xref: /linux/mm/vmscan.c (revision 394d83c17fac2b7bcf05cb99d1e945135767bb6b)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/compaction.h>
45 
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48 
49 #include <linux/swapops.h>
50 
51 #include "internal.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55 
56 /*
57  * reclaim_mode determines how the inactive list is shrunk
58  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
59  * RECLAIM_MODE_ASYNC:  Do not block
60  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
61  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
62  *			page from the LRU and reclaim all pages within a
63  *			naturally aligned range
64  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
65  *			order-0 pages and then compact the zone
66  */
67 typedef unsigned __bitwise__ reclaim_mode_t;
68 #define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
69 #define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
70 #define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
71 #define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
72 #define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
73 
74 struct scan_control {
75 	/* Incremented by the number of inactive pages that were scanned */
76 	unsigned long nr_scanned;
77 
78 	/* Number of pages freed so far during a call to shrink_zones() */
79 	unsigned long nr_reclaimed;
80 
81 	/* How many pages shrink_list() should reclaim */
82 	unsigned long nr_to_reclaim;
83 
84 	unsigned long hibernation_mode;
85 
86 	/* This context's GFP mask */
87 	gfp_t gfp_mask;
88 
89 	int may_writepage;
90 
91 	/* Can mapped pages be reclaimed? */
92 	int may_unmap;
93 
94 	/* Can pages be swapped as part of reclaim? */
95 	int may_swap;
96 
97 	int swappiness;
98 
99 	int order;
100 
101 	/*
102 	 * Intend to reclaim enough continuous memory rather than reclaim
103 	 * enough amount of memory. i.e, mode for high order allocation.
104 	 */
105 	reclaim_mode_t reclaim_mode;
106 
107 	/* Which cgroup do we reclaim from */
108 	struct mem_cgroup *mem_cgroup;
109 
110 	/*
111 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
112 	 * are scanned.
113 	 */
114 	nodemask_t	*nodemask;
115 };
116 
117 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
118 
119 #ifdef ARCH_HAS_PREFETCH
120 #define prefetch_prev_lru_page(_page, _base, _field)			\
121 	do {								\
122 		if ((_page)->lru.prev != _base) {			\
123 			struct page *prev;				\
124 									\
125 			prev = lru_to_page(&(_page->lru));		\
126 			prefetch(&prev->_field);			\
127 		}							\
128 	} while (0)
129 #else
130 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
131 #endif
132 
133 #ifdef ARCH_HAS_PREFETCHW
134 #define prefetchw_prev_lru_page(_page, _base, _field)			\
135 	do {								\
136 		if ((_page)->lru.prev != _base) {			\
137 			struct page *prev;				\
138 									\
139 			prev = lru_to_page(&(_page->lru));		\
140 			prefetchw(&prev->_field);			\
141 		}							\
142 	} while (0)
143 #else
144 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
145 #endif
146 
147 /*
148  * From 0 .. 100.  Higher means more swappy.
149  */
150 int vm_swappiness = 60;
151 long vm_total_pages;	/* The total number of pages which the VM controls */
152 
153 static LIST_HEAD(shrinker_list);
154 static DECLARE_RWSEM(shrinker_rwsem);
155 
156 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
157 #define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
158 #else
159 #define scanning_global_lru(sc)	(1)
160 #endif
161 
162 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
163 						  struct scan_control *sc)
164 {
165 	if (!scanning_global_lru(sc))
166 		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
167 
168 	return &zone->reclaim_stat;
169 }
170 
171 static unsigned long zone_nr_lru_pages(struct zone *zone,
172 				struct scan_control *sc, enum lru_list lru)
173 {
174 	if (!scanning_global_lru(sc))
175 		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
176 
177 	return zone_page_state(zone, NR_LRU_BASE + lru);
178 }
179 
180 
181 /*
182  * Add a shrinker callback to be called from the vm
183  */
184 void register_shrinker(struct shrinker *shrinker)
185 {
186 	shrinker->nr = 0;
187 	down_write(&shrinker_rwsem);
188 	list_add_tail(&shrinker->list, &shrinker_list);
189 	up_write(&shrinker_rwsem);
190 }
191 EXPORT_SYMBOL(register_shrinker);
192 
193 /*
194  * Remove one
195  */
196 void unregister_shrinker(struct shrinker *shrinker)
197 {
198 	down_write(&shrinker_rwsem);
199 	list_del(&shrinker->list);
200 	up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(unregister_shrinker);
203 
204 #define SHRINK_BATCH 128
205 /*
206  * Call the shrink functions to age shrinkable caches
207  *
208  * Here we assume it costs one seek to replace a lru page and that it also
209  * takes a seek to recreate a cache object.  With this in mind we age equal
210  * percentages of the lru and ageable caches.  This should balance the seeks
211  * generated by these structures.
212  *
213  * If the vm encountered mapped pages on the LRU it increase the pressure on
214  * slab to avoid swapping.
215  *
216  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
217  *
218  * `lru_pages' represents the number of on-LRU pages in all the zones which
219  * are eligible for the caller's allocation attempt.  It is used for balancing
220  * slab reclaim versus page reclaim.
221  *
222  * Returns the number of slab objects which we shrunk.
223  */
224 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
225 			unsigned long lru_pages)
226 {
227 	struct shrinker *shrinker;
228 	unsigned long ret = 0;
229 
230 	if (scanned == 0)
231 		scanned = SWAP_CLUSTER_MAX;
232 
233 	if (!down_read_trylock(&shrinker_rwsem))
234 		return 1;	/* Assume we'll be able to shrink next time */
235 
236 	list_for_each_entry(shrinker, &shrinker_list, list) {
237 		unsigned long long delta;
238 		unsigned long total_scan;
239 		unsigned long max_pass;
240 
241 		max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
242 		delta = (4 * scanned) / shrinker->seeks;
243 		delta *= max_pass;
244 		do_div(delta, lru_pages + 1);
245 		shrinker->nr += delta;
246 		if (shrinker->nr < 0) {
247 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
248 			       "delete nr=%ld\n",
249 			       shrinker->shrink, shrinker->nr);
250 			shrinker->nr = max_pass;
251 		}
252 
253 		/*
254 		 * Avoid risking looping forever due to too large nr value:
255 		 * never try to free more than twice the estimate number of
256 		 * freeable entries.
257 		 */
258 		if (shrinker->nr > max_pass * 2)
259 			shrinker->nr = max_pass * 2;
260 
261 		total_scan = shrinker->nr;
262 		shrinker->nr = 0;
263 
264 		while (total_scan >= SHRINK_BATCH) {
265 			long this_scan = SHRINK_BATCH;
266 			int shrink_ret;
267 			int nr_before;
268 
269 			nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
270 			shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
271 								gfp_mask);
272 			if (shrink_ret == -1)
273 				break;
274 			if (shrink_ret < nr_before)
275 				ret += nr_before - shrink_ret;
276 			count_vm_events(SLABS_SCANNED, this_scan);
277 			total_scan -= this_scan;
278 
279 			cond_resched();
280 		}
281 
282 		shrinker->nr += total_scan;
283 	}
284 	up_read(&shrinker_rwsem);
285 	return ret;
286 }
287 
288 static void set_reclaim_mode(int priority, struct scan_control *sc,
289 				   bool sync)
290 {
291 	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
292 
293 	/*
294 	 * Initially assume we are entering either lumpy reclaim or
295 	 * reclaim/compaction.Depending on the order, we will either set the
296 	 * sync mode or just reclaim order-0 pages later.
297 	 */
298 	if (COMPACTION_BUILD)
299 		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
300 	else
301 		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
302 
303 	/*
304 	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
305 	 * restricting when its set to either costly allocations or when
306 	 * under memory pressure
307 	 */
308 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
309 		sc->reclaim_mode |= syncmode;
310 	else if (sc->order && priority < DEF_PRIORITY - 2)
311 		sc->reclaim_mode |= syncmode;
312 	else
313 		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
314 }
315 
316 static void reset_reclaim_mode(struct scan_control *sc)
317 {
318 	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
319 }
320 
321 static inline int is_page_cache_freeable(struct page *page)
322 {
323 	/*
324 	 * A freeable page cache page is referenced only by the caller
325 	 * that isolated the page, the page cache radix tree and
326 	 * optional buffer heads at page->private.
327 	 */
328 	return page_count(page) - page_has_private(page) == 2;
329 }
330 
331 static int may_write_to_queue(struct backing_dev_info *bdi,
332 			      struct scan_control *sc)
333 {
334 	if (current->flags & PF_SWAPWRITE)
335 		return 1;
336 	if (!bdi_write_congested(bdi))
337 		return 1;
338 	if (bdi == current->backing_dev_info)
339 		return 1;
340 
341 	/* lumpy reclaim for hugepage often need a lot of write */
342 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
343 		return 1;
344 	return 0;
345 }
346 
347 /*
348  * We detected a synchronous write error writing a page out.  Probably
349  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
350  * fsync(), msync() or close().
351  *
352  * The tricky part is that after writepage we cannot touch the mapping: nothing
353  * prevents it from being freed up.  But we have a ref on the page and once
354  * that page is locked, the mapping is pinned.
355  *
356  * We're allowed to run sleeping lock_page() here because we know the caller has
357  * __GFP_FS.
358  */
359 static void handle_write_error(struct address_space *mapping,
360 				struct page *page, int error)
361 {
362 	lock_page_nosync(page);
363 	if (page_mapping(page) == mapping)
364 		mapping_set_error(mapping, error);
365 	unlock_page(page);
366 }
367 
368 /* possible outcome of pageout() */
369 typedef enum {
370 	/* failed to write page out, page is locked */
371 	PAGE_KEEP,
372 	/* move page to the active list, page is locked */
373 	PAGE_ACTIVATE,
374 	/* page has been sent to the disk successfully, page is unlocked */
375 	PAGE_SUCCESS,
376 	/* page is clean and locked */
377 	PAGE_CLEAN,
378 } pageout_t;
379 
380 /*
381  * pageout is called by shrink_page_list() for each dirty page.
382  * Calls ->writepage().
383  */
384 static pageout_t pageout(struct page *page, struct address_space *mapping,
385 			 struct scan_control *sc)
386 {
387 	/*
388 	 * If the page is dirty, only perform writeback if that write
389 	 * will be non-blocking.  To prevent this allocation from being
390 	 * stalled by pagecache activity.  But note that there may be
391 	 * stalls if we need to run get_block().  We could test
392 	 * PagePrivate for that.
393 	 *
394 	 * If this process is currently in __generic_file_aio_write() against
395 	 * this page's queue, we can perform writeback even if that
396 	 * will block.
397 	 *
398 	 * If the page is swapcache, write it back even if that would
399 	 * block, for some throttling. This happens by accident, because
400 	 * swap_backing_dev_info is bust: it doesn't reflect the
401 	 * congestion state of the swapdevs.  Easy to fix, if needed.
402 	 */
403 	if (!is_page_cache_freeable(page))
404 		return PAGE_KEEP;
405 	if (!mapping) {
406 		/*
407 		 * Some data journaling orphaned pages can have
408 		 * page->mapping == NULL while being dirty with clean buffers.
409 		 */
410 		if (page_has_private(page)) {
411 			if (try_to_free_buffers(page)) {
412 				ClearPageDirty(page);
413 				printk("%s: orphaned page\n", __func__);
414 				return PAGE_CLEAN;
415 			}
416 		}
417 		return PAGE_KEEP;
418 	}
419 	if (mapping->a_ops->writepage == NULL)
420 		return PAGE_ACTIVATE;
421 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
422 		return PAGE_KEEP;
423 
424 	if (clear_page_dirty_for_io(page)) {
425 		int res;
426 		struct writeback_control wbc = {
427 			.sync_mode = WB_SYNC_NONE,
428 			.nr_to_write = SWAP_CLUSTER_MAX,
429 			.range_start = 0,
430 			.range_end = LLONG_MAX,
431 			.for_reclaim = 1,
432 		};
433 
434 		SetPageReclaim(page);
435 		res = mapping->a_ops->writepage(page, &wbc);
436 		if (res < 0)
437 			handle_write_error(mapping, page, res);
438 		if (res == AOP_WRITEPAGE_ACTIVATE) {
439 			ClearPageReclaim(page);
440 			return PAGE_ACTIVATE;
441 		}
442 
443 		/*
444 		 * Wait on writeback if requested to. This happens when
445 		 * direct reclaiming a large contiguous area and the
446 		 * first attempt to free a range of pages fails.
447 		 */
448 		if (PageWriteback(page) &&
449 		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
450 			wait_on_page_writeback(page);
451 
452 		if (!PageWriteback(page)) {
453 			/* synchronous write or broken a_ops? */
454 			ClearPageReclaim(page);
455 		}
456 		trace_mm_vmscan_writepage(page,
457 			trace_reclaim_flags(page, sc->reclaim_mode));
458 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
459 		return PAGE_SUCCESS;
460 	}
461 
462 	return PAGE_CLEAN;
463 }
464 
465 /*
466  * Same as remove_mapping, but if the page is removed from the mapping, it
467  * gets returned with a refcount of 0.
