1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/migrate.h> 45 #include <linux/delayacct.h> 46 #include <linux/sysctl.h> 47 #include <linux/oom.h> 48 #include <linux/pagevec.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 #include <linux/psi.h> 53 54 #include <asm/tlbflush.h> 55 #include <asm/div64.h> 56 57 #include <linux/swapops.h> 58 #include <linux/balloon_compaction.h> 59 60 #include "internal.h" 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/vmscan.h> 64 65 struct scan_control { 66 /* How many pages shrink_list() should reclaim */ 67 unsigned long nr_to_reclaim; 68 69 /* 70 * Nodemask of nodes allowed by the caller. If NULL, all nodes 71 * are scanned. 72 */ 73 nodemask_t *nodemask; 74 75 /* 76 * The memory cgroup that hit its limit and as a result is the 77 * primary target of this reclaim invocation. 78 */ 79 struct mem_cgroup *target_mem_cgroup; 80 81 /* 82 * Scan pressure balancing between anon and file LRUs 83 */ 84 unsigned long anon_cost; 85 unsigned long file_cost; 86 87 /* Can active pages be deactivated as part of reclaim? */ 88 #define DEACTIVATE_ANON 1 89 #define DEACTIVATE_FILE 2 90 unsigned int may_deactivate:2; 91 unsigned int force_deactivate:1; 92 unsigned int skipped_deactivate:1; 93 94 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 95 unsigned int may_writepage:1; 96 97 /* Can mapped pages be reclaimed? */ 98 unsigned int may_unmap:1; 99 100 /* Can pages be swapped as part of reclaim? */ 101 unsigned int may_swap:1; 102 103 /* 104 * Cgroup memory below memory.low is protected as long as we 105 * don't threaten to OOM. If any cgroup is reclaimed at 106 * reduced force or passed over entirely due to its memory.low 107 * setting (memcg_low_skipped), and nothing is reclaimed as a 108 * result, then go back for one more cycle that reclaims the protected 109 * memory (memcg_low_reclaim) to avert OOM. 110 */ 111 unsigned int memcg_low_reclaim:1; 112 unsigned int memcg_low_skipped:1; 113 114 unsigned int hibernation_mode:1; 115 116 /* One of the zones is ready for compaction */ 117 unsigned int compaction_ready:1; 118 119 /* There is easily reclaimable cold cache in the current node */ 120 unsigned int cache_trim_mode:1; 121 122 /* The file pages on the current node are dangerously low */ 123 unsigned int file_is_tiny:1; 124 125 /* Always discard instead of demoting to lower tier memory */ 126 unsigned int no_demotion:1; 127 128 /* Allocation order */ 129 s8 order; 130 131 /* Scan (total_size >> priority) pages at once */ 132 s8 priority; 133 134 /* The highest zone to isolate pages for reclaim from */ 135 s8 reclaim_idx; 136 137 /* This context's GFP mask */ 138 gfp_t gfp_mask; 139 140 /* Incremented by the number of inactive pages that were scanned */ 141 unsigned long nr_scanned; 142 143 /* Number of pages freed so far during a call to shrink_zones() */ 144 unsigned long nr_reclaimed; 145 146 struct { 147 unsigned int dirty; 148 unsigned int unqueued_dirty; 149 unsigned int congested; 150 unsigned int writeback; 151 unsigned int immediate; 152 unsigned int file_taken; 153 unsigned int taken; 154 } nr; 155 156 /* for recording the reclaimed slab by now */ 157 struct reclaim_state reclaim_state; 158 }; 159 160 #ifdef ARCH_HAS_PREFETCHW 161 #define prefetchw_prev_lru_page(_page, _base, _field) \ 162 do { \ 163 if ((_page)->lru.prev != _base) { \ 164 struct page *prev; \ 165 \ 166 prev = lru_to_page(&(_page->lru)); \ 167 prefetchw(&prev->_field); \ 168 } \ 169 } while (0) 170 #else 171 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 172 #endif 173 174 /* 175 * From 0 .. 200. Higher means more swappy. 176 */ 177 int vm_swappiness = 60; 178 179 static void set_task_reclaim_state(struct task_struct *task, 180 struct reclaim_state *rs) 181 { 182 /* Check for an overwrite */ 183 WARN_ON_ONCE(rs && task->reclaim_state); 184 185 /* Check for the nulling of an already-nulled member */ 186 WARN_ON_ONCE(!rs && !task->reclaim_state); 187 188 task->reclaim_state = rs; 189 } 190 191 static LIST_HEAD(shrinker_list); 192 static DECLARE_RWSEM(shrinker_rwsem); 193 194 #ifdef CONFIG_MEMCG 195 static int shrinker_nr_max; 196 197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 198 static inline int shrinker_map_size(int nr_items) 199 { 200 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 201 } 202 203 static inline int shrinker_defer_size(int nr_items) 204 { 205 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 206 } 207 208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 209 int nid) 210 { 211 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, 212 lockdep_is_held(&shrinker_rwsem)); 213 } 214 215 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 216 int map_size, int defer_size, 217 int old_map_size, int old_defer_size) 218 { 219 struct shrinker_info *new, *old; 220 struct mem_cgroup_per_node *pn; 221 int nid; 222 int size = map_size + defer_size; 223 224 for_each_node(nid) { 225 pn = memcg->nodeinfo[nid]; 226 old = shrinker_info_protected(memcg, nid); 227 /* Not yet online memcg */ 228 if (!old) 229 return 0; 230 231 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 232 if (!new) 233 return -ENOMEM; 234 235 new->nr_deferred = (atomic_long_t *)(new + 1); 236 new->map = (void *)new->nr_deferred + defer_size; 237 238 /* map: set all old bits, clear all new bits */ 239 memset(new->map, (int)0xff, old_map_size); 240 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 241 /* nr_deferred: copy old values, clear all new values */ 242 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 243 memset((void *)new->nr_deferred + old_defer_size, 0, 244 defer_size - old_defer_size); 245 246 rcu_assign_pointer(pn->shrinker_info, new); 247 kvfree_rcu(old, rcu); 248 } 249 250 return 0; 251 } 252 253 void free_shrinker_info(struct mem_cgroup *memcg) 254 { 255 struct mem_cgroup_per_node *pn; 256 struct shrinker_info *info; 257 int nid; 258 259 for_each_node(nid) { 260 pn = memcg->nodeinfo[nid]; 261 info = rcu_dereference_protected(pn->shrinker_info, true); 262 kvfree(info); 263 rcu_assign_pointer(pn->shrinker_info, NULL); 264 } 265 } 266 267 int alloc_shrinker_info(struct mem_cgroup *memcg) 268 { 269 struct shrinker_info *info; 270 int nid, size, ret = 0; 271 int map_size, defer_size = 0; 272 273 down_write(&shrinker_rwsem); 274 map_size = shrinker_map_size(shrinker_nr_max); 275 defer_size = shrinker_defer_size(shrinker_nr_max); 276 size = map_size + defer_size; 277 for_each_node(nid) { 278 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 279 if (!info) { 280 free_shrinker_info(memcg); 281 ret = -ENOMEM; 282 break; 283 } 284 info->nr_deferred = (atomic_long_t *)(info + 1); 285 info->map = (void *)info->nr_deferred + defer_size; 286 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 287 } 288 up_write(&shrinker_rwsem); 289 290 return ret; 291 } 292 293 static inline bool need_expand(int nr_max) 294 { 295 return round_up(nr_max, BITS_PER_LONG) > 296 round_up(shrinker_nr_max, BITS_PER_LONG); 297 } 298 299 static int expand_shrinker_info(int new_id) 300 { 301 int ret = 0; 302 int new_nr_max = new_id + 1; 303 int map_size, defer_size = 0; 304 int old_map_size, old_defer_size = 0; 305 struct mem_cgroup *memcg; 306 307 if (!need_expand(new_nr_max)) 308 goto out; 309 310 if (!root_mem_cgroup) 311 goto out; 312 313 lockdep_assert_held(&shrinker_rwsem); 314 315 map_size = shrinker_map_size(new_nr_max); 316 defer_size = shrinker_defer_size(new_nr_max); 317 old_map_size = shrinker_map_size(shrinker_nr_max); 318 old_defer_size = shrinker_defer_size(shrinker_nr_max); 319 320 memcg = mem_cgroup_iter(NULL, NULL, NULL); 321 do { 322 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 323 old_map_size, old_defer_size); 324 if (ret) { 325 mem_cgroup_iter_break(NULL, memcg); 326 goto out; 327 } 328 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 329 out: 330 if (!ret) 331 shrinker_nr_max = new_nr_max; 332 333 return ret; 334 } 335 336 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 337 { 338 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 339 struct shrinker_info *info; 340 341 rcu_read_lock(); 342 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 343 /* Pairs with smp mb in shrink_slab() */ 344 smp_mb__before_atomic(); 345 set_bit(shrinker_id, info->map); 346 rcu_read_unlock(); 347 } 348 } 349 350 static DEFINE_IDR(shrinker_idr); 351 352 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 353 { 354 int id, ret = -ENOMEM; 355 356 if (mem_cgroup_disabled()) 357 return -ENOSYS; 358 359 down_write(&shrinker_rwsem); 360 /* This may call shrinker, so it must use down_read_trylock() */ 361 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 362 if (id < 0) 363 goto unlock; 364 365 if (id >= shrinker_nr_max) { 366 if (expand_shrinker_info(id)) { 367 idr_remove(&shrinker_idr, id); 368 goto unlock; 369 } 370 } 371 shrinker->id = id; 372 ret = 0; 373 unlock: 374 up_write(&shrinker_rwsem); 375 return ret; 376 } 377 378 static void unregister_memcg_shrinker(struct shrinker *shrinker) 379 { 380 int id = shrinker->id; 381 382 BUG_ON(id < 0); 383 384 lockdep_assert_held(&shrinker_rwsem); 385 386 idr_remove(&shrinker_idr, id); 387 } 388 389 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 390 struct mem_cgroup *memcg) 391 { 392 struct shrinker_info *info; 393 394 info = shrinker_info_protected(memcg, nid); 395 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 396 } 397 398 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 399 struct mem_cgroup *memcg) 400 { 401 struct shrinker_info *info; 402 403 info = shrinker_info_protected(memcg, nid); 404 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 405 } 406 407 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 408 { 409 int i, nid; 410 long nr; 411 struct mem_cgroup *parent; 412 struct shrinker_info *child_info, *parent_info; 413 414 parent = parent_mem_cgroup(memcg); 415 if (!parent) 416 parent = root_mem_cgroup; 417 418 /* Prevent from concurrent shrinker_info expand */ 419 down_read(&shrinker_rwsem); 420 for_each_node(nid) { 421 child_info = shrinker_info_protected(memcg, nid); 422 parent_info = shrinker_info_protected(parent, nid); 423 for (i = 0; i < shrinker_nr_max; i++) { 424 nr = atomic_long_read(&child_info->nr_deferred[i]); 425 atomic_long_add(nr, &parent_info->nr_deferred[i]); 426 } 427 } 428 up_read(&shrinker_rwsem); 429 } 430 431 static bool cgroup_reclaim(struct scan_control *sc) 432 { 433 return sc->target_mem_cgroup; 434 } 435 436 /** 437 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 438 * @sc: scan_control in question 439 * 440 * The normal page dirty throttling mechanism in balance_dirty_pages() is 441 * completely broken with the legacy memcg and direct stalling in 442 * shrink_page_list() is used for throttling instead, which lacks all the 443 * niceties such as fairness, adaptive pausing, bandwidth proportional 444 * allocation and configurability. 445 * 446 * This function tests whether the vmscan currently in progress can assume 447 * that the normal dirty throttling mechanism is operational. 448 */ 449 static bool writeback_throttling_sane(struct scan_control *sc) 450 { 451 if (!cgroup_reclaim(sc)) 452 return true; 453 #ifdef CONFIG_CGROUP_WRITEBACK 454 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 455 return true; 456 #endif 457 return false; 458 } 459 #else 460 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 461 { 462 return -ENOSYS; 463 } 464 465 static void unregister_memcg_shrinker(struct shrinker *shrinker) 466 { 467 } 468 469 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 470 struct mem_cgroup *memcg) 471 { 472 return 0; 473 } 474 475 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 476 struct mem_cgroup *memcg) 477 { 478 return 0; 479 } 480 481 static bool cgroup_reclaim(struct scan_control *sc) 482 { 483 return false; 484 } 485 486 static bool writeback_throttling_sane(struct scan_control *sc) 487 { 488 return true; 489 } 490 #endif 491 492 static long xchg_nr_deferred(struct shrinker *shrinker, 493 struct shrink_control *sc) 494 { 495 int nid = sc->nid; 496 497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 498 nid = 0; 499 500 if (sc->memcg && 501 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 502 return xchg_nr_deferred_memcg(nid, shrinker, 503 sc->memcg); 504 505 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 506 } 507 508 509 static long add_nr_deferred(long nr, struct shrinker *shrinker, 510 struct shrink_control *sc) 511 { 512 int nid = sc->nid; 513 514 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 515 nid = 0; 516 517 if (sc->memcg && 518 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 519 return add_nr_deferred_memcg(nr, nid, shrinker, 520 sc->memcg); 521 522 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 523 } 524 525 static bool can_demote(int nid, struct scan_control *sc) 526 { 527 if (!numa_demotion_enabled) 528 return false; 529 if (sc) { 530 if (sc->no_demotion) 531 return false; 532 /* It is pointless to do demotion in memcg reclaim */ 533 if (cgroup_reclaim(sc)) 534 return false; 535 } 536 if (next_demotion_node(nid) == NUMA_NO_NODE) 537 return false; 538 539 return true; 540 } 541 542 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 543 int nid, 544 struct scan_control *sc) 545 { 546 if (memcg == NULL) { 547 /* 548 * For non-memcg reclaim, is there 549 * space in any swap device? 550 */ 551 if (get_nr_swap_pages() > 0) 552 return true; 553 } else { 554 /* Is the memcg below its swap limit? */ 555 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 556 return true; 557 } 558 559 /* 560 * The page can not be swapped. 561 * 562 * Can it be reclaimed from this node via demotion? 563 */ 564 return can_demote(nid, sc); 565 } 566 567 /* 568 * This misses isolated pages which are not accounted for to save counters. 569 * As the data only determines if reclaim or compaction continues, it is 570 * not expected that isolated pages will be a dominating factor. 571 */ 572 unsigned long zone_reclaimable_pages(struct zone *zone) 573 { 574 unsigned long nr; 575 576 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 577 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 578 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 579 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 580 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 581 582 return nr; 583 } 584 585 /** 586 * lruvec_lru_size - Returns the number of pages on the given LRU list. 587 * @lruvec: lru vector 588 * @lru: lru to use 589 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 590 */ 591 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 592 int zone_idx) 593 { 594 unsigned long size = 0; 595 int zid; 596 597 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 598 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 599 600 if (!managed_zone(zone)) 601 continue; 602 603 if (!mem_cgroup_disabled()) 604 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 605 else 606 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 607 } 608 return size; 609 } 610 611 /* 612 * Add a shrinker callback to be called from the vm. 613 */ 614 int prealloc_shrinker(struct shrinker *shrinker) 615 { 616 unsigned int size; 617 int err; 618 619 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 620 err = prealloc_memcg_shrinker(shrinker); 621 if (err != -ENOSYS) 622 return err; 623 624 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 625 } 626 627 size = sizeof(*shrinker->nr_deferred); 628 if (shrinker->flags & SHRINKER_NUMA_AWARE) 629 size *= nr_node_ids; 630 631 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 632 if (!shrinker->nr_deferred) 633 return -ENOMEM; 634 635 return 0; 636 } 637 638 void free_prealloced_shrinker(struct shrinker *shrinker) 639 { 640 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 641 down_write(&shrinker_rwsem); 642 unregister_memcg_shrinker(shrinker); 643 up_write(&shrinker_rwsem); 644 return; 645 } 646 647 kfree(shrinker->nr_deferred); 648 shrinker->nr_deferred = NULL; 649 } 650 651 void register_shrinker_prepared(struct shrinker *shrinker) 652 { 653 down_write(&shrinker_rwsem); 654 list_add_tail(&shrinker->list, &shrinker_list); 655 shrinker->flags |= SHRINKER_REGISTERED; 656 up_write(&shrinker_rwsem); 657 } 658 659 int register_shrinker(struct shrinker *shrinker) 660 { 661 int err = prealloc_shrinker(shrinker); 662 663 if (err) 664 return err; 665 register_shrinker_prepared(shrinker); 666 return 0; 667 } 668 EXPORT_SYMBOL(register_shrinker); 669 670 /* 671 * Remove one 672 */ 673 void unregister_shrinker(struct shrinker *shrinker) 674 { 675 if (!(shrinker->flags & SHRINKER_REGISTERED)) 676 return; 677 678 down_write(&shrinker_rwsem); 679 list_del(&shrinker->list); 680 shrinker->flags &= ~SHRINKER_REGISTERED; 681 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 682 unregister_memcg_shrinker(shrinker); 683 up_write(&shrinker_rwsem); 684 685 kfree(shrinker->nr_deferred); 686 shrinker->nr_deferred = NULL; 687 } 688 EXPORT_SYMBOL(unregister_shrinker); 689 690 #define SHRINK_BATCH 128 691 692 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 693 struct shrinker *shrinker, int priority) 694 { 695 unsigned long freed = 0; 696 unsigned long long delta; 697 long total_scan; 698 long freeable; 699 long nr; 700 long new_nr; 701 long batch_size = shrinker->batch ? shrinker->batch 702 : SHRINK_BATCH; 703 long scanned = 0, next_deferred; 704 705 freeable = shrinker->count_objects(shrinker, shrinkctl); 706 if (freeable == 0 || freeable == SHRINK_EMPTY) 707 return freeable; 708 709 /* 710 * copy the current shrinker scan count into a local variable 711 * and zero it so that other concurrent shrinker invocations 712 * don't also do this scanning work. 713 */ 714 nr = xchg_nr_deferred(shrinker, shrinkctl); 715 716 if (shrinker->seeks) { 717 delta = freeable >> priority; 718 delta *= 4; 719 do_div(delta, shrinker->seeks); 720 } else { 721 /* 722 * These objects don't require any IO to create. Trim 723 * them aggressively under memory pressure to keep 724 * them from causing refetches in the IO caches. 725 */ 726 delta = freeable / 2; 727 } 728 729 total_scan = nr >> priority; 730 total_scan += delta; 731 total_scan = min(total_scan, (2 * freeable)); 732 733 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 734 freeable, delta, total_scan, priority); 735 736 /* 737 * Normally, we should not scan less than batch_size objects in one 738 * pass to avoid too frequent shrinker calls, but if the slab has less 739 * than batch_size objects in total and we are really tight on memory, 740 * we will try to reclaim all available objects, otherwise we can end 741 * up failing allocations although there are plenty of reclaimable 742 * objects spread over several slabs with usage less than the 743 * batch_size. 744 * 745 * We detect the "tight on memory" situations by looking at the total 746 * number of objects we want to scan (total_scan). If it is greater 747 * than the total number of objects on slab (freeable), we must be 748 * scanning at high prio and therefore should try to reclaim as much as 749 * possible. 