xref: /linux/mm/vmscan.c (revision 40840afa53bed05b990b201d749dfee3bd6e7e42)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59 #include <linux/mmu_notifier.h>
60 
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63 
64 #include <linux/swapops.h>
65 #include <linux/balloon_compaction.h>
66 #include <linux/sched/sysctl.h>
67 
68 #include "internal.h"
69 #include "swap.h"
70 
71 #define CREATE_TRACE_POINTS
72 #include <trace/events/vmscan.h>
73 
74 struct scan_control {
75 	/* How many pages shrink_list() should reclaim */
76 	unsigned long nr_to_reclaim;
77 
78 	/*
79 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
80 	 * are scanned.
81 	 */
82 	nodemask_t	*nodemask;
83 
84 	/*
85 	 * The memory cgroup that hit its limit and as a result is the
86 	 * primary target of this reclaim invocation.
87 	 */
88 	struct mem_cgroup *target_mem_cgroup;
89 
90 	/*
91 	 * Scan pressure balancing between anon and file LRUs
92 	 */
93 	unsigned long	anon_cost;
94 	unsigned long	file_cost;
95 
96 #ifdef CONFIG_MEMCG
97 	/* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
98 	int *proactive_swappiness;
99 #endif
100 
101 	/* Can active folios be deactivated as part of reclaim? */
102 #define DEACTIVATE_ANON 1
103 #define DEACTIVATE_FILE 2
104 	unsigned int may_deactivate:2;
105 	unsigned int force_deactivate:1;
106 	unsigned int skipped_deactivate:1;
107 
108 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
109 	unsigned int may_writepage:1;
110 
111 	/* Can mapped folios be reclaimed? */
112 	unsigned int may_unmap:1;
113 
114 	/* Can folios be swapped as part of reclaim? */
115 	unsigned int may_swap:1;
116 
117 	/* Not allow cache_trim_mode to be turned on as part of reclaim? */
118 	unsigned int no_cache_trim_mode:1;
119 
120 	/* Has cache_trim_mode failed at least once? */
121 	unsigned int cache_trim_mode_failed:1;
122 
123 	/* Proactive reclaim invoked by userspace through memory.reclaim */
124 	unsigned int proactive:1;
125 
126 	/*
127 	 * Cgroup memory below memory.low is protected as long as we
128 	 * don't threaten to OOM. If any cgroup is reclaimed at
129 	 * reduced force or passed over entirely due to its memory.low
130 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
131 	 * result, then go back for one more cycle that reclaims the protected
132 	 * memory (memcg_low_reclaim) to avert OOM.
133 	 */
134 	unsigned int memcg_low_reclaim:1;
135 	unsigned int memcg_low_skipped:1;
136 
137 	/* Shared cgroup tree walk failed, rescan the whole tree */
138 	unsigned int memcg_full_walk:1;
139 
140 	unsigned int hibernation_mode:1;
141 
142 	/* One of the zones is ready for compaction */
143 	unsigned int compaction_ready:1;
144 
145 	/* There is easily reclaimable cold cache in the current node */
146 	unsigned int cache_trim_mode:1;
147 
148 	/* The file folios on the current node are dangerously low */
149 	unsigned int file_is_tiny:1;
150 
151 	/* Always discard instead of demoting to lower tier memory */
152 	unsigned int no_demotion:1;
153 
154 	/* Allocation order */
155 	s8 order;
156 
157 	/* Scan (total_size >> priority) pages at once */
158 	s8 priority;
159 
160 	/* The highest zone to isolate folios for reclaim from */
161 	s8 reclaim_idx;
162 
163 	/* This context's GFP mask */
164 	gfp_t gfp_mask;
165 
166 	/* Incremented by the number of inactive pages that were scanned */
167 	unsigned long nr_scanned;
168 
169 	/* Number of pages freed so far during a call to shrink_zones() */
170 	unsigned long nr_reclaimed;
171 
172 	struct {
173 		unsigned int dirty;
174 		unsigned int unqueued_dirty;
175 		unsigned int congested;
176 		unsigned int writeback;
177 		unsigned int immediate;
178 		unsigned int file_taken;
179 		unsigned int taken;
180 	} nr;
181 
182 	/* for recording the reclaimed slab by now */
183 	struct reclaim_state reclaim_state;
184 };
185 
186 #ifdef ARCH_HAS_PREFETCHW
187 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
188 	do {								\
189 		if ((_folio)->lru.prev != _base) {			\
190 			struct folio *prev;				\
191 									\
192 			prev = lru_to_folio(&(_folio->lru));		\
193 			prefetchw(&prev->_field);			\
194 		}							\
195 	} while (0)
196 #else
197 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
198 #endif
199 
200 /*
201  * From 0 .. MAX_SWAPPINESS.  Higher means more swappy.
202  */
203 int vm_swappiness = 60;
204 
205 #ifdef CONFIG_MEMCG
206 
207 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
208 static bool cgroup_reclaim(struct scan_control *sc)
209 {
210 	return sc->target_mem_cgroup;
211 }
212 
213 /*
214  * Returns true for reclaim on the root cgroup. This is true for direct
215  * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
216  */
217 static bool root_reclaim(struct scan_control *sc)
218 {
219 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
220 }
221 
222 /**
223  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
224  * @sc: scan_control in question
225  *
226  * The normal page dirty throttling mechanism in balance_dirty_pages() is
227  * completely broken with the legacy memcg and direct stalling in
228  * shrink_folio_list() is used for throttling instead, which lacks all the
229  * niceties such as fairness, adaptive pausing, bandwidth proportional
230  * allocation and configurability.
231  *
232  * This function tests whether the vmscan currently in progress can assume
233  * that the normal dirty throttling mechanism is operational.
234  */
235 static bool writeback_throttling_sane(struct scan_control *sc)
236 {
237 	if (!cgroup_reclaim(sc))
238 		return true;
239 #ifdef CONFIG_CGROUP_WRITEBACK
240 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
241 		return true;
242 #endif
243 	return false;
244 }
245 
246 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
247 {
248 	if (sc->proactive && sc->proactive_swappiness)
249 		return *sc->proactive_swappiness;
250 	return mem_cgroup_swappiness(memcg);
251 }
252 #else
253 static bool cgroup_reclaim(struct scan_control *sc)
254 {
255 	return false;
256 }
257 
258 static bool root_reclaim(struct scan_control *sc)
259 {
260 	return true;
261 }
262 
263 static bool writeback_throttling_sane(struct scan_control *sc)
264 {
265 	return true;
266 }
267 
268 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
269 {
270 	return READ_ONCE(vm_swappiness);
271 }
272 #endif
273 
274 /* for_each_managed_zone_pgdat - helper macro to iterate over all managed zones in a pgdat up to
275  * and including the specified highidx
276  * @zone: The current zone in the iterator
277  * @pgdat: The pgdat which node_zones are being iterated
278  * @idx: The index variable
279  * @highidx: The index of the highest zone to return
280  *
281  * This macro iterates through all managed zones up to and including the specified highidx.
282  * The zone iterator enters an invalid state after macro call and must be reinitialized
283  * before it can be used again.
284  */
285 #define for_each_managed_zone_pgdat(zone, pgdat, idx, highidx)	\
286 	for ((idx) = 0, (zone) = (pgdat)->node_zones;		\
287 	    (idx) <= (highidx);					\
288 	    (idx)++, (zone)++)					\
289 		if (!managed_zone(zone))			\
290 			continue;				\
291 		else
292 
293 static void set_task_reclaim_state(struct task_struct *task,
294 				   struct reclaim_state *rs)
295 {
296 	/* Check for an overwrite */
297 	WARN_ON_ONCE(rs && task->reclaim_state);
298 
299 	/* Check for the nulling of an already-nulled member */
300 	WARN_ON_ONCE(!rs && !task->reclaim_state);
301 
302 	task->reclaim_state = rs;
303 }
304 
305 /*
306  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
307  * scan_control->nr_reclaimed.
308  */
309 static void flush_reclaim_state(struct scan_control *sc)
310 {
311 	/*
312 	 * Currently, reclaim_state->reclaimed includes three types of pages
313 	 * freed outside of vmscan:
314 	 * (1) Slab pages.
315 	 * (2) Clean file pages from pruned inodes (on highmem systems).
316 	 * (3) XFS freed buffer pages.
317 	 *
318 	 * For all of these cases, we cannot universally link the pages to a
319 	 * single memcg. For example, a memcg-aware shrinker can free one object
320 	 * charged to the target memcg, causing an entire page to be freed.
321 	 * If we count the entire page as reclaimed from the memcg, we end up
322 	 * overestimating the reclaimed amount (potentially under-reclaiming).
323 	 *
324 	 * Only count such pages for global reclaim to prevent under-reclaiming
325 	 * from the target memcg; preventing unnecessary retries during memcg
326 	 * charging and false positives from proactive reclaim.
327 	 *
328 	 * For uncommon cases where the freed pages were actually mostly
329 	 * charged to the target memcg, we end up underestimating the reclaimed
330 	 * amount. This should be fine. The freed pages will be uncharged
331 	 * anyway, even if they are not counted here properly, and we will be
332 	 * able to make forward progress in charging (which is usually in a
333 	 * retry loop).
334 	 *
335 	 * We can go one step further, and report the uncharged objcg pages in
336 	 * memcg reclaim, to make reporting more accurate and reduce
337 	 * underestimation, but it's probably not worth the complexity for now.
338 	 */
339 	if (current->reclaim_state && root_reclaim(sc)) {
340 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
341 		current->reclaim_state->reclaimed = 0;
342 	}
343 }
344 
345 static bool can_demote(int nid, struct scan_control *sc)
346 {
347 	if (!numa_demotion_enabled)
348 		return false;
349 	if (sc && sc->no_demotion)
350 		return false;
351 	if (next_demotion_node(nid) == NUMA_NO_NODE)
352 		return false;
353 
354 	return true;
355 }
356 
357 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
358 					  int nid,
359 					  struct scan_control *sc)
360 {
361 	if (memcg == NULL) {
362 		/*
363 		 * For non-memcg reclaim, is there
364 		 * space in any swap device?
365 		 */
366 		if (get_nr_swap_pages() > 0)
367 			return true;
368 	} else {
369 		/* Is the memcg below its swap limit? */
370 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
371 			return true;
372 	}
373 
374 	/*
375 	 * The page can not be swapped.
376 	 *
377 	 * Can it be reclaimed from this node via demotion?
378 	 */
379 	return can_demote(nid, sc);
380 }
381 
382 /*
383  * This misses isolated folios which are not accounted for to save counters.
384  * As the data only determines if reclaim or compaction continues, it is
385  * not expected that isolated folios will be a dominating factor.
386  */
387 unsigned long zone_reclaimable_pages(struct zone *zone)
388 {
389 	unsigned long nr;
390 
391 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
392 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
393 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
394 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
395 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
396 	/*
397 	 * If there are no reclaimable file-backed or anonymous pages,
398 	 * ensure zones with sufficient free pages are not skipped.
399 	 * This prevents zones like DMA32 from being ignored in reclaim
400 	 * scenarios where they can still help alleviate memory pressure.
401 	 */
402 	if (nr == 0)
403 		nr = zone_page_state_snapshot(zone, NR_FREE_PAGES);
404 	return nr;
405 }
406 
407 /**
408  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
409  * @lruvec: lru vector
410  * @lru: lru to use
411  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
412  */
413 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
414 				     int zone_idx)
415 {
416 	unsigned long size = 0;
417 	int zid;
418 	struct zone *zone;
419 
420 	for_each_managed_zone_pgdat(zone, lruvec_pgdat(lruvec), zid, zone_idx) {
421 		if (!mem_cgroup_disabled())
422 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
423 		else
424 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
425 	}
426 	return size;
427 }
428 
429 static unsigned long drop_slab_node(int nid)
430 {
431 	unsigned long freed = 0;
432 	struct mem_cgroup *memcg = NULL;
433 
434 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
435 	do {
436 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
437 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
438 
439 	return freed;
440 }
441 
442 void drop_slab(void)
443 {
444 	int nid;
445 	int shift = 0;
446 	unsigned long freed;
447 
448 	do {
449 		freed = 0;
450 		for_each_online_node(nid) {
451 			if (fatal_signal_pending(current))
452 				return;
453 
454 			freed += drop_slab_node(nid);
455 		}
456 	} while ((freed >> shift++) > 1);
457 }
458 
459 #define CHECK_RECLAIMER_OFFSET(type)					\
460 	do {								\
461 		BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD !=		\
462 			     PGDEMOTE_##type - PGDEMOTE_KSWAPD);	\
463 		BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD !=		\
464 			     PGSCAN_##type - PGSCAN_KSWAPD);		\
465 	} while (0)
466 
467 static int reclaimer_offset(struct scan_control *sc)
468 {
469 	CHECK_RECLAIMER_OFFSET(DIRECT);
470 	CHECK_RECLAIMER_OFFSET(KHUGEPAGED);
471 	CHECK_RECLAIMER_OFFSET(PROACTIVE);
472 
473 	if (current_is_kswapd())
474 		return 0;
475 	if (current_is_khugepaged())
476 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
477 	if (sc->proactive)
478 		return PGSTEAL_PROACTIVE - PGSTEAL_KSWAPD;
479 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
480 }
481 
482 static inline int is_page_cache_freeable(struct folio *folio)
483 {
484 	/*
485 	 * A freeable page cache folio is referenced only by the caller
486 	 * that isolated the folio, the page cache and optional filesystem
487 	 * private data at folio->private.
488 	 */
489 	return folio_ref_count(folio) - folio_test_private(folio) ==
490 		1 + folio_nr_pages(folio);
491 }
492 
493 /*
494  * We detected a synchronous write error writing a folio out.  Probably
495  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
496  * fsync(), msync() or close().
497  *
498  * The tricky part is that after writepage we cannot touch the mapping: nothing
499  * prevents it from being freed up.  But we have a ref on the folio and once
500  * that folio is locked, the mapping is pinned.
501  *
502  * We're allowed to run sleeping folio_lock() here because we know the caller has
503  * __GFP_FS.
504  */
505 static void handle_write_error(struct address_space *mapping,
506 				struct folio *folio, int error)
507 {
508 	folio_lock(folio);
509 	if (folio_mapping(folio) == mapping)
510 		mapping_set_error(mapping, error);
511 	folio_unlock(folio);
512 }
513 
514 static bool skip_throttle_noprogress(pg_data_t *pgdat)
515 {
516 	int reclaimable = 0, write_pending = 0;
517 	int i;
518 	struct zone *zone;
519 	/*
520 	 * If kswapd is disabled, reschedule if necessary but do not
521 	 * throttle as the system is likely near OOM.
522 	 */
523 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
524 		return true;
525 
526 	/*
527 	 * If there are a lot of dirty/writeback folios then do not
528 	 * throttle as throttling will occur when the folios cycle
529 	 * towards the end of the LRU if still under writeback.
530 	 */
531 	for_each_managed_zone_pgdat(zone, pgdat, i, MAX_NR_ZONES - 1) {
532 		reclaimable += zone_reclaimable_pages(zone);
533 		write_pending += zone_page_state_snapshot(zone,
534 						  NR_ZONE_WRITE_PENDING);
535 	}
536 	if (2 * write_pending <= reclaimable)
537 		return true;
538 
539 	return false;
540 }
541 
542 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
543 {
544 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
545 	long timeout, ret;
546 	DEFINE_WAIT(wait);
547 
548 	/*
549 	 * Do not throttle user workers, kthreads other than kswapd or
550 	 * workqueues. They may be required for reclaim to make
551 	 * forward progress (e.g. journalling workqueues or kthreads).
552 	 */
553 	if (!current_is_kswapd() &&
554 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
555 		cond_resched();
556 		return;
557 	}
558 
559 	/*
560 	 * These figures are pulled out of thin air.
561 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
562 	 * parallel reclaimers which is a short-lived event so the timeout is
563 	 * short. Failing to make progress or waiting on writeback are
564 	 * potentially long-lived events so use a longer timeout. This is shaky
565 	 * logic as a failure to make progress could be due to anything from
566 	 * writeback to a slow device to excessive referenced folios at the tail
567 	 * of the inactive LRU.
568 	 */
569 	switch(reason) {
570 	case VMSCAN_THROTTLE_WRITEBACK:
571 		timeout = HZ/10;
572 
573 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
574 			WRITE_ONCE(pgdat->nr_reclaim_start,
575 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
576 		}
577 
578 		break;
579 	case VMSCAN_THROTTLE_CONGESTED:
580 		fallthrough;
581 	case VMSCAN_THROTTLE_NOPROGRESS:
582 		if (skip_throttle_noprogress(pgdat)) {
583 			cond_resched();
584 			return;
585 		}
586 
587 		timeout = 1;
588 
589 		break;
590 	case VMSCAN_THROTTLE_ISOLATED:
591 		timeout = HZ/50;
592 		break;
593 	default:
594 		WARN_ON_ONCE(1);
595 		timeout = HZ;
596 		break;
597 	}
598 
599 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
600 	ret = schedule_timeout(timeout);
601 	finish_wait(wqh, &wait);
602 
603 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
604 		atomic_dec(&pgdat->nr_writeback_throttled);
605 
606 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
607 				jiffies_to_usecs(timeout - ret),
608 				reason);
609 }
610 
611 /*
612  * Account for folios written if tasks are throttled waiting on dirty
613  * folios to clean. If enough folios have been cleaned since throttling
614  * started then wakeup the throttled tasks.
615  */
616 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
617 							int nr_throttled)
618 {
619 	unsigned long nr_written;
620 
621 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
622 
623 	/*
624 	 * This is an inaccurate read as the per-cpu deltas may not
625 	 * be synchronised. However, given that the system is
626 	 * writeback throttled, it is not worth taking the penalty
627 	 * of getting an accurate count. At worst, the throttle
628 	 * timeout guarantees forward progress.
629 	 */
630 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
631 		READ_ONCE(pgdat->nr_reclaim_start);
632 
633 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
634 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
635 }
636 
637 /* possible outcome of pageout() */
638 typedef enum {
639 	/* failed to write folio out, folio is locked */
640 	PAGE_KEEP,
641 	/* move folio to the active list, folio is locked */
642 	PAGE_ACTIVATE,
643 	/* folio has been sent to the disk successfully, folio is unlocked */
644 	PAGE_SUCCESS,
645 	/* folio is clean and locked */
646 	PAGE_CLEAN,
647 } pageout_t;
648 
649 /*
650  * pageout is called by shrink_folio_list() for each dirty folio.
651  */
652 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
653 			 struct swap_iocb **plug, struct list_head *folio_list)
654 {
655 	int (*writeout)(struct folio *, struct writeback_control *);
656 
657 	/*
658 	 * We no longer attempt to writeback filesystem folios here, other
659 	 * than tmpfs/shmem.  That's taken care of in page-writeback.
660 	 * If we find a dirty filesystem folio at the end of the LRU list,
661 	 * typically that means the filesystem is saturating the storage
662 	 * with contiguous writes and telling it to write a folio here
663 	 * would only make the situation worse by injecting an element
664 	 * of random access.
665 	 *
666 	 * If the folio is swapcache, write it back even if that would
667 	 * block, for some throttling. This happens by accident, because
668 	 * swap_backing_dev_info is bust: it doesn't reflect the
669 	 * congestion state of the swapdevs.  Easy to fix, if needed.
670 	 */
671 	if (!is_page_cache_freeable(folio))
672 		return PAGE_KEEP;
673 	if (!mapping) {
674 		/*
675 		 * Some data journaling orphaned folios can have
676 		 * folio->mapping == NULL while being dirty with clean buffers.
677 		 */
678 		if (folio_test_private(folio)) {
679 			if (try_to_free_buffers(folio)) {
680 				folio_clear_dirty(folio);
681 				pr_info("%s: orphaned folio\n", __func__);
682 				return PAGE_CLEAN;
683 			}
684 		}
685 		return PAGE_KEEP;
686 	}
687 	if (shmem_mapping(mapping))
688 		writeout = shmem_writeout;
689 	else if (folio_test_anon(folio))
690 		writeout = swap_writeout;
691 	else
692 		return PAGE_ACTIVATE;
693 
694 	if (folio_clear_dirty_for_io(folio)) {
695 		int res;
696 		struct writeback_control wbc = {
697 			.sync_mode = WB_SYNC_NONE,
698 			.nr_to_write = SWAP_CLUSTER_MAX,
699 			.range_start = 0,
700 			.range_end = LLONG_MAX,
701 			.for_reclaim = 1,
702 			.swap_plug = plug,
703 		};
704 
705 		/*
706 		 * The large shmem folio can be split if CONFIG_THP_SWAP is
707 		 * not enabled or contiguous swap entries are failed to
708 		 * allocate.
709 		 */
710 		if (shmem_mapping(mapping) && folio_test_large(folio))
711 			wbc.list = folio_list;
712 
713 		folio_set_reclaim(folio);
714 		res = writeout(folio, &wbc);
715 		if (res < 0)
716 			handle_write_error(mapping, folio, res);
717 		if (res == AOP_WRITEPAGE_ACTIVATE) {
718 			folio_clear_reclaim(folio);
719 			return PAGE_ACTIVATE;
720 		}
721 
722 		if (!folio_test_writeback(folio)) {
723 			/* synchronous write? */
724 			folio_clear_reclaim(folio);
725 		}
726 		trace_mm_vmscan_write_folio(folio);
727 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
728 		return PAGE_SUCCESS;
729 	}
730 
731 	return PAGE_CLEAN;
732 }
733 
734 /*
735  * Same as remove_mapping, but if the folio is removed from the mapping, it
736  * gets returned with a refcount of 0.
737  */
738 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
739 			    bool reclaimed, struct mem_cgroup *target_memcg)
740 {
741 	int refcount;
742 	void *shadow = NULL;
743 
744 	BUG_ON(!folio_test_locked(folio));
745 	BUG_ON(mapping != folio_mapping(folio));
746 
747 	if (!folio_test_swapcache(folio))
748 		spin_lock(&mapping->host->i_lock);
749 	xa_lock_irq(&mapping->i_pages);
750 	/*
751 	 * The non racy check for a busy folio.
752 	 *
753 	 * Must be careful with the order of the tests. When someone has
754 	 * a ref to the folio, it may be possible that they dirty it then
755 	 * drop the reference. So if the dirty flag is tested before the
756 	 * refcount here, then the following race may occur:
757 	 *
758 	 * get_user_pages(&page);
759 	 * [user mapping goes away]
760 	 * write_to(page);
761 	 *				!folio_test_dirty(folio)    [good]
762 	 * folio_set_dirty(folio);
763 	 * folio_put(folio);
764 	 *				!refcount(folio)   [good, discard it]
765 	 *
766 	 * [oops, our write_to data is lost]
767 	 *
768 	 * Reversing the order of the tests ensures such a situation cannot
769 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
770 	 * load is not satisfied before that of folio->_refcount.
771 	 *
772 	 * Note that if the dirty flag is always set via folio_mark_dirty,
773 	 * and thus under the i_pages lock, then this ordering is not required.
774 	 */
775 	refcount = 1 + folio_nr_pages(folio);
776 	if (!folio_ref_freeze(folio, refcount))
777 		goto cannot_free;
778 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
779 	if (unlikely(folio_test_dirty(folio))) {
780 		folio_ref_unfreeze(folio, refcount);
781 		goto cannot_free;
782 	}
783 
784 	if (folio_test_swapcache(folio)) {
785 		swp_entry_t swap = folio->swap;
786 
787 		if (reclaimed && !mapping_exiting(mapping))
788 			shadow = workingset_eviction(folio, target_memcg);
789 		__delete_from_swap_cache(folio, swap, shadow);
790 		memcg1_swapout(folio, swap);
791 		xa_unlock_irq(&mapping->i_pages);
792 		put_swap_folio(folio, swap);
793 	} else {
794 		void (*free_folio)(struct folio *);
795 
796 		free_folio = mapping->a_ops->free_folio;
797 		/*
798 		 * Remember a shadow entry for reclaimed file cache in
799 		 * order to detect refaults, thus thrashing, later on.
800 		 *
801 		 * But don't store shadows in an address space that is
802 		 * already exiting.  This is not just an optimization,
803 		 * inode reclaim needs to empty out the radix tree or
804 		 * the nodes are lost.  Don't plant shadows behind its
805 		 * back.
806 		 *
807 		 * We also don't store shadows for DAX mappings because the
808 		 * only page cache folios found in these are zero pages
809 		 * covering holes, and because we don't want to mix DAX
810 		 * exceptional entries and shadow exceptional entries in the
811 		 * same address_space.
812 		 */
813 		if (reclaimed && folio_is_file_lru(folio) &&
814 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
815 			shadow = workingset_eviction(folio, target_memcg);
816 		__filemap_remove_folio(folio, shadow);
817 		xa_unlock_irq(&mapping->i_pages);
818 		if (mapping_shrinkable(mapping))
819 			inode_add_lru(mapping->host);
820 		spin_unlock(&mapping->host->i_lock);
821 
822 		if (free_folio)
823 			free_folio(folio);
824 	}
825 
826 	return 1;
827 
828 cannot_free:
829 	xa_unlock_irq(&mapping->i_pages);
830 	if (!folio_test_swapcache(folio))
831 		spin_unlock(&mapping->host->i_lock);
832 	return 0;
833 }
834 
835 /**
836  * remove_mapping() - Attempt to remove a folio from its mapping.
837  * @mapping: The address space.
838  * @folio: The folio to remove.
839  *
840  * If the folio is dirty, under writeback or if someone else has a ref
841  * on it, removal will fail.
842  * Return: The number of pages removed from the mapping.  0 if the folio
843  * could not be removed.
844  * Context: The caller should have a single refcount on the folio and
845  * hold its lock.
846  */
847 long remove_mapping(struct address_space *mapping, struct folio *folio)
848 {
849 	if (__remove_mapping(mapping, folio, false, NULL)) {
850 		/*
851 		 * Unfreezing the refcount with 1 effectively
852 		 * drops the pagecache ref for us without requiring another
853 		 * atomic operation.
854 		 */
855 		folio_ref_unfreeze(folio, 1);
856 		return folio_nr_pages(folio);
857 	}
858 	return 0;
859 }
860 
861 /**
862  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
863  * @folio: Folio to be returned to an LRU list.
864  *
865  * Add previously isolated @folio to appropriate LRU list.
866  * The folio may still be unevictable for other reasons.
867  *
868  * Context: lru_lock must not be held, interrupts must be enabled.
869  */
870 void folio_putback_lru(struct folio *folio)
871 {
872 	folio_add_lru(folio);
873 	folio_put(folio);		/* drop ref from isolate */
874 }
875 
876 enum folio_references {
877 	FOLIOREF_RECLAIM,
878 	FOLIOREF_RECLAIM_CLEAN,
879 	FOLIOREF_KEEP,
880 	FOLIOREF_ACTIVATE,
881 };
882 
883 #ifdef CONFIG_LRU_GEN
884 /*
885  * Only used on a mapped folio in the eviction (rmap walk) path, where promotion
886  * needs to be done by taking the folio off the LRU list and then adding it back
887  * with PG_active set. In contrast, the aging (page table walk) path uses
888  * folio_update_gen().
889  */
890 static bool lru_gen_set_refs(struct folio *folio)
891 {
892 	/* see the comment on LRU_REFS_FLAGS */
893 	if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
894 		set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced));
895 		return false;
896 	}
897 
898 	set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_workingset));
899 	return true;
900 }
901 #else
902 static bool lru_gen_set_refs(struct folio *folio)
903 {
904 	return false;
905 }
906 #endif /* CONFIG_LRU_GEN */
907 
908 static enum folio_references folio_check_references(struct folio *folio,
909 						  struct scan_control *sc)
910 {
911 	int referenced_ptes, referenced_folio;
912 	unsigned long vm_flags;
913 
914 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
915 					   &vm_flags);
916 
917 	/*
918 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
919 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
920 	 */
921 	if (vm_flags & VM_LOCKED)
922 		return FOLIOREF_ACTIVATE;
923 
924 	/*
925 	 * There are two cases to consider.
926 	 * 1) Rmap lock contention: rotate.
927 	 * 2) Skip the non-shared swapbacked folio mapped solely by
928 	 *    the exiting or OOM-reaped process.
929 	 */
930 	if (referenced_ptes == -1)
931 		return FOLIOREF_KEEP;
932 
933 	if (lru_gen_enabled()) {
934 		if (!referenced_ptes)
935 			return FOLIOREF_RECLAIM;
936 
937 		return lru_gen_set_refs(folio) ? FOLIOREF_ACTIVATE : FOLIOREF_KEEP;
938 	}
939 
940 	referenced_folio = folio_test_clear_referenced(folio);
941 
942 	if (referenced_ptes) {
943 		/*
944 		 * All mapped folios start out with page table
945 		 * references from the instantiating fault, so we need
946 		 * to look twice if a mapped file/anon folio is used more
947 		 * than once.
948 		 *
949 		 * Mark it and spare it for another trip around the
950 		 * inactive list.  Another page table reference will
951 		 * lead to its activation.
952 		 *
953 		 * Note: the mark is set for activated folios as well
954 		 * so that recently deactivated but used folios are
955 		 * quickly recovered.
956 		 */
957 		folio_set_referenced(folio);
958 
959 		if (referenced_folio || referenced_ptes > 1)
960 			return FOLIOREF_ACTIVATE;
961 
962 		/*
963 		 * Activate file-backed executable folios after first usage.
964 		 */
965 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
966 			return FOLIOREF_ACTIVATE;
967 
968 		return FOLIOREF_KEEP;
969 	}
970 
971 	/* Reclaim if clean, defer dirty folios to writeback */
972 	if (referenced_folio && folio_is_file_lru(folio))
973 		return FOLIOREF_RECLAIM_CLEAN;
974 
975 	return FOLIOREF_RECLAIM;
976 }
977 
978 /* Check if a folio is dirty or under writeback */
979 static void folio_check_dirty_writeback(struct folio *folio,
980 				       bool *dirty, bool *writeback)
981 {
982 	struct address_space *mapping;
983 
984 	/*
985 	 * Anonymous folios are not handled by flushers and must be written
986 	 * from reclaim context. Do not stall reclaim based on them.