468  */
469 static int __remove_mapping(struct address_space *mapping, struct page *page)
470 {
471 	BUG_ON(!PageLocked(page));
472 	BUG_ON(mapping != page_mapping(page));
473 
474 	spin_lock_irq(&mapping->tree_lock);
475 	/*
476 	 * The non racy check for a busy page.
477 	 *
478 	 * Must be careful with the order of the tests. When someone has
479 	 * a ref to the page, it may be possible that they dirty it then
480 	 * drop the reference. So if PageDirty is tested before page_count
481 	 * here, then the following race may occur:
482 	 *
483 	 * get_user_pages(&page);
484 	 * [user mapping goes away]
485 	 * write_to(page);
486 	 *				!PageDirty(page)    [good]
487 	 * SetPageDirty(page);
488 	 * put_page(page);
489 	 *				!page_count(page)   [good, discard it]
490 	 *
491 	 * [oops, our write_to data is lost]
492 	 *
493 	 * Reversing the order of the tests ensures such a situation cannot
494 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
495 	 * load is not satisfied before that of page->_count.
496 	 *
497 	 * Note that if SetPageDirty is always performed via set_page_dirty,
498 	 * and thus under tree_lock, then this ordering is not required.
499 	 */
500 	if (!page_freeze_refs(page, 2))
501 		goto cannot_free;
502 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
503 	if (unlikely(PageDirty(page))) {
504 		page_unfreeze_refs(page, 2);
505 		goto cannot_free;
506 	}
507 
508 	if (PageSwapCache(page)) {
509 		swp_entry_t swap = { .val = page_private(page) };
510 		__delete_from_swap_cache(page);
511 		spin_unlock_irq(&mapping->tree_lock);
512 		swapcache_free(swap, page);
513 	} else {
514 		void (*freepage)(struct page *);
515 
516 		freepage = mapping->a_ops->freepage;
517 
518 		__remove_from_page_cache(page);
519 		spin_unlock_irq(&mapping->tree_lock);
520 		mem_cgroup_uncharge_cache_page(page);
521 
522 		if (freepage != NULL)
523 			freepage(page);
524 	}
525 
526 	return 1;
527 
528 cannot_free:
529 	spin_unlock_irq(&mapping->tree_lock);
530 	return 0;
531 }
532 
533 /*
534  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
535  * someone else has a ref on the page, abort and return 0.  If it was
536  * successfully detached, return 1.  Assumes the caller has a single ref on
537  * this page.
538  */
539 int remove_mapping(struct address_space *mapping, struct page *page)
540 {
541 	if (__remove_mapping(mapping, page)) {
542 		/*
543 		 * Unfreezing the refcount with 1 rather than 2 effectively
544 		 * drops the pagecache ref for us without requiring another
545 		 * atomic operation.
546 		 */
547 		page_unfreeze_refs(page, 1);
548 		return 1;
549 	}
550 	return 0;
551 }
552 
553 /**
554  * putback_lru_page - put previously isolated page onto appropriate LRU list
555  * @page: page to be put back to appropriate lru list
556  *
557  * Add previously isolated @page to appropriate LRU list.
558  * Page may still be unevictable for other reasons.
559  *
560  * lru_lock must not be held, interrupts must be enabled.
561  */
562 void putback_lru_page(struct page *page)
563 {
564 	int lru;
565 	int active = !!TestClearPageActive(page);
566 	int was_unevictable = PageUnevictable(page);
567 
568 	VM_BUG_ON(PageLRU(page));
569 
570 redo:
571 	ClearPageUnevictable(page);
572 
573 	if (page_evictable(page, NULL)) {
574 		/*
575 		 * For evictable pages, we can use the cache.
576 		 * In event of a race, worst case is we end up with an
577 		 * unevictable page on [in]active list.
578 		 * We know how to handle that.
579 		 */
580 		lru = active + page_lru_base_type(page);
581 		lru_cache_add_lru(page, lru);
582 	} else {
583 		/*
584 		 * Put unevictable pages directly on zone's unevictable
585 		 * list.
586 		 */
587 		lru = LRU_UNEVICTABLE;
588 		add_page_to_unevictable_list(page);
589 		/*
590 		 * When racing with an mlock clearing (page is
591 		 * unlocked), make sure that if the other thread does
592 		 * not observe our setting of PG_lru and fails
593 		 * isolation, we see PG_mlocked cleared below and move
594 		 * the page back to the evictable list.
595 		 *
596 		 * The other side is TestClearPageMlocked().
597 		 */
598 		smp_mb();
599 	}
600 
601 	/*
602 	 * page's status can change while we move it among lru. If an evictable
603 	 * page is on unevictable list, it never be freed. To avoid that,
604 	 * check after we added it to the list, again.
605 	 */
606 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
607 		if (!isolate_lru_page(page)) {
608 			put_page(page);
609 			goto redo;
610 		}
611 		/* This means someone else dropped this page from LRU
612 		 * So, it will be freed or putback to LRU again. There is
613 		 * nothing to do here.
614 		 */
615 	}
616 
617 	if (was_unevictable && lru != LRU_UNEVICTABLE)
618 		count_vm_event(UNEVICTABLE_PGRESCUED);
619 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
620 		count_vm_event(UNEVICTABLE_PGCULLED);
621 
622 	put_page(page);		/* drop ref from isolate */
623 }
624 
625 enum page_references {
626 	PAGEREF_RECLAIM,
627 	PAGEREF_RECLAIM_CLEAN,
628 	PAGEREF_KEEP,
629 	PAGEREF_ACTIVATE,
630 };
631 
632 static enum page_references page_check_references(struct page *page,
633 						  struct scan_control *sc)
634 {
635 	int referenced_ptes, referenced_page;
636 	unsigned long vm_flags;
637 
638 	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
639 	referenced_page = TestClearPageReferenced(page);
640 
641 	/* Lumpy reclaim - ignore references */
642 	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
643 		return PAGEREF_RECLAIM;
644 
645 	/*
646 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
647 	 * move the page to the unevictable list.
648 	 */
649 	if (vm_flags & VM_LOCKED)
650 		return PAGEREF_RECLAIM;
651 
652 	if (referenced_ptes) {
653 		if (PageAnon(page))
654 			return PAGEREF_ACTIVATE;
655 		/*
656 		 * All mapped pages start out with page table
657 		 * references from the instantiating fault, so we need
658 		 * to look twice if a mapped file page is used more
659 		 * than once.
660 		 *
661 		 * Mark it and spare it for another trip around the
662 		 * inactive list.  Another page table reference will
663 		 * lead to its activation.
664 		 *
665 		 * Note: the mark is set for activated pages as well
666 		 * so that recently deactivated but used pages are
667 		 * quickly recovered.
668 		 */
669 		SetPageReferenced(page);
670 
671 		if (referenced_page)
672 			return PAGEREF_ACTIVATE;
673 
674 		return PAGEREF_KEEP;
675 	}
676 
677 	/* Reclaim if clean, defer dirty pages to writeback */
678 	if (referenced_page && !PageSwapBacked(page))
679 		return PAGEREF_RECLAIM_CLEAN;
680 
681 	return PAGEREF_RECLAIM;
682 }
683 
684 static noinline_for_stack void free_page_list(struct list_head *free_pages)
685 {
686 	struct pagevec freed_pvec;
687 	struct page *page, *tmp;
688 
689 	pagevec_init(&freed_pvec, 1);
690 
691 	list_for_each_entry_safe(page, tmp, free_pages, lru) {
692 		list_del(&page->lru);
693 		if (!pagevec_add(&freed_pvec, page)) {
694 			__pagevec_free(&freed_pvec);
695 			pagevec_reinit(&freed_pvec);
696 		}
697 	}
698 
699 	pagevec_free(&freed_pvec);
700 }
701 
702 /*
703  * shrink_page_list() returns the number of reclaimed pages
704  */
705 static unsigned long shrink_page_list(struct list_head *page_list,
706 				      struct zone *zone,
707 				      struct scan_control *sc)
708 {
709 	LIST_HEAD(ret_pages);
710 	LIST_HEAD(free_pages);
711 	int pgactivate = 0;
712 	unsigned long nr_dirty = 0;
713 	unsigned long nr_congested = 0;
714 	unsigned long nr_reclaimed = 0;
715 
716 	cond_resched();
717 
718 	while (!list_empty(page_list)) {
719 		enum page_references references;
720 		struct address_space *mapping;
721 		struct page *page;
722 		int may_enter_fs;
723 
724 		cond_resched();
725 
726 		page = lru_to_page(page_list);
727 		list_del(&page->lru);
728 
729 		if (!trylock_page(page))
730 			goto keep;
731 
732 		VM_BUG_ON(PageActive(page));
733 		VM_BUG_ON(page_zone(page) != zone);
734 
735 		sc->nr_scanned++;
736 
737 		if (unlikely(!page_evictable(page, NULL)))
738 			goto cull_mlocked;
739 
740 		if (!sc->may_unmap && page_mapped(page))
741 			goto keep_locked;
742 
743 		/* Double the slab pressure for mapped and swapcache pages */
744 		if (page_mapped(page) || PageSwapCache(page))
745 			sc->nr_scanned++;
746 
747 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
748 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
749 
750 		if (PageWriteback(page)) {
751 			/*
752 			 * Synchronous reclaim is performed in two passes,
753 			 * first an asynchronous pass over the list to
754 			 * start parallel writeback, and a second synchronous
755 			 * pass to wait for the IO to complete.  Wait here
756 			 * for any page for which writeback has already
757 			 * started.
758 			 */
759 			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
760 			    may_enter_fs)
761 				wait_on_page_writeback(page);
762 			else {
763 				unlock_page(page);
764 				goto keep_lumpy;
765 			}
766 		}
767 
768 		references = page_check_references(page, sc);
769 		switch (references) {
770 		case PAGEREF_ACTIVATE:
771 			goto activate_locked;
772 		case PAGEREF_KEEP:
773 			goto keep_locked;
774 		case PAGEREF_RECLAIM:
775 		case PAGEREF_RECLAIM_CLEAN:
776 			; /* try to reclaim the page below */
777 		}
778 
779 		/*
780 		 * Anonymous process memory has backing store?
781 		 * Try to allocate it some swap space here.
782 		 */
783 		if (PageAnon(page) && !PageSwapCache(page)) {
784 			if (!(sc->gfp_mask & __GFP_IO))
785 				goto keep_locked;
786 			if (!add_to_swap(page))
787 				goto activate_locked;
788 			may_enter_fs = 1;
789 		}
790 
791 		mapping = page_mapping(page);
792 
793 		/*
794 		 * The page is mapped into the page tables of one or more
795 		 * processes. Try to unmap it here.
796 		 */
797 		if (page_mapped(page) && mapping) {
798 			switch (try_to_unmap(page, TTU_UNMAP)) {
799 			case SWAP_FAIL:
800 				goto activate_locked;
801 			case SWAP_AGAIN:
802 				goto keep_locked;
803 			case SWAP_MLOCK:
804 				goto cull_mlocked;
805 			case SWAP_SUCCESS:
806 				; /* try to free the page below */
807 			}
808 		}
809 
810 		if (PageDirty(page)) {
811 			nr_dirty++;
812 
813 			if (references == PAGEREF_RECLAIM_CLEAN)
814 				goto keep_locked;
815 			if (!may_enter_fs)
816 				goto keep_locked;
817 			if (!sc->may_writepage)
818 				goto keep_locked;
819 
820 			/* Page is dirty, try to write it out here */
821 			switch (pageout(page, mapping, sc)) {
822 			case PAGE_KEEP:
823 				nr_congested++;
824 				goto keep_locked;
825 			case PAGE_ACTIVATE:
826 				goto activate_locked;
827 			case PAGE_SUCCESS:
828 				if (PageWriteback(page))
829 					goto keep_lumpy;
830 				if (PageDirty(page))
831 					goto keep;
832 
833 				/*
834 				 * A synchronous write - probably a ramdisk.  Go
835 				 * ahead and try to reclaim the page.
836 				 */
837 				if (!trylock_page(page))
838 					goto keep;
839 				if (PageDirty(page) || PageWriteback(page))
840 					goto keep_locked;
841 				mapping = page_mapping(page);
842 			case PAGE_CLEAN:
843 				; /* try to free the page below */
844 			}
845 		}
846 
847 		/*
848 		 * If the page has buffers, try to free the buffer mappings
849 		 * associated with this page. If we succeed we try to free
850 		 * the page as well.
851 		 *
852 		 * We do this even if the page is PageDirty().
853 		 * try_to_release_page() does not perform I/O, but it is
854 		 * possible for a page to have PageDirty set, but it is actually
855 		 * clean (all its buffers are clean).  This happens if the
856 		 * buffers were written out directly, with submit_bh(). ext3
857 		 * will do this, as well as the blockdev mapping.
858 		 * try_to_release_page() will discover that cleanness and will
859 		 * drop the buffers and mark the page clean - it can be freed.
860 		 *
861 		 * Rarely, pages can have buffers and no ->mapping.  These are
862 		 * the pages which were not successfully invalidated in
863 		 * truncate_complete_page().  We try to drop those buffers here
864 		 * and if that worked, and the page is no longer mapped into
865 		 * process address space (page_count == 1) it can be freed.
866 		 * Otherwise, leave the page on the LRU so it is swappable.
