3723 if (!--remaining) 3724 return false; 3725 } 3726 } 3727 done: 3728 reset_ctrl_pos(lruvec, type, true); 3729 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 3730 3731 return true; 3732 } 3733 3734 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap) 3735 { 3736 int gen, type, zone; 3737 bool success = false; 3738 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3739 DEFINE_MIN_SEQ(lruvec); 3740 3741 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3742 3743 /* find the oldest populated generation */ 3744 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3745 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 3746 gen = lru_gen_from_seq(min_seq[type]); 3747 3748 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3749 if (!list_empty(&lrugen->folios[gen][type][zone])) 3750 goto next; 3751 } 3752 3753 min_seq[type]++; 3754 } 3755 next: 3756 ; 3757 } 3758 3759 /* see the comment on lru_gen_folio */ 3760 if (can_swap) { 3761 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]); 3762 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]); 3763 } 3764 3765 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3766 if (min_seq[type] == lrugen->min_seq[type]) 3767 continue; 3768 3769 reset_ctrl_pos(lruvec, type, true); 3770 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 3771 success = true; 3772 } 3773 3774 return success; 3775 } 3776 3777 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, 3778 bool can_swap, bool force_scan) 3779 { 3780 bool success; 3781 int prev, next; 3782 int type, zone; 3783 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3784 restart: 3785 if (seq < READ_ONCE(lrugen->max_seq)) 3786 return false; 3787 3788 spin_lock_irq(&lruvec->lru_lock); 3789 3790 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3791 3792 success = seq == lrugen->max_seq; 3793 if (!success) 3794 goto unlock; 3795 3796 for (type = ANON_AND_FILE - 1; type >= 0; type--) { 3797 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 3798 continue; 3799 3800 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap)); 3801 3802 if (inc_min_seq(lruvec, type, can_swap)) 3803 continue; 3804 3805 spin_unlock_irq(&lruvec->lru_lock); 3806 cond_resched(); 3807 goto restart; 3808 } 3809 3810 /* 3811 * Update the active/inactive LRU sizes for compatibility. Both sides of 3812 * the current max_seq need to be covered, since max_seq+1 can overlap 3813 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 3814 * overlap, cold/hot inversion happens. 3815 */ 3816 prev = lru_gen_from_seq(lrugen->max_seq - 1); 3817 next = lru_gen_from_seq(lrugen->max_seq + 1); 3818 3819 for (type = 0; type < ANON_AND_FILE; type++) { 3820 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3821 enum lru_list lru = type * LRU_INACTIVE_FILE; 3822 long delta = lrugen->nr_pages[prev][type][zone] - 3823 lrugen->nr_pages[next][type][zone]; 3824 3825 if (!delta) 3826 continue; 3827 3828 __update_lru_size(lruvec, lru, zone, delta); 3829 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 3830 } 3831 } 3832 3833 for (type = 0; type < ANON_AND_FILE; type++) 3834 reset_ctrl_pos(lruvec, type, false); 3835 3836 WRITE_ONCE(lrugen->timestamps[next], jiffies); 3837 /* make sure preceding modifications appear */ 3838 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 3839 unlock: 3840 spin_unlock_irq(&lruvec->lru_lock); 3841 3842 return success; 3843 } 3844 3845 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq, 3846 bool can_swap, bool force_scan) 3847 { 3848 bool success; 3849 struct lru_gen_mm_walk *walk; 3850 struct mm_struct *mm = NULL; 3851 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3852 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3853 3854 VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq)); 3855 3856 if (!mm_state) 3857 return inc_max_seq(lruvec, seq, can_swap, force_scan); 3858 3859 /* see the comment in iterate_mm_list() */ 3860 if (seq <= READ_ONCE(mm_state->seq)) 3861 return false; 3862 3863 /* 3864 * If the hardware doesn't automatically set the accessed bit, fallback 3865 * to lru_gen_look_around(), which only clears the accessed bit in a 3866 * handful of PTEs. Spreading the work out over a period of time usually 3867 * is less efficient, but it avoids bursty page faults. 3868 */ 3869 if (!should_walk_mmu()) { 3870 success = iterate_mm_list_nowalk(lruvec, seq); 3871 goto done; 3872 } 3873 3874 walk = set_mm_walk(NULL, true); 3875 if (!walk) { 3876 success = iterate_mm_list_nowalk(lruvec, seq); 3877 goto done; 3878 } 3879 3880 walk->lruvec = lruvec; 3881 walk->seq = seq; 3882 walk->can_swap = can_swap; 3883 walk->force_scan = force_scan; 3884 3885 do { 3886 success = iterate_mm_list(walk, &mm); 3887 if (mm) 3888 walk_mm(mm, walk); 3889 } while (mm); 3890 done: 3891 if (success) { 3892 success = inc_max_seq(lruvec, seq, can_swap, force_scan); 3893 WARN_ON_ONCE(!success); 3894 } 3895 3896 return success; 3897 } 3898 3899 /****************************************************************************** 3900 * working set protection 3901 ******************************************************************************/ 3902 3903 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 3904 { 3905 int gen, type, zone; 3906 unsigned long total = 0; 3907 bool can_swap = get_swappiness(lruvec, sc); 3908 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3909 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3910 DEFINE_MAX_SEQ(lruvec); 3911 DEFINE_MIN_SEQ(lruvec); 3912 3913 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3914 unsigned long seq; 3915 3916 for (seq = min_seq[type]; seq <= max_seq; seq++) { 3917 gen = lru_gen_from_seq(seq); 3918 3919 for (zone = 0; zone < MAX_NR_ZONES; zone++) 3920 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 3921 } 3922 } 3923 3924 /* whether the size is big enough to be helpful */ 3925 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 3926 } 3927 3928 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 3929 unsigned long min_ttl) 3930 { 3931 int gen; 3932 unsigned long birth; 3933 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3934 DEFINE_MIN_SEQ(lruvec); 3935 3936 /* see the comment on lru_gen_folio */ 3937 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]); 3938 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 3939 3940 if (time_is_after_jiffies(birth + min_ttl)) 3941 return false; 3942 3943 if (!lruvec_is_sizable(lruvec, sc)) 3944 return false; 3945 3946 mem_cgroup_calculate_protection(NULL, memcg); 3947 3948 return !mem_cgroup_below_min(NULL, memcg); 3949 } 3950 3951 /* to protect the working set of the last N jiffies */ 3952 static unsigned long lru_gen_min_ttl __read_mostly; 3953 3954 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 3955 { 3956 struct mem_cgroup *memcg; 3957 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 3958 3959 VM_WARN_ON_ONCE(!current_is_kswapd()); 3960 3961 /* check the order to exclude compaction-induced reclaim */ 3962 if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY) 3963 return; 3964 3965 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3966 do { 3967 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3968 3969 if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) { 3970 mem_cgroup_iter_break(NULL, memcg); 3971 return; 3972 } 3973 3974 cond_resched(); 3975 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 3976 3977 /* 3978 * The main goal is to OOM kill if every generation from all memcgs is 3979 * younger than min_ttl. However, another possibility is all memcgs are 3980 * either too small or below min. 3981 */ 3982 if (mutex_trylock(&oom_lock)) { 3983 struct oom_control oc = { 3984 .gfp_mask = sc->gfp_mask, 3985 }; 3986 3987 out_of_memory(&oc); 3988 3989 mutex_unlock(&oom_lock); 3990 } 3991 } 3992 3993 /****************************************************************************** 3994 * rmap/PT walk feedback 3995 ******************************************************************************/ 3996 3997 /* 3998 * This function exploits spatial locality when shrink_folio_list() walks the 3999 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4000 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4001 * the PTE table to the Bloom filter. This forms a feedback loop between the 4002 * eviction and the aging. 4003 */ 4004 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4005 { 4006 int i; 4007 unsigned long start; 4008 unsigned long end; 4009 struct lru_gen_mm_walk *walk; 4010 int young = 0; 4011 pte_t *pte = pvmw->pte; 4012 unsigned long addr = pvmw->address; 4013 struct vm_area_struct *vma = pvmw->vma; 4014 struct folio *folio = pfn_folio(pvmw->pfn); 4015 bool can_swap = !folio_is_file_lru(folio); 4016 struct mem_cgroup *memcg = folio_memcg(folio); 4017 struct pglist_data *pgdat = folio_pgdat(folio); 4018 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4019 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 4020 DEFINE_MAX_SEQ(lruvec); 4021 int old_gen, new_gen = lru_gen_from_seq(max_seq); 4022 4023 lockdep_assert_held(pvmw->ptl); 4024 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4025 4026 if (spin_is_contended(pvmw->ptl)) 4027 return; 4028 4029 /* exclude special VMAs containing anon pages from COW */ 4030 if (vma->vm_flags & VM_SPECIAL) 4031 return; 4032 4033 /* avoid taking the LRU lock under the PTL when possible */ 4034 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4035 4036 start = max(addr & PMD_MASK, vma->vm_start); 4037 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1; 4038 4039 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4040 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4041 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4042 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) 4043 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4044 else { 4045 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; 4046 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; 4047 } 4048 } 4049 4050 /* folio_update_gen() requires stable folio_memcg() */ 4051 if (!mem_cgroup_trylock_pages(memcg)) 4052 return; 4053 4054 arch_enter_lazy_mmu_mode(); 4055 4056 pte -= (addr - start) / PAGE_SIZE; 4057 4058 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4059 unsigned long pfn; 4060 pte_t ptent = ptep_get(pte + i); 4061 4062 pfn = get_pte_pfn(ptent, vma, addr); 4063 if (pfn == -1) 4064 continue; 4065 4066 if (!pte_young(ptent)) 4067 continue; 4068 4069 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap); 4070 if (!folio) 4071 continue; 4072 4073 if (!ptep_test_and_clear_young(vma, addr, pte + i)) 4074 VM_WARN_ON_ONCE(true); 4075 4076 young++; 4077 4078 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 4079 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4080 !folio_test_swapcache(folio))) 4081 folio_mark_dirty(folio); 4082 4083 if (walk) { 4084 old_gen = folio_update_gen(folio, new_gen); 4085 if (old_gen >= 0 && old_gen != new_gen) 4086 update_batch_size(walk, folio, old_gen, new_gen); 4087 4088 continue; 4089 } 4090 4091 old_gen = folio_lru_gen(folio); 4092 if (old_gen < 0) 4093 folio_set_referenced(folio); 4094 else if (old_gen != new_gen) 4095 folio_activate(folio); 4096 } 4097 4098 arch_leave_lazy_mmu_mode(); 4099 mem_cgroup_unlock_pages(); 4100 4101 /* feedback from rmap walkers to page table walkers */ 4102 if (mm_state && suitable_to_scan(i, young)) 4103 update_bloom_filter(mm_state, max_seq, pvmw->pmd); 4104 } 4105 4106 /****************************************************************************** 4107 * memcg LRU 4108 ******************************************************************************/ 4109 4110 /* see the comment on MEMCG_NR_GENS */ 4111 enum { 4112 MEMCG_LRU_NOP, 4113 MEMCG_LRU_HEAD, 4114 MEMCG_LRU_TAIL, 4115 MEMCG_LRU_OLD, 4116 MEMCG_LRU_YOUNG, 4117 }; 4118 4119 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 4120 { 4121 int seg; 4122 int old, new; 4123 unsigned long flags; 4124 int bin = get_random_u32_below(MEMCG_NR_BINS); 4125 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4126 4127 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags); 4128 4129 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4130 4131 seg = 0; 4132 new = old = lruvec->lrugen.gen; 4133 4134 /* see the comment on MEMCG_NR_GENS */ 4135 if (op == MEMCG_LRU_HEAD) 4136 seg = MEMCG_LRU_HEAD; 4137 else if (op == MEMCG_LRU_TAIL) 4138 seg = MEMCG_LRU_TAIL; 4139 else if (op == MEMCG_LRU_OLD) 4140 new = get_memcg_gen(pgdat->memcg_lru.seq); 4141 else if (op == MEMCG_LRU_YOUNG) 4142 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 4143 else 4144 VM_WARN_ON_ONCE(true); 4145 4146 WRITE_ONCE(lruvec->lrugen.seg, seg); 4147 WRITE_ONCE(lruvec->lrugen.gen, new); 4148 4149 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4150 4151 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 4152 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4153 else 4154 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4155 4156 pgdat->memcg_lru.nr_memcgs[old]--; 4157 pgdat->memcg_lru.nr_memcgs[new]++; 4158 4159 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 4160 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4161 4162 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags); 4163 } 4164 4165 #ifdef CONFIG_MEMCG 4166 4167 void lru_gen_online_memcg(struct mem_cgroup *memcg) 4168 { 4169 int gen; 4170 int nid; 4171 int bin = get_random_u32_below(MEMCG_NR_BINS); 4172 4173 for_each_node(nid) { 4174 struct pglist_data *pgdat = NODE_DATA(nid); 4175 struct lruvec *lruvec = get_lruvec(memcg, nid); 4176 4177 spin_lock_irq(&pgdat->memcg_lru.lock); 4178 4179 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 4180 4181 gen = get_memcg_gen(pgdat->memcg_lru.seq); 4182 4183 lruvec->lrugen.gen = gen; 4184 4185 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 4186 pgdat->memcg_lru.nr_memcgs[gen]++; 4187 4188 spin_unlock_irq(&pgdat->memcg_lru.lock); 4189 } 4190 } 4191 4192 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 4193 { 4194 int nid; 4195 4196 for_each_node(nid) { 4197 struct lruvec *lruvec = get_lruvec(memcg, nid); 4198 4199 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 4200 } 4201 } 4202 4203 void lru_gen_release_memcg(struct mem_cgroup *memcg) 4204 { 4205 int gen; 4206 int nid; 4207 4208 for_each_node(nid) { 4209 struct pglist_data *pgdat = NODE_DATA(nid); 4210 struct lruvec *lruvec = get_lruvec(memcg, nid); 4211 4212 spin_lock_irq(&pgdat->memcg_lru.lock); 4213 4214 if (hlist_nulls_unhashed(&lruvec->lrugen.list)) 