xref: /linux/mm/vmscan.c (revision 303f8e2d02002dbe331cab7813ee091aead3cd39)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/migrate.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56 
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59 
60 #include "internal.h"
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/vmscan.h>
64 
65 struct scan_control {
66 	/* How many pages shrink_list() should reclaim */
67 	unsigned long nr_to_reclaim;
68 
69 	/*
70 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
71 	 * are scanned.
72 	 */
73 	nodemask_t	*nodemask;
74 
75 	/*
76 	 * The memory cgroup that hit its limit and as a result is the
77 	 * primary target of this reclaim invocation.
78 	 */
79 	struct mem_cgroup *target_mem_cgroup;
80 
81 	/*
82 	 * Scan pressure balancing between anon and file LRUs
83 	 */
84 	unsigned long	anon_cost;
85 	unsigned long	file_cost;
86 
87 	/* Can active pages be deactivated as part of reclaim? */
88 #define DEACTIVATE_ANON 1
89 #define DEACTIVATE_FILE 2
90 	unsigned int may_deactivate:2;
91 	unsigned int force_deactivate:1;
92 	unsigned int skipped_deactivate:1;
93 
94 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
95 	unsigned int may_writepage:1;
96 
97 	/* Can mapped pages be reclaimed? */
98 	unsigned int may_unmap:1;
99 
100 	/* Can pages be swapped as part of reclaim? */
101 	unsigned int may_swap:1;
102 
103 	/*
104 	 * Cgroup memory below memory.low is protected as long as we
105 	 * don't threaten to OOM. If any cgroup is reclaimed at
106 	 * reduced force or passed over entirely due to its memory.low
107 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
108 	 * result, then go back for one more cycle that reclaims the protected
109 	 * memory (memcg_low_reclaim) to avert OOM.
110 	 */
111 	unsigned int memcg_low_reclaim:1;
112 	unsigned int memcg_low_skipped:1;
113 
114 	unsigned int hibernation_mode:1;
115 
116 	/* One of the zones is ready for compaction */
117 	unsigned int compaction_ready:1;
118 
119 	/* There is easily reclaimable cold cache in the current node */
120 	unsigned int cache_trim_mode:1;
121 
122 	/* The file pages on the current node are dangerously low */
123 	unsigned int file_is_tiny:1;
124 
125 	/* Always discard instead of demoting to lower tier memory */
126 	unsigned int no_demotion:1;
127 
128 	/* Allocation order */
129 	s8 order;
130 
131 	/* Scan (total_size >> priority) pages at once */
132 	s8 priority;
133 
134 	/* The highest zone to isolate pages for reclaim from */
135 	s8 reclaim_idx;
136 
137 	/* This context's GFP mask */
138 	gfp_t gfp_mask;
139 
140 	/* Incremented by the number of inactive pages that were scanned */
141 	unsigned long nr_scanned;
142 
143 	/* Number of pages freed so far during a call to shrink_zones() */
144 	unsigned long nr_reclaimed;
145 
146 	struct {
147 		unsigned int dirty;
148 		unsigned int unqueued_dirty;
149 		unsigned int congested;
150 		unsigned int writeback;
151 		unsigned int immediate;
152 		unsigned int file_taken;
153 		unsigned int taken;
154 	} nr;
155 
156 	/* for recording the reclaimed slab by now */
157 	struct reclaim_state reclaim_state;
158 };
159 
160 #ifdef ARCH_HAS_PREFETCHW
161 #define prefetchw_prev_lru_page(_page, _base, _field)			\
162 	do {								\
163 		if ((_page)->lru.prev != _base) {			\
164 			struct page *prev;				\
165 									\
166 			prev = lru_to_page(&(_page->lru));		\
167 			prefetchw(&prev->_field);			\
168 		}							\
169 	} while (0)
170 #else
171 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
172 #endif
173 
174 /*
175  * From 0 .. 200.  Higher means more swappy.