867 		 */
868 		if (page_has_private(page)) {
869 			if (!try_to_release_page(page, sc->gfp_mask))
870 				goto activate_locked;
871 			if (!mapping && page_count(page) == 1) {
872 				unlock_page(page);
873 				if (put_page_testzero(page))
874 					goto free_it;
875 				else {
876 					/*
877 					 * rare race with speculative reference.
878 					 * the speculative reference will free
879 					 * this page shortly, so we may
880 					 * increment nr_reclaimed here (and
881 					 * leave it off the LRU).
882 					 */
883 					nr_reclaimed++;
884 					continue;
885 				}
886 			}
887 		}
888 
889 		if (!mapping || !__remove_mapping(mapping, page))
890 			goto keep_locked;
891 
892 		/*
893 		 * At this point, we have no other references and there is
894 		 * no way to pick any more up (removed from LRU, removed
895 		 * from pagecache). Can use non-atomic bitops now (and
896 		 * we obviously don't have to worry about waking up a process
897 		 * waiting on the page lock, because there are no references.
898 		 */
899 		__clear_page_locked(page);
900 free_it:
901 		nr_reclaimed++;
902 
903 		/*
904 		 * Is there need to periodically free_page_list? It would
905 		 * appear not as the counts should be low
906 		 */
907 		list_add(&page->lru, &free_pages);
908 		continue;
909 
910 cull_mlocked:
911 		if (PageSwapCache(page))
912 			try_to_free_swap(page);
913 		unlock_page(page);
914 		putback_lru_page(page);
915 		reset_reclaim_mode(sc);
916 		continue;
917 
918 activate_locked:
919 		/* Not a candidate for swapping, so reclaim swap space. */
920 		if (PageSwapCache(page) && vm_swap_full())
921 			try_to_free_swap(page);
922 		VM_BUG_ON(PageActive(page));
923 		SetPageActive(page);
924 		pgactivate++;
925 keep_locked:
926 		unlock_page(page);
927 keep:
928 		reset_reclaim_mode(sc);
929 keep_lumpy:
930 		list_add(&page->lru, &ret_pages);
931 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
932 	}
933 
934 	/*
935 	 * Tag a zone as congested if all the dirty pages encountered were
936 	 * backed by a congested BDI. In this case, reclaimers should just
937 	 * back off and wait for congestion to clear because further reclaim
938 	 * will encounter the same problem
939 	 */
940 	if (nr_dirty == nr_congested && nr_dirty != 0)
941 		zone_set_flag(zone, ZONE_CONGESTED);
942 
943 	free_page_list(&free_pages);
944 
945 	list_splice(&ret_pages, page_list);
946 	count_vm_events(PGACTIVATE, pgactivate);
947 	return nr_reclaimed;
948 }
949 
950 /*
951  * Attempt to remove the specified page from its LRU.  Only take this page
952  * if it is of the appropriate PageActive status.  Pages which are being
953  * freed elsewhere are also ignored.
954  *
955  * page:	page to consider
956  * mode:	one of the LRU isolation modes defined above
957  *
958  * returns 0 on success, -ve errno on failure.
959  */
960 int __isolate_lru_page(struct page *page, int mode, int file)
961 {
962 	int ret = -EINVAL;
963 
964 	/* Only take pages on the LRU. */
965 	if (!PageLRU(page))
966 		return ret;
967 
968 	/*
969 	 * When checking the active state, we need to be sure we are
970 	 * dealing with comparible boolean values.  Take the logical not
971 	 * of each.
972 	 */
973 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
974 		return ret;
975 
976 	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
977 		return ret;
978 
979 	/*
980 	 * When this function is being called for lumpy reclaim, we
981 	 * initially look into all LRU pages, active, inactive and
982 	 * unevictable; only give shrink_page_list evictable pages.
983 	 */
984 	if (PageUnevictable(page))
985 		return ret;
986 
987 	ret = -EBUSY;
988 
989 	if (likely(get_page_unless_zero(page))) {
990 		/*
991 		 * Be careful not to clear PageLRU until after we're
992 		 * sure the page is not being freed elsewhere -- the
993 		 * page release code relies on it.
994 		 */
995 		ClearPageLRU(page);
996 		ret = 0;
997 	}
998 
999 	return ret;
1000 }
1001 
1002 /*
1003  * zone->lru_lock is heavily contended.  Some of the functions that
1004  * shrink the lists perform better by taking out a batch of pages
1005  * and working on them outside the LRU lock.
1006  *
1007  * For pagecache intensive workloads, this function is the hottest
1008  * spot in the kernel (apart from copy_*_user functions).
1009  *
1010  * Appropriate locks must be held before calling this function.
1011  *
1012  * @nr_to_scan:	The number of pages to look through on the list.
1013  * @src:	The LRU list to pull pages off.
1014  * @dst:	The temp list to put pages on to.
1015  * @scanned:	The number of pages that were scanned.
1016  * @order:	The caller's attempted allocation order
1017  * @mode:	One of the LRU isolation modes
1018  * @file:	True [1] if isolating file [!anon] pages
1019  *
1020  * returns how many pages were moved onto *@dst.
1021  */
1022 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1023 		struct list_head *src, struct list_head *dst,
1024 		unsigned long *scanned, int order, int mode, int file)
1025 {
1026 	unsigned long nr_taken = 0;
1027 	unsigned long nr_lumpy_taken = 0;
1028 	unsigned long nr_lumpy_dirty = 0;
1029 	unsigned long nr_lumpy_failed = 0;
1030 	unsigned long scan;
1031 
1032 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1033 		struct page *page;
1034 		unsigned long pfn;
1035 		unsigned long end_pfn;
1036 		unsigned long page_pfn;
1037 		int zone_id;
1038 
1039 		page = lru_to_page(src);
1040 		prefetchw_prev_lru_page(page, src, flags);
1041 
1042 		VM_BUG_ON(!PageLRU(page));
1043 
1044 		switch (__isolate_lru_page(page, mode, file)) {
1045 		case 0:
1046 			list_move(&page->lru, dst);
1047 			mem_cgroup_del_lru(page);
1048 			nr_taken += hpage_nr_pages(page);
1049 			break;
1050 
1051 		case -EBUSY:
1052 			/* else it is being freed elsewhere */
1053 			list_move(&page->lru, src);
1054 			mem_cgroup_rotate_lru_list(page, page_lru(page));
1055 			continue;
1056 
1057 		default:
1058 			BUG();
1059 		}
1060 
1061 		if (!order)
1062 			continue;
1063 
1064 		/*
1065 		 * Attempt to take all pages in the order aligned region
1066 		 * surrounding the tag page.  Only take those pages of
1067 		 * the same active state as that tag page.  We may safely
1068 		 * round the target page pfn down to the requested order
1069 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
1070 		 * where that page is in a different zone we will detect
1071 		 * it from its zone id and abort this block scan.
1072 		 */
1073 		zone_id = page_zone_id(page);
1074 		page_pfn = page_to_pfn(page);
1075 		pfn = page_pfn & ~((1 << order) - 1);
1076 		end_pfn = pfn + (1 << order);
1077 		for (; pfn < end_pfn; pfn++) {
1078 			struct page *cursor_page;
1079 
1080 			/* The target page is in the block, ignore it. */
1081 			if (unlikely(pfn == page_pfn))
1082 				continue;
1083 
1084 			/* Avoid holes within the zone. */
1085 			if (unlikely(!pfn_valid_within(pfn)))
1086 				break;
1087 
1088 			cursor_page = pfn_to_page(pfn);
1089 
1090 			/* Check that we have not crossed a zone boundary. */
1091 			if (unlikely(page_zone_id(cursor_page) != zone_id))
1092 				break;
1093 
1094 			/*
1095 			 * If we don't have enough swap space, reclaiming of
1096 			 * anon page which don't already have a swap slot is
1097 			 * pointless.
1098 			 */
1099 			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1100 			    !PageSwapCache(cursor_page))
1101 				break;
1102 
1103 			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1104 				list_move(&cursor_page->lru, dst);
1105 				mem_cgroup_del_lru(cursor_page);
1106 				nr_taken += hpage_nr_pages(page);
1107 				nr_lumpy_taken++;
1108 				if (PageDirty(cursor_page))
1109 					nr_lumpy_dirty++;
1110 				scan++;
1111 			} else {
1112 				/* the page is freed already. */
1113 				if (!page_count(cursor_page))
1114 					continue;
1115 				break;
1116 			}
1117 		}
1118 
1119 		/* If we break out of the loop above, lumpy reclaim failed */
1120 		if (pfn < end_pfn)
1121 			nr_lumpy_failed++;
1122 	}
1123 
1124 	*scanned = scan;
1125 
1126 	trace_mm_vmscan_lru_isolate(order,
1127 			nr_to_scan, scan,
1128 			nr_taken,
1129 			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1130 			mode);
1131 	return nr_taken;
1132 }
1133 
1134 static unsigned long isolate_pages_global(unsigned long nr,
1135 					struct list_head *dst,
1136 					unsigned long *scanned, int order,
1137 					int mode, struct zone *z,
1138 					int active, int file)
1139 {
1140 	int lru = LRU_BASE;
1141 	if (active)
1142 		lru += LRU_ACTIVE;
1143 	if (file)
1144 		lru += LRU_FILE;
1145 	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1146 								mode, file);
1147 }
1148 
1149 /*
1150  * clear_active_flags() is a helper for shrink_active_list(), clearing
1151  * any active bits from the pages in the list.
1152  */
1153 static unsigned long clear_active_flags(struct list_head *page_list,
1154 					unsigned int *count)
1155 {
1156 	int nr_active = 0;
1157 	int lru;
1158 	struct page *page;
1159 
1160 	list_for_each_entry(page, page_list, lru) {
1161 		int numpages = hpage_nr_pages(page);
1162 		lru = page_lru_base_type(page);
1163 		if (PageActive(page)) {
1164 			lru += LRU_ACTIVE;
1165 			ClearPageActive(page);
1166 			nr_active += numpages;
1167 		}
1168 		if (count)
1169 			count[lru] += numpages;
1170 	}
1171 
1172 	return nr_active;
1173 }
1174 
1175 /**
1176  * isolate_lru_page - tries to isolate a page from its LRU list
1177  * @page: page to isolate from its LRU list
1178  *
1179  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1180  * vmstat statistic corresponding to whatever LRU list the page was on.
1181  *
1182  * Returns 0 if the page was removed from an LRU list.
1183  * Returns -EBUSY if the page was not on an LRU list.
1184  *
1185  * The returned page will have PageLRU() cleared.  If it was found on
1186  * the active list, it will have PageActive set.  If it was found on
1187  * the unevictable list, it will have the PageUnevictable bit set. That flag
1188  * may need to be cleared by the caller before letting the page go.
1189  *
1190  * The vmstat statistic corresponding to the list on which the page was
1191  * found will be decremented.
1192  *
1193  * Restrictions:
1194  * (1) Must be called with an elevated refcount on the page. This is a
1195  *     fundamentnal difference from isolate_lru_pages (which is called
1196  *     without a stable reference).
1197  * (2) the lru_lock must not be held.
1198  * (3) interrupts must be enabled.
1199  */
1200 int isolate_lru_page(struct page *page)
1201 {
1202 	int ret = -EBUSY;
1203 
1204 	if (PageLRU(page)) {
1205 		struct zone *zone = page_zone(page);
1206 
1207 		spin_lock_irq(&zone->lru_lock);
1208 		if (PageLRU(page) && get_page_unless_zero(page)) {
1209 			int lru = page_lru(page);
1210 			ret = 0;
1211 			ClearPageLRU(page);
1212 
1213 			del_page_from_lru_list(zone, page, lru);
1214 		}
1215 		spin_unlock_irq(&zone->lru_lock);
1216 	}
1217 	return ret;
1218 }
1219 
1220 /*
1221  * Are there way too many processes in the direct reclaim path already?
1222  */
1223 static int too_many_isolated(struct zone *zone, int file,
1224 		struct scan_control *sc)
1225 {
1226 	unsigned long inactive, isolated;
1227 
1228 	if (current_is_kswapd())
1229 		return 0;
1230 
1231 	if (!scanning_global_lru(sc))
1232 		return 0;
1233 
1234 	if (file) {
1235 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1236 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1237 	} else {
1238 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1239 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1240 	}
1241 
1242 	return isolated > inactive;
1243 }
1244 
1245 /*
1246  * TODO: Try merging with migrations version of putback_lru_pages
1247  */
1248 static noinline_for_stack void
1249 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1250 				unsigned long nr_anon, unsigned long nr_file,
1251 				struct list_head *page_list)
1252 {
1253 	struct page *page;
1254 	struct pagevec pvec;
1255 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1256 
1257 	pagevec_init(&pvec, 1);
1258 
1259 	/*
1260 	 * Put back any unfreeable pages.