4215 goto unlock; 4216 4217 gen = lruvec->lrugen.gen; 4218 4219 hlist_nulls_del_init_rcu(&lruvec->lrugen.list); 4220 pgdat->memcg_lru.nr_memcgs[gen]--; 4221 4222 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 4223 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4224 unlock: 4225 spin_unlock_irq(&pgdat->memcg_lru.lock); 4226 } 4227 } 4228 4229 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 4230 { 4231 struct lruvec *lruvec = get_lruvec(memcg, nid); 4232 4233 /* see the comment on MEMCG_NR_GENS */ 4234 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD) 4235 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 4236 } 4237 4238 #endif /* CONFIG_MEMCG */ 4239 4240 /****************************************************************************** 4241 * the eviction 4242 ******************************************************************************/ 4243 4244 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc, 4245 int tier_idx) 4246 { 4247 bool success; 4248 int gen = folio_lru_gen(folio); 4249 int type = folio_is_file_lru(folio); 4250 int zone = folio_zonenum(folio); 4251 int delta = folio_nr_pages(folio); 4252 int refs = folio_lru_refs(folio); 4253 int tier = lru_tier_from_refs(refs); 4254 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4255 4256 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4257 4258 /* unevictable */ 4259 if (!folio_evictable(folio)) { 4260 success = lru_gen_del_folio(lruvec, folio, true); 4261 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4262 folio_set_unevictable(folio); 4263 lruvec_add_folio(lruvec, folio); 4264 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4265 return true; 4266 } 4267 4268 /* dirty lazyfree */ 4269 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) { 4270 success = lru_gen_del_folio(lruvec, folio, true); 4271 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4272 folio_set_swapbacked(folio); 4273 lruvec_add_folio_tail(lruvec, folio); 4274 return true; 4275 } 4276 4277 /* promoted */ 4278 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4279 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4280 return true; 4281 } 4282 4283 /* protected */ 4284 if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) { 4285 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4286 4287 gen = folio_inc_gen(lruvec, folio, false); 4288 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4289 4290 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 4291 lrugen->protected[hist][type][tier - 1] + delta); 4292 return true; 4293 } 4294 4295 /* ineligible */ 4296 if (zone > sc->reclaim_idx || skip_cma(folio, sc)) { 4297 gen = folio_inc_gen(lruvec, folio, false); 4298 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4299 return true; 4300 } 4301 4302 /* waiting for writeback */ 4303 if (folio_test_locked(folio) || folio_test_writeback(folio) || 4304 (type == LRU_GEN_FILE && folio_test_dirty(folio))) { 4305 gen = folio_inc_gen(lruvec, folio, true); 4306 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4307 return true; 4308 } 4309 4310 return false; 4311 } 4312 4313 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4314 { 4315 bool success; 4316 4317 /* swap constrained */ 4318 if (!(sc->gfp_mask & __GFP_IO) && 4319 (folio_test_dirty(folio) || 4320 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4321 return false; 4322 4323 /* raced with release_pages() */ 4324 if (!folio_try_get(folio)) 4325 return false; 4326 4327 /* raced with another isolation */ 4328 if (!folio_test_clear_lru(folio)) { 4329 folio_put(folio); 4330 return false; 4331 } 4332 4333 /* see the comment on MAX_NR_TIERS */ 4334 if (!folio_test_referenced(folio)) 4335 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); 4336 4337 /* for shrink_folio_list() */ 4338 folio_clear_reclaim(folio); 4339 folio_clear_referenced(folio); 4340 4341 success = lru_gen_del_folio(lruvec, folio, true); 4342 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4343 4344 return true; 4345 } 4346 4347 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 4348 int type, int tier, struct list_head *list) 4349 { 4350 int i; 4351 int gen; 4352 enum vm_event_item item; 4353 int sorted = 0; 4354 int scanned = 0; 4355 int isolated = 0; 4356 int skipped = 0; 4357 int remaining = MAX_LRU_BATCH; 4358 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4359 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4360 4361 VM_WARN_ON_ONCE(!list_empty(list)); 4362 4363 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4364 return 0; 4365 4366 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4367 4368 for (i = MAX_NR_ZONES; i > 0; i--) { 4369 LIST_HEAD(moved); 4370 int skipped_zone = 0; 4371 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES; 4372 struct list_head *head = &lrugen->folios[gen][type][zone]; 4373 4374 while (!list_empty(head)) { 4375 struct folio *folio = lru_to_folio(head); 4376 int delta = folio_nr_pages(folio); 4377 4378 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4379 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4380 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4381 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4382 4383 scanned += delta; 4384 4385 if (sort_folio(lruvec, folio, sc, tier)) 4386 sorted += delta; 4387 else if (isolate_folio(lruvec, folio, sc)) { 4388 list_add(&folio->lru, list); 4389 isolated += delta; 4390 } else { 4391 list_move(&folio->lru, &moved); 4392 skipped_zone += delta; 4393 } 4394 4395 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH) 4396 break; 4397 } 4398 4399 if (skipped_zone) { 4400 list_splice(&moved, head); 4401 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone); 4402 skipped += skipped_zone; 4403 } 4404 4405 if (!remaining || isolated >= MIN_LRU_BATCH) 4406 break; 4407 } 4408 4409 item = PGSCAN_KSWAPD + reclaimer_offset(); 4410 if (!cgroup_reclaim(sc)) { 4411 __count_vm_events(item, isolated); 4412 __count_vm_events(PGREFILL, sorted); 4413 } 4414 __count_memcg_events(memcg, item, isolated); 4415 __count_memcg_events(memcg, PGREFILL, sorted); 4416 __count_vm_events(PGSCAN_ANON + type, isolated); 4417 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH, 4418 scanned, skipped, isolated, 4419 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4420 4421 /* 4422 * There might not be eligible folios due to reclaim_idx. Check the 4423 * remaining to prevent livelock if it's not making progress. 4424 */ 4425 return isolated || !remaining ? scanned : 0; 4426 } 4427 4428 static int get_tier_idx(struct lruvec *lruvec, int type) 4429 { 4430 int tier; 4431 struct ctrl_pos sp, pv; 4432 4433 /* 4434 * To leave a margin for fluctuations, use a larger gain factor (1:2). 4435 * This value is chosen because any other tier would have at least twice 4436 * as many refaults as the first tier. 4437 */ 4438 read_ctrl_pos(lruvec, type, 0, 1, &sp); 4439 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4440 read_ctrl_pos(lruvec, type, tier, 2, &pv); 4441 if (!positive_ctrl_err(&sp, &pv)) 4442 break; 4443 } 4444 4445 return tier - 1; 4446 } 4447 4448 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx) 4449 { 4450 int type, tier; 4451 struct ctrl_pos sp, pv; 4452 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness }; 4453 4454 /* 4455 * Compare the first tier of anon with that of file to determine which 4456 * type to scan. Also need to compare other tiers of the selected type 4457 * with the first tier of the other type to determine the last tier (of 4458 * the selected type) to evict. 4459 */ 4460 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp); 4461 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv); 4462 type = positive_ctrl_err(&sp, &pv); 4463 4464 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp); 4465 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4466 read_ctrl_pos(lruvec, type, tier, gain[type], &pv); 4467 if (!positive_ctrl_err(&sp, &pv)) 4468 break; 4469 } 4470 4471 *tier_idx = tier - 1; 4472 4473 return type; 4474 } 4475 4476 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 4477 int *type_scanned, struct list_head *list) 4478 { 4479 int i; 4480 int type; 4481 int scanned; 4482 int tier = -1; 4483 DEFINE_MIN_SEQ(lruvec); 4484 4485 /* 4486 * Try to make the obvious choice first, and if anon and file are both 4487 * available from the same generation, 4488 * 1. Interpret swappiness 1 as file first and MAX_SWAPPINESS as anon 4489 * first. 4490 * 2. If !__GFP_IO, file first since clean pagecache is more likely to 4491 * exist than clean swapcache. 4492 */ 4493 if (!swappiness) 4494 type = LRU_GEN_FILE; 4495 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE]) 4496 type = LRU_GEN_ANON; 4497 else if (swappiness == 1) 4498 type = LRU_GEN_FILE; 4499 else if (swappiness == 200) 4500 type = LRU_GEN_ANON; 4501 else if (!(sc->gfp_mask & __GFP_IO)) 4502 type = LRU_GEN_FILE; 4503 else 4504 type = get_type_to_scan(lruvec, swappiness, &tier); 4505 4506 for (i = !swappiness; i < ANON_AND_FILE; i++) { 4507 if (tier < 0) 4508 tier = get_tier_idx(lruvec, type); 4509 4510 scanned = scan_folios(lruvec, sc, type, tier, list); 4511 if (scanned) 4512 break; 4513 4514 type = !type; 4515 tier = -1; 4516 } 4517 4518 *type_scanned = type; 4519 4520 return scanned; 4521 } 4522 4523 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 4524 { 4525 int type; 4526 int scanned; 4527 int reclaimed; 4528 LIST_HEAD(list); 4529 LIST_HEAD(clean); 4530 struct folio *folio; 4531 struct folio *next; 4532 enum vm_event_item item; 4533 struct reclaim_stat stat; 4534 struct lru_gen_mm_walk *walk; 4535 bool skip_retry = false; 4536 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4537 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4538 4539 spin_lock_irq(&lruvec->lru_lock); 4540 4541 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 4542 4543 scanned += try_to_inc_min_seq(lruvec, swappiness); 4544 4545 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS) 4546 scanned = 0; 4547 4548 spin_unlock_irq(&lruvec->lru_lock); 4549 4550 if (list_empty(&list)) 4551 return scanned; 4552 retry: 4553 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 4554 sc->nr_reclaimed += reclaimed; 4555 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 4556 scanned, reclaimed, &stat, sc->priority, 4557 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4558 4559 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 4560 if (!folio_evictable(folio)) { 4561 list_del(&folio->lru); 4562 folio_putback_lru(folio); 4563 continue; 4564 } 4565 4566 if (folio_test_reclaim(folio) && 4567 (folio_test_dirty(folio) || folio_test_writeback(folio))) { 4568 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */ 4569 if (folio_test_workingset(folio)) 4570 folio_set_referenced(folio); 4571 continue; 4572 } 4573 4574 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) || 4575 folio_mapped(folio) || folio_test_locked(folio) || 4576 folio_test_dirty(folio) || folio_test_writeback(folio)) { 4577 /* don't add rejected folios to the oldest generation */ 4578 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 4579 BIT(PG_active)); 4580 continue; 4581 } 4582 4583 /* retry folios that may have missed folio_rotate_reclaimable() */ 4584 list_move(&folio->lru, &clean); 4585 sc->nr_scanned -= folio_nr_pages(folio); 4586 } 4587 4588 spin_lock_irq(&lruvec->lru_lock); 4589 4590 move_folios_to_lru(lruvec, &list); 4591 4592 walk = current->reclaim_state->mm_walk; 4593 if (walk && walk->batched) { 4594 walk->lruvec = lruvec; 4595 reset_batch_size(walk); 4596 } 4597 4598 item = PGSTEAL_KSWAPD + reclaimer_offset(); 4599 if (!cgroup_reclaim(sc)) 4600 __count_vm_events(item, reclaimed); 4601 __count_memcg_events(memcg, item, reclaimed); 4602 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 4603 4604 spin_unlock_irq(&lruvec->lru_lock); 4605 4606 list_splice_init(&clean, &list); 4607 4608 if (!list_empty(&list)) { 4609 skip_retry = true; 4610 goto retry; 4611 } 4612 4613 return scanned; 4614 } 4615 4616 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 4617 bool can_swap, unsigned long *nr_to_scan) 4618 { 4619 int gen, type, zone; 4620 unsigned long old = 0; 4621 unsigned long young = 0; 4622 unsigned long total = 0; 4623 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4624 DEFINE_MIN_SEQ(lruvec); 4625 4626 /* whether this lruvec is completely out of cold folios */ 4627 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) { 4628 *nr_to_scan = 0; 4629 return true; 4630 } 4631 4632 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4633 unsigned long seq; 4634 4635 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4636 unsigned long size = 0; 4637 4638 gen = lru_gen_from_seq(seq); 4639 4640 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4641 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4642 4643 total += size; 4644 if (seq == max_seq) 4645 young += size; 4646 else if (seq + MIN_NR_GENS == max_seq) 4647 old += size; 4648 } 4649 } 4650 4651 *nr_to_scan = total; 4652 4653 /* 4654 * The aging tries to be lazy to reduce the overhead, while the eviction 4655 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the 4656 * ideal number of generations is MIN_NR_GENS+1. 4657 */ 4658 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq) 4659 return false; 4660 4661 /* 4662 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1) 4663 * of the total number of pages for each generation. A reasonable range 4664 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The 4665 * aging cares about the upper bound of hot pages, while the eviction 4666 * cares about the lower bound of cold pages. 4667 */ 4668 if (young * MIN_NR_GENS > total) 4669 return true; 4670 if (old * (MIN_NR_GENS + 2) < total) 4671 return true; 4672 4673 return false; 4674 } 4675 4676 /* 4677 * For future optimizations: 4678 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 4679 * reclaim. 