987 	 * MADV_FREE anonymous folios are put into inactive file list too.
988 	 * They could be mistakenly treated as file lru. So further anon
989 	 * test is needed.
990 	 */
991 	if (!folio_is_file_lru(folio) ||
992 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
993 		*dirty = false;
994 		*writeback = false;
995 		return;
996 	}
997 
998 	/* By default assume that the folio flags are accurate */
999 	*dirty = folio_test_dirty(folio);
1000 	*writeback = folio_test_writeback(folio);
1001 
1002 	/* Verify dirty/writeback state if the filesystem supports it */
1003 	if (!folio_test_private(folio))
1004 		return;
1005 
1006 	mapping = folio_mapping(folio);
1007 	if (mapping && mapping->a_ops->is_dirty_writeback)
1008 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1009 }
1010 
1011 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private)
1012 {
1013 	struct folio *dst;
1014 	nodemask_t *allowed_mask;
1015 	struct migration_target_control *mtc;
1016 
1017 	mtc = (struct migration_target_control *)private;
1018 
1019 	allowed_mask = mtc->nmask;
1020 	/*
1021 	 * make sure we allocate from the target node first also trying to
1022 	 * demote or reclaim pages from the target node via kswapd if we are
1023 	 * low on free memory on target node. If we don't do this and if
1024 	 * we have free memory on the slower(lower) memtier, we would start
1025 	 * allocating pages from slower(lower) memory tiers without even forcing
1026 	 * a demotion of cold pages from the target memtier. This can result
1027 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1028 	 */
1029 	mtc->nmask = NULL;
1030 	mtc->gfp_mask |= __GFP_THISNODE;
1031 	dst = alloc_migration_target(src, (unsigned long)mtc);
1032 	if (dst)
1033 		return dst;
1034 
1035 	mtc->gfp_mask &= ~__GFP_THISNODE;
1036 	mtc->nmask = allowed_mask;
1037 
1038 	return alloc_migration_target(src, (unsigned long)mtc);
1039 }
1040 
1041 /*
1042  * Take folios on @demote_folios and attempt to demote them to another node.
1043  * Folios which are not demoted are left on @demote_folios.
1044  */
1045 static unsigned int demote_folio_list(struct list_head *demote_folios,
1046 				     struct pglist_data *pgdat)
1047 {
1048 	int target_nid = next_demotion_node(pgdat->node_id);
1049 	unsigned int nr_succeeded;
1050 	nodemask_t allowed_mask;
1051 
1052 	struct migration_target_control mtc = {
1053 		/*
1054 		 * Allocate from 'node', or fail quickly and quietly.
1055 		 * When this happens, 'page' will likely just be discarded
1056 		 * instead of migrated.
1057 		 */
1058 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1059 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1060 		.nid = target_nid,
1061 		.nmask = &allowed_mask,
1062 		.reason = MR_DEMOTION,
1063 	};
1064 
1065 	if (list_empty(demote_folios))
1066 		return 0;
1067 
1068 	if (target_nid == NUMA_NO_NODE)
1069 		return 0;
1070 
1071 	node_get_allowed_targets(pgdat, &allowed_mask);
1072 
1073 	/* Demotion ignores all cpuset and mempolicy settings */
1074 	migrate_pages(demote_folios, alloc_migrate_folio, NULL,
1075 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1076 		      &nr_succeeded);
1077 
1078 	return nr_succeeded;
1079 }
1080 
1081 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1082 {
1083 	if (gfp_mask & __GFP_FS)
1084 		return true;
1085 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1086 		return false;
1087 	/*
1088 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1089 	 * providing this isn't SWP_FS_OPS.
1090 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1091 	 * but that will never affect SWP_FS_OPS, so the data_race
1092 	 * is safe.
1093 	 */
1094 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1095 }
1096 
1097 /*
1098  * shrink_folio_list() returns the number of reclaimed pages
1099  */
1100 static unsigned int shrink_folio_list(struct list_head *folio_list,
1101 		struct pglist_data *pgdat, struct scan_control *sc,
1102 		struct reclaim_stat *stat, bool ignore_references)
1103 {
1104 	struct folio_batch free_folios;
1105 	LIST_HEAD(ret_folios);
1106 	LIST_HEAD(demote_folios);
1107 	unsigned int nr_reclaimed = 0, nr_demoted = 0;
1108 	unsigned int pgactivate = 0;
1109 	bool do_demote_pass;
1110 	struct swap_iocb *plug = NULL;
1111 
1112 	folio_batch_init(&free_folios);
1113 	memset(stat, 0, sizeof(*stat));
1114 	cond_resched();
1115 	do_demote_pass = can_demote(pgdat->node_id, sc);
1116 
1117 retry:
1118 	while (!list_empty(folio_list)) {
1119 		struct address_space *mapping;
1120 		struct folio *folio;
1121 		enum folio_references references = FOLIOREF_RECLAIM;
1122 		bool dirty, writeback;
1123 		unsigned int nr_pages;
1124 
1125 		cond_resched();
1126 
1127 		folio = lru_to_folio(folio_list);
1128 		list_del(&folio->lru);
1129 
1130 		if (!folio_trylock(folio))
1131 			goto keep;
1132 
1133 		if (folio_contain_hwpoisoned_page(folio)) {
1134 			unmap_poisoned_folio(folio, folio_pfn(folio), false);
1135 			folio_unlock(folio);
1136 			folio_put(folio);
1137 			continue;
1138 		}
1139 
1140 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1141 
1142 		nr_pages = folio_nr_pages(folio);
1143 
1144 		/* Account the number of base pages */
1145 		sc->nr_scanned += nr_pages;
1146 
1147 		if (unlikely(!folio_evictable(folio)))
1148 			goto activate_locked;
1149 
1150 		if (!sc->may_unmap && folio_mapped(folio))
1151 			goto keep_locked;
1152 
1153 		/*
1154 		 * The number of dirty pages determines if a node is marked
1155 		 * reclaim_congested. kswapd will stall and start writing
1156 		 * folios if the tail of the LRU is all dirty unqueued folios.
1157 		 */
1158 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1159 		if (dirty || writeback)
1160 			stat->nr_dirty += nr_pages;
1161 
1162 		if (dirty && !writeback)
1163 			stat->nr_unqueued_dirty += nr_pages;
1164 
1165 		/*
1166 		 * Treat this folio as congested if folios are cycling
1167 		 * through the LRU so quickly that the folios marked
1168 		 * for immediate reclaim are making it to the end of
1169 		 * the LRU a second time.
1170 		 */
1171 		if (writeback && folio_test_reclaim(folio))
1172 			stat->nr_congested += nr_pages;
1173 
1174 		/*
1175 		 * If a folio at the tail of the LRU is under writeback, there
1176 		 * are three cases to consider.
1177 		 *
1178 		 * 1) If reclaim is encountering an excessive number
1179 		 *    of folios under writeback and this folio has both
1180 		 *    the writeback and reclaim flags set, then it
1181 		 *    indicates that folios are being queued for I/O but
1182 		 *    are being recycled through the LRU before the I/O
1183 		 *    can complete. Waiting on the folio itself risks an
1184 		 *    indefinite stall if it is impossible to writeback
1185 		 *    the folio due to I/O error or disconnected storage
1186 		 *    so instead note that the LRU is being scanned too
1187 		 *    quickly and the caller can stall after the folio
1188 		 *    list has been processed.
1189 		 *
1190 		 * 2) Global or new memcg reclaim encounters a folio that is
1191 		 *    not marked for immediate reclaim, or the caller does not
1192 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1193 		 *    not to fs). In this case mark the folio for immediate
1194 		 *    reclaim and continue scanning.
1195 		 *
1196 		 *    Require may_enter_fs() because we would wait on fs, which
1197 		 *    may not have submitted I/O yet. And the loop driver might
1198 		 *    enter reclaim, and deadlock if it waits on a folio for
1199 		 *    which it is needed to do the write (loop masks off
1200 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1201 		 *    would probably show more reasons.
1202 		 *
1203 		 * 3) Legacy memcg encounters a folio that already has the
1204 		 *    reclaim flag set. memcg does not have any dirty folio
1205 		 *    throttling so we could easily OOM just because too many
1206 		 *    folios are in writeback and there is nothing else to
1207 		 *    reclaim. Wait for the writeback to complete.
1208 		 *
1209 		 * In cases 1) and 2) we activate the folios to get them out of
1210 		 * the way while we continue scanning for clean folios on the
1211 		 * inactive list and refilling from the active list. The
1212 		 * observation here is that waiting for disk writes is more
1213 		 * expensive than potentially causing reloads down the line.
1214 		 * Since they're marked for immediate reclaim, they won't put
1215 		 * memory pressure on the cache working set any longer than it
1216 		 * takes to write them to disk.
1217 		 */
1218 		if (folio_test_writeback(folio)) {
1219 			/* Case 1 above */
1220 			if (current_is_kswapd() &&
1221 			    folio_test_reclaim(folio) &&
1222 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1223 				stat->nr_immediate += nr_pages;
1224 				goto activate_locked;
1225 
1226 			/* Case 2 above */
1227 			} else if (writeback_throttling_sane(sc) ||
1228 			    !folio_test_reclaim(folio) ||
1229 			    !may_enter_fs(folio, sc->gfp_mask)) {
1230 				/*
1231 				 * This is slightly racy -
1232 				 * folio_end_writeback() might have
1233 				 * just cleared the reclaim flag, then
1234 				 * setting the reclaim flag here ends up
1235 				 * interpreted as the readahead flag - but
1236 				 * that does not matter enough to care.
1237 				 * What we do want is for this folio to
1238 				 * have the reclaim flag set next time
1239 				 * memcg reclaim reaches the tests above,
1240 				 * so it will then wait for writeback to
1241 				 * avoid OOM; and it's also appropriate
1242 				 * in global reclaim.
1243 				 */
1244 				folio_set_reclaim(folio);
1245 				stat->nr_writeback += nr_pages;
1246 				goto activate_locked;
1247 
1248 			/* Case 3 above */
1249 			} else {
1250 				folio_unlock(folio);
1251 				folio_wait_writeback(folio);
1252 				/* then go back and try same folio again */
1253 				list_add_tail(&folio->lru, folio_list);
1254 				continue;
1255 			}
1256 		}
1257 
1258 		if (!ignore_references)
1259 			references = folio_check_references(folio, sc);
1260 
1261 		switch (references) {
1262 		case FOLIOREF_ACTIVATE:
1263 			goto activate_locked;
1264 		case FOLIOREF_KEEP:
1265 			stat->nr_ref_keep += nr_pages;
1266 			goto keep_locked;
1267 		case FOLIOREF_RECLAIM:
1268 		case FOLIOREF_RECLAIM_CLEAN:
1269 			; /* try to reclaim the folio below */
1270 		}
1271 
1272 		/*
1273 		 * Before reclaiming the folio, try to relocate
1274 		 * its contents to another node.
1275 		 */
1276 		if (do_demote_pass &&
1277 		    (thp_migration_supported() || !folio_test_large(folio))) {
1278 			list_add(&folio->lru, &demote_folios);
1279 			folio_unlock(folio);
1280 			continue;
1281 		}
1282 
1283 		/*
1284 		 * Anonymous process memory has backing store?
1285 		 * Try to allocate it some swap space here.
1286 		 * Lazyfree folio could be freed directly
1287 		 */
1288 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1289 			if (!folio_test_swapcache(folio)) {
1290 				if (!(sc->gfp_mask & __GFP_IO))
1291 					goto keep_locked;
1292 				if (folio_maybe_dma_pinned(folio))
1293 					goto keep_locked;
1294 				if (folio_test_large(folio)) {
1295 					/* cannot split folio, skip it */
1296 					if (!can_split_folio(folio, 1, NULL))
1297 						goto activate_locked;
1298 					/*
1299 					 * Split partially mapped folios right away.
1300 					 * We can free the unmapped pages without IO.
1301 					 */
1302 					if (data_race(!list_empty(&folio->_deferred_list) &&
1303 					    folio_test_partially_mapped(folio)) &&
1304 					    split_folio_to_list(folio, folio_list))
1305 						goto activate_locked;
1306 				}
1307 				if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN)) {
1308 					int __maybe_unused order = folio_order(folio);
1309 
1310 					if (!folio_test_large(folio))
1311 						goto activate_locked_split;
1312 					/* Fallback to swap normal pages */
1313 					if (split_folio_to_list(folio, folio_list))
1314 						goto activate_locked;
1315 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1316 					if (nr_pages >= HPAGE_PMD_NR) {
1317 						count_memcg_folio_events(folio,
1318 							THP_SWPOUT_FALLBACK, 1);
1319 						count_vm_event(THP_SWPOUT_FALLBACK);
1320 					}
1321 #endif
1322 					count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
1323 					if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN))
1324 						goto activate_locked_split;
1325 				}
1326 				/*
1327 				 * Normally the folio will be dirtied in unmap because its
1328 				 * pte should be dirty. A special case is MADV_FREE page. The
1329 				 * page's pte could have dirty bit cleared but the folio's
1330 				 * SwapBacked flag is still set because clearing the dirty bit
1331 				 * and SwapBacked flag has no lock protected. For such folio,
1332 				 * unmap will not set dirty bit for it, so folio reclaim will
1333 				 * not write the folio out. This can cause data corruption when
1334 				 * the folio is swapped in later. Always setting the dirty flag
1335 				 * for the folio solves the problem.
1336 				 */
1337 				folio_mark_dirty(folio);
1338 			}
1339 		}
1340 
1341 		/*
1342 		 * If the folio was split above, the tail pages will make
1343 		 * their own pass through this function and be accounted
1344 		 * then.
1345 		 */
1346 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1347 			sc->nr_scanned -= (nr_pages - 1);
1348 			nr_pages = 1;
1349 		}
1350 
1351 		/*
1352 		 * The folio is mapped into the page tables of one or more
1353 		 * processes. Try to unmap it here.
1354 		 */
1355 		if (folio_mapped(folio)) {
1356 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1357 			bool was_swapbacked = folio_test_swapbacked(folio);
1358 
1359 			if (folio_test_pmd_mappable(folio))
1360 				flags |= TTU_SPLIT_HUGE_PMD;
1361 			/*
1362 			 * Without TTU_SYNC, try_to_unmap will only begin to
1363 			 * hold PTL from the first present PTE within a large
1364 			 * folio. Some initial PTEs might be skipped due to
1365 			 * races with parallel PTE writes in which PTEs can be
1366 			 * cleared temporarily before being written new present
1367 			 * values. This will lead to a large folio is still
1368 			 * mapped while some subpages have been partially
1369 			 * unmapped after try_to_unmap; TTU_SYNC helps
1370 			 * try_to_unmap acquire PTL from the first PTE,
1371 			 * eliminating the influence of temporary PTE values.
1372 			 */
1373 			if (folio_test_large(folio))
1374 				flags |= TTU_SYNC;
1375 
1376 			try_to_unmap(folio, flags);
1377 			if (folio_mapped(folio)) {
1378 				stat->nr_unmap_fail += nr_pages;
1379 				if (!was_swapbacked &&
1380 				    folio_test_swapbacked(folio))
1381 					stat->nr_lazyfree_fail += nr_pages;
1382 				goto activate_locked;
1383 			}
1384 		}
1385 
1386 		/*
1387 		 * Folio is unmapped now so it cannot be newly pinned anymore.
1388 		 * No point in trying to reclaim folio if it is pinned.
1389 		 * Furthermore we don't want to reclaim underlying fs metadata
1390 		 * if the folio is pinned and thus potentially modified by the
1391 		 * pinning process as that may upset the filesystem.
1392 		 */
1393 		if (folio_maybe_dma_pinned(folio))
1394 			goto activate_locked;
1395 
1396 		mapping = folio_mapping(folio);
1397 		if (folio_test_dirty(folio)) {
1398 			/*
1399 			 * Only kswapd can writeback filesystem folios
1400 			 * to avoid risk of stack overflow. But avoid
1401 			 * injecting inefficient single-folio I/O into
1402 			 * flusher writeback as much as possible: only
1403 			 * write folios when we've encountered many
1404 			 * dirty folios, and when we've already scanned
1405 			 * the rest of the LRU for clean folios and see
1406 			 * the same dirty folios again (with the reclaim
1407 			 * flag set).
1408 			 */
1409 			if (folio_is_file_lru(folio) &&
1410 			    (!current_is_kswapd() ||
1411 			     !folio_test_reclaim(folio) ||
1412 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1413 				/*
1414 				 * Immediately reclaim when written back.
1415 				 * Similar in principle to folio_deactivate()
1416 				 * except we already have the folio isolated
1417 				 * and know it's dirty
1418 				 */
1419 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1420 						nr_pages);
1421 				folio_set_reclaim(folio);
1422 
1423 				goto activate_locked;
1424 			}
1425 
1426 			if (references == FOLIOREF_RECLAIM_CLEAN)
1427 				goto keep_locked;
1428 			if (!may_enter_fs(folio, sc->gfp_mask))
1429 				goto keep_locked;
1430 			if (!sc->may_writepage)
1431 				goto keep_locked;
1432 
1433 			/*
1434 			 * Folio is dirty. Flush the TLB if a writable entry
1435 			 * potentially exists to avoid CPU writes after I/O
1436 			 * starts and then write it out here.
1437 			 */
1438 			try_to_unmap_flush_dirty();
1439 			switch (pageout(folio, mapping, &plug, folio_list)) {
1440 			case PAGE_KEEP:
1441 				goto keep_locked;
1442 			case PAGE_ACTIVATE:
1443 				/*
1444 				 * If shmem folio is split when writeback to swap,
1445 				 * the tail pages will make their own pass through
1446 				 * this function and be accounted then.
1447 				 */
1448 				if (nr_pages > 1 && !folio_test_large(folio)) {
1449 					sc->nr_scanned -= (nr_pages - 1);
1450 					nr_pages = 1;
1451 				}
1452 				goto activate_locked;
1453 			case PAGE_SUCCESS:
1454 				if (nr_pages > 1 && !folio_test_large(folio)) {
1455 					sc->nr_scanned -= (nr_pages - 1);
1456 					nr_pages = 1;
1457 				}
1458 				stat->nr_pageout += nr_pages;
1459 
1460 				if (folio_test_writeback(folio))
1461 					goto keep;
1462 				if (folio_test_dirty(folio))
1463 					goto keep;
1464 
1465 				/*
1466 				 * A synchronous write - probably a ramdisk.  Go
1467 				 * ahead and try to reclaim the folio.
1468 				 */
1469 				if (!folio_trylock(folio))
1470 					goto keep;
1471 				if (folio_test_dirty(folio) ||
1472 				    folio_test_writeback(folio))
1473 					goto keep_locked;
1474 				mapping = folio_mapping(folio);
1475 				fallthrough;
1476 			case PAGE_CLEAN:
1477 				; /* try to free the folio below */
1478 			}
1479 		}
1480 
1481 		/*
1482 		 * If the folio has buffers, try to free the buffer
1483 		 * mappings associated with this folio. If we succeed
1484 		 * we try to free the folio as well.
1485 		 *
1486 		 * We do this even if the folio is dirty.
1487 		 * filemap_release_folio() does not perform I/O, but it
1488 		 * is possible for a folio to have the dirty flag set,
1489 		 * but it is actually clean (all its buffers are clean).
1490 		 * This happens if the buffers were written out directly,
1491 		 * with submit_bh(). ext3 will do this, as well as
1492 		 * the blockdev mapping.  filemap_release_folio() will
1493 		 * discover that cleanness and will drop the buffers
1494 		 * and mark the folio clean - it can be freed.
1495 		 *
1496 		 * Rarely, folios can have buffers and no ->mapping.
1497 		 * These are the folios which were not successfully
1498 		 * invalidated in truncate_cleanup_folio().  We try to
1499 		 * drop those buffers here and if that worked, and the
1500 		 * folio is no longer mapped into process address space
1501 		 * (refcount == 1) it can be freed.  Otherwise, leave
1502 		 * the folio on the LRU so it is swappable.
1503 		 */
1504 		if (folio_needs_release(folio)) {
1505 			if (!filemap_release_folio(folio, sc->gfp_mask))
1506 				goto activate_locked;
1507 			if (!mapping && folio_ref_count(folio) == 1) {
1508 				folio_unlock(folio);
1509 				if (folio_put_testzero(folio))
1510 					goto free_it;
1511 				else {
1512 					/*
1513 					 * rare race with speculative reference.
1514 					 * the speculative reference will free
1515 					 * this folio shortly, so we may
1516 					 * increment nr_reclaimed here (and
1517 					 * leave it off the LRU).
1518 					 */
1519 					nr_reclaimed += nr_pages;
1520 					continue;
1521 				}
1522 			}
1523 		}
1524 
1525 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1526 			/* follow __remove_mapping for reference */
1527 			if (!folio_ref_freeze(folio, 1))
1528 				goto keep_locked;
1529 			/*
1530 			 * The folio has only one reference left, which is
1531 			 * from the isolation. After the caller puts the
1532 			 * folio back on the lru and drops the reference, the
1533 			 * folio will be freed anyway. It doesn't matter
1534 			 * which lru it goes on. So we don't bother checking
1535 			 * the dirty flag here.
1536 			 */
1537 			count_vm_events(PGLAZYFREED, nr_pages);
1538 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1539 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1540 							 sc->target_mem_cgroup))
1541 			goto keep_locked;
1542 
1543 		folio_unlock(folio);
1544 free_it:
1545 		/*
1546 		 * Folio may get swapped out as a whole, need to account
1547 		 * all pages in it.
1548 		 */
1549 		nr_reclaimed += nr_pages;
1550 
1551 		folio_unqueue_deferred_split(folio);
1552 		if (folio_batch_add(&free_folios, folio) == 0) {
1553 			mem_cgroup_uncharge_folios(&free_folios);
1554 			try_to_unmap_flush();
1555 			free_unref_folios(&free_folios);
1556 		}
1557 		continue;
1558 
1559 activate_locked_split:
1560 		/*
1561 		 * The tail pages that are failed to add into swap cache
1562 		 * reach here.  Fixup nr_scanned and nr_pages.
1563 		 */
1564 		if (nr_pages > 1) {
1565 			sc->nr_scanned -= (nr_pages - 1);
1566 			nr_pages = 1;
1567 		}
1568 activate_locked:
1569 		/* Not a candidate for swapping, so reclaim swap space. */
1570 		if (folio_test_swapcache(folio) &&
1571 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1572 			folio_free_swap(folio);
1573 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1574 		if (!folio_test_mlocked(folio)) {
1575 			int type = folio_is_file_lru(folio);
1576 			folio_set_active(folio);
1577 			stat->nr_activate[type] += nr_pages;
1578 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1579 		}
1580 keep_locked:
1581 		folio_unlock(folio);
1582 keep:
1583 		list_add(&folio->lru, &ret_folios);
1584 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1585 				folio_test_unevictable(folio), folio);
1586 	}
1587 	/* 'folio_list' is always empty here */
1588 
1589 	/* Migrate folios selected for demotion */
1590 	nr_demoted = demote_folio_list(&demote_folios, pgdat);
1591 	nr_reclaimed += nr_demoted;
1592 	stat->nr_demoted += nr_demoted;
1593 	/* Folios that could not be demoted are still in @demote_folios */
1594 	if (!list_empty(&demote_folios)) {
1595 		/* Folios which weren't demoted go back on @folio_list */
1596 		list_splice_init(&demote_folios, folio_list);
1597 
1598 		/*
1599 		 * goto retry to reclaim the undemoted folios in folio_list if
1600 		 * desired.
1601 		 *
1602 		 * Reclaiming directly from top tier nodes is not often desired
1603 		 * due to it breaking the LRU ordering: in general memory
1604 		 * should be reclaimed from lower tier nodes and demoted from
1605 		 * top tier nodes.
1606 		 *
1607 		 * However, disabling reclaim from top tier nodes entirely
1608 		 * would cause ooms in edge scenarios where lower tier memory
1609 		 * is unreclaimable for whatever reason, eg memory being
1610 		 * mlocked or too hot to reclaim. We can disable reclaim
1611 		 * from top tier nodes in proactive reclaim though as that is
1612 		 * not real memory pressure.
1613 		 */
1614 		if (!sc->proactive) {
1615 			do_demote_pass = false;
1616 			goto retry;
1617 		}
1618 	}
1619 
1620 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1621 
1622 	mem_cgroup_uncharge_folios(&free_folios);
1623 	try_to_unmap_flush();
1624 	free_unref_folios(&free_folios);
1625 
1626 	list_splice(&ret_folios, folio_list);
1627 	count_vm_events(PGACTIVATE, pgactivate);
1628 
1629 	if (plug)
1630 		swap_write_unplug(plug);
1631 	return nr_reclaimed;
1632 }
1633 
1634 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1635 					   struct list_head *folio_list)
1636 {
1637 	struct scan_control sc = {
1638 		.gfp_mask = GFP_KERNEL,
1639 		.may_unmap = 1,
1640 	};
1641 	struct reclaim_stat stat;
1642 	unsigned int nr_reclaimed;
1643 	struct folio *folio, *next;
1644 	LIST_HEAD(clean_folios);
1645 	unsigned int noreclaim_flag;
1646 
1647 	list_for_each_entry_safe(folio, next, folio_list, lru) {
1648 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1649 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1650 		    !folio_test_unevictable(folio)) {
1651 			folio_clear_active(folio);
1652 			list_move(&folio->lru, &clean_folios);
1653 		}
1654 	}
1655 
1656 	/*
1657 	 * We should be safe here since we are only dealing with file pages and
1658 	 * we are not kswapd and therefore cannot write dirty file pages. But
1659 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1660 	 * change in the future.
1661 	 */
1662 	noreclaim_flag = memalloc_noreclaim_save();
1663 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1664 					&stat, true);
1665 	memalloc_noreclaim_restore(noreclaim_flag);
1666 
1667 	list_splice(&clean_folios, folio_list);
1668 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1669 			    -(long)nr_reclaimed);
1670 	/*
1671 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1672 	 * they will rotate back to anonymous LRU in the end if it failed to
1673 	 * discard so isolated count will be mismatched.
1674 	 * Compensate the isolated count for both LRU lists.
1675 	 */
1676 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1677 			    stat.nr_lazyfree_fail);
1678 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1679 			    -(long)stat.nr_lazyfree_fail);
1680 	return nr_reclaimed;
1681 }
1682 
1683 /*
1684  * Update LRU sizes after isolating pages. The LRU size updates must
1685  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1686  */
1687 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1688 			enum lru_list lru, unsigned long *nr_zone_taken)
1689 {
1690 	int zid;
1691 
1692 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1693 		if (!nr_zone_taken[zid])
1694 			continue;
1695 
1696 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1697 	}
1698 
1699 }
1700 
1701 /*
1702  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1703  *
1704  * lruvec->lru_lock is heavily contended.  Some of the functions that
1705  * shrink the lists perform better by taking out a batch of pages
1706  * and working on them outside the LRU lock.
1707  *
1708  * For pagecache intensive workloads, this function is the hottest
1709  * spot in the kernel (apart from copy_*_user functions).
1710  *
1711  * Lru_lock must be held before calling this function.
1712  *
1713  * @nr_to_scan:	The number of eligible pages to look through on the list.
1714  * @lruvec:	The LRU vector to pull pages from.
1715  * @dst:	The temp list to put pages on to.
1716  * @nr_scanned:	The number of pages that were scanned.
1717  * @sc:		The scan_control struct for this reclaim session
1718  * @lru:	LRU list id for isolating
1719  *
1720  * returns how many pages were moved onto *@dst.
1721  */
1722 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1723 		struct lruvec *lruvec, struct list_head *dst,
1724 		unsigned long *nr_scanned, struct scan_control *sc,
1725 		enum lru_list lru)
1726 {
1727 	struct list_head *src = &lruvec->lists[lru];
1728 	unsigned long nr_taken = 0;
1729 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1730 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1731 	unsigned long skipped = 0;
1732 	unsigned long scan, total_scan, nr_pages;
1733 	unsigned long max_nr_skipped = 0;
1734 	LIST_HEAD(folios_skipped);
1735 
1736 	total_scan = 0;
1737 	scan = 0;
1738 	while (scan < nr_to_scan && !list_empty(src)) {
1739 		struct list_head *move_to = src;
1740 		struct folio *folio;
1741 
1742 		folio = lru_to_folio(src);
1743 		prefetchw_prev_lru_folio(folio, src, flags);
1744 
1745 		nr_pages = folio_nr_pages(folio);
1746 		total_scan += nr_pages;
1747 
1748 		/* Using max_nr_skipped to prevent hard LOCKUP*/
1749 		if (max_nr_skipped < SWAP_CLUSTER_MAX_SKIPPED &&
1750 		    (folio_zonenum(folio) > sc->reclaim_idx)) {
1751 			nr_skipped[folio_zonenum(folio)] += nr_pages;
1752 			move_to = &folios_skipped;
1753 			max_nr_skipped++;
1754 			goto move;
1755 		}
1756 
1757 		/*
1758 		 * Do not count skipped folios because that makes the function
1759 		 * return with no isolated folios if the LRU mostly contains
1760 		 * ineligible folios.  This causes the VM to not reclaim any
1761 		 * folios, triggering a premature OOM.
1762 		 * Account all pages in a folio.
1763 		 */
1764 		scan += nr_pages;
1765 
1766 		if (!folio_test_lru(folio))
1767 			goto move;
1768 		if (!sc->may_unmap && folio_mapped(folio))
1769 			goto move;
1770 
1771 		/*
1772 		 * Be careful not to clear the lru flag until after we're
1773 		 * sure the folio is not being freed elsewhere -- the
1774 		 * folio release code relies on it.