176  */
177 int vm_swappiness = 60;
178 
179 static void set_task_reclaim_state(struct task_struct *task,
180 				   struct reclaim_state *rs)
181 {
182 	/* Check for an overwrite */
183 	WARN_ON_ONCE(rs && task->reclaim_state);
184 
185 	/* Check for the nulling of an already-nulled member */
186 	WARN_ON_ONCE(!rs && !task->reclaim_state);
187 
188 	task->reclaim_state = rs;
189 }
190 
191 static LIST_HEAD(shrinker_list);
192 static DECLARE_RWSEM(shrinker_rwsem);
193 
194 #ifdef CONFIG_MEMCG
195 static int shrinker_nr_max;
196 
197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
198 static inline int shrinker_map_size(int nr_items)
199 {
200 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
201 }
202 
203 static inline int shrinker_defer_size(int nr_items)
204 {
205 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
206 }
207 
208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
209 						     int nid)
210 {
211 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
212 					 lockdep_is_held(&shrinker_rwsem));
213 }
214 
215 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
216 				    int map_size, int defer_size,
217 				    int old_map_size, int old_defer_size)
218 {
219 	struct shrinker_info *new, *old;
220 	struct mem_cgroup_per_node *pn;
221 	int nid;
222 	int size = map_size + defer_size;
223 
224 	for_each_node(nid) {
225 		pn = memcg->nodeinfo[nid];
226 		old = shrinker_info_protected(memcg, nid);
227 		/* Not yet online memcg */
228 		if (!old)
229 			return 0;
230 
231 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
232 		if (!new)
233 			return -ENOMEM;
234 
235 		new->nr_deferred = (atomic_long_t *)(new + 1);
236 		new->map = (void *)new->nr_deferred + defer_size;
237 
238 		/* map: set all old bits, clear all new bits */
239 		memset(new->map, (int)0xff, old_map_size);
240 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
241 		/* nr_deferred: copy old values, clear all new values */
242 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
243 		memset((void *)new->nr_deferred + old_defer_size, 0,
244 		       defer_size - old_defer_size);
245 
246 		rcu_assign_pointer(pn->shrinker_info, new);
247 		kvfree_rcu(old, rcu);
248 	}
249 
250 	return 0;
251 }
252 
253 void free_shrinker_info(struct mem_cgroup *memcg)
254 {
255 	struct mem_cgroup_per_node *pn;
256 	struct shrinker_info *info;
257 	int nid;
258 
259 	for_each_node(nid) {
260 		pn = memcg->nodeinfo[nid];
261 		info = rcu_dereference_protected(pn->shrinker_info, true);
262 		kvfree(info);
263 		rcu_assign_pointer(pn->shrinker_info, NULL);
264 	}
265 }
266 
267 int alloc_shrinker_info(struct mem_cgroup *memcg)
268 {
269 	struct shrinker_info *info;
270 	int nid, size, ret = 0;
271 	int map_size, defer_size = 0;
272 
273 	down_write(&shrinker_rwsem);
274 	map_size = shrinker_map_size(shrinker_nr_max);
275 	defer_size = shrinker_defer_size(shrinker_nr_max);
276 	size = map_size + defer_size;
277 	for_each_node(nid) {
278 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
279 		if (!info) {
280 			free_shrinker_info(memcg);
281 			ret = -ENOMEM;
282 			break;
283 		}
284 		info->nr_deferred = (atomic_long_t *)(info + 1);
285 		info->map = (void *)info->nr_deferred + defer_size;
286 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
287 	}
288 	up_write(&shrinker_rwsem);
289 
290 	return ret;
291 }
292 
293 static inline bool need_expand(int nr_max)
294 {
295 	return round_up(nr_max, BITS_PER_LONG) >
296 	       round_up(shrinker_nr_max, BITS_PER_LONG);
297 }
298 
299 static int expand_shrinker_info(int new_id)
300 {
301 	int ret = 0;
302 	int new_nr_max = new_id + 1;
303 	int map_size, defer_size = 0;
304 	int old_map_size, old_defer_size = 0;
305 	struct mem_cgroup *memcg;
306 
307 	if (!need_expand(new_nr_max))
308 		goto out;
309 
310 	if (!root_mem_cgroup)
311 		goto out;
312 
313 	lockdep_assert_held(&shrinker_rwsem);