4680 */ 4681 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap) 4682 { 4683 bool success; 4684 unsigned long nr_to_scan; 4685 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4686 DEFINE_MAX_SEQ(lruvec); 4687 4688 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 4689 return -1; 4690 4691 success = should_run_aging(lruvec, max_seq, can_swap, &nr_to_scan); 4692 4693 /* try to scrape all its memory if this memcg was deleted */ 4694 if (nr_to_scan && !mem_cgroup_online(memcg)) 4695 return nr_to_scan; 4696 4697 /* try to get away with not aging at the default priority */ 4698 if (!success || sc->priority == DEF_PRIORITY) 4699 return nr_to_scan >> sc->priority; 4700 4701 /* stop scanning this lruvec as it's low on cold folios */ 4702 return try_to_inc_max_seq(lruvec, max_seq, can_swap, false) ? -1 : 0; 4703 } 4704 4705 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc) 4706 { 4707 int i; 4708 enum zone_watermarks mark; 4709 4710 /* don't abort memcg reclaim to ensure fairness */ 4711 if (!root_reclaim(sc)) 4712 return false; 4713 4714 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order))) 4715 return true; 4716 4717 /* check the order to exclude compaction-induced reclaim */ 4718 if (!current_is_kswapd() || sc->order) 4719 return false; 4720 4721 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ? 4722 WMARK_PROMO : WMARK_HIGH; 4723 4724 for (i = 0; i <= sc->reclaim_idx; i++) { 4725 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i; 4726 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH; 4727 4728 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0)) 4729 return false; 4730 } 4731 4732 /* kswapd should abort if all eligible zones are safe */ 4733 return true; 4734 } 4735 4736 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4737 { 4738 long nr_to_scan; 4739 unsigned long scanned = 0; 4740 int swappiness = get_swappiness(lruvec, sc); 4741 4742 while (true) { 4743 int delta; 4744 4745 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 4746 if (nr_to_scan <= 0) 4747 break; 4748 4749 delta = evict_folios(lruvec, sc, swappiness); 4750 if (!delta) 4751 break; 4752 4753 scanned += delta; 4754 if (scanned >= nr_to_scan) 4755 break; 4756 4757 if (should_abort_scan(lruvec, sc)) 4758 break; 4759 4760 cond_resched(); 4761 } 4762 4763 /* whether this lruvec should be rotated */ 4764 return nr_to_scan < 0; 4765 } 4766 4767 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 4768 { 4769 bool success; 4770 unsigned long scanned = sc->nr_scanned; 4771 unsigned long reclaimed = sc->nr_reclaimed; 4772 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4773 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4774 4775 mem_cgroup_calculate_protection(NULL, memcg); 4776 4777 if (mem_cgroup_below_min(NULL, memcg)) 4778 return MEMCG_LRU_YOUNG; 4779 4780 if (mem_cgroup_below_low(NULL, memcg)) { 4781 /* see the comment on MEMCG_NR_GENS */ 4782 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL) 4783 return MEMCG_LRU_TAIL; 4784 4785 memcg_memory_event(memcg, MEMCG_LOW); 4786 } 4787 4788 success = try_to_shrink_lruvec(lruvec, sc); 4789 4790 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 4791 4792 if (!sc->proactive) 4793 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 4794 sc->nr_reclaimed - reclaimed); 4795 4796 flush_reclaim_state(sc); 4797 4798 if (success && mem_cgroup_online(memcg)) 4799 return MEMCG_LRU_YOUNG; 4800 4801 if (!success && lruvec_is_sizable(lruvec, sc)) 4802 return 0; 4803 4804 /* one retry if offlined or too small */ 4805 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ? 4806 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 4807 } 4808 4809 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 4810 { 4811 int op; 4812 int gen; 4813 int bin; 4814 int first_bin; 4815 struct lruvec *lruvec; 4816 struct lru_gen_folio *lrugen; 4817 struct mem_cgroup *memcg; 4818 struct hlist_nulls_node *pos; 4819 4820 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 4821 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 4822 restart: 4823 op = 0; 4824 memcg = NULL; 4825 4826 rcu_read_lock(); 4827 4828 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 4829 if (op) { 4830 lru_gen_rotate_memcg(lruvec, op); 4831 op = 0; 4832 } 4833 4834 mem_cgroup_put(memcg); 4835 memcg = NULL; 4836 4837 if (gen != READ_ONCE(lrugen->gen)) 4838 continue; 4839 4840 lruvec = container_of(lrugen, struct lruvec, lrugen); 4841 memcg = lruvec_memcg(lruvec); 4842 4843 if (!mem_cgroup_tryget(memcg)) { 4844 lru_gen_release_memcg(memcg); 4845 memcg = NULL; 4846 continue; 4847 } 4848 4849 rcu_read_unlock(); 4850 4851 op = shrink_one(lruvec, sc); 4852 4853 rcu_read_lock(); 4854 4855 if (should_abort_scan(lruvec, sc)) 4856 break; 4857 } 4858 4859 rcu_read_unlock(); 4860 4861 if (op) 4862 lru_gen_rotate_memcg(lruvec, op); 4863 4864 mem_cgroup_put(memcg); 4865 4866 if (!is_a_nulls(pos)) 4867 return; 4868 4869 /* restart if raced with lru_gen_rotate_memcg() */ 4870 if (gen != get_nulls_value(pos)) 4871 goto restart; 4872 4873 /* try the rest of the bins of the current generation */ 4874 bin = get_memcg_bin(bin + 1); 4875 if (bin != first_bin) 4876 goto restart; 4877 } 4878 4879 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4880 { 4881 struct blk_plug plug; 4882 4883 VM_WARN_ON_ONCE(root_reclaim(sc)); 4884 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 4885 4886 lru_add_drain(); 4887 4888 blk_start_plug(&plug); 4889 4890 set_mm_walk(NULL, sc->proactive); 4891 4892 if (try_to_shrink_lruvec(lruvec, sc)) 4893 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 4894 4895 clear_mm_walk(); 4896 4897 blk_finish_plug(&plug); 4898 } 4899 4900 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 4901 { 4902 int priority; 4903 unsigned long reclaimable; 4904 4905 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 4906 return; 4907 /* 4908 * Determine the initial priority based on 4909 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, 4910 * where reclaimed_to_scanned_ratio = inactive / total. 4911 */ 4912 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 4913 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 4914 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 4915 4916 /* round down reclaimable and round up sc->nr_to_reclaim */ 4917 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 4918 4919 sc->priority = clamp(priority, 0, DEF_PRIORITY); 4920 } 4921 4922 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 4923 { 4924 struct blk_plug plug; 4925 unsigned long reclaimed = sc->nr_reclaimed; 4926 4927 VM_WARN_ON_ONCE(!root_reclaim(sc)); 4928 4929 /* 4930 * Unmapped clean folios are already prioritized. Scanning for more of 4931 * them is likely futile and can cause high reclaim latency when there 4932 * is a large number of memcgs. 4933 */ 4934 if (!sc->may_writepage || !sc->may_unmap) 4935 goto done; 4936 4937 lru_add_drain(); 4938 4939 blk_start_plug(&plug); 4940 4941 set_mm_walk(pgdat, sc->proactive); 4942 4943 set_initial_priority(pgdat, sc); 4944 4945 if (current_is_kswapd()) 4946 sc->nr_reclaimed = 0; 4947 4948 if (mem_cgroup_disabled()) 4949 shrink_one(&pgdat->__lruvec, sc); 4950 else 4951 shrink_many(pgdat, sc); 4952 4953 if (current_is_kswapd()) 4954 sc->nr_reclaimed += reclaimed; 4955 4956 clear_mm_walk(); 4957 4958 blk_finish_plug(&plug); 4959 done: 4960 /* kswapd should never fail */ 4961 pgdat->kswapd_failures = 0; 4962 } 4963 4964 /****************************************************************************** 4965 * state change 4966 ******************************************************************************/ 4967 4968 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 4969 { 4970 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4971 4972 if (lrugen->enabled) { 4973 enum lru_list lru; 4974 4975 for_each_evictable_lru(lru) { 4976 if (!list_empty(&lruvec->lists[lru])) 4977 return false; 4978 } 4979 } else { 4980 int gen, type, zone; 4981 4982 for_each_gen_type_zone(gen, type, zone) { 4983 if (!list_empty(&lrugen->folios[gen][type][zone])) 4984 return false; 4985 } 4986 } 4987 4988 return true; 4989 } 4990 4991 static bool fill_evictable(struct lruvec *lruvec) 4992 { 4993 enum lru_list lru; 4994 int remaining = MAX_LRU_BATCH; 4995 4996 for_each_evictable_lru(lru) { 4997 int type = is_file_lru(lru); 4998 bool active = is_active_lru(lru); 4999 struct list_head *head = &lruvec->lists[lru]; 5000 5001 while (!list_empty(head)) { 5002 bool success; 5003 struct folio *folio = lru_to_folio(head); 5004 5005 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5006 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5007 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5008 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5009 5010 lruvec_del_folio(lruvec, folio); 5011 success = lru_gen_add_folio(lruvec, folio, false); 5012 VM_WARN_ON_ONCE(!success); 5013 5014 if (!--remaining) 5015 return false; 5016 } 5017 } 5018 5019 return true; 5020 } 5021 5022 static bool drain_evictable(struct lruvec *lruvec) 5023 { 5024 int gen, type, zone; 5025 int remaining = MAX_LRU_BATCH; 5026 5027 for_each_gen_type_zone(gen, type, zone) { 5028 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5029 5030 while (!list_empty(head)) { 5031 bool success; 5032 struct folio *folio = lru_to_folio(head); 5033 5034 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5035 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5036 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5037 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5038 5039 success = lru_gen_del_folio(lruvec, folio, false); 5040 VM_WARN_ON_ONCE(!success); 5041 lruvec_add_folio(lruvec, folio); 5042 5043 if (!--remaining) 5044 return false; 5045 } 5046 } 5047 5048 return true; 5049 } 5050 5051 static void lru_gen_change_state(bool enabled) 5052 { 5053 static DEFINE_MUTEX(state_mutex); 5054 5055 struct mem_cgroup *memcg; 5056 5057 cgroup_lock(); 5058 cpus_read_lock(); 5059 get_online_mems(); 5060 mutex_lock(&state_mutex); 5061 5062 if (enabled == lru_gen_enabled()) 5063 goto unlock; 5064 5065 if (enabled) 5066 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5067 else 5068 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5069 5070 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5071 do { 5072 int nid; 5073 5074 for_each_node(nid) { 5075 struct lruvec *lruvec = get_lruvec(memcg, nid); 5076 5077 spin_lock_irq(&lruvec->lru_lock); 5078 5079 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5080 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5081 5082 lruvec->lrugen.enabled = enabled; 5083 5084 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5085 spin_unlock_irq(&lruvec->lru_lock); 5086 cond_resched(); 5087 spin_lock_irq(&lruvec->lru_lock); 5088 } 5089 5090 spin_unlock_irq(&lruvec->lru_lock); 5091 } 5092 5093 cond_resched(); 5094 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5095 unlock: 5096 mutex_unlock(&state_mutex); 5097 put_online_mems(); 5098 cpus_read_unlock(); 5099 cgroup_unlock(); 5100 } 5101 5102 /****************************************************************************** 5103 * sysfs interface 5104 ******************************************************************************/ 5105 5106 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5107 { 5108 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5109 } 5110 5111 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5112 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, 5113 const char *buf, size_t len) 5114 { 5115 unsigned int msecs; 5116 5117 if (kstrtouint(buf, 0, &msecs)) 5118 return -EINVAL; 5119 5120 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5121 5122 return len; 5123 } 5124 5125 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); 5126 5127 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5128 { 5129 unsigned int caps = 0; 5130 5131 if (get_cap(LRU_GEN_CORE)) 5132 caps |= BIT(LRU_GEN_CORE); 5133 5134 if (should_walk_mmu()) 5135 caps |= BIT(LRU_GEN_MM_WALK); 5136 5137 if (should_clear_pmd_young()) 5138 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5139 5140 return sysfs_emit(buf, "0x%04x\n", caps); 5141 } 5142 5143 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5144 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 5145 const char *buf, size_t len) 5146 { 5147 int i; 5148 unsigned int caps; 5149 5150 if (tolower(*buf) == 'n') 5151 caps = 0; 5152 else if (tolower(*buf) == 'y') 5153 caps = -1; 5154 else if (kstrtouint(buf, 0, &caps)) 5155 return -EINVAL; 5156 5157 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5158 bool enabled = caps & BIT(i); 5159 5160 if (i == LRU_GEN_CORE) 5161 lru_gen_change_state(enabled); 5162 else if (enabled) 5163 static_branch_enable(&lru_gen_caps[i]); 5164 else 5165 static_branch_disable(&lru_gen_caps[i]); 5166 } 5167 5168 return len; 5169 } 5170 5171 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); 5172 5173 static struct attribute *lru_gen_attrs[] = { 5174 &lru_gen_min_ttl_attr.attr, 5175 &lru_gen_enabled_attr.attr, 5176 NULL 5177 }; 5178 5179 static const struct attribute_group lru_gen_attr_group = { 5180 .name = "lru_gen", 5181 .attrs = lru_gen_attrs, 5182 }; 5183 5184 /****************************************************************************** 5185 * debugfs interface 5186 ******************************************************************************/ 5187 5188 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5189 { 5190 struct mem_cgroup *memcg; 5191 loff_t nr_to_skip = *pos; 5192 5193 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5194 if (!m->private) 5195 return ERR_PTR(-ENOMEM); 5196 5197 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5198 do { 5199 int nid; 5200 5201 for_each_node_state(nid, N_MEMORY) { 5202 if (!nr_to_skip--) 5203 return get_lruvec(memcg, nid); 5204 } 5205 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5206 5207 return NULL; 5208 } 5209 5210 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5211 { 5212 if (!IS_ERR_OR_NULL(v)) 5213 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5214 5215 kvfree(m->private); 5216 m->private = NULL; 5217 } 5218 5219 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5220 { 5221 int nid = lruvec_pgdat(v)->node_id; 5222 struct mem_cgroup *memcg = lruvec_memcg(v); 5223 5224 ++*pos; 5225 5226 nid = next_memory_node(nid); 5227 if (nid == MAX_NUMNODES) { 5228 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5229 if (!memcg) 5230 return NULL; 5231 5232 nid = first_memory_node; 5233 } 5234 5235 return get_lruvec(memcg, nid); 5236 } 5237 5238 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5239 unsigned long max_seq, unsigned long *min_seq, 5240 unsigned long seq) 5241 { 5242 int i; 5243 int type, tier; 5244 int hist = lru_hist_from_seq(seq); 5245 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5246 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5247 5248 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5249 seq_printf(m, " %10d", tier); 5250 for (type = 0; type < ANON_AND_FILE; type++) { 5251 const char *s = " "; 5252 unsigned