1775 		 */
1776 		if (unlikely(!folio_try_get(folio)))
1777 			goto move;
1778 
1779 		if (!folio_test_clear_lru(folio)) {
1780 			/* Another thread is already isolating this folio */
1781 			folio_put(folio);
1782 			goto move;
1783 		}
1784 
1785 		nr_taken += nr_pages;
1786 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1787 		move_to = dst;
1788 move:
1789 		list_move(&folio->lru, move_to);
1790 	}
1791 
1792 	/*
1793 	 * Splice any skipped folios to the start of the LRU list. Note that
1794 	 * this disrupts the LRU order when reclaiming for lower zones but
1795 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1796 	 * scanning would soon rescan the same folios to skip and waste lots
1797 	 * of cpu cycles.
1798 	 */
1799 	if (!list_empty(&folios_skipped)) {
1800 		int zid;
1801 
1802 		list_splice(&folios_skipped, src);
1803 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1804 			if (!nr_skipped[zid])
1805 				continue;
1806 
1807 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1808 			skipped += nr_skipped[zid];
1809 		}
1810 	}
1811 	*nr_scanned = total_scan;
1812 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1813 				    total_scan, skipped, nr_taken, lru);
1814 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1815 	return nr_taken;
1816 }
1817 
1818 /**
1819  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1820  * @folio: Folio to isolate from its LRU list.
1821  *
1822  * Isolate a @folio from an LRU list and adjust the vmstat statistic
1823  * corresponding to whatever LRU list the folio was on.
1824  *
1825  * The folio will have its LRU flag cleared.  If it was found on the
1826  * active list, it will have the Active flag set.  If it was found on the
1827  * unevictable list, it will have the Unevictable flag set.  These flags
1828  * may need to be cleared by the caller before letting the page go.
1829  *
1830  * Context:
1831  *
1832  * (1) Must be called with an elevated refcount on the folio. This is a
1833  *     fundamental difference from isolate_lru_folios() (which is called
1834  *     without a stable reference).
1835  * (2) The lru_lock must not be held.
1836  * (3) Interrupts must be enabled.
1837  *
1838  * Return: true if the folio was removed from an LRU list.
1839  * false if the folio was not on an LRU list.
1840  */
1841 bool folio_isolate_lru(struct folio *folio)
1842 {
1843 	bool ret = false;
1844 
1845 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1846 
1847 	if (folio_test_clear_lru(folio)) {
1848 		struct lruvec *lruvec;
1849 
1850 		folio_get(folio);
1851 		lruvec = folio_lruvec_lock_irq(folio);
1852 		lruvec_del_folio(lruvec, folio);
1853 		unlock_page_lruvec_irq(lruvec);
1854 		ret = true;
1855 	}
1856 
1857 	return ret;
1858 }
1859 
1860 /*
1861  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1862  * then get rescheduled. When there are massive number of tasks doing page
1863  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1864  * the LRU list will go small and be scanned faster than necessary, leading to
1865  * unnecessary swapping, thrashing and OOM.
1866  */
1867 static bool too_many_isolated(struct pglist_data *pgdat, int file,
1868 		struct scan_control *sc)
1869 {
1870 	unsigned long inactive, isolated;
1871 	bool too_many;
1872 
1873 	if (current_is_kswapd())
1874 		return false;
1875 
1876 	if (!writeback_throttling_sane(sc))
1877 		return false;
1878 
1879 	if (file) {
1880 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1881 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1882 	} else {
1883 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1884 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1885 	}
1886 
1887 	/*
1888 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1889 	 * won't get blocked by normal direct-reclaimers, forming a circular
1890 	 * deadlock.
1891 	 */
1892 	if (gfp_has_io_fs(sc->gfp_mask))
1893 		inactive >>= 3;
1894 
1895 	too_many = isolated > inactive;
1896 
1897 	/* Wake up tasks throttled due to too_many_isolated. */
1898 	if (!too_many)
1899 		wake_throttle_isolated(pgdat);
1900 
1901 	return too_many;
1902 }
1903 
1904 /*
1905  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1906  *
1907  * Returns the number of pages moved to the given lruvec.
1908  */
1909 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1910 		struct list_head *list)
1911 {
1912 	int nr_pages, nr_moved = 0;
1913 	struct folio_batch free_folios;
1914 
1915 	folio_batch_init(&free_folios);
1916 	while (!list_empty(list)) {
1917 		struct folio *folio = lru_to_folio(list);
1918 
1919 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1920 		list_del(&folio->lru);
1921 		if (unlikely(!folio_evictable(folio))) {
1922 			spin_unlock_irq(&lruvec->lru_lock);
1923 			folio_putback_lru(folio);
1924 			spin_lock_irq(&lruvec->lru_lock);
1925 			continue;
1926 		}
1927 
1928 		/*
1929 		 * The folio_set_lru needs to be kept here for list integrity.
1930 		 * Otherwise:
1931 		 *   #0 move_folios_to_lru             #1 release_pages
1932 		 *   if (!folio_put_testzero())
1933 		 *				      if (folio_put_testzero())
1934 		 *				        !lru //skip lru_lock
1935 		 *     folio_set_lru()
1936 		 *     list_add(&folio->lru,)
1937 		 *                                        list_add(&folio->lru,)
1938 		 */
1939 		folio_set_lru(folio);
1940 
1941 		if (unlikely(folio_put_testzero(folio))) {
1942 			__folio_clear_lru_flags(folio);
1943 
1944 			folio_unqueue_deferred_split(folio);
1945 			if (folio_batch_add(&free_folios, folio) == 0) {
1946 				spin_unlock_irq(&lruvec->lru_lock);
1947 				mem_cgroup_uncharge_folios(&free_folios);
1948 				free_unref_folios(&free_folios);
1949 				spin_lock_irq(&lruvec->lru_lock);
1950 			}
1951 
1952 			continue;
1953 		}
1954 
1955 		/*
1956 		 * All pages were isolated from the same lruvec (and isolation
1957 		 * inhibits memcg migration).
1958 		 */
1959 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1960 		lruvec_add_folio(lruvec, folio);
1961 		nr_pages = folio_nr_pages(folio);
1962 		nr_moved += nr_pages;
1963 		if (folio_test_active(folio))
1964 			workingset_age_nonresident(lruvec, nr_pages);
1965 	}
1966 
1967 	if (free_folios.nr) {
1968 		spin_unlock_irq(&lruvec->lru_lock);
1969 		mem_cgroup_uncharge_folios(&free_folios);
1970 		free_unref_folios(&free_folios);
1971 		spin_lock_irq(&lruvec->lru_lock);
1972 	}
1973 
1974 	return nr_moved;
1975 }
1976 
1977 /*
1978  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1979  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1980  * we should not throttle.  Otherwise it is safe to do so.
1981  */
1982 static int current_may_throttle(void)
1983 {
1984 	return !(current->flags & PF_LOCAL_THROTTLE);
1985 }
1986 
1987 /*
1988  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1989  * of reclaimed pages
1990  */
1991 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1992 		struct lruvec *lruvec, struct scan_control *sc,
1993 		enum lru_list lru)
1994 {
1995 	LIST_HEAD(folio_list);
1996 	unsigned long nr_scanned;
1997 	unsigned int nr_reclaimed = 0;
1998 	unsigned long nr_taken;
1999 	struct reclaim_stat stat;
2000 	bool file = is_file_lru(lru);
2001 	enum vm_event_item item;
2002 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2003 	bool stalled = false;
2004 
2005 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2006 		if (stalled)
2007 			return 0;
2008 
2009 		/* wait a bit for the reclaimer. */
2010 		stalled = true;
2011 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2012 
2013 		/* We are about to die and free our memory. Return now. */
2014 		if (fatal_signal_pending(current))
2015 			return SWAP_CLUSTER_MAX;
2016 	}
2017 
2018 	lru_add_drain();
2019 
2020 	spin_lock_irq(&lruvec->lru_lock);
2021 
2022 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2023 				     &nr_scanned, sc, lru);
2024 
2025 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2026 	item = PGSCAN_KSWAPD + reclaimer_offset(sc);
2027 	if (!cgroup_reclaim(sc))
2028 		__count_vm_events(item, nr_scanned);
2029 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2030 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2031 
2032 	spin_unlock_irq(&lruvec->lru_lock);
2033 
2034 	if (nr_taken == 0)
2035 		return 0;
2036 
2037 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2038 
2039 	spin_lock_irq(&lruvec->lru_lock);
2040 	move_folios_to_lru(lruvec, &folio_list);
2041 
2042 	__mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
2043 					stat.nr_demoted);
2044 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2045 	item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
2046 	if (!cgroup_reclaim(sc))
2047 		__count_vm_events(item, nr_reclaimed);
2048 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2049 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2050 	spin_unlock_irq(&lruvec->lru_lock);
2051 
2052 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2053 
2054 	/*
2055 	 * If dirty folios are scanned that are not queued for IO, it
2056 	 * implies that flushers are not doing their job. This can
2057 	 * happen when memory pressure pushes dirty folios to the end of
2058 	 * the LRU before the dirty limits are breached and the dirty
2059 	 * data has expired. It can also happen when the proportion of
2060 	 * dirty folios grows not through writes but through memory
2061 	 * pressure reclaiming all the clean cache. And in some cases,
2062 	 * the flushers simply cannot keep up with the allocation
2063 	 * rate. Nudge the flusher threads in case they are asleep.
2064 	 */
2065 	if (stat.nr_unqueued_dirty == nr_taken) {
2066 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2067 		/*
2068 		 * For cgroupv1 dirty throttling is achieved by waking up
2069 		 * the kernel flusher here and later waiting on folios
2070 		 * which are in writeback to finish (see shrink_folio_list()).
2071 		 *
2072 		 * Flusher may not be able to issue writeback quickly
2073 		 * enough for cgroupv1 writeback throttling to work
2074 		 * on a large system.
2075 		 */
2076 		if (!writeback_throttling_sane(sc))
2077 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2078 	}
2079 
2080 	sc->nr.dirty += stat.nr_dirty;
2081 	sc->nr.congested += stat.nr_congested;
2082 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2083 	sc->nr.writeback += stat.nr_writeback;
2084 	sc->nr.immediate += stat.nr_immediate;
2085 	sc->nr.taken += nr_taken;
2086 	if (file)
2087 		sc->nr.file_taken += nr_taken;
2088 
2089 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2090 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2091 	return nr_reclaimed;
2092 }
2093 
2094 /*
2095  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2096  *
2097  * We move them the other way if the folio is referenced by one or more
2098  * processes.
2099  *
2100  * If the folios are mostly unmapped, the processing is fast and it is
2101  * appropriate to hold lru_lock across the whole operation.  But if
2102  * the folios are mapped, the processing is slow (folio_referenced()), so
2103  * we should drop lru_lock around each folio.  It's impossible to balance
2104  * this, so instead we remove the folios from the LRU while processing them.
2105  * It is safe to rely on the active flag against the non-LRU folios in here
2106  * because nobody will play with that bit on a non-LRU folio.
2107  *
2108  * The downside is that we have to touch folio->_refcount against each folio.
2109  * But we had to alter folio->flags anyway.
2110  */
2111 static void shrink_active_list(unsigned long nr_to_scan,
2112 			       struct lruvec *lruvec,
2113 			       struct scan_control *sc,
2114 			       enum lru_list lru)
2115 {
2116 	unsigned long nr_taken;
2117 	unsigned long nr_scanned;
2118 	unsigned long vm_flags;
2119 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2120 	LIST_HEAD(l_active);
2121 	LIST_HEAD(l_inactive);
2122 	unsigned nr_deactivate, nr_activate;
2123 	unsigned nr_rotated = 0;
2124 	bool file = is_file_lru(lru);
2125 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2126 
2127 	lru_add_drain();
2128 
2129 	spin_lock_irq(&lruvec->lru_lock);
2130 
2131 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2132 				     &nr_scanned, sc, lru);
2133 
2134 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2135 
2136 	if (!cgroup_reclaim(sc))
2137 		__count_vm_events(PGREFILL, nr_scanned);
2138 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2139 
2140 	spin_unlock_irq(&lruvec->lru_lock);
2141 
2142 	while (!list_empty(&l_hold)) {
2143 		struct folio *folio;
2144 
2145 		cond_resched();
2146 		folio = lru_to_folio(&l_hold);
2147 		list_del(&folio->lru);
2148 
2149 		if (unlikely(!folio_evictable(folio))) {
2150 			folio_putback_lru(folio);
2151 			continue;
2152 		}
2153 
2154 		if (unlikely(buffer_heads_over_limit)) {
2155 			if (folio_needs_release(folio) &&
2156 			    folio_trylock(folio)) {
2157 				filemap_release_folio(folio, 0);
2158 				folio_unlock(folio);
2159 			}
2160 		}
2161 
2162 		/* Referenced or rmap lock contention: rotate */
2163 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2164 				     &vm_flags) != 0) {
2165 			/*
2166 			 * Identify referenced, file-backed active folios and
2167 			 * give them one more trip around the active list. So
2168 			 * that executable code get better chances to stay in
2169 			 * memory under moderate memory pressure.  Anon folios
2170 			 * are not likely to be evicted by use-once streaming
2171 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2172 			 * so we ignore them here.
2173 			 */
2174 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2175 				nr_rotated += folio_nr_pages(folio);
2176 				list_add(&folio->lru, &l_active);
2177 				continue;
2178 			}
2179 		}
2180 
2181 		folio_clear_active(folio);	/* we are de-activating */
2182 		folio_set_workingset(folio);
2183 		list_add(&folio->lru, &l_inactive);
2184 	}
2185 
2186 	/*
2187 	 * Move folios back to the lru list.
2188 	 */
2189 	spin_lock_irq(&lruvec->lru_lock);
2190 
2191 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2192 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2193 
2194 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2195 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2196 
2197 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2198 	spin_unlock_irq(&lruvec->lru_lock);
2199 
2200 	if (nr_rotated)
2201 		lru_note_cost(lruvec, file, 0, nr_rotated);
2202 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2203 			nr_deactivate, nr_rotated, sc->priority, file);
2204 }
2205 
2206 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2207 				      struct pglist_data *pgdat)
2208 {
2209 	struct reclaim_stat stat;
2210 	unsigned int nr_reclaimed;
2211 	struct folio *folio;
2212 	struct scan_control sc = {
2213 		.gfp_mask = GFP_KERNEL,
2214 		.may_writepage = 1,
2215 		.may_unmap = 1,
2216 		.may_swap = 1,
2217 		.no_demotion = 1,
2218 	};
2219 
2220 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true);
2221 	while (!list_empty(folio_list)) {
2222 		folio = lru_to_folio(folio_list);
2223 		list_del(&folio->lru);
2224 		folio_putback_lru(folio);
2225 	}
2226 	trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat);
2227 
2228 	return nr_reclaimed;
2229 }
2230 
2231 unsigned long reclaim_pages(struct list_head *folio_list)
2232 {
2233 	int nid;
2234 	unsigned int nr_reclaimed = 0;
2235 	LIST_HEAD(node_folio_list);
2236 	unsigned int noreclaim_flag;
2237 
2238 	if (list_empty(folio_list))
2239 		return nr_reclaimed;
2240 
2241 	noreclaim_flag = memalloc_noreclaim_save();
2242 
2243 	nid = folio_nid(lru_to_folio(folio_list));
2244 	do {
2245 		struct folio *folio = lru_to_folio(folio_list);
2246 
2247 		if (nid == folio_nid(folio)) {
2248 			folio_clear_active(folio);
2249 			list_move(&folio->lru, &node_folio_list);
2250 			continue;
2251 		}
2252 
2253 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2254 		nid = folio_nid(lru_to_folio(folio_list));
2255 	} while (!list_empty(folio_list));
2256 
2257 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2258 
2259 	memalloc_noreclaim_restore(noreclaim_flag);
2260 
2261 	return nr_reclaimed;
2262 }
2263 
2264 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2265 				 struct lruvec *lruvec, struct scan_control *sc)
2266 {
2267 	if (is_active_lru(lru)) {
2268 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2269 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2270 		else
2271 			sc->skipped_deactivate = 1;
2272 		return 0;
2273 	}
2274 
2275 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2276 }
2277 
2278 /*
2279  * The inactive anon list should be small enough that the VM never has
2280  * to do too much work.
2281  *
2282  * The inactive file list should be small enough to leave most memory
2283  * to the established workingset on the scan-resistant active list,
2284  * but large enough to avoid thrashing the aggregate readahead window.
2285  *
2286  * Both inactive lists should also be large enough that each inactive
2287  * folio has a chance to be referenced again before it is reclaimed.
2288  *
2289  * If that fails and refaulting is observed, the inactive list grows.
2290  *
2291  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2292  * on this LRU, maintained by the pageout code. An inactive_ratio
2293  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2294  *
2295  * total     target    max
2296  * memory    ratio     inactive
2297  * -------------------------------------
2298  *   10MB       1         5MB
2299  *  100MB       1        50MB
2300  *    1GB       3       250MB
2301  *   10GB      10       0.9GB
2302  *  100GB      31         3GB
2303  *    1TB     101        10GB
2304  *   10TB     320        32GB
2305  */
2306 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2307 {
2308 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2309 	unsigned long inactive, active;
2310 	unsigned long inactive_ratio;
2311 	unsigned long gb;
2312 
2313 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2314 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2315 
2316 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2317 	if (gb)
2318 		inactive_ratio = int_sqrt(10 * gb);
2319 	else
2320 		inactive_ratio = 1;
2321 
2322 	return inactive * inactive_ratio < active;
2323 }
2324 
2325 enum scan_balance {
2326 	SCAN_EQUAL,
2327 	SCAN_FRACT,
2328 	SCAN_ANON,
2329 	SCAN_FILE,
2330 };
2331 
2332 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2333 {
2334 	unsigned long file;
2335 	struct lruvec *target_lruvec;
2336 
2337 	if (lru_gen_enabled())
2338 		return;
2339 
2340 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2341 
2342 	/*
2343 	 * Flush the memory cgroup stats in rate-limited way as we don't need
2344 	 * most accurate stats here. We may switch to regular stats flushing
2345 	 * in the future once it is cheap enough.
2346 	 */
2347 	mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup);
2348 
2349 	/*
2350 	 * Determine the scan balance between anon and file LRUs.
2351 	 */
2352 	spin_lock_irq(&target_lruvec->lru_lock);
2353 	sc->anon_cost = target_lruvec->anon_cost;
2354 	sc->file_cost = target_lruvec->file_cost;
2355 	spin_unlock_irq(&target_lruvec->lru_lock);
2356 
2357 	/*
2358 	 * Target desirable inactive:active list ratios for the anon
2359 	 * and file LRU lists.
2360 	 */
2361 	if (!sc->force_deactivate) {
2362 		unsigned long refaults;
2363 
2364 		/*
2365 		 * When refaults are being observed, it means a new
2366 		 * workingset is being established. Deactivate to get
2367 		 * rid of any stale active pages quickly.
2368 		 */
2369 		refaults = lruvec_page_state(target_lruvec,
2370 				WORKINGSET_ACTIVATE_ANON);
2371 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2372 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2373 			sc->may_deactivate |= DEACTIVATE_ANON;
2374 		else
2375 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2376 
2377 		refaults = lruvec_page_state(target_lruvec,
2378 				WORKINGSET_ACTIVATE_FILE);
2379 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2380 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2381 			sc->may_deactivate |= DEACTIVATE_FILE;
2382 		else
2383 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2384 	} else
2385 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2386 
2387 	/*
2388 	 * If we have plenty of inactive file pages that aren't
2389 	 * thrashing, try to reclaim those first before touching
2390 	 * anonymous pages.
2391 	 */
2392 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2393 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2394 	    !sc->no_cache_trim_mode)
2395 		sc->cache_trim_mode = 1;
2396 	else
2397 		sc->cache_trim_mode = 0;
2398 
2399 	/*
2400 	 * Prevent the reclaimer from falling into the cache trap: as
2401 	 * cache pages start out inactive, every cache fault will tip
2402 	 * the scan balance towards the file LRU.  And as the file LRU
2403 	 * shrinks, so does the window for rotation from references.
2404 	 * This means we have a runaway feedback loop where a tiny
2405 	 * thrashing file LRU becomes infinitely more attractive than
2406 	 * anon pages.  Try to detect this based on file LRU size.
2407 	 */
2408 	if (!cgroup_reclaim(sc)) {
2409 		unsigned long total_high_wmark = 0;
2410 		unsigned long free, anon;
2411 		int z;
2412 		struct zone *zone;
2413 
2414 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2415 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2416 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2417 
2418 		for_each_managed_zone_pgdat(zone, pgdat, z, MAX_NR_ZONES - 1) {
2419 			total_high_wmark += high_wmark_pages(zone);
2420 		}
2421 
2422 		/*
2423 		 * Consider anon: if that's low too, this isn't a
2424 		 * runaway file reclaim problem, but rather just
2425 		 * extreme pressure. Reclaim as per usual then.
2426 		 */
2427 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2428 
2429 		sc->file_is_tiny =
2430 			file + free <= total_high_wmark &&
2431 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2432 			anon >> sc->priority;
2433 	}
2434 }
2435 
2436 static inline void calculate_pressure_balance(struct scan_control *sc,
2437 			int swappiness, u64 *fraction, u64 *denominator)
2438 {
2439 	unsigned long anon_cost, file_cost, total_cost;
2440 	unsigned long ap, fp;
2441 
2442 	/*
2443 	 * Calculate the pressure balance between anon and file pages.
2444 	 *
2445 	 * The amount of pressure we put on each LRU is inversely
2446 	 * proportional to the cost of reclaiming each list, as
2447 	 * determined by the share of pages that are refaulting, times
2448 	 * the relative IO cost of bringing back a swapped out
2449 	 * anonymous page vs reloading a filesystem page (swappiness).
2450 	 *
2451 	 * Although we limit that influence to ensure no list gets
2452 	 * left behind completely: at least a third of the pressure is
2453 	 * applied, before swappiness.
2454 	 *
2455 	 * With swappiness at 100, anon and file have equal IO cost.
2456 	 */
2457 	total_cost = sc->anon_cost + sc->file_cost;
2458 	anon_cost = total_cost + sc->anon_cost;
2459 	file_cost = total_cost + sc->file_cost;
2460 	total_cost = anon_cost + file_cost;
2461 
2462 	ap = swappiness * (total_cost + 1);
2463 	ap /= anon_cost + 1;
2464 
2465 	fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1);
2466 	fp /= file_cost + 1;
2467 
2468 	fraction[WORKINGSET_ANON] = ap;
2469 	fraction[WORKINGSET_FILE] = fp;
2470 	*denominator = ap + fp;
2471 }
2472 
2473 /*
2474  * Determine how aggressively the anon and file LRU lists should be
2475  * scanned.
2476  *
2477  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2478  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2479  */
2480 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2481 			   unsigned long *nr)
2482 {
2483 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2484 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2485 	int swappiness = sc_swappiness(sc, memcg);
2486 	u64 fraction[ANON_AND_FILE];
2487 	u64 denominator = 0;	/* gcc */
2488 	enum scan_balance scan_balance;
2489 	enum lru_list lru;
2490 
2491 	/* If we have no swap space, do not bother scanning anon folios. */
2492 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2493 		scan_balance = SCAN_FILE;
2494 		goto out;
2495 	}
2496 
2497 	/*
2498 	 * Global reclaim will swap to prevent OOM even with no
2499 	 * swappiness, but memcg users want to use this knob to
2500 	 * disable swapping for individual groups completely when
2501 	 * using the memory controller's swap limit feature would be
2502 	 * too expensive.
2503 	 */
2504 	if (cgroup_reclaim(sc) && !swappiness) {
2505 		scan_balance = SCAN_FILE;
2506 		goto out;
2507 	}
2508 
2509 	/*
2510 	 * Do not apply any pressure balancing cleverness when the
2511 	 * system is close to OOM, scan both anon and file equally
2512 	 * (unless the swappiness setting disagrees with swapping).
2513 	 */
2514 	if (!sc->priority && swappiness) {
2515 		scan_balance = SCAN_EQUAL;
2516 		goto out;
2517 	}
2518 
2519 	/*
2520 	 * If the system is almost out of file pages, force-scan anon.
2521 	 */
2522 	if (sc->file_is_tiny) {
2523 		scan_balance = SCAN_ANON;
2524 		goto out;
2525 	}
2526 
2527 	/*
2528 	 * If there is enough inactive page cache, we do not reclaim
2529 	 * anything from the anonymous working right now.
2530 	 */
2531 	if (sc->cache_trim_mode) {
2532 		scan_balance = SCAN_FILE;
2533 		goto out;
2534 	}
2535 
2536 	scan_balance = SCAN_FRACT;
2537 	calculate_pressure_balance(sc, swappiness, fraction, &denominator);
2538 
2539 out:
2540 	for_each_evictable_lru(lru) {
2541 		bool file = is_file_lru(lru);
2542 		unsigned long lruvec_size;
2543 		unsigned long low, min;
2544 		unsigned long scan;
2545 
2546 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2547 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2548 				      &min, &low);
2549 
2550 		if (min || low) {
2551 			/*
2552 			 * Scale a cgroup's reclaim pressure by proportioning
2553 			 * its current usage to its memory.low or memory.min
2554 			 * setting.
2555 			 *
2556 			 * This is important, as otherwise scanning aggression
2557 			 * becomes extremely binary -- from nothing as we
2558 			 * approach the memory protection threshold, to totally
2559 			 * nominal as we exceed it.  This results in requiring
2560 			 * setting extremely liberal protection thresholds. It
2561 			 * also means we simply get no protection at all if we
2562 			 * set it too low, which is not ideal.
2563 			 *
2564 			 * If there is any protection in place, we reduce scan
2565 			 * pressure by how much of the total memory used is
2566 			 * within protection thresholds.
2567 			 *
2568 			 * There is one special case: in the first reclaim pass,
2569 			 * we skip over all groups that are within their low
2570 			 * protection. If that fails to reclaim enough pages to
2571 			 * satisfy the reclaim goal, we come back and override
2572 			 * the best-effort low protection. However, we still
2573 			 * ideally want to honor how well-behaved groups are in
2574 			 * that case instead of simply punishing them all
2575 			 * equally. As such, we reclaim them based on how much
2576 			 * memory they are using, reducing the scan pressure
2577 			 * again by how much of the total memory used is under
2578 			 * hard protection.
2579 			 */
2580 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2581 			unsigned long protection;
2582 
2583 			/* memory.low scaling, make sure we retry before OOM */
2584 			if (!sc->memcg_low_reclaim && low > min) {
2585 				protection = low;
2586 				sc->memcg_low_skipped = 1;
2587 			} else {
2588 				protection = min;
2589 			}
2590 
2591 			/* Avoid TOCTOU with earlier protection check */
2592 			cgroup_size = max(cgroup_size, protection);
2593 
2594 			scan = lruvec_size - lruvec_size * protection /
2595 				(cgroup_size + 1);
2596 
2597 			/*
2598 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2599 			 * reclaim moving forwards, avoiding decrementing
2600 			 * sc->priority further than desirable.
2601 			 */
2602 			scan = max(scan, SWAP_CLUSTER_MAX);
2603 		} else {
2604 			scan = lruvec_size;
2605 		}
2606 
2607 		scan >>= sc->priority;
2608 
2609 		/*
2610 		 * If the cgroup's already been deleted, make sure to
2611 		 * scrape out the remaining cache.
2612 		 */
2613 		if (!scan && !mem_cgroup_online(memcg))
2614 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2615 
2616 		switch (scan_balance) {
2617 		case SCAN_EQUAL:
2618 			/* Scan lists relative to size */
2619 			break;
2620 		case SCAN_FRACT:
2621 			/*
2622 			 * Scan types proportional to swappiness and
2623 			 * their relative recent reclaim efficiency.
2624 			 * Make sure we don't miss the last page on
2625 			 * the offlined memory cgroups because of a
2626 			 * round-off error.
2627 			 */
2628 			scan = mem_cgroup_online(memcg) ?
2629 			       div64_u64(scan * fraction[file], denominator) :
2630 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2631 						  denominator);
2632 			break;
2633 		case SCAN_FILE:
2634 		case SCAN_ANON:
2635 			/* Scan one type exclusively */
2636 			if ((scan_balance == SCAN_FILE) != file)
2637 				scan = 0;
2638 			break;
2639 		default:
2640 			/* Look ma, no brain */
2641 			BUG();
2642 		}
2643 
2644 		nr[lru] = scan;
2645 	}
2646 }
2647 
2648 /*
2649  * Anonymous LRU management is a waste if there is
2650  * ultimately no way to reclaim the memory.
2651  */
2652 static bool can_age_anon_pages(struct pglist_data *pgdat,
2653 			       struct scan_control *sc)
2654 {
2655 	/* Aging the anon LRU is valuable if swap is present: */
2656 	if (total_swap_pages > 0)
2657 		return true;
2658 
2659 	/* Also valuable if anon pages can be demoted: */
2660 	return can_demote(pgdat->node_id, sc);
2661 }
2662 
2663 #ifdef CONFIG_LRU_GEN
2664 
2665 #ifdef CONFIG_LRU_GEN_ENABLED
2666 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2667 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
2668 #else
2669 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2670 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
2671 #endif
2672 
2673 static bool should_walk_mmu(void)
2674 {
2675 	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2676 }
2677 
2678 static bool should_clear_pmd_young(void)
2679 {
2680 	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2681 }
2682 
2683 /******************************************************************************
2684  *                          shorthand helpers
2685  ******************************************************************************/
2686 
2687 #define DEFINE_MAX_SEQ(lruvec)						\
2688 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2689 
2690 #define DEFINE_MIN_SEQ(lruvec)						\
2691 	unsigned long min_seq[ANON_AND_FILE] = {			\
2692 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
2693 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
2694 	}
2695 
2696 #define evictable_min_seq(min_seq, swappiness)				\
2697 	min((min_seq)[!(swappiness)], (min_seq)[(swappiness) <= MAX_SWAPPINESS])
2698 
2699 #define for_each_gen_type_zone(gen, type, zone)				\
2700 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
2701 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
2702 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2703 
2704 #define for_each_evictable_type(type, swappiness)			\
2705 	for ((type) = !(swappiness); (type) <= ((swappiness) <= MAX_SWAPPINESS); (type)++)
2706 
2707 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
2708 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
2709 
2710 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2711 {
2712 	struct pglist_data *pgdat = NODE_DATA(nid);
2713 
2714 #ifdef CONFIG_MEMCG
2715 	if (memcg) {
2716 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2717 
2718 		/* see the comment in mem_cgroup_lruvec() */
2719 		if (!lruvec->pgdat)
2720 			lruvec->pgdat = pgdat;
2721 
2722 		return lruvec;
2723 	}
2724 #endif
2725 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2726 
2727 	return &pgdat->__lruvec;
2728 }
2729 
2730 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2731 {
2732 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2733 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2734 
2735 	if (!sc->may_swap)
2736 		return 0;
2737 
2738 	if (!can_demote(pgdat->node_id, sc) &&
2739 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2740 		return 0;
2741 
2742 	return sc_swappiness(sc, memcg);
2743 }
2744 
2745 static int get_nr_gens(struct lruvec *lruvec, int type)
2746 {
2747 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2748 }
2749 
2750 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2751 {
2752 	int type;
2753 
2754 	for (type = 0; type < ANON_AND_FILE; type++) {
2755 		int n = get_nr_gens(lruvec, type);
2756 
2757 		if (n < MIN_NR_GENS || n > MAX_NR_GENS)
2758 			return false;
2759 	}
2760 
2761 	return true;
2762 }
2763 
2764 /******************************************************************************
2765  *                          Bloom filters
2766  ******************************************************************************/
2767 
2768 /*
2769  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2770  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2771  * bits in a bitmap, k is the number of hash functions and n is the number of
2772  * inserted items.