314 
315 	map_size = shrinker_map_size(new_nr_max);
316 	defer_size = shrinker_defer_size(new_nr_max);
317 	old_map_size = shrinker_map_size(shrinker_nr_max);
318 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
319 
320 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
321 	do {
322 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
323 					       old_map_size, old_defer_size);
324 		if (ret) {
325 			mem_cgroup_iter_break(NULL, memcg);
326 			goto out;
327 		}
328 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
329 out:
330 	if (!ret)
331 		shrinker_nr_max = new_nr_max;
332 
333 	return ret;
334 }
335 
336 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
337 {
338 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
339 		struct shrinker_info *info;
340 
341 		rcu_read_lock();
342 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
343 		/* Pairs with smp mb in shrink_slab() */
344 		smp_mb__before_atomic();
345 		set_bit(shrinker_id, info->map);
346 		rcu_read_unlock();
347 	}
348 }
349 
350 static DEFINE_IDR(shrinker_idr);
351 
352 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
353 {
354 	int id, ret = -ENOMEM;
355 
356 	if (mem_cgroup_disabled())
357 		return -ENOSYS;
358 
359 	down_write(&shrinker_rwsem);
360 	/* This may call shrinker, so it must use down_read_trylock() */
361 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
362 	if (id < 0)
363 		goto unlock;
364 
365 	if (id >= shrinker_nr_max) {
366 		if (expand_shrinker_info(id)) {
367 			idr_remove(&shrinker_idr, id);
368 			goto unlock;
369 		}
370 	}
371 	shrinker->id = id;
372 	ret = 0;
373 unlock:
374 	up_write(&shrinker_rwsem);
375 	return ret;
376 }
377 
378 static void unregister_memcg_shrinker(struct shrinker *shrinker)
379 {
380 	int id = shrinker->id;
381 
382 	BUG_ON(id < 0);
383 
384 	lockdep_assert_held(&shrinker_rwsem);
385 
386 	idr_remove(&shrinker_idr, id);
387 }
388 
389 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
390 				   struct mem_cgroup *memcg)
391 {
392 	struct shrinker_info *info;
393 
394 	info = shrinker_info_protected(memcg, nid);
395 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
396 }
397 
398 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
399 				  struct mem_cgroup *memcg)
400 {
401 	struct shrinker_info *info;
402 
403 	info = shrinker_info_protected(memcg, nid);
404 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
405 }
406 
407 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
408 {
409 	int i, nid;
410 	long nr;
411 	struct mem_cgroup *parent;
412 	struct shrinker_info *child_info, *parent_info;
413 
414 	parent = parent_mem_cgroup(memcg);
415 	if (!parent)
416 		parent = root_mem_cgroup;
417 
418 	/* Prevent from concurrent shrinker_info expand */
419 	down_read(&shrinker_rwsem);
420 	for_each_node(nid) {
421 		child_info = shrinker_info_protected(memcg, nid);
422 		parent_info = shrinker_info_protected(parent, nid);
423 		for (i = 0; i < shrinker_nr_max; i++) {
424 			nr = atomic_long_read(&child_info->nr_deferred[i]);
425 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
426 		}
427 	}
428 	up_read(&shrinker_rwsem);
429 }
430 
431 static bool cgroup_reclaim(struct scan_control *sc)
432 {
433 	return sc->target_mem_cgroup;
434 }
435 
436 /**
437  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
438  * @sc: scan_control in question
439  *
440  * The normal page dirty throttling mechanism in balance_dirty_pages() is
441  * completely broken with the legacy memcg and direct stalling in
442  * shrink_page_list() is used for throttling instead, which lacks all the
443  * niceties such as fairness, adaptive pausing, bandwidth proportional
444  * allocation and configurability.
445  *
446  * This function tests whether the vmscan currently in progress can assume
447  * that the normal dirty throttling mechanism is operational.