long n[3] = {}; 5253 5254 if (seq == max_seq) { 5255 s = "RT "; 5256 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5257 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5258 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5259 s = "rep"; 5260 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5261 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5262 if (tier) 5263 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]); 5264 } 5265 5266 for (i = 0; i < 3; i++) 5267 seq_printf(m, " %10lu%c", n[i], s[i]); 5268 } 5269 seq_putc(m, '\n'); 5270 } 5271 5272 if (!mm_state) 5273 return; 5274 5275 seq_puts(m, " "); 5276 for (i = 0; i < NR_MM_STATS; i++) { 5277 const char *s = " "; 5278 unsigned long n = 0; 5279 5280 if (seq == max_seq && NR_HIST_GENS == 1) { 5281 s = "LOYNFA"; 5282 n = READ_ONCE(mm_state->stats[hist][i]); 5283 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5284 s = "loynfa"; 5285 n = READ_ONCE(mm_state->stats[hist][i]); 5286 } 5287 5288 seq_printf(m, " %10lu%c", n, s[i]); 5289 } 5290 seq_putc(m, '\n'); 5291 } 5292 5293 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5294 static int lru_gen_seq_show(struct seq_file *m, void *v) 5295 { 5296 unsigned long seq; 5297 bool full = !debugfs_real_fops(m->file)->write; 5298 struct lruvec *lruvec = v; 5299 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5300 int nid = lruvec_pgdat(lruvec)->node_id; 5301 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5302 DEFINE_MAX_SEQ(lruvec); 5303 DEFINE_MIN_SEQ(lruvec); 5304 5305 if (nid == first_memory_node) { 5306 const char *path = memcg ? m->private : ""; 5307 5308 #ifdef CONFIG_MEMCG 5309 if (memcg) 5310 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5311 #endif 5312 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5313 } 5314 5315 seq_printf(m, " node %5d\n", nid); 5316 5317 if (!full) 5318 seq = min_seq[LRU_GEN_ANON]; 5319 else if (max_seq >= MAX_NR_GENS) 5320 seq = max_seq - MAX_NR_GENS + 1; 5321 else 5322 seq = 0; 5323 5324 for (; seq <= max_seq; seq++) { 5325 int type, zone; 5326 int gen = lru_gen_from_seq(seq); 5327 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5328 5329 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5330 5331 for (type = 0; type < ANON_AND_FILE; type++) { 5332 unsigned long size = 0; 5333 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5334 5335 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5336 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5337 5338 seq_printf(m, " %10lu%c", size, mark); 5339 } 5340 5341 seq_putc(m, '\n'); 5342 5343 if (full) 5344 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5345 } 5346 5347 return 0; 5348 } 5349 5350 static const struct seq_operations lru_gen_seq_ops = { 5351 .start = lru_gen_seq_start, 5352 .stop = lru_gen_seq_stop, 5353 .next = lru_gen_seq_next, 5354 .show = lru_gen_seq_show, 5355 }; 5356 5357 static int run_aging(struct lruvec *lruvec, unsigned long seq, 5358 bool can_swap, bool force_scan) 5359 { 5360 DEFINE_MAX_SEQ(lruvec); 5361 DEFINE_MIN_SEQ(lruvec); 5362 5363 if (seq < max_seq) 5364 return 0; 5365 5366 if (seq > max_seq) 5367 return -EINVAL; 5368 5369 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq) 5370 return -ERANGE; 5371 5372 try_to_inc_max_seq(lruvec, max_seq, can_swap, force_scan); 5373 5374 return 0; 5375 } 5376 5377 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5378 int swappiness, unsigned long nr_to_reclaim) 5379 { 5380 DEFINE_MAX_SEQ(lruvec); 5381 5382 if (seq + MIN_NR_GENS > max_seq) 5383 return -EINVAL; 5384 5385 sc->nr_reclaimed = 0; 5386 5387 while (!signal_pending(current)) { 5388 DEFINE_MIN_SEQ(lruvec); 5389 5390 if (seq < min_seq[!swappiness]) 5391 return 0; 5392 5393 if (sc->nr_reclaimed >= nr_to_reclaim) 5394 return 0; 5395 5396 if (!evict_folios(lruvec, sc, swappiness)) 5397 return 0; 5398 5399 cond_resched(); 5400 } 5401 5402 return -EINTR; 5403 } 5404 5405 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5406 struct scan_control *sc, int swappiness, unsigned long opt) 5407 { 5408 struct lruvec *lruvec; 5409 int err = -EINVAL; 5410 struct mem_cgroup *memcg = NULL; 5411 5412 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5413 return -EINVAL; 5414 5415 if (!mem_cgroup_disabled()) { 5416 rcu_read_lock(); 5417 5418 memcg = mem_cgroup_from_id(memcg_id); 5419 if (!mem_cgroup_tryget(memcg)) 5420 memcg = NULL; 5421 5422 rcu_read_unlock(); 5423 5424 if (!memcg) 5425 return -EINVAL; 5426 } 5427 5428 if (memcg_id != mem_cgroup_id(memcg)) 5429 goto done; 5430 5431 lruvec = get_lruvec(memcg, nid); 5432 5433 if (swappiness < 0) 5434 swappiness = get_swappiness(lruvec, sc); 5435 else if (swappiness > 200) 5436 goto done; 5437 5438 switch (cmd) { 5439 case '+': 5440 err = run_aging(lruvec, seq, swappiness, opt); 5441 break; 5442 case '-': 5443 err = run_eviction(lruvec, seq, sc, swappiness, opt); 5444 break; 5445 } 5446 done: 5447 mem_cgroup_put(memcg); 5448 5449 return err; 5450 } 5451 5452 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5453 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 5454 size_t len, loff_t *pos) 5455 { 5456 void *buf; 5457 char *cur, *next; 5458 unsigned int flags; 5459 struct blk_plug plug; 5460 int err = -EINVAL; 5461 struct scan_control sc = { 5462 .may_writepage = true, 5463 .may_unmap = true, 5464 .may_swap = true, 5465 .reclaim_idx = MAX_NR_ZONES - 1, 5466 .gfp_mask = GFP_KERNEL, 5467 }; 5468 5469 buf = kvmalloc(len + 1, GFP_KERNEL); 5470 if (!buf) 5471 return -ENOMEM; 5472 5473 if (copy_from_user(buf, src, len)) { 5474 kvfree(buf); 5475 return -EFAULT; 5476 } 5477 5478 set_task_reclaim_state(current, &sc.reclaim_state); 5479 flags = memalloc_noreclaim_save(); 5480 blk_start_plug(&plug); 5481 if (!set_mm_walk(NULL, true)) { 5482 err = -ENOMEM; 5483 goto done; 5484 } 5485 5486 next = buf; 5487 next[len] = '\0'; 5488 5489 while ((cur = strsep(&next, ",;\n"))) { 5490 int n; 5491 int end; 5492 char cmd; 5493 unsigned int memcg_id; 5494 unsigned int nid; 5495 unsigned long seq; 5496 unsigned int swappiness = -1; 5497 unsigned long opt = -1; 5498 5499 cur = skip_spaces(cur); 5500 if (!*cur) 5501 continue; 5502 5503 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 5504 &seq, &end, &swappiness, &end, &opt, &end); 5505 if (n < 4 || cur[end]) { 5506 err = -EINVAL; 5507 break; 5508 } 5509 5510 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 5511 if (err) 5512 break; 5513 } 5514 done: 5515 clear_mm_walk(); 5516 blk_finish_plug(&plug); 5517 memalloc_noreclaim_restore(flags); 5518 set_task_reclaim_state(current, NULL); 5519 5520 kvfree(buf); 5521 5522 return err ? : len; 5523 } 5524 5525 static int lru_gen_seq_open(struct inode *inode, struct file *file) 5526 { 5527 return seq_open(file, &lru_gen_seq_ops); 5528 } 5529 5530 static const struct file_operations lru_gen_rw_fops = { 5531 .open = lru_gen_seq_open, 5532 .read = seq_read, 5533 .write = lru_gen_seq_write, 5534 .llseek = seq_lseek, 5535 .release = seq_release, 5536 }; 5537 5538 static const struct file_operations lru_gen_ro_fops = { 5539 .open = lru_gen_seq_open, 5540 .read = seq_read, 5541 .llseek = seq_lseek, 5542 .release = seq_release, 5543 }; 5544 5545 /****************************************************************************** 5546 * initialization 5547 ******************************************************************************/ 5548 5549 void lru_gen_init_pgdat(struct pglist_data *pgdat) 5550 { 5551 int i, j; 5552 5553 spin_lock_init(&pgdat->memcg_lru.lock); 5554 5555 for (i = 0; i < MEMCG_NR_GENS; i++) { 5556 for (j = 0; j < MEMCG_NR_BINS; j++) 5557 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 5558 } 5559 } 5560 5561 void lru_gen_init_lruvec(struct lruvec *lruvec) 5562 { 5563 int i; 5564 int gen, type, zone; 5565 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5566 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5567 5568 lrugen->max_seq = MIN_NR_GENS + 1; 5569 lrugen->enabled = lru_gen_enabled(); 5570 5571 for (i = 0; i <= MIN_NR_GENS + 1; i++) 5572 lrugen->timestamps[i] = jiffies; 5573 5574 for_each_gen_type_zone(gen, type, zone) 5575 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 5576 5577 if (mm_state) 5578 mm_state->seq = MIN_NR_GENS; 5579 } 5580 5581 #ifdef CONFIG_MEMCG 5582 5583 void lru_gen_init_memcg(struct mem_cgroup *memcg) 5584 { 5585 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5586 5587 if (!mm_list) 5588 return; 5589 5590 INIT_LIST_HEAD(&mm_list->fifo); 5591 spin_lock_init(&mm_list->lock); 5592 } 5593 5594 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 5595 { 5596 int i; 5597 int nid; 5598 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5599 5600 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo)); 5601 5602 for_each_node(nid) { 5603 struct lruvec *lruvec = get_lruvec(memcg, nid); 5604 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5605 5606 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 5607 sizeof(lruvec->lrugen.nr_pages))); 5608 5609 lruvec->lrugen.list.next = LIST_POISON1; 5610 5611 if (!mm_state) 5612 continue; 5613 5614 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 5615 bitmap_free(mm_state->filters[i]); 5616 mm_state->filters[i] = NULL; 5617 } 5618 } 5619 } 5620 5621 #endif /* CONFIG_MEMCG */ 5622 5623 static int __init init_lru_gen(void) 5624 { 5625 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 5626 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 5627 5628 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 5629 pr_err("lru_gen: failed to create sysfs group\n"); 5630 5631 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 5632 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 5633 5634 return 0; 5635 }; 5636 late_initcall(init_lru_gen); 5637 5638 #else /* !CONFIG_LRU_GEN */ 5639 5640 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 5641 { 5642 BUILD_BUG(); 5643 } 5644 5645 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5646 { 5647 BUILD_BUG(); 5648 } 5649 5650 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5651 { 5652 BUILD_BUG(); 5653 } 5654 5655 #endif /* CONFIG_LRU_GEN */ 5656 5657 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5658 { 5659 unsigned long nr[NR_LRU_LISTS]; 5660 unsigned long targets[NR_LRU_LISTS]; 5661 unsigned long nr_to_scan; 5662 enum lru_list lru; 5663 unsigned long nr_reclaimed = 0; 5664 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 5665 bool proportional_reclaim; 5666 struct blk_plug plug; 5667 5668 if (lru_gen_enabled() && !root_reclaim(sc)) { 5669 lru_gen_shrink_lruvec(lruvec, sc); 5670 return; 5671 } 5672 5673 get_scan_count(lruvec, sc, nr); 5674 5675 /* Record the original scan target for proportional adjustments later */ 5676 memcpy(targets, nr, sizeof(nr)); 5677 5678 /* 5679 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 5680 * event that can occur when there is little memory pressure e.g. 5681 * multiple streaming readers/writers. Hence, we do not abort scanning 5682 * when the requested number of pages are reclaimed when scanning at 5683 * DEF_PRIORITY on the assumption that the fact we are direct 5684 * reclaiming implies that kswapd is not keeping up and it is best to 5685 * do a batch of work at once. For memcg reclaim one check is made to 5686 * abort proportional reclaim if either the file or anon lru has already 5687 * dropped to zero at the first pass. 5688 */ 5689 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 5690 sc->priority == DEF_PRIORITY); 5691 5692 blk_start_plug(&plug); 5693 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 5694 nr[LRU_INACTIVE_FILE]) { 5695 unsigned long nr_anon, nr_file, percentage; 5696 unsigned long nr_scanned; 5697 5698 for_each_evictable_lru(lru) { 5699 if (nr[lru]) { 5700 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 5701 nr[lru] -= nr_to_scan; 5702 5703 nr_reclaimed += shrink_list(lru, nr_to_scan, 5704 lruvec, sc); 5705 } 5706 } 5707 5708 cond_resched(); 5709 5710 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 5711 continue; 5712 5713 /* 5714 * For kswapd and memcg, reclaim at least the number of pages 5715 * requested. Ensure that the anon and file LRUs are scanned 5716 * proportionally what was requested by get_scan_count(). We 5717 * stop reclaiming one LRU and reduce the amount scanning 5718 * proportional to the original scan target. 5719 */ 5720 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 5721 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 5722 5723 /* 5724 * It's just vindictive to attack the larger once the smaller 5725 * has gone to zero. And given the way we stop scanning the 5726 * smaller below, this makes sure that we only make one nudge 5727 * towards proportionality once we've got nr_to_reclaim. 5728 */ 5729 if (!nr_file || !nr_anon) 5730 break; 5731 5732 if (nr_file > nr_anon) { 5733 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 5734 targets[LRU_ACTIVE_ANON] + 1; 5735 lru = LRU_BASE; 5736 percentage = nr_anon * 100 / scan_target; 5737 } else { 5738 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 5739 targets[LRU_ACTIVE_FILE] + 1; 5740 lru = LRU_FILE; 5741 percentage = nr_file * 100 / scan_target; 5742 } 5743 5744 /* Stop scanning the smaller of the LRU */ 5745 nr[lru] = 0; 5746 nr[lru + LRU_ACTIVE] = 0; 5747 5748 /* 5749 * Recalculate the other LRU scan count based on its original 5750 * scan target and the percentage scanning already complete 5751 */ 5752 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 5753 nr_scanned = targets[lru] - nr[lru]; 5754 nr[lru] = targets[lru] * (100 - percentage) / 100; 5755 nr[lru] -= min(nr[lru], nr_scanned); 5756 5757 lru += LRU_ACTIVE; 5758 nr_scanned = targets[lru] - nr[lru]; 5759 nr[lru] = targets[lru] * (100 - percentage) / 100; 5760 nr[lru] -= min(nr[lru], nr_scanned); 5761 } 5762 blk_finish_plug(&plug); 5763 sc->nr_reclaimed += nr_reclaimed; 5764 5765 /* 5766 * Even if we did not try to evict anon pages at all, we want to 5767 * rebalance the anon lru active/inactive ratio. 5768 */ 5769 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 5770 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 5771 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 5772 sc, LRU_ACTIVE_ANON); 5773 } 5774 5775 /* Use reclaim/compaction for costly allocs or under memory pressure */ 5776 static bool in_reclaim_compaction(struct scan_control *sc) 5777 { 5778 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order && 5779 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 5780 sc->priority < DEF_PRIORITY - 2)) 5781 return true; 5782 5783 return false; 5784 } 5785 5786 /* 5787 * Reclaim/compaction is used for high-order allocation requests. It reclaims 5788 * order-0 pages before compacting the zone. should_continue_reclaim() returns 5789 * true if more pages should be reclaimed such that when the page allocator 5790 * calls try_to_compact_pages() that it will have enough free pages to succeed. 