2773  *
2774  * Page table walkers use one of the two filters to reduce their search space.
2775  * To get rid of non-leaf entries that no longer have enough leaf entries, the
2776  * aging uses the double-buffering technique to flip to the other filter each
2777  * time it produces a new generation. For non-leaf entries that have enough
2778  * leaf entries, the aging carries them over to the next generation in
2779  * walk_pmd_range(); the eviction also report them when walking the rmap
2780  * in lru_gen_look_around().
2781  *
2782  * For future optimizations:
2783  * 1. It's not necessary to keep both filters all the time. The spare one can be
2784  *    freed after the RCU grace period and reallocated if needed again.
2785  * 2. And when reallocating, it's worth scaling its size according to the number
2786  *    of inserted entries in the other filter, to reduce the memory overhead on
2787  *    small systems and false positives on large systems.
2788  * 3. Jenkins' hash function is an alternative to Knuth's.
2789  */
2790 #define BLOOM_FILTER_SHIFT	15
2791 
2792 static inline int filter_gen_from_seq(unsigned long seq)
2793 {
2794 	return seq % NR_BLOOM_FILTERS;
2795 }
2796 
2797 static void get_item_key(void *item, int *key)
2798 {
2799 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2800 
2801 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2802 
2803 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2804 	key[1] = hash >> BLOOM_FILTER_SHIFT;
2805 }
2806 
2807 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2808 			      void *item)
2809 {
2810 	int key[2];
2811 	unsigned long *filter;
2812 	int gen = filter_gen_from_seq(seq);
2813 
2814 	filter = READ_ONCE(mm_state->filters[gen]);
2815 	if (!filter)
2816 		return true;
2817 
2818 	get_item_key(item, key);
2819 
2820 	return test_bit(key[0], filter) && test_bit(key[1], filter);
2821 }
2822 
2823 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2824 				void *item)
2825 {
2826 	int key[2];
2827 	unsigned long *filter;
2828 	int gen = filter_gen_from_seq(seq);
2829 
2830 	filter = READ_ONCE(mm_state->filters[gen]);
2831 	if (!filter)
2832 		return;
2833 
2834 	get_item_key(item, key);
2835 
2836 	if (!test_bit(key[0], filter))
2837 		set_bit(key[0], filter);
2838 	if (!test_bit(key[1], filter))
2839 		set_bit(key[1], filter);
2840 }
2841 
2842 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2843 {
2844 	unsigned long *filter;
2845 	int gen = filter_gen_from_seq(seq);
2846 
2847 	filter = mm_state->filters[gen];
2848 	if (filter) {
2849 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2850 		return;
2851 	}
2852 
2853 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2854 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2855 	WRITE_ONCE(mm_state->filters[gen], filter);
2856 }
2857 
2858 /******************************************************************************
2859  *                          mm_struct list
2860  ******************************************************************************/
2861 
2862 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2863 
2864 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2865 {
2866 	static struct lru_gen_mm_list mm_list = {
2867 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
2868 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2869 	};
2870 
2871 #ifdef CONFIG_MEMCG
2872 	if (memcg)
2873 		return &memcg->mm_list;
2874 #endif
2875 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2876 
2877 	return &mm_list;
2878 }
2879 
2880 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2881 {
2882 	return &lruvec->mm_state;
2883 }
2884 
2885 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2886 {
2887 	int key;
2888 	struct mm_struct *mm;
2889 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2890 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2891 
2892 	mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2893 	key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2894 
2895 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2896 		return NULL;
2897 
2898 	clear_bit(key, &mm->lru_gen.bitmap);
2899 
2900 	return mmget_not_zero(mm) ? mm : NULL;
2901 }
2902 
2903 void lru_gen_add_mm(struct mm_struct *mm)
2904 {
2905 	int nid;
2906 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2907 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2908 
2909 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2910 #ifdef CONFIG_MEMCG
2911 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2912 	mm->lru_gen.memcg = memcg;
2913 #endif
2914 	spin_lock(&mm_list->lock);
2915 
2916 	for_each_node_state(nid, N_MEMORY) {
2917 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2918 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2919 
2920 		/* the first addition since the last iteration */
2921 		if (mm_state->tail == &mm_list->fifo)
2922 			mm_state->tail = &mm->lru_gen.list;
2923 	}
2924 
2925 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2926 
2927 	spin_unlock(&mm_list->lock);
2928 }
2929 
2930 void lru_gen_del_mm(struct mm_struct *mm)
2931 {
2932 	int nid;
2933 	struct lru_gen_mm_list *mm_list;
2934 	struct mem_cgroup *memcg = NULL;
2935 
2936 	if (list_empty(&mm->lru_gen.list))
2937 		return;
2938 
2939 #ifdef CONFIG_MEMCG
2940 	memcg = mm->lru_gen.memcg;
2941 #endif
2942 	mm_list = get_mm_list(memcg);
2943 
2944 	spin_lock(&mm_list->lock);
2945 
2946 	for_each_node(nid) {
2947 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2948 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2949 
2950 		/* where the current iteration continues after */
2951 		if (mm_state->head == &mm->lru_gen.list)
2952 			mm_state->head = mm_state->head->prev;
2953 
2954 		/* where the last iteration ended before */
2955 		if (mm_state->tail == &mm->lru_gen.list)
2956 			mm_state->tail = mm_state->tail->next;
2957 	}
2958 
2959 	list_del_init(&mm->lru_gen.list);
2960 
2961 	spin_unlock(&mm_list->lock);
2962 
2963 #ifdef CONFIG_MEMCG
2964 	mem_cgroup_put(mm->lru_gen.memcg);
2965 	mm->lru_gen.memcg = NULL;
2966 #endif
2967 }
2968 
2969 #ifdef CONFIG_MEMCG
2970 void lru_gen_migrate_mm(struct mm_struct *mm)
2971 {
2972 	struct mem_cgroup *memcg;
2973 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2974 
2975 	VM_WARN_ON_ONCE(task->mm != mm);
2976 	lockdep_assert_held(&task->alloc_lock);
2977 
2978 	/* for mm_update_next_owner() */
2979 	if (mem_cgroup_disabled())
2980 		return;
2981 
2982 	/* migration can happen before addition */
2983 	if (!mm->lru_gen.memcg)
2984 		return;
2985 
2986 	rcu_read_lock();
2987 	memcg = mem_cgroup_from_task(task);
2988 	rcu_read_unlock();
2989 	if (memcg == mm->lru_gen.memcg)
2990 		return;
2991 
2992 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2993 
2994 	lru_gen_del_mm(mm);
2995 	lru_gen_add_mm(mm);
2996 }
2997 #endif
2998 
2999 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
3000 
3001 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3002 {
3003 	return NULL;
3004 }
3005 
3006 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
3007 {
3008 	return NULL;
3009 }
3010 
3011 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
3012 {
3013 	return NULL;
3014 }
3015 
3016 #endif
3017 
3018 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
3019 {
3020 	int i;
3021 	int hist;
3022 	struct lruvec *lruvec = walk->lruvec;
3023 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3024 
3025 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3026 
3027 	hist = lru_hist_from_seq(walk->seq);
3028 
3029 	for (i = 0; i < NR_MM_STATS; i++) {
3030 		WRITE_ONCE(mm_state->stats[hist][i],
3031 			   mm_state->stats[hist][i] + walk->mm_stats[i]);
3032 		walk->mm_stats[i] = 0;
3033 	}
3034 
3035 	if (NR_HIST_GENS > 1 && last) {
3036 		hist = lru_hist_from_seq(walk->seq + 1);
3037 
3038 		for (i = 0; i < NR_MM_STATS; i++)
3039 			WRITE_ONCE(mm_state->stats[hist][i], 0);
3040 	}
3041 }
3042 
3043 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
3044 {
3045 	bool first = false;
3046 	bool last = false;
3047 	struct mm_struct *mm = NULL;
3048 	struct lruvec *lruvec = walk->lruvec;
3049 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3050 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3051 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3052 
3053 	/*
3054 	 * mm_state->seq is incremented after each iteration of mm_list. There
3055 	 * are three interesting cases for this page table walker:
3056 	 * 1. It tries to start a new iteration with a stale max_seq: there is
3057 	 *    nothing left to do.
3058 	 * 2. It started the next iteration: it needs to reset the Bloom filter
3059 	 *    so that a fresh set of PTE tables can be recorded.
3060 	 * 3. It ended the current iteration: it needs to reset the mm stats
3061 	 *    counters and tell its caller to increment max_seq.
3062 	 */
3063 	spin_lock(&mm_list->lock);
3064 
3065 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
3066 
3067 	if (walk->seq <= mm_state->seq)
3068 		goto done;
3069 
3070 	if (!mm_state->head)
3071 		mm_state->head = &mm_list->fifo;
3072 
3073 	if (mm_state->head == &mm_list->fifo)
3074 		first = true;
3075 
3076 	do {
3077 		mm_state->head = mm_state->head->next;
3078 		if (mm_state->head == &mm_list->fifo) {
3079 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3080 			last = true;
3081 			break;
3082 		}
3083 
3084 		/* force scan for those added after the last iteration */
3085 		if (!mm_state->tail || mm_state->tail == mm_state->head) {
3086 			mm_state->tail = mm_state->head->next;
3087 			walk->force_scan = true;
3088 		}
3089 	} while (!(mm = get_next_mm(walk)));
3090 done:
3091 	if (*iter || last)
3092 		reset_mm_stats(walk, last);
3093 
3094 	spin_unlock(&mm_list->lock);
3095 
3096 	if (mm && first)
3097 		reset_bloom_filter(mm_state, walk->seq + 1);
3098 
3099 	if (*iter)
3100 		mmput_async(*iter);
3101 
3102 	*iter = mm;
3103 
3104 	return last;
3105 }
3106 
3107 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
3108 {
3109 	bool success = false;
3110 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3111 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3112 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3113 
3114 	spin_lock(&mm_list->lock);
3115 
3116 	VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
3117 
3118 	if (seq > mm_state->seq) {
3119 		mm_state->head = NULL;
3120 		mm_state->tail = NULL;
3121 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3122 		success = true;
3123 	}
3124 
3125 	spin_unlock(&mm_list->lock);
3126 
3127 	return success;
3128 }
3129 
3130 /******************************************************************************
3131  *                          PID controller
3132  ******************************************************************************/
3133 
3134 /*
3135  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3136  *
3137  * The P term is refaulted/(evicted+protected) from a tier in the generation
3138  * currently being evicted; the I term is the exponential moving average of the
3139  * P term over the generations previously evicted, using the smoothing factor
3140  * 1/2; the D term isn't supported.
3141  *
3142  * The setpoint (SP) is always the first tier of one type; the process variable
3143  * (PV) is either any tier of the other type or any other tier of the same
3144  * type.
3145  *
3146  * The error is the difference between the SP and the PV; the correction is to
3147  * turn off protection when SP>PV or turn on protection when SP<PV.
3148  *
3149  * For future optimizations:
3150  * 1. The D term may discount the other two terms over time so that long-lived
3151  *    generations can resist stale information.
3152  */
3153 struct ctrl_pos {
3154 	unsigned long refaulted;
3155 	unsigned long total;
3156 	int gain;
3157 };
3158 
3159 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3160 			  struct ctrl_pos *pos)
3161 {
3162 	int i;
3163 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3164 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3165 
3166 	pos->gain = gain;
3167 	pos->refaulted = pos->total = 0;
3168 
3169 	for (i = tier % MAX_NR_TIERS; i <= min(tier, MAX_NR_TIERS - 1); i++) {
3170 		pos->refaulted += lrugen->avg_refaulted[type][i] +
3171 				  atomic_long_read(&lrugen->refaulted[hist][type][i]);
3172 		pos->total += lrugen->avg_total[type][i] +
3173 			      lrugen->protected[hist][type][i] +
3174 			      atomic_long_read(&lrugen->evicted[hist][type][i]);
3175 	}
3176 }
3177 
3178 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3179 {
3180 	int hist, tier;
3181 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3182 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3183 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3184 
3185 	lockdep_assert_held(&lruvec->lru_lock);
3186 
3187 	if (!carryover && !clear)
3188 		return;
3189 
3190 	hist = lru_hist_from_seq(seq);
3191 
3192 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3193 		if (carryover) {
3194 			unsigned long sum;
3195 
3196 			sum = lrugen->avg_refaulted[type][tier] +
3197 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3198 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3199 
3200 			sum = lrugen->avg_total[type][tier] +
3201 			      lrugen->protected[hist][type][tier] +
3202 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3203 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3204 		}
3205 
3206 		if (clear) {
3207 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3208 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3209 			WRITE_ONCE(lrugen->protected[hist][type][tier], 0);
3210 		}
3211 	}
3212 }
3213 
3214 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3215 {
3216 	/*
3217 	 * Return true if the PV has a limited number of refaults or a lower
3218 	 * refaulted/total than the SP.
3219 	 */
3220 	return pv->refaulted < MIN_LRU_BATCH ||
3221 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3222 	       (sp->refaulted + 1) * pv->total * pv->gain;
3223 }
3224 
3225 /******************************************************************************
3226  *                          the aging
3227  ******************************************************************************/
3228 
3229 /* promote pages accessed through page tables */
3230 static int folio_update_gen(struct folio *folio, int gen)
3231 {
3232 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3233 
3234 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3235 
3236 	/* see the comment on LRU_REFS_FLAGS */
3237 	if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
3238 		set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced));
3239 		return -1;
3240 	}
3241 
3242 	do {
3243 		/* lru_gen_del_folio() has isolated this page? */
3244 		if (!(old_flags & LRU_GEN_MASK))
3245 			return -1;
3246 
3247 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3248 		new_flags |= ((gen + 1UL) << LRU_GEN_PGOFF) | BIT(PG_workingset);
3249 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3250 
3251 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3252 }
3253 
3254 /* protect pages accessed multiple times through file descriptors */
3255 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3256 {
3257 	int type = folio_is_file_lru(folio);
3258 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3259 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3260 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3261 
3262 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3263 
3264 	do {
3265 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3266 		/* folio_update_gen() has promoted this page? */
3267 		if (new_gen >= 0 && new_gen != old_gen)
3268 			return new_gen;
3269 
3270 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3271 
3272 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3273 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3274 		/* for folio_end_writeback() */
3275 		if (reclaiming)
3276 			new_flags |= BIT(PG_reclaim);
3277 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3278 
3279 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3280 
3281 	return new_gen;
3282 }
3283 
3284 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3285 			      int old_gen, int new_gen)
3286 {
3287 	int type = folio_is_file_lru(folio);
3288 	int zone = folio_zonenum(folio);
3289 	int delta = folio_nr_pages(folio);
3290 
3291 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3292 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3293 
3294 	walk->batched++;
3295 
3296 	walk->nr_pages[old_gen][type][zone] -= delta;
3297 	walk->nr_pages[new_gen][type][zone] += delta;
3298 }
3299 
3300 static void reset_batch_size(struct lru_gen_mm_walk *walk)
3301 {
3302 	int gen, type, zone;
3303 	struct lruvec *lruvec = walk->lruvec;
3304 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3305 
3306 	walk->batched = 0;
3307 
3308 	for_each_gen_type_zone(gen, type, zone) {
3309 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3310 		int delta = walk->nr_pages[gen][type][zone];
3311 
3312 		if (!delta)
3313 			continue;
3314 
3315 		walk->nr_pages[gen][type][zone] = 0;
3316 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3317 			   lrugen->nr_pages[gen][type][zone] + delta);
3318 
3319 		if (lru_gen_is_active(lruvec, gen))
3320 			lru += LRU_ACTIVE;
3321 		__update_lru_size(lruvec, lru, zone, delta);
3322 	}
3323 }
3324 
3325 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3326 {
3327 	struct address_space *mapping;
3328 	struct vm_area_struct *vma = args->vma;
3329 	struct lru_gen_mm_walk *walk = args->private;
3330 
3331 	if (!vma_is_accessible(vma))
3332 		return true;
3333 
3334 	if (is_vm_hugetlb_page(vma))
3335 		return true;
3336 
3337 	if (!vma_has_recency(vma))
3338 		return true;
3339 
3340 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3341 		return true;
3342 
3343 	if (vma == get_gate_vma(vma->vm_mm))
3344 		return true;
3345 
3346 	if (vma_is_anonymous(vma))
3347 		return !walk->swappiness;
3348 
3349 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3350 		return true;
3351 
3352 	mapping = vma->vm_file->f_mapping;
3353 	if (mapping_unevictable(mapping))
3354 		return true;
3355 
3356 	if (shmem_mapping(mapping))
3357 		return !walk->swappiness;
3358 
3359 	if (walk->swappiness > MAX_SWAPPINESS)
3360 		return true;
3361 
3362 	/* to exclude special mappings like dax, etc. */
3363 	return !mapping->a_ops->read_folio;
3364 }
3365 
3366 /*
3367  * Some userspace memory allocators map many single-page VMAs. Instead of
3368  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3369  * table to reduce zigzags and improve cache performance.
3370  */
3371 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3372 			 unsigned long *vm_start, unsigned long *vm_end)
3373 {
3374 	unsigned long start = round_up(*vm_end, size);
3375 	unsigned long end = (start | ~mask) + 1;
3376 	VMA_ITERATOR(vmi, args->mm, start);
3377 
3378 	VM_WARN_ON_ONCE(mask & size);
3379 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3380 
3381 	for_each_vma(vmi, args->vma) {
3382 		if (end && end <= args->vma->vm_start)
3383 			return false;
3384 
3385 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3386 			continue;
3387 
3388 		*vm_start = max(start, args->vma->vm_start);
3389 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3390 
3391 		return true;
3392 	}
3393 
3394 	return false;
3395 }
3396 
3397 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr,
3398 				 struct pglist_data *pgdat)
3399 {
3400 	unsigned long pfn = pte_pfn(pte);
3401 
3402 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3403 
3404 	if (!pte_present(pte) || is_zero_pfn(pfn))
3405 		return -1;
3406 
3407 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3408 		return -1;
3409 
3410 	if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm))
3411 		return -1;
3412 
3413 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3414 		return -1;
3415 
3416 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3417 		return -1;
3418 
3419 	return pfn;
3420 }
3421 
3422 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr,
3423 				 struct pglist_data *pgdat)
3424 {
3425 	unsigned long pfn = pmd_pfn(pmd);
3426 
3427 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3428 
3429 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3430 		return -1;
3431 
3432 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3433 		return -1;
3434 
3435 	if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm))
3436 		return -1;
3437 
3438 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3439 		return -1;
3440 
3441 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3442 		return -1;
3443 
3444 	return pfn;
3445 }
3446 
3447 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3448 				   struct pglist_data *pgdat)
3449 {
3450 	struct folio *folio = pfn_folio(pfn);
3451 
3452 	if (folio_lru_gen(folio) < 0)
3453 		return NULL;
3454 
3455 	if (folio_nid(folio) != pgdat->node_id)
3456 		return NULL;
3457 
3458 	if (folio_memcg(folio) != memcg)
3459 		return NULL;
3460 
3461 	return folio;
3462 }
3463 
3464 static bool suitable_to_scan(int total, int young)
3465 {
3466 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3467 
3468 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3469 	return young * n >= total;
3470 }
3471 
3472 static void walk_update_folio(struct lru_gen_mm_walk *walk, struct folio *folio,
3473 			      int new_gen, bool dirty)
3474 {
3475 	int old_gen;
3476 
3477 	if (!folio)
3478 		return;
3479 
3480 	if (dirty && !folio_test_dirty(folio) &&
3481 	    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3482 	      !folio_test_swapcache(folio)))
3483 		folio_mark_dirty(folio);
3484 
3485 	if (walk) {
3486 		old_gen = folio_update_gen(folio, new_gen);
3487 		if (old_gen >= 0 && old_gen != new_gen)
3488 			update_batch_size(walk, folio, old_gen, new_gen);
3489 	} else if (lru_gen_set_refs(folio)) {
3490 		old_gen = folio_lru_gen(folio);
3491 		if (old_gen >= 0 && old_gen != new_gen)
3492 			folio_activate(folio);
3493 	}
3494 }
3495 
3496 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3497 			   struct mm_walk *args)
3498 {
3499 	int i;
3500 	bool dirty;
3501 	pte_t *pte;
3502 	spinlock_t *ptl;
3503 	unsigned long addr;
3504 	int total = 0;
3505 	int young = 0;
3506 	struct folio *last = NULL;
3507 	struct lru_gen_mm_walk *walk = args->private;
3508 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3509 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3510 	DEFINE_MAX_SEQ(walk->lruvec);
3511 	int gen = lru_gen_from_seq(max_seq);
3512 	pmd_t pmdval;
3513 
3514 	pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval, &ptl);
3515 	if (!pte)
3516 		return false;
3517 
3518 	if (!spin_trylock(ptl)) {
3519 		pte_unmap(pte);
3520 		return true;
3521 	}
3522 
3523 	if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
3524 		pte_unmap_unlock(pte, ptl);
3525 		return false;
3526 	}
3527 
3528 	arch_enter_lazy_mmu_mode();
3529 restart:
3530 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3531 		unsigned long pfn;
3532 		struct folio *folio;
3533 		pte_t ptent = ptep_get(pte + i);
3534 
3535 		total++;
3536 		walk->mm_stats[MM_LEAF_TOTAL]++;
3537 
3538 		pfn = get_pte_pfn(ptent, args->vma, addr, pgdat);
3539 		if (pfn == -1)
3540 			continue;
3541 
3542 		folio = get_pfn_folio(pfn, memcg, pgdat);
3543 		if (!folio)
3544 			continue;
3545 
3546 		if (!ptep_clear_young_notify(args->vma, addr, pte + i))
3547 			continue;
3548 
3549 		if (last != folio) {
3550 			walk_update_folio(walk, last, gen, dirty);
3551 
3552 			last = folio;
3553 			dirty = false;
3554 		}
3555 
3556 		if (pte_dirty(ptent))
3557 			dirty = true;
3558 
3559 		young++;
3560 		walk->mm_stats[MM_LEAF_YOUNG]++;
3561 	}
3562 
3563 	walk_update_folio(walk, last, gen, dirty);
3564 	last = NULL;
3565 
3566 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3567 		goto restart;
3568 
3569 	arch_leave_lazy_mmu_mode();
3570 	pte_unmap_unlock(pte, ptl);
3571 
3572 	return suitable_to_scan(total, young);
3573 }
3574 
3575 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3576 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3577 {
3578 	int i;
3579 	bool dirty;
3580 	pmd_t *pmd;
3581 	spinlock_t *ptl;
3582 	struct folio *last = NULL;
3583 	struct lru_gen_mm_walk *walk = args->private;
3584 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3585 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3586 	DEFINE_MAX_SEQ(walk->lruvec);
3587 	int gen = lru_gen_from_seq(max_seq);
3588 
3589 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3590 
3591 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3592 	if (*first == -1) {
3593 		*first = addr;
3594 		bitmap_zero(bitmap, MIN_LRU_BATCH);
3595 		return;
3596 	}
3597 
3598 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3599 	if (i && i <= MIN_LRU_BATCH) {
3600 		__set_bit(i - 1, bitmap);
3601 		return;
3602 	}
3603 
3604 	pmd = pmd_offset(pud, *first);
3605 
3606 	ptl = pmd_lockptr(args->mm, pmd);
3607 	if (!spin_trylock(ptl))
3608 		goto done;
3609 
3610 	arch_enter_lazy_mmu_mode();
3611 
3612 	do {
3613 		unsigned long pfn;
3614 		struct folio *folio;
3615 
3616 		/* don't round down the first address */
3617 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3618 
3619 		if (!pmd_present(pmd[i]))
3620 			goto next;
3621 
3622 		if (!pmd_trans_huge(pmd[i])) {
3623 			if (!walk->force_scan && should_clear_pmd_young() &&
3624 			    !mm_has_notifiers(args->mm))
3625 				pmdp_test_and_clear_young(vma, addr, pmd + i);
3626 			goto next;
3627 		}
3628 
3629 		pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat);
3630 		if (pfn == -1)
3631 			goto next;
3632 
3633 		folio = get_pfn_folio(pfn, memcg, pgdat);
3634 		if (!folio)
3635 			goto next;
3636 
3637 		if (!pmdp_clear_young_notify(vma, addr, pmd + i))
3638 			goto next;
3639 
3640 		if (last != folio) {
3641 			walk_update_folio(walk, last, gen, dirty);
3642 
3643 			last = folio;
3644 			dirty = false;
3645 		}
3646 
3647 		if (pmd_dirty(pmd[i]))
3648 			dirty = true;
3649 
3650 		walk->mm_stats[MM_LEAF_YOUNG]++;
3651 next:
3652 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3653 	} while (i <= MIN_LRU_BATCH);
3654 
3655 	walk_update_folio(walk, last, gen, dirty);
3656 
3657 	arch_leave_lazy_mmu_mode();
3658 	spin_unlock(ptl);
3659 done:
3660 	*first = -1;
3661 }
3662 
3663 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3664 			   struct mm_walk *args)
3665 {
3666 	int i;
3667 	pmd_t *pmd;
3668 	unsigned long next;
3669 	unsigned long addr;
3670 	struct vm_area_struct *vma;
3671 	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3672 	unsigned long first = -1;
3673 	struct lru_gen_mm_walk *walk = args->private;
3674 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3675 
3676 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3677 
3678 	/*
3679 	 * Finish an entire PMD in two passes: the first only reaches to PTE
3680 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
3681 	 * the PMD lock to clear the accessed bit in PMD entries.