750 */ 751 while (total_scan >= batch_size || 752 total_scan >= freeable) { 753 unsigned long ret; 754 unsigned long nr_to_scan = min(batch_size, total_scan); 755 756 shrinkctl->nr_to_scan = nr_to_scan; 757 shrinkctl->nr_scanned = nr_to_scan; 758 ret = shrinker->scan_objects(shrinker, shrinkctl); 759 if (ret == SHRINK_STOP) 760 break; 761 freed += ret; 762 763 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 764 total_scan -= shrinkctl->nr_scanned; 765 scanned += shrinkctl->nr_scanned; 766 767 cond_resched(); 768 } 769 770 /* 771 * The deferred work is increased by any new work (delta) that wasn't 772 * done, decreased by old deferred work that was done now. 773 * 774 * And it is capped to two times of the freeable items. 775 */ 776 next_deferred = max_t(long, (nr + delta - scanned), 0); 777 next_deferred = min(next_deferred, (2 * freeable)); 778 779 /* 780 * move the unused scan count back into the shrinker in a 781 * manner that handles concurrent updates. 782 */ 783 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 784 785 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 786 return freed; 787 } 788 789 #ifdef CONFIG_MEMCG 790 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 791 struct mem_cgroup *memcg, int priority) 792 { 793 struct shrinker_info *info; 794 unsigned long ret, freed = 0; 795 int i; 796 797 if (!mem_cgroup_online(memcg)) 798 return 0; 799 800 if (!down_read_trylock(&shrinker_rwsem)) 801 return 0; 802 803 info = shrinker_info_protected(memcg, nid); 804 if (unlikely(!info)) 805 goto unlock; 806 807 for_each_set_bit(i, info->map, shrinker_nr_max) { 808 struct shrink_control sc = { 809 .gfp_mask = gfp_mask, 810 .nid = nid, 811 .memcg = memcg, 812 }; 813 struct shrinker *shrinker; 814 815 shrinker = idr_find(&shrinker_idr, i); 816 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 817 if (!shrinker) 818 clear_bit(i, info->map); 819 continue; 820 } 821 822 /* Call non-slab shrinkers even though kmem is disabled */ 823 if (!memcg_kmem_enabled() && 824 !(shrinker->flags & SHRINKER_NONSLAB)) 825 continue; 826 827 ret = do_shrink_slab(&sc, shrinker, priority); 828 if (ret == SHRINK_EMPTY) { 829 clear_bit(i, info->map); 830 /* 831 * After the shrinker reported that it had no objects to 832 * free, but before we cleared the corresponding bit in 833 * the memcg shrinker map, a new object might have been 834 * added. To make sure, we have the bit set in this 835 * case, we invoke the shrinker one more time and reset 836 * the bit if it reports that it is not empty anymore. 837 * The memory barrier here pairs with the barrier in 838 * set_shrinker_bit(): 839 * 840 * list_lru_add() shrink_slab_memcg() 841 * list_add_tail() clear_bit() 842 * <MB> <MB> 843 * set_bit() do_shrink_slab() 844 */ 845 smp_mb__after_atomic(); 846 ret = do_shrink_slab(&sc, shrinker, priority); 847 if (ret == SHRINK_EMPTY) 848 ret = 0; 849 else 850 set_shrinker_bit(memcg, nid, i); 851 } 852 freed += ret; 853 854 if (rwsem_is_contended(&shrinker_rwsem)) { 855 freed = freed ? : 1; 856 break; 857 } 858 } 859 unlock: 860 up_read(&shrinker_rwsem); 861 return freed; 862 } 863 #else /* CONFIG_MEMCG */ 864 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 865 struct mem_cgroup *memcg, int priority) 866 { 867 return 0; 868 } 869 #endif /* CONFIG_MEMCG */ 870 871 /** 872 * shrink_slab - shrink slab caches 873 * @gfp_mask: allocation context 874 * @nid: node whose slab caches to target 875 * @memcg: memory cgroup whose slab caches to target 876 * @priority: the reclaim priority 877 * 878 * Call the shrink functions to age shrinkable caches. 879 * 880 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 881 * unaware shrinkers will receive a node id of 0 instead. 882 * 883 * @memcg specifies the memory cgroup to target. Unaware shrinkers 884 * are called only if it is the root cgroup. 885 * 886 * @priority is sc->priority, we take the number of objects and >> by priority 887 * in order to get the scan target. 888 * 889 * Returns the number of reclaimed slab objects. 890 */ 891 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 892 struct mem_cgroup *memcg, 893 int priority) 894 { 895 unsigned long ret, freed = 0; 896 struct shrinker *shrinker; 897 898 /* 899 * The root memcg might be allocated even though memcg is disabled 900 * via "cgroup_disable=memory" boot parameter. This could make 901 * mem_cgroup_is_root() return false, then just run memcg slab 902 * shrink, but skip global shrink. This may result in premature 903 * oom. 904 */ 905 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 906 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 907 908 if (!down_read_trylock(&shrinker_rwsem)) 909 goto out; 910 911 list_for_each_entry(shrinker, &shrinker_list, list) { 912 struct shrink_control sc = { 913 .gfp_mask = gfp_mask, 914 .nid = nid, 915 .memcg = memcg, 916 }; 917 918 ret = do_shrink_slab(&sc, shrinker, priority); 919 if (ret == SHRINK_EMPTY) 920 ret = 0; 921 freed += ret; 922 /* 923 * Bail out if someone want to register a new shrinker to 924 * prevent the registration from being stalled for long periods 925 * by parallel ongoing shrinking. 926 */ 927 if (rwsem_is_contended(&shrinker_rwsem)) { 928 freed = freed ? : 1; 929 break; 930 } 931 } 932 933 up_read(&shrinker_rwsem); 934 out: 935 cond_resched(); 936 return freed; 937 } 938 939 void drop_slab_node(int nid) 940 { 941 unsigned long freed; 942 int shift = 0; 943 944 do { 945 struct mem_cgroup *memcg = NULL; 946 947 if (fatal_signal_pending(current)) 948 return; 949 950 freed = 0; 951 memcg = mem_cgroup_iter(NULL, NULL, NULL); 952 do { 953 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 954 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 955 } while ((freed >> shift++) > 1); 956 } 957 958 void drop_slab(void) 959 { 960 int nid; 961 962 for_each_online_node(nid) 963 drop_slab_node(nid); 964 } 965 966 static inline int is_page_cache_freeable(struct page *page) 967 { 968 /* 969 * A freeable page cache page is referenced only by the caller 970 * that isolated the page, the page cache and optional buffer 971 * heads at page->private. 972 */ 973 int page_cache_pins = thp_nr_pages(page); 974 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 975 } 976 977 static int may_write_to_inode(struct inode *inode) 978 { 979 if (current->flags & PF_SWAPWRITE) 980 return 1; 981 if (!inode_write_congested(inode)) 982 return 1; 983 if (inode_to_bdi(inode) == current->backing_dev_info) 984 return 1; 985 return 0; 986 } 987 988 /* 989 * We detected a synchronous write error writing a page out. Probably 990 * -ENOSPC. We need to propagate that into the address_space for a subsequent 991 * fsync(), msync() or close(). 992 * 993 * The tricky part is that after writepage we cannot touch the mapping: nothing 994 * prevents it from being freed up. But we have a ref on the page and once 995 * that page is locked, the mapping is pinned. 996 * 997 * We're allowed to run sleeping lock_page() here because we know the caller has 998 * __GFP_FS. 999 */ 1000 static void handle_write_error(struct address_space *mapping, 1001 struct page *page, int error) 1002 { 1003 lock_page(page); 1004 if (page_mapping(page) == mapping) 1005 mapping_set_error(mapping, error); 1006 unlock_page(page); 1007 } 1008 1009 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 1010 { 1011 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 1012 long timeout, ret; 1013 DEFINE_WAIT(wait); 1014 1015 /* 1016 * Do not throttle IO workers, kthreads other than kswapd or 1017 * workqueues. They may be required for reclaim to make 1018 * forward progress (e.g. journalling workqueues or kthreads). 1019 */ 1020 if (!current_is_kswapd() && 1021 current->flags & (PF_IO_WORKER|PF_KTHREAD)) 1022 return; 1023 1024 /* 1025 * These figures are pulled out of thin air. 1026 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 1027 * parallel reclaimers which is a short-lived event so the timeout is 1028 * short. Failing to make progress or waiting on writeback are 1029 * potentially long-lived events so use a longer timeout. This is shaky 1030 * logic as a failure to make progress could be due to anything from 1031 * writeback to a slow device to excessive references pages at the tail 1032 * of the inactive LRU. 1033 */ 1034 switch(reason) { 1035 case VMSCAN_THROTTLE_WRITEBACK: 1036 timeout = HZ/10; 1037 1038 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 1039 WRITE_ONCE(pgdat->nr_reclaim_start, 1040 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 1041 } 1042 1043 break; 1044 case VMSCAN_THROTTLE_NOPROGRESS: 1045 timeout = HZ/2; 1046 break; 1047 case VMSCAN_THROTTLE_ISOLATED: 1048 timeout = HZ/50; 1049 break; 1050 default: 1051 WARN_ON_ONCE(1); 1052 timeout = HZ; 1053 break; 1054 } 1055 1056 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1057 ret = schedule_timeout(timeout); 1058 finish_wait(wqh, &wait); 1059 1060 if (reason == VMSCAN_THROTTLE_WRITEBACK) 1061 atomic_dec(&pgdat->nr_writeback_throttled); 1062 1063 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 1064 jiffies_to_usecs(timeout - ret), 1065 reason); 1066 } 1067 1068 /* 1069 * Account for pages written if tasks are throttled waiting on dirty 1070 * pages to clean. If enough pages have been cleaned since throttling 1071 * started then wakeup the throttled tasks. 1072 */ 1073 void __acct_reclaim_writeback(pg_data_t *pgdat, struct page *page, 1074 int nr_throttled) 1075 { 1076 unsigned long nr_written; 1077 1078 inc_node_page_state(page, NR_THROTTLED_WRITTEN); 1079 1080 /* 1081 * This is an inaccurate read as the per-cpu deltas may not 1082 * be synchronised. However, given that the system is 1083 * writeback throttled, it is not worth taking the penalty 1084 * of getting an accurate count. At worst, the throttle 1085 * timeout guarantees forward progress. 1086 */ 1087 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 1088 READ_ONCE(pgdat->nr_reclaim_start); 1089 1090 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 1091 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 1092 } 1093 1094 /* possible outcome of pageout() */ 1095 typedef enum { 1096 /* failed to write page out, page is locked */ 1097 PAGE_KEEP, 1098 /* move page to the active list, page is locked */ 1099 PAGE_ACTIVATE, 1100 /* page has been sent to the disk successfully, page is unlocked */ 1101 PAGE_SUCCESS, 1102 /* page is clean and locked */ 1103 PAGE_CLEAN, 1104 } pageout_t; 1105 1106 /* 1107 * pageout is called by shrink_page_list() for each dirty page. 1108 * Calls ->writepage(). 1109 */ 1110 static pageout_t pageout(struct page *page, struct address_space *mapping) 1111 { 1112 /* 1113 * If the page is dirty, only perform writeback if that write 1114 * will be non-blocking. To prevent this allocation from being 1115 * stalled by pagecache activity. But note that there may be 1116 * stalls if we need to run get_block(). We could test 1117 * PagePrivate for that. 1118 * 1119 * If this process is currently in __generic_file_write_iter() against 1120 * this page's queue, we can perform writeback even if that 1121 * will block. 1122 * 1123 * If the page is swapcache, write it back even if that would 1124 * block, for some throttling. This happens by accident, because 1125 * swap_backing_dev_info is bust: it doesn't reflect the 1126 * congestion state of the swapdevs. Easy to fix, if needed. 1127 */ 1128 if (!is_page_cache_freeable(page)) 1129 return PAGE_KEEP; 1130 if (!mapping) { 1131 /* 1132 * Some data journaling orphaned pages can have 1133 * page->mapping == NULL while being dirty with clean buffers. 1134 */ 1135 if (page_has_private(page)) { 1136 if (try_to_free_buffers(page)) { 1137 ClearPageDirty(page); 1138 pr_info("%s: orphaned page\n", __func__); 1139 return PAGE_CLEAN; 1140 } 1141 } 1142 return PAGE_KEEP; 1143 } 1144 if (mapping->a_ops->writepage == NULL) 1145 return PAGE_ACTIVATE; 1146 if (!may_write_to_inode(mapping->host)) 1147 return PAGE_KEEP; 1148 1149 if (clear_page_dirty_for_io(page)) { 1150 int res; 1151 struct writeback_control wbc = { 1152 .sync_mode = WB_SYNC_NONE, 1153 .nr_to_write = SWAP_CLUSTER_MAX, 1154 .range_start = 0, 1155 .range_end = LLONG_MAX, 1156 .for_reclaim = 1, 1157 }; 1158 1159 SetPageReclaim(page); 1160 res = mapping->a_ops->writepage(page, &wbc); 1161 if (res < 0) 1162 handle_write_error(mapping, page, res); 1163 if (res == AOP_WRITEPAGE_ACTIVATE) { 1164 ClearPageReclaim(page); 1165 return PAGE_ACTIVATE; 1166 } 1167 1168 if (!PageWriteback(page)) { 1169 /* synchronous write or broken a_ops? */ 1170 ClearPageReclaim(page); 1171 } 1172 trace_mm_vmscan_writepage(page); 1173 inc_node_page_state(page, NR_VMSCAN_WRITE); 1174 return PAGE_SUCCESS; 1175 } 1176 1177 return PAGE_CLEAN; 1178 } 1179 1180 /* 1181 * Same as remove_mapping, but if the page is removed from the mapping, it 1182 * gets returned with a refcount of 0. 1183 */ 1184 static int __remove_mapping(struct address_space *mapping, struct page *page, 1185 bool reclaimed, struct mem_cgroup *target_memcg) 1186 { 1187 int refcount; 1188 void *shadow = NULL; 1189 1190 BUG_ON(!PageLocked(page)); 1191 BUG_ON(mapping != page_mapping(page)); 1192 1193 if (!PageSwapCache(page)) 1194 spin_lock(&mapping->host->i_lock); 1195 xa_lock_irq(&mapping->i_pages); 1196 /* 1197 * The non racy check for a busy page. 1198 * 1199 * Must be careful with the order of the tests. When someone has 1200 * a ref to the page, it may be possible that they dirty it then 1201 * drop the reference. So if PageDirty is tested before page_count 1202 * here, then the following race may occur: 1203 * 1204 * get_user_pages(&page); 1205 * [user mapping goes away] 1206 * write_to(page); 1207 * !PageDirty(page) [good] 1208 * SetPageDirty(page); 1209 * put_page(page); 1210 * !page_count(page) [good, discard it] 1211 * 1212 * [oops, our write_to data is lost] 1213 * 1214 * Reversing the order of the tests ensures such a situation cannot 1215 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 1216 * load is not satisfied before that of page->_refcount. 1217 * 1218 * Note that if SetPageDirty is always performed via set_page_dirty, 1219 * and thus under the i_pages lock, then this ordering is not required. 1220 */ 1221 refcount = 1 + compound_nr(page); 1222 if (!page_ref_freeze(page, refcount)) 1223 goto cannot_free; 1224 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 1225 if (unlikely(PageDirty(page))) { 1226 page_ref_unfreeze(page, refcount); 1227 goto cannot_free; 1228 } 1229 1230 if (PageSwapCache(page)) { 1231 swp_entry_t swap = { .val = page_private(page) }; 1232 mem_cgroup_swapout(page, swap); 1233 if (reclaimed && !mapping_exiting(mapping)) 1234 shadow = workingset_eviction(page, target_memcg); 1235 __delete_from_swap_cache(page, swap, shadow); 1236 xa_unlock_irq(&mapping->i_pages); 1237 put_swap_page(page, swap); 1238 } else { 1239 void (*freepage)(struct page *); 1240 1241 freepage = mapping->a_ops->freepage; 1242 /* 1243 * Remember a shadow entry for reclaimed file cache in 1244 * order to detect refaults, thus thrashing, later on. 1245 * 1246 * But don't store shadows in an address space that is 1247 * already exiting. This is not just an optimization, 1248 * inode reclaim needs to empty out the radix tree or 1249 * the nodes are lost. Don't plant shadows behind its 1250 * back. 1251 * 1252 * We also don't store shadows for DAX mappings because the 1253 * only page cache pages found in these are zero pages 1254 * covering holes, and because we don't want to mix DAX 1255 * exceptional entries and shadow exceptional entries in the 1256 * same address_space. 1257 */ 1258 if (reclaimed && page_is_file_lru(page) && 1259 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1260 shadow = workingset_eviction(page, target_memcg); 1261 __delete_from_page_cache(page, shadow); 1262 xa_unlock_irq(&mapping->i_pages); 1263 if (mapping_shrinkable(mapping)) 1264 inode_add_lru(mapping->host); 1265 spin_unlock(&mapping->host->i_lock); 1266 1267 if (freepage != NULL) 1268 freepage(page); 1269 } 1270 1271 return 1; 1272 1273 cannot_free: 1274 xa_unlock_irq(&mapping->i_pages); 1275 if (!PageSwapCache(page)) 1276 spin_unlock(&mapping->host->i_lock); 1277 return 0; 1278 } 1279 1280 /* 1281 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 1282 * someone else has a ref on the page, abort and return 0. If it was 1283 * successfully detached, return 1. Assumes the caller has a single ref on 1284 * this page. 1285 */ 1286 int remove_mapping(struct address_space *mapping, struct page *page) 1287 { 1288 if (__remove_mapping(mapping, page, false, NULL)) { 1289 /* 1290 * Unfreezing the refcount with 1 rather than 2 effectively 1291 * drops the pagecache ref for us without requiring another 1292 * atomic operation. 1293 */ 1294 page_ref_unfreeze(page, 1); 1295 return 1; 1296 } 1297 return 0; 1298 } 1299 1300 /** 1301 * putback_lru_page - put previously isolated page onto appropriate LRU list 1302 * @page: page to be put back to appropriate lru list 1303 * 1304 * Add previously isolated @page to appropriate LRU list. 1305 * Page may still be unevictable for other reasons. 1306 * 1307 * lru_lock must not be held, interrupts must be enabled. 1308 */ 1309 void putback_lru_page(struct page *page) 1310 { 1311 lru_cache_add(page); 1312 put_page(page); /* drop ref from isolate */ 1313 } 1314 1315 enum page_references { 1316 PAGEREF_RECLAIM, 1317 PAGEREF_RECLAIM_CLEAN, 1318 PAGEREF_KEEP, 1319 PAGEREF_ACTIVATE, 1320 }; 1321 1322 static enum page_references page_check_references(struct page *page, 1323 struct scan_control *sc) 1324 { 1325 int referenced_ptes, referenced_page; 1326 unsigned long vm_flags; 1327 1328 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1329 &vm_flags); 1330 referenced_page = TestClearPageReferenced(page); 1331 1332 /* 1333 * Mlock lost the isolation race with us. Let try_to_unmap() 1334 * move the page to the unevictable list. 1335 */ 1336 if (vm_flags & VM_LOCKED) 1337 return PAGEREF_RECLAIM; 1338 1339 if (referenced_ptes) { 1340 /* 1341 * All mapped pages start out with page table 1342 * references from the instantiating fault, so we need 1343 * to look twice if a mapped file page is used more 1344 * than once. 1345 * 1346 * Mark it and spare it for another trip around the 1347 * inactive list. Another page table reference will 1348 * lead to its activation. 1349 * 1350 * Note: the mark is set for activated pages as well 1351 * so that recently deactivated but used pages are 1352 * quickly recovered. 