5791 * It will give up earlier than that if there is difficulty reclaiming pages. 5792 */ 5793 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 5794 unsigned long nr_reclaimed, 5795 struct scan_control *sc) 5796 { 5797 unsigned long pages_for_compaction; 5798 unsigned long inactive_lru_pages; 5799 int z; 5800 5801 /* If not in reclaim/compaction mode, stop */ 5802 if (!in_reclaim_compaction(sc)) 5803 return false; 5804 5805 /* 5806 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 5807 * number of pages that were scanned. This will return to the caller 5808 * with the risk reclaim/compaction and the resulting allocation attempt 5809 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 5810 * allocations through requiring that the full LRU list has been scanned 5811 * first, by assuming that zero delta of sc->nr_scanned means full LRU 5812 * scan, but that approximation was wrong, and there were corner cases 5813 * where always a non-zero amount of pages were scanned. 5814 */ 5815 if (!nr_reclaimed) 5816 return false; 5817 5818 /* If compaction would go ahead or the allocation would succeed, stop */ 5819 for (z = 0; z <= sc->reclaim_idx; z++) { 5820 struct zone *zone = &pgdat->node_zones[z]; 5821 if (!managed_zone(zone)) 5822 continue; 5823 5824 /* Allocation can already succeed, nothing to do */ 5825 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 5826 sc->reclaim_idx, 0)) 5827 return false; 5828 5829 if (compaction_suitable(zone, sc->order, sc->reclaim_idx)) 5830 return false; 5831 } 5832 5833 /* 5834 * If we have not reclaimed enough pages for compaction and the 5835 * inactive lists are large enough, continue reclaiming 5836 */ 5837 pages_for_compaction = compact_gap(sc->order); 5838 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 5839 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 5840 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 5841 5842 return inactive_lru_pages > pages_for_compaction; 5843 } 5844 5845 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 5846 { 5847 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 5848 struct mem_cgroup *memcg; 5849 5850 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 5851 do { 5852 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 5853 unsigned long reclaimed; 5854 unsigned long scanned; 5855 5856 /* 5857 * This loop can become CPU-bound when target memcgs 5858 * aren't eligible for reclaim - either because they 5859 * don't have any reclaimable pages, or because their 5860 * memory is explicitly protected. Avoid soft lockups. 5861 */ 5862 cond_resched(); 5863 5864 mem_cgroup_calculate_protection(target_memcg, memcg); 5865 5866 if (mem_cgroup_below_min(target_memcg, memcg)) { 5867 /* 5868 * Hard protection. 5869 * If there is no reclaimable memory, OOM. 5870 */ 5871 continue; 5872 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 5873 /* 5874 * Soft protection. 5875 * Respect the protection only as long as 5876 * there is an unprotected supply 5877 * of reclaimable memory from other cgroups. 5878 */ 5879 if (!sc->memcg_low_reclaim) { 5880 sc->memcg_low_skipped = 1; 5881 continue; 5882 } 5883 memcg_memory_event(memcg, MEMCG_LOW); 5884 } 5885 5886 reclaimed = sc->nr_reclaimed; 5887 scanned = sc->nr_scanned; 5888 5889 shrink_lruvec(lruvec, sc); 5890 5891 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 5892 sc->priority); 5893 5894 /* Record the group's reclaim efficiency */ 5895 if (!sc->proactive) 5896 vmpressure(sc->gfp_mask, memcg, false, 5897 sc->nr_scanned - scanned, 5898 sc->nr_reclaimed - reclaimed); 5899 5900 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 5901 } 5902 5903 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 5904 { 5905 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; 5906 struct lruvec *target_lruvec; 5907 bool reclaimable = false; 5908 5909 if (lru_gen_enabled() && root_reclaim(sc)) { 5910 lru_gen_shrink_node(pgdat, sc); 5911 return; 5912 } 5913 5914 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 5915 5916 again: 5917 memset(&sc->nr, 0, sizeof(sc->nr)); 5918 5919 nr_reclaimed = sc->nr_reclaimed; 5920 nr_scanned = sc->nr_scanned; 5921 5922 prepare_scan_control(pgdat, sc); 5923 5924 shrink_node_memcgs(pgdat, sc); 5925 5926 flush_reclaim_state(sc); 5927 5928 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; 5929 5930 /* Record the subtree's reclaim efficiency */ 5931 if (!sc->proactive) 5932 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 5933 sc->nr_scanned - nr_scanned, nr_node_reclaimed); 5934 5935 if (nr_node_reclaimed) 5936 reclaimable = true; 5937 5938 if (current_is_kswapd()) { 5939 /* 5940 * If reclaim is isolating dirty pages under writeback, 5941 * it implies that the long-lived page allocation rate 5942 * is exceeding the page laundering rate. Either the 5943 * global limits are not being effective at throttling 5944 * processes due to the page distribution throughout 5945 * zones or there is heavy usage of a slow backing 5946 * device. The only option is to throttle from reclaim 5947 * context which is not ideal as there is no guarantee 5948 * the dirtying process is throttled in the same way 5949 * balance_dirty_pages() manages. 5950 * 5951 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 5952 * count the number of pages under pages flagged for 5953 * immediate reclaim and stall if any are encountered 5954 * in the nr_immediate check below. 5955 */ 5956 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 5957 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 5958 5959 /* Allow kswapd to start writing pages during reclaim.*/ 5960 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 5961 set_bit(PGDAT_DIRTY, &pgdat->flags); 5962 5963 /* 5964 * If kswapd scans pages marked for immediate 5965 * reclaim and under writeback (nr_immediate), it 5966 * implies that pages are cycling through the LRU 5967 * faster than they are written so forcibly stall 5968 * until some pages complete writeback. 5969 */ 5970 if (sc->nr.immediate) 5971 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 5972 } 5973 5974 /* 5975 * Tag a node/memcg as congested if all the dirty pages were marked 5976 * for writeback and immediate reclaim (counted in nr.congested). 5977 * 5978 * Legacy memcg will stall in page writeback so avoid forcibly 5979 * stalling in reclaim_throttle(). 5980 */ 5981 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) { 5982 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc)) 5983 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags); 5984 5985 if (current_is_kswapd()) 5986 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags); 5987 } 5988 5989 /* 5990 * Stall direct reclaim for IO completions if the lruvec is 5991 * node is congested. Allow kswapd to continue until it 5992 * starts encountering unqueued dirty pages or cycling through 5993 * the LRU too quickly. 5994 */ 5995 if (!current_is_kswapd() && current_may_throttle() && 5996 !sc->hibernation_mode && 5997 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) || 5998 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags))) 5999 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6000 6001 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) 6002 goto again; 6003 6004 /* 6005 * Kswapd gives up on balancing particular nodes after too 6006 * many failures to reclaim anything from them and goes to 6007 * sleep. On reclaim progress, reset the failure counter. A 6008 * successful direct reclaim run will revive a dormant kswapd. 6009 */ 6010 if (reclaimable) 6011 pgdat->kswapd_failures = 0; 6012 else if (sc->cache_trim_mode) 6013 sc->cache_trim_mode_failed = 1; 6014 } 6015 6016 /* 6017 * Returns true if compaction should go ahead for a costly-order request, or 6018 * the allocation would already succeed without compaction. Return false if we 6019 * should reclaim first. 6020 */ 6021 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6022 { 6023 unsigned long watermark; 6024 6025 if (!gfp_compaction_allowed(sc->gfp_mask)) 6026 return false; 6027 6028 /* Allocation can already succeed, nothing to do */ 6029 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 6030 sc->reclaim_idx, 0)) 6031 return true; 6032 6033 /* Compaction cannot yet proceed. Do reclaim. */ 6034 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx)) 6035 return false; 6036 6037 /* 6038 * Compaction is already possible, but it takes time to run and there 6039 * are potentially other callers using the pages just freed. So proceed 6040 * with reclaim to make a buffer of free pages available to give 6041 * compaction a reasonable chance of completing and allocating the page. 6042 * Note that we won't actually reclaim the whole buffer in one attempt 6043 * as the target watermark in should_continue_reclaim() is lower. But if 6044 * we are already above the high+gap watermark, don't reclaim at all. 6045 */ 6046 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 6047 6048 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 6049 } 6050 6051 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6052 { 6053 /* 6054 * If reclaim is making progress greater than 12% efficiency then 6055 * wake all the NOPROGRESS throttled tasks. 6056 */ 6057 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6058 wait_queue_head_t *wqh; 6059 6060 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6061 if (waitqueue_active(wqh)) 6062 wake_up(wqh); 6063 6064 return; 6065 } 6066 6067 /* 6068 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6069 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6070 * under writeback and marked for immediate reclaim at the tail of the 6071 * LRU. 6072 */ 6073 if (current_is_kswapd() || cgroup_reclaim(sc)) 6074 return; 6075 6076 /* Throttle if making no progress at high prioities. */ 6077 if (sc->priority == 1 && !sc->nr_reclaimed) 6078 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6079 } 6080 6081 /* 6082 * This is the direct reclaim path, for page-allocating processes. We only 6083 * try to reclaim pages from zones which will satisfy the caller's allocation 6084 * request. 6085 * 6086 * If a zone is deemed to be full of pinned pages then just give it a light 6087 * scan then give up on it. 6088 */ 6089 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6090 { 6091 struct zoneref *z; 6092 struct zone *zone; 6093 unsigned long nr_soft_reclaimed; 6094 unsigned long nr_soft_scanned; 6095 gfp_t orig_mask; 6096 pg_data_t *last_pgdat = NULL; 6097 pg_data_t *first_pgdat = NULL; 6098 6099 /* 6100 * If the number of buffer_heads in the machine exceeds the maximum 6101 * allowed level, force direct reclaim to scan the highmem zone as 6102 * highmem pages could be pinning lowmem pages storing buffer_heads 6103 */ 6104 orig_mask = sc->gfp_mask; 6105 if (buffer_heads_over_limit) { 6106 sc->gfp_mask |= __GFP_HIGHMEM; 6107 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6108 } 6109 6110 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6111 sc->reclaim_idx, sc->nodemask) { 6112 /* 6113 * Take care memory controller reclaiming has small influence 6114 * to global LRU. 6115 */ 6116 if (!cgroup_reclaim(sc)) { 6117 if (!cpuset_zone_allowed(zone, 6118 GFP_KERNEL | __GFP_HARDWALL)) 6119 continue; 6120 6121 /* 6122 * If we already have plenty of memory free for 6123 * compaction in this zone, don't free any more. 6124 * Even though compaction is invoked for any 6125 * non-zero order, only frequent costly order 6126 * reclamation is disruptive enough to become a 6127 * noticeable problem, like transparent huge 6128 * page allocations. 6129 */ 6130 if (IS_ENABLED(CONFIG_COMPACTION) && 6131 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6132 compaction_ready(zone, sc)) { 6133 sc->compaction_ready = true; 6134 continue; 6135 } 6136 6137 /* 6138 * Shrink each node in the zonelist once. If the 6139 * zonelist is ordered by zone (not the default) then a 6140 * node may be shrunk multiple times but in that case 6141 * the user prefers lower zones being preserved. 6142 */ 6143 if (zone->zone_pgdat == last_pgdat) 6144 continue; 6145 6146 /* 6147 * This steals pages from memory cgroups over softlimit 6148 * and returns the number of reclaimed pages and 6149 * scanned pages. This works for global memory pressure 6150 * and balancing, not for a memcg's limit. 6151 */ 6152 nr_soft_scanned = 0; 6153 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 6154 sc->order, sc->gfp_mask, 6155 &nr_soft_scanned); 6156 sc->nr_reclaimed += nr_soft_reclaimed; 6157 sc->nr_scanned += nr_soft_scanned; 6158 /* need some check for avoid more shrink_zone() */ 6159 } 6160 6161 if (!first_pgdat) 6162 first_pgdat = zone->zone_pgdat; 6163 6164 /* See comment about same check for global reclaim above */ 6165 if (zone->zone_pgdat == last_pgdat) 6166 continue; 6167 last_pgdat = zone->zone_pgdat; 6168 shrink_node(zone->zone_pgdat, sc); 6169 } 6170 6171 if (first_pgdat) 6172 consider_reclaim_throttle(first_pgdat, sc); 6173 6174 /* 6175 * Restore to original mask to avoid the impact on the caller if we 6176 * promoted it to __GFP_HIGHMEM. 6177 */ 6178 sc->gfp_mask = orig_mask; 6179 } 6180 6181 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6182 { 6183 struct lruvec *target_lruvec; 6184 unsigned long refaults; 6185 6186 if (lru_gen_enabled()) 6187 return; 6188 6189 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6190 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6191 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6192 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6193 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6194 } 6195 6196 /* 6197 * This is the main entry point to direct page reclaim. 6198 * 6199 * If a full scan of the inactive list fails to free enough memory then we 6200 * are "out of memory" and something needs to be killed. 