448  */
449 static bool writeback_throttling_sane(struct scan_control *sc)
450 {
451 	if (!cgroup_reclaim(sc))
452 		return true;
453 #ifdef CONFIG_CGROUP_WRITEBACK
454 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
455 		return true;
456 #endif
457 	return false;
458 }
459 #else
460 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
461 {
462 	return -ENOSYS;
463 }
464 
465 static void unregister_memcg_shrinker(struct shrinker *shrinker)
466 {
467 }
468 
469 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
470 				   struct mem_cgroup *memcg)
471 {
472 	return 0;
473 }
474 
475 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
476 				  struct mem_cgroup *memcg)
477 {
478 	return 0;
479 }
480 
481 static bool cgroup_reclaim(struct scan_control *sc)
482 {
483 	return false;
484 }
485 
486 static bool writeback_throttling_sane(struct scan_control *sc)
487 {
488 	return true;
489 }
490 #endif
491 
492 static long xchg_nr_deferred(struct shrinker *shrinker,
493 			     struct shrink_control *sc)
494 {
495 	int nid = sc->nid;
496 
497 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
498 		nid = 0;
499 
500 	if (sc->memcg &&
501 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
502 		return xchg_nr_deferred_memcg(nid, shrinker,
503 					      sc->memcg);
504 
505 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
506 }
507 
508 
509 static long add_nr_deferred(long nr, struct shrinker *shrinker,
510 			    struct shrink_control *sc)
511 {
512 	int nid = sc->nid;
513 
514 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
515 		nid = 0;
516 
517 	if (sc->memcg &&
518 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
519 		return add_nr_deferred_memcg(nr, nid, shrinker,
520 					     sc->memcg);
521 
522 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
523 }
524 
525 static bool can_demote(int nid, struct scan_control *sc)
526 {
527 	if (!numa_demotion_enabled)
528 		return false;
529 	if (sc) {
530 		if (sc->no_demotion)
531 			return false;
532 		/* It is pointless to do demotion in memcg reclaim */
533 		if (cgroup_reclaim(sc))
534 			return false;
535 	}
536 	if (next_demotion_node(nid) == NUMA_NO_NODE)
537 		return false;
538 
539 	return true;
540 }
541 
542 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
543 					  int nid,
544 					  struct scan_control *sc)
545 {
546 	if (memcg == NULL) {
547 		/*
548 		 * For non-memcg reclaim, is there
549 		 * space in any swap device?
550 		 */
551 		if (get_nr_swap_pages() > 0)
552 			return true;
553 	} else {
554 		/* Is the memcg below its swap limit? */
555 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
556 			return true;
557 	}
558 
559 	/*
560 	 * The page can not be swapped.
561 	 *
562 	 * Can it be reclaimed from this node via demotion?
563 	 */
564 	return can_demote(nid, sc);
565 }
566 
567 /*
568  * This misses isolated pages which are not accounted for to save counters.
569  * As the data only determines if reclaim or compaction continues, it is
570  * not expected that isolated pages will be a dominating factor.
571  */
572 unsigned long zone_reclaimable_pages(struct zone *zone)
573 {
574 	unsigned long nr;
575 
576 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
577 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
578 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
579 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
580 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
581 
582 	return nr;
583 }
584 
585 /**
586  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
587  * @lruvec: lru vector
588  * @lru: lru to use
589  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
590  */
591 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
592 				     int zone_idx)
593 {
594 	unsigned long size = 0;
595 	int zid;
596 
597 	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
598 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
599 
600 		if (!managed_zone(zone))
601 			continue;
602 
603 		if (!mem_cgroup_disabled())
604 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
605 		else
606 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
607 	}
608 	return size;
609 }
610 
611 /*
612  * Add a shrinker callback to be called from the vm.