1353 */ 1354 SetPageReferenced(page); 1355 1356 if (referenced_page || referenced_ptes > 1) 1357 return PAGEREF_ACTIVATE; 1358 1359 /* 1360 * Activate file-backed executable pages after first usage. 1361 */ 1362 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page)) 1363 return PAGEREF_ACTIVATE; 1364 1365 return PAGEREF_KEEP; 1366 } 1367 1368 /* Reclaim if clean, defer dirty pages to writeback */ 1369 if (referenced_page && !PageSwapBacked(page)) 1370 return PAGEREF_RECLAIM_CLEAN; 1371 1372 return PAGEREF_RECLAIM; 1373 } 1374 1375 /* Check if a page is dirty or under writeback */ 1376 static void page_check_dirty_writeback(struct page *page, 1377 bool *dirty, bool *writeback) 1378 { 1379 struct address_space *mapping; 1380 1381 /* 1382 * Anonymous pages are not handled by flushers and must be written 1383 * from reclaim context. Do not stall reclaim based on them 1384 */ 1385 if (!page_is_file_lru(page) || 1386 (PageAnon(page) && !PageSwapBacked(page))) { 1387 *dirty = false; 1388 *writeback = false; 1389 return; 1390 } 1391 1392 /* By default assume that the page flags are accurate */ 1393 *dirty = PageDirty(page); 1394 *writeback = PageWriteback(page); 1395 1396 /* Verify dirty/writeback state if the filesystem supports it */ 1397 if (!page_has_private(page)) 1398 return; 1399 1400 mapping = page_mapping(page); 1401 if (mapping && mapping->a_ops->is_dirty_writeback) 1402 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1403 } 1404 1405 static struct page *alloc_demote_page(struct page *page, unsigned long node) 1406 { 1407 struct migration_target_control mtc = { 1408 /* 1409 * Allocate from 'node', or fail quickly and quietly. 1410 * When this happens, 'page' will likely just be discarded 1411 * instead of migrated. 1412 */ 1413 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | 1414 __GFP_THISNODE | __GFP_NOWARN | 1415 __GFP_NOMEMALLOC | GFP_NOWAIT, 1416 .nid = node 1417 }; 1418 1419 return alloc_migration_target(page, (unsigned long)&mtc); 1420 } 1421 1422 /* 1423 * Take pages on @demote_list and attempt to demote them to 1424 * another node. Pages which are not demoted are left on 1425 * @demote_pages. 1426 */ 1427 static unsigned int demote_page_list(struct list_head *demote_pages, 1428 struct pglist_data *pgdat) 1429 { 1430 int target_nid = next_demotion_node(pgdat->node_id); 1431 unsigned int nr_succeeded; 1432 1433 if (list_empty(demote_pages)) 1434 return 0; 1435 1436 if (target_nid == NUMA_NO_NODE) 1437 return 0; 1438 1439 /* Demotion ignores all cpuset and mempolicy settings */ 1440 migrate_pages(demote_pages, alloc_demote_page, NULL, 1441 target_nid, MIGRATE_ASYNC, MR_DEMOTION, 1442 &nr_succeeded); 1443 1444 if (current_is_kswapd()) 1445 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded); 1446 else 1447 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded); 1448 1449 return nr_succeeded; 1450 } 1451 1452 /* 1453 * shrink_page_list() returns the number of reclaimed pages 1454 */ 1455 static unsigned int shrink_page_list(struct list_head *page_list, 1456 struct pglist_data *pgdat, 1457 struct scan_control *sc, 1458 struct reclaim_stat *stat, 1459 bool ignore_references) 1460 { 1461 LIST_HEAD(ret_pages); 1462 LIST_HEAD(free_pages); 1463 LIST_HEAD(demote_pages); 1464 unsigned int nr_reclaimed = 0; 1465 unsigned int pgactivate = 0; 1466 bool do_demote_pass; 1467 1468 memset(stat, 0, sizeof(*stat)); 1469 cond_resched(); 1470 do_demote_pass = can_demote(pgdat->node_id, sc); 1471 1472 retry: 1473 while (!list_empty(page_list)) { 1474 struct address_space *mapping; 1475 struct page *page; 1476 enum page_references references = PAGEREF_RECLAIM; 1477 bool dirty, writeback, may_enter_fs; 1478 unsigned int nr_pages; 1479 1480 cond_resched(); 1481 1482 page = lru_to_page(page_list); 1483 list_del(&page->lru); 1484 1485 if (!trylock_page(page)) 1486 goto keep; 1487 1488 VM_BUG_ON_PAGE(PageActive(page), page); 1489 1490 nr_pages = compound_nr(page); 1491 1492 /* Account the number of base pages even though THP */ 1493 sc->nr_scanned += nr_pages; 1494 1495 if (unlikely(!page_evictable(page))) 1496 goto activate_locked; 1497 1498 if (!sc->may_unmap && page_mapped(page)) 1499 goto keep_locked; 1500 1501 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1502 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1503 1504 /* 1505 * The number of dirty pages determines if a node is marked 1506 * reclaim_congested. kswapd will stall and start writing 1507 * pages if the tail of the LRU is all dirty unqueued pages. 1508 */ 1509 page_check_dirty_writeback(page, &dirty, &writeback); 1510 if (dirty || writeback) 1511 stat->nr_dirty++; 1512 1513 if (dirty && !writeback) 1514 stat->nr_unqueued_dirty++; 1515 1516 /* 1517 * Treat this page as congested if the underlying BDI is or if 1518 * pages are cycling through the LRU so quickly that the 1519 * pages marked for immediate reclaim are making it to the 1520 * end of the LRU a second time. 1521 */ 1522 mapping = page_mapping(page); 1523 if (((dirty || writeback) && mapping && 1524 inode_write_congested(mapping->host)) || 1525 (writeback && PageReclaim(page))) 1526 stat->nr_congested++; 1527 1528 /* 1529 * If a page at the tail of the LRU is under writeback, there 1530 * are three cases to consider. 1531 * 1532 * 1) If reclaim is encountering an excessive number of pages 1533 * under writeback and this page is both under writeback and 1534 * PageReclaim then it indicates that pages are being queued 1535 * for IO but are being recycled through the LRU before the 1536 * IO can complete. Waiting on the page itself risks an 1537 * indefinite stall if it is impossible to writeback the 1538 * page due to IO error or disconnected storage so instead 1539 * note that the LRU is being scanned too quickly and the 1540 * caller can stall after page list has been processed. 1541 * 1542 * 2) Global or new memcg reclaim encounters a page that is 1543 * not marked for immediate reclaim, or the caller does not 1544 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1545 * not to fs). In this case mark the page for immediate 1546 * reclaim and continue scanning. 1547 * 1548 * Require may_enter_fs because we would wait on fs, which 1549 * may not have submitted IO yet. And the loop driver might 1550 * enter reclaim, and deadlock if it waits on a page for 1551 * which it is needed to do the write (loop masks off 1552 * __GFP_IO|__GFP_FS for this reason); but more thought 1553 * would probably show more reasons. 1554 * 1555 * 3) Legacy memcg encounters a page that is already marked 1556 * PageReclaim. memcg does not have any dirty pages 1557 * throttling so we could easily OOM just because too many 1558 * pages are in writeback and there is nothing else to 1559 * reclaim. Wait for the writeback to complete. 1560 * 1561 * In cases 1) and 2) we activate the pages to get them out of 1562 * the way while we continue scanning for clean pages on the 1563 * inactive list and refilling from the active list. The 1564 * observation here is that waiting for disk writes is more 1565 * expensive than potentially causing reloads down the line. 1566 * Since they're marked for immediate reclaim, they won't put 1567 * memory pressure on the cache working set any longer than it 1568 * takes to write them to disk. 1569 */ 1570 if (PageWriteback(page)) { 1571 /* Case 1 above */ 1572 if (current_is_kswapd() && 1573 PageReclaim(page) && 1574 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1575 stat->nr_immediate++; 1576 goto activate_locked; 1577 1578 /* Case 2 above */ 1579 } else if (writeback_throttling_sane(sc) || 1580 !PageReclaim(page) || !may_enter_fs) { 1581 /* 1582 * This is slightly racy - end_page_writeback() 1583 * might have just cleared PageReclaim, then 1584 * setting PageReclaim here end up interpreted 1585 * as PageReadahead - but that does not matter 1586 * enough to care. What we do want is for this 1587 * page to have PageReclaim set next time memcg 1588 * reclaim reaches the tests above, so it will 1589 * then wait_on_page_writeback() to avoid OOM; 1590 * and it's also appropriate in global reclaim. 1591 */ 1592 SetPageReclaim(page); 1593 stat->nr_writeback++; 1594 goto activate_locked; 1595 1596 /* Case 3 above */ 1597 } else { 1598 unlock_page(page); 1599 wait_on_page_writeback(page); 1600 /* then go back and try same page again */ 1601 list_add_tail(&page->lru, page_list); 1602 continue; 1603 } 1604 } 1605 1606 if (!ignore_references) 1607 references = page_check_references(page, sc); 1608 1609 switch (references) { 1610 case PAGEREF_ACTIVATE: 1611 goto activate_locked; 1612 case PAGEREF_KEEP: 1613 stat->nr_ref_keep += nr_pages; 1614 goto keep_locked; 1615 case PAGEREF_RECLAIM: 1616 case PAGEREF_RECLAIM_CLEAN: 1617 ; /* try to reclaim the page below */ 1618 } 1619 1620 /* 1621 * Before reclaiming the page, try to relocate 1622 * its contents to another node. 1623 */ 1624 if (do_demote_pass && 1625 (thp_migration_supported() || !PageTransHuge(page))) { 1626 list_add(&page->lru, &demote_pages); 1627 unlock_page(page); 1628 continue; 1629 } 1630 1631 /* 1632 * Anonymous process memory has backing store? 1633 * Try to allocate it some swap space here. 1634 * Lazyfree page could be freed directly 1635 */ 1636 if (PageAnon(page) && PageSwapBacked(page)) { 1637 if (!PageSwapCache(page)) { 1638 if (!(sc->gfp_mask & __GFP_IO)) 1639 goto keep_locked; 1640 if (page_maybe_dma_pinned(page)) 1641 goto keep_locked; 1642 if (PageTransHuge(page)) { 1643 /* cannot split THP, skip it */ 1644 if (!can_split_huge_page(page, NULL)) 1645 goto activate_locked; 1646 /* 1647 * Split pages without a PMD map right 1648 * away. Chances are some or all of the 1649 * tail pages can be freed without IO. 1650 */ 1651 if (!compound_mapcount(page) && 1652 split_huge_page_to_list(page, 1653 page_list)) 1654 goto activate_locked; 1655 } 1656 if (!add_to_swap(page)) { 1657 if (!PageTransHuge(page)) 1658 goto activate_locked_split; 1659 /* Fallback to swap normal pages */ 1660 if (split_huge_page_to_list(page, 1661 page_list)) 1662 goto activate_locked; 1663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1664 count_vm_event(THP_SWPOUT_FALLBACK); 1665 #endif 1666 if (!add_to_swap(page)) 1667 goto activate_locked_split; 1668 } 1669 1670 may_enter_fs = true; 1671 1672 /* Adding to swap updated mapping */ 1673 mapping = page_mapping(page); 1674 } 1675 } else if (unlikely(PageTransHuge(page))) { 1676 /* Split file THP */ 1677 if (split_huge_page_to_list(page, page_list)) 1678 goto keep_locked; 1679 } 1680 1681 /* 1682 * THP may get split above, need minus tail pages and update 1683 * nr_pages to avoid accounting tail pages twice. 1684 * 1685 * The tail pages that are added into swap cache successfully 1686 * reach here. 1687 */ 1688 if ((nr_pages > 1) && !PageTransHuge(page)) { 1689 sc->nr_scanned -= (nr_pages - 1); 1690 nr_pages = 1; 1691 } 1692 1693 /* 1694 * The page is mapped into the page tables of one or more 1695 * processes. Try to unmap it here. 1696 */ 1697 if (page_mapped(page)) { 1698 enum ttu_flags flags = TTU_BATCH_FLUSH; 1699 bool was_swapbacked = PageSwapBacked(page); 1700 1701 if (unlikely(PageTransHuge(page))) 1702 flags |= TTU_SPLIT_HUGE_PMD; 1703 1704 try_to_unmap(page, flags); 1705 if (page_mapped(page)) { 1706 stat->nr_unmap_fail += nr_pages; 1707 if (!was_swapbacked && PageSwapBacked(page)) 1708 stat->nr_lazyfree_fail += nr_pages; 1709 goto activate_locked; 1710 } 1711 } 1712 1713 if (PageDirty(page)) { 1714 /* 1715 * Only kswapd can writeback filesystem pages 1716 * to avoid risk of stack overflow. But avoid 1717 * injecting inefficient single-page IO into 1718 * flusher writeback as much as possible: only 1719 * write pages when we've encountered many 1720 * dirty pages, and when we've already scanned 1721 * the rest of the LRU for clean pages and see 1722 * the same dirty pages again (PageReclaim). 1723 */ 1724 if (page_is_file_lru(page) && 1725 (!current_is_kswapd() || !PageReclaim(page) || 1726 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1727 /* 1728 * Immediately reclaim when written back. 1729 * Similar in principal to deactivate_page() 1730 * except we already have the page isolated 1731 * and know it's dirty 1732 */ 1733 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1734 SetPageReclaim(page); 1735 1736 goto activate_locked; 1737 } 1738 1739 if (references == PAGEREF_RECLAIM_CLEAN) 1740 goto keep_locked; 1741 if (!may_enter_fs) 1742 goto keep_locked; 1743 if (!sc->may_writepage) 1744 goto keep_locked; 1745 1746 /* 1747 * Page is dirty. Flush the TLB if a writable entry 1748 * potentially exists to avoid CPU writes after IO 1749 * starts and then write it out here. 1750 */ 1751 try_to_unmap_flush_dirty(); 1752 switch (pageout(page, mapping)) { 1753 case PAGE_KEEP: 1754 goto keep_locked; 1755 case PAGE_ACTIVATE: 1756 goto activate_locked; 1757 case PAGE_SUCCESS: 1758 stat->nr_pageout += thp_nr_pages(page); 1759 1760 if (PageWriteback(page)) 1761 goto keep; 1762 if (PageDirty(page)) 1763 goto keep; 1764 1765 /* 1766 * A synchronous write - probably a ramdisk. Go 1767 * ahead and try to reclaim the page. 1768 */ 1769 if (!trylock_page(page)) 1770 goto keep; 1771 if (PageDirty(page) || PageWriteback(page)) 1772 goto keep_locked; 1773 mapping = page_mapping(page); 1774 fallthrough; 1775 case PAGE_CLEAN: 1776 ; /* try to free the page below */ 1777 } 1778 } 1779 1780 /* 1781 * If the page has buffers, try to free the buffer mappings 1782 * associated with this page. If we succeed we try to free 1783 * the page as well. 1784 * 1785 * We do this even if the page is PageDirty(). 1786 * try_to_release_page() does not perform I/O, but it is 1787 * possible for a page to have PageDirty set, but it is actually 1788 * clean (all its buffers are clean). This happens if the 1789 * buffers were written out directly, with submit_bh(). ext3 1790 * will do this, as well as the blockdev mapping. 1791 * try_to_release_page() will discover that cleanness and will 1792 * drop the buffers and mark the page clean - it can be freed. 1793 * 1794 * Rarely, pages can have buffers and no ->mapping. These are 1795 * the pages which were not successfully invalidated in 1796 * truncate_cleanup_page(). We try to drop those buffers here 1797 * and if that worked, and the page is no longer mapped into 1798 * process address space (page_count == 1) it can be freed. 1799 * Otherwise, leave the page on the LRU so it is swappable. 1800 */ 1801 if (page_has_private(page)) { 1802 if (!try_to_release_page(page, sc->gfp_mask)) 1803 goto activate_locked; 1804 if (!mapping && page_count(page) == 1) { 1805 unlock_page(page); 1806 if (put_page_testzero(page)) 1807 goto free_it; 1808 else { 1809 /* 1810 * rare race with speculative reference. 1811 * the speculative reference will free 1812 * this page shortly, so we may 1813 * increment nr_reclaimed here (and 1814 * leave it off the LRU). 1815 */ 1816 nr_reclaimed++; 1817 continue; 1818 } 1819 } 1820 } 1821 1822 if (PageAnon(page) && !PageSwapBacked(page)) { 1823 /* follow __remove_mapping for reference */ 1824 if (!page_ref_freeze(page, 1)) 1825 goto keep_locked; 1826 /* 1827 * The page has only one reference left, which is 1828 * from the isolation. After the caller puts the 1829 * page back on lru and drops the reference, the 1830 * page will be freed anyway. It doesn't matter 1831 * which lru it goes. So we don't bother checking 1832 * PageDirty here. 1833 */ 1834 count_vm_event(PGLAZYFREED); 1835 count_memcg_page_event(page, PGLAZYFREED); 1836 } else if (!mapping || !__remove_mapping(mapping, page, true, 1837 sc->target_mem_cgroup)) 1838 goto keep_locked; 1839 1840 unlock_page(page); 1841 free_it: 1842 /* 1843 * THP may get swapped out in a whole, need account 1844 * all base pages. 1845 */ 1846 nr_reclaimed += nr_pages; 1847 1848 /* 1849 * Is there need to periodically free_page_list? It would 1850 * appear not as the counts should be low 1851 */ 1852 if (unlikely(PageTransHuge(page))) 1853 destroy_compound_page(page); 1854 else 1855 list_add(&page->lru, &free_pages); 1856 continue; 1857 1858 activate_locked_split: 1859 /* 1860 * The tail pages that are failed to add into swap cache 1861 * reach here. Fixup nr_scanned and nr_pages. 1862 */ 1863 if (nr_pages > 1) { 1864 sc->nr_scanned -= (nr_pages - 1); 1865 nr_pages = 1; 1866 } 1867 activate_locked: 1868 /* Not a candidate for swapping, so reclaim swap space. */ 1869 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1870 PageMlocked(page))) 1871 try_to_free_swap(page); 1872 VM_BUG_ON_PAGE(PageActive(page), page); 1873 if (!PageMlocked(page)) { 1874 int type = page_is_file_lru(page); 1875 SetPageActive(page); 1876 stat->nr_activate[type] += nr_pages; 1877 count_memcg_page_event(page, PGACTIVATE); 1878 } 1879 keep_locked: 1880 unlock_page(page); 1881 keep: 1882 list_add(&page->lru, &ret_pages); 1883 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1884 } 1885 /* 'page_list' is always empty here */ 1886 1887 /* Migrate pages selected for demotion */ 1888 nr_reclaimed += demote_page_list(&demote_pages, pgdat); 1889 /* Pages that could not be demoted are still in @demote_pages */ 1890 if (!list_empty(&demote_pages)) { 1891 /* Pages which failed to demoted go back on @page_list for retry: */ 1892 list_splice_init(&demote_pages, page_list); 1893 do_demote_pass = false; 1894 goto retry; 1895 } 1896 1897 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1898 1899 mem_cgroup_uncharge_list(&free_pages); 1900 try_to_unmap_flush(); 1901 free_unref_page_list(&free_pages); 1902 1903 list_splice(&ret_pages, page_list); 1904 count_vm_events(PGACTIVATE, pgactivate); 1905 1906 return nr_reclaimed; 1907 } 1908 1909 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1910 struct list_head *page_list) 1911 { 1912 struct scan_control sc = { 1913 .gfp_mask = GFP_KERNEL, 1914 .may_unmap = 1, 1915 }; 1916 struct reclaim_stat stat; 1917 unsigned int nr_reclaimed; 1918 struct page *page, *next; 1919 LIST_HEAD(clean_pages); 1920 unsigned int noreclaim_flag; 1921 1922 list_for_each_entry_safe(page, next, page_list, lru) { 1923 if (!PageHuge(page) && page_is_file_lru(page) && 1924 !PageDirty(page) && !__PageMovable(page) && 1925 !PageUnevictable(page)) { 1926 ClearPageActive(page); 1927 list_move(&page->lru, &clean_pages); 1928 } 1929 } 1930 1931 /* 1932 * We should be safe here since we are only dealing with file pages and 1933 * we are not kswapd and therefore cannot write dirty file pages. But 1934 * call memalloc_noreclaim_save() anyway, just in case these conditions 1935 * change in the future. 1936 */ 1937 noreclaim_flag = memalloc_noreclaim_save(); 1938 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1939 &stat, true); 1940 memalloc_noreclaim_restore(noreclaim_flag); 1941 1942 list_splice(&clean_pages, page_list); 1943 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1944 -(long)nr_reclaimed); 1945 /* 1946 * Since lazyfree pages are isolated from file LRU from the beginning, 1947 * they will rotate back to anonymous LRU in the end if it failed to 1948 * discard so isolated count will be mismatched. 