6201 * 6202 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6203 * high - the zone may be full of dirty or under-writeback pages, which this 6204 * caller can't do much about. We kick the writeback threads and take explicit 6205 * naps in the hope that some of these pages can be written. But if the 6206 * allocating task holds filesystem locks which prevent writeout this might not 6207 * work, and the allocation attempt will fail. 6208 * 6209 * returns: 0, if no pages reclaimed 6210 * else, the number of pages reclaimed 6211 */ 6212 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6213 struct scan_control *sc) 6214 { 6215 int initial_priority = sc->priority; 6216 pg_data_t *last_pgdat; 6217 struct zoneref *z; 6218 struct zone *zone; 6219 retry: 6220 delayacct_freepages_start(); 6221 6222 if (!cgroup_reclaim(sc)) 6223 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6224 6225 do { 6226 if (!sc->proactive) 6227 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6228 sc->priority); 6229 sc->nr_scanned = 0; 6230 shrink_zones(zonelist, sc); 6231 6232 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6233 break; 6234 6235 if (sc->compaction_ready) 6236 break; 6237 6238 /* 6239 * If we're getting trouble reclaiming, start doing 6240 * writepage even in laptop mode. 6241 */ 6242 if (sc->priority < DEF_PRIORITY - 2) 6243 sc->may_writepage = 1; 6244 } while (--sc->priority >= 0); 6245 6246 last_pgdat = NULL; 6247 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6248 sc->nodemask) { 6249 if (zone->zone_pgdat == last_pgdat) 6250 continue; 6251 last_pgdat = zone->zone_pgdat; 6252 6253 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6254 6255 if (cgroup_reclaim(sc)) { 6256 struct lruvec *lruvec; 6257 6258 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6259 zone->zone_pgdat); 6260 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6261 } 6262 } 6263 6264 delayacct_freepages_end(); 6265 6266 if (sc->nr_reclaimed) 6267 return sc->nr_reclaimed; 6268 6269 /* Aborted reclaim to try compaction? don't OOM, then */ 6270 if (sc->compaction_ready) 6271 return 1; 6272 6273 /* 6274 * We make inactive:active ratio decisions based on the node's 6275 * composition of memory, but a restrictive reclaim_idx or a 6276 * memory.low cgroup setting can exempt large amounts of 6277 * memory from reclaim. Neither of which are very common, so 6278 * instead of doing costly eligibility calculations of the 6279 * entire cgroup subtree up front, we assume the estimates are 6280 * good, and retry with forcible deactivation if that fails. 6281 */ 6282 if (sc->skipped_deactivate) { 6283 sc->priority = initial_priority; 6284 sc->force_deactivate = 1; 6285 sc->skipped_deactivate = 0; 6286 goto retry; 6287 } 6288 6289 /* Untapped cgroup reserves? Don't OOM, retry. */ 6290 if (sc->memcg_low_skipped) { 6291 sc->priority = initial_priority; 6292 sc->force_deactivate = 0; 6293 sc->memcg_low_reclaim = 1; 6294 sc->memcg_low_skipped = 0; 6295 goto retry; 6296 } 6297 6298 return 0; 6299 } 6300 6301 static bool allow_direct_reclaim(pg_data_t *pgdat) 6302 { 6303 struct zone *zone; 6304 unsigned long pfmemalloc_reserve = 0; 6305 unsigned long free_pages = 0; 6306 int i; 6307 bool wmark_ok; 6308 6309 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6310 return true; 6311 6312 for (i = 0; i <= ZONE_NORMAL; i++) { 6313 zone = &pgdat->node_zones[i]; 6314 if (!managed_zone(zone)) 6315 continue; 6316 6317 if (!zone_reclaimable_pages(zone)) 6318 continue; 6319 6320 pfmemalloc_reserve += min_wmark_pages(zone); 6321 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES); 6322 } 6323 6324 /* If there are no reserves (unexpected config) then do not throttle */ 6325 if (!pfmemalloc_reserve) 6326 return true; 6327 6328 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6329 6330 /* kswapd must be awake if processes are being throttled */ 6331 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6332 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6333 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6334 6335 wake_up_interruptible(&pgdat->kswapd_wait); 6336 } 6337 6338 return wmark_ok; 6339 } 6340 6341 /* 6342 * Throttle direct reclaimers if backing storage is backed by the network 6343 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6344 * depleted. kswapd will continue to make progress and wake the processes 6345 * when the low watermark is reached. 6346 * 6347 * Returns true if a fatal signal was delivered during throttling. If this 6348 * happens, the page allocator should not consider triggering the OOM killer. 6349 */ 6350 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6351 nodemask_t *nodemask) 6352 { 6353 struct zoneref *z; 6354 struct zone *zone; 6355 pg_data_t *pgdat = NULL; 6356 6357 /* 6358 * Kernel threads should not be throttled as they may be indirectly 6359 * responsible for cleaning pages necessary for reclaim to make forward 6360 * progress. kjournald for example may enter direct reclaim while 6361 * committing a transaction where throttling it could forcing other 6362 * processes to block on log_wait_commit(). 6363 */ 6364 if (current->flags & PF_KTHREAD) 6365 goto out; 6366 6367 /* 6368 * If a fatal signal is pending, this process should not throttle. 6369 * It should return quickly so it can exit and free its memory 6370 */ 6371 if (fatal_signal_pending(current)) 6372 goto out; 6373 6374 /* 6375 * Check if the pfmemalloc reserves are ok by finding the first node 6376 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6377 * GFP_KERNEL will be required for allocating network buffers when 6378 * swapping over the network so ZONE_HIGHMEM is unusable. 6379 * 6380 * Throttling is based on the first usable node and throttled processes 6381 * wait on a queue until kswapd makes progress and wakes them. There 6382 * is an affinity then between processes waking up and where reclaim 6383 * progress has been made assuming the process wakes on the same node. 6384 * More importantly, processes running on remote nodes will not compete 6385 * for remote pfmemalloc reserves and processes on different nodes 6386 * should make reasonable progress. 6387 */ 6388 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6389 gfp_zone(gfp_mask), nodemask) { 6390 if (zone_idx(zone) > ZONE_NORMAL) 6391 continue; 6392 6393 /* Throttle based on the first usable node */ 6394 pgdat = zone->zone_pgdat; 6395 if (allow_direct_reclaim(pgdat)) 6396 goto out; 6397 break; 6398 } 6399 6400 /* If no zone was usable by the allocation flags then do not throttle */ 6401 if (!pgdat) 6402 goto out; 6403 6404 /* Account for the throttling */ 6405 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6406 6407 /* 6408 * If the caller cannot enter the filesystem, it's possible that it 6409 * is due to the caller holding an FS lock or performing a journal 6410 * transaction in the case of a filesystem like ext[3|4]. In this case, 6411 * it is not safe to block on pfmemalloc_wait as kswapd could be 6412 * blocked waiting on the same lock. Instead, throttle for up to a 6413 * second before continuing. 6414 */ 6415 if (!(gfp_mask & __GFP_FS)) 6416 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6417 allow_direct_reclaim(pgdat), HZ); 6418 else 6419 /* Throttle until kswapd wakes the process */ 6420 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6421 allow_direct_reclaim(pgdat)); 6422 6423 if (fatal_signal_pending(current)) 6424 return true; 6425 6426 out: 6427 return false; 6428 } 6429 6430 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6431 gfp_t gfp_mask, nodemask_t *nodemask) 6432 { 6433 unsigned long nr_reclaimed; 6434 struct scan_control sc = { 6435 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6436 .gfp_mask = current_gfp_context(gfp_mask), 6437 .reclaim_idx = gfp_zone(gfp_mask), 6438 .order = order, 6439 .nodemask = nodemask, 6440 .priority = DEF_PRIORITY, 6441 .may_writepage = !laptop_mode, 6442 .may_unmap = 1, 6443 .may_swap = 1, 6444 }; 6445 6446 /* 6447 * scan_control uses s8 fields for order, priority, and reclaim_idx. 6448 * Confirm they are large enough for max values. 6449 */ 6450 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX); 6451 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 6452 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 6453 6454 /* 6455 * Do not enter reclaim if fatal signal was delivered while throttled. 6456 * 1 is returned so that the page allocator does not OOM kill at this 6457 * point. 6458 */ 6459 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 6460 return 1; 6461 6462 set_task_reclaim_state(current, &sc.reclaim_state); 6463 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 6464 6465 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6466 6467 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 6468 set_task_reclaim_state(current, NULL); 6469 6470 return nr_reclaimed; 6471 } 6472 6473 #ifdef CONFIG_MEMCG 6474 6475 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 6476 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 6477 gfp_t gfp_mask, bool noswap, 6478 pg_data_t *pgdat, 6479 unsigned long *nr_scanned) 6480 { 6481 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6482 struct scan_control sc = { 6483 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6484 .target_mem_cgroup = memcg, 6485 .may_writepage = !laptop_mode, 6486 .may_unmap = 1, 6487 .reclaim_idx = MAX_NR_ZONES - 1, 6488 .may_swap = !noswap, 6489 }; 6490 6491 WARN_ON_ONCE(!current->reclaim_state); 6492 6493 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 6494 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 6495 6496 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 6497 sc.gfp_mask); 6498 6499 /* 6500 * NOTE: Although we can get the priority field, using it 6501 * here is not a good idea, since it limits the pages we can scan. 6502 * if we don't reclaim here, the shrink_node from balance_pgdat 6503 * will pick up pages from other mem cgroup's as well. We hack 6504 * the priority and make it zero. 6505 */ 6506 shrink_lruvec(lruvec, &sc); 6507 6508 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 6509 6510 *nr_scanned = sc.nr_scanned; 6511 6512 return sc.nr_reclaimed; 6513 } 6514 6515 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 6516 unsigned long nr_pages, 6517 gfp_t gfp_mask, 6518 unsigned int reclaim_options) 6519 { 6520 unsigned long nr_reclaimed; 6521 unsigned int noreclaim_flag; 6522 struct scan_control sc = { 6523 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 6524 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 6525 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 6526 .reclaim_idx = MAX_NR_ZONES - 1, 6527 .target_mem_cgroup = memcg, 6528 .priority = DEF_PRIORITY, 6529 .may_writepage = !laptop_mode, 6530 .may_unmap = 1, 6531 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 6532 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 6533 }; 6534 /* 6535 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 6536 * equal pressure on all the nodes. This is based on the assumption that 6537 * the reclaim does not bail out early. 6538 */ 6539 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 6540 6541 set_task_reclaim_state(current, &sc.reclaim_state); 6542 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 6543 noreclaim_flag = memalloc_noreclaim_save(); 6544 6545 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6546 6547 memalloc_noreclaim_restore(noreclaim_flag); 6548 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 6549 set_task_reclaim_state(current, NULL); 6550 6551 return nr_reclaimed; 6552 } 6553 #endif 6554 6555 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6556 { 6557 struct mem_cgroup *memcg; 6558 struct lruvec *lruvec; 6559 6560 if (lru_gen_enabled()) { 6561 lru_gen_age_node(pgdat, sc); 6562 return; 6563 } 6564 6565 if (!can_age_anon_pages(pgdat, sc)) 6566 return; 6567 6568 lruvec = mem_cgroup_lruvec(NULL, pgdat); 6569 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6570 return; 6571 6572 memcg = mem_cgroup_iter(NULL, NULL, NULL); 6573 do { 6574 lruvec = mem_cgroup_lruvec(memcg, pgdat); 6575 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6576 sc, LRU_ACTIVE_ANON); 6577 memcg = mem_cgroup_iter(NULL, memcg, NULL); 6578 } while (memcg); 6579 } 6580 6581 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 6582 { 6583 int i; 6584 struct zone *zone; 6585 6586 /* 6587 * Check for watermark boosts top-down as the higher zones 6588 * are more likely to be boosted. Both watermarks and boosts 6589 * should not be checked at the same time as reclaim would 6590 * start prematurely when there is no boosting and a lower 6591 * zone is balanced. 6592 */ 6593 for (i = highest_zoneidx; i >= 0; i--) { 6594 zone = pgdat->node_zones + i; 6595 if (!managed_zone(zone)) 6596 continue; 6597 6598 if (zone->watermark_boost) 6599 return true; 6600 } 6601 6602 return false; 6603 } 6604 6605 /* 6606 * Returns true if there is an eligible zone balanced for the request order 6607 * and highest_zoneidx 6608 */ 6609 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 6610 { 6611 int i; 6612 unsigned long mark = -1; 6613 struct zone *zone; 6614 6615 /* 6616 * Check watermarks bottom-up as lower zones are more likely to 6617 * meet watermarks. 6618 */ 6619 for (i = 0; i <= highest_zoneidx; i++) { 6620 zone = pgdat->node_zones + i; 6621 6622 if (!managed_zone(zone)) 6623 continue; 6624 6625 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 6626 mark = wmark_pages(zone, WMARK_PROMO); 6627 else 6628 mark = high_wmark_pages(zone); 6629 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 6630 return true; 6631 } 6632 6633 /* 6634 * If a node has no managed zone within highest_zoneidx, it does not 6635 * need balancing by definition. This can happen if a zone-restricted 6636 * allocation tries to wake a remote kswapd. 6637 */ 6638 if (mark == -1) 6639 return true; 6640 6641 return false; 6642 } 6643 6644 /* Clear pgdat state for congested, dirty or under writeback. */ 6645 static void clear_pgdat_congested(pg_data_t *pgdat) 6646 { 6647 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 6648 6649 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags); 6650 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6651 clear_bit(PGDAT_DIRTY, &pgdat->flags); 6652 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 6653 } 6654 6655 /* 6656 * Prepare kswapd for sleeping. This verifies that there are no processes 6657 * waiting in throttle_direct_reclaim() and that watermarks have been met. 6658 * 6659 * Returns true if kswapd is ready to sleep 6660 */ 6661 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 6662 int highest_zoneidx) 6663 { 6664 /* 6665 * The throttled processes are normally woken up in balance_pgdat() as 6666 * soon as allow_direct_reclaim() is true. But there is a potential 6667 * race between when kswapd checks the watermarks and a process gets 6668 * throttled. There is also a potential race if processes get 6669 * throttled, kswapd wakes, a large process exits thereby balancing the 6670 * zones, which causes kswapd to exit balance_pgdat() before reaching 6671 * the wake up checks. If kswapd is going to sleep, no process should 6672 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 6673 * the wake up is premature, processes will wake kswapd and get 6674 * throttled again. The difference from wake ups in balance_pgdat() is 6675 * that here we are under prepare_to_wait(). 