1261 	 */
1262 	spin_lock(&zone->lru_lock);
1263 	while (!list_empty(page_list)) {
1264 		int lru;
1265 		page = lru_to_page(page_list);
1266 		VM_BUG_ON(PageLRU(page));
1267 		list_del(&page->lru);
1268 		if (unlikely(!page_evictable(page, NULL))) {
1269 			spin_unlock_irq(&zone->lru_lock);
1270 			putback_lru_page(page);
1271 			spin_lock_irq(&zone->lru_lock);
1272 			continue;
1273 		}
1274 		lru = page_lru(page);
1275 		if (is_active_lru(lru)) {
1276 			int file = is_file_lru(lru);
1277 			int numpages = hpage_nr_pages(page);
1278 			reclaim_stat->recent_rotated[file] += numpages;
1279 			if (putback_active_lru_page(zone, page))
1280 				continue;
1281 		}
1282 		SetPageLRU(page);
1283 		add_page_to_lru_list(zone, page, lru);
1284 		if (!pagevec_add(&pvec, page)) {
1285 			spin_unlock_irq(&zone->lru_lock);
1286 			__pagevec_release(&pvec);
1287 			spin_lock_irq(&zone->lru_lock);
1288 		}
1289 	}
1290 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1291 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1292 
1293 	spin_unlock_irq(&zone->lru_lock);
1294 	pagevec_release(&pvec);
1295 }
1296 
1297 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1298 					struct scan_control *sc,
1299 					unsigned long *nr_anon,
1300 					unsigned long *nr_file,
1301 					struct list_head *isolated_list)
1302 {
1303 	unsigned long nr_active;
1304 	unsigned int count[NR_LRU_LISTS] = { 0, };
1305 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1306 
1307 	nr_active = clear_active_flags(isolated_list, count);
1308 	__count_vm_events(PGDEACTIVATE, nr_active);
1309 
1310 	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1311 			      -count[LRU_ACTIVE_FILE]);
1312 	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1313 			      -count[LRU_INACTIVE_FILE]);
1314 	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1315 			      -count[LRU_ACTIVE_ANON]);
1316 	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1317 			      -count[LRU_INACTIVE_ANON]);
1318 
1319 	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1320 	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1321 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1322 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1323 
1324 	reclaim_stat->recent_scanned[0] += *nr_anon;
1325 	reclaim_stat->recent_scanned[1] += *nr_file;
1326 }
1327 
1328 /*
1329  * Returns true if the caller should wait to clean dirty/writeback pages.
1330  *
1331  * If we are direct reclaiming for contiguous pages and we do not reclaim
1332  * everything in the list, try again and wait for writeback IO to complete.
1333  * This will stall high-order allocations noticeably. Only do that when really
1334  * need to free the pages under high memory pressure.
1335  */
1336 static inline bool should_reclaim_stall(unsigned long nr_taken,
1337 					unsigned long nr_freed,
1338 					int priority,
1339 					struct scan_control *sc)
1340 {
1341 	int lumpy_stall_priority;
1342 
1343 	/* kswapd should not stall on sync IO */
1344 	if (current_is_kswapd())
1345 		return false;
1346 
1347 	/* Only stall on lumpy reclaim */
1348 	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1349 		return false;
1350 
1351 	/* If we have relaimed everything on the isolated list, no stall */
1352 	if (nr_freed == nr_taken)
1353 		return false;
1354 
1355 	/*
1356 	 * For high-order allocations, there are two stall thresholds.
1357 	 * High-cost allocations stall immediately where as lower
1358 	 * order allocations such as stacks require the scanning
1359 	 * priority to be much higher before stalling.
1360 	 */
1361 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1362 		lumpy_stall_priority = DEF_PRIORITY;
1363 	else
1364 		lumpy_stall_priority = DEF_PRIORITY / 3;
1365 
1366 	return priority <= lumpy_stall_priority;
1367 }
1368 
1369 /*
1370  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1371  * of reclaimed pages
1372  */
1373 static noinline_for_stack unsigned long
1374 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1375 			struct scan_control *sc, int priority, int file)
1376 {
1377 	LIST_HEAD(page_list);
1378 	unsigned long nr_scanned;
1379 	unsigned long nr_reclaimed = 0;
1380 	unsigned long nr_taken;
1381 	unsigned long nr_anon;
1382 	unsigned long nr_file;
1383 
1384 	while (unlikely(too_many_isolated(zone, file, sc))) {
1385 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1386 
1387 		/* We are about to die and free our memory. Return now. */
1388 		if (fatal_signal_pending(current))
1389 			return SWAP_CLUSTER_MAX;
1390 	}
1391 
1392 	set_reclaim_mode(priority, sc, false);
1393 	lru_add_drain();
1394 	spin_lock_irq(&zone->lru_lock);
1395 
1396 	if (scanning_global_lru(sc)) {
1397 		nr_taken = isolate_pages_global(nr_to_scan,
1398 			&page_list, &nr_scanned, sc->order,
1399 			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1400 					ISOLATE_BOTH : ISOLATE_INACTIVE,
1401 			zone, 0, file);
1402 		zone->pages_scanned += nr_scanned;
1403 		if (current_is_kswapd())
1404 			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1405 					       nr_scanned);
1406 		else
1407 			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1408 					       nr_scanned);
1409 	} else {
1410 		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1411 			&page_list, &nr_scanned, sc->order,
1412 			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1413 					ISOLATE_BOTH : ISOLATE_INACTIVE,
1414 			zone, sc->mem_cgroup,
1415 			0, file);
1416 		/*
1417 		 * mem_cgroup_isolate_pages() keeps track of
1418 		 * scanned pages on its own.
1419 		 */
1420 	}
1421 
1422 	if (nr_taken == 0) {
1423 		spin_unlock_irq(&zone->lru_lock);
1424 		return 0;
1425 	}
1426 
1427 	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1428 
1429 	spin_unlock_irq(&zone->lru_lock);
1430 
1431 	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1432 
1433 	/* Check if we should syncronously wait for writeback */
1434 	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1435 		set_reclaim_mode(priority, sc, true);
1436 		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1437 	}
1438 
1439 	local_irq_disable();
1440 	if (current_is_kswapd())
1441 		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1442 	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1443 
1444 	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1445 
1446 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1447 		zone_idx(zone),
1448 		nr_scanned, nr_reclaimed,
1449 		priority,
1450 		trace_shrink_flags(file, sc->reclaim_mode));
1451 	return nr_reclaimed;
1452 }
1453 
1454 /*
1455  * This moves pages from the active list to the inactive list.
1456  *
1457  * We move them the other way if the page is referenced by one or more
1458  * processes, from rmap.
1459  *
1460  * If the pages are mostly unmapped, the processing is fast and it is
1461  * appropriate to hold zone->lru_lock across the whole operation.  But if
1462  * the pages are mapped, the processing is slow (page_referenced()) so we
1463  * should drop zone->lru_lock around each page.  It's impossible to balance
1464  * this, so instead we remove the pages from the LRU while processing them.
1465  * It is safe to rely on PG_active against the non-LRU pages in here because
1466  * nobody will play with that bit on a non-LRU page.
1467  *
1468  * The downside is that we have to touch page->_count against each page.
1469  * But we had to alter page->flags anyway.
1470  */
1471 
1472 static void move_active_pages_to_lru(struct zone *zone,
1473 				     struct list_head *list,
1474 				     enum lru_list lru)
1475 {
1476 	unsigned long pgmoved = 0;
1477 	struct pagevec pvec;
1478 	struct page *page;
1479 
1480 	pagevec_init(&pvec, 1);
1481 
1482 	while (!list_empty(list)) {
1483 		page = lru_to_page(list);
1484 
1485 		VM_BUG_ON(PageLRU(page));
1486 		SetPageLRU(page);
1487 
1488 		list_move(&page->lru, &zone->lru[lru].list);
1489 		mem_cgroup_add_lru_list(page, lru);
1490 		pgmoved += hpage_nr_pages(page);
1491 
1492 		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1493 			spin_unlock_irq(&zone->lru_lock);
1494 			if (buffer_heads_over_limit)
1495 				pagevec_strip(&pvec);
1496 			__pagevec_release(&pvec);
1497 			spin_lock_irq(&zone->lru_lock);
1498 		}
1499 	}
1500 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1501 	if (!is_active_lru(lru))
1502 		__count_vm_events(PGDEACTIVATE, pgmoved);
1503 }
1504 
1505 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1506 			struct scan_control *sc, int priority, int file)
1507 {
1508 	unsigned long nr_taken;
1509 	unsigned long pgscanned;
1510 	unsigned long vm_flags;
1511 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1512 	LIST_HEAD(l_active);
1513 	LIST_HEAD(l_inactive);
1514 	struct page *page;
1515 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1516 	unsigned long nr_rotated = 0;
1517 
1518 	lru_add_drain();
1519 	spin_lock_irq(&zone->lru_lock);
1520 	if (scanning_global_lru(sc)) {
1521 		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1522 						&pgscanned, sc->order,
1523 						ISOLATE_ACTIVE, zone,
1524 						1, file);
1525 		zone->pages_scanned += pgscanned;
1526 	} else {
1527 		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1528 						&pgscanned, sc->order,
1529 						ISOLATE_ACTIVE, zone,
1530 						sc->mem_cgroup, 1, file);
1531 		/*
1532 		 * mem_cgroup_isolate_pages() keeps track of
1533 		 * scanned pages on its own.
1534 		 */
1535 	}
1536 
1537 	reclaim_stat->recent_scanned[file] += nr_taken;
1538 
1539 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1540 	if (file)
1541 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1542 	else
1543 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1544 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1545 	spin_unlock_irq(&zone->lru_lock);
1546 
1547 	while (!list_empty(&l_hold)) {
1548 		cond_resched();
1549 		page = lru_to_page(&l_hold);
1550 		list_del(&page->lru);
1551 
1552 		if (unlikely(!page_evictable(page, NULL))) {
1553 			putback_lru_page(page);
1554 			continue;
1555 		}
1556 
1557 		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1558 			nr_rotated += hpage_nr_pages(page);
1559 			/*
1560 			 * Identify referenced, file-backed active pages and
1561 			 * give them one more trip around the active list. So
1562 			 * that executable code get better chances to stay in
1563 			 * memory under moderate memory pressure.  Anon pages
1564 			 * are not likely to be evicted by use-once streaming
1565 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1566 			 * so we ignore them here.
1567 			 */
1568 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1569 				list_add(&page->lru, &l_active);
1570 				continue;
1571 			}
1572 		}
1573 
1574 		ClearPageActive(page);	/* we are de-activating */
1575 		list_add(&page->lru, &l_inactive);
1576 	}
1577 
1578 	/*
1579 	 * Move pages back to the lru list.
1580 	 */
1581 	spin_lock_irq(&zone->lru_lock);
1582 	/*
1583 	 * Count referenced pages from currently used mappings as rotated,
1584 	 * even though only some of them are actually re-activated.  This
1585 	 * helps balance scan pressure between file and anonymous pages in
1586 	 * get_scan_ratio.
1587 	 */
1588 	reclaim_stat->recent_rotated[file] += nr_rotated;
1589 
1590 	move_active_pages_to_lru(zone, &l_active,
1591 						LRU_ACTIVE + file * LRU_FILE);
1592 	move_active_pages_to_lru(zone, &l_inactive,
1593 						LRU_BASE   + file * LRU_FILE);
1594 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1595 	spin_unlock_irq(&zone->lru_lock);
1596 }
1597 
1598 #ifdef CONFIG_SWAP
1599 static int inactive_anon_is_low_global(struct zone *zone)
1600 {
1601 	unsigned long active, inactive;
1602 
1603 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1604 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1605 
1606 	if (inactive * zone->inactive_ratio < active)
1607 		return 1;
1608 
1609 	return 0;
1610 }
1611 
1612 /**
1613  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1614  * @zone: zone to check
1615  * @sc:   scan control of this context
1616  *
1617  * Returns true if the zone does not have enough inactive anon pages,
1618  * meaning some active anon pages need to be deactivated.
1619  */
1620 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1621 {
1622 	int low;
1623 
1624 	/*
1625 	 * If we don't have swap space, anonymous page deactivation
1626 	 * is pointless.
1627 	 */
1628 	if (!total_swap_pages)
1629 		return 0;
1630 
1631 	if (scanning_global_lru(sc))
1632 		low = inactive_anon_is_low_global(zone);
1633 	else
1634 		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1635 	return low;
1636 }
1637 #else
1638 static inline int inactive_anon_is_low(struct zone *zone,
1639 					struct scan_control *sc)
1640 {
1641 	return 0;
1642 }
1643 #endif
1644 
1645 static int inactive_file_is_low_global(struct zone *zone)
1646 {
1647 	unsigned long active, inactive;
1648 
1649 	active = zone_page_state(zone, NR_ACTIVE_FILE);
1650 	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1651 
1652 	return (active > inactive);
1653 }
1654 
1655 /**
1656  * inactive_file_is_low - check if file pages need to be deactivated
1657  * @zone: zone to check
1658  * @sc:   scan control of this context
1659  *
1660  * When the system is doing streaming IO, memory pressure here
1661  * ensures that active file pages get deactivated, until more
1662  * than half of the file pages are on the inactive list.
1663  *
1664  * Once we get to that situation, protect the system's working
1665  * set from being evicted by disabling active file page aging.
1666  *
1667  * This uses a different ratio than the anonymous pages, because
1668  * the page cache uses a use-once replacement algorithm.