1949 * Compensate the isolated count for both LRU lists. 1950 */ 1951 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1952 stat.nr_lazyfree_fail); 1953 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1954 -(long)stat.nr_lazyfree_fail); 1955 return nr_reclaimed; 1956 } 1957 1958 /* 1959 * Attempt to remove the specified page from its LRU. Only take this page 1960 * if it is of the appropriate PageActive status. Pages which are being 1961 * freed elsewhere are also ignored. 1962 * 1963 * page: page to consider 1964 * mode: one of the LRU isolation modes defined above 1965 * 1966 * returns true on success, false on failure. 1967 */ 1968 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode) 1969 { 1970 /* Only take pages on the LRU. */ 1971 if (!PageLRU(page)) 1972 return false; 1973 1974 /* Compaction should not handle unevictable pages but CMA can do so */ 1975 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1976 return false; 1977 1978 /* 1979 * To minimise LRU disruption, the caller can indicate that it only 1980 * wants to isolate pages it will be able to operate on without 1981 * blocking - clean pages for the most part. 1982 * 1983 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1984 * that it is possible to migrate without blocking 1985 */ 1986 if (mode & ISOLATE_ASYNC_MIGRATE) { 1987 /* All the caller can do on PageWriteback is block */ 1988 if (PageWriteback(page)) 1989 return false; 1990 1991 if (PageDirty(page)) { 1992 struct address_space *mapping; 1993 bool migrate_dirty; 1994 1995 /* 1996 * Only pages without mappings or that have a 1997 * ->migratepage callback are possible to migrate 1998 * without blocking. However, we can be racing with 1999 * truncation so it's necessary to lock the page 2000 * to stabilise the mapping as truncation holds 2001 * the page lock until after the page is removed 2002 * from the page cache. 2003 */ 2004 if (!trylock_page(page)) 2005 return false; 2006 2007 mapping = page_mapping(page); 2008 migrate_dirty = !mapping || mapping->a_ops->migratepage; 2009 unlock_page(page); 2010 if (!migrate_dirty) 2011 return false; 2012 } 2013 } 2014 2015 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 2016 return false; 2017 2018 return true; 2019 } 2020 2021 /* 2022 * Update LRU sizes after isolating pages. The LRU size updates must 2023 * be complete before mem_cgroup_update_lru_size due to a sanity check. 2024 */ 2025 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 2026 enum lru_list lru, unsigned long *nr_zone_taken) 2027 { 2028 int zid; 2029 2030 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2031 if (!nr_zone_taken[zid]) 2032 continue; 2033 2034 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 2035 } 2036 2037 } 2038 2039 /* 2040 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 2041 * 2042 * lruvec->lru_lock is heavily contended. Some of the functions that 2043 * shrink the lists perform better by taking out a batch of pages 2044 * and working on them outside the LRU lock. 2045 * 2046 * For pagecache intensive workloads, this function is the hottest 2047 * spot in the kernel (apart from copy_*_user functions). 2048 * 2049 * Lru_lock must be held before calling this function. 2050 * 2051 * @nr_to_scan: The number of eligible pages to look through on the list. 2052 * @lruvec: The LRU vector to pull pages from. 2053 * @dst: The temp list to put pages on to. 2054 * @nr_scanned: The number of pages that were scanned. 2055 * @sc: The scan_control struct for this reclaim session 2056 * @lru: LRU list id for isolating 2057 * 2058 * returns how many pages were moved onto *@dst. 2059 */ 2060 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 2061 struct lruvec *lruvec, struct list_head *dst, 2062 unsigned long *nr_scanned, struct scan_control *sc, 2063 enum lru_list lru) 2064 { 2065 struct list_head *src = &lruvec->lists[lru]; 2066 unsigned long nr_taken = 0; 2067 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 2068 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 2069 unsigned long skipped = 0; 2070 unsigned long scan, total_scan, nr_pages; 2071 LIST_HEAD(pages_skipped); 2072 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 2073 2074 total_scan = 0; 2075 scan = 0; 2076 while (scan < nr_to_scan && !list_empty(src)) { 2077 struct page *page; 2078 2079 page = lru_to_page(src); 2080 prefetchw_prev_lru_page(page, src, flags); 2081 2082 nr_pages = compound_nr(page); 2083 total_scan += nr_pages; 2084 2085 if (page_zonenum(page) > sc->reclaim_idx) { 2086 list_move(&page->lru, &pages_skipped); 2087 nr_skipped[page_zonenum(page)] += nr_pages; 2088 continue; 2089 } 2090 2091 /* 2092 * Do not count skipped pages because that makes the function 2093 * return with no isolated pages if the LRU mostly contains 2094 * ineligible pages. This causes the VM to not reclaim any 2095 * pages, triggering a premature OOM. 2096 * 2097 * Account all tail pages of THP. This would not cause 2098 * premature OOM since __isolate_lru_page() returns -EBUSY 2099 * only when the page is being freed somewhere else. 2100 */ 2101 scan += nr_pages; 2102 if (!__isolate_lru_page_prepare(page, mode)) { 2103 /* It is being freed elsewhere */ 2104 list_move(&page->lru, src); 2105 continue; 2106 } 2107 /* 2108 * Be careful not to clear PageLRU until after we're 2109 * sure the page is not being freed elsewhere -- the 2110 * page release code relies on it. 2111 */ 2112 if (unlikely(!get_page_unless_zero(page))) { 2113 list_move(&page->lru, src); 2114 continue; 2115 } 2116 2117 if (!TestClearPageLRU(page)) { 2118 /* Another thread is already isolating this page */ 2119 put_page(page); 2120 list_move(&page->lru, src); 2121 continue; 2122 } 2123 2124 nr_taken += nr_pages; 2125 nr_zone_taken[page_zonenum(page)] += nr_pages; 2126 list_move(&page->lru, dst); 2127 } 2128 2129 /* 2130 * Splice any skipped pages to the start of the LRU list. Note that 2131 * this disrupts the LRU order when reclaiming for lower zones but 2132 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 2133 * scanning would soon rescan the same pages to skip and put the 2134 * system at risk of premature OOM. 2135 */ 2136 if (!list_empty(&pages_skipped)) { 2137 int zid; 2138 2139 list_splice(&pages_skipped, src); 2140 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2141 if (!nr_skipped[zid]) 2142 continue; 2143 2144 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 2145 skipped += nr_skipped[zid]; 2146 } 2147 } 2148 *nr_scanned = total_scan; 2149 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 2150 total_scan, skipped, nr_taken, mode, lru); 2151 update_lru_sizes(lruvec, lru, nr_zone_taken); 2152 return nr_taken; 2153 } 2154 2155 /** 2156 * isolate_lru_page - tries to isolate a page from its LRU list 2157 * @page: page to isolate from its LRU list 2158 * 2159 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 2160 * vmstat statistic corresponding to whatever LRU list the page was on. 2161 * 2162 * Returns 0 if the page was removed from an LRU list. 2163 * Returns -EBUSY if the page was not on an LRU list. 2164 * 2165 * The returned page will have PageLRU() cleared. If it was found on 2166 * the active list, it will have PageActive set. If it was found on 2167 * the unevictable list, it will have the PageUnevictable bit set. That flag 2168 * may need to be cleared by the caller before letting the page go. 2169 * 2170 * The vmstat statistic corresponding to the list on which the page was 2171 * found will be decremented. 2172 * 2173 * Restrictions: 2174 * 2175 * (1) Must be called with an elevated refcount on the page. This is a 2176 * fundamental difference from isolate_lru_pages (which is called 2177 * without a stable reference). 2178 * (2) the lru_lock must not be held. 2179 * (3) interrupts must be enabled. 2180 */ 2181 int isolate_lru_page(struct page *page) 2182 { 2183 int ret = -EBUSY; 2184 2185 VM_BUG_ON_PAGE(!page_count(page), page); 2186 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 2187 2188 if (TestClearPageLRU(page)) { 2189 struct lruvec *lruvec; 2190 2191 get_page(page); 2192 lruvec = lock_page_lruvec_irq(page); 2193 del_page_from_lru_list(page, lruvec); 2194 unlock_page_lruvec_irq(lruvec); 2195 ret = 0; 2196 } 2197 2198 return ret; 2199 } 2200 2201 /* 2202 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 2203 * then get rescheduled. When there are massive number of tasks doing page 2204 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 2205 * the LRU list will go small and be scanned faster than necessary, leading to 2206 * unnecessary swapping, thrashing and OOM. 2207 */ 2208 static int too_many_isolated(struct pglist_data *pgdat, int file, 2209 struct scan_control *sc) 2210 { 2211 unsigned long inactive, isolated; 2212 bool too_many; 2213 2214 if (current_is_kswapd()) 2215 return 0; 2216 2217 if (!writeback_throttling_sane(sc)) 2218 return 0; 2219 2220 if (file) { 2221 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2222 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2223 } else { 2224 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2225 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2226 } 2227 2228 /* 2229 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2230 * won't get blocked by normal direct-reclaimers, forming a circular 2231 * deadlock. 2232 */ 2233 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2234 inactive >>= 3; 2235 2236 too_many = isolated > inactive; 2237 2238 /* Wake up tasks throttled due to too_many_isolated. */ 2239 if (!too_many) 2240 wake_throttle_isolated(pgdat); 2241 2242 return too_many; 2243 } 2244 2245 /* 2246 * move_pages_to_lru() moves pages from private @list to appropriate LRU list. 2247 * On return, @list is reused as a list of pages to be freed by the caller. 2248 * 2249 * Returns the number of pages moved to the given lruvec. 2250 */ 2251 static unsigned int move_pages_to_lru(struct lruvec *lruvec, 2252 struct list_head *list) 2253 { 2254 int nr_pages, nr_moved = 0; 2255 LIST_HEAD(pages_to_free); 2256 struct page *page; 2257 2258 while (!list_empty(list)) { 2259 page = lru_to_page(list); 2260 VM_BUG_ON_PAGE(PageLRU(page), page); 2261 list_del(&page->lru); 2262 if (unlikely(!page_evictable(page))) { 2263 spin_unlock_irq(&lruvec->lru_lock); 2264 putback_lru_page(page); 2265 spin_lock_irq(&lruvec->lru_lock); 2266 continue; 2267 } 2268 2269 /* 2270 * The SetPageLRU needs to be kept here for list integrity. 2271 * Otherwise: 2272 * #0 move_pages_to_lru #1 release_pages 2273 * if !put_page_testzero 2274 * if (put_page_testzero()) 2275 * !PageLRU //skip lru_lock 2276 * SetPageLRU() 2277 * list_add(&page->lru,) 2278 * list_add(&page->lru,) 2279 */ 2280 SetPageLRU(page); 2281 2282 if (unlikely(put_page_testzero(page))) { 2283 __clear_page_lru_flags(page); 2284 2285 if (unlikely(PageCompound(page))) { 2286 spin_unlock_irq(&lruvec->lru_lock); 2287 destroy_compound_page(page); 2288 spin_lock_irq(&lruvec->lru_lock); 2289 } else 2290 list_add(&page->lru, &pages_to_free); 2291 2292 continue; 2293 } 2294 2295 /* 2296 * All pages were isolated from the same lruvec (and isolation 2297 * inhibits memcg migration). 2298 */ 2299 VM_BUG_ON_PAGE(!page_matches_lruvec(page, lruvec), page); 2300 add_page_to_lru_list(page, lruvec); 2301 nr_pages = thp_nr_pages(page); 2302 nr_moved += nr_pages; 2303 if (PageActive(page)) 2304 workingset_age_nonresident(lruvec, nr_pages); 2305 } 2306 2307 /* 2308 * To save our caller's stack, now use input list for pages to free. 2309 */ 2310 list_splice(&pages_to_free, list); 2311 2312 return nr_moved; 2313 } 2314 2315 /* 2316 * If a kernel thread (such as nfsd for loop-back mounts) services 2317 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE. 2318 * In that case we should only throttle if the backing device it is 2319 * writing to is congested. In other cases it is safe to throttle. 2320 */ 2321 static int current_may_throttle(void) 2322 { 2323 return !(current->flags & PF_LOCAL_THROTTLE) || 2324 current->backing_dev_info == NULL || 2325 bdi_write_congested(current->backing_dev_info); 2326 } 2327 2328 /* 2329 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2330 * of reclaimed pages 2331 */ 2332 static unsigned long 2333 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 2334 struct scan_control *sc, enum lru_list lru) 2335 { 2336 LIST_HEAD(page_list); 2337 unsigned long nr_scanned; 2338 unsigned int nr_reclaimed = 0; 2339 unsigned long nr_taken; 2340 struct reclaim_stat stat; 2341 bool file = is_file_lru(lru); 2342 enum vm_event_item item; 2343 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2344 bool stalled = false; 2345 2346 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2347 if (stalled) 2348 return 0; 2349 2350 /* wait a bit for the reclaimer. */ 2351 stalled = true; 2352 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 2353 2354 /* We are about to die and free our memory. Return now. */ 2355 if (fatal_signal_pending(current)) 2356 return SWAP_CLUSTER_MAX; 2357 } 2358 2359 lru_add_drain(); 2360 2361 spin_lock_irq(&lruvec->lru_lock); 2362 2363 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 2364 &nr_scanned, sc, lru); 2365 2366 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2367 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 2368 if (!cgroup_reclaim(sc)) 2369 __count_vm_events(item, nr_scanned); 2370 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2371 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2372 2373 spin_unlock_irq(&lruvec->lru_lock); 2374 2375 if (nr_taken == 0) 2376 return 0; 2377 2378 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false); 2379 2380 spin_lock_irq(&lruvec->lru_lock); 2381 move_pages_to_lru(lruvec, &page_list); 2382 2383 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2384 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 2385 if (!cgroup_reclaim(sc)) 2386 __count_vm_events(item, nr_reclaimed); 2387 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2388 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2389 spin_unlock_irq(&lruvec->lru_lock); 2390 2391 lru_note_cost(lruvec, file, stat.nr_pageout); 2392 mem_cgroup_uncharge_list(&page_list); 2393 free_unref_page_list(&page_list); 2394 2395 /* 2396 * If dirty pages are scanned that are not queued for IO, it 2397 * implies that flushers are not doing their job. This can 2398 * happen when memory pressure pushes dirty pages to the end of 2399 * the LRU before the dirty limits are breached and the dirty 2400 * data has expired. It can also happen when the proportion of 2401 * dirty pages grows not through writes but through memory 2402 * pressure reclaiming all the clean cache. And in some cases, 2403 * the flushers simply cannot keep up with the allocation 2404 * rate. Nudge the flusher threads in case they are asleep. 2405 */ 2406 if (stat.nr_unqueued_dirty == nr_taken) 2407 wakeup_flusher_threads(WB_REASON_VMSCAN); 2408 2409 sc->nr.dirty += stat.nr_dirty; 2410 sc->nr.congested += stat.nr_congested; 2411 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2412 sc->nr.writeback += stat.nr_writeback; 2413 sc->nr.immediate += stat.nr_immediate; 2414 sc->nr.taken += nr_taken; 2415 if (file) 2416 sc->nr.file_taken += nr_taken; 2417 2418 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2419 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2420 return nr_reclaimed; 2421 } 2422 2423 /* 2424 * shrink_active_list() moves pages from the active LRU to the inactive LRU. 2425 * 2426 * We move them the other way if the page is referenced by one or more 2427 * processes. 2428 * 2429 * If the pages are mostly unmapped, the processing is fast and it is 2430 * appropriate to hold lru_lock across the whole operation. But if 2431 * the pages are mapped, the processing is slow (page_referenced()), so 2432 * we should drop lru_lock around each page. It's impossible to balance 2433 * this, so instead we remove the pages from the LRU while processing them. 2434 * It is safe to rely on PG_active against the non-LRU pages in here because 2435 * nobody will play with that bit on a non-LRU page. 2436 * 2437 * The downside is that we have to touch page->_refcount against each page. 2438 * But we had to alter page->flags anyway. 