6676 */ 6677 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 6678 wake_up_all(&pgdat->pfmemalloc_wait); 6679 6680 /* Hopeless node, leave it to direct reclaim */ 6681 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6682 return true; 6683 6684 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 6685 clear_pgdat_congested(pgdat); 6686 return true; 6687 } 6688 6689 return false; 6690 } 6691 6692 /* 6693 * kswapd shrinks a node of pages that are at or below the highest usable 6694 * zone that is currently unbalanced. 6695 * 6696 * Returns true if kswapd scanned at least the requested number of pages to 6697 * reclaim or if the lack of progress was due to pages under writeback. 6698 * This is used to determine if the scanning priority needs to be raised. 6699 */ 6700 static bool kswapd_shrink_node(pg_data_t *pgdat, 6701 struct scan_control *sc) 6702 { 6703 struct zone *zone; 6704 int z; 6705 6706 /* Reclaim a number of pages proportional to the number of zones */ 6707 sc->nr_to_reclaim = 0; 6708 for (z = 0; z <= sc->reclaim_idx; z++) { 6709 zone = pgdat->node_zones + z; 6710 if (!managed_zone(zone)) 6711 continue; 6712 6713 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 6714 } 6715 6716 /* 6717 * Historically care was taken to put equal pressure on all zones but 6718 * now pressure is applied based on node LRU order. 6719 */ 6720 shrink_node(pgdat, sc); 6721 6722 /* 6723 * Fragmentation may mean that the system cannot be rebalanced for 6724 * high-order allocations. If twice the allocation size has been 6725 * reclaimed then recheck watermarks only at order-0 to prevent 6726 * excessive reclaim. Assume that a process requested a high-order 6727 * can direct reclaim/compact. 6728 */ 6729 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 6730 sc->order = 0; 6731 6732 return sc->nr_scanned >= sc->nr_to_reclaim; 6733 } 6734 6735 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 6736 static inline void 6737 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 6738 { 6739 int i; 6740 struct zone *zone; 6741 6742 for (i = 0; i <= highest_zoneidx; i++) { 6743 zone = pgdat->node_zones + i; 6744 6745 if (!managed_zone(zone)) 6746 continue; 6747 6748 if (active) 6749 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6750 else 6751 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6752 } 6753 } 6754 6755 static inline void 6756 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6757 { 6758 update_reclaim_active(pgdat, highest_zoneidx, true); 6759 } 6760 6761 static inline void 6762 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6763 { 6764 update_reclaim_active(pgdat, highest_zoneidx, false); 6765 } 6766 6767 /* 6768 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 6769 * that are eligible for use by the caller until at least one zone is 6770 * balanced. 6771 * 6772 * Returns the order kswapd finished reclaiming at. 6773 * 6774 * kswapd scans the zones in the highmem->normal->dma direction. It skips 6775 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 6776 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 6777 * or lower is eligible for reclaim until at least one usable zone is 6778 * balanced. 6779 */ 6780 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 6781 { 6782 int i; 6783 unsigned long nr_soft_reclaimed; 6784 unsigned long nr_soft_scanned; 6785 unsigned long pflags; 6786 unsigned long nr_boost_reclaim; 6787 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 6788 bool boosted; 6789 struct zone *zone; 6790 struct scan_control sc = { 6791 .gfp_mask = GFP_KERNEL, 6792 .order = order, 6793 .may_unmap = 1, 6794 }; 6795 6796 set_task_reclaim_state(current, &sc.reclaim_state); 6797 psi_memstall_enter(&pflags); 6798 __fs_reclaim_acquire(_THIS_IP_); 6799 6800 count_vm_event(PAGEOUTRUN); 6801 6802 /* 6803 * Account for the reclaim boost. Note that the zone boost is left in 6804 * place so that parallel allocations that are near the watermark will 6805 * stall or direct reclaim until kswapd is finished. 6806 */ 6807 nr_boost_reclaim = 0; 6808 for (i = 0; i <= highest_zoneidx; i++) { 6809 zone = pgdat->node_zones + i; 6810 if (!managed_zone(zone)) 6811 continue; 6812 6813 nr_boost_reclaim += zone->watermark_boost; 6814 zone_boosts[i] = zone->watermark_boost; 6815 } 6816 boosted = nr_boost_reclaim; 6817 6818 restart: 6819 set_reclaim_active(pgdat, highest_zoneidx); 6820 sc.priority = DEF_PRIORITY; 6821 do { 6822 unsigned long nr_reclaimed = sc.nr_reclaimed; 6823 bool raise_priority = true; 6824 bool balanced; 6825 bool ret; 6826 bool was_frozen; 6827 6828 sc.reclaim_idx = highest_zoneidx; 6829 6830 /* 6831 * If the number of buffer_heads exceeds the maximum allowed 6832 * then consider reclaiming from all zones. This has a dual 6833 * purpose -- on 64-bit systems it is expected that 6834 * buffer_heads are stripped during active rotation. On 32-bit 6835 * systems, highmem pages can pin lowmem memory and shrinking 6836 * buffers can relieve lowmem pressure. Reclaim may still not 6837 * go ahead if all eligible zones for the original allocation 6838 * request are balanced to avoid excessive reclaim from kswapd. 6839 */ 6840 if (buffer_heads_over_limit) { 6841 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 6842 zone = pgdat->node_zones + i; 6843 if (!managed_zone(zone)) 6844 continue; 6845 6846 sc.reclaim_idx = i; 6847 break; 6848 } 6849 } 6850 6851 /* 6852 * If the pgdat is imbalanced then ignore boosting and preserve 6853 * the watermarks for a later time and restart. Note that the 6854 * zone watermarks will be still reset at the end of balancing 6855 * on the grounds that the normal reclaim should be enough to 6856 * re-evaluate if boosting is required when kswapd next wakes. 6857 */ 6858 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 6859 if (!balanced && nr_boost_reclaim) { 6860 nr_boost_reclaim = 0; 6861 goto restart; 6862 } 6863 6864 /* 6865 * If boosting is not active then only reclaim if there are no 6866 * eligible zones. Note that sc.reclaim_idx is not used as 6867 * buffer_heads_over_limit may have adjusted it. 6868 */ 6869 if (!nr_boost_reclaim && balanced) 6870 goto out; 6871 6872 /* Limit the priority of boosting to avoid reclaim writeback */ 6873 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 6874 raise_priority = false; 6875 6876 /* 6877 * Do not writeback or swap pages for boosted reclaim. The 6878 * intent is to relieve pressure not issue sub-optimal IO 6879 * from reclaim context. If no pages are reclaimed, the 6880 * reclaim will be aborted. 6881 */ 6882 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 6883 sc.may_swap = !nr_boost_reclaim; 6884 6885 /* 6886 * Do some background aging, to give pages a chance to be 6887 * referenced before reclaiming. All pages are rotated 6888 * regardless of classzone as this is about consistent aging. 6889 */ 6890 kswapd_age_node(pgdat, &sc); 6891 6892 /* 6893 * If we're getting trouble reclaiming, start doing writepage 6894 * even in laptop mode. 6895 */ 6896 if (sc.priority < DEF_PRIORITY - 2) 6897 sc.may_writepage = 1; 6898 6899 /* Call soft limit reclaim before calling shrink_node. */ 6900 sc.nr_scanned = 0; 6901 nr_soft_scanned = 0; 6902 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 6903 sc.gfp_mask, &nr_soft_scanned); 6904 sc.nr_reclaimed += nr_soft_reclaimed; 6905 6906 /* 6907 * There should be no need to raise the scanning priority if 6908 * enough pages are already being scanned that that high 6909 * watermark would be met at 100% efficiency. 6910 */ 6911 if (kswapd_shrink_node(pgdat, &sc)) 6912 raise_priority = false; 6913 6914 /* 6915 * If the low watermark is met there is no need for processes 6916 * to be throttled on pfmemalloc_wait as they should not be 6917 * able to safely make forward progress. Wake them 6918 */ 6919 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 6920 allow_direct_reclaim(pgdat)) 6921 wake_up_all(&pgdat->pfmemalloc_wait); 6922 6923 /* Check if kswapd should be suspending */ 6924 __fs_reclaim_release(_THIS_IP_); 6925 ret = kthread_freezable_should_stop(&was_frozen); 6926 __fs_reclaim_acquire(_THIS_IP_); 6927 if (was_frozen || ret) 6928 break; 6929 6930 /* 6931 * Raise priority if scanning rate is too low or there was no 6932 * progress in reclaiming pages 6933 */ 6934 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 6935 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 6936 6937 /* 6938 * If reclaim made no progress for a boost, stop reclaim as 6939 * IO cannot be queued and it could be an infinite loop in 6940 * extreme circumstances. 6941 */ 6942 if (nr_boost_reclaim && !nr_reclaimed) 6943 break; 6944 6945 if (raise_priority || !nr_reclaimed) 6946 sc.priority--; 6947 } while (sc.priority >= 1); 6948 6949 /* 6950 * Restart only if it went through the priority loop all the way, 6951 * but cache_trim_mode didn't work. 6952 */ 6953 if (!sc.nr_reclaimed && sc.priority < 1 && 6954 !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) { 6955 sc.no_cache_trim_mode = 1; 6956 goto restart; 6957 } 6958 6959 if (!sc.nr_reclaimed) 6960 pgdat->kswapd_failures++; 6961 6962 out: 6963 clear_reclaim_active(pgdat, highest_zoneidx); 6964 6965 /* If reclaim was boosted, account for the reclaim done in this pass */ 6966 if (boosted) { 6967 unsigned long flags; 6968 6969 for (i = 0; i <= highest_zoneidx; i++) { 6970 if (!zone_boosts[i]) 6971 continue; 6972 6973 /* Increments are under the zone lock */ 6974 zone = pgdat->node_zones + i; 6975 spin_lock_irqsave(&zone->lock, flags); 6976 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 6977 spin_unlock_irqrestore(&zone->lock, flags); 6978 } 6979 6980 /* 6981 * As there is now likely space, wakeup kcompact to defragment 6982 * pageblocks. 6983 */ 6984 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 6985 } 6986 6987 snapshot_refaults(NULL, pgdat); 6988 __fs_reclaim_release(_THIS_IP_); 6989 psi_memstall_leave(&pflags); 6990 set_task_reclaim_state(current, NULL); 6991 6992 /* 6993 * Return the order kswapd stopped reclaiming at as 6994 * prepare_kswapd_sleep() takes it into account. If another caller 6995 * entered the allocator slow path while kswapd was awake, order will 6996 * remain at the higher level. 6997 */ 6998 return sc.order; 6999 } 7000 7001 /* 7002 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7003 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7004 * not a valid index then either kswapd runs for first time or kswapd couldn't 7005 * sleep after previous reclaim attempt (node is still unbalanced). In that 7006 * case return the zone index of the previous kswapd reclaim cycle. 7007 */ 7008 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7009 enum zone_type prev_highest_zoneidx) 7010 { 7011 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7012 7013 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7014 } 7015 7016 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7017 unsigned int highest_zoneidx) 7018 { 7019 long remaining = 0; 7020 DEFINE_WAIT(wait); 7021 7022 if (freezing(current) || kthread_should_stop()) 7023 return; 7024 7025 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7026 7027 /* 7028 * Try to sleep for a short interval. Note that kcompactd will only be 7029 * woken if it is possible to sleep for a short interval. This is 7030 * deliberate on the assumption that if reclaim cannot keep an 7031 * eligible zone balanced that it's also unlikely that compaction will 7032 * succeed. 7033 */ 7034 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7035 /* 7036 * Compaction records what page blocks it recently failed to 7037 * isolate pages from and skips them in the future scanning. 7038 * When kswapd is going to sleep, it is reasonable to assume 7039 * that pages and compaction may succeed so reset the cache. 7040 */ 7041 reset_isolation_suitable(pgdat); 7042 7043 /* 7044 * We have freed the memory, now we should compact it to make 7045 * allocation of the requested order possible. 7046 */ 7047 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7048 7049 remaining = schedule_timeout(HZ/10); 7050 7051 /* 7052 * If woken prematurely then reset kswapd_highest_zoneidx and 7053 * order. The values will either be from a wakeup request or 7054 * the previous request that slept prematurely. 7055 */ 7056 if (remaining) { 7057 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7058 kswapd_highest_zoneidx(pgdat, 7059 highest_zoneidx)); 7060 7061 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7062 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7063 } 7064 7065 finish_wait(&pgdat->kswapd_wait, &wait); 7066 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7067 } 7068 7069 /* 7070 * After a short sleep, check if it was a premature sleep. If not, then 7071 * go fully to sleep until explicitly woken up. 7072 */ 7073 if (!remaining && 7074 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7075 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7076 7077 /* 7078 * vmstat counters are not perfectly accurate and the estimated 7079 * value for counters such as NR_FREE_PAGES can deviate from the 7080 * true value by nr_online_cpus * threshold. To avoid the zone 7081 * watermarks being breached while under pressure, we reduce the 7082 * per-cpu vmstat threshold while kswapd is awake and restore 7083 * them before going back to sleep. 7084 */ 7085 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7086 7087 if (!kthread_should_stop()) 7088 schedule(); 7089 7090 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7091 } else { 7092 if (remaining) 7093 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7094 else 7095 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7096 } 7097 finish_wait(&pgdat->kswapd_wait, &wait); 7098 } 7099 7100 /* 7101 * The background pageout daemon, started as a kernel thread 7102 * from the init process. 