3682 	 */
3683 	pmd = pmd_offset(pud, start & PUD_MASK);
3684 restart:
3685 	/* walk_pte_range() may call get_next_vma() */
3686 	vma = args->vma;
3687 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3688 		pmd_t val = pmdp_get_lockless(pmd + i);
3689 
3690 		next = pmd_addr_end(addr, end);
3691 
3692 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3693 			walk->mm_stats[MM_LEAF_TOTAL]++;
3694 			continue;
3695 		}
3696 
3697 		if (pmd_trans_huge(val)) {
3698 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3699 			unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat);
3700 
3701 			walk->mm_stats[MM_LEAF_TOTAL]++;
3702 
3703 			if (pfn != -1)
3704 				walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3705 			continue;
3706 		}
3707 
3708 		if (!walk->force_scan && should_clear_pmd_young() &&
3709 		    !mm_has_notifiers(args->mm)) {
3710 			if (!pmd_young(val))
3711 				continue;
3712 
3713 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3714 		}
3715 
3716 		if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3717 			continue;
3718 
3719 		walk->mm_stats[MM_NONLEAF_FOUND]++;
3720 
3721 		if (!walk_pte_range(&val, addr, next, args))
3722 			continue;
3723 
3724 		walk->mm_stats[MM_NONLEAF_ADDED]++;
3725 
3726 		/* carry over to the next generation */
3727 		update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3728 	}
3729 
3730 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3731 
3732 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3733 		goto restart;
3734 }
3735 
3736 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3737 			  struct mm_walk *args)
3738 {
3739 	int i;
3740 	pud_t *pud;
3741 	unsigned long addr;
3742 	unsigned long next;
3743 	struct lru_gen_mm_walk *walk = args->private;
3744 
3745 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3746 
3747 	pud = pud_offset(p4d, start & P4D_MASK);
3748 restart:
3749 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3750 		pud_t val = READ_ONCE(pud[i]);
3751 
3752 		next = pud_addr_end(addr, end);
3753 
3754 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3755 			continue;
3756 
3757 		walk_pmd_range(&val, addr, next, args);
3758 
3759 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3760 			end = (addr | ~PUD_MASK) + 1;
3761 			goto done;
3762 		}
3763 	}
3764 
3765 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3766 		goto restart;
3767 
3768 	end = round_up(end, P4D_SIZE);
3769 done:
3770 	if (!end || !args->vma)
3771 		return 1;
3772 
3773 	walk->next_addr = max(end, args->vma->vm_start);
3774 
3775 	return -EAGAIN;
3776 }
3777 
3778 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3779 {
3780 	static const struct mm_walk_ops mm_walk_ops = {
3781 		.test_walk = should_skip_vma,
3782 		.p4d_entry = walk_pud_range,
3783 		.walk_lock = PGWALK_RDLOCK,
3784 	};
3785 	int err;
3786 	struct lruvec *lruvec = walk->lruvec;
3787 
3788 	walk->next_addr = FIRST_USER_ADDRESS;
3789 
3790 	do {
3791 		DEFINE_MAX_SEQ(lruvec);
3792 
3793 		err = -EBUSY;
3794 
3795 		/* another thread might have called inc_max_seq() */
3796 		if (walk->seq != max_seq)
3797 			break;
3798 
3799 		/* the caller might be holding the lock for write */
3800 		if (mmap_read_trylock(mm)) {
3801 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3802 
3803 			mmap_read_unlock(mm);
3804 		}
3805 
3806 		if (walk->batched) {
3807 			spin_lock_irq(&lruvec->lru_lock);
3808 			reset_batch_size(walk);
3809 			spin_unlock_irq(&lruvec->lru_lock);
3810 		}
3811 
3812 		cond_resched();
3813 	} while (err == -EAGAIN);
3814 }
3815 
3816 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3817 {
3818 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3819 
3820 	if (pgdat && current_is_kswapd()) {
3821 		VM_WARN_ON_ONCE(walk);
3822 
3823 		walk = &pgdat->mm_walk;
3824 	} else if (!walk && force_alloc) {
3825 		VM_WARN_ON_ONCE(current_is_kswapd());
3826 
3827 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3828 	}
3829 
3830 	current->reclaim_state->mm_walk = walk;
3831 
3832 	return walk;
3833 }
3834 
3835 static void clear_mm_walk(void)
3836 {
3837 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3838 
3839 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3840 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3841 
3842 	current->reclaim_state->mm_walk = NULL;
3843 
3844 	if (!current_is_kswapd())
3845 		kfree(walk);
3846 }
3847 
3848 static bool inc_min_seq(struct lruvec *lruvec, int type, int swappiness)
3849 {
3850 	int zone;
3851 	int remaining = MAX_LRU_BATCH;
3852 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3853 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3854 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3855 
3856 	if (type ? swappiness > MAX_SWAPPINESS : !swappiness)
3857 		goto done;
3858 
3859 	/* prevent cold/hot inversion if the type is evictable */
3860 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3861 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
3862 
3863 		while (!list_empty(head)) {
3864 			struct folio *folio = lru_to_folio(head);
3865 			int refs = folio_lru_refs(folio);
3866 			bool workingset = folio_test_workingset(folio);
3867 
3868 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3869 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3870 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3871 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3872 
3873 			new_gen = folio_inc_gen(lruvec, folio, false);
3874 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3875 
3876 			/* don't count the workingset being lazily promoted */
3877 			if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
3878 				int tier = lru_tier_from_refs(refs, workingset);
3879 				int delta = folio_nr_pages(folio);
3880 
3881 				WRITE_ONCE(lrugen->protected[hist][type][tier],
3882 					   lrugen->protected[hist][type][tier] + delta);
3883 			}
3884 
3885 			if (!--remaining)
3886 				return false;
3887 		}
3888 	}
3889 done:
3890 	reset_ctrl_pos(lruvec, type, true);
3891 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3892 
3893 	return true;
3894 }
3895 
3896 static bool try_to_inc_min_seq(struct lruvec *lruvec, int swappiness)
3897 {
3898 	int gen, type, zone;
3899 	bool success = false;
3900 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3901 	DEFINE_MIN_SEQ(lruvec);
3902 
3903 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3904 
3905 	/* find the oldest populated generation */
3906 	for_each_evictable_type(type, swappiness) {
3907 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3908 			gen = lru_gen_from_seq(min_seq[type]);
3909 
3910 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3911 				if (!list_empty(&lrugen->folios[gen][type][zone]))
3912 					goto next;
3913 			}
3914 
3915 			min_seq[type]++;
3916 		}
3917 next:
3918 		;
3919 	}
3920 
3921 	/* see the comment on lru_gen_folio */
3922 	if (swappiness && swappiness <= MAX_SWAPPINESS) {
3923 		unsigned long seq = lrugen->max_seq - MIN_NR_GENS;
3924 
3925 		if (min_seq[LRU_GEN_ANON] > seq && min_seq[LRU_GEN_FILE] < seq)
3926 			min_seq[LRU_GEN_ANON] = seq;
3927 		else if (min_seq[LRU_GEN_FILE] > seq && min_seq[LRU_GEN_ANON] < seq)
3928 			min_seq[LRU_GEN_FILE] = seq;
3929 	}
3930 
3931 	for_each_evictable_type(type, swappiness) {
3932 		if (min_seq[type] <= lrugen->min_seq[type])
3933 			continue;
3934 
3935 		reset_ctrl_pos(lruvec, type, true);
3936 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3937 		success = true;
3938 	}
3939 
3940 	return success;
3941 }
3942 
3943 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness)
3944 {
3945 	bool success;
3946 	int prev, next;
3947 	int type, zone;
3948 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3949 restart:
3950 	if (seq < READ_ONCE(lrugen->max_seq))
3951 		return false;
3952 
3953 	spin_lock_irq(&lruvec->lru_lock);
3954 
3955 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3956 
3957 	success = seq == lrugen->max_seq;
3958 	if (!success)
3959 		goto unlock;
3960 
3961 	for (type = 0; type < ANON_AND_FILE; type++) {
3962 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3963 			continue;
3964 
3965 		if (inc_min_seq(lruvec, type, swappiness))
3966 			continue;
3967 
3968 		spin_unlock_irq(&lruvec->lru_lock);
3969 		cond_resched();
3970 		goto restart;
3971 	}
3972 
3973 	/*
3974 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
3975 	 * the current max_seq need to be covered, since max_seq+1 can overlap
3976 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3977 	 * overlap, cold/hot inversion happens.
3978 	 */
3979 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
3980 	next = lru_gen_from_seq(lrugen->max_seq + 1);
3981 
3982 	for (type = 0; type < ANON_AND_FILE; type++) {
3983 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3984 			enum lru_list lru = type * LRU_INACTIVE_FILE;
3985 			long delta = lrugen->nr_pages[prev][type][zone] -
3986 				     lrugen->nr_pages[next][type][zone];
3987 
3988 			if (!delta)
3989 				continue;
3990 
3991 			__update_lru_size(lruvec, lru, zone, delta);
3992 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3993 		}
3994 	}
3995 
3996 	for (type = 0; type < ANON_AND_FILE; type++)
3997 		reset_ctrl_pos(lruvec, type, false);
3998 
3999 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4000 	/* make sure preceding modifications appear */
4001 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4002 unlock:
4003 	spin_unlock_irq(&lruvec->lru_lock);
4004 
4005 	return success;
4006 }
4007 
4008 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
4009 			       int swappiness, bool force_scan)
4010 {
4011 	bool success;
4012 	struct lru_gen_mm_walk *walk;
4013 	struct mm_struct *mm = NULL;
4014 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4015 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4016 
4017 	VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
4018 
4019 	if (!mm_state)
4020 		return inc_max_seq(lruvec, seq, swappiness);
4021 
4022 	/* see the comment in iterate_mm_list() */
4023 	if (seq <= READ_ONCE(mm_state->seq))
4024 		return false;
4025 
4026 	/*
4027 	 * If the hardware doesn't automatically set the accessed bit, fallback
4028 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4029 	 * handful of PTEs. Spreading the work out over a period of time usually
4030 	 * is less efficient, but it avoids bursty page faults.
4031 	 */
4032 	if (!should_walk_mmu()) {
4033 		success = iterate_mm_list_nowalk(lruvec, seq);
4034 		goto done;
4035 	}
4036 
4037 	walk = set_mm_walk(NULL, true);
4038 	if (!walk) {
4039 		success = iterate_mm_list_nowalk(lruvec, seq);
4040 		goto done;
4041 	}
4042 
4043 	walk->lruvec = lruvec;
4044 	walk->seq = seq;
4045 	walk->swappiness = swappiness;
4046 	walk->force_scan = force_scan;
4047 
4048 	do {
4049 		success = iterate_mm_list(walk, &mm);
4050 		if (mm)
4051 			walk_mm(mm, walk);
4052 	} while (mm);
4053 done:
4054 	if (success) {
4055 		success = inc_max_seq(lruvec, seq, swappiness);
4056 		WARN_ON_ONCE(!success);
4057 	}
4058 
4059 	return success;
4060 }
4061 
4062 /******************************************************************************
4063  *                          working set protection
4064  ******************************************************************************/
4065 
4066 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4067 {
4068 	int priority;
4069 	unsigned long reclaimable;
4070 
4071 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4072 		return;
4073 	/*
4074 	 * Determine the initial priority based on
4075 	 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4076 	 * where reclaimed_to_scanned_ratio = inactive / total.
4077 	 */
4078 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4079 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
4080 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4081 
4082 	/* round down reclaimable and round up sc->nr_to_reclaim */
4083 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4084 
4085 	/*
4086 	 * The estimation is based on LRU pages only, so cap it to prevent
4087 	 * overshoots of shrinker objects by large margins.
4088 	 */
4089 	sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
4090 }
4091 
4092 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4093 {
4094 	int gen, type, zone;
4095 	unsigned long total = 0;
4096 	int swappiness = get_swappiness(lruvec, sc);
4097 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4098 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4099 	DEFINE_MAX_SEQ(lruvec);
4100 	DEFINE_MIN_SEQ(lruvec);
4101 
4102 	for_each_evictable_type(type, swappiness) {
4103 		unsigned long seq;
4104 
4105 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4106 			gen = lru_gen_from_seq(seq);
4107 
4108 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4109 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4110 		}
4111 	}
4112 
4113 	/* whether the size is big enough to be helpful */
4114 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4115 }
4116 
4117 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4118 				  unsigned long min_ttl)
4119 {
4120 	int gen;
4121 	unsigned long birth;
4122 	int swappiness = get_swappiness(lruvec, sc);
4123 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4124 	DEFINE_MIN_SEQ(lruvec);
4125 
4126 	if (mem_cgroup_below_min(NULL, memcg))
4127 		return false;
4128 
4129 	if (!lruvec_is_sizable(lruvec, sc))
4130 		return false;
4131 
4132 	gen = lru_gen_from_seq(evictable_min_seq(min_seq, swappiness));
4133 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4134 
4135 	return time_is_before_jiffies(birth + min_ttl);
4136 }
4137 
4138 /* to protect the working set of the last N jiffies */
4139 static unsigned long lru_gen_min_ttl __read_mostly;
4140 
4141 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4142 {
4143 	struct mem_cgroup *memcg;
4144 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4145 	bool reclaimable = !min_ttl;
4146 
4147 	VM_WARN_ON_ONCE(!current_is_kswapd());
4148 
4149 	set_initial_priority(pgdat, sc);
4150 
4151 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4152 	do {
4153 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4154 
4155 		mem_cgroup_calculate_protection(NULL, memcg);
4156 
4157 		if (!reclaimable)
4158 			reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4159 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4160 
4161 	/*
4162 	 * The main goal is to OOM kill if every generation from all memcgs is
4163 	 * younger than min_ttl. However, another possibility is all memcgs are
4164 	 * either too small or below min.
4165 	 */
4166 	if (!reclaimable && mutex_trylock(&oom_lock)) {
4167 		struct oom_control oc = {
4168 			.gfp_mask = sc->gfp_mask,
4169 		};
4170 
4171 		out_of_memory(&oc);
4172 
4173 		mutex_unlock(&oom_lock);
4174 	}
4175 }
4176 
4177 /******************************************************************************
4178  *                          rmap/PT walk feedback
4179  ******************************************************************************/
4180 
4181 /*
4182  * This function exploits spatial locality when shrink_folio_list() walks the
4183  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4184  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4185  * the PTE table to the Bloom filter. This forms a feedback loop between the
4186  * eviction and the aging.
4187  */
4188 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4189 {
4190 	int i;
4191 	bool dirty;
4192 	unsigned long start;
4193 	unsigned long end;
4194 	struct lru_gen_mm_walk *walk;
4195 	struct folio *last = NULL;
4196 	int young = 1;
4197 	pte_t *pte = pvmw->pte;
4198 	unsigned long addr = pvmw->address;
4199 	struct vm_area_struct *vma = pvmw->vma;
4200 	struct folio *folio = pfn_folio(pvmw->pfn);
4201 	struct mem_cgroup *memcg = folio_memcg(folio);
4202 	struct pglist_data *pgdat = folio_pgdat(folio);
4203 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4204 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4205 	DEFINE_MAX_SEQ(lruvec);
4206 	int gen = lru_gen_from_seq(max_seq);
4207 
4208 	lockdep_assert_held(pvmw->ptl);
4209 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4210 
4211 	if (!ptep_clear_young_notify(vma, addr, pte))
4212 		return false;
4213 
4214 	if (spin_is_contended(pvmw->ptl))
4215 		return true;
4216 
4217 	/* exclude special VMAs containing anon pages from COW */
4218 	if (vma->vm_flags & VM_SPECIAL)
4219 		return true;
4220 
4221 	/* avoid taking the LRU lock under the PTL when possible */
4222 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4223 
4224 	start = max(addr & PMD_MASK, vma->vm_start);
4225 	end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4226 
4227 	if (end - start == PAGE_SIZE)
4228 		return true;
4229 
4230 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4231 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4232 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4233 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4234 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4235 		else {
4236 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4237 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4238 		}
4239 	}
4240 
4241 	arch_enter_lazy_mmu_mode();
4242 
4243 	pte -= (addr - start) / PAGE_SIZE;
4244 
4245 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4246 		unsigned long pfn;
4247 		pte_t ptent = ptep_get(pte + i);
4248 
4249 		pfn = get_pte_pfn(ptent, vma, addr, pgdat);
4250 		if (pfn == -1)
4251 			continue;
4252 
4253 		folio = get_pfn_folio(pfn, memcg, pgdat);
4254 		if (!folio)
4255 			continue;
4256 
4257 		if (!ptep_clear_young_notify(vma, addr, pte + i))
4258 			continue;
4259 
4260 		if (last != folio) {
4261 			walk_update_folio(walk, last, gen, dirty);
4262 
4263 			last = folio;
4264 			dirty = false;
4265 		}
4266 
4267 		if (pte_dirty(ptent))
4268 			dirty = true;
4269 
4270 		young++;
4271 	}
4272 
4273 	walk_update_folio(walk, last, gen, dirty);
4274 
4275 	arch_leave_lazy_mmu_mode();
4276 
4277 	/* feedback from rmap walkers to page table walkers */
4278 	if (mm_state && suitable_to_scan(i, young))
4279 		update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4280 
4281 	return true;
4282 }
4283 
4284 /******************************************************************************
4285  *                          memcg LRU
4286  ******************************************************************************/
4287 
4288 /* see the comment on MEMCG_NR_GENS */
4289 enum {
4290 	MEMCG_LRU_NOP,
4291 	MEMCG_LRU_HEAD,
4292 	MEMCG_LRU_TAIL,
4293 	MEMCG_LRU_OLD,
4294 	MEMCG_LRU_YOUNG,
4295 };
4296 
4297 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4298 {
4299 	int seg;
4300 	int old, new;
4301 	unsigned long flags;
4302 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4303 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4304 
4305 	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4306 
4307 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4308 
4309 	seg = 0;
4310 	new = old = lruvec->lrugen.gen;
4311 
4312 	/* see the comment on MEMCG_NR_GENS */
4313 	if (op == MEMCG_LRU_HEAD)
4314 		seg = MEMCG_LRU_HEAD;
4315 	else if (op == MEMCG_LRU_TAIL)
4316 		seg = MEMCG_LRU_TAIL;
4317 	else if (op == MEMCG_LRU_OLD)
4318 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4319 	else if (op == MEMCG_LRU_YOUNG)
4320 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4321 	else
4322 		VM_WARN_ON_ONCE(true);
4323 
4324 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4325 	WRITE_ONCE(lruvec->lrugen.gen, new);
4326 
4327 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4328 
4329 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4330 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4331 	else
4332 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4333 
4334 	pgdat->memcg_lru.nr_memcgs[old]--;
4335 	pgdat->memcg_lru.nr_memcgs[new]++;
4336 
4337 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4338 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4339 
4340 	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4341 }
4342 
4343 #ifdef CONFIG_MEMCG
4344 
4345 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4346 {
4347 	int gen;
4348 	int nid;
4349 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4350 
4351 	for_each_node(nid) {
4352 		struct pglist_data *pgdat = NODE_DATA(nid);
4353 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4354 
4355 		spin_lock_irq(&pgdat->memcg_lru.lock);
4356 
4357 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4358 
4359 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4360 
4361 		lruvec->lrugen.gen = gen;
4362 
4363 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4364 		pgdat->memcg_lru.nr_memcgs[gen]++;
4365 
4366 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4367 	}
4368 }
4369 
4370 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4371 {
4372 	int nid;
4373 
4374 	for_each_node(nid) {
4375 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4376 
4377 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4378 	}
4379 }
4380 
4381 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4382 {
4383 	int gen;
4384 	int nid;
4385 
4386 	for_each_node(nid) {
4387 		struct pglist_data *pgdat = NODE_DATA(nid);
4388 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4389 
4390 		spin_lock_irq(&pgdat->memcg_lru.lock);
4391 
4392 		if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4393 			goto unlock;
4394 
4395 		gen = lruvec->lrugen.gen;
4396 
4397 		hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4398 		pgdat->memcg_lru.nr_memcgs[gen]--;
4399 
4400 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4401 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4402 unlock:
4403 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4404 	}
4405 }
4406 
4407 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4408 {
4409 	struct lruvec *lruvec = get_lruvec(memcg, nid);
4410 
4411 	/* see the comment on MEMCG_NR_GENS */
4412 	if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4413 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4414 }
4415 
4416 #endif /* CONFIG_MEMCG */
4417 
4418 /******************************************************************************
4419  *                          the eviction
4420  ******************************************************************************/
4421 
4422 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4423 		       int tier_idx)
4424 {
4425 	bool success;
4426 	bool dirty, writeback;
4427 	int gen = folio_lru_gen(folio);
4428 	int type = folio_is_file_lru(folio);
4429 	int zone = folio_zonenum(folio);
4430 	int delta = folio_nr_pages(folio);
4431 	int refs = folio_lru_refs(folio);
4432 	bool workingset = folio_test_workingset(folio);
4433 	int tier = lru_tier_from_refs(refs, workingset);
4434 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4435 
4436 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4437 
4438 	/* unevictable */
4439 	if (!folio_evictable(folio)) {
4440 		success = lru_gen_del_folio(lruvec, folio, true);
4441 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4442 		folio_set_unevictable(folio);
4443 		lruvec_add_folio(lruvec, folio);
4444 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4445 		return true;
4446 	}
4447 
4448 	/* promoted */
4449 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4450 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4451 		return true;
4452 	}
4453 
4454 	/* protected */
4455 	if (tier > tier_idx || refs + workingset == BIT(LRU_REFS_WIDTH) + 1) {
4456 		gen = folio_inc_gen(lruvec, folio, false);
4457 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4458 
4459 		/* don't count the workingset being lazily promoted */
4460 		if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
4461 			int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4462 
4463 			WRITE_ONCE(lrugen->protected[hist][type][tier],
4464 				   lrugen->protected[hist][type][tier] + delta);
4465 		}
4466 		return true;
4467 	}
4468 
4469 	/* ineligible */
4470 	if (!folio_test_lru(folio) || zone > sc->reclaim_idx) {
4471 		gen = folio_inc_gen(lruvec, folio, false);
4472 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4473 		return true;
4474 	}
4475 
4476 	dirty = folio_test_dirty(folio);
4477 	writeback = folio_test_writeback(folio);
4478 	if (type == LRU_GEN_FILE && dirty) {
4479 		sc->nr.file_taken += delta;
4480 		if (!writeback)
4481 			sc->nr.unqueued_dirty += delta;
4482 	}
4483 
4484 	/* waiting for writeback */
4485 	if (writeback || (type == LRU_GEN_FILE && dirty)) {
4486 		gen = folio_inc_gen(lruvec, folio, true);
4487 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4488 		return true;
4489 	}
4490 
4491 	return false;
4492 }
4493 
4494 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4495 {
4496 	bool success;
4497 
4498 	/* swap constrained */
4499 	if (!(sc->gfp_mask & __GFP_IO) &&
4500 	    (folio_test_dirty(folio) ||
4501 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4502 		return false;
4503 
4504 	/* raced with release_pages() */
4505 	if (!folio_try_get(folio))
4506 		return false;
4507 
4508 	/* raced with another isolation */
4509 	if (!folio_test_clear_lru(folio)) {
4510 		folio_put(folio);
4511 		return false;
4512 	}
4513 
4514 	/* see the comment on LRU_REFS_FLAGS */
4515 	if (!folio_test_referenced(folio))
4516 		set_mask_bits(&folio->flags, LRU_REFS_MASK, 0);
4517 
4518 	/* for shrink_folio_list() */
4519 	folio_clear_reclaim(folio);
4520 
4521 	success = lru_gen_del_folio(lruvec, folio, true);
4522 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4523 
4524 	return true;
4525 }
4526 
4527 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4528 		       int type, int tier, struct list_head *list)
4529 {
4530 	int i;
4531 	int gen;
4532 	enum vm_event_item item;
4533 	int sorted = 0;
4534 	int scanned = 0;
4535 	int isolated = 0;
4536 	int skipped = 0;
4537 	int remaining = MAX_LRU_BATCH;
4538 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4539 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4540 
4541 	VM_WARN_ON_ONCE(!list_empty(list));
4542 
4543 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4544 		return 0;
4545 
4546 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4547 
4548 	for (i = MAX_NR_ZONES; i > 0; i--) {
4549 		LIST_HEAD(moved);
4550 		int skipped_zone = 0;
4551 		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4552 		struct list_head *head = &lrugen->folios[gen][type][zone];
4553 
4554 		while (!list_empty(head)) {
4555 			struct folio *folio = lru_to_folio(head);
4556 			int delta = folio_nr_pages(folio);
4557 
4558 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4559 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4560 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4561 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4562 
4563 			scanned += delta;
4564 
4565 			if (sort_folio(lruvec, folio, sc, tier))
4566 				sorted += delta;
4567 			else if (isolate_folio(lruvec, folio, sc)) {
4568 				list_add(&folio->lru, list);
4569 				isolated += delta;
4570 			} else {
4571 				list_move(&folio->lru, &moved);
4572 				skipped_zone += delta;
4573 			}
4574 
4575 			if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4576 				break;
4577 		}
4578 
4579 		if (skipped_zone) {
4580 			list_splice(&moved, head);
4581 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4582 			skipped += skipped_zone;
4583 		}
4584 
4585 		if (!remaining || isolated >= MIN_LRU_BATCH)
4586 			break;
4587 	}
4588 
4589 	item = PGSCAN_KSWAPD + reclaimer_offset(sc);
4590 	if (!cgroup_reclaim(sc)) {
4591 		__count_vm_events(item, isolated);
4592 		__count_vm_events(PGREFILL, sorted);
4593 	}
4594 	__count_memcg_events(memcg, item, isolated);
4595 	__count_memcg_events(memcg, PGREFILL, sorted);
4596 	__count_vm_events(PGSCAN_ANON + type, isolated);
4597 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4598 				scanned, skipped, isolated,
4599 				type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4600 	if (type == LRU_GEN_FILE)
4601 		sc->nr.file_taken += isolated;
4602 	/*
4603 	 * There might not be eligible folios due to reclaim_idx. Check the
4604 	 * remaining to prevent livelock if it's not making progress.
4605 	 */
4606 	return isolated || !remaining ? scanned : 0;
4607 }
4608 
4609 static int get_tier_idx(struct lruvec *lruvec, int type)
4610 {
4611 	int tier;
4612 	struct ctrl_pos sp, pv;
4613 
4614 	/*
4615 	 * To leave a margin for fluctuations, use a larger gain factor (2:3).
4616 	 * This value is chosen because any other tier would have at least twice
4617 	 * as many refaults as the first tier.
4618 	 */
4619 	read_ctrl_pos(lruvec, type, 0, 2, &sp);
4620 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4621 		read_ctrl_pos(lruvec, type, tier, 3, &pv);
4622 		if (!positive_ctrl_err(&sp, &pv))
4623 			break;
4624 	}
4625 
4626 	return tier - 1;
4627 }
4628 
4629 static int get_type_to_scan(struct lruvec *lruvec, int swappiness)
4630 {
4631 	struct ctrl_pos sp, pv;
4632 
4633 	if (swappiness <= MIN_SWAPPINESS + 1)
4634 		return LRU_GEN_FILE;
4635 
4636 	if (swappiness >= MAX_SWAPPINESS)
4637 		return LRU_GEN_ANON;
4638 	/*
4639 	 * Compare the sum of all tiers of anon with that of file to determine
4640 	 * which type to scan.
4641 	 */
4642 	read_ctrl_pos(lruvec, LRU_GEN_ANON, MAX_NR_TIERS, swappiness, &sp);
4643 	read_ctrl_pos(lruvec, LRU_GEN_FILE, MAX_NR_TIERS, MAX_SWAPPINESS - swappiness, &pv);
4644 
4645 	return positive_ctrl_err(&sp, &pv);
4646 }
4647 
4648 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4649 			  int *type_scanned, struct list_head *list)
4650 {
4651 	int i;
4652 	int type = get_type_to_scan(lruvec, swappiness);
4653 
4654 	for_each_evictable_type(i, swappiness) {
4655 		int scanned;
4656 		int tier = get_tier_idx(lruvec, type);
4657 
4658 		*type_scanned = type;
4659 
4660 		scanned = scan_folios(lruvec, sc, type, tier, list);
4661 		if (scanned)
4662 			return scanned;
4663 
4664 		type = !type;
4665 	}
4666 
4667 	return 0;
4668 }
4669 
4670 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4671 {
4672 	int type;
4673 	int scanned;
4674 	int reclaimed;
4675 	LIST_HEAD(list);
4676 	LIST_HEAD(clean);
4677 	struct folio *folio;
4678 	struct folio *next;
4679 	enum vm_event_item item;
4680 	struct reclaim_stat stat;
4681 	struct lru_gen_mm_walk *walk;
4682 	bool skip_retry = false;
4683 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4684 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4685 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4686 
4687 	spin_lock_irq(&lruvec->lru_lock);
4688 
4689 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4690 
4691 	scanned += try_to_inc_min_seq(lruvec, swappiness);
4692 
4693 	if (evictable_min_seq(lrugen->min_seq, swappiness) + MIN_NR_GENS > lrugen->max_seq)
4694 		scanned = 0;
4695 
4696 	spin_unlock_irq(&lruvec->lru_lock);
4697 
4698 	if (list_empty(&list))
4699 		return scanned;
4700 retry:
4701 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4702 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
4703 	sc->nr_reclaimed += reclaimed;
4704 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4705 			scanned, reclaimed, &stat, sc->priority,
4706 			type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4707 
4708 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4709 		DEFINE_MIN_SEQ(lruvec);
4710 
4711 		if (!folio_evictable(folio)) {
4712 			list_del(&folio->lru);
4713 			folio_putback_lru(folio);
4714 			continue;
4715 		}
4716 
4717 		/* retry folios that may have missed folio_rotate_reclaimable() */
4718 		if (!skip_retry && !folio_test_active(folio) && !folio_mapped(folio) &&
4719 		    !folio_test_dirty(folio) && !folio_test_writeback(folio)) {
4720 			list_move(&folio->lru, &clean);
4721 			continue;
4722 		}
4723 
4724 		/* don't add rejected folios to the oldest generation */
4725 		if (lru_gen_folio_seq(lruvec, folio, false) == min_seq[type])
4726 			set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_active));
4727 	}
4728 
4729 	spin_lock_irq(&lruvec->lru_lock);
4730 
4731 	move_folios_to_lru(lruvec, &list);
4732 
4733 	walk = current->reclaim_state->mm_walk;
4734 	if (walk && walk->batched) {
4735 		walk->lruvec = lruvec;
4736 		reset_batch_size(walk);
4737 	}
4738 
4739 	__mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
4740 					stat.nr_demoted);
4741 
4742 	item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
4743 	if (!cgroup_reclaim(sc))
4744 		__count_vm_events(item, reclaimed);
4745 	__count_memcg_events(memcg, item, reclaimed);
4746 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
4747 
4748 	spin_unlock_irq(&lruvec->lru_lock);
4749 
4750 	list_splice_init(&clean, &list);
4751 
4752 	if (!list_empty(&list)) {
4753 		skip_retry = true;
4754 		goto retry;
4755 	}
4756 
4757 	return scanned;
4758 }
4759 
4760 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4761 			     int swappiness, unsigned long *nr_to_scan)
4762 {
4763 	int gen, type, zone;
4764 	unsigned long size = 0;
4765 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4766 	DEFINE_MIN_SEQ(lruvec);
4767 
4768 	*nr_to_scan = 0;
4769 	/* have to run aging, since eviction is not possible anymore */
4770 	if (evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS > max_seq)
4771 		return true;
4772 
4773 	for_each_evictable_type(type, swappiness) {
4774 		unsigned long seq;
4775 
4776 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4777 			gen = lru_gen_from_seq(seq);
4778 
4779 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4780 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4781 		}
4782 	}
4783 
4784 	*nr_to_scan = size;
4785 	/* better to run aging even though eviction is still possible */
4786 	return evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS == max_seq;
4787 }
4788 
4789 /*
4790  * For future optimizations:
4791  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4792  *    reclaim.