613  */
614 int prealloc_shrinker(struct shrinker *shrinker)
615 {
616 	unsigned int size;
617 	int err;
618 
619 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
620 		err = prealloc_memcg_shrinker(shrinker);
621 		if (err != -ENOSYS)
622 			return err;
623 
624 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
625 	}
626 
627 	size = sizeof(*shrinker->nr_deferred);
628 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
629 		size *= nr_node_ids;
630 
631 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
632 	if (!shrinker->nr_deferred)
633 		return -ENOMEM;
634 
635 	return 0;
636 }
637 
638 void free_prealloced_shrinker(struct shrinker *shrinker)
639 {
640 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
641 		down_write(&shrinker_rwsem);
642 		unregister_memcg_shrinker(shrinker);
643 		up_write(&shrinker_rwsem);
644 		return;
645 	}
646 
647 	kfree(shrinker->nr_deferred);
648 	shrinker->nr_deferred = NULL;
649 }
650 
651 void register_shrinker_prepared(struct shrinker *shrinker)
652 {
653 	down_write(&shrinker_rwsem);
654 	list_add_tail(&shrinker->list, &shrinker_list);
655 	shrinker->flags |= SHRINKER_REGISTERED;
656 	up_write(&shrinker_rwsem);
657 }
658 
659 int register_shrinker(struct shrinker *shrinker)
660 {
661 	int err = prealloc_shrinker(shrinker);
662 
663 	if (err)
664 		return err;
665 	register_shrinker_prepared(shrinker);
666 	return 0;
667 }
668 EXPORT_SYMBOL(register_shrinker);
669 
670 /*
671  * Remove one
672  */
673 void unregister_shrinker(struct shrinker *shrinker)
674 {
675 	if (!(shrinker->flags & SHRINKER_REGISTERED))
676 		return;
677 
678 	down_write(&shrinker_rwsem);
679 	list_del(&shrinker->list);
680 	shrinker->flags &= ~SHRINKER_REGISTERED;
681 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
682 		unregister_memcg_shrinker(shrinker);
683 	up_write(&shrinker_rwsem);
684 
685 	kfree(shrinker->nr_deferred);
686 	shrinker->nr_deferred = NULL;
687 }
688 EXPORT_SYMBOL(unregister_shrinker);
689 
690 #define SHRINK_BATCH 128
691 
692 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
693 				    struct shrinker *shrinker, int priority)
694 {
695 	unsigned long freed = 0;
696 	unsigned long long delta;
697 	long total_scan;
698 	long freeable;
699 	long nr;
700 	long new_nr;
701 	long batch_size = shrinker->batch ? shrinker->batch
702 					  : SHRINK_BATCH;
703 	long scanned = 0, next_deferred;
704 
705 	freeable = shrinker->count_objects(shrinker, shrinkctl);
706 	if (freeable == 0 || freeable == SHRINK_EMPTY)
707 		return freeable;
708 
709 	/*
710 	 * copy the current shrinker scan count into a local variable
711 	 * and zero it so that other concurrent shrinker invocations
712 	 * don't also do this scanning work.
713 	 */
714 	nr = xchg_nr_deferred(shrinker, shrinkctl);
715 
716 	if (shrinker->seeks) {
717 		delta = freeable >> priority;
718 		delta *= 4;
719 		do_div(delta, shrinker->seeks);
720 	} else {
721 		/*
722 		 * These objects don't require any IO to create. Trim
723 		 * them aggressively under memory pressure to keep
724 		 * them from causing refetches in the IO caches.
725 		 */
726 		delta = freeable / 2;
727 	}
728 
729 	total_scan = nr >> priority;
730 	total_scan += delta;
731 	total_scan = min(total_scan, (2 * freeable));
732 
733 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
734 				   freeable, delta, total_scan, priority);
735 
736 	/*
737 	 * Normally, we should not scan less than batch_size objects in one
738 	 * pass to avoid too frequent shrinker calls, but if the slab has less
739 	 * than batch_size objects in total and we are really tight on memory,
740 	 * we will try to reclaim all available objects, otherwise we can end
741 	 * up failing allocations although there are plenty of reclaimable
742 	 * objects spread over several slabs with usage less than the
743 	 * batch_size.
744 	 *
745 	 * We detect the "tight on memory" situations by looking at the total
746 	 * number of objects we want to scan (total_scan). If it is greater
747 	 * than the total number of objects on slab (freeable), we must be
748 	 * scanning at high prio and therefore should try to reclaim as much as
749 	 * possible.