2439 */ 2440 static void shrink_active_list(unsigned long nr_to_scan, 2441 struct lruvec *lruvec, 2442 struct scan_control *sc, 2443 enum lru_list lru) 2444 { 2445 unsigned long nr_taken; 2446 unsigned long nr_scanned; 2447 unsigned long vm_flags; 2448 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2449 LIST_HEAD(l_active); 2450 LIST_HEAD(l_inactive); 2451 struct page *page; 2452 unsigned nr_deactivate, nr_activate; 2453 unsigned nr_rotated = 0; 2454 int file = is_file_lru(lru); 2455 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2456 2457 lru_add_drain(); 2458 2459 spin_lock_irq(&lruvec->lru_lock); 2460 2461 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2462 &nr_scanned, sc, lru); 2463 2464 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2465 2466 if (!cgroup_reclaim(sc)) 2467 __count_vm_events(PGREFILL, nr_scanned); 2468 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2469 2470 spin_unlock_irq(&lruvec->lru_lock); 2471 2472 while (!list_empty(&l_hold)) { 2473 cond_resched(); 2474 page = lru_to_page(&l_hold); 2475 list_del(&page->lru); 2476 2477 if (unlikely(!page_evictable(page))) { 2478 putback_lru_page(page); 2479 continue; 2480 } 2481 2482 if (unlikely(buffer_heads_over_limit)) { 2483 if (page_has_private(page) && trylock_page(page)) { 2484 if (page_has_private(page)) 2485 try_to_release_page(page, 0); 2486 unlock_page(page); 2487 } 2488 } 2489 2490 if (page_referenced(page, 0, sc->target_mem_cgroup, 2491 &vm_flags)) { 2492 /* 2493 * Identify referenced, file-backed active pages and 2494 * give them one more trip around the active list. So 2495 * that executable code get better chances to stay in 2496 * memory under moderate memory pressure. Anon pages 2497 * are not likely to be evicted by use-once streaming 2498 * IO, plus JVM can create lots of anon VM_EXEC pages, 2499 * so we ignore them here. 2500 */ 2501 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2502 nr_rotated += thp_nr_pages(page); 2503 list_add(&page->lru, &l_active); 2504 continue; 2505 } 2506 } 2507 2508 ClearPageActive(page); /* we are de-activating */ 2509 SetPageWorkingset(page); 2510 list_add(&page->lru, &l_inactive); 2511 } 2512 2513 /* 2514 * Move pages back to the lru list. 2515 */ 2516 spin_lock_irq(&lruvec->lru_lock); 2517 2518 nr_activate = move_pages_to_lru(lruvec, &l_active); 2519 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2520 /* Keep all free pages in l_active list */ 2521 list_splice(&l_inactive, &l_active); 2522 2523 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2524 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2525 2526 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2527 spin_unlock_irq(&lruvec->lru_lock); 2528 2529 mem_cgroup_uncharge_list(&l_active); 2530 free_unref_page_list(&l_active); 2531 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2532 nr_deactivate, nr_rotated, sc->priority, file); 2533 } 2534 2535 unsigned long reclaim_pages(struct list_head *page_list) 2536 { 2537 int nid = NUMA_NO_NODE; 2538 unsigned int nr_reclaimed = 0; 2539 LIST_HEAD(node_page_list); 2540 struct reclaim_stat dummy_stat; 2541 struct page *page; 2542 unsigned int noreclaim_flag; 2543 struct scan_control sc = { 2544 .gfp_mask = GFP_KERNEL, 2545 .may_writepage = 1, 2546 .may_unmap = 1, 2547 .may_swap = 1, 2548 .no_demotion = 1, 2549 }; 2550 2551 noreclaim_flag = memalloc_noreclaim_save(); 2552 2553 while (!list_empty(page_list)) { 2554 page = lru_to_page(page_list); 2555 if (nid == NUMA_NO_NODE) { 2556 nid = page_to_nid(page); 2557 INIT_LIST_HEAD(&node_page_list); 2558 } 2559 2560 if (nid == page_to_nid(page)) { 2561 ClearPageActive(page); 2562 list_move(&page->lru, &node_page_list); 2563 continue; 2564 } 2565 2566 nr_reclaimed += shrink_page_list(&node_page_list, 2567 NODE_DATA(nid), 2568 &sc, &dummy_stat, false); 2569 while (!list_empty(&node_page_list)) { 2570 page = lru_to_page(&node_page_list); 2571 list_del(&page->lru); 2572 putback_lru_page(page); 2573 } 2574 2575 nid = NUMA_NO_NODE; 2576 } 2577 2578 if (!list_empty(&node_page_list)) { 2579 nr_reclaimed += shrink_page_list(&node_page_list, 2580 NODE_DATA(nid), 2581 &sc, &dummy_stat, false); 2582 while (!list_empty(&node_page_list)) { 2583 page = lru_to_page(&node_page_list); 2584 list_del(&page->lru); 2585 putback_lru_page(page); 2586 } 2587 } 2588 2589 memalloc_noreclaim_restore(noreclaim_flag); 2590 2591 return nr_reclaimed; 2592 } 2593 2594 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2595 struct lruvec *lruvec, struct scan_control *sc) 2596 { 2597 if (is_active_lru(lru)) { 2598 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2599 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2600 else 2601 sc->skipped_deactivate = 1; 2602 return 0; 2603 } 2604 2605 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2606 } 2607 2608 /* 2609 * The inactive anon list should be small enough that the VM never has 2610 * to do too much work. 2611 * 2612 * The inactive file list should be small enough to leave most memory 2613 * to the established workingset on the scan-resistant active list, 2614 * but large enough to avoid thrashing the aggregate readahead window. 2615 * 2616 * Both inactive lists should also be large enough that each inactive 2617 * page has a chance to be referenced again before it is reclaimed. 2618 * 2619 * If that fails and refaulting is observed, the inactive list grows. 2620 * 2621 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2622 * on this LRU, maintained by the pageout code. An inactive_ratio 2623 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2624 * 2625 * total target max 2626 * memory ratio inactive 2627 * ------------------------------------- 2628 * 10MB 1 5MB 2629 * 100MB 1 50MB 2630 * 1GB 3 250MB 2631 * 10GB 10 0.9GB 2632 * 100GB 31 3GB 2633 * 1TB 101 10GB 2634 * 10TB 320 32GB 2635 */ 2636 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2637 { 2638 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2639 unsigned long inactive, active; 2640 unsigned long inactive_ratio; 2641 unsigned long gb; 2642 2643 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2644 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2645 2646 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2647 if (gb) 2648 inactive_ratio = int_sqrt(10 * gb); 2649 else 2650 inactive_ratio = 1; 2651 2652 return inactive * inactive_ratio < active; 2653 } 2654 2655 enum scan_balance { 2656 SCAN_EQUAL, 2657 SCAN_FRACT, 2658 SCAN_ANON, 2659 SCAN_FILE, 2660 }; 2661 2662 /* 2663 * Determine how aggressively the anon and file LRU lists should be 2664 * scanned. The relative value of each set of LRU lists is determined 2665 * by looking at the fraction of the pages scanned we did rotate back 2666 * onto the active list instead of evict. 2667 * 2668 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2669 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2670 */ 2671 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2672 unsigned long *nr) 2673 { 2674 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2675 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2676 unsigned long anon_cost, file_cost, total_cost; 2677 int swappiness = mem_cgroup_swappiness(memcg); 2678 u64 fraction[ANON_AND_FILE]; 2679 u64 denominator = 0; /* gcc */ 2680 enum scan_balance scan_balance; 2681 unsigned long ap, fp; 2682 enum lru_list lru; 2683 2684 /* If we have no swap space, do not bother scanning anon pages. */ 2685 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2686 scan_balance = SCAN_FILE; 2687 goto out; 2688 } 2689 2690 /* 2691 * Global reclaim will swap to prevent OOM even with no 2692 * swappiness, but memcg users want to use this knob to 2693 * disable swapping for individual groups completely when 2694 * using the memory controller's swap limit feature would be 2695 * too expensive. 2696 */ 2697 if (cgroup_reclaim(sc) && !swappiness) { 2698 scan_balance = SCAN_FILE; 2699 goto out; 2700 } 2701 2702 /* 2703 * Do not apply any pressure balancing cleverness when the 2704 * system is close to OOM, scan both anon and file equally 2705 * (unless the swappiness setting disagrees with swapping). 2706 */ 2707 if (!sc->priority && swappiness) { 2708 scan_balance = SCAN_EQUAL; 2709 goto out; 2710 } 2711 2712 /* 2713 * If the system is almost out of file pages, force-scan anon. 2714 */ 2715 if (sc->file_is_tiny) { 2716 scan_balance = SCAN_ANON; 2717 goto out; 2718 } 2719 2720 /* 2721 * If there is enough inactive page cache, we do not reclaim 2722 * anything from the anonymous working right now. 2723 */ 2724 if (sc->cache_trim_mode) { 2725 scan_balance = SCAN_FILE; 2726 goto out; 2727 } 2728 2729 scan_balance = SCAN_FRACT; 2730 /* 2731 * Calculate the pressure balance between anon and file pages. 2732 * 2733 * The amount of pressure we put on each LRU is inversely 2734 * proportional to the cost of reclaiming each list, as 2735 * determined by the share of pages that are refaulting, times 2736 * the relative IO cost of bringing back a swapped out 2737 * anonymous page vs reloading a filesystem page (swappiness). 2738 * 2739 * Although we limit that influence to ensure no list gets 2740 * left behind completely: at least a third of the pressure is 2741 * applied, before swappiness. 2742 * 2743 * With swappiness at 100, anon and file have equal IO cost. 2744 */ 2745 total_cost = sc->anon_cost + sc->file_cost; 2746 anon_cost = total_cost + sc->anon_cost; 2747 file_cost = total_cost + sc->file_cost; 2748 total_cost = anon_cost + file_cost; 2749 2750 ap = swappiness * (total_cost + 1); 2751 ap /= anon_cost + 1; 2752 2753 fp = (200 - swappiness) * (total_cost + 1); 2754 fp /= file_cost + 1; 2755 2756 fraction[0] = ap; 2757 fraction[1] = fp; 2758 denominator = ap + fp; 2759 out: 2760 for_each_evictable_lru(lru) { 2761 int file = is_file_lru(lru); 2762 unsigned long lruvec_size; 2763 unsigned long low, min; 2764 unsigned long scan; 2765 2766 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2767 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2768 &min, &low); 2769 2770 if (min || low) { 2771 /* 2772 * Scale a cgroup's reclaim pressure by proportioning 2773 * its current usage to its memory.low or memory.min 2774 * setting. 2775 * 2776 * This is important, as otherwise scanning aggression 2777 * becomes extremely binary -- from nothing as we 2778 * approach the memory protection threshold, to totally 2779 * nominal as we exceed it. This results in requiring 2780 * setting extremely liberal protection thresholds. It 2781 * also means we simply get no protection at all if we 2782 * set it too low, which is not ideal. 2783 * 2784 * If there is any protection in place, we reduce scan 2785 * pressure by how much of the total memory used is 2786 * within protection thresholds. 2787 * 2788 * There is one special case: in the first reclaim pass, 2789 * we skip over all groups that are within their low 2790 * protection. If that fails to reclaim enough pages to 2791 * satisfy the reclaim goal, we come back and override 2792 * the best-effort low protection. However, we still 2793 * ideally want to honor how well-behaved groups are in 2794 * that case instead of simply punishing them all 2795 * equally. As such, we reclaim them based on how much 2796 * memory they are using, reducing the scan pressure 2797 * again by how much of the total memory used is under 2798 * hard protection. 2799 */ 2800 unsigned long cgroup_size = mem_cgroup_size(memcg); 2801 unsigned long protection; 2802 2803 /* memory.low scaling, make sure we retry before OOM */ 2804 if (!sc->memcg_low_reclaim && low > min) { 2805 protection = low; 2806 sc->memcg_low_skipped = 1; 2807 } else { 2808 protection = min; 2809 } 2810 2811 /* Avoid TOCTOU with earlier protection check */ 2812 cgroup_size = max(cgroup_size, protection); 2813 2814 scan = lruvec_size - lruvec_size * protection / 2815 (cgroup_size + 1); 2816 2817 /* 2818 * Minimally target SWAP_CLUSTER_MAX pages to keep 2819 * reclaim moving forwards, avoiding decrementing 2820 * sc->priority further than desirable. 2821 */ 2822 scan = max(scan, SWAP_CLUSTER_MAX); 2823 } else { 2824 scan = lruvec_size; 2825 } 2826 2827 scan >>= sc->priority; 2828 2829 /* 2830 * If the cgroup's already been deleted, make sure to 2831 * scrape out the remaining cache. 2832 */ 2833 if (!scan && !mem_cgroup_online(memcg)) 2834 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2835 2836 switch (scan_balance) { 2837 case SCAN_EQUAL: 2838 /* Scan lists relative to size */ 2839 break; 2840 case SCAN_FRACT: 2841 /* 2842 * Scan types proportional to swappiness and 2843 * their relative recent reclaim efficiency. 2844 * Make sure we don't miss the last page on 2845 * the offlined memory cgroups because of a 2846 * round-off error. 2847 */ 2848 scan = mem_cgroup_online(memcg) ? 2849 div64_u64(scan * fraction[file], denominator) : 2850 DIV64_U64_ROUND_UP(scan * fraction[file], 2851 denominator); 2852 break; 2853 case SCAN_FILE: 2854 case SCAN_ANON: 2855 /* Scan one type exclusively */ 2856 if ((scan_balance == SCAN_FILE) != file) 2857 scan = 0; 2858 break; 2859 default: 2860 /* Look ma, no brain */ 2861 BUG(); 2862 } 2863 2864 nr[lru] = scan; 2865 } 2866 } 2867 2868 /* 2869 * Anonymous LRU management is a waste if there is 2870 * ultimately no way to reclaim the memory. 2871 */ 2872 static bool can_age_anon_pages(struct pglist_data *pgdat, 2873 struct scan_control *sc) 2874 { 2875 /* Aging the anon LRU is valuable if swap is present: */ 2876 if (total_swap_pages > 0) 2877 return true; 2878 2879 /* Also valuable if anon pages can be demoted: */ 2880 return can_demote(pgdat->node_id, sc); 2881 } 2882 2883 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2884 { 2885 unsigned long nr[NR_LRU_LISTS]; 2886 unsigned long targets[NR_LRU_LISTS]; 2887 unsigned long nr_to_scan; 2888 enum lru_list lru; 2889 unsigned long nr_reclaimed = 0; 2890 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2891 struct blk_plug plug; 2892 bool scan_adjusted; 2893 2894 get_scan_count(lruvec, sc, nr); 2895 2896 /* Record the original scan target for proportional adjustments later */ 2897 memcpy(targets, nr, sizeof(nr)); 2898 2899 /* 2900 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2901 * event that can occur when there is little memory pressure e.g. 2902 * multiple streaming readers/writers. Hence, we do not abort scanning 2903 * when the requested number of pages are reclaimed when scanning at 2904 * DEF_PRIORITY on the assumption that the fact we are direct 2905 * reclaiming implies that kswapd is not keeping up and it is best to 2906 * do a batch of work at once. For memcg reclaim one check is made to 2907 * abort proportional reclaim if either the file or anon lru has already 2908 * dropped to zero at the first pass. 2909 */ 2910 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2911 sc->priority == DEF_PRIORITY); 2912 2913 blk_start_plug(&plug); 2914 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2915 nr[LRU_INACTIVE_FILE]) { 2916 unsigned long nr_anon, nr_file, percentage; 2917 unsigned long nr_scanned; 2918 2919 for_each_evictable_lru(lru) { 2920 if (nr[lru]) { 2921 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2922 nr[lru] -= nr_to_scan; 2923 2924 nr_reclaimed += shrink_list(lru, nr_to_scan, 2925 lruvec, sc); 2926 } 2927 } 2928 2929 cond_resched(); 2930 2931 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2932 continue; 2933 2934 /* 2935 * For kswapd and memcg, reclaim at least the number of pages 2936 * requested. Ensure that the anon and file LRUs are scanned 2937 * proportionally what was requested by get_scan_count(). We 2938 * stop reclaiming one LRU and reduce the amount scanning 2939 * proportional to the original scan target. 2940 */ 2941 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2942 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2943 2944 /* 2945 * It's just vindictive to attack the larger once the smaller 2946 * has gone to zero. And given the way we stop scanning the 2947 * smaller below, this makes sure that we only make one nudge 2948 * towards proportionality once we've got nr_to_reclaim. 2949 */ 2950 if (!nr_file || !nr_anon) 2951 break; 2952 2953 if (nr_file > nr_anon) { 2954 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2955 targets[LRU_ACTIVE_ANON] + 1; 2956 lru = LRU_BASE; 2957 percentage = nr_anon * 100 / scan_target; 2958 } else { 2959 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2960 targets[LRU_ACTIVE_FILE] + 1; 2961 lru = LRU_FILE; 2962 percentage = nr_file * 100 / scan_target; 2963 } 2964 2965 /* Stop scanning the smaller of the LRU */ 2966 nr[lru] = 0; 2967 nr[lru + LRU_ACTIVE] = 0; 2968 2969 /* 2970 * Recalculate the other LRU scan count based on its original 2971 * scan target and the percentage scanning already complete 2972 */ 2973 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2974 nr_scanned = targets[lru] - nr[lru]; 2975 nr[lru] = targets[lru] * (100 - percentage) / 100; 2976 nr[lru] -= min(nr[lru], nr_scanned); 2977 2978 lru += LRU_ACTIVE; 2979 nr_scanned = targets[lru] - nr[lru]; 2980 nr[lru] = targets[lru] * (100 - percentage) / 100; 2981 nr[lru] -= min(nr[lru], nr_scanned); 2982 2983 scan_adjusted = true; 2984 } 2985 blk_finish_plug(&plug); 2986 sc->nr_reclaimed += nr_reclaimed; 2987 2988 /* 2989 * Even if we did not try to evict anon pages at all, we want to 2990 * rebalance the anon lru active/inactive ratio. 2991 */ 2992 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 2993 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 2994 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2995 sc, LRU_ACTIVE_ANON); 2996 } 2997 2998 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2999 static bool in_reclaim_compaction(struct scan_control *sc) 3000 { 3001 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 3002 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 3003 sc->priority < DEF_PRIORITY - 2)) 3004 return true; 3005 3006 return false; 3007 } 3008 3009 /* 3010 * Reclaim/compaction is used for high-order allocation requests. It reclaims 3011 * order-0 pages before compacting the zone. should_continue_reclaim() returns 3012 * true if more pages should be reclaimed such that when the page allocator 3013 * calls try_to_compact_pages() that it will have enough free pages to succeed. 3014 * It will give up earlier than that if there is difficulty reclaiming pages. 3015 */ 3016 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 3017 unsigned long nr_reclaimed, 3018 struct scan_control *sc) 3019 { 3020 unsigned long pages_for_compaction; 3021 unsigned long inactive_lru_pages; 3022 int z; 3023 3024 /* If not in reclaim/compaction mode, stop */ 3025 if (!in_reclaim_compaction(sc)) 3026 return false; 3027 3028 /* 3029 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 3030 * number of pages that were scanned. This will return to the caller 3031 * with the risk reclaim/compaction and the resulting allocation attempt 3032 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 3033 * allocations through requiring that the full LRU list has been scanned 3034 * first, by assuming that zero delta of sc->nr_scanned means full LRU 3035 * scan, but that approximation was wrong, and there were corner cases 3036 * where always a non-zero amount of pages were scanned. 3037 */ 3038 if (!nr_reclaimed) 3039 return false; 3040 3041 /* If compaction would go ahead or the allocation would succeed, stop */ 3042 for (z = 0; z <= sc->reclaim_idx; z++) { 3043 struct zone *zone = &pgdat->node_zones[z]; 3044 if (!managed_zone(zone)) 3045 continue; 3046 3047 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 3048 case COMPACT_SUCCESS: 3049 case COMPACT_CONTINUE: 3050 return false; 3051 default: 3052 /* check next zone */ 3053 ; 3054 } 3055 } 3056 3057 /* 3058 * If we have not reclaimed enough pages for compaction and the 3059 * inactive lists are large enough, continue reclaiming 3060 */ 3061 pages_for_compaction = compact_gap(sc->order); 3062 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 3063 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 3064 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 3065 3066 return inactive_lru_pages > pages_for_compaction; 3067 } 3068 3069 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 3070 { 3071 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 3072 struct mem_cgroup *memcg; 3073 3074 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 3075 do { 3076 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3077 unsigned long reclaimed; 3078 unsigned long scanned; 3079 3080 /* 3081 * This loop can become CPU-bound when target memcgs 3082 * aren't eligible for reclaim - either because they 3083 * don't have any reclaimable pages, or because their 3084 * memory is explicitly protected. Avoid soft lockups. 3085 */ 3086 cond_resched(); 3087 3088 mem_cgroup_calculate_protection(target_memcg, memcg); 3089 3090 if (mem_cgroup_below_min(memcg)) { 3091 /* 3092 * Hard protection. 3093 * If there is no reclaimable memory, OOM. 3094 */ 3095 continue; 3096 } else if (mem_cgroup_below_low(memcg)) { 3097 /* 3098 * Soft protection. 3099 * Respect the protection only as long as 3100 * there is an unprotected supply 3101 * of reclaimable memory from other cgroups. 