1669  */
1670 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1671 {
1672 	int low;
1673 
1674 	if (scanning_global_lru(sc))
1675 		low = inactive_file_is_low_global(zone);
1676 	else
1677 		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1678 	return low;
1679 }
1680 
1681 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1682 				int file)
1683 {
1684 	if (file)
1685 		return inactive_file_is_low(zone, sc);
1686 	else
1687 		return inactive_anon_is_low(zone, sc);
1688 }
1689 
1690 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1691 	struct zone *zone, struct scan_control *sc, int priority)
1692 {
1693 	int file = is_file_lru(lru);
1694 
1695 	if (is_active_lru(lru)) {
1696 		if (inactive_list_is_low(zone, sc, file))
1697 		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1698 		return 0;
1699 	}
1700 
1701 	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1702 }
1703 
1704 /*
1705  * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1706  * until we collected @swap_cluster_max pages to scan.
1707  */
1708 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1709 				       unsigned long *nr_saved_scan)
1710 {
1711 	unsigned long nr;
1712 
1713 	*nr_saved_scan += nr_to_scan;
1714 	nr = *nr_saved_scan;
1715 
1716 	if (nr >= SWAP_CLUSTER_MAX)
1717 		*nr_saved_scan = 0;
1718 	else
1719 		nr = 0;
1720 
1721 	return nr;
1722 }
1723 
1724 /*
1725  * Determine how aggressively the anon and file LRU lists should be
1726  * scanned.  The relative value of each set of LRU lists is determined
1727  * by looking at the fraction of the pages scanned we did rotate back
1728  * onto the active list instead of evict.
1729  *
1730  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1731  */
1732 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1733 					unsigned long *nr, int priority)
1734 {
1735 	unsigned long anon, file, free;
1736 	unsigned long anon_prio, file_prio;
1737 	unsigned long ap, fp;
1738 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1739 	u64 fraction[2], denominator;
1740 	enum lru_list l;
1741 	int noswap = 0;
1742 
1743 	/* If we have no swap space, do not bother scanning anon pages. */
1744 	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1745 		noswap = 1;
1746 		fraction[0] = 0;
1747 		fraction[1] = 1;
1748 		denominator = 1;
1749 		goto out;
1750 	}
1751 
1752 	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1753 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1754 	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1755 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1756 
1757 	if (scanning_global_lru(sc)) {
1758 		free  = zone_page_state(zone, NR_FREE_PAGES);
1759 		/* If we have very few page cache pages,
1760 		   force-scan anon pages. */
1761 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1762 			fraction[0] = 1;
1763 			fraction[1] = 0;
1764 			denominator = 1;
1765 			goto out;
1766 		}
1767 	}
1768 
1769 	/*
1770 	 * With swappiness at 100, anonymous and file have the same priority.
1771 	 * This scanning priority is essentially the inverse of IO cost.
1772 	 */
1773 	anon_prio = sc->swappiness;
1774 	file_prio = 200 - sc->swappiness;
1775 
1776 	/*
1777 	 * OK, so we have swap space and a fair amount of page cache
1778 	 * pages.  We use the recently rotated / recently scanned
1779 	 * ratios to determine how valuable each cache is.
1780 	 *
1781 	 * Because workloads change over time (and to avoid overflow)
1782 	 * we keep these statistics as a floating average, which ends
1783 	 * up weighing recent references more than old ones.
1784 	 *
1785 	 * anon in [0], file in [1]
1786 	 */
1787 	spin_lock_irq(&zone->lru_lock);
1788 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1789 		reclaim_stat->recent_scanned[0] /= 2;
1790 		reclaim_stat->recent_rotated[0] /= 2;
1791 	}
1792 
1793 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1794 		reclaim_stat->recent_scanned[1] /= 2;
1795 		reclaim_stat->recent_rotated[1] /= 2;
1796 	}
1797 
1798 	/*
1799 	 * The amount of pressure on anon vs file pages is inversely
1800 	 * proportional to the fraction of recently scanned pages on
1801 	 * each list that were recently referenced and in active use.
1802 	 */
1803 	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1804 	ap /= reclaim_stat->recent_rotated[0] + 1;
1805 
1806 	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1807 	fp /= reclaim_stat->recent_rotated[1] + 1;
1808 	spin_unlock_irq(&zone->lru_lock);
1809 
1810 	fraction[0] = ap;
1811 	fraction[1] = fp;
1812 	denominator = ap + fp + 1;
1813 out:
1814 	for_each_evictable_lru(l) {
1815 		int file = is_file_lru(l);
1816 		unsigned long scan;
1817 
1818 		scan = zone_nr_lru_pages(zone, sc, l);
1819 		if (priority || noswap) {
1820 			scan >>= priority;
1821 			scan = div64_u64(scan * fraction[file], denominator);
1822 		}
1823 		nr[l] = nr_scan_try_batch(scan,
1824 					  &reclaim_stat->nr_saved_scan[l]);
1825 	}
1826 }
1827 
1828 /*
1829  * Reclaim/compaction depends on a number of pages being freed. To avoid
1830  * disruption to the system, a small number of order-0 pages continue to be
1831  * rotated and reclaimed in the normal fashion. However, by the time we get
1832  * back to the allocator and call try_to_compact_zone(), we ensure that
1833  * there are enough free pages for it to be likely successful
1834  */
1835 static inline bool should_continue_reclaim(struct zone *zone,
1836 					unsigned long nr_reclaimed,
1837 					unsigned long nr_scanned,
1838 					struct scan_control *sc)
1839 {
1840 	unsigned long pages_for_compaction;
1841 	unsigned long inactive_lru_pages;
1842 
1843 	/* If not in reclaim/compaction mode, stop */
1844 	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1845 		return false;
1846 
1847 	/*
1848 	 * If we failed to reclaim and have scanned the full list, stop.
1849 	 * NOTE: Checking just nr_reclaimed would exit reclaim/compaction far
1850 	 *       faster but obviously would be less likely to succeed
1851 	 *       allocation. If this is desirable, use GFP_REPEAT to decide
1852 	 *       if both reclaimed and scanned should be checked or just
1853 	 *       reclaimed
1854 	 */
1855 	if (!nr_reclaimed && !nr_scanned)
1856 		return false;
1857 
1858 	/*
1859 	 * If we have not reclaimed enough pages for compaction and the
1860 	 * inactive lists are large enough, continue reclaiming
1861 	 */
1862 	pages_for_compaction = (2UL << sc->order);
1863 	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1864 				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1865 	if (sc->nr_reclaimed < pages_for_compaction &&
1866 			inactive_lru_pages > pages_for_compaction)
1867 		return true;
1868 
1869 	/* If compaction would go ahead or the allocation would succeed, stop */
1870 	switch (compaction_suitable(zone, sc->order)) {
1871 	case COMPACT_PARTIAL:
1872 	case COMPACT_CONTINUE:
1873 		return false;
1874 	default:
1875 		return true;
1876 	}
1877 }
1878 
1879 /*
1880  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1881  */
1882 static void shrink_zone(int priority, struct zone *zone,
1883 				struct scan_control *sc)
1884 {
1885 	unsigned long nr[NR_LRU_LISTS];
1886 	unsigned long nr_to_scan;
1887 	enum lru_list l;
1888 	unsigned long nr_reclaimed;
1889 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1890 	unsigned long nr_scanned = sc->nr_scanned;
1891 
1892 restart:
1893 	nr_reclaimed = 0;
1894 	get_scan_count(zone, sc, nr, priority);
1895 
1896 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1897 					nr[LRU_INACTIVE_FILE]) {
1898 		for_each_evictable_lru(l) {
1899 			if (nr[l]) {
1900 				nr_to_scan = min_t(unsigned long,
1901 						   nr[l], SWAP_CLUSTER_MAX);
1902 				nr[l] -= nr_to_scan;
1903 
1904 				nr_reclaimed += shrink_list(l, nr_to_scan,
1905 							    zone, sc, priority);
1906 			}
1907 		}
1908 		/*
1909 		 * On large memory systems, scan >> priority can become
1910 		 * really large. This is fine for the starting priority;
1911 		 * we want to put equal scanning pressure on each zone.
1912 		 * However, if the VM has a harder time of freeing pages,
1913 		 * with multiple processes reclaiming pages, the total
1914 		 * freeing target can get unreasonably large.
1915 		 */
1916 		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1917 			break;
1918 	}
1919 	sc->nr_reclaimed += nr_reclaimed;
1920 
1921 	/*
1922 	 * Even if we did not try to evict anon pages at all, we want to
1923 	 * rebalance the anon lru active/inactive ratio.
1924 	 */
1925 	if (inactive_anon_is_low(zone, sc))
1926 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1927 
1928 	/* reclaim/compaction might need reclaim to continue */
1929 	if (should_continue_reclaim(zone, nr_reclaimed,
1930 					sc->nr_scanned - nr_scanned, sc))
1931 		goto restart;
1932 
1933 	throttle_vm_writeout(sc->gfp_mask);
1934 }
1935 
1936 /*
1937  * This is the direct reclaim path, for page-allocating processes.  We only
1938  * try to reclaim pages from zones which will satisfy the caller's allocation
1939  * request.
1940  *
1941  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1942  * Because:
1943  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1944  *    allocation or
1945  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1946  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1947  *    zone defense algorithm.
1948  *
1949  * If a zone is deemed to be full of pinned pages then just give it a light
1950  * scan then give up on it.
1951  */
1952 static void shrink_zones(int priority, struct zonelist *zonelist,
1953 					struct scan_control *sc)
1954 {
1955 	struct zoneref *z;
1956 	struct zone *zone;
1957 
1958 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1959 					gfp_zone(sc->gfp_mask), sc->nodemask) {
1960 		if (!populated_zone(zone))
1961 			continue;
1962 		/*
1963 		 * Take care memory controller reclaiming has small influence
1964 		 * to global LRU.
1965 		 */
1966 		if (scanning_global_lru(sc)) {
1967 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1968 				continue;
1969 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1970 				continue;	/* Let kswapd poll it */
1971 		}
1972 
1973 		shrink_zone(priority, zone, sc);
1974 	}
1975 }
1976 
1977 static bool zone_reclaimable(struct zone *zone)
1978 {
1979 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1980 }
1981 
1982 /*
1983  * As hibernation is going on, kswapd is freezed so that it can't mark
1984  * the zone into all_unreclaimable. It can't handle OOM during hibernation.
1985  * So let's check zone's unreclaimable in direct reclaim as well as kswapd.
1986  */
1987 static bool all_unreclaimable(struct zonelist *zonelist,
1988 		struct scan_control *sc)
1989 {
1990 	struct zoneref *z;
1991 	struct zone *zone;
1992 	bool all_unreclaimable = true;
1993 
1994 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1995 			gfp_zone(sc->gfp_mask), sc->nodemask) {
1996 		if (!populated_zone(zone))
1997 			continue;
1998 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1999 			continue;
2000 		if (zone_reclaimable(zone)) {
2001 			all_unreclaimable = false;
2002 			break;
2003 		}
2004 	}
2005 
2006 	return all_unreclaimable;
2007 }
2008 
2009 /*
2010  * This is the main entry point to direct page reclaim.
2011  *
2012  * If a full scan of the inactive list fails to free enough memory then we
2013  * are "out of memory" and something needs to be killed.
2014  *
2015  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2016  * high - the zone may be full of dirty or under-writeback pages, which this
2017  * caller can't do much about.  We kick the writeback threads and take explicit
2018  * naps in the hope that some of these pages can be written.  But if the
2019  * allocating task holds filesystem locks which prevent writeout this might not
2020  * work, and the allocation attempt will fail.
2021  *
2022  * returns:	0, if no pages reclaimed
2023  * 		else, the number of pages reclaimed
2024  */
2025 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2026 					struct scan_control *sc)
2027 {
2028 	int priority;
2029 	unsigned long total_scanned = 0;
2030 	struct reclaim_state *reclaim_state = current->reclaim_state;
2031 	struct zoneref *z;
2032 	struct zone *zone;
2033 	unsigned long writeback_threshold;
2034 
2035 	get_mems_allowed();
2036 	delayacct_freepages_start();
2037 
2038 	if (scanning_global_lru(sc))
2039 		count_vm_event(ALLOCSTALL);
2040 
2041 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2042 		sc->nr_scanned = 0;
2043 		if (!priority)
2044 			disable_swap_token();
2045 		shrink_zones(priority, zonelist, sc);
2046 		/*
2047 		 * Don't shrink slabs when reclaiming memory from
2048 		 * over limit cgroups
2049 		 */
2050 		if (scanning_global_lru(sc)) {
2051 			unsigned long lru_pages = 0;
2052 			for_each_zone_zonelist(zone, z, zonelist,
2053 					gfp_zone(sc->gfp_mask)) {
2054 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2055 					continue;
2056 
2057 				lru_pages += zone_reclaimable_pages(zone);
2058 			}
2059 
2060 			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
2061 			if (reclaim_state) {
2062 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2063 				reclaim_state->reclaimed_slab = 0;
2064 			}
2065 		}
2066 		total_scanned += sc->nr_scanned;
2067 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2068 			goto out;
2069 
2070 		/*
2071 		 * Try to write back as many pages as we just scanned.  This
2072 		 * tends to cause slow streaming writers to write data to the
2073 		 * disk smoothly, at the dirtying rate, which is nice.   But
2074 		 * that's undesirable in laptop mode, where we *want* lumpy
2075 		 * writeout.  So in laptop mode, write out the whole world.