750 	 */
751 	while (total_scan >= batch_size ||
752 	       total_scan >= freeable) {
753 		unsigned long ret;
754 		unsigned long nr_to_scan = min(batch_size, total_scan);
755 
756 		shrinkctl->nr_to_scan = nr_to_scan;
757 		shrinkctl->nr_scanned = nr_to_scan;
758 		ret = shrinker->scan_objects(shrinker, shrinkctl);
759 		if (ret == SHRINK_STOP)
760 			break;
761 		freed += ret;
762 
763 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
764 		total_scan -= shrinkctl->nr_scanned;
765 		scanned += shrinkctl->nr_scanned;
766 
767 		cond_resched();
768 	}
769 
770 	/*
771 	 * The deferred work is increased by any new work (delta) that wasn't
772 	 * done, decreased by old deferred work that was done now.
773 	 *
774 	 * And it is capped to two times of the freeable items.
775 	 */
776 	next_deferred = max_t(long, (nr + delta - scanned), 0);
777 	next_deferred = min(next_deferred, (2 * freeable));
778 
779 	/*
780 	 * move the unused scan count back into the shrinker in a
781 	 * manner that handles concurrent updates.
782 	 */
783 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
784 
785 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
786 	return freed;
787 }
788 
789 #ifdef CONFIG_MEMCG
790 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
791 			struct mem_cgroup *memcg, int priority)
792 {
793 	struct shrinker_info *info;
794 	unsigned long ret, freed = 0;
795 	int i;
796 
797 	if (!mem_cgroup_online(memcg))
798 		return 0;
799 
800 	if (!down_read_trylock(&shrinker_rwsem))
801 		return 0;
802 
803 	info = shrinker_info_protected(memcg, nid);
804 	if (unlikely(!info))
805 		goto unlock;
806 
807 	for_each_set_bit(i, info->map, shrinker_nr_max) {
808 		struct shrink_control sc = {
809 			.gfp_mask = gfp_mask,
810 			.nid = nid,
811 			.memcg = memcg,
812 		};
813 		struct shrinker *shrinker;
814 
815 		shrinker = idr_find(&shrinker_idr, i);
816 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
817 			if (!shrinker)
818 				clear_bit(i, info->map);
819 			continue;
820 		}
821 
822 		/* Call non-slab shrinkers even though kmem is disabled */
823 		if (!memcg_kmem_enabled() &&
824 		    !(shrinker->flags & SHRINKER_NONSLAB))
825 			continue;
826 
827 		ret = do_shrink_slab(&sc, shrinker, priority);
828 		if (ret == SHRINK_EMPTY) {
829 			clear_bit(i, info->map);
830 			/*
831 			 * After the shrinker reported that it had no objects to
832 			 * free, but before we cleared the corresponding bit in
833 			 * the memcg shrinker map, a new object might have been
834 			 * added. To make sure, we have the bit set in this
835 			 * case, we invoke the shrinker one more time and reset
836 			 * the bit if it reports that it is not empty anymore.
837 			 * The memory barrier here pairs with the barrier in
838 			 * set_shrinker_bit():
839 			 *
840 			 * list_lru_add()     shrink_slab_memcg()
841 			 *   list_add_tail()    clear_bit()
842 			 *   <MB>               <MB>
843 			 *   set_bit()          do_shrink_slab()
844 			 */
845 			smp_mb__after_atomic();
846 			ret = do_shrink_slab(&sc, shrinker, priority);
847 			if (ret == SHRINK_EMPTY)
848 				ret = 0;
849 			else
850 				set_shrinker_bit(memcg, nid, i);
851 		}
852 		freed += ret;
853 
854 		if (rwsem_is_contended(&shrinker_rwsem)) {
855 			freed = freed ? : 1;
856 			break;
857 		}
858 	}
859 unlock:
860 	up_read(&shrinker_rwsem);
861 	return freed;
862 }
863 #else /* CONFIG_MEMCG */
864 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
865 			struct mem_cgroup *memcg, int priority)
866 {
867 	return 0;
868 }
869 #endif /* CONFIG_MEMCG */
870 
871 /**
872  * shrink_slab - shrink slab caches
873  * @gfp_mask: allocation context
874  * @nid: node whose slab caches to target
875  * @memcg: memory cgroup whose slab caches to target
876  * @priority: the reclaim priority
877  *
878  * Call the shrink functions to age shrinkable caches.