3102 */ 3103 if (!sc->memcg_low_reclaim) { 3104 sc->memcg_low_skipped = 1; 3105 continue; 3106 } 3107 memcg_memory_event(memcg, MEMCG_LOW); 3108 } 3109 3110 reclaimed = sc->nr_reclaimed; 3111 scanned = sc->nr_scanned; 3112 3113 shrink_lruvec(lruvec, sc); 3114 3115 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 3116 sc->priority); 3117 3118 /* Record the group's reclaim efficiency */ 3119 vmpressure(sc->gfp_mask, memcg, false, 3120 sc->nr_scanned - scanned, 3121 sc->nr_reclaimed - reclaimed); 3122 3123 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 3124 } 3125 3126 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 3127 { 3128 struct reclaim_state *reclaim_state = current->reclaim_state; 3129 unsigned long nr_reclaimed, nr_scanned; 3130 struct lruvec *target_lruvec; 3131 bool reclaimable = false; 3132 unsigned long file; 3133 3134 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 3135 3136 again: 3137 /* 3138 * Flush the memory cgroup stats, so that we read accurate per-memcg 3139 * lruvec stats for heuristics. 3140 */ 3141 mem_cgroup_flush_stats(); 3142 3143 memset(&sc->nr, 0, sizeof(sc->nr)); 3144 3145 nr_reclaimed = sc->nr_reclaimed; 3146 nr_scanned = sc->nr_scanned; 3147 3148 /* 3149 * Determine the scan balance between anon and file LRUs. 3150 */ 3151 spin_lock_irq(&target_lruvec->lru_lock); 3152 sc->anon_cost = target_lruvec->anon_cost; 3153 sc->file_cost = target_lruvec->file_cost; 3154 spin_unlock_irq(&target_lruvec->lru_lock); 3155 3156 /* 3157 * Target desirable inactive:active list ratios for the anon 3158 * and file LRU lists. 3159 */ 3160 if (!sc->force_deactivate) { 3161 unsigned long refaults; 3162 3163 refaults = lruvec_page_state(target_lruvec, 3164 WORKINGSET_ACTIVATE_ANON); 3165 if (refaults != target_lruvec->refaults[0] || 3166 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 3167 sc->may_deactivate |= DEACTIVATE_ANON; 3168 else 3169 sc->may_deactivate &= ~DEACTIVATE_ANON; 3170 3171 /* 3172 * When refaults are being observed, it means a new 3173 * workingset is being established. Deactivate to get 3174 * rid of any stale active pages quickly. 3175 */ 3176 refaults = lruvec_page_state(target_lruvec, 3177 WORKINGSET_ACTIVATE_FILE); 3178 if (refaults != target_lruvec->refaults[1] || 3179 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 3180 sc->may_deactivate |= DEACTIVATE_FILE; 3181 else 3182 sc->may_deactivate &= ~DEACTIVATE_FILE; 3183 } else 3184 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 3185 3186 /* 3187 * If we have plenty of inactive file pages that aren't 3188 * thrashing, try to reclaim those first before touching 3189 * anonymous pages. 3190 */ 3191 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 3192 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 3193 sc->cache_trim_mode = 1; 3194 else 3195 sc->cache_trim_mode = 0; 3196 3197 /* 3198 * Prevent the reclaimer from falling into the cache trap: as 3199 * cache pages start out inactive, every cache fault will tip 3200 * the scan balance towards the file LRU. And as the file LRU 3201 * shrinks, so does the window for rotation from references. 3202 * This means we have a runaway feedback loop where a tiny 3203 * thrashing file LRU becomes infinitely more attractive than 3204 * anon pages. Try to detect this based on file LRU size. 3205 */ 3206 if (!cgroup_reclaim(sc)) { 3207 unsigned long total_high_wmark = 0; 3208 unsigned long free, anon; 3209 int z; 3210 3211 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 3212 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 3213 node_page_state(pgdat, NR_INACTIVE_FILE); 3214 3215 for (z = 0; z < MAX_NR_ZONES; z++) { 3216 struct zone *zone = &pgdat->node_zones[z]; 3217 if (!managed_zone(zone)) 3218 continue; 3219 3220 total_high_wmark += high_wmark_pages(zone); 3221 } 3222 3223 /* 3224 * Consider anon: if that's low too, this isn't a 3225 * runaway file reclaim problem, but rather just 3226 * extreme pressure. Reclaim as per usual then. 3227 */ 3228 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 3229 3230 sc->file_is_tiny = 3231 file + free <= total_high_wmark && 3232 !(sc->may_deactivate & DEACTIVATE_ANON) && 3233 anon >> sc->priority; 3234 } 3235 3236 shrink_node_memcgs(pgdat, sc); 3237 3238 if (reclaim_state) { 3239 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 3240 reclaim_state->reclaimed_slab = 0; 3241 } 3242 3243 /* Record the subtree's reclaim efficiency */ 3244 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 3245 sc->nr_scanned - nr_scanned, 3246 sc->nr_reclaimed - nr_reclaimed); 3247 3248 if (sc->nr_reclaimed - nr_reclaimed) 3249 reclaimable = true; 3250 3251 if (current_is_kswapd()) { 3252 /* 3253 * If reclaim is isolating dirty pages under writeback, 3254 * it implies that the long-lived page allocation rate 3255 * is exceeding the page laundering rate. Either the 3256 * global limits are not being effective at throttling 3257 * processes due to the page distribution throughout 3258 * zones or there is heavy usage of a slow backing 3259 * device. The only option is to throttle from reclaim 3260 * context which is not ideal as there is no guarantee 3261 * the dirtying process is throttled in the same way 3262 * balance_dirty_pages() manages. 3263 * 3264 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 3265 * count the number of pages under pages flagged for 3266 * immediate reclaim and stall if any are encountered 3267 * in the nr_immediate check below. 3268 */ 3269 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 3270 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 3271 3272 /* Allow kswapd to start writing pages during reclaim.*/ 3273 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 3274 set_bit(PGDAT_DIRTY, &pgdat->flags); 3275 3276 /* 3277 * If kswapd scans pages marked for immediate 3278 * reclaim and under writeback (nr_immediate), it 3279 * implies that pages are cycling through the LRU 3280 * faster than they are written so forcibly stall 3281 * until some pages complete writeback. 3282 */ 3283 if (sc->nr.immediate) 3284 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 3285 } 3286 3287 /* 3288 * Tag a node/memcg as congested if all the dirty pages were marked 3289 * for writeback and immediate reclaim (counted in nr.congested). 3290 * 3291 * Legacy memcg will stall in page writeback so avoid forcibly 3292 * stalling in reclaim_throttle(). 3293 */ 3294 if ((current_is_kswapd() || 3295 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 3296 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 3297 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 3298 3299 /* 3300 * Stall direct reclaim for IO completions if the lruvec is 3301 * node is congested. Allow kswapd to continue until it 3302 * starts encountering unqueued dirty pages or cycling through 3303 * the LRU too quickly. 3304 */ 3305 if (!current_is_kswapd() && current_may_throttle() && 3306 !sc->hibernation_mode && 3307 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 3308 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 3309 3310 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 3311 sc)) 3312 goto again; 3313 3314 /* 3315 * Kswapd gives up on balancing particular nodes after too 3316 * many failures to reclaim anything from them and goes to 3317 * sleep. On reclaim progress, reset the failure counter. A 3318 * successful direct reclaim run will revive a dormant kswapd. 3319 */ 3320 if (reclaimable) 3321 pgdat->kswapd_failures = 0; 3322 } 3323 3324 /* 3325 * Returns true if compaction should go ahead for a costly-order request, or 3326 * the allocation would already succeed without compaction. Return false if we 3327 * should reclaim first. 3328 */ 3329 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 3330 { 3331 unsigned long watermark; 3332 enum compact_result suitable; 3333 3334 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 3335 if (suitable == COMPACT_SUCCESS) 3336 /* Allocation should succeed already. Don't reclaim. */ 3337 return true; 3338 if (suitable == COMPACT_SKIPPED) 3339 /* Compaction cannot yet proceed. Do reclaim. */ 3340 return false; 3341 3342 /* 3343 * Compaction is already possible, but it takes time to run and there 3344 * are potentially other callers using the pages just freed. So proceed 3345 * with reclaim to make a buffer of free pages available to give 3346 * compaction a reasonable chance of completing and allocating the page. 3347 * Note that we won't actually reclaim the whole buffer in one attempt 3348 * as the target watermark in should_continue_reclaim() is lower. But if 3349 * we are already above the high+gap watermark, don't reclaim at all. 3350 */ 3351 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 3352 3353 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 3354 } 3355 3356 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 3357 { 3358 /* 3359 * If reclaim is making progress greater than 12% efficiency then 3360 * wake all the NOPROGRESS throttled tasks. 3361 */ 3362 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 3363 wait_queue_head_t *wqh; 3364 3365 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 3366 if (waitqueue_active(wqh)) 3367 wake_up(wqh); 3368 3369 return; 3370 } 3371 3372 /* 3373 * Do not throttle kswapd on NOPROGRESS as it will throttle on 3374 * VMSCAN_THROTTLE_WRITEBACK if there are too many pages under 3375 * writeback and marked for immediate reclaim at the tail of 3376 * the LRU. 3377 */ 3378 if (current_is_kswapd()) 3379 return; 3380 3381 /* Throttle if making no progress at high prioities. */ 3382 if (sc->priority < DEF_PRIORITY - 2) 3383 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 3384 } 3385 3386 /* 3387 * This is the direct reclaim path, for page-allocating processes. We only 3388 * try to reclaim pages from zones which will satisfy the caller's allocation 3389 * request. 3390 * 3391 * If a zone is deemed to be full of pinned pages then just give it a light 3392 * scan then give up on it. 3393 */ 3394 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 3395 { 3396 struct zoneref *z; 3397 struct zone *zone; 3398 unsigned long nr_soft_reclaimed; 3399 unsigned long nr_soft_scanned; 3400 gfp_t orig_mask; 3401 pg_data_t *last_pgdat = NULL; 3402 3403 /* 3404 * If the number of buffer_heads in the machine exceeds the maximum 3405 * allowed level, force direct reclaim to scan the highmem zone as 3406 * highmem pages could be pinning lowmem pages storing buffer_heads 3407 */ 3408 orig_mask = sc->gfp_mask; 3409 if (buffer_heads_over_limit) { 3410 sc->gfp_mask |= __GFP_HIGHMEM; 3411 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 3412 } 3413 3414 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3415 sc->reclaim_idx, sc->nodemask) { 3416 /* 3417 * Take care memory controller reclaiming has small influence 3418 * to global LRU. 3419 */ 3420 if (!cgroup_reclaim(sc)) { 3421 if (!cpuset_zone_allowed(zone, 3422 GFP_KERNEL | __GFP_HARDWALL)) 3423 continue; 3424 3425 /* 3426 * If we already have plenty of memory free for 3427 * compaction in this zone, don't free any more. 3428 * Even though compaction is invoked for any 3429 * non-zero order, only frequent costly order 3430 * reclamation is disruptive enough to become a 3431 * noticeable problem, like transparent huge 3432 * page allocations. 3433 */ 3434 if (IS_ENABLED(CONFIG_COMPACTION) && 3435 sc->order > PAGE_ALLOC_COSTLY_ORDER && 3436 compaction_ready(zone, sc)) { 3437 sc->compaction_ready = true; 3438 continue; 3439 } 3440 3441 /* 3442 * Shrink each node in the zonelist once. If the 3443 * zonelist is ordered by zone (not the default) then a 3444 * node may be shrunk multiple times but in that case 3445 * the user prefers lower zones being preserved. 3446 */ 3447 if (zone->zone_pgdat == last_pgdat) 3448 continue; 3449 3450 /* 3451 * This steals pages from memory cgroups over softlimit 3452 * and returns the number of reclaimed pages and 3453 * scanned pages. This works for global memory pressure 3454 * and balancing, not for a memcg's limit. 3455 */ 3456 nr_soft_scanned = 0; 3457 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 3458 sc->order, sc->gfp_mask, 3459 &nr_soft_scanned); 3460 sc->nr_reclaimed += nr_soft_reclaimed; 3461 sc->nr_scanned += nr_soft_scanned; 3462 /* need some check for avoid more shrink_zone() */ 3463 } 3464 3465 /* See comment about same check for global reclaim above */ 3466 if (zone->zone_pgdat == last_pgdat) 3467 continue; 3468 last_pgdat = zone->zone_pgdat; 3469 shrink_node(zone->zone_pgdat, sc); 3470 consider_reclaim_throttle(zone->zone_pgdat, sc); 3471 } 3472 3473 /* 3474 * Restore to original mask to avoid the impact on the caller if we 3475 * promoted it to __GFP_HIGHMEM. 3476 */ 3477 sc->gfp_mask = orig_mask; 3478 } 3479 3480 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 3481 { 3482 struct lruvec *target_lruvec; 3483 unsigned long refaults; 3484 3485 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 3486 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 3487 target_lruvec->refaults[0] = refaults; 3488 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 3489 target_lruvec->refaults[1] = refaults; 3490 } 3491 3492 /* 3493 * This is the main entry point to direct page reclaim. 3494 * 3495 * If a full scan of the inactive list fails to free enough memory then we 3496 * are "out of memory" and something needs to be killed. 3497 * 3498 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3499 * high - the zone may be full of dirty or under-writeback pages, which this 3500 * caller can't do much about. We kick the writeback threads and take explicit 3501 * naps in the hope that some of these pages can be written. But if the 3502 * allocating task holds filesystem locks which prevent writeout this might not 3503 * work, and the allocation attempt will fail. 3504 * 3505 * returns: 0, if no pages reclaimed 3506 * else, the number of pages reclaimed 3507 */ 3508 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3509 struct scan_control *sc) 3510 { 3511 int initial_priority = sc->priority; 3512 pg_data_t *last_pgdat; 3513 struct zoneref *z; 3514 struct zone *zone; 3515 retry: 3516 delayacct_freepages_start(); 3517 3518 if (!cgroup_reclaim(sc)) 3519 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3520 3521 do { 3522 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3523 sc->priority); 3524 sc->nr_scanned = 0; 3525 shrink_zones(zonelist, sc); 3526 3527 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3528 break; 3529 3530 if (sc->compaction_ready) 3531 break; 3532 3533 /* 3534 * If we're getting trouble reclaiming, start doing 3535 * writepage even in laptop mode. 3536 */ 3537 if (sc->priority < DEF_PRIORITY - 2) 3538 sc->may_writepage = 1; 3539 } while (--sc->priority >= 0); 3540 3541 last_pgdat = NULL; 3542 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3543 sc->nodemask) { 3544 if (zone->zone_pgdat == last_pgdat) 3545 continue; 3546 last_pgdat = zone->zone_pgdat; 3547 3548 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3549 3550 if (cgroup_reclaim(sc)) { 3551 struct lruvec *lruvec; 3552 3553 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3554 zone->zone_pgdat); 3555 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3556 } 3557 } 3558 3559 delayacct_freepages_end(); 3560 3561 if (sc->nr_reclaimed) 3562 return sc->nr_reclaimed; 3563 3564 /* Aborted reclaim to try compaction? don't OOM, then */ 3565 if (sc->compaction_ready) 3566 return 1; 3567 3568 /* 3569 * We make inactive:active ratio decisions based on the node's 3570 * composition of memory, but a restrictive reclaim_idx or a 3571 * memory.low cgroup setting can exempt large amounts of 3572 * memory from reclaim. Neither of which are very common, so 3573 * instead of doing costly eligibility calculations of the 3574 * entire cgroup subtree up front, we assume the estimates are 3575 * good, and retry with forcible deactivation if that fails. 3576 */ 3577 if (sc->skipped_deactivate) { 3578 sc->priority = initial_priority; 3579 sc->force_deactivate = 1; 3580 sc->skipped_deactivate = 0; 3581 goto retry; 3582 } 3583 3584 /* Untapped cgroup reserves? Don't OOM, retry. */ 3585 if (sc->memcg_low_skipped) { 3586 sc->priority = initial_priority; 3587 sc->force_deactivate = 0; 3588 sc->memcg_low_reclaim = 1; 3589 sc->memcg_low_skipped = 0; 3590 goto retry; 3591 } 3592 3593 return 0; 3594 } 3595 3596 static bool allow_direct_reclaim(pg_data_t *pgdat) 3597 { 3598 struct zone *zone; 3599 unsigned long pfmemalloc_reserve = 0; 3600 unsigned long free_pages = 0; 3601 int i; 3602 bool wmark_ok; 3603 3604 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3605 return true; 3606 3607 for (i = 0; i <= ZONE_NORMAL; i++) { 3608 zone = &pgdat->node_zones[i]; 3609 if (!managed_zone(zone)) 3610 continue; 3611 3612 if (!zone_reclaimable_pages(zone)) 3613 continue; 3614 3615 pfmemalloc_reserve += min_wmark_pages(zone); 3616 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3617 } 3618 3619 /* If there are no reserves (unexpected config) then do not throttle */ 3620 if (!pfmemalloc_reserve) 3621 return true; 3622 3623 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3624 3625 /* kswapd must be awake if processes are being throttled */ 3626 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3627 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 3628 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 3629 3630 wake_up_interruptible(&pgdat->kswapd_wait); 3631 } 3632 3633 return wmark_ok; 3634 } 3635 3636 /* 3637 * Throttle direct reclaimers if backing storage is backed by the network 3638 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3639 * depleted. kswapd will continue to make progress and wake the processes 3640 * when the low watermark is reached. 3641 * 3642 * Returns true if a fatal signal was delivered during throttling. If this 3643 * happens, the page allocator should not consider triggering the OOM killer. 3644 */ 3645 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3646 nodemask_t *nodemask) 3647 { 3648 struct zoneref *z; 3649 struct zone *zone; 3650 pg_data_t *pgdat = NULL; 3651 3652 /* 3653 * Kernel threads should not be throttled as they may be indirectly 3654 * responsible for cleaning pages necessary for reclaim to make forward 3655 * progress. kjournald for example may enter direct reclaim while 3656 * committing a transaction where throttling it could forcing other 3657 * processes to block on log_wait_commit(). 3658 */ 3659 if (current->flags & PF_KTHREAD) 3660 goto out; 3661 3662 /* 3663 * If a fatal signal is pending, this process should not throttle. 3664 * It should return quickly so it can exit and free its memory 3665 */ 3666 if (fatal_signal_pending(current)) 3667 goto out; 3668 3669 /* 3670 * Check if the pfmemalloc reserves are ok by finding the first node 3671 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3672 * GFP_KERNEL will be required for allocating network buffers when 3673 * swapping over the network so ZONE_HIGHMEM is unusable. 