2076 		 */
2077 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2078 		if (total_scanned > writeback_threshold) {
2079 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2080 			sc->may_writepage = 1;
2081 		}
2082 
2083 		/* Take a nap, wait for some writeback to complete */
2084 		if (!sc->hibernation_mode && sc->nr_scanned &&
2085 		    priority < DEF_PRIORITY - 2) {
2086 			struct zone *preferred_zone;
2087 
2088 			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2089 							NULL, &preferred_zone);
2090 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2091 		}
2092 	}
2093 
2094 out:
2095 	delayacct_freepages_end();
2096 	put_mems_allowed();
2097 
2098 	if (sc->nr_reclaimed)
2099 		return sc->nr_reclaimed;
2100 
2101 	/* top priority shrink_zones still had more to do? don't OOM, then */
2102 	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2103 		return 1;
2104 
2105 	return 0;
2106 }
2107 
2108 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2109 				gfp_t gfp_mask, nodemask_t *nodemask)
2110 {
2111 	unsigned long nr_reclaimed;
2112 	struct scan_control sc = {
2113 		.gfp_mask = gfp_mask,
2114 		.may_writepage = !laptop_mode,
2115 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2116 		.may_unmap = 1,
2117 		.may_swap = 1,
2118 		.swappiness = vm_swappiness,
2119 		.order = order,
2120 		.mem_cgroup = NULL,
2121 		.nodemask = nodemask,
2122 	};
2123 
2124 	trace_mm_vmscan_direct_reclaim_begin(order,
2125 				sc.may_writepage,
2126 				gfp_mask);
2127 
2128 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2129 
2130 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2131 
2132 	return nr_reclaimed;
2133 }
2134 
2135 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2136 
2137 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2138 						gfp_t gfp_mask, bool noswap,
2139 						unsigned int swappiness,
2140 						struct zone *zone)
2141 {
2142 	struct scan_control sc = {
2143 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2144 		.may_writepage = !laptop_mode,
2145 		.may_unmap = 1,
2146 		.may_swap = !noswap,
2147 		.swappiness = swappiness,
2148 		.order = 0,
2149 		.mem_cgroup = mem,
2150 	};
2151 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2152 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2153 
2154 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2155 						      sc.may_writepage,
2156 						      sc.gfp_mask);
2157 
2158 	/*
2159 	 * NOTE: Although we can get the priority field, using it
2160 	 * here is not a good idea, since it limits the pages we can scan.
2161 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2162 	 * will pick up pages from other mem cgroup's as well. We hack
2163 	 * the priority and make it zero.
2164 	 */
2165 	shrink_zone(0, zone, &sc);
2166 
2167 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2168 
2169 	return sc.nr_reclaimed;
2170 }
2171 
2172 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2173 					   gfp_t gfp_mask,
2174 					   bool noswap,
2175 					   unsigned int swappiness)
2176 {
2177 	struct zonelist *zonelist;
2178 	unsigned long nr_reclaimed;
2179 	struct scan_control sc = {
2180 		.may_writepage = !laptop_mode,
2181 		.may_unmap = 1,
2182 		.may_swap = !noswap,
2183 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2184 		.swappiness = swappiness,
2185 		.order = 0,
2186 		.mem_cgroup = mem_cont,
2187 		.nodemask = NULL, /* we don't care the placement */
2188 	};
2189 
2190 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2191 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2192 	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2193 
2194 	trace_mm_vmscan_memcg_reclaim_begin(0,
2195 					    sc.may_writepage,
2196 					    sc.gfp_mask);
2197 
2198 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2199 
2200 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2201 
2202 	return nr_reclaimed;
2203 }
2204 #endif
2205 
2206 /*
2207  * pgdat_balanced is used when checking if a node is balanced for high-order
2208  * allocations. Only zones that meet watermarks and are in a zone allowed
2209  * by the callers classzone_idx are added to balanced_pages. The total of
2210  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2211  * for the node to be considered balanced. Forcing all zones to be balanced
2212  * for high orders can cause excessive reclaim when there are imbalanced zones.
2213  * The choice of 25% is due to
2214  *   o a 16M DMA zone that is balanced will not balance a zone on any
2215  *     reasonable sized machine
2216  *   o On all other machines, the top zone must be at least a reasonable
2217  *     precentage of the middle zones. For example, on 32-bit x86, highmem
2218  *     would need to be at least 256M for it to be balance a whole node.
2219  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2220  *     to balance a node on its own. These seemed like reasonable ratios.
2221  */
2222 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2223 						int classzone_idx)
2224 {
2225 	unsigned long present_pages = 0;
2226 	int i;
2227 
2228 	for (i = 0; i <= classzone_idx; i++)
2229 		present_pages += pgdat->node_zones[i].present_pages;
2230 
2231 	return balanced_pages > (present_pages >> 2);
2232 }
2233 
2234 /* is kswapd sleeping prematurely? */
2235 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2236 					int classzone_idx)
2237 {
2238 	int i;
2239 	unsigned long balanced = 0;
2240 	bool all_zones_ok = true;
2241 
2242 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2243 	if (remaining)
2244 		return true;
2245 
2246 	/* Check the watermark levels */
2247 	for (i = 0; i < pgdat->nr_zones; i++) {
2248 		struct zone *zone = pgdat->node_zones + i;
2249 
2250 		if (!populated_zone(zone))
2251 			continue;
2252 
2253 		/*
2254 		 * balance_pgdat() skips over all_unreclaimable after
2255 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2256 		 * they must be considered balanced here as well if kswapd
2257 		 * is to sleep
2258 		 */
2259 		if (zone->all_unreclaimable) {
2260 			balanced += zone->present_pages;
2261 			continue;
2262 		}
2263 
2264 		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2265 							classzone_idx, 0))
2266 			all_zones_ok = false;
2267 		else
2268 			balanced += zone->present_pages;
2269 	}
2270 
2271 	/*
2272 	 * For high-order requests, the balanced zones must contain at least
2273 	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2274 	 * must be balanced
2275 	 */
2276 	if (order)
2277 		return pgdat_balanced(pgdat, balanced, classzone_idx);
2278 	else
2279 		return !all_zones_ok;
2280 }
2281 
2282 /*
2283  * For kswapd, balance_pgdat() will work across all this node's zones until
2284  * they are all at high_wmark_pages(zone).
2285  *
2286  * Returns the final order kswapd was reclaiming at
2287  *
2288  * There is special handling here for zones which are full of pinned pages.
2289  * This can happen if the pages are all mlocked, or if they are all used by
2290  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2291  * What we do is to detect the case where all pages in the zone have been
2292  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2293  * dead and from now on, only perform a short scan.  Basically we're polling
2294  * the zone for when the problem goes away.
2295  *
2296  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2297  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2298  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2299  * lower zones regardless of the number of free pages in the lower zones. This
2300  * interoperates with the page allocator fallback scheme to ensure that aging
2301  * of pages is balanced across the zones.
2302  */
2303 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2304 							int *classzone_idx)
2305 {
2306 	int all_zones_ok;
2307 	unsigned long balanced;
2308 	int priority;
2309 	int i;
2310 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2311 	unsigned long total_scanned;
2312 	struct reclaim_state *reclaim_state = current->reclaim_state;
2313 	struct scan_control sc = {
2314 		.gfp_mask = GFP_KERNEL,
2315 		.may_unmap = 1,
2316 		.may_swap = 1,
2317 		/*
2318 		 * kswapd doesn't want to be bailed out while reclaim. because
2319 		 * we want to put equal scanning pressure on each zone.
2320 		 */
2321 		.nr_to_reclaim = ULONG_MAX,
2322 		.swappiness = vm_swappiness,
2323 		.order = order,
2324 		.mem_cgroup = NULL,
2325 	};
2326 loop_again:
2327 	total_scanned = 0;
2328 	sc.nr_reclaimed = 0;
2329 	sc.may_writepage = !laptop_mode;
2330 	count_vm_event(PAGEOUTRUN);
2331 
2332 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2333 		unsigned long lru_pages = 0;
2334 		int has_under_min_watermark_zone = 0;
2335 
2336 		/* The swap token gets in the way of swapout... */
2337 		if (!priority)
2338 			disable_swap_token();
2339 
2340 		all_zones_ok = 1;
2341 		balanced = 0;
2342 
2343 		/*
2344 		 * Scan in the highmem->dma direction for the highest
2345 		 * zone which needs scanning
2346 		 */
2347 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2348 			struct zone *zone = pgdat->node_zones + i;
2349 
2350 			if (!populated_zone(zone))
2351 				continue;
2352 
2353 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2354 				continue;
2355 
2356 			/*
2357 			 * Do some background aging of the anon list, to give
2358 			 * pages a chance to be referenced before reclaiming.
2359 			 */
2360 			if (inactive_anon_is_low(zone, &sc))
2361 				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2362 							&sc, priority, 0);
2363 
2364 			if (!zone_watermark_ok_safe(zone, order,
2365 					high_wmark_pages(zone), 0, 0)) {
2366 				end_zone = i;
2367 				*classzone_idx = i;
2368 				break;
2369 			}
2370 		}
2371 		if (i < 0)
2372 			goto out;
2373 
2374 		for (i = 0; i <= end_zone; i++) {
2375 			struct zone *zone = pgdat->node_zones + i;
2376 
2377 			lru_pages += zone_reclaimable_pages(zone);
2378 		}
2379 
2380 		/*
2381 		 * Now scan the zone in the dma->highmem direction, stopping
2382 		 * at the last zone which needs scanning.
2383 		 *
2384 		 * We do this because the page allocator works in the opposite
2385 		 * direction.  This prevents the page allocator from allocating
2386 		 * pages behind kswapd's direction of progress, which would
2387 		 * cause too much scanning of the lower zones.
2388 		 */
2389 		for (i = 0; i <= end_zone; i++) {
2390 			int compaction;
2391 			struct zone *zone = pgdat->node_zones + i;
2392 			int nr_slab;
2393 
2394 			if (!populated_zone(zone))
2395 				continue;
2396 
2397 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2398 				continue;
2399 
2400 			sc.nr_scanned = 0;
2401 
2402 			/*
2403 			 * Call soft limit reclaim before calling shrink_zone.
2404 			 * For now we ignore the return value
2405 			 */
2406 			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2407 
2408 			/*
2409 			 * We put equal pressure on every zone, unless one
2410 			 * zone has way too many pages free already.
2411 			 */
2412 			if (!zone_watermark_ok_safe(zone, order,
2413 					8*high_wmark_pages(zone), end_zone, 0))
2414 				shrink_zone(priority, zone, &sc);
2415 			reclaim_state->reclaimed_slab = 0;
2416 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2417 						lru_pages);
2418 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2419 			total_scanned += sc.nr_scanned;
2420 
2421 			compaction = 0;
2422 			if (order &&
2423 			    zone_watermark_ok(zone, 0,
2424 					       high_wmark_pages(zone),
2425 					      end_zone, 0) &&
2426 			    !zone_watermark_ok(zone, order,
2427 					       high_wmark_pages(zone),
2428 					       end_zone, 0)) {
2429 				compact_zone_order(zone,
2430 						   order,
2431 						   sc.gfp_mask, false,
2432 						   COMPACT_MODE_KSWAPD);
2433 				compaction = 1;
2434 			}
2435 
2436 			if (zone->all_unreclaimable)
2437 				continue;
2438 			if (!compaction && nr_slab == 0 &&
2439 			    !zone_reclaimable(zone))
2440 				zone->all_unreclaimable = 1;
2441 			/*
2442 			 * If we've done a decent amount of scanning and
2443 			 * the reclaim ratio is low, start doing writepage
2444 			 * even in laptop mode
2445 			 */
2446 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2447 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2448 				sc.may_writepage = 1;
2449 
2450 			if (!zone_watermark_ok_safe(zone, order,
2451 					high_wmark_pages(zone), end_zone, 0)) {
2452 				all_zones_ok = 0;
2453 				/*
2454 				 * We are still under min water mark.  This
2455 				 * means that we have a GFP_ATOMIC allocation
2456 				 * failure risk. Hurry up!
2457 				 */
2458 				if (!zone_watermark_ok_safe(zone, order,
2459 					    min_wmark_pages(zone), end_zone, 0))
2460 					has_under_min_watermark_zone = 1;
2461 			} else {
2462 				/*
2463 				 * If a zone reaches its high watermark,
2464 				 * consider it to be no longer congested. It's
2465 				 * possible there are dirty pages backed by
2466 				 * congested BDIs but as pressure is relieved,
2467 				 * spectulatively avoid congestion waits
2468 				 */
2469 				zone_clear_flag(zone, ZONE_CONGESTED);
2470 				if (i <= *classzone_idx)
2471 					balanced += zone->present_pages;
2472 			}
2473 
2474 		}
2475 		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2476 			break;		/* kswapd: all done */
2477 		/*
2478 		 * OK, kswapd is getting into trouble.  Take a nap, then take
2479 		 * another pass across the zones.
2480 		 */
2481 		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2482 			if (has_under_min_watermark_zone)
2483 				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2484 			else
2485 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2486 		}
2487 
2488 		/*
2489 		 * We do this so kswapd doesn't build up large priorities for
2490 		 * example when it is freeing in parallel with allocators. It
2491 		 * matches the direct reclaim path behaviour in terms of impact
2492 		 * on zone->*_priority.