7103 * 7104 * This basically trickles out pages so that we have _some_ 7105 * free memory available even if there is no other activity 7106 * that frees anything up. This is needed for things like routing 7107 * etc, where we otherwise might have all activity going on in 7108 * asynchronous contexts that cannot page things out. 7109 * 7110 * If there are applications that are active memory-allocators 7111 * (most normal use), this basically shouldn't matter. 7112 */ 7113 static int kswapd(void *p) 7114 { 7115 unsigned int alloc_order, reclaim_order; 7116 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7117 pg_data_t *pgdat = (pg_data_t *)p; 7118 struct task_struct *tsk = current; 7119 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 7120 7121 if (!cpumask_empty(cpumask)) 7122 set_cpus_allowed_ptr(tsk, cpumask); 7123 7124 /* 7125 * Tell the memory management that we're a "memory allocator", 7126 * and that if we need more memory we should get access to it 7127 * regardless (see "__alloc_pages()"). "kswapd" should 7128 * never get caught in the normal page freeing logic. 7129 * 7130 * (Kswapd normally doesn't need memory anyway, but sometimes 7131 * you need a small amount of memory in order to be able to 7132 * page out something else, and this flag essentially protects 7133 * us from recursively trying to free more memory as we're 7134 * trying to free the first piece of memory in the first place). 7135 */ 7136 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7137 set_freezable(); 7138 7139 WRITE_ONCE(pgdat->kswapd_order, 0); 7140 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7141 atomic_set(&pgdat->nr_writeback_throttled, 0); 7142 for ( ; ; ) { 7143 bool was_frozen; 7144 7145 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7146 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7147 highest_zoneidx); 7148 7149 kswapd_try_sleep: 7150 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7151 highest_zoneidx); 7152 7153 /* Read the new order and highest_zoneidx */ 7154 alloc_order = READ_ONCE(pgdat->kswapd_order); 7155 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7156 highest_zoneidx); 7157 WRITE_ONCE(pgdat->kswapd_order, 0); 7158 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7159 7160 if (kthread_freezable_should_stop(&was_frozen)) 7161 break; 7162 7163 /* 7164 * We can speed up thawing tasks if we don't call balance_pgdat 7165 * after returning from the refrigerator 7166 */ 7167 if (was_frozen) 7168 continue; 7169 7170 /* 7171 * Reclaim begins at the requested order but if a high-order 7172 * reclaim fails then kswapd falls back to reclaiming for 7173 * order-0. If that happens, kswapd will consider sleeping 7174 * for the order it finished reclaiming at (reclaim_order) 7175 * but kcompactd is woken to compact for the original 7176 * request (alloc_order). 7177 */ 7178 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7179 alloc_order); 7180 reclaim_order = balance_pgdat(pgdat, alloc_order, 7181 highest_zoneidx); 7182 if (reclaim_order < alloc_order) 7183 goto kswapd_try_sleep; 7184 } 7185 7186 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7187 7188 return 0; 7189 } 7190 7191 /* 7192 * A zone is low on free memory or too fragmented for high-order memory. If 7193 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7194 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7195 * has failed or is not needed, still wake up kcompactd if only compaction is 7196 * needed. 7197 */ 7198 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7199 enum zone_type highest_zoneidx) 7200 { 7201 pg_data_t *pgdat; 7202 enum zone_type curr_idx; 7203 7204 if (!managed_zone(zone)) 7205 return; 7206 7207 if (!cpuset_zone_allowed(zone, gfp_flags)) 7208 return; 7209 7210 pgdat = zone->zone_pgdat; 7211 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7212 7213 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7214 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7215 7216 if (READ_ONCE(pgdat->kswapd_order) < order) 7217 WRITE_ONCE(pgdat->kswapd_order, order); 7218 7219 if (!waitqueue_active(&pgdat->kswapd_wait)) 7220 return; 7221 7222 /* Hopeless node, leave it to direct reclaim if possible */ 7223 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7224 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7225 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7226 /* 7227 * There may be plenty of free memory available, but it's too 7228 * fragmented for high-order allocations. Wake up kcompactd 7229 * and rely on compaction_suitable() to determine if it's 7230 * needed. If it fails, it will defer subsequent attempts to 7231 * ratelimit its work. 7232 */ 7233 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7234 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7235 return; 7236 } 7237 7238 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7239 gfp_flags); 7240 wake_up_interruptible(&pgdat->kswapd_wait); 7241 } 7242 7243 #ifdef CONFIG_HIBERNATION 7244 /* 7245 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7246 * freed pages. 7247 * 7248 * Rather than trying to age LRUs the aim is to preserve the overall 7249 * LRU order by reclaiming preferentially 7250 * inactive > active > active referenced > active mapped 7251 */ 7252 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7253 { 7254 struct scan_control sc = { 7255 .nr_to_reclaim = nr_to_reclaim, 7256 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7257 .reclaim_idx = MAX_NR_ZONES - 1, 7258 .priority = DEF_PRIORITY, 7259 .may_writepage = 1, 7260 .may_unmap = 1, 7261 .may_swap = 1, 7262 .hibernation_mode = 1, 7263 }; 7264 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7265 unsigned long nr_reclaimed; 7266 unsigned int noreclaim_flag; 7267 7268 fs_reclaim_acquire(sc.gfp_mask); 7269 noreclaim_flag = memalloc_noreclaim_save(); 7270 set_task_reclaim_state(current, &sc.reclaim_state); 7271 7272 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7273 7274 set_task_reclaim_state(current, NULL); 7275 memalloc_noreclaim_restore(noreclaim_flag); 7276 fs_reclaim_release(sc.gfp_mask); 7277 7278 return nr_reclaimed; 7279 } 7280 #endif /* CONFIG_HIBERNATION */ 7281 7282 /* 7283 * This kswapd start function will be called by init and node-hot-add. 7284 */ 7285 void __meminit kswapd_run(int nid) 7286 { 7287 pg_data_t *pgdat = NODE_DATA(nid); 7288 7289 pgdat_kswapd_lock(pgdat); 7290 if (!pgdat->kswapd) { 7291 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 7292 if (IS_ERR(pgdat->kswapd)) { 7293 /* failure at boot is fatal */ 7294 pr_err("Failed to start kswapd on node %d,ret=%ld\n", 7295 nid, PTR_ERR(pgdat->kswapd)); 7296 BUG_ON(system_state < SYSTEM_RUNNING); 7297 pgdat->kswapd = NULL; 7298 } 7299 } 7300 pgdat_kswapd_unlock(pgdat); 7301 } 7302 7303 /* 7304 * Called by memory hotplug when all memory in a node is offlined. Caller must 7305 * be holding mem_hotplug_begin/done(). 7306 */ 7307 void __meminit kswapd_stop(int nid) 7308 { 7309 pg_data_t *pgdat = NODE_DATA(nid); 7310 struct task_struct *kswapd; 7311 7312 pgdat_kswapd_lock(pgdat); 7313 kswapd = pgdat->kswapd; 7314 if (kswapd) { 7315 kthread_stop(kswapd); 7316 pgdat->kswapd = NULL; 7317 } 7318 pgdat_kswapd_unlock(pgdat); 7319 } 7320 7321 static int __init kswapd_init(void) 7322 { 7323 int nid; 7324 7325 swap_setup(); 7326 for_each_node_state(nid, N_MEMORY) 7327 kswapd_run(nid); 7328 return 0; 7329 } 7330 7331 module_init(kswapd_init) 7332 7333 #ifdef CONFIG_NUMA 7334 /* 7335 * Node reclaim mode 7336 * 7337 * If non-zero call node_reclaim when the number of free pages falls below 7338 * the watermarks. 7339 */ 7340 int node_reclaim_mode __read_mostly; 7341 7342 /* 7343 * Priority for NODE_RECLAIM. This determines the fraction of pages 7344 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7345 * a zone. 7346 */ 7347 #define NODE_RECLAIM_PRIORITY 4 7348 7349 /* 7350 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7351 * occur. 7352 */ 7353 int sysctl_min_unmapped_ratio = 1; 7354 7355 /* 7356 * If the number of slab pages in a zone grows beyond this percentage then 7357 * slab reclaim needs to occur. 7358 */ 7359 int sysctl_min_slab_ratio = 5; 7360 7361 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7362 { 7363 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7364 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7365 node_page_state(pgdat, NR_ACTIVE_FILE); 7366 7367 /* 7368 * It's possible for there to be more file mapped pages than 7369 * accounted for by the pages on the file LRU lists because 7370 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7371 */ 7372 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7373 } 7374 7375 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7376 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7377 { 7378 unsigned long nr_pagecache_reclaimable; 7379 unsigned long delta = 0; 7380 7381 /* 7382 * If RECLAIM_UNMAP is set, then all file pages are considered 7383 * potentially reclaimable. Otherwise, we have to worry about 7384 * pages like swapcache and node_unmapped_file_pages() provides 7385 * a better estimate 7386 */ 7387 if (node_reclaim_mode & RECLAIM_UNMAP) 7388 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7389 else 7390 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7391 7392 /* If we can't clean pages, remove dirty pages from consideration */ 7393 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7394 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7395 7396 /* Watch for any possible underflows due to delta */ 7397 if (unlikely(delta > nr_pagecache_reclaimable)) 7398 delta = nr_pagecache_reclaimable; 7399 7400 return nr_pagecache_reclaimable - delta; 7401 } 7402 7403 /* 7404 * Try to free up some pages from this node through reclaim. 7405 */ 7406 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7407 { 7408 /* Minimum pages needed in order to stay on node */ 7409 const unsigned long nr_pages = 1 << order; 7410 struct task_struct *p = current; 7411 unsigned int noreclaim_flag; 7412 struct scan_control sc = { 7413 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7414 .gfp_mask = current_gfp_context(gfp_mask), 7415 .order = order, 7416 .priority = NODE_RECLAIM_PRIORITY, 7417 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7418 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7419 .may_swap = 1, 7420 .reclaim_idx = gfp_zone(gfp_mask), 7421 }; 7422 unsigned long pflags; 7423 7424 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 7425 sc.gfp_mask); 7426 7427 cond_resched(); 7428 psi_memstall_enter(&pflags); 7429 delayacct_freepages_start(); 7430 fs_reclaim_acquire(sc.gfp_mask); 7431 /* 7432 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7433 */ 7434 noreclaim_flag = memalloc_noreclaim_save(); 7435 set_task_reclaim_state(p, &sc.reclaim_state); 7436 7437 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7438 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7439 /* 7440 * Free memory by calling shrink node with increasing 7441 * priorities until we have enough memory freed. 7442 */ 7443 do { 7444 shrink_node(pgdat, &sc); 7445 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 7446 } 7447 7448 set_task_reclaim_state(p, NULL); 7449 memalloc_noreclaim_restore(noreclaim_flag); 7450 fs_reclaim_release(sc.gfp_mask); 7451 psi_memstall_leave(&pflags); 7452 delayacct_freepages_end(); 7453 7454 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 7455 7456 return sc.nr_reclaimed >= nr_pages; 7457 } 7458 7459 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7460 { 7461 int ret; 7462 7463 /* 7464 * Node reclaim reclaims unmapped file backed pages and 7465 * slab pages if we are over the defined limits. 7466 * 7467 * A small portion of unmapped file backed pages is needed for 7468 * file I/O otherwise pages read by file I/O will be immediately 7469 * thrown out if the node is overallocated. So we do not reclaim 7470 * if less than a specified percentage of the node is used by 7471 * unmapped file backed pages. 7472 */ 7473 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 7474 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 7475 pgdat->min_slab_pages) 7476 return NODE_RECLAIM_FULL; 7477 7478 /* 7479 * Do not scan if the allocation should not be delayed. 7480 */ 7481 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 7482 return NODE_RECLAIM_NOSCAN; 7483 7484 /* 7485 * Only run node reclaim on the local node or on nodes that do not 7486 * have associated processors. This will favor the local processor 7487 * over remote processors and spread off node memory allocations 7488 * as wide as possible. 7489 */ 7490 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 7491 return NODE_RECLAIM_NOSCAN; 7492 7493 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 7494 return NODE_RECLAIM_NOSCAN; 7495 7496 ret = __node_reclaim(pgdat, gfp_mask, order); 7497 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7498 7499 if (!ret) 7500 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 7501 7502 return ret; 7503 } 7504 #endif 7505 7506 /** 7507 * check_move_unevictable_folios - Move evictable folios to appropriate zone 7508 * lru list 7509 * @fbatch: Batch of lru folios to check. 7510 * 7511 * Checks folios for evictability, if an evictable folio is in the unevictable 7512 * lru list, moves it to the appropriate evictable lru list. This function 7513 * should be only used for lru folios. 7514 */ 7515 void check_move_unevictable_folios(struct folio_batch *fbatch) 7516 { 7517 struct lruvec *lruvec = NULL; 7518 int pgscanned = 0; 7519 int pgrescued = 0; 7520 int i; 7521 7522 for (i = 0; i < fbatch->nr; i++) { 7523 struct folio *folio = fbatch->folios[i]; 7524 int nr_pages = folio_nr_pages(folio); 7525 7526 pgscanned += nr_pages; 7527 7528 /* block memcg migration while the folio moves between lrus */ 7529 if (!folio_test_clear_lru(folio)) 7530 continue; 7531 7532 lruvec = folio_lruvec_relock_irq(folio, lruvec); 7533 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 7534 lruvec_del_folio(lruvec, folio); 7535 folio_clear_unevictable(folio); 7536 lruvec_add_folio(lruvec, folio); 7537 pgrescued += nr_pages; 7538 } 7539 folio_set_lru(folio); 7540 } 7541 7542 if (lruvec) { 7543 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 7544 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7545 unlock_page_lruvec_irq(lruvec); 7546 } else if (pgscanned) { 7547 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7548 } 7549 } 7550 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 7551