4793  */
4794 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4795 {
4796 	bool success;
4797 	unsigned long nr_to_scan;
4798 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4799 	DEFINE_MAX_SEQ(lruvec);
4800 
4801 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4802 		return -1;
4803 
4804 	success = should_run_aging(lruvec, max_seq, swappiness, &nr_to_scan);
4805 
4806 	/* try to scrape all its memory if this memcg was deleted */
4807 	if (nr_to_scan && !mem_cgroup_online(memcg))
4808 		return nr_to_scan;
4809 
4810 	/* try to get away with not aging at the default priority */
4811 	if (!success || sc->priority == DEF_PRIORITY)
4812 		return nr_to_scan >> sc->priority;
4813 
4814 	/* stop scanning this lruvec as it's low on cold folios */
4815 	return try_to_inc_max_seq(lruvec, max_seq, swappiness, false) ? -1 : 0;
4816 }
4817 
4818 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4819 {
4820 	int i;
4821 	enum zone_watermarks mark;
4822 
4823 	/* don't abort memcg reclaim to ensure fairness */
4824 	if (!root_reclaim(sc))
4825 		return false;
4826 
4827 	if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4828 		return true;
4829 
4830 	/* check the order to exclude compaction-induced reclaim */
4831 	if (!current_is_kswapd() || sc->order)
4832 		return false;
4833 
4834 	mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4835 	       WMARK_PROMO : WMARK_HIGH;
4836 
4837 	for (i = 0; i <= sc->reclaim_idx; i++) {
4838 		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4839 		unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4840 
4841 		if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4842 			return false;
4843 	}
4844 
4845 	/* kswapd should abort if all eligible zones are safe */
4846 	return true;
4847 }
4848 
4849 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4850 {
4851 	long nr_to_scan;
4852 	unsigned long scanned = 0;
4853 	int swappiness = get_swappiness(lruvec, sc);
4854 
4855 	while (true) {
4856 		int delta;
4857 
4858 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4859 		if (nr_to_scan <= 0)
4860 			break;
4861 
4862 		delta = evict_folios(lruvec, sc, swappiness);
4863 		if (!delta)
4864 			break;
4865 
4866 		scanned += delta;
4867 		if (scanned >= nr_to_scan)
4868 			break;
4869 
4870 		if (should_abort_scan(lruvec, sc))
4871 			break;
4872 
4873 		cond_resched();
4874 	}
4875 
4876 	/*
4877 	 * If too many file cache in the coldest generation can't be evicted
4878 	 * due to being dirty, wake up the flusher.
4879 	 */
4880 	if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken)
4881 		wakeup_flusher_threads(WB_REASON_VMSCAN);
4882 
4883 	/* whether this lruvec should be rotated */
4884 	return nr_to_scan < 0;
4885 }
4886 
4887 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4888 {
4889 	bool success;
4890 	unsigned long scanned = sc->nr_scanned;
4891 	unsigned long reclaimed = sc->nr_reclaimed;
4892 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4893 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4894 
4895 	/* lru_gen_age_node() called mem_cgroup_calculate_protection() */
4896 	if (mem_cgroup_below_min(NULL, memcg))
4897 		return MEMCG_LRU_YOUNG;
4898 
4899 	if (mem_cgroup_below_low(NULL, memcg)) {
4900 		/* see the comment on MEMCG_NR_GENS */
4901 		if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4902 			return MEMCG_LRU_TAIL;
4903 
4904 		memcg_memory_event(memcg, MEMCG_LOW);
4905 	}
4906 
4907 	success = try_to_shrink_lruvec(lruvec, sc);
4908 
4909 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4910 
4911 	if (!sc->proactive)
4912 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4913 			   sc->nr_reclaimed - reclaimed);
4914 
4915 	flush_reclaim_state(sc);
4916 
4917 	if (success && mem_cgroup_online(memcg))
4918 		return MEMCG_LRU_YOUNG;
4919 
4920 	if (!success && lruvec_is_sizable(lruvec, sc))
4921 		return 0;
4922 
4923 	/* one retry if offlined or too small */
4924 	return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4925 	       MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4926 }
4927 
4928 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4929 {
4930 	int op;
4931 	int gen;
4932 	int bin;
4933 	int first_bin;
4934 	struct lruvec *lruvec;
4935 	struct lru_gen_folio *lrugen;
4936 	struct mem_cgroup *memcg;
4937 	struct hlist_nulls_node *pos;
4938 
4939 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4940 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4941 restart:
4942 	op = 0;
4943 	memcg = NULL;
4944 
4945 	rcu_read_lock();
4946 
4947 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4948 		if (op) {
4949 			lru_gen_rotate_memcg(lruvec, op);
4950 			op = 0;
4951 		}
4952 
4953 		mem_cgroup_put(memcg);
4954 		memcg = NULL;
4955 
4956 		if (gen != READ_ONCE(lrugen->gen))
4957 			continue;
4958 
4959 		lruvec = container_of(lrugen, struct lruvec, lrugen);
4960 		memcg = lruvec_memcg(lruvec);
4961 
4962 		if (!mem_cgroup_tryget(memcg)) {
4963 			lru_gen_release_memcg(memcg);
4964 			memcg = NULL;
4965 			continue;
4966 		}
4967 
4968 		rcu_read_unlock();
4969 
4970 		op = shrink_one(lruvec, sc);
4971 
4972 		rcu_read_lock();
4973 
4974 		if (should_abort_scan(lruvec, sc))
4975 			break;
4976 	}
4977 
4978 	rcu_read_unlock();
4979 
4980 	if (op)
4981 		lru_gen_rotate_memcg(lruvec, op);
4982 
4983 	mem_cgroup_put(memcg);
4984 
4985 	if (!is_a_nulls(pos))
4986 		return;
4987 
4988 	/* restart if raced with lru_gen_rotate_memcg() */
4989 	if (gen != get_nulls_value(pos))
4990 		goto restart;
4991 
4992 	/* try the rest of the bins of the current generation */
4993 	bin = get_memcg_bin(bin + 1);
4994 	if (bin != first_bin)
4995 		goto restart;
4996 }
4997 
4998 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4999 {
5000 	struct blk_plug plug;
5001 
5002 	VM_WARN_ON_ONCE(root_reclaim(sc));
5003 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5004 
5005 	lru_add_drain();
5006 
5007 	blk_start_plug(&plug);
5008 
5009 	set_mm_walk(NULL, sc->proactive);
5010 
5011 	if (try_to_shrink_lruvec(lruvec, sc))
5012 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5013 
5014 	clear_mm_walk();
5015 
5016 	blk_finish_plug(&plug);
5017 }
5018 
5019 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5020 {
5021 	struct blk_plug plug;
5022 	unsigned long reclaimed = sc->nr_reclaimed;
5023 
5024 	VM_WARN_ON_ONCE(!root_reclaim(sc));
5025 
5026 	/*
5027 	 * Unmapped clean folios are already prioritized. Scanning for more of
5028 	 * them is likely futile and can cause high reclaim latency when there
5029 	 * is a large number of memcgs.
5030 	 */
5031 	if (!sc->may_writepage || !sc->may_unmap)
5032 		goto done;
5033 
5034 	lru_add_drain();
5035 
5036 	blk_start_plug(&plug);
5037 
5038 	set_mm_walk(pgdat, sc->proactive);
5039 
5040 	set_initial_priority(pgdat, sc);
5041 
5042 	if (current_is_kswapd())
5043 		sc->nr_reclaimed = 0;
5044 
5045 	if (mem_cgroup_disabled())
5046 		shrink_one(&pgdat->__lruvec, sc);
5047 	else
5048 		shrink_many(pgdat, sc);
5049 
5050 	if (current_is_kswapd())
5051 		sc->nr_reclaimed += reclaimed;
5052 
5053 	clear_mm_walk();
5054 
5055 	blk_finish_plug(&plug);
5056 done:
5057 	if (sc->nr_reclaimed > reclaimed)
5058 		pgdat->kswapd_failures = 0;
5059 }
5060 
5061 /******************************************************************************
5062  *                          state change
5063  ******************************************************************************/
5064 
5065 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5066 {
5067 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5068 
5069 	if (lrugen->enabled) {
5070 		enum lru_list lru;
5071 
5072 		for_each_evictable_lru(lru) {
5073 			if (!list_empty(&lruvec->lists[lru]))
5074 				return false;
5075 		}
5076 	} else {
5077 		int gen, type, zone;
5078 
5079 		for_each_gen_type_zone(gen, type, zone) {
5080 			if (!list_empty(&lrugen->folios[gen][type][zone]))
5081 				return false;
5082 		}
5083 	}
5084 
5085 	return true;
5086 }
5087 
5088 static bool fill_evictable(struct lruvec *lruvec)
5089 {
5090 	enum lru_list lru;
5091 	int remaining = MAX_LRU_BATCH;
5092 
5093 	for_each_evictable_lru(lru) {
5094 		int type = is_file_lru(lru);
5095 		bool active = is_active_lru(lru);
5096 		struct list_head *head = &lruvec->lists[lru];
5097 
5098 		while (!list_empty(head)) {
5099 			bool success;
5100 			struct folio *folio = lru_to_folio(head);
5101 
5102 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5103 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5104 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5105 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5106 
5107 			lruvec_del_folio(lruvec, folio);
5108 			success = lru_gen_add_folio(lruvec, folio, false);
5109 			VM_WARN_ON_ONCE(!success);
5110 
5111 			if (!--remaining)
5112 				return false;
5113 		}
5114 	}
5115 
5116 	return true;
5117 }
5118 
5119 static bool drain_evictable(struct lruvec *lruvec)
5120 {
5121 	int gen, type, zone;
5122 	int remaining = MAX_LRU_BATCH;
5123 
5124 	for_each_gen_type_zone(gen, type, zone) {
5125 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5126 
5127 		while (!list_empty(head)) {
5128 			bool success;
5129 			struct folio *folio = lru_to_folio(head);
5130 
5131 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5132 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5133 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5134 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5135 
5136 			success = lru_gen_del_folio(lruvec, folio, false);
5137 			VM_WARN_ON_ONCE(!success);
5138 			lruvec_add_folio(lruvec, folio);
5139 
5140 			if (!--remaining)
5141 				return false;
5142 		}
5143 	}
5144 
5145 	return true;
5146 }
5147 
5148 static void lru_gen_change_state(bool enabled)
5149 {
5150 	static DEFINE_MUTEX(state_mutex);
5151 
5152 	struct mem_cgroup *memcg;
5153 
5154 	cgroup_lock();
5155 	cpus_read_lock();
5156 	get_online_mems();
5157 	mutex_lock(&state_mutex);
5158 
5159 	if (enabled == lru_gen_enabled())
5160 		goto unlock;
5161 
5162 	if (enabled)
5163 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5164 	else
5165 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5166 
5167 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5168 	do {
5169 		int nid;
5170 
5171 		for_each_node(nid) {
5172 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5173 
5174 			spin_lock_irq(&lruvec->lru_lock);
5175 
5176 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5177 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5178 
5179 			lruvec->lrugen.enabled = enabled;
5180 
5181 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5182 				spin_unlock_irq(&lruvec->lru_lock);
5183 				cond_resched();
5184 				spin_lock_irq(&lruvec->lru_lock);
5185 			}
5186 
5187 			spin_unlock_irq(&lruvec->lru_lock);
5188 		}
5189 
5190 		cond_resched();
5191 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5192 unlock:
5193 	mutex_unlock(&state_mutex);
5194 	put_online_mems();
5195 	cpus_read_unlock();
5196 	cgroup_unlock();
5197 }
5198 
5199 /******************************************************************************
5200  *                          sysfs interface
5201  ******************************************************************************/
5202 
5203 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5204 {
5205 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5206 }
5207 
5208 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5209 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5210 				const char *buf, size_t len)
5211 {
5212 	unsigned int msecs;
5213 
5214 	if (kstrtouint(buf, 0, &msecs))
5215 		return -EINVAL;
5216 
5217 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5218 
5219 	return len;
5220 }
5221 
5222 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5223 
5224 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5225 {
5226 	unsigned int caps = 0;
5227 
5228 	if (get_cap(LRU_GEN_CORE))
5229 		caps |= BIT(LRU_GEN_CORE);
5230 
5231 	if (should_walk_mmu())
5232 		caps |= BIT(LRU_GEN_MM_WALK);
5233 
5234 	if (should_clear_pmd_young())
5235 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5236 
5237 	return sysfs_emit(buf, "0x%04x\n", caps);
5238 }
5239 
5240 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5241 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5242 			     const char *buf, size_t len)
5243 {
5244 	int i;
5245 	unsigned int caps;
5246 
5247 	if (tolower(*buf) == 'n')
5248 		caps = 0;
5249 	else if (tolower(*buf) == 'y')
5250 		caps = -1;
5251 	else if (kstrtouint(buf, 0, &caps))
5252 		return -EINVAL;
5253 
5254 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5255 		bool enabled = caps & BIT(i);
5256 
5257 		if (i == LRU_GEN_CORE)
5258 			lru_gen_change_state(enabled);
5259 		else if (enabled)
5260 			static_branch_enable(&lru_gen_caps[i]);
5261 		else
5262 			static_branch_disable(&lru_gen_caps[i]);
5263 	}
5264 
5265 	return len;
5266 }
5267 
5268 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5269 
5270 static struct attribute *lru_gen_attrs[] = {
5271 	&lru_gen_min_ttl_attr.attr,
5272 	&lru_gen_enabled_attr.attr,
5273 	NULL
5274 };
5275 
5276 static const struct attribute_group lru_gen_attr_group = {
5277 	.name = "lru_gen",
5278 	.attrs = lru_gen_attrs,
5279 };
5280 
5281 /******************************************************************************
5282  *                          debugfs interface
5283  ******************************************************************************/
5284 
5285 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5286 {
5287 	struct mem_cgroup *memcg;
5288 	loff_t nr_to_skip = *pos;
5289 
5290 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5291 	if (!m->private)
5292 		return ERR_PTR(-ENOMEM);
5293 
5294 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5295 	do {
5296 		int nid;
5297 
5298 		for_each_node_state(nid, N_MEMORY) {
5299 			if (!nr_to_skip--)
5300 				return get_lruvec(memcg, nid);
5301 		}
5302 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5303 
5304 	return NULL;
5305 }
5306 
5307 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5308 {
5309 	if (!IS_ERR_OR_NULL(v))
5310 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5311 
5312 	kvfree(m->private);
5313 	m->private = NULL;
5314 }
5315 
5316 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5317 {
5318 	int nid = lruvec_pgdat(v)->node_id;
5319 	struct mem_cgroup *memcg = lruvec_memcg(v);
5320 
5321 	++*pos;
5322 
5323 	nid = next_memory_node(nid);
5324 	if (nid == MAX_NUMNODES) {
5325 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5326 		if (!memcg)
5327 			return NULL;
5328 
5329 		nid = first_memory_node;
5330 	}
5331 
5332 	return get_lruvec(memcg, nid);
5333 }
5334 
5335 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5336 				  unsigned long max_seq, unsigned long *min_seq,
5337 				  unsigned long seq)
5338 {
5339 	int i;
5340 	int type, tier;
5341 	int hist = lru_hist_from_seq(seq);
5342 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5343 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5344 
5345 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5346 		seq_printf(m, "            %10d", tier);
5347 		for (type = 0; type < ANON_AND_FILE; type++) {
5348 			const char *s = "xxx";
5349 			unsigned long n[3] = {};
5350 
5351 			if (seq == max_seq) {
5352 				s = "RTx";
5353 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5354 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5355 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5356 				s = "rep";
5357 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5358 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5359 				n[2] = READ_ONCE(lrugen->protected[hist][type][tier]);
5360 			}
5361 
5362 			for (i = 0; i < 3; i++)
5363 				seq_printf(m, " %10lu%c", n[i], s[i]);
5364 		}
5365 		seq_putc(m, '\n');
5366 	}
5367 
5368 	if (!mm_state)
5369 		return;
5370 
5371 	seq_puts(m, "                      ");
5372 	for (i = 0; i < NR_MM_STATS; i++) {
5373 		const char *s = "xxxx";
5374 		unsigned long n = 0;
5375 
5376 		if (seq == max_seq && NR_HIST_GENS == 1) {
5377 			s = "TYFA";
5378 			n = READ_ONCE(mm_state->stats[hist][i]);
5379 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5380 			s = "tyfa";
5381 			n = READ_ONCE(mm_state->stats[hist][i]);
5382 		}
5383 
5384 		seq_printf(m, " %10lu%c", n, s[i]);
5385 	}
5386 	seq_putc(m, '\n');
5387 }
5388 
5389 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5390 static int lru_gen_seq_show(struct seq_file *m, void *v)
5391 {
5392 	unsigned long seq;
5393 	bool full = !debugfs_real_fops(m->file)->write;
5394 	struct lruvec *lruvec = v;
5395 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5396 	int nid = lruvec_pgdat(lruvec)->node_id;
5397 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5398 	DEFINE_MAX_SEQ(lruvec);
5399 	DEFINE_MIN_SEQ(lruvec);
5400 
5401 	if (nid == first_memory_node) {
5402 		const char *path = memcg ? m->private : "";
5403 
5404 #ifdef CONFIG_MEMCG
5405 		if (memcg)
5406 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5407 #endif
5408 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5409 	}
5410 
5411 	seq_printf(m, " node %5d\n", nid);
5412 
5413 	if (!full)
5414 		seq = evictable_min_seq(min_seq, MAX_SWAPPINESS / 2);
5415 	else if (max_seq >= MAX_NR_GENS)
5416 		seq = max_seq - MAX_NR_GENS + 1;
5417 	else
5418 		seq = 0;
5419 
5420 	for (; seq <= max_seq; seq++) {
5421 		int type, zone;
5422 		int gen = lru_gen_from_seq(seq);
5423 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5424 
5425 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5426 
5427 		for (type = 0; type < ANON_AND_FILE; type++) {
5428 			unsigned long size = 0;
5429 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5430 
5431 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5432 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5433 
5434 			seq_printf(m, " %10lu%c", size, mark);
5435 		}
5436 
5437 		seq_putc(m, '\n');
5438 
5439 		if (full)
5440 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5441 	}
5442 
5443 	return 0;
5444 }
5445 
5446 static const struct seq_operations lru_gen_seq_ops = {
5447 	.start = lru_gen_seq_start,
5448 	.stop = lru_gen_seq_stop,
5449 	.next = lru_gen_seq_next,
5450 	.show = lru_gen_seq_show,
5451 };
5452 
5453 static int run_aging(struct lruvec *lruvec, unsigned long seq,
5454 		     int swappiness, bool force_scan)
5455 {
5456 	DEFINE_MAX_SEQ(lruvec);
5457 
5458 	if (seq > max_seq)
5459 		return -EINVAL;
5460 
5461 	return try_to_inc_max_seq(lruvec, max_seq, swappiness, force_scan) ? 0 : -EEXIST;
5462 }
5463 
5464 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5465 			int swappiness, unsigned long nr_to_reclaim)
5466 {
5467 	DEFINE_MAX_SEQ(lruvec);
5468 
5469 	if (seq + MIN_NR_GENS > max_seq)
5470 		return -EINVAL;
5471 
5472 	sc->nr_reclaimed = 0;
5473 
5474 	while (!signal_pending(current)) {
5475 		DEFINE_MIN_SEQ(lruvec);
5476 
5477 		if (seq < evictable_min_seq(min_seq, swappiness))
5478 			return 0;
5479 
5480 		if (sc->nr_reclaimed >= nr_to_reclaim)
5481 			return 0;
5482 
5483 		if (!evict_folios(lruvec, sc, swappiness))
5484 			return 0;
5485 
5486 		cond_resched();
5487 	}
5488 
5489 	return -EINTR;
5490 }
5491 
5492 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5493 		   struct scan_control *sc, int swappiness, unsigned long opt)
5494 {
5495 	struct lruvec *lruvec;
5496 	int err = -EINVAL;
5497 	struct mem_cgroup *memcg = NULL;
5498 
5499 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5500 		return -EINVAL;
5501 
5502 	if (!mem_cgroup_disabled()) {
5503 		rcu_read_lock();
5504 
5505 		memcg = mem_cgroup_from_id(memcg_id);
5506 		if (!mem_cgroup_tryget(memcg))
5507 			memcg = NULL;
5508 
5509 		rcu_read_unlock();
5510 
5511 		if (!memcg)
5512 			return -EINVAL;
5513 	}
5514 
5515 	if (memcg_id != mem_cgroup_id(memcg))
5516 		goto done;
5517 
5518 	lruvec = get_lruvec(memcg, nid);
5519 
5520 	if (swappiness < MIN_SWAPPINESS)
5521 		swappiness = get_swappiness(lruvec, sc);
5522 	else if (swappiness > MAX_SWAPPINESS + 1)
5523 		goto done;
5524 
5525 	switch (cmd) {
5526 	case '+':
5527 		err = run_aging(lruvec, seq, swappiness, opt);
5528 		break;
5529 	case '-':
5530 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5531 		break;
5532 	}
5533 done:
5534 	mem_cgroup_put(memcg);
5535 
5536 	return err;
5537 }
5538 
5539 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5540 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5541 				 size_t len, loff_t *pos)
5542 {
5543 	void *buf;
5544 	char *cur, *next;
5545 	unsigned int flags;
5546 	struct blk_plug plug;
5547 	int err = -EINVAL;
5548 	struct scan_control sc = {
5549 		.may_writepage = true,
5550 		.may_unmap = true,
5551 		.may_swap = true,
5552 		.reclaim_idx = MAX_NR_ZONES - 1,
5553 		.gfp_mask = GFP_KERNEL,
5554 	};
5555 
5556 	buf = kvmalloc(len + 1, GFP_KERNEL);
5557 	if (!buf)
5558 		return -ENOMEM;
5559 
5560 	if (copy_from_user(buf, src, len)) {
5561 		kvfree(buf);
5562 		return -EFAULT;
5563 	}
5564 
5565 	set_task_reclaim_state(current, &sc.reclaim_state);
5566 	flags = memalloc_noreclaim_save();
5567 	blk_start_plug(&plug);
5568 	if (!set_mm_walk(NULL, true)) {
5569 		err = -ENOMEM;
5570 		goto done;
5571 	}
5572 
5573 	next = buf;
5574 	next[len] = '\0';
5575 
5576 	while ((cur = strsep(&next, ",;\n"))) {
5577 		int n;
5578 		int end;
5579 		char cmd;
5580 		unsigned int memcg_id;
5581 		unsigned int nid;
5582 		unsigned long seq;
5583 		unsigned int swappiness = -1;
5584 		unsigned long opt = -1;
5585 
5586 		cur = skip_spaces(cur);
5587 		if (!*cur)
5588 			continue;
5589 
5590 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5591 			   &seq, &end, &swappiness, &end, &opt, &end);
5592 		if (n < 4 || cur[end]) {
5593 			err = -EINVAL;
5594 			break;
5595 		}
5596 
5597 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5598 		if (err)
5599 			break;
5600 	}
5601 done:
5602 	clear_mm_walk();
5603 	blk_finish_plug(&plug);
5604 	memalloc_noreclaim_restore(flags);
5605 	set_task_reclaim_state(current, NULL);
5606 
5607 	kvfree(buf);
5608 
5609 	return err ? : len;
5610 }
5611 
5612 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5613 {
5614 	return seq_open(file, &lru_gen_seq_ops);
5615 }
5616 
5617 static const struct file_operations lru_gen_rw_fops = {
5618 	.open = lru_gen_seq_open,
5619 	.read = seq_read,
5620 	.write = lru_gen_seq_write,
5621 	.llseek = seq_lseek,
5622 	.release = seq_release,
5623 };
5624 
5625 static const struct file_operations lru_gen_ro_fops = {
5626 	.open = lru_gen_seq_open,
5627 	.read = seq_read,
5628 	.llseek = seq_lseek,
5629 	.release = seq_release,
5630 };
5631 
5632 /******************************************************************************
5633  *                          initialization
5634  ******************************************************************************/
5635 
5636 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5637 {
5638 	int i, j;
5639 
5640 	spin_lock_init(&pgdat->memcg_lru.lock);
5641 
5642 	for (i = 0; i < MEMCG_NR_GENS; i++) {
5643 		for (j = 0; j < MEMCG_NR_BINS; j++)
5644 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5645 	}
5646 }
5647 
5648 void lru_gen_init_lruvec(struct lruvec *lruvec)
5649 {
5650 	int i;
5651 	int gen, type, zone;
5652 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5653 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5654 
5655 	lrugen->max_seq = MIN_NR_GENS + 1;
5656 	lrugen->enabled = lru_gen_enabled();
5657 
5658 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5659 		lrugen->timestamps[i] = jiffies;
5660 
5661 	for_each_gen_type_zone(gen, type, zone)
5662 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5663 
5664 	if (mm_state)
5665 		mm_state->seq = MIN_NR_GENS;
5666 }
5667 
5668 #ifdef CONFIG_MEMCG
5669 
5670 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5671 {
5672 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5673 
5674 	if (!mm_list)
5675 		return;
5676 
5677 	INIT_LIST_HEAD(&mm_list->fifo);
5678 	spin_lock_init(&mm_list->lock);
5679 }
5680 
5681 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5682 {
5683 	int i;
5684 	int nid;
5685 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5686 
5687 	VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5688 
5689 	for_each_node(nid) {
5690 		struct lruvec *lruvec = get_lruvec(memcg, nid);
5691 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5692 
5693 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5694 					   sizeof(lruvec->lrugen.nr_pages)));
5695 
5696 		lruvec->lrugen.list.next = LIST_POISON1;
5697 
5698 		if (!mm_state)
5699 			continue;
5700 
5701 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5702 			bitmap_free(mm_state->filters[i]);
5703 			mm_state->filters[i] = NULL;
5704 		}
5705 	}
5706 }
5707 
5708 #endif /* CONFIG_MEMCG */
5709 
5710 static int __init init_lru_gen(void)
5711 {
5712 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5713 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5714 
5715 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5716 		pr_err("lru_gen: failed to create sysfs group\n");
5717 
5718 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5719 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5720 
5721 	return 0;
5722 };
5723 late_initcall(init_lru_gen);
5724 
5725 #else /* !CONFIG_LRU_GEN */
5726 
5727 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5728 {
5729 	BUILD_BUG();
5730 }
5731 
5732 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5733 {
5734 	BUILD_BUG();
5735 }
5736 
5737 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5738 {
5739 	BUILD_BUG();
5740 }
5741 
5742 #endif /* CONFIG_LRU_GEN */
5743 
5744 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5745 {
5746 	unsigned long nr[NR_LRU_LISTS];
5747 	unsigned long targets[NR_LRU_LISTS];
5748 	unsigned long nr_to_scan;
5749 	enum lru_list lru;
5750 	unsigned long nr_reclaimed = 0;
5751 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5752 	bool proportional_reclaim;
5753 	struct blk_plug plug;
5754 
5755 	if (lru_gen_enabled() && !root_reclaim(sc)) {
5756 		lru_gen_shrink_lruvec(lruvec, sc);
5757 		return;
5758 	}
5759 
5760 	get_scan_count(lruvec, sc, nr);
5761 
5762 	/* Record the original scan target for proportional adjustments later */
5763 	memcpy(targets, nr, sizeof(nr));
5764 
5765 	/*
5766 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5767 	 * event that can occur when there is little memory pressure e.g.
5768 	 * multiple streaming readers/writers. Hence, we do not abort scanning
5769 	 * when the requested number of pages are reclaimed when scanning at
5770 	 * DEF_PRIORITY on the assumption that the fact we are direct
5771 	 * reclaiming implies that kswapd is not keeping up and it is best to
5772 	 * do a batch of work at once. For memcg reclaim one check is made to
5773 	 * abort proportional reclaim if either the file or anon lru has already
5774 	 * dropped to zero at the first pass.
5775 	 */
5776 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5777 				sc->priority == DEF_PRIORITY);
5778 
5779 	blk_start_plug(&plug);
5780 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5781 					nr[LRU_INACTIVE_FILE]) {
5782 		unsigned long nr_anon, nr_file, percentage;
5783 		unsigned long nr_scanned;
5784 
5785 		for_each_evictable_lru(lru) {
5786 			if (nr[lru]) {
5787 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5788 				nr[lru] -= nr_to_scan;
5789 
5790 				nr_reclaimed += shrink_list(lru, nr_to_scan,
5791 							    lruvec, sc);
5792 			}
5793 		}
5794 
5795 		cond_resched();
5796 
5797 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5798 			continue;
5799 
5800 		/*
5801 		 * For kswapd and memcg, reclaim at least the number of pages
5802 		 * requested. Ensure that the anon and file LRUs are scanned
5803 		 * proportionally what was requested by get_scan_count(). We
5804 		 * stop reclaiming one LRU and reduce the amount scanning
5805 		 * proportional to the original scan target.
5806 		 */
5807 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5808 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5809 
5810 		/*
5811 		 * It's just vindictive to attack the larger once the smaller
5812 		 * has gone to zero.  And given the way we stop scanning the
5813 		 * smaller below, this makes sure that we only make one nudge
5814 		 * towards proportionality once we've got nr_to_reclaim.
5815 		 */
5816 		if (!nr_file || !nr_anon)
5817 			break;
5818 
5819 		if (nr_file > nr_anon) {
5820 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5821 						targets[LRU_ACTIVE_ANON] + 1;
5822 			lru = LRU_BASE;
5823 			percentage = nr_anon * 100 / scan_target;
5824 		} else {
5825 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5826 						targets[LRU_ACTIVE_FILE] + 1;
5827 			lru = LRU_FILE;
5828 			percentage = nr_file * 100 / scan_target;
5829 		}
5830 
5831 		/* Stop scanning the smaller of the LRU */
5832 		nr[lru] = 0;
5833 		nr[lru + LRU_ACTIVE] = 0;
5834 
5835 		/*
5836 		 * Recalculate the other LRU scan count based on its original
5837 		 * scan target and the percentage scanning already complete
5838 		 */
5839 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5840 		nr_scanned = targets[lru] - nr[lru];
5841 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5842 		nr[lru] -= min(nr[lru], nr_scanned);
5843 
5844 		lru += LRU_ACTIVE;
5845 		nr_scanned = targets[lru] - nr[lru];
5846 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5847 		nr[lru] -= min(nr[lru], nr_scanned);
5848 	}
5849 	blk_finish_plug(&plug);
5850 	sc->nr_reclaimed += nr_reclaimed;
5851 
5852 	/*
5853 	 * Even if we did not try to evict anon pages at all, we want to
5854 	 * rebalance the anon lru active/inactive ratio.