3674 * 3675 * Throttling is based on the first usable node and throttled processes 3676 * wait on a queue until kswapd makes progress and wakes them. There 3677 * is an affinity then between processes waking up and where reclaim 3678 * progress has been made assuming the process wakes on the same node. 3679 * More importantly, processes running on remote nodes will not compete 3680 * for remote pfmemalloc reserves and processes on different nodes 3681 * should make reasonable progress. 3682 */ 3683 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3684 gfp_zone(gfp_mask), nodemask) { 3685 if (zone_idx(zone) > ZONE_NORMAL) 3686 continue; 3687 3688 /* Throttle based on the first usable node */ 3689 pgdat = zone->zone_pgdat; 3690 if (allow_direct_reclaim(pgdat)) 3691 goto out; 3692 break; 3693 } 3694 3695 /* If no zone was usable by the allocation flags then do not throttle */ 3696 if (!pgdat) 3697 goto out; 3698 3699 /* Account for the throttling */ 3700 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3701 3702 /* 3703 * If the caller cannot enter the filesystem, it's possible that it 3704 * is due to the caller holding an FS lock or performing a journal 3705 * transaction in the case of a filesystem like ext[3|4]. In this case, 3706 * it is not safe to block on pfmemalloc_wait as kswapd could be 3707 * blocked waiting on the same lock. Instead, throttle for up to a 3708 * second before continuing. 3709 */ 3710 if (!(gfp_mask & __GFP_FS)) 3711 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3712 allow_direct_reclaim(pgdat), HZ); 3713 else 3714 /* Throttle until kswapd wakes the process */ 3715 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3716 allow_direct_reclaim(pgdat)); 3717 3718 if (fatal_signal_pending(current)) 3719 return true; 3720 3721 out: 3722 return false; 3723 } 3724 3725 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3726 gfp_t gfp_mask, nodemask_t *nodemask) 3727 { 3728 unsigned long nr_reclaimed; 3729 struct scan_control sc = { 3730 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3731 .gfp_mask = current_gfp_context(gfp_mask), 3732 .reclaim_idx = gfp_zone(gfp_mask), 3733 .order = order, 3734 .nodemask = nodemask, 3735 .priority = DEF_PRIORITY, 3736 .may_writepage = !laptop_mode, 3737 .may_unmap = 1, 3738 .may_swap = 1, 3739 }; 3740 3741 /* 3742 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3743 * Confirm they are large enough for max values. 3744 */ 3745 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3746 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3747 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3748 3749 /* 3750 * Do not enter reclaim if fatal signal was delivered while throttled. 3751 * 1 is returned so that the page allocator does not OOM kill at this 3752 * point. 3753 */ 3754 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3755 return 1; 3756 3757 set_task_reclaim_state(current, &sc.reclaim_state); 3758 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3759 3760 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3761 3762 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3763 set_task_reclaim_state(current, NULL); 3764 3765 return nr_reclaimed; 3766 } 3767 3768 #ifdef CONFIG_MEMCG 3769 3770 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3771 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3772 gfp_t gfp_mask, bool noswap, 3773 pg_data_t *pgdat, 3774 unsigned long *nr_scanned) 3775 { 3776 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3777 struct scan_control sc = { 3778 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3779 .target_mem_cgroup = memcg, 3780 .may_writepage = !laptop_mode, 3781 .may_unmap = 1, 3782 .reclaim_idx = MAX_NR_ZONES - 1, 3783 .may_swap = !noswap, 3784 }; 3785 3786 WARN_ON_ONCE(!current->reclaim_state); 3787 3788 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3789 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3790 3791 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3792 sc.gfp_mask); 3793 3794 /* 3795 * NOTE: Although we can get the priority field, using it 3796 * here is not a good idea, since it limits the pages we can scan. 3797 * if we don't reclaim here, the shrink_node from balance_pgdat 3798 * will pick up pages from other mem cgroup's as well. We hack 3799 * the priority and make it zero. 3800 */ 3801 shrink_lruvec(lruvec, &sc); 3802 3803 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3804 3805 *nr_scanned = sc.nr_scanned; 3806 3807 return sc.nr_reclaimed; 3808 } 3809 3810 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3811 unsigned long nr_pages, 3812 gfp_t gfp_mask, 3813 bool may_swap) 3814 { 3815 unsigned long nr_reclaimed; 3816 unsigned int noreclaim_flag; 3817 struct scan_control sc = { 3818 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3819 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3820 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3821 .reclaim_idx = MAX_NR_ZONES - 1, 3822 .target_mem_cgroup = memcg, 3823 .priority = DEF_PRIORITY, 3824 .may_writepage = !laptop_mode, 3825 .may_unmap = 1, 3826 .may_swap = may_swap, 3827 }; 3828 /* 3829 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3830 * equal pressure on all the nodes. This is based on the assumption that 3831 * the reclaim does not bail out early. 3832 */ 3833 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3834 3835 set_task_reclaim_state(current, &sc.reclaim_state); 3836 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3837 noreclaim_flag = memalloc_noreclaim_save(); 3838 3839 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3840 3841 memalloc_noreclaim_restore(noreclaim_flag); 3842 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3843 set_task_reclaim_state(current, NULL); 3844 3845 return nr_reclaimed; 3846 } 3847 #endif 3848 3849 static void age_active_anon(struct pglist_data *pgdat, 3850 struct scan_control *sc) 3851 { 3852 struct mem_cgroup *memcg; 3853 struct lruvec *lruvec; 3854 3855 if (!can_age_anon_pages(pgdat, sc)) 3856 return; 3857 3858 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3859 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3860 return; 3861 3862 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3863 do { 3864 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3865 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3866 sc, LRU_ACTIVE_ANON); 3867 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3868 } while (memcg); 3869 } 3870 3871 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 3872 { 3873 int i; 3874 struct zone *zone; 3875 3876 /* 3877 * Check for watermark boosts top-down as the higher zones 3878 * are more likely to be boosted. Both watermarks and boosts 3879 * should not be checked at the same time as reclaim would 3880 * start prematurely when there is no boosting and a lower 3881 * zone is balanced. 3882 */ 3883 for (i = highest_zoneidx; i >= 0; i--) { 3884 zone = pgdat->node_zones + i; 3885 if (!managed_zone(zone)) 3886 continue; 3887 3888 if (zone->watermark_boost) 3889 return true; 3890 } 3891 3892 return false; 3893 } 3894 3895 /* 3896 * Returns true if there is an eligible zone balanced for the request order 3897 * and highest_zoneidx 3898 */ 3899 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 3900 { 3901 int i; 3902 unsigned long mark = -1; 3903 struct zone *zone; 3904 3905 /* 3906 * Check watermarks bottom-up as lower zones are more likely to 3907 * meet watermarks. 3908 */ 3909 for (i = 0; i <= highest_zoneidx; i++) { 3910 zone = pgdat->node_zones + i; 3911 3912 if (!managed_zone(zone)) 3913 continue; 3914 3915 mark = high_wmark_pages(zone); 3916 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 3917 return true; 3918 } 3919 3920 /* 3921 * If a node has no populated zone within highest_zoneidx, it does not 3922 * need balancing by definition. This can happen if a zone-restricted 3923 * allocation tries to wake a remote kswapd. 3924 */ 3925 if (mark == -1) 3926 return true; 3927 3928 return false; 3929 } 3930 3931 /* Clear pgdat state for congested, dirty or under writeback. */ 3932 static void clear_pgdat_congested(pg_data_t *pgdat) 3933 { 3934 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3935 3936 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3937 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3938 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3939 } 3940 3941 /* 3942 * Prepare kswapd for sleeping. This verifies that there are no processes 3943 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3944 * 3945 * Returns true if kswapd is ready to sleep 3946 */ 3947 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 3948 int highest_zoneidx) 3949 { 3950 /* 3951 * The throttled processes are normally woken up in balance_pgdat() as 3952 * soon as allow_direct_reclaim() is true. But there is a potential 3953 * race between when kswapd checks the watermarks and a process gets 3954 * throttled. There is also a potential race if processes get 3955 * throttled, kswapd wakes, a large process exits thereby balancing the 3956 * zones, which causes kswapd to exit balance_pgdat() before reaching 3957 * the wake up checks. If kswapd is going to sleep, no process should 3958 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3959 * the wake up is premature, processes will wake kswapd and get 3960 * throttled again. The difference from wake ups in balance_pgdat() is 3961 * that here we are under prepare_to_wait(). 3962 */ 3963 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3964 wake_up_all(&pgdat->pfmemalloc_wait); 3965 3966 /* Hopeless node, leave it to direct reclaim */ 3967 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3968 return true; 3969 3970 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 3971 clear_pgdat_congested(pgdat); 3972 return true; 3973 } 3974 3975 return false; 3976 } 3977 3978 /* 3979 * kswapd shrinks a node of pages that are at or below the highest usable 3980 * zone that is currently unbalanced. 3981 * 3982 * Returns true if kswapd scanned at least the requested number of pages to 3983 * reclaim or if the lack of progress was due to pages under writeback. 3984 * This is used to determine if the scanning priority needs to be raised. 3985 */ 3986 static bool kswapd_shrink_node(pg_data_t *pgdat, 3987 struct scan_control *sc) 3988 { 3989 struct zone *zone; 3990 int z; 3991 3992 /* Reclaim a number of pages proportional to the number of zones */ 3993 sc->nr_to_reclaim = 0; 3994 for (z = 0; z <= sc->reclaim_idx; z++) { 3995 zone = pgdat->node_zones + z; 3996 if (!managed_zone(zone)) 3997 continue; 3998 3999 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 4000 } 4001 4002 /* 4003 * Historically care was taken to put equal pressure on all zones but 4004 * now pressure is applied based on node LRU order. 4005 */ 4006 shrink_node(pgdat, sc); 4007 4008 /* 4009 * Fragmentation may mean that the system cannot be rebalanced for 4010 * high-order allocations. If twice the allocation size has been 4011 * reclaimed then recheck watermarks only at order-0 to prevent 4012 * excessive reclaim. Assume that a process requested a high-order 4013 * can direct reclaim/compact. 4014 */ 4015 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 4016 sc->order = 0; 4017 4018 return sc->nr_scanned >= sc->nr_to_reclaim; 4019 } 4020 4021 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 4022 static inline void 4023 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 4024 { 4025 int i; 4026 struct zone *zone; 4027 4028 for (i = 0; i <= highest_zoneidx; i++) { 4029 zone = pgdat->node_zones + i; 4030 4031 if (!managed_zone(zone)) 4032 continue; 4033 4034 if (active) 4035 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 4036 else 4037 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 4038 } 4039 } 4040 4041 static inline void 4042 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 4043 { 4044 update_reclaim_active(pgdat, highest_zoneidx, true); 4045 } 4046 4047 static inline void 4048 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 4049 { 4050 update_reclaim_active(pgdat, highest_zoneidx, false); 4051 } 4052 4053 /* 4054 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 4055 * that are eligible for use by the caller until at least one zone is 4056 * balanced. 4057 * 4058 * Returns the order kswapd finished reclaiming at. 4059 * 4060 * kswapd scans the zones in the highmem->normal->dma direction. It skips 4061 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 4062 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 4063 * or lower is eligible for reclaim until at least one usable zone is 4064 * balanced. 4065 */ 4066 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 4067 { 4068 int i; 4069 unsigned long nr_soft_reclaimed; 4070 unsigned long nr_soft_scanned; 4071 unsigned long pflags; 4072 unsigned long nr_boost_reclaim; 4073 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 4074 bool boosted; 4075 struct zone *zone; 4076 struct scan_control sc = { 4077 .gfp_mask = GFP_KERNEL, 4078 .order = order, 4079 .may_unmap = 1, 4080 }; 4081 4082 set_task_reclaim_state(current, &sc.reclaim_state); 4083 psi_memstall_enter(&pflags); 4084 __fs_reclaim_acquire(_THIS_IP_); 4085 4086 count_vm_event(PAGEOUTRUN); 4087 4088 /* 4089 * Account for the reclaim boost. Note that the zone boost is left in 4090 * place so that parallel allocations that are near the watermark will 4091 * stall or direct reclaim until kswapd is finished. 4092 */ 4093 nr_boost_reclaim = 0; 4094 for (i = 0; i <= highest_zoneidx; i++) { 4095 zone = pgdat->node_zones + i; 4096 if (!managed_zone(zone)) 4097 continue; 4098 4099 nr_boost_reclaim += zone->watermark_boost; 4100 zone_boosts[i] = zone->watermark_boost; 4101 } 4102 boosted = nr_boost_reclaim; 4103 4104 restart: 4105 set_reclaim_active(pgdat, highest_zoneidx); 4106 sc.priority = DEF_PRIORITY; 4107 do { 4108 unsigned long nr_reclaimed = sc.nr_reclaimed; 4109 bool raise_priority = true; 4110 bool balanced; 4111 bool ret; 4112 4113 sc.reclaim_idx = highest_zoneidx; 4114 4115 /* 4116 * If the number of buffer_heads exceeds the maximum allowed 4117 * then consider reclaiming from all zones. This has a dual 4118 * purpose -- on 64-bit systems it is expected that 4119 * buffer_heads are stripped during active rotation. On 32-bit 4120 * systems, highmem pages can pin lowmem memory and shrinking 4121 * buffers can relieve lowmem pressure. Reclaim may still not 4122 * go ahead if all eligible zones for the original allocation 4123 * request are balanced to avoid excessive reclaim from kswapd. 4124 */ 4125 if (buffer_heads_over_limit) { 4126 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 4127 zone = pgdat->node_zones + i; 4128 if (!managed_zone(zone)) 4129 continue; 4130 4131 sc.reclaim_idx = i; 4132 break; 4133 } 4134 } 4135 4136 /* 4137 * If the pgdat is imbalanced then ignore boosting and preserve 4138 * the watermarks for a later time and restart. Note that the 4139 * zone watermarks will be still reset at the end of balancing 4140 * on the grounds that the normal reclaim should be enough to 4141 * re-evaluate if boosting is required when kswapd next wakes. 4142 */ 4143 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 4144 if (!balanced && nr_boost_reclaim) { 4145 nr_boost_reclaim = 0; 4146 goto restart; 4147 } 4148 4149 /* 4150 * If boosting is not active then only reclaim if there are no 4151 * eligible zones. Note that sc.reclaim_idx is not used as 4152 * buffer_heads_over_limit may have adjusted it. 4153 */ 4154 if (!nr_boost_reclaim && balanced) 4155 goto out; 4156 4157 /* Limit the priority of boosting to avoid reclaim writeback */ 4158 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 4159 raise_priority = false; 4160 4161 /* 4162 * Do not writeback or swap pages for boosted reclaim. The 4163 * intent is to relieve pressure not issue sub-optimal IO 4164 * from reclaim context. If no pages are reclaimed, the 4165 * reclaim will be aborted. 4166 */ 4167 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 4168 sc.may_swap = !nr_boost_reclaim; 4169 4170 /* 4171 * Do some background aging of the anon list, to give 4172 * pages a chance to be referenced before reclaiming. All 4173 * pages are rotated regardless of classzone as this is 4174 * about consistent aging. 4175 */ 4176 age_active_anon(pgdat, &sc); 4177 4178 /* 4179 * If we're getting trouble reclaiming, start doing writepage 4180 * even in laptop mode. 4181 */ 4182 if (sc.priority < DEF_PRIORITY - 2) 4183 sc.may_writepage = 1; 4184 4185 /* Call soft limit reclaim before calling shrink_node. */ 4186 sc.nr_scanned = 0; 4187 nr_soft_scanned = 0; 4188 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 4189 sc.gfp_mask, &nr_soft_scanned); 4190 sc.nr_reclaimed += nr_soft_reclaimed; 4191 4192 /* 4193 * There should be no need to raise the scanning priority if 4194 * enough pages are already being scanned that that high 4195 * watermark would be met at 100% efficiency. 4196 */ 4197 if (kswapd_shrink_node(pgdat, &sc)) 4198 raise_priority = false; 4199 4200 /* 4201 * If the low watermark is met there is no need for processes 4202 * to be throttled on pfmemalloc_wait as they should not be 4203 * able to safely make forward progress. Wake them 4204 */ 4205 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 4206 allow_direct_reclaim(pgdat)) 4207 wake_up_all(&pgdat->pfmemalloc_wait); 4208 4209 /* Check if kswapd should be suspending */ 4210 __fs_reclaim_release(_THIS_IP_); 4211 ret = try_to_freeze(); 4212 __fs_reclaim_acquire(_THIS_IP_); 4213 if (ret || kthread_should_stop()) 4214 break; 4215 4216 /* 4217 * Raise priority if scanning rate is too low or there was no 4218 * progress in reclaiming pages 4219 */ 4220 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 4221 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 4222 4223 /* 4224 * If reclaim made no progress for a boost, stop reclaim as 4225 * IO cannot be queued and it could be an infinite loop in 4226 * extreme circumstances. 4227 */ 4228 if (nr_boost_reclaim && !nr_reclaimed) 4229 break; 4230 4231 if (raise_priority || !nr_reclaimed) 4232 sc.priority--; 4233 } while (sc.priority >= 1); 4234 4235 if (!sc.nr_reclaimed) 4236 pgdat->kswapd_failures++; 4237 4238 out: 4239 clear_reclaim_active(pgdat, highest_zoneidx); 4240 4241 /* If reclaim was boosted, account for the reclaim done in this pass */ 4242 if (boosted) { 4243 unsigned long flags; 4244 4245 for (i = 0; i <= highest_zoneidx; i++) { 4246 if (!zone_boosts[i]) 4247 continue; 4248 4249 /* Increments are under the zone lock */ 4250 zone = pgdat->node_zones + i; 4251 spin_lock_irqsave(&zone->lock, flags); 4252 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 4253 spin_unlock_irqrestore(&zone->lock, flags); 4254 } 4255 4256 /* 4257 * As there is now likely space, wakeup kcompact to defragment 4258 * pageblocks. 