879  *
880  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
881  * unaware shrinkers will receive a node id of 0 instead.
882  *
883  * @memcg specifies the memory cgroup to target. Unaware shrinkers
884  * are called only if it is the root cgroup.
885  *
886  * @priority is sc->priority, we take the number of objects and >> by priority
887  * in order to get the scan target.
888  *
889  * Returns the number of reclaimed slab objects.
890  */
891 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
892 				 struct mem_cgroup *memcg,
893 				 int priority)
894 {
895 	unsigned long ret, freed = 0;
896 	struct shrinker *shrinker;
897 
898 	/*
899 	 * The root memcg might be allocated even though memcg is disabled
900 	 * via "cgroup_disable=memory" boot parameter.  This could make
901 	 * mem_cgroup_is_root() return false, then just run memcg slab
902 	 * shrink, but skip global shrink.  This may result in premature
903 	 * oom.
904 	 */
905 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
906 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
907 
908 	if (!down_read_trylock(&shrinker_rwsem))
909 		goto out;
910 
911 	list_for_each_entry(shrinker, &shrinker_list, list) {
912 		struct shrink_control sc = {
913 			.gfp_mask = gfp_mask,
914 			.nid = nid,
915 			.memcg = memcg,
916 		};
917 
918 		ret = do_shrink_slab(&sc, shrinker, priority);
919 		if (ret == SHRINK_EMPTY)
920 			ret = 0;
921 		freed += ret;
922 		/*
923 		 * Bail out if someone want to register a new shrinker to
924 		 * prevent the registration from being stalled for long periods
925 		 * by parallel ongoing shrinking.
926 		 */
927 		if (rwsem_is_contended(&shrinker_rwsem)) {
928 			freed = freed ? : 1;
929 			break;
930 		}
931 	}
932 
933 	up_read(&shrinker_rwsem);
934 out:
935 	cond_resched();
936 	return freed;
937 }
938 
939 void drop_slab_node(int nid)
940 {
941 	unsigned long freed;
942 	int shift = 0;
943 
944 	do {
945 		struct mem_cgroup *memcg = NULL;
946 
947 		if (fatal_signal_pending(current))
948 			return;
949 
950 		freed = 0;
951 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
952 		do {
953 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
954 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
955 	} while ((freed >> shift++) > 1);
956 }
957 
958 void drop_slab(void)
959 {
960 	int nid;
961 
962 	for_each_online_node(nid)
963 		drop_slab_node(nid);
964 }
965 
966 static inline int is_page_cache_freeable(struct page *page)
967 {
968 	/*
969 	 * A freeable page cache page is referenced only by the caller
970 	 * that isolated the page, the page cache and optional buffer
971 	 * heads at page->private.
972 	 */
973 	int page_cache_pins = thp_nr_pages(page);
974 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
975 }
976 
977 static int may_write_to_inode(struct inode *inode)
978 {
979 	if (current->flags & PF_SWAPWRITE)
980 		return 1;
981 	if (!inode_write_congested(inode))
982 		return 1;
983 	if (inode_to_bdi(inode) == current->backing_dev_info)
984 		return 1;
985 	return 0;
986 }
987 
988 /*
989  * We detected a synchronous write error writing a page out.  Probably
990  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
991  * fsync(), msync() or close().
992  *
993  * The tricky part is that after writepage we cannot touch the mapping: nothing
994  * prevents it from being freed up.  But we have a ref on the page and once
995  * that page is locked, the mapping is pinned.
996  *
997  * We're allowed to run sleeping lock_page() here because we know the caller has
998  * __GFP_FS.