2493 		 */
2494 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2495 			break;
2496 	}
2497 out:
2498 
2499 	/*
2500 	 * order-0: All zones must meet high watermark for a balanced node
2501 	 * high-order: Balanced zones must make up at least 25% of the node
2502 	 *             for the node to be balanced
2503 	 */
2504 	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2505 		cond_resched();
2506 
2507 		try_to_freeze();
2508 
2509 		/*
2510 		 * Fragmentation may mean that the system cannot be
2511 		 * rebalanced for high-order allocations in all zones.
2512 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2513 		 * it means the zones have been fully scanned and are still
2514 		 * not balanced. For high-order allocations, there is
2515 		 * little point trying all over again as kswapd may
2516 		 * infinite loop.
2517 		 *
2518 		 * Instead, recheck all watermarks at order-0 as they
2519 		 * are the most important. If watermarks are ok, kswapd will go
2520 		 * back to sleep. High-order users can still perform direct
2521 		 * reclaim if they wish.
2522 		 */
2523 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2524 			order = sc.order = 0;
2525 
2526 		goto loop_again;
2527 	}
2528 
2529 	/*
2530 	 * If kswapd was reclaiming at a higher order, it has the option of
2531 	 * sleeping without all zones being balanced. Before it does, it must
2532 	 * ensure that the watermarks for order-0 on *all* zones are met and
2533 	 * that the congestion flags are cleared. The congestion flag must
2534 	 * be cleared as kswapd is the only mechanism that clears the flag
2535 	 * and it is potentially going to sleep here.
2536 	 */
2537 	if (order) {
2538 		for (i = 0; i <= end_zone; i++) {
2539 			struct zone *zone = pgdat->node_zones + i;
2540 
2541 			if (!populated_zone(zone))
2542 				continue;
2543 
2544 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2545 				continue;
2546 
2547 			/* Confirm the zone is balanced for order-0 */
2548 			if (!zone_watermark_ok(zone, 0,
2549 					high_wmark_pages(zone), 0, 0)) {
2550 				order = sc.order = 0;
2551 				goto loop_again;
2552 			}
2553 
2554 			/* If balanced, clear the congested flag */
2555 			zone_clear_flag(zone, ZONE_CONGESTED);
2556 		}
2557 	}
2558 
2559 	/*
2560 	 * Return the order we were reclaiming at so sleeping_prematurely()
2561 	 * makes a decision on the order we were last reclaiming at. However,
2562 	 * if another caller entered the allocator slow path while kswapd
2563 	 * was awake, order will remain at the higher level
2564 	 */
2565 	*classzone_idx = end_zone;
2566 	return order;
2567 }
2568 
2569 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2570 {
2571 	long remaining = 0;
2572 	DEFINE_WAIT(wait);
2573 
2574 	if (freezing(current) || kthread_should_stop())
2575 		return;
2576 
2577 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2578 
2579 	/* Try to sleep for a short interval */
2580 	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2581 		remaining = schedule_timeout(HZ/10);
2582 		finish_wait(&pgdat->kswapd_wait, &wait);
2583 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2584 	}
2585 
2586 	/*
2587 	 * After a short sleep, check if it was a premature sleep. If not, then
2588 	 * go fully to sleep until explicitly woken up.
2589 	 */
2590 	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2591 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2592 
2593 		/*
2594 		 * vmstat counters are not perfectly accurate and the estimated
2595 		 * value for counters such as NR_FREE_PAGES can deviate from the
2596 		 * true value by nr_online_cpus * threshold. To avoid the zone
2597 		 * watermarks being breached while under pressure, we reduce the
2598 		 * per-cpu vmstat threshold while kswapd is awake and restore
2599 		 * them before going back to sleep.
2600 		 */
2601 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2602 		schedule();
2603 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2604 	} else {
2605 		if (remaining)
2606 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2607 		else
2608 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2609 	}
2610 	finish_wait(&pgdat->kswapd_wait, &wait);
2611 }
2612 
2613 /*
2614  * The background pageout daemon, started as a kernel thread
2615  * from the init process.
2616  *
2617  * This basically trickles out pages so that we have _some_
2618  * free memory available even if there is no other activity
2619  * that frees anything up. This is needed for things like routing
2620  * etc, where we otherwise might have all activity going on in
2621  * asynchronous contexts that cannot page things out.
2622  *
2623  * If there are applications that are active memory-allocators
2624  * (most normal use), this basically shouldn't matter.
2625  */
2626 static int kswapd(void *p)
2627 {
2628 	unsigned long order;
2629 	int classzone_idx;
2630 	pg_data_t *pgdat = (pg_data_t*)p;
2631 	struct task_struct *tsk = current;
2632 
2633 	struct reclaim_state reclaim_state = {
2634 		.reclaimed_slab = 0,
2635 	};
2636 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2637 
2638 	lockdep_set_current_reclaim_state(GFP_KERNEL);
2639 
2640 	if (!cpumask_empty(cpumask))
2641 		set_cpus_allowed_ptr(tsk, cpumask);
2642 	current->reclaim_state = &reclaim_state;
2643 
2644 	/*
2645 	 * Tell the memory management that we're a "memory allocator",
2646 	 * and that if we need more memory we should get access to it
2647 	 * regardless (see "__alloc_pages()"). "kswapd" should
2648 	 * never get caught in the normal page freeing logic.
2649 	 *
2650 	 * (Kswapd normally doesn't need memory anyway, but sometimes
2651 	 * you need a small amount of memory in order to be able to
2652 	 * page out something else, and this flag essentially protects
2653 	 * us from recursively trying to free more memory as we're
2654 	 * trying to free the first piece of memory in the first place).
2655 	 */
2656 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2657 	set_freezable();
2658 
2659 	order = 0;
2660 	classzone_idx = MAX_NR_ZONES - 1;
2661 	for ( ; ; ) {
2662 		unsigned long new_order;
2663 		int new_classzone_idx;
2664 		int ret;
2665 
2666 		new_order = pgdat->kswapd_max_order;
2667 		new_classzone_idx = pgdat->classzone_idx;
2668 		pgdat->kswapd_max_order = 0;
2669 		pgdat->classzone_idx = MAX_NR_ZONES - 1;
2670 		if (order < new_order || classzone_idx > new_classzone_idx) {
2671 			/*
2672 			 * Don't sleep if someone wants a larger 'order'
2673 			 * allocation or has tigher zone constraints
2674 			 */
2675 			order = new_order;
2676 			classzone_idx = new_classzone_idx;
2677 		} else {
2678 			kswapd_try_to_sleep(pgdat, order, classzone_idx);
2679 			order = pgdat->kswapd_max_order;
2680 			classzone_idx = pgdat->classzone_idx;
2681 			pgdat->kswapd_max_order = 0;
2682 			pgdat->classzone_idx = MAX_NR_ZONES - 1;
2683 		}
2684 
2685 		ret = try_to_freeze();
2686 		if (kthread_should_stop())
2687 			break;
2688 
2689 		/*
2690 		 * We can speed up thawing tasks if we don't call balance_pgdat
2691 		 * after returning from the refrigerator
2692 		 */
2693 		if (!ret) {
2694 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2695 			order = balance_pgdat(pgdat, order, &classzone_idx);
2696 		}
2697 	}
2698 	return 0;
2699 }
2700 
2701 /*
2702  * A zone is low on free memory, so wake its kswapd task to service it.
2703  */
2704 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2705 {
2706 	pg_data_t *pgdat;
2707 
2708 	if (!populated_zone(zone))
2709 		return;
2710 
2711 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2712 		return;
2713 	pgdat = zone->zone_pgdat;
2714 	if (pgdat->kswapd_max_order < order) {
2715 		pgdat->kswapd_max_order = order;
2716 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2717 	}
2718 	if (!waitqueue_active(&pgdat->kswapd_wait))
2719 		return;
2720 	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2721 		return;
2722 
2723 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2724 	wake_up_interruptible(&pgdat->kswapd_wait);
2725 }
2726 
2727 /*
2728  * The reclaimable count would be mostly accurate.
2729  * The less reclaimable pages may be
2730  * - mlocked pages, which will be moved to unevictable list when encountered
2731  * - mapped pages, which may require several travels to be reclaimed
2732  * - dirty pages, which is not "instantly" reclaimable
2733  */
2734 unsigned long global_reclaimable_pages(void)
2735 {
2736 	int nr;
2737 
2738 	nr = global_page_state(NR_ACTIVE_FILE) +
2739 	     global_page_state(NR_INACTIVE_FILE);
2740 
2741 	if (nr_swap_pages > 0)
2742 		nr += global_page_state(NR_ACTIVE_ANON) +
2743 		      global_page_state(NR_INACTIVE_ANON);
2744 
2745 	return nr;
2746 }
2747 
2748 unsigned long zone_reclaimable_pages(struct zone *zone)
2749 {
2750 	int nr;
2751 
2752 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2753 	     zone_page_state(zone, NR_INACTIVE_FILE);
2754 
2755 	if (nr_swap_pages > 0)
2756 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2757 		      zone_page_state(zone, NR_INACTIVE_ANON);
2758 
2759 	return nr;
2760 }
2761 
2762 #ifdef CONFIG_HIBERNATION
2763 /*
2764  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2765  * freed pages.
2766  *
2767  * Rather than trying to age LRUs the aim is to preserve the overall
2768  * LRU order by reclaiming preferentially
2769  * inactive > active > active referenced > active mapped
2770  */
2771 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2772 {
2773 	struct reclaim_state reclaim_state;
2774 	struct scan_control sc = {
2775 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2776 		.may_swap = 1,
2777 		.may_unmap = 1,
2778 		.may_writepage = 1,
2779 		.nr_to_reclaim = nr_to_reclaim,
2780 		.hibernation_mode = 1,
2781 		.swappiness = vm_swappiness,
2782 		.order = 0,
2783 	};
2784 	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2785 	struct task_struct *p = current;
2786 	unsigned long nr_reclaimed;
2787 
2788 	p->flags |= PF_MEMALLOC;
2789 	lockdep_set_current_reclaim_state(sc.gfp_mask);
2790 	reclaim_state.reclaimed_slab = 0;
2791 	p->reclaim_state = &reclaim_state;
2792 
2793 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2794 
2795 	p->reclaim_state = NULL;
2796 	lockdep_clear_current_reclaim_state();
2797 	p->flags &= ~PF_MEMALLOC;
2798 
2799 	return nr_reclaimed;
2800 }
2801 #endif /* CONFIG_HIBERNATION */
2802 
2803 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2804    not required for correctness.  So if the last cpu in a node goes
2805    away, we get changed to run anywhere: as the first one comes back,
2806    restore their cpu bindings. */
2807 static int __devinit cpu_callback(struct notifier_block *nfb,
2808 				  unsigned long action, void *hcpu)
2809 {
2810 	int nid;
2811 
2812 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2813 		for_each_node_state(nid, N_HIGH_MEMORY) {
2814 			pg_data_t *pgdat = NODE_DATA(nid);
2815 			const struct cpumask *mask;
2816 
2817 			mask = cpumask_of_node(pgdat->node_id);
2818 
2819 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2820 				/* One of our CPUs online: restore mask */
2821 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2822 		}
2823 	}
2824 	return NOTIFY_OK;
2825 }
2826 
2827 /*
2828  * This kswapd start function will be called by init and node-hot-add.
2829  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2830  */
2831 int kswapd_run(int nid)
2832 {
2833 	pg_data_t *pgdat = NODE_DATA(nid);
2834 	int ret = 0;
2835 
2836 	if (pgdat->kswapd)
2837 		return 0;
2838 
2839 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2840 	if (IS_ERR(pgdat->kswapd)) {
2841 		/* failure at boot is fatal */
2842 		BUG_ON(system_state == SYSTEM_BOOTING);
2843 		printk("Failed to start kswapd on node %d\n",nid);
2844 		ret = -1;
2845 	}
2846 	return ret;
2847 }
2848 
2849 /*
2850  * Called by memory hotplug when all memory in a node is offlined.
2851  */
2852 void kswapd_stop(int nid)
2853 {
2854 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2855 
2856 	if (kswapd)
2857 		kthread_stop(kswapd);
2858 }
2859 
2860 static int __init kswapd_init(void)
2861 {
2862 	int nid;
2863 
2864 	swap_setup();
2865 	for_each_node_state(nid, N_HIGH_MEMORY)
2866  		kswapd_run(nid);
2867 	hotcpu_notifier(cpu_callback, 0);
2868 	return 0;
2869 }
2870 
2871 module_init(kswapd_init)
2872 
2873 #ifdef CONFIG_NUMA
2874 /*
2875  * Zone reclaim mode
2876  *
2877  * If non-zero call zone_reclaim when the number of free pages falls below
2878  * the watermarks.
2879  */
2880 int zone_reclaim_mode __read_mostly;
2881 
2882 #define RECLAIM_OFF 0
2883 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2884 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2885 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2886 
2887 /*
2888  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2889  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2890  * a zone.
2891  */
2892 #define ZONE_RECLAIM_PRIORITY 4
2893 
2894 /*
2895  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2896  * occur.