5855 	 */
5856 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5857 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5858 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5859 				   sc, LRU_ACTIVE_ANON);
5860 }
5861 
5862 /* Use reclaim/compaction for costly allocs or under memory pressure */
5863 static bool in_reclaim_compaction(struct scan_control *sc)
5864 {
5865 	if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5866 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5867 			 sc->priority < DEF_PRIORITY - 2))
5868 		return true;
5869 
5870 	return false;
5871 }
5872 
5873 /*
5874  * Reclaim/compaction is used for high-order allocation requests. It reclaims
5875  * order-0 pages before compacting the zone. should_continue_reclaim() returns
5876  * true if more pages should be reclaimed such that when the page allocator
5877  * calls try_to_compact_pages() that it will have enough free pages to succeed.
5878  * It will give up earlier than that if there is difficulty reclaiming pages.
5879  */
5880 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5881 					unsigned long nr_reclaimed,
5882 					struct scan_control *sc)
5883 {
5884 	unsigned long pages_for_compaction;
5885 	unsigned long inactive_lru_pages;
5886 	int z;
5887 	struct zone *zone;
5888 
5889 	/* If not in reclaim/compaction mode, stop */
5890 	if (!in_reclaim_compaction(sc))
5891 		return false;
5892 
5893 	/*
5894 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5895 	 * number of pages that were scanned. This will return to the caller
5896 	 * with the risk reclaim/compaction and the resulting allocation attempt
5897 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5898 	 * allocations through requiring that the full LRU list has been scanned
5899 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5900 	 * scan, but that approximation was wrong, and there were corner cases
5901 	 * where always a non-zero amount of pages were scanned.
5902 	 */
5903 	if (!nr_reclaimed)
5904 		return false;
5905 
5906 	/* If compaction would go ahead or the allocation would succeed, stop */
5907 	for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
5908 		unsigned long watermark = min_wmark_pages(zone);
5909 
5910 		/* Allocation can already succeed, nothing to do */
5911 		if (zone_watermark_ok(zone, sc->order, watermark,
5912 				      sc->reclaim_idx, 0))
5913 			return false;
5914 
5915 		if (compaction_suitable(zone, sc->order, watermark,
5916 					sc->reclaim_idx))
5917 			return false;
5918 	}
5919 
5920 	/*
5921 	 * If we have not reclaimed enough pages for compaction and the
5922 	 * inactive lists are large enough, continue reclaiming
5923 	 */
5924 	pages_for_compaction = compact_gap(sc->order);
5925 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5926 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5927 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5928 
5929 	return inactive_lru_pages > pages_for_compaction;
5930 }
5931 
5932 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5933 {
5934 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5935 	struct mem_cgroup_reclaim_cookie reclaim = {
5936 		.pgdat = pgdat,
5937 	};
5938 	struct mem_cgroup_reclaim_cookie *partial = &reclaim;
5939 	struct mem_cgroup *memcg;
5940 
5941 	/*
5942 	 * In most cases, direct reclaimers can do partial walks
5943 	 * through the cgroup tree, using an iterator state that
5944 	 * persists across invocations. This strikes a balance between
5945 	 * fairness and allocation latency.
5946 	 *
5947 	 * For kswapd, reliable forward progress is more important
5948 	 * than a quick return to idle. Always do full walks.
5949 	 */
5950 	if (current_is_kswapd() || sc->memcg_full_walk)
5951 		partial = NULL;
5952 
5953 	memcg = mem_cgroup_iter(target_memcg, NULL, partial);
5954 	do {
5955 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5956 		unsigned long reclaimed;
5957 		unsigned long scanned;
5958 
5959 		/*
5960 		 * This loop can become CPU-bound when target memcgs
5961 		 * aren't eligible for reclaim - either because they
5962 		 * don't have any reclaimable pages, or because their
5963 		 * memory is explicitly protected. Avoid soft lockups.
5964 		 */
5965 		cond_resched();
5966 
5967 		mem_cgroup_calculate_protection(target_memcg, memcg);
5968 
5969 		if (mem_cgroup_below_min(target_memcg, memcg)) {
5970 			/*
5971 			 * Hard protection.
5972 			 * If there is no reclaimable memory, OOM.
5973 			 */
5974 			continue;
5975 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
5976 			/*
5977 			 * Soft protection.
5978 			 * Respect the protection only as long as
5979 			 * there is an unprotected supply
5980 			 * of reclaimable memory from other cgroups.
5981 			 */
5982 			if (!sc->memcg_low_reclaim) {
5983 				sc->memcg_low_skipped = 1;
5984 				continue;
5985 			}
5986 			memcg_memory_event(memcg, MEMCG_LOW);
5987 		}
5988 
5989 		reclaimed = sc->nr_reclaimed;
5990 		scanned = sc->nr_scanned;
5991 
5992 		shrink_lruvec(lruvec, sc);
5993 
5994 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
5995 			    sc->priority);
5996 
5997 		/* Record the group's reclaim efficiency */
5998 		if (!sc->proactive)
5999 			vmpressure(sc->gfp_mask, memcg, false,
6000 				   sc->nr_scanned - scanned,
6001 				   sc->nr_reclaimed - reclaimed);
6002 
6003 		/* If partial walks are allowed, bail once goal is reached */
6004 		if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) {
6005 			mem_cgroup_iter_break(target_memcg, memcg);
6006 			break;
6007 		}
6008 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial)));
6009 }
6010 
6011 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6012 {
6013 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6014 	struct lruvec *target_lruvec;
6015 	bool reclaimable = false;
6016 
6017 	if (lru_gen_enabled() && root_reclaim(sc)) {
6018 		memset(&sc->nr, 0, sizeof(sc->nr));
6019 		lru_gen_shrink_node(pgdat, sc);
6020 		return;
6021 	}
6022 
6023 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6024 
6025 again:
6026 	memset(&sc->nr, 0, sizeof(sc->nr));
6027 
6028 	nr_reclaimed = sc->nr_reclaimed;
6029 	nr_scanned = sc->nr_scanned;
6030 
6031 	prepare_scan_control(pgdat, sc);
6032 
6033 	shrink_node_memcgs(pgdat, sc);
6034 
6035 	flush_reclaim_state(sc);
6036 
6037 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6038 
6039 	/* Record the subtree's reclaim efficiency */
6040 	if (!sc->proactive)
6041 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6042 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6043 
6044 	if (nr_node_reclaimed)
6045 		reclaimable = true;
6046 
6047 	if (current_is_kswapd()) {
6048 		/*
6049 		 * If reclaim is isolating dirty pages under writeback,
6050 		 * it implies that the long-lived page allocation rate
6051 		 * is exceeding the page laundering rate. Either the
6052 		 * global limits are not being effective at throttling
6053 		 * processes due to the page distribution throughout
6054 		 * zones or there is heavy usage of a slow backing
6055 		 * device. The only option is to throttle from reclaim
6056 		 * context which is not ideal as there is no guarantee
6057 		 * the dirtying process is throttled in the same way
6058 		 * balance_dirty_pages() manages.
6059 		 *
6060 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6061 		 * count the number of pages under pages flagged for
6062 		 * immediate reclaim and stall if any are encountered
6063 		 * in the nr_immediate check below.
6064 		 */
6065 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6066 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6067 
6068 		/* Allow kswapd to start writing pages during reclaim.*/
6069 		if (sc->nr.unqueued_dirty &&
6070 			sc->nr.unqueued_dirty == sc->nr.file_taken)
6071 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6072 
6073 		/*
6074 		 * If kswapd scans pages marked for immediate
6075 		 * reclaim and under writeback (nr_immediate), it
6076 		 * implies that pages are cycling through the LRU
6077 		 * faster than they are written so forcibly stall
6078 		 * until some pages complete writeback.
6079 		 */
6080 		if (sc->nr.immediate)
6081 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6082 	}
6083 
6084 	/*
6085 	 * Tag a node/memcg as congested if all the dirty pages were marked
6086 	 * for writeback and immediate reclaim (counted in nr.congested).
6087 	 *
6088 	 * Legacy memcg will stall in page writeback so avoid forcibly
6089 	 * stalling in reclaim_throttle().
6090 	 */
6091 	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6092 		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6093 			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6094 
6095 		if (current_is_kswapd())
6096 			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6097 	}
6098 
6099 	/*
6100 	 * Stall direct reclaim for IO completions if the lruvec is
6101 	 * node is congested. Allow kswapd to continue until it
6102 	 * starts encountering unqueued dirty pages or cycling through
6103 	 * the LRU too quickly.
6104 	 */
6105 	if (!current_is_kswapd() && current_may_throttle() &&
6106 	    !sc->hibernation_mode &&
6107 	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6108 	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6109 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6110 
6111 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6112 		goto again;
6113 
6114 	/*
6115 	 * Kswapd gives up on balancing particular nodes after too
6116 	 * many failures to reclaim anything from them and goes to
6117 	 * sleep. On reclaim progress, reset the failure counter. A
6118 	 * successful direct reclaim run will revive a dormant kswapd.
6119 	 */
6120 	if (reclaimable)
6121 		pgdat->kswapd_failures = 0;
6122 	else if (sc->cache_trim_mode)
6123 		sc->cache_trim_mode_failed = 1;
6124 }
6125 
6126 /*
6127  * Returns true if compaction should go ahead for a costly-order request, or
6128  * the allocation would already succeed without compaction. Return false if we
6129  * should reclaim first.
6130  */
6131 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6132 {
6133 	unsigned long watermark;
6134 
6135 	if (!gfp_compaction_allowed(sc->gfp_mask))
6136 		return false;
6137 
6138 	/* Allocation can already succeed, nothing to do */
6139 	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6140 			      sc->reclaim_idx, 0))
6141 		return true;
6142 
6143 	/*
6144 	 * Direct reclaim usually targets the min watermark, but compaction
6145 	 * takes time to run and there are potentially other callers using the
6146 	 * pages just freed. So target a higher buffer to give compaction a
6147 	 * reasonable chance of completing and allocating the pages.
6148 	 *
6149 	 * Note that we won't actually reclaim the whole buffer in one attempt
6150 	 * as the target watermark in should_continue_reclaim() is lower. But if
6151 	 * we are already above the high+gap watermark, don't reclaim at all.
6152 	 */
6153 	watermark = high_wmark_pages(zone);
6154 	if (compaction_suitable(zone, sc->order, watermark, sc->reclaim_idx))
6155 		return true;
6156 
6157 	return false;
6158 }
6159 
6160 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6161 {
6162 	/*
6163 	 * If reclaim is making progress greater than 12% efficiency then
6164 	 * wake all the NOPROGRESS throttled tasks.
6165 	 */
6166 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6167 		wait_queue_head_t *wqh;
6168 
6169 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6170 		if (waitqueue_active(wqh))
6171 			wake_up(wqh);
6172 
6173 		return;
6174 	}
6175 
6176 	/*
6177 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6178 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6179 	 * under writeback and marked for immediate reclaim at the tail of the
6180 	 * LRU.
6181 	 */
6182 	if (current_is_kswapd() || cgroup_reclaim(sc))
6183 		return;
6184 
6185 	/* Throttle if making no progress at high prioities. */
6186 	if (sc->priority == 1 && !sc->nr_reclaimed)
6187 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6188 }
6189 
6190 /*
6191  * This is the direct reclaim path, for page-allocating processes.  We only
6192  * try to reclaim pages from zones which will satisfy the caller's allocation
6193  * request.
6194  *
6195  * If a zone is deemed to be full of pinned pages then just give it a light
6196  * scan then give up on it.
6197  */
6198 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6199 {
6200 	struct zoneref *z;
6201 	struct zone *zone;
6202 	unsigned long nr_soft_reclaimed;
6203 	unsigned long nr_soft_scanned;
6204 	gfp_t orig_mask;
6205 	pg_data_t *last_pgdat = NULL;
6206 	pg_data_t *first_pgdat = NULL;
6207 
6208 	/*
6209 	 * If the number of buffer_heads in the machine exceeds the maximum
6210 	 * allowed level, force direct reclaim to scan the highmem zone as
6211 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6212 	 */
6213 	orig_mask = sc->gfp_mask;
6214 	if (buffer_heads_over_limit) {
6215 		sc->gfp_mask |= __GFP_HIGHMEM;
6216 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6217 	}
6218 
6219 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6220 					sc->reclaim_idx, sc->nodemask) {
6221 		/*
6222 		 * Take care memory controller reclaiming has small influence
6223 		 * to global LRU.
6224 		 */
6225 		if (!cgroup_reclaim(sc)) {
6226 			if (!cpuset_zone_allowed(zone,
6227 						 GFP_KERNEL | __GFP_HARDWALL))
6228 				continue;
6229 
6230 			/*
6231 			 * If we already have plenty of memory free for
6232 			 * compaction in this zone, don't free any more.
6233 			 * Even though compaction is invoked for any
6234 			 * non-zero order, only frequent costly order
6235 			 * reclamation is disruptive enough to become a
6236 			 * noticeable problem, like transparent huge
6237 			 * page allocations.
6238 			 */
6239 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6240 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6241 			    compaction_ready(zone, sc)) {
6242 				sc->compaction_ready = true;
6243 				continue;
6244 			}
6245 
6246 			/*
6247 			 * Shrink each node in the zonelist once. If the
6248 			 * zonelist is ordered by zone (not the default) then a
6249 			 * node may be shrunk multiple times but in that case
6250 			 * the user prefers lower zones being preserved.
6251 			 */
6252 			if (zone->zone_pgdat == last_pgdat)
6253 				continue;
6254 
6255 			/*
6256 			 * This steals pages from memory cgroups over softlimit
6257 			 * and returns the number of reclaimed pages and
6258 			 * scanned pages. This works for global memory pressure
6259 			 * and balancing, not for a memcg's limit.
6260 			 */
6261 			nr_soft_scanned = 0;
6262 			nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat,
6263 								      sc->order, sc->gfp_mask,
6264 								      &nr_soft_scanned);
6265 			sc->nr_reclaimed += nr_soft_reclaimed;
6266 			sc->nr_scanned += nr_soft_scanned;
6267 			/* need some check for avoid more shrink_zone() */
6268 		}
6269 
6270 		if (!first_pgdat)
6271 			first_pgdat = zone->zone_pgdat;
6272 
6273 		/* See comment about same check for global reclaim above */
6274 		if (zone->zone_pgdat == last_pgdat)
6275 			continue;
6276 		last_pgdat = zone->zone_pgdat;
6277 		shrink_node(zone->zone_pgdat, sc);
6278 	}
6279 
6280 	if (first_pgdat)
6281 		consider_reclaim_throttle(first_pgdat, sc);
6282 
6283 	/*
6284 	 * Restore to original mask to avoid the impact on the caller if we
6285 	 * promoted it to __GFP_HIGHMEM.
6286 	 */
6287 	sc->gfp_mask = orig_mask;
6288 }
6289 
6290 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6291 {
6292 	struct lruvec *target_lruvec;
6293 	unsigned long refaults;
6294 
6295 	if (lru_gen_enabled())
6296 		return;
6297 
6298 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6299 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6300 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6301 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6302 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6303 }
6304 
6305 /*
6306  * This is the main entry point to direct page reclaim.
6307  *
6308  * If a full scan of the inactive list fails to free enough memory then we
6309  * are "out of memory" and something needs to be killed.
6310  *
6311  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6312  * high - the zone may be full of dirty or under-writeback pages, which this
6313  * caller can't do much about.  We kick the writeback threads and take explicit
6314  * naps in the hope that some of these pages can be written.  But if the
6315  * allocating task holds filesystem locks which prevent writeout this might not
6316  * work, and the allocation attempt will fail.
6317  *
6318  * returns:	0, if no pages reclaimed
6319  * 		else, the number of pages reclaimed
6320  */
6321 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6322 					  struct scan_control *sc)
6323 {
6324 	int initial_priority = sc->priority;
6325 	pg_data_t *last_pgdat;
6326 	struct zoneref *z;
6327 	struct zone *zone;
6328 retry:
6329 	delayacct_freepages_start();
6330 
6331 	if (!cgroup_reclaim(sc))
6332 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6333 
6334 	do {
6335 		if (!sc->proactive)
6336 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6337 					sc->priority);
6338 		sc->nr_scanned = 0;
6339 		shrink_zones(zonelist, sc);
6340 
6341 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6342 			break;
6343 
6344 		if (sc->compaction_ready)
6345 			break;
6346 
6347 		/*
6348 		 * If we're getting trouble reclaiming, start doing
6349 		 * writepage even in laptop mode.
6350 		 */
6351 		if (sc->priority < DEF_PRIORITY - 2)
6352 			sc->may_writepage = 1;
6353 	} while (--sc->priority >= 0);
6354 
6355 	last_pgdat = NULL;
6356 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6357 					sc->nodemask) {
6358 		if (zone->zone_pgdat == last_pgdat)
6359 			continue;
6360 		last_pgdat = zone->zone_pgdat;
6361 
6362 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6363 
6364 		if (cgroup_reclaim(sc)) {
6365 			struct lruvec *lruvec;
6366 
6367 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6368 						   zone->zone_pgdat);
6369 			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6370 		}
6371 	}
6372 
6373 	delayacct_freepages_end();
6374 
6375 	if (sc->nr_reclaimed)
6376 		return sc->nr_reclaimed;
6377 
6378 	/* Aborted reclaim to try compaction? don't OOM, then */
6379 	if (sc->compaction_ready)
6380 		return 1;
6381 
6382 	/*
6383 	 * In most cases, direct reclaimers can do partial walks
6384 	 * through the cgroup tree to meet the reclaim goal while
6385 	 * keeping latency low. Since the iterator state is shared
6386 	 * among all direct reclaim invocations (to retain fairness
6387 	 * among cgroups), though, high concurrency can result in
6388 	 * individual threads not seeing enough cgroups to make
6389 	 * meaningful forward progress. Avoid false OOMs in this case.
6390 	 */
6391 	if (!sc->memcg_full_walk) {
6392 		sc->priority = initial_priority;
6393 		sc->memcg_full_walk = 1;
6394 		goto retry;
6395 	}
6396 
6397 	/*
6398 	 * We make inactive:active ratio decisions based on the node's
6399 	 * composition of memory, but a restrictive reclaim_idx or a
6400 	 * memory.low cgroup setting can exempt large amounts of
6401 	 * memory from reclaim. Neither of which are very common, so
6402 	 * instead of doing costly eligibility calculations of the
6403 	 * entire cgroup subtree up front, we assume the estimates are
6404 	 * good, and retry with forcible deactivation if that fails.
6405 	 */
6406 	if (sc->skipped_deactivate) {
6407 		sc->priority = initial_priority;
6408 		sc->force_deactivate = 1;
6409 		sc->skipped_deactivate = 0;
6410 		goto retry;
6411 	}
6412 
6413 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6414 	if (sc->memcg_low_skipped) {
6415 		sc->priority = initial_priority;
6416 		sc->force_deactivate = 0;
6417 		sc->memcg_low_reclaim = 1;
6418 		sc->memcg_low_skipped = 0;
6419 		goto retry;
6420 	}
6421 
6422 	return 0;
6423 }
6424 
6425 static bool allow_direct_reclaim(pg_data_t *pgdat)
6426 {
6427 	struct zone *zone;
6428 	unsigned long pfmemalloc_reserve = 0;
6429 	unsigned long free_pages = 0;
6430 	int i;
6431 	bool wmark_ok;
6432 
6433 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6434 		return true;
6435 
6436 	for_each_managed_zone_pgdat(zone, pgdat, i, ZONE_NORMAL) {
6437 		if (!zone_reclaimable_pages(zone))
6438 			continue;
6439 
6440 		pfmemalloc_reserve += min_wmark_pages(zone);
6441 		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6442 	}
6443 
6444 	/* If there are no reserves (unexpected config) then do not throttle */
6445 	if (!pfmemalloc_reserve)
6446 		return true;
6447 
6448 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6449 
6450 	/* kswapd must be awake if processes are being throttled */
6451 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6452 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6453 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6454 
6455 		wake_up_interruptible(&pgdat->kswapd_wait);
6456 	}
6457 
6458 	return wmark_ok;
6459 }
6460 
6461 /*
6462  * Throttle direct reclaimers if backing storage is backed by the network
6463  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6464  * depleted. kswapd will continue to make progress and wake the processes
6465  * when the low watermark is reached.
6466  *
6467  * Returns true if a fatal signal was delivered during throttling. If this
6468  * happens, the page allocator should not consider triggering the OOM killer.
6469  */
6470 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6471 					nodemask_t *nodemask)
6472 {
6473 	struct zoneref *z;
6474 	struct zone *zone;
6475 	pg_data_t *pgdat = NULL;
6476 
6477 	/*
6478 	 * Kernel threads should not be throttled as they may be indirectly
6479 	 * responsible for cleaning pages necessary for reclaim to make forward
6480 	 * progress. kjournald for example may enter direct reclaim while
6481 	 * committing a transaction where throttling it could forcing other
6482 	 * processes to block on log_wait_commit().
6483 	 */
6484 	if (current->flags & PF_KTHREAD)
6485 		goto out;
6486 
6487 	/*
6488 	 * If a fatal signal is pending, this process should not throttle.
6489 	 * It should return quickly so it can exit and free its memory
6490 	 */
6491 	if (fatal_signal_pending(current))
6492 		goto out;
6493 
6494 	/*
6495 	 * Check if the pfmemalloc reserves are ok by finding the first node
6496 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6497 	 * GFP_KERNEL will be required for allocating network buffers when
6498 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6499 	 *
6500 	 * Throttling is based on the first usable node and throttled processes
6501 	 * wait on a queue until kswapd makes progress and wakes them. There
6502 	 * is an affinity then between processes waking up and where reclaim
6503 	 * progress has been made assuming the process wakes on the same node.
6504 	 * More importantly, processes running on remote nodes will not compete
6505 	 * for remote pfmemalloc reserves and processes on different nodes
6506 	 * should make reasonable progress.
6507 	 */
6508 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6509 					gfp_zone(gfp_mask), nodemask) {
6510 		if (zone_idx(zone) > ZONE_NORMAL)
6511 			continue;
6512 
6513 		/* Throttle based on the first usable node */
6514 		pgdat = zone->zone_pgdat;
6515 		if (allow_direct_reclaim(pgdat))
6516 			goto out;
6517 		break;
6518 	}
6519 
6520 	/* If no zone was usable by the allocation flags then do not throttle */
6521 	if (!pgdat)
6522 		goto out;
6523 
6524 	/* Account for the throttling */
6525 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6526 
6527 	/*
6528 	 * If the caller cannot enter the filesystem, it's possible that it
6529 	 * is due to the caller holding an FS lock or performing a journal
6530 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6531 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6532 	 * blocked waiting on the same lock. Instead, throttle for up to a
6533 	 * second before continuing.
6534 	 */
6535 	if (!(gfp_mask & __GFP_FS))
6536 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6537 			allow_direct_reclaim(pgdat), HZ);
6538 	else
6539 		/* Throttle until kswapd wakes the process */
6540 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6541 			allow_direct_reclaim(pgdat));
6542 
6543 	if (fatal_signal_pending(current))
6544 		return true;
6545 
6546 out:
6547 	return false;
6548 }
6549 
6550 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6551 				gfp_t gfp_mask, nodemask_t *nodemask)
6552 {
6553 	unsigned long nr_reclaimed;
6554 	struct scan_control sc = {
6555 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6556 		.gfp_mask = current_gfp_context(gfp_mask),
6557 		.reclaim_idx = gfp_zone(gfp_mask),
6558 		.order = order,
6559 		.nodemask = nodemask,
6560 		.priority = DEF_PRIORITY,
6561 		.may_writepage = !laptop_mode,
6562 		.may_unmap = 1,
6563 		.may_swap = 1,
6564 	};
6565 
6566 	/*
6567 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6568 	 * Confirm they are large enough for max values.
6569 	 */
6570 	BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6571 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6572 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6573 
6574 	/*
6575 	 * Do not enter reclaim if fatal signal was delivered while throttled.
6576 	 * 1 is returned so that the page allocator does not OOM kill at this
6577 	 * point.
6578 	 */
6579 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6580 		return 1;
6581 
6582 	set_task_reclaim_state(current, &sc.reclaim_state);
6583 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6584 
6585 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6586 
6587 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6588 	set_task_reclaim_state(current, NULL);
6589 
6590 	return nr_reclaimed;
6591 }
6592 
6593 #ifdef CONFIG_MEMCG
6594 
6595 /* Only used by soft limit reclaim. Do not reuse for anything else. */
6596 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6597 						gfp_t gfp_mask, bool noswap,
6598 						pg_data_t *pgdat,
6599 						unsigned long *nr_scanned)
6600 {
6601 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6602 	struct scan_control sc = {
6603 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6604 		.target_mem_cgroup = memcg,
6605 		.may_writepage = !laptop_mode,
6606 		.may_unmap = 1,
6607 		.reclaim_idx = MAX_NR_ZONES - 1,
6608 		.may_swap = !noswap,
6609 	};
6610 
6611 	WARN_ON_ONCE(!current->reclaim_state);
6612 
6613 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6614 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6615 
6616 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6617 						      sc.gfp_mask);
6618 
6619 	/*
6620 	 * NOTE: Although we can get the priority field, using it
6621 	 * here is not a good idea, since it limits the pages we can scan.
6622 	 * if we don't reclaim here, the shrink_node from balance_pgdat
6623 	 * will pick up pages from other mem cgroup's as well. We hack
6624 	 * the priority and make it zero.
6625 	 */
6626 	shrink_lruvec(lruvec, &sc);
6627 
6628 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6629 
6630 	*nr_scanned = sc.nr_scanned;
6631 
6632 	return sc.nr_reclaimed;
6633 }
6634 
6635 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6636 					   unsigned long nr_pages,
6637 					   gfp_t gfp_mask,
6638 					   unsigned int reclaim_options,
6639 					   int *swappiness)
6640 {
6641 	unsigned long nr_reclaimed;
6642 	unsigned int noreclaim_flag;
6643 	struct scan_control sc = {
6644 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6645 		.proactive_swappiness = swappiness,
6646 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6647 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6648 		.reclaim_idx = MAX_NR_ZONES - 1,
6649 		.target_mem_cgroup = memcg,
6650 		.priority = DEF_PRIORITY,
6651 		.may_writepage = !laptop_mode,
6652 		.may_unmap = 1,
6653 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6654 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6655 	};
6656 	/*
6657 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6658 	 * equal pressure on all the nodes. This is based on the assumption that
6659 	 * the reclaim does not bail out early.
6660 	 */
6661 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6662 
6663 	set_task_reclaim_state(current, &sc.reclaim_state);
6664 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6665 	noreclaim_flag = memalloc_noreclaim_save();
6666 
6667 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6668 
6669 	memalloc_noreclaim_restore(noreclaim_flag);
6670 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6671 	set_task_reclaim_state(current, NULL);
6672 
6673 	return nr_reclaimed;
6674 }
6675 #endif
6676 
6677 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6678 {
6679 	struct mem_cgroup *memcg;
6680 	struct lruvec *lruvec;
6681 
6682 	if (lru_gen_enabled()) {
6683 		lru_gen_age_node(pgdat, sc);
6684 		return;
6685 	}
6686 
6687 	if (!can_age_anon_pages(pgdat, sc))
6688 		return;
6689 
6690 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6691 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6692 		return;
6693 
6694 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6695 	do {
6696 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6697 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6698 				   sc, LRU_ACTIVE_ANON);
6699 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6700 	} while (memcg);
6701 }
6702 
6703 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6704 {
6705 	int i;
6706 	struct zone *zone;
6707 
6708 	/*
6709 	 * Check for watermark boosts top-down as the higher zones
6710 	 * are more likely to be boosted. Both watermarks and boosts
6711 	 * should not be checked at the same time as reclaim would
6712 	 * start prematurely when there is no boosting and a lower
6713 	 * zone is balanced.
6714 	 */
6715 	for (i = highest_zoneidx; i >= 0; i--) {
6716 		zone = pgdat->node_zones + i;
6717 		if (!managed_zone(zone))
6718 			continue;
6719 
6720 		if (zone->watermark_boost)
6721 			return true;
6722 	}
6723 
6724 	return false;
6725 }
6726 
6727 /*
6728  * Returns true if there is an eligible zone balanced for the request order
6729  * and highest_zoneidx
6730  */
6731 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6732 {
6733 	int i;
6734 	unsigned long mark = -1;
6735 	struct zone *zone;
6736 
6737 	/*
6738 	 * Check watermarks bottom-up as lower zones are more likely to
6739 	 * meet watermarks.
6740 	 */
6741 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6742 		enum zone_stat_item item;
6743 		unsigned long free_pages;
6744 
6745 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6746 			mark = promo_wmark_pages(zone);
6747 		else
6748 			mark = high_wmark_pages(zone);
6749 
6750 		/*
6751 		 * In defrag_mode, watermarks must be met in whole
6752 		 * blocks to avoid polluting allocator fallbacks.
6753 		 *
6754 		 * However, kswapd usually cannot accomplish this on
6755 		 * its own and needs kcompactd support. Once it's
6756 		 * reclaimed a compaction gap, and kswapd_shrink_node
6757 		 * has dropped order, simply ensure there are enough
6758 		 * base pages for compaction, wake kcompactd & sleep.
6759 		 */
6760 		if (defrag_mode && order)
6761 			item = NR_FREE_PAGES_BLOCKS;
6762 		else
6763 			item = NR_FREE_PAGES;
6764 
6765 		/*
6766 		 * When there is a high number of CPUs in the system,
6767 		 * the cumulative error from the vmstat per-cpu cache
6768 		 * can blur the line between the watermarks. In that
6769 		 * case, be safe and get an accurate snapshot.
6770 		 *
6771 		 * TODO: NR_FREE_PAGES_BLOCKS moves in steps of
6772 		 * pageblock_nr_pages, while the vmstat pcp threshold
6773 		 * is limited to 125. On many configurations that
6774 		 * counter won't actually be per-cpu cached. But keep
6775 		 * things simple for now; revisit when somebody cares.
6776 		 */
6777 		free_pages = zone_page_state(zone, item);
6778 		if (zone->percpu_drift_mark && free_pages < zone->percpu_drift_mark)
6779 			free_pages = zone_page_state_snapshot(zone, item);
6780 
6781 		if (__zone_watermark_ok(zone, order, mark, highest_zoneidx,
6782 					0, free_pages))
6783 			return true;
6784 	}
6785 
6786 	/*
6787 	 * If a node has no managed zone within highest_zoneidx, it does not
6788 	 * need balancing by definition. This can happen if a zone-restricted
6789 	 * allocation tries to wake a remote kswapd.