4259 */ 4260 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 4261 } 4262 4263 snapshot_refaults(NULL, pgdat); 4264 __fs_reclaim_release(_THIS_IP_); 4265 psi_memstall_leave(&pflags); 4266 set_task_reclaim_state(current, NULL); 4267 4268 /* 4269 * Return the order kswapd stopped reclaiming at as 4270 * prepare_kswapd_sleep() takes it into account. If another caller 4271 * entered the allocator slow path while kswapd was awake, order will 4272 * remain at the higher level. 4273 */ 4274 return sc.order; 4275 } 4276 4277 /* 4278 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 4279 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 4280 * not a valid index then either kswapd runs for first time or kswapd couldn't 4281 * sleep after previous reclaim attempt (node is still unbalanced). In that 4282 * case return the zone index of the previous kswapd reclaim cycle. 4283 */ 4284 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 4285 enum zone_type prev_highest_zoneidx) 4286 { 4287 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4288 4289 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 4290 } 4291 4292 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 4293 unsigned int highest_zoneidx) 4294 { 4295 long remaining = 0; 4296 DEFINE_WAIT(wait); 4297 4298 if (freezing(current) || kthread_should_stop()) 4299 return; 4300 4301 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4302 4303 /* 4304 * Try to sleep for a short interval. Note that kcompactd will only be 4305 * woken if it is possible to sleep for a short interval. This is 4306 * deliberate on the assumption that if reclaim cannot keep an 4307 * eligible zone balanced that it's also unlikely that compaction will 4308 * succeed. 4309 */ 4310 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4311 /* 4312 * Compaction records what page blocks it recently failed to 4313 * isolate pages from and skips them in the future scanning. 4314 * When kswapd is going to sleep, it is reasonable to assume 4315 * that pages and compaction may succeed so reset the cache. 4316 */ 4317 reset_isolation_suitable(pgdat); 4318 4319 /* 4320 * We have freed the memory, now we should compact it to make 4321 * allocation of the requested order possible. 4322 */ 4323 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 4324 4325 remaining = schedule_timeout(HZ/10); 4326 4327 /* 4328 * If woken prematurely then reset kswapd_highest_zoneidx and 4329 * order. The values will either be from a wakeup request or 4330 * the previous request that slept prematurely. 4331 */ 4332 if (remaining) { 4333 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 4334 kswapd_highest_zoneidx(pgdat, 4335 highest_zoneidx)); 4336 4337 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 4338 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 4339 } 4340 4341 finish_wait(&pgdat->kswapd_wait, &wait); 4342 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4343 } 4344 4345 /* 4346 * After a short sleep, check if it was a premature sleep. If not, then 4347 * go fully to sleep until explicitly woken up. 4348 */ 4349 if (!remaining && 4350 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4351 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 4352 4353 /* 4354 * vmstat counters are not perfectly accurate and the estimated 4355 * value for counters such as NR_FREE_PAGES can deviate from the 4356 * true value by nr_online_cpus * threshold. To avoid the zone 4357 * watermarks being breached while under pressure, we reduce the 4358 * per-cpu vmstat threshold while kswapd is awake and restore 4359 * them before going back to sleep. 4360 */ 4361 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 4362 4363 if (!kthread_should_stop()) 4364 schedule(); 4365 4366 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 4367 } else { 4368 if (remaining) 4369 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 4370 else 4371 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 4372 } 4373 finish_wait(&pgdat->kswapd_wait, &wait); 4374 } 4375 4376 /* 4377 * The background pageout daemon, started as a kernel thread 4378 * from the init process. 4379 * 4380 * This basically trickles out pages so that we have _some_ 4381 * free memory available even if there is no other activity 4382 * that frees anything up. This is needed for things like routing 4383 * etc, where we otherwise might have all activity going on in 4384 * asynchronous contexts that cannot page things out. 4385 * 4386 * If there are applications that are active memory-allocators 4387 * (most normal use), this basically shouldn't matter. 4388 */ 4389 static int kswapd(void *p) 4390 { 4391 unsigned int alloc_order, reclaim_order; 4392 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 4393 pg_data_t *pgdat = (pg_data_t *)p; 4394 struct task_struct *tsk = current; 4395 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 4396 4397 if (!cpumask_empty(cpumask)) 4398 set_cpus_allowed_ptr(tsk, cpumask); 4399 4400 /* 4401 * Tell the memory management that we're a "memory allocator", 4402 * and that if we need more memory we should get access to it 4403 * regardless (see "__alloc_pages()"). "kswapd" should 4404 * never get caught in the normal page freeing logic. 4405 * 4406 * (Kswapd normally doesn't need memory anyway, but sometimes 4407 * you need a small amount of memory in order to be able to 4408 * page out something else, and this flag essentially protects 4409 * us from recursively trying to free more memory as we're 4410 * trying to free the first piece of memory in the first place). 4411 */ 4412 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 4413 set_freezable(); 4414 4415 WRITE_ONCE(pgdat->kswapd_order, 0); 4416 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4417 atomic_set(&pgdat->nr_writeback_throttled, 0); 4418 for ( ; ; ) { 4419 bool ret; 4420 4421 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 4422 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4423 highest_zoneidx); 4424 4425 kswapd_try_sleep: 4426 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 4427 highest_zoneidx); 4428 4429 /* Read the new order and highest_zoneidx */ 4430 alloc_order = READ_ONCE(pgdat->kswapd_order); 4431 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4432 highest_zoneidx); 4433 WRITE_ONCE(pgdat->kswapd_order, 0); 4434 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4435 4436 ret = try_to_freeze(); 4437 if (kthread_should_stop()) 4438 break; 4439 4440 /* 4441 * We can speed up thawing tasks if we don't call balance_pgdat 4442 * after returning from the refrigerator 4443 */ 4444 if (ret) 4445 continue; 4446 4447 /* 4448 * Reclaim begins at the requested order but if a high-order 4449 * reclaim fails then kswapd falls back to reclaiming for 4450 * order-0. If that happens, kswapd will consider sleeping 4451 * for the order it finished reclaiming at (reclaim_order) 4452 * but kcompactd is woken to compact for the original 4453 * request (alloc_order). 4454 */ 4455 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 4456 alloc_order); 4457 reclaim_order = balance_pgdat(pgdat, alloc_order, 4458 highest_zoneidx); 4459 if (reclaim_order < alloc_order) 4460 goto kswapd_try_sleep; 4461 } 4462 4463 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 4464 4465 return 0; 4466 } 4467 4468 /* 4469 * A zone is low on free memory or too fragmented for high-order memory. If 4470 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 4471 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 4472 * has failed or is not needed, still wake up kcompactd if only compaction is 4473 * needed. 4474 */ 4475 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 4476 enum zone_type highest_zoneidx) 4477 { 4478 pg_data_t *pgdat; 4479 enum zone_type curr_idx; 4480 4481 if (!managed_zone(zone)) 4482 return; 4483 4484 if (!cpuset_zone_allowed(zone, gfp_flags)) 4485 return; 4486 4487 pgdat = zone->zone_pgdat; 4488 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4489 4490 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 4491 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 4492 4493 if (READ_ONCE(pgdat->kswapd_order) < order) 4494 WRITE_ONCE(pgdat->kswapd_order, order); 4495 4496 if (!waitqueue_active(&pgdat->kswapd_wait)) 4497 return; 4498 4499 /* Hopeless node, leave it to direct reclaim if possible */ 4500 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 4501 (pgdat_balanced(pgdat, order, highest_zoneidx) && 4502 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 4503 /* 4504 * There may be plenty of free memory available, but it's too 4505 * fragmented for high-order allocations. Wake up kcompactd 4506 * and rely on compaction_suitable() to determine if it's 4507 * needed. If it fails, it will defer subsequent attempts to 4508 * ratelimit its work. 4509 */ 4510 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 4511 wakeup_kcompactd(pgdat, order, highest_zoneidx); 4512 return; 4513 } 4514 4515 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 4516 gfp_flags); 4517 wake_up_interruptible(&pgdat->kswapd_wait); 4518 } 4519 4520 #ifdef CONFIG_HIBERNATION 4521 /* 4522 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 4523 * freed pages. 4524 * 4525 * Rather than trying to age LRUs the aim is to preserve the overall 4526 * LRU order by reclaiming preferentially 4527 * inactive > active > active referenced > active mapped 4528 */ 4529 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4530 { 4531 struct scan_control sc = { 4532 .nr_to_reclaim = nr_to_reclaim, 4533 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4534 .reclaim_idx = MAX_NR_ZONES - 1, 4535 .priority = DEF_PRIORITY, 4536 .may_writepage = 1, 4537 .may_unmap = 1, 4538 .may_swap = 1, 4539 .hibernation_mode = 1, 4540 }; 4541 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4542 unsigned long nr_reclaimed; 4543 unsigned int noreclaim_flag; 4544 4545 fs_reclaim_acquire(sc.gfp_mask); 4546 noreclaim_flag = memalloc_noreclaim_save(); 4547 set_task_reclaim_state(current, &sc.reclaim_state); 4548 4549 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4550 4551 set_task_reclaim_state(current, NULL); 4552 memalloc_noreclaim_restore(noreclaim_flag); 4553 fs_reclaim_release(sc.gfp_mask); 4554 4555 return nr_reclaimed; 4556 } 4557 #endif /* CONFIG_HIBERNATION */ 4558 4559 /* 4560 * This kswapd start function will be called by init and node-hot-add. 4561 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4562 */ 4563 void kswapd_run(int nid) 4564 { 4565 pg_data_t *pgdat = NODE_DATA(nid); 4566 4567 if (pgdat->kswapd) 4568 return; 4569 4570 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4571 if (IS_ERR(pgdat->kswapd)) { 4572 /* failure at boot is fatal */ 4573 BUG_ON(system_state < SYSTEM_RUNNING); 4574 pr_err("Failed to start kswapd on node %d\n", nid); 4575 pgdat->kswapd = NULL; 4576 } 4577 } 4578 4579 /* 4580 * Called by memory hotplug when all memory in a node is offlined. Caller must 4581 * hold mem_hotplug_begin/end(). 4582 */ 4583 void kswapd_stop(int nid) 4584 { 4585 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4586 4587 if (kswapd) { 4588 kthread_stop(kswapd); 4589 NODE_DATA(nid)->kswapd = NULL; 4590 } 4591 } 4592 4593 static int __init kswapd_init(void) 4594 { 4595 int nid; 4596 4597 swap_setup(); 4598 for_each_node_state(nid, N_MEMORY) 4599 kswapd_run(nid); 4600 return 0; 4601 } 4602 4603 module_init(kswapd_init) 4604 4605 #ifdef CONFIG_NUMA 4606 /* 4607 * Node reclaim mode 4608 * 4609 * If non-zero call node_reclaim when the number of free pages falls below 4610 * the watermarks. 4611 */ 4612 int node_reclaim_mode __read_mostly; 4613 4614 /* 4615 * Priority for NODE_RECLAIM. This determines the fraction of pages 4616 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4617 * a zone. 4618 */ 4619 #define NODE_RECLAIM_PRIORITY 4 4620 4621 /* 4622 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4623 * occur. 4624 */ 4625 int sysctl_min_unmapped_ratio = 1; 4626 4627 /* 4628 * If the number of slab pages in a zone grows beyond this percentage then 4629 * slab reclaim needs to occur. 4630 */ 4631 int sysctl_min_slab_ratio = 5; 4632 4633 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4634 { 4635 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4636 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4637 node_page_state(pgdat, NR_ACTIVE_FILE); 4638 4639 /* 4640 * It's possible for there to be more file mapped pages than 4641 * accounted for by the pages on the file LRU lists because 4642 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4643 */ 4644 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4645 } 4646 4647 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4648 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4649 { 4650 unsigned long nr_pagecache_reclaimable; 4651 unsigned long delta = 0; 4652 4653 /* 4654 * If RECLAIM_UNMAP is set, then all file pages are considered 4655 * potentially reclaimable. Otherwise, we have to worry about 4656 * pages like swapcache and node_unmapped_file_pages() provides 4657 * a better estimate 4658 */ 4659 if (node_reclaim_mode & RECLAIM_UNMAP) 4660 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4661 else 4662 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4663 4664 /* If we can't clean pages, remove dirty pages from consideration */ 4665 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4666 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4667 4668 /* Watch for any possible underflows due to delta */ 4669 if (unlikely(delta > nr_pagecache_reclaimable)) 4670 delta = nr_pagecache_reclaimable; 4671 4672 return nr_pagecache_reclaimable - delta; 4673 } 4674 4675 /* 4676 * Try to free up some pages from this node through reclaim. 4677 */ 4678 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4679 { 4680 /* Minimum pages needed in order to stay on node */ 4681 const unsigned long nr_pages = 1 << order; 4682 struct task_struct *p = current; 4683 unsigned int noreclaim_flag; 4684 struct scan_control sc = { 4685 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4686 .gfp_mask = current_gfp_context(gfp_mask), 4687 .order = order, 4688 .priority = NODE_RECLAIM_PRIORITY, 4689 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4690 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4691 .may_swap = 1, 4692 .reclaim_idx = gfp_zone(gfp_mask), 4693 }; 4694 unsigned long pflags; 4695 4696 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4697 sc.gfp_mask); 4698 4699 cond_resched(); 4700 psi_memstall_enter(&pflags); 4701 fs_reclaim_acquire(sc.gfp_mask); 4702 /* 4703 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4704 * and we also need to be able to write out pages for RECLAIM_WRITE 4705 * and RECLAIM_UNMAP. 4706 */ 4707 noreclaim_flag = memalloc_noreclaim_save(); 4708 p->flags |= PF_SWAPWRITE; 4709 set_task_reclaim_state(p, &sc.reclaim_state); 4710 4711 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4712 /* 4713 * Free memory by calling shrink node with increasing 4714 * priorities until we have enough memory freed. 4715 */ 4716 do { 4717 shrink_node(pgdat, &sc); 4718 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4719 } 4720 4721 set_task_reclaim_state(p, NULL); 4722 current->flags &= ~PF_SWAPWRITE; 4723 memalloc_noreclaim_restore(noreclaim_flag); 4724 fs_reclaim_release(sc.gfp_mask); 4725 psi_memstall_leave(&pflags); 4726 4727 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4728 4729 return sc.nr_reclaimed >= nr_pages; 4730 } 4731 4732 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4733 { 4734 int ret; 4735 4736 /* 4737 * Node reclaim reclaims unmapped file backed pages and 4738 * slab pages if we are over the defined limits. 4739 * 4740 * A small portion of unmapped file backed pages is needed for 4741 * file I/O otherwise pages read by file I/O will be immediately 4742 * thrown out if the node is overallocated. So we do not reclaim 4743 * if less than a specified percentage of the node is used by 4744 * unmapped file backed pages. 4745 */ 4746 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4747 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 4748 pgdat->min_slab_pages) 4749 return NODE_RECLAIM_FULL; 4750 4751 /* 4752 * Do not scan if the allocation should not be delayed. 4753 */ 4754 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4755 return NODE_RECLAIM_NOSCAN; 4756 4757 /* 4758 * Only run node reclaim on the local node or on nodes that do not 4759 * have associated processors. This will favor the local processor 4760 * over remote processors and spread off node memory allocations 4761 * as wide as possible. 4762 */ 4763 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4764 return NODE_RECLAIM_NOSCAN; 4765 4766 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4767 return NODE_RECLAIM_NOSCAN; 4768 4769 ret = __node_reclaim(pgdat, gfp_mask, order); 4770 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4771 4772 if (!ret) 4773 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4774 4775 return ret; 4776 } 4777 #endif 4778 4779 /** 4780 * check_move_unevictable_pages - check pages for evictability and move to 4781 * appropriate zone lru list 4782 * @pvec: pagevec with lru pages to check 4783 * 4784 * Checks pages for evictability, if an evictable page is in the unevictable 4785 * lru list, moves it to the appropriate evictable lru list. This function 4786 * should be only used for lru pages. 4787 */ 4788 void check_move_unevictable_pages(struct pagevec *pvec) 4789 { 4790 struct lruvec *lruvec = NULL; 4791 int pgscanned = 0; 4792 int pgrescued = 0; 4793 int i; 4794 4795 for (i = 0; i < pvec->nr; i++) { 4796 struct page *page = pvec->pages[i]; 4797 int nr_pages; 4798 4799 if (PageTransTail(page)) 4800 continue; 4801 4802 nr_pages = thp_nr_pages(page); 4803 pgscanned += nr_pages; 4804 4805 /* block memcg migration during page moving between lru */ 4806 if (!TestClearPageLRU(page)) 4807 continue; 4808 4809 lruvec = relock_page_lruvec_irq(page, lruvec); 4810 if (page_evictable(page) && PageUnevictable(page)) { 4811 del_page_from_lru_list(page, lruvec); 4812 ClearPageUnevictable(page); 4813 add_page_to_lru_list(page, lruvec); 4814 pgrescued += nr_pages; 4815 } 4816 SetPageLRU(page); 4817 } 4818 4819 if (lruvec) { 4820 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4821 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4822 unlock_page_lruvec_irq(lruvec); 4823 } else if (pgscanned) { 4824 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4825 } 4826 } 4827 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4828