2897  */
2898 int sysctl_min_unmapped_ratio = 1;
2899 
2900 /*
2901  * If the number of slab pages in a zone grows beyond this percentage then
2902  * slab reclaim needs to occur.
2903  */
2904 int sysctl_min_slab_ratio = 5;
2905 
2906 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2907 {
2908 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2909 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2910 		zone_page_state(zone, NR_ACTIVE_FILE);
2911 
2912 	/*
2913 	 * It's possible for there to be more file mapped pages than
2914 	 * accounted for by the pages on the file LRU lists because
2915 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2916 	 */
2917 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2918 }
2919 
2920 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2921 static long zone_pagecache_reclaimable(struct zone *zone)
2922 {
2923 	long nr_pagecache_reclaimable;
2924 	long delta = 0;
2925 
2926 	/*
2927 	 * If RECLAIM_SWAP is set, then all file pages are considered
2928 	 * potentially reclaimable. Otherwise, we have to worry about
2929 	 * pages like swapcache and zone_unmapped_file_pages() provides
2930 	 * a better estimate
2931 	 */
2932 	if (zone_reclaim_mode & RECLAIM_SWAP)
2933 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2934 	else
2935 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2936 
2937 	/* If we can't clean pages, remove dirty pages from consideration */
2938 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
2939 		delta += zone_page_state(zone, NR_FILE_DIRTY);
2940 
2941 	/* Watch for any possible underflows due to delta */
2942 	if (unlikely(delta > nr_pagecache_reclaimable))
2943 		delta = nr_pagecache_reclaimable;
2944 
2945 	return nr_pagecache_reclaimable - delta;
2946 }
2947 
2948 /*
2949  * Try to free up some pages from this zone through reclaim.
2950  */
2951 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2952 {
2953 	/* Minimum pages needed in order to stay on node */
2954 	const unsigned long nr_pages = 1 << order;
2955 	struct task_struct *p = current;
2956 	struct reclaim_state reclaim_state;
2957 	int priority;
2958 	struct scan_control sc = {
2959 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2960 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2961 		.may_swap = 1,
2962 		.nr_to_reclaim = max_t(unsigned long, nr_pages,
2963 				       SWAP_CLUSTER_MAX),
2964 		.gfp_mask = gfp_mask,
2965 		.swappiness = vm_swappiness,
2966 		.order = order,
2967 	};
2968 	unsigned long nr_slab_pages0, nr_slab_pages1;
2969 
2970 	cond_resched();
2971 	/*
2972 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2973 	 * and we also need to be able to write out pages for RECLAIM_WRITE
2974 	 * and RECLAIM_SWAP.
2975 	 */
2976 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2977 	lockdep_set_current_reclaim_state(gfp_mask);
2978 	reclaim_state.reclaimed_slab = 0;
2979 	p->reclaim_state = &reclaim_state;
2980 
2981 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2982 		/*
2983 		 * Free memory by calling shrink zone with increasing
2984 		 * priorities until we have enough memory freed.
2985 		 */
2986 		priority = ZONE_RECLAIM_PRIORITY;
2987 		do {
2988 			shrink_zone(priority, zone, &sc);
2989 			priority--;
2990 		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2991 	}
2992 
2993 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2994 	if (nr_slab_pages0 > zone->min_slab_pages) {
2995 		/*
2996 		 * shrink_slab() does not currently allow us to determine how
2997 		 * many pages were freed in this zone. So we take the current
2998 		 * number of slab pages and shake the slab until it is reduced
2999 		 * by the same nr_pages that we used for reclaiming unmapped
3000 		 * pages.
3001 		 *
3002 		 * Note that shrink_slab will free memory on all zones and may
3003 		 * take a long time.
3004 		 */
3005 		for (;;) {
3006 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3007 
3008 			/* No reclaimable slab or very low memory pressure */
3009 			if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
3010 				break;
3011 
3012 			/* Freed enough memory */
3013 			nr_slab_pages1 = zone_page_state(zone,
3014 							NR_SLAB_RECLAIMABLE);
3015 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3016 				break;
3017 		}
3018 
3019 		/*
3020 		 * Update nr_reclaimed by the number of slab pages we
3021 		 * reclaimed from this zone.
3022 		 */
3023 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3024 		if (nr_slab_pages1 < nr_slab_pages0)
3025 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3026 	}
3027 
3028 	p->reclaim_state = NULL;
3029 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3030 	lockdep_clear_current_reclaim_state();
3031 	return sc.nr_reclaimed >= nr_pages;
3032 }
3033 
3034 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3035 {
3036 	int node_id;
3037 	int ret;
3038 
3039 	/*
3040 	 * Zone reclaim reclaims unmapped file backed pages and
3041 	 * slab pages if we are over the defined limits.
3042 	 *
3043 	 * A small portion of unmapped file backed pages is needed for
3044 	 * file I/O otherwise pages read by file I/O will be immediately
3045 	 * thrown out if the zone is overallocated. So we do not reclaim
3046 	 * if less than a specified percentage of the zone is used by
3047 	 * unmapped file backed pages.
3048 	 */
3049 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3050 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3051 		return ZONE_RECLAIM_FULL;
3052 
3053 	if (zone->all_unreclaimable)
3054 		return ZONE_RECLAIM_FULL;
3055 
3056 	/*
3057 	 * Do not scan if the allocation should not be delayed.
3058 	 */
3059 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3060 		return ZONE_RECLAIM_NOSCAN;
3061 
3062 	/*
3063 	 * Only run zone reclaim on the local zone or on zones that do not
3064 	 * have associated processors. This will favor the local processor
3065 	 * over remote processors and spread off node memory allocations
3066 	 * as wide as possible.
3067 	 */
3068 	node_id = zone_to_nid(zone);
3069 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3070 		return ZONE_RECLAIM_NOSCAN;
3071 
3072 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3073 		return ZONE_RECLAIM_NOSCAN;
3074 
3075 	ret = __zone_reclaim(zone, gfp_mask, order);
3076 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3077 
3078 	if (!ret)
3079 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3080 
3081 	return ret;
3082 }
3083 #endif
3084 
3085 /*
3086  * page_evictable - test whether a page is evictable
3087  * @page: the page to test
3088  * @vma: the VMA in which the page is or will be mapped, may be NULL
3089  *
3090  * Test whether page is evictable--i.e., should be placed on active/inactive
3091  * lists vs unevictable list.  The vma argument is !NULL when called from the
3092  * fault path to determine how to instantate a new page.
3093  *
3094  * Reasons page might not be evictable:
3095  * (1) page's mapping marked unevictable
3096  * (2) page is part of an mlocked VMA
3097  *
3098  */
3099 int page_evictable(struct page *page, struct vm_area_struct *vma)
3100 {
3101 
3102 	if (mapping_unevictable(page_mapping(page)))
3103 		return 0;
3104 
3105 	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3106 		return 0;
3107 
3108 	return 1;
3109 }
3110 
3111 /**
3112  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3113  * @page: page to check evictability and move to appropriate lru list
3114  * @zone: zone page is in
3115  *
3116  * Checks a page for evictability and moves the page to the appropriate
3117  * zone lru list.
3118  *
3119  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3120  * have PageUnevictable set.
3121  */
3122 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3123 {
3124 	VM_BUG_ON(PageActive(page));
3125 
3126 retry:
3127 	ClearPageUnevictable(page);
3128 	if (page_evictable(page, NULL)) {
3129 		enum lru_list l = page_lru_base_type(page);
3130 
3131 		__dec_zone_state(zone, NR_UNEVICTABLE);
3132 		list_move(&page->lru, &zone->lru[l].list);
3133 		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3134 		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3135 		__count_vm_event(UNEVICTABLE_PGRESCUED);
3136 	} else {
3137 		/*
3138 		 * rotate unevictable list
3139 		 */
3140 		SetPageUnevictable(page);
3141 		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3142 		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3143 		if (page_evictable(page, NULL))
3144 			goto retry;
3145 	}
3146 }
3147 
3148 /**
3149  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3150  * @mapping: struct address_space to scan for evictable pages
3151  *
3152  * Scan all pages in mapping.  Check unevictable pages for
3153  * evictability and move them to the appropriate zone lru list.
3154  */
3155 void scan_mapping_unevictable_pages(struct address_space *mapping)
3156 {
3157 	pgoff_t next = 0;
3158 	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3159 			 PAGE_CACHE_SHIFT;
3160 	struct zone *zone;
3161 	struct pagevec pvec;
3162 
3163 	if (mapping->nrpages == 0)
3164 		return;
3165 
3166 	pagevec_init(&pvec, 0);
3167 	while (next < end &&
3168 		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3169 		int i;
3170 		int pg_scanned = 0;
3171 
3172 		zone = NULL;
3173 
3174 		for (i = 0; i < pagevec_count(&pvec); i++) {
3175 			struct page *page = pvec.pages[i];
3176 			pgoff_t page_index = page->index;
3177 			struct zone *pagezone = page_zone(page);
3178 
3179 			pg_scanned++;
3180 			if (page_index > next)
3181 				next = page_index;
3182 			next++;
3183 
3184 			if (pagezone != zone) {
3185 				if (zone)
3186 					spin_unlock_irq(&zone->lru_lock);
3187 				zone = pagezone;
3188 				spin_lock_irq(&zone->lru_lock);
3189 			}
3190 
3191 			if (PageLRU(page) && PageUnevictable(page))
3192 				check_move_unevictable_page(page, zone);
3193 		}
3194 		if (zone)
3195 			spin_unlock_irq(&zone->lru_lock);
3196 		pagevec_release(&pvec);
3197 
3198 		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3199 	}
3200 
3201 }
3202 
3203 /**
3204  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3205  * @zone - zone of which to scan the unevictable list
3206  *
3207  * Scan @zone's unevictable LRU lists to check for pages that have become
3208  * evictable.  Move those that have to @zone's inactive list where they
3209  * become candidates for reclaim, unless shrink_inactive_zone() decides
3210  * to reactivate them.  Pages that are still unevictable are rotated
3211  * back onto @zone's unevictable list.
3212  */
3213 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3214 static void scan_zone_unevictable_pages(struct zone *zone)
3215 {
3216 	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3217 	unsigned long scan;
3218 	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3219 
3220 	while (nr_to_scan > 0) {
3221 		unsigned long batch_size = min(nr_to_scan,
3222 						SCAN_UNEVICTABLE_BATCH_SIZE);
3223 
3224 		spin_lock_irq(&zone->lru_lock);
3225 		for (scan = 0;  scan < batch_size; scan++) {
3226 			struct page *page = lru_to_page(l_unevictable);
3227 
3228 			if (!trylock_page(page))
3229 				continue;
3230 
3231 			prefetchw_prev_lru_page(page, l_unevictable, flags);
3232 
3233 			if (likely(PageLRU(page) && PageUnevictable(page)))
3234 				check_move_unevictable_page(page, zone);
3235 
3236 			unlock_page(page);
3237 		}
3238 		spin_unlock_irq(&zone->lru_lock);
3239 
3240 		nr_to_scan -= batch_size;
3241 	}
3242 }
3243 
3244 
3245 /**
3246  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3247  *
3248  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3249  * pages that have become evictable.  Move those back to the zones'
3250  * inactive list where they become candidates for reclaim.
3251  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3252  * and we add swap to the system.  As such, it runs in the context of a task
3253  * that has possibly/probably made some previously unevictable pages
3254  * evictable.
3255  */
3256 static void scan_all_zones_unevictable_pages(void)
3257 {
3258 	struct zone *zone;
3259 
3260 	for_each_zone(zone) {
3261 		scan_zone_unevictable_pages(zone);
3262 	}
3263 }
3264 
3265 /*
3266  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3267  * all nodes' unevictable lists for evictable pages
3268  */
3269 unsigned long scan_unevictable_pages;
3270 
3271 int scan_unevictable_handler(struct ctl_table *table, int write,
3272 			   void __user *buffer,
3273 			   size_t *length, loff_t *ppos)
3274 {
3275 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3276 
3277 	if (write && *(unsigned long *)table->data)
3278 		scan_all_zones_unevictable_pages();
3279 
3280 	scan_unevictable_pages = 0;
3281 	return 0;
3282 }
3283 
3284 #ifdef CONFIG_NUMA
3285 /*
3286  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3287  * a specified node's per zone unevictable lists for evictable pages.
3288  */
3289 
3290 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3291 					  struct sysdev_attribute *attr,
3292 					  char *buf)
3293 {
3294 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3295 }
3296 
3297 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3298 					   struct sysdev_attribute *attr,
3299 					const char *buf, size_t count)
3300 {
3301 	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3302 	struct zone *zone;
3303 	unsigned long res;
3304 	unsigned long req = strict_strtoul(buf, 10, &res);
3305 
3306 	if (!req)
3307 		return 1;	/* zero is no-op */
3308 
3309 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3310 		if (!populated_zone(zone))
3311 			continue;
3312 		scan_zone_unevictable_pages(zone);
3313 	}
3314 	return 1;
3315 }
3316 
3317 
3318 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3319 			read_scan_unevictable_node,
3320 			write_scan_unevictable_node);
3321 
3322 int scan_unevictable_register_node(struct node *node)
3323 {
3324 	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3325 }
3326 
3327 void scan_unevictable_unregister_node(struct node *node)
3328 {
3329 	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3330 }
3331 #endif
3332