6790 	 */
6791 	if (mark == -1)
6792 		return true;
6793 
6794 	return false;
6795 }
6796 
6797 /* Clear pgdat state for congested, dirty or under writeback. */
6798 static void clear_pgdat_congested(pg_data_t *pgdat)
6799 {
6800 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6801 
6802 	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6803 	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6804 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
6805 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6806 }
6807 
6808 /*
6809  * Prepare kswapd for sleeping. This verifies that there are no processes
6810  * waiting in throttle_direct_reclaim() and that watermarks have been met.
6811  *
6812  * Returns true if kswapd is ready to sleep
6813  */
6814 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6815 				int highest_zoneidx)
6816 {
6817 	/*
6818 	 * The throttled processes are normally woken up in balance_pgdat() as
6819 	 * soon as allow_direct_reclaim() is true. But there is a potential
6820 	 * race between when kswapd checks the watermarks and a process gets
6821 	 * throttled. There is also a potential race if processes get
6822 	 * throttled, kswapd wakes, a large process exits thereby balancing the
6823 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6824 	 * the wake up checks. If kswapd is going to sleep, no process should
6825 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6826 	 * the wake up is premature, processes will wake kswapd and get
6827 	 * throttled again. The difference from wake ups in balance_pgdat() is
6828 	 * that here we are under prepare_to_wait().
6829 	 */
6830 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6831 		wake_up_all(&pgdat->pfmemalloc_wait);
6832 
6833 	/* Hopeless node, leave it to direct reclaim */
6834 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6835 		return true;
6836 
6837 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6838 		clear_pgdat_congested(pgdat);
6839 		return true;
6840 	}
6841 
6842 	return false;
6843 }
6844 
6845 /*
6846  * kswapd shrinks a node of pages that are at or below the highest usable
6847  * zone that is currently unbalanced.
6848  *
6849  * Returns true if kswapd scanned at least the requested number of pages to
6850  * reclaim or if the lack of progress was due to pages under writeback.
6851  * This is used to determine if the scanning priority needs to be raised.
6852  */
6853 static bool kswapd_shrink_node(pg_data_t *pgdat,
6854 			       struct scan_control *sc)
6855 {
6856 	struct zone *zone;
6857 	int z;
6858 	unsigned long nr_reclaimed = sc->nr_reclaimed;
6859 
6860 	/* Reclaim a number of pages proportional to the number of zones */
6861 	sc->nr_to_reclaim = 0;
6862 	for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
6863 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6864 	}
6865 
6866 	/*
6867 	 * Historically care was taken to put equal pressure on all zones but
6868 	 * now pressure is applied based on node LRU order.
6869 	 */
6870 	shrink_node(pgdat, sc);
6871 
6872 	/*
6873 	 * Fragmentation may mean that the system cannot be rebalanced for
6874 	 * high-order allocations. If twice the allocation size has been
6875 	 * reclaimed then recheck watermarks only at order-0 to prevent
6876 	 * excessive reclaim. Assume that a process requested a high-order
6877 	 * can direct reclaim/compact.
6878 	 */
6879 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6880 		sc->order = 0;
6881 
6882 	/* account for progress from mm_account_reclaimed_pages() */
6883 	return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
6884 }
6885 
6886 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6887 static inline void
6888 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6889 {
6890 	int i;
6891 	struct zone *zone;
6892 
6893 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6894 		if (active)
6895 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6896 		else
6897 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6898 	}
6899 }
6900 
6901 static inline void
6902 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6903 {
6904 	update_reclaim_active(pgdat, highest_zoneidx, true);
6905 }
6906 
6907 static inline void
6908 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6909 {
6910 	update_reclaim_active(pgdat, highest_zoneidx, false);
6911 }
6912 
6913 /*
6914  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6915  * that are eligible for use by the caller until at least one zone is
6916  * balanced.
6917  *
6918  * Returns the order kswapd finished reclaiming at.
6919  *
6920  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
6921  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6922  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6923  * or lower is eligible for reclaim until at least one usable zone is
6924  * balanced.
6925  */
6926 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6927 {
6928 	int i;
6929 	unsigned long nr_soft_reclaimed;
6930 	unsigned long nr_soft_scanned;
6931 	unsigned long pflags;
6932 	unsigned long nr_boost_reclaim;
6933 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6934 	bool boosted;
6935 	struct zone *zone;
6936 	struct scan_control sc = {
6937 		.gfp_mask = GFP_KERNEL,
6938 		.order = order,
6939 		.may_unmap = 1,
6940 	};
6941 
6942 	set_task_reclaim_state(current, &sc.reclaim_state);
6943 	psi_memstall_enter(&pflags);
6944 	__fs_reclaim_acquire(_THIS_IP_);
6945 
6946 	count_vm_event(PAGEOUTRUN);
6947 
6948 	/*
6949 	 * Account for the reclaim boost. Note that the zone boost is left in
6950 	 * place so that parallel allocations that are near the watermark will
6951 	 * stall or direct reclaim until kswapd is finished.
6952 	 */
6953 	nr_boost_reclaim = 0;
6954 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6955 		nr_boost_reclaim += zone->watermark_boost;
6956 		zone_boosts[i] = zone->watermark_boost;
6957 	}
6958 	boosted = nr_boost_reclaim;
6959 
6960 restart:
6961 	set_reclaim_active(pgdat, highest_zoneidx);
6962 	sc.priority = DEF_PRIORITY;
6963 	do {
6964 		unsigned long nr_reclaimed = sc.nr_reclaimed;
6965 		bool raise_priority = true;
6966 		bool balanced;
6967 		bool ret;
6968 		bool was_frozen;
6969 
6970 		sc.reclaim_idx = highest_zoneidx;
6971 
6972 		/*
6973 		 * If the number of buffer_heads exceeds the maximum allowed
6974 		 * then consider reclaiming from all zones. This has a dual
6975 		 * purpose -- on 64-bit systems it is expected that
6976 		 * buffer_heads are stripped during active rotation. On 32-bit
6977 		 * systems, highmem pages can pin lowmem memory and shrinking
6978 		 * buffers can relieve lowmem pressure. Reclaim may still not
6979 		 * go ahead if all eligible zones for the original allocation
6980 		 * request are balanced to avoid excessive reclaim from kswapd.
6981 		 */
6982 		if (buffer_heads_over_limit) {
6983 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
6984 				zone = pgdat->node_zones + i;
6985 				if (!managed_zone(zone))
6986 					continue;
6987 
6988 				sc.reclaim_idx = i;
6989 				break;
6990 			}
6991 		}
6992 
6993 		/*
6994 		 * If the pgdat is imbalanced then ignore boosting and preserve
6995 		 * the watermarks for a later time and restart. Note that the
6996 		 * zone watermarks will be still reset at the end of balancing
6997 		 * on the grounds that the normal reclaim should be enough to
6998 		 * re-evaluate if boosting is required when kswapd next wakes.
6999 		 */
7000 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7001 		if (!balanced && nr_boost_reclaim) {
7002 			nr_boost_reclaim = 0;
7003 			goto restart;
7004 		}
7005 
7006 		/*
7007 		 * If boosting is not active then only reclaim if there are no
7008 		 * eligible zones. Note that sc.reclaim_idx is not used as
7009 		 * buffer_heads_over_limit may have adjusted it.
7010 		 */
7011 		if (!nr_boost_reclaim && balanced)
7012 			goto out;
7013 
7014 		/* Limit the priority of boosting to avoid reclaim writeback */
7015 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7016 			raise_priority = false;
7017 
7018 		/*
7019 		 * Do not writeback or swap pages for boosted reclaim. The
7020 		 * intent is to relieve pressure not issue sub-optimal IO
7021 		 * from reclaim context. If no pages are reclaimed, the
7022 		 * reclaim will be aborted.
7023 		 */
7024 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7025 		sc.may_swap = !nr_boost_reclaim;
7026 
7027 		/*
7028 		 * Do some background aging, to give pages a chance to be
7029 		 * referenced before reclaiming. All pages are rotated
7030 		 * regardless of classzone as this is about consistent aging.
7031 		 */
7032 		kswapd_age_node(pgdat, &sc);
7033 
7034 		/*
7035 		 * If we're getting trouble reclaiming, start doing writepage
7036 		 * even in laptop mode.
7037 		 */
7038 		if (sc.priority < DEF_PRIORITY - 2)
7039 			sc.may_writepage = 1;
7040 
7041 		/* Call soft limit reclaim before calling shrink_node. */
7042 		sc.nr_scanned = 0;
7043 		nr_soft_scanned = 0;
7044 		nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order,
7045 							      sc.gfp_mask, &nr_soft_scanned);
7046 		sc.nr_reclaimed += nr_soft_reclaimed;
7047 
7048 		/*
7049 		 * There should be no need to raise the scanning priority if
7050 		 * enough pages are already being scanned that that high
7051 		 * watermark would be met at 100% efficiency.
7052 		 */
7053 		if (kswapd_shrink_node(pgdat, &sc))
7054 			raise_priority = false;
7055 
7056 		/*
7057 		 * If the low watermark is met there is no need for processes
7058 		 * to be throttled on pfmemalloc_wait as they should not be
7059 		 * able to safely make forward progress. Wake them
7060 		 */
7061 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7062 				allow_direct_reclaim(pgdat))
7063 			wake_up_all(&pgdat->pfmemalloc_wait);
7064 
7065 		/* Check if kswapd should be suspending */
7066 		__fs_reclaim_release(_THIS_IP_);
7067 		ret = kthread_freezable_should_stop(&was_frozen);
7068 		__fs_reclaim_acquire(_THIS_IP_);
7069 		if (was_frozen || ret)
7070 			break;
7071 
7072 		/*
7073 		 * Raise priority if scanning rate is too low or there was no
7074 		 * progress in reclaiming pages
7075 		 */
7076 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7077 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7078 
7079 		/*
7080 		 * If reclaim made no progress for a boost, stop reclaim as
7081 		 * IO cannot be queued and it could be an infinite loop in
7082 		 * extreme circumstances.
7083 		 */
7084 		if (nr_boost_reclaim && !nr_reclaimed)
7085 			break;
7086 
7087 		if (raise_priority || !nr_reclaimed)
7088 			sc.priority--;
7089 	} while (sc.priority >= 1);
7090 
7091 	/*
7092 	 * Restart only if it went through the priority loop all the way,
7093 	 * but cache_trim_mode didn't work.
7094 	 */
7095 	if (!sc.nr_reclaimed && sc.priority < 1 &&
7096 	    !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
7097 		sc.no_cache_trim_mode = 1;
7098 		goto restart;
7099 	}
7100 
7101 	if (!sc.nr_reclaimed)
7102 		pgdat->kswapd_failures++;
7103 
7104 out:
7105 	clear_reclaim_active(pgdat, highest_zoneidx);
7106 
7107 	/* If reclaim was boosted, account for the reclaim done in this pass */
7108 	if (boosted) {
7109 		unsigned long flags;
7110 
7111 		for (i = 0; i <= highest_zoneidx; i++) {
7112 			if (!zone_boosts[i])
7113 				continue;
7114 
7115 			/* Increments are under the zone lock */
7116 			zone = pgdat->node_zones + i;
7117 			spin_lock_irqsave(&zone->lock, flags);
7118 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7119 			spin_unlock_irqrestore(&zone->lock, flags);
7120 		}
7121 
7122 		/*
7123 		 * As there is now likely space, wakeup kcompact to defragment
7124 		 * pageblocks.
7125 		 */
7126 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7127 	}
7128 
7129 	snapshot_refaults(NULL, pgdat);
7130 	__fs_reclaim_release(_THIS_IP_);
7131 	psi_memstall_leave(&pflags);
7132 	set_task_reclaim_state(current, NULL);
7133 
7134 	/*
7135 	 * Return the order kswapd stopped reclaiming at as
7136 	 * prepare_kswapd_sleep() takes it into account. If another caller
7137 	 * entered the allocator slow path while kswapd was awake, order will
7138 	 * remain at the higher level.
7139 	 */
7140 	return sc.order;
7141 }
7142 
7143 /*
7144  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7145  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7146  * not a valid index then either kswapd runs for first time or kswapd couldn't
7147  * sleep after previous reclaim attempt (node is still unbalanced). In that
7148  * case return the zone index of the previous kswapd reclaim cycle.
7149  */
7150 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7151 					   enum zone_type prev_highest_zoneidx)
7152 {
7153 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7154 
7155 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7156 }
7157 
7158 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7159 				unsigned int highest_zoneidx)
7160 {
7161 	long remaining = 0;
7162 	DEFINE_WAIT(wait);
7163 
7164 	if (freezing(current) || kthread_should_stop())
7165 		return;
7166 
7167 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7168 
7169 	/*
7170 	 * Try to sleep for a short interval. Note that kcompactd will only be
7171 	 * woken if it is possible to sleep for a short interval. This is
7172 	 * deliberate on the assumption that if reclaim cannot keep an
7173 	 * eligible zone balanced that it's also unlikely that compaction will
7174 	 * succeed.
7175 	 */
7176 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7177 		/*
7178 		 * Compaction records what page blocks it recently failed to
7179 		 * isolate pages from and skips them in the future scanning.
7180 		 * When kswapd is going to sleep, it is reasonable to assume
7181 		 * that pages and compaction may succeed so reset the cache.
7182 		 */
7183 		reset_isolation_suitable(pgdat);
7184 
7185 		/*
7186 		 * We have freed the memory, now we should compact it to make
7187 		 * allocation of the requested order possible.
7188 		 */
7189 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7190 
7191 		remaining = schedule_timeout(HZ/10);
7192 
7193 		/*
7194 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7195 		 * order. The values will either be from a wakeup request or
7196 		 * the previous request that slept prematurely.
7197 		 */
7198 		if (remaining) {
7199 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7200 					kswapd_highest_zoneidx(pgdat,
7201 							highest_zoneidx));
7202 
7203 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7204 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7205 		}
7206 
7207 		finish_wait(&pgdat->kswapd_wait, &wait);
7208 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7209 	}
7210 
7211 	/*
7212 	 * After a short sleep, check if it was a premature sleep. If not, then
7213 	 * go fully to sleep until explicitly woken up.
7214 	 */
7215 	if (!remaining &&
7216 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7217 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7218 
7219 		/*
7220 		 * vmstat counters are not perfectly accurate and the estimated
7221 		 * value for counters such as NR_FREE_PAGES can deviate from the
7222 		 * true value by nr_online_cpus * threshold. To avoid the zone
7223 		 * watermarks being breached while under pressure, we reduce the
7224 		 * per-cpu vmstat threshold while kswapd is awake and restore
7225 		 * them before going back to sleep.
7226 		 */
7227 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7228 
7229 		if (!kthread_should_stop())
7230 			schedule();
7231 
7232 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7233 	} else {
7234 		if (remaining)
7235 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7236 		else
7237 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7238 	}
7239 	finish_wait(&pgdat->kswapd_wait, &wait);
7240 }
7241 
7242 /*
7243  * The background pageout daemon, started as a kernel thread
7244  * from the init process.
7245  *
7246  * This basically trickles out pages so that we have _some_
7247  * free memory available even if there is no other activity
7248  * that frees anything up. This is needed for things like routing
7249  * etc, where we otherwise might have all activity going on in
7250  * asynchronous contexts that cannot page things out.
7251  *
7252  * If there are applications that are active memory-allocators
7253  * (most normal use), this basically shouldn't matter.
7254  */
7255 static int kswapd(void *p)
7256 {
7257 	unsigned int alloc_order, reclaim_order;
7258 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7259 	pg_data_t *pgdat = (pg_data_t *)p;
7260 	struct task_struct *tsk = current;
7261 
7262 	/*
7263 	 * Tell the memory management that we're a "memory allocator",
7264 	 * and that if we need more memory we should get access to it
7265 	 * regardless (see "__alloc_pages()"). "kswapd" should
7266 	 * never get caught in the normal page freeing logic.
7267 	 *
7268 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7269 	 * you need a small amount of memory in order to be able to
7270 	 * page out something else, and this flag essentially protects
7271 	 * us from recursively trying to free more memory as we're
7272 	 * trying to free the first piece of memory in the first place).
7273 	 */
7274 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7275 	set_freezable();
7276 
7277 	WRITE_ONCE(pgdat->kswapd_order, 0);
7278 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7279 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7280 	for ( ; ; ) {
7281 		bool was_frozen;
7282 
7283 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7284 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7285 							highest_zoneidx);
7286 
7287 kswapd_try_sleep:
7288 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7289 					highest_zoneidx);
7290 
7291 		/* Read the new order and highest_zoneidx */
7292 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7293 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7294 							highest_zoneidx);
7295 		WRITE_ONCE(pgdat->kswapd_order, 0);
7296 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7297 
7298 		if (kthread_freezable_should_stop(&was_frozen))
7299 			break;
7300 
7301 		/*
7302 		 * We can speed up thawing tasks if we don't call balance_pgdat
7303 		 * after returning from the refrigerator
7304 		 */
7305 		if (was_frozen)
7306 			continue;
7307 
7308 		/*
7309 		 * Reclaim begins at the requested order but if a high-order
7310 		 * reclaim fails then kswapd falls back to reclaiming for
7311 		 * order-0. If that happens, kswapd will consider sleeping
7312 		 * for the order it finished reclaiming at (reclaim_order)
7313 		 * but kcompactd is woken to compact for the original
7314 		 * request (alloc_order).
7315 		 */
7316 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7317 						alloc_order);
7318 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7319 						highest_zoneidx);
7320 		if (reclaim_order < alloc_order)
7321 			goto kswapd_try_sleep;
7322 	}
7323 
7324 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7325 
7326 	return 0;
7327 }
7328 
7329 /*
7330  * A zone is low on free memory or too fragmented for high-order memory.  If
7331  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7332  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7333  * has failed or is not needed, still wake up kcompactd if only compaction is
7334  * needed.
7335  */
7336 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7337 		   enum zone_type highest_zoneidx)
7338 {
7339 	pg_data_t *pgdat;
7340 	enum zone_type curr_idx;
7341 
7342 	if (!managed_zone(zone))
7343 		return;
7344 
7345 	if (!cpuset_zone_allowed(zone, gfp_flags))
7346 		return;
7347 
7348 	pgdat = zone->zone_pgdat;
7349 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7350 
7351 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7352 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7353 
7354 	if (READ_ONCE(pgdat->kswapd_order) < order)
7355 		WRITE_ONCE(pgdat->kswapd_order, order);
7356 
7357 	if (!waitqueue_active(&pgdat->kswapd_wait))
7358 		return;
7359 
7360 	/* Hopeless node, leave it to direct reclaim if possible */
7361 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7362 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7363 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7364 		/*
7365 		 * There may be plenty of free memory available, but it's too
7366 		 * fragmented for high-order allocations.  Wake up kcompactd
7367 		 * and rely on compaction_suitable() to determine if it's
7368 		 * needed.  If it fails, it will defer subsequent attempts to
7369 		 * ratelimit its work.
7370 		 */
7371 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7372 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7373 		return;
7374 	}
7375 
7376 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7377 				      gfp_flags);
7378 	wake_up_interruptible(&pgdat->kswapd_wait);
7379 }
7380 
7381 #ifdef CONFIG_HIBERNATION
7382 /*
7383  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7384  * freed pages.
7385  *
7386  * Rather than trying to age LRUs the aim is to preserve the overall
7387  * LRU order by reclaiming preferentially
7388  * inactive > active > active referenced > active mapped
7389  */
7390 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7391 {
7392 	struct scan_control sc = {
7393 		.nr_to_reclaim = nr_to_reclaim,
7394 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7395 		.reclaim_idx = MAX_NR_ZONES - 1,
7396 		.priority = DEF_PRIORITY,
7397 		.may_writepage = 1,
7398 		.may_unmap = 1,
7399 		.may_swap = 1,
7400 		.hibernation_mode = 1,
7401 	};
7402 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7403 	unsigned long nr_reclaimed;
7404 	unsigned int noreclaim_flag;
7405 
7406 	fs_reclaim_acquire(sc.gfp_mask);
7407 	noreclaim_flag = memalloc_noreclaim_save();
7408 	set_task_reclaim_state(current, &sc.reclaim_state);
7409 
7410 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7411 
7412 	set_task_reclaim_state(current, NULL);
7413 	memalloc_noreclaim_restore(noreclaim_flag);
7414 	fs_reclaim_release(sc.gfp_mask);
7415 
7416 	return nr_reclaimed;
7417 }
7418 #endif /* CONFIG_HIBERNATION */
7419 
7420 /*
7421  * This kswapd start function will be called by init and node-hot-add.
7422  */
7423 void __meminit kswapd_run(int nid)
7424 {
7425 	pg_data_t *pgdat = NODE_DATA(nid);
7426 
7427 	pgdat_kswapd_lock(pgdat);
7428 	if (!pgdat->kswapd) {
7429 		pgdat->kswapd = kthread_create_on_node(kswapd, pgdat, nid, "kswapd%d", nid);
7430 		if (IS_ERR(pgdat->kswapd)) {
7431 			/* failure at boot is fatal */
7432 			pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7433 				   nid, PTR_ERR(pgdat->kswapd));
7434 			BUG_ON(system_state < SYSTEM_RUNNING);
7435 			pgdat->kswapd = NULL;
7436 		} else {
7437 			wake_up_process(pgdat->kswapd);
7438 		}
7439 	}
7440 	pgdat_kswapd_unlock(pgdat);
7441 }
7442 
7443 /*
7444  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7445  * be holding mem_hotplug_begin/done().
7446  */
7447 void __meminit kswapd_stop(int nid)
7448 {
7449 	pg_data_t *pgdat = NODE_DATA(nid);
7450 	struct task_struct *kswapd;
7451 
7452 	pgdat_kswapd_lock(pgdat);
7453 	kswapd = pgdat->kswapd;
7454 	if (kswapd) {
7455 		kthread_stop(kswapd);
7456 		pgdat->kswapd = NULL;
7457 	}
7458 	pgdat_kswapd_unlock(pgdat);
7459 }
7460 
7461 static const struct ctl_table vmscan_sysctl_table[] = {
7462 	{
7463 		.procname	= "swappiness",
7464 		.data		= &vm_swappiness,
7465 		.maxlen		= sizeof(vm_swappiness),
7466 		.mode		= 0644,
7467 		.proc_handler	= proc_dointvec_minmax,
7468 		.extra1		= SYSCTL_ZERO,
7469 		.extra2		= SYSCTL_TWO_HUNDRED,
7470 	},
7471 #ifdef CONFIG_NUMA
7472 	{
7473 		.procname	= "zone_reclaim_mode",
7474 		.data		= &node_reclaim_mode,
7475 		.maxlen		= sizeof(node_reclaim_mode),
7476 		.mode		= 0644,
7477 		.proc_handler	= proc_dointvec_minmax,
7478 		.extra1		= SYSCTL_ZERO,
7479 	}
7480 #endif
7481 };
7482 
7483 static int __init kswapd_init(void)
7484 {
7485 	int nid;
7486 
7487 	swap_setup();
7488 	for_each_node_state(nid, N_MEMORY)
7489  		kswapd_run(nid);
7490 	register_sysctl_init("vm", vmscan_sysctl_table);
7491 	return 0;
7492 }
7493 
7494 module_init(kswapd_init)
7495 
7496 #ifdef CONFIG_NUMA
7497 /*
7498  * Node reclaim mode
7499  *
7500  * If non-zero call node_reclaim when the number of free pages falls below
7501  * the watermarks.
7502  */
7503 int node_reclaim_mode __read_mostly;
7504 
7505 /*
7506  * Priority for NODE_RECLAIM. This determines the fraction of pages
7507  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7508  * a zone.
7509  */
7510 #define NODE_RECLAIM_PRIORITY 4
7511 
7512 /*
7513  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7514  * occur.
7515  */
7516 int sysctl_min_unmapped_ratio = 1;
7517 
7518 /*
7519  * If the number of slab pages in a zone grows beyond this percentage then
7520  * slab reclaim needs to occur.
7521  */
7522 int sysctl_min_slab_ratio = 5;
7523 
7524 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7525 {
7526 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7527 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7528 		node_page_state(pgdat, NR_ACTIVE_FILE);
7529 
7530 	/*
7531 	 * It's possible for there to be more file mapped pages than
7532 	 * accounted for by the pages on the file LRU lists because
7533 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7534 	 */
7535 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7536 }
7537 
7538 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7539 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7540 {
7541 	unsigned long nr_pagecache_reclaimable;
7542 	unsigned long delta = 0;
7543 
7544 	/*
7545 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7546 	 * potentially reclaimable. Otherwise, we have to worry about
7547 	 * pages like swapcache and node_unmapped_file_pages() provides
7548 	 * a better estimate
7549 	 */
7550 	if (node_reclaim_mode & RECLAIM_UNMAP)
7551 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7552 	else
7553 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7554 
7555 	/* If we can't clean pages, remove dirty pages from consideration */
7556 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7557 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7558 
7559 	/* Watch for any possible underflows due to delta */
7560 	if (unlikely(delta > nr_pagecache_reclaimable))
7561 		delta = nr_pagecache_reclaimable;
7562 
7563 	return nr_pagecache_reclaimable - delta;
7564 }
7565 
7566 /*
7567  * Try to free up some pages from this node through reclaim.
7568  */
7569 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7570 {
7571 	/* Minimum pages needed in order to stay on node */
7572 	const unsigned long nr_pages = 1 << order;
7573 	struct task_struct *p = current;
7574 	unsigned int noreclaim_flag;
7575 	struct scan_control sc = {
7576 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7577 		.gfp_mask = current_gfp_context(gfp_mask),
7578 		.order = order,
7579 		.priority = NODE_RECLAIM_PRIORITY,
7580 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7581 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7582 		.may_swap = 1,
7583 		.reclaim_idx = gfp_zone(gfp_mask),
7584 	};
7585 	unsigned long pflags;
7586 
7587 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7588 					   sc.gfp_mask);
7589 
7590 	cond_resched();
7591 	psi_memstall_enter(&pflags);
7592 	delayacct_freepages_start();
7593 	fs_reclaim_acquire(sc.gfp_mask);
7594 	/*
7595 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7596 	 */
7597 	noreclaim_flag = memalloc_noreclaim_save();
7598 	set_task_reclaim_state(p, &sc.reclaim_state);
7599 
7600 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7601 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7602 		/*
7603 		 * Free memory by calling shrink node with increasing
7604 		 * priorities until we have enough memory freed.
7605 		 */
7606 		do {
7607 			shrink_node(pgdat, &sc);
7608 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7609 	}
7610 
7611 	set_task_reclaim_state(p, NULL);
7612 	memalloc_noreclaim_restore(noreclaim_flag);
7613 	fs_reclaim_release(sc.gfp_mask);
7614 	psi_memstall_leave(&pflags);
7615 	delayacct_freepages_end();
7616 
7617 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7618 
7619 	return sc.nr_reclaimed >= nr_pages;
7620 }
7621 
7622 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7623 {
7624 	int ret;
7625 
7626 	/*
7627 	 * Node reclaim reclaims unmapped file backed pages and
7628 	 * slab pages if we are over the defined limits.
7629 	 *
7630 	 * A small portion of unmapped file backed pages is needed for
7631 	 * file I/O otherwise pages read by file I/O will be immediately
7632 	 * thrown out if the node is overallocated. So we do not reclaim
7633 	 * if less than a specified percentage of the node is used by
7634 	 * unmapped file backed pages.
7635 	 */
7636 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7637 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7638 	    pgdat->min_slab_pages)
7639 		return NODE_RECLAIM_FULL;
7640 
7641 	/*
7642 	 * Do not scan if the allocation should not be delayed.
7643 	 */
7644 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7645 		return NODE_RECLAIM_NOSCAN;
7646 
7647 	/*
7648 	 * Only run node reclaim on the local node or on nodes that do not
7649 	 * have associated processors. This will favor the local processor
7650 	 * over remote processors and spread off node memory allocations
7651 	 * as wide as possible.
7652 	 */
7653 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7654 		return NODE_RECLAIM_NOSCAN;
7655 
7656 	if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7657 		return NODE_RECLAIM_NOSCAN;
7658 
7659 	ret = __node_reclaim(pgdat, gfp_mask, order);
7660 	clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7661 
7662 	if (ret)
7663 		count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS);
7664 	else
7665 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7666 
7667 	return ret;
7668 }
7669 #endif
7670 
7671 /**
7672  * check_move_unevictable_folios - Move evictable folios to appropriate zone
7673  * lru list
7674  * @fbatch: Batch of lru folios to check.
7675  *
7676  * Checks folios for evictability, if an evictable folio is in the unevictable
7677  * lru list, moves it to the appropriate evictable lru list. This function
7678  * should be only used for lru folios.
7679  */
7680 void check_move_unevictable_folios(struct folio_batch *fbatch)
7681 {
7682 	struct lruvec *lruvec = NULL;
7683 	int pgscanned = 0;
7684 	int pgrescued = 0;
7685 	int i;
7686 
7687 	for (i = 0; i < fbatch->nr; i++) {
7688 		struct folio *folio = fbatch->folios[i];
7689 		int nr_pages = folio_nr_pages(folio);
7690 
7691 		pgscanned += nr_pages;
7692 
7693 		/* block memcg migration while the folio moves between lrus */
7694 		if (!folio_test_clear_lru(folio))
7695 			continue;
7696 
7697 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7698 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7699 			lruvec_del_folio(lruvec, folio);
7700 			folio_clear_unevictable(folio);
7701 			lruvec_add_folio(lruvec, folio);
7702 			pgrescued += nr_pages;
7703 		}
7704 		folio_set_lru(folio);
7705 	}
7706 
7707 	if (lruvec) {
7708 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7709 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7710 		unlock_page_lruvec_irq(lruvec);
7711 	} else if (pgscanned) {
7712 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7713 	}
7714 }
7715 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7716