999  */
1000 static void handle_write_error(struct address_space *mapping,
1001 				struct page *page, int error)
1002 {
1003 	lock_page(page);
1004 	if (page_mapping(page) == mapping)
1005 		mapping_set_error(mapping, error);
1006 	unlock_page(page);
1007 }
1008 
1009 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1010 {
1011 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1012 	long timeout, ret;
1013 	DEFINE_WAIT(wait);
1014 
1015 	/*
1016 	 * Do not throttle IO workers, kthreads other than kswapd or
1017 	 * workqueues. They may be required for reclaim to make
1018 	 * forward progress (e.g. journalling workqueues or kthreads).
1019 	 */
1020 	if (!current_is_kswapd() &&
1021 	    current->flags & (PF_IO_WORKER|PF_KTHREAD))
1022 		return;
1023 
1024 	/*
1025 	 * These figures are pulled out of thin air.
1026 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1027 	 * parallel reclaimers which is a short-lived event so the timeout is
1028 	 * short. Failing to make progress or waiting on writeback are
1029 	 * potentially long-lived events so use a longer timeout. This is shaky
1030 	 * logic as a failure to make progress could be due to anything from
1031 	 * writeback to a slow device to excessive references pages at the tail
1032 	 * of the inactive LRU.
1033 	 */
1034 	switch(reason) {
1035 	case VMSCAN_THROTTLE_WRITEBACK:
1036 		timeout = HZ/10;
1037 
1038 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1039 			WRITE_ONCE(pgdat->nr_reclaim_start,
1040 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1041 		}
1042 
1043 		break;
1044 	case VMSCAN_THROTTLE_NOPROGRESS:
1045 		timeout = HZ/2;
1046 		break;
1047 	case VMSCAN_THROTTLE_ISOLATED:
1048 		timeout = HZ/50;
1049 		break;
1050 	default:
1051 		WARN_ON_ONCE(1);
1052 		timeout = HZ;
1053 		break;
1054 	}
1055 
1056 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1057 	ret = schedule_timeout(timeout);
1058 	finish_wait(wqh, &wait);
1059 
1060 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1061 		atomic_dec(&pgdat->nr_writeback_throttled);
1062 
1063 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1064 				jiffies_to_usecs(timeout - ret),
1065 				reason);
1066 }
1067 
1068 /*
1069  * Account for pages written if tasks are throttled waiting on dirty
1070  * pages to clean. If enough pages have been cleaned since throttling
1071  * started then wakeup the throttled tasks.
1072  */
1073 void __acct_reclaim_writeback(pg_data_t *pgdat, struct page *page,
1074 							int nr_throttled)
1075 {
1076 	unsigned long nr_written;
1077 
1078 	inc_node_page_state(page, NR_THROTTLED_WRITTEN);
1079 
1080 	/*
1081 	 * This is an inaccurate read as the per-cpu deltas may not
1082 	 * be synchronised. However, given that the system is
1083 	 * writeback throttled, it is not worth taking the penalty
1084 	 * of getting an accurate count. At worst, the throttle
1085 	 * timeout guarantees forward progress.
1086 	 */
1087 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1088 		READ_ONCE(pgdat->nr_reclaim_start);
1089 
1090 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1091 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1092 }
1093 
1094 /* possible outcome of pageout() */
1095 typedef enum {
1096 	/* failed to write page out, page is locked */
1097 	PAGE_KEEP,
1098 	/* move page to the active list, page is locked */
1099 	PAGE_ACTIVATE,
1100 	/* page has been sent to the disk successfully, page is unlocked */
1101 	PAGE_SUCCESS,
1102 	/* page is clean and locked */
1103 	PAGE_CLEAN,
1104 } pageout_t;
1105 
1106 /*
1107  * pageout is called by shrink_page_list() for each dirty page.
1108  * Calls ->writepage().
1109  */
1110 static pageout_t pageout(struct page *page, struct address_space *mapping)
1111 {
1112 	/*
1113 	 * If the page is dirty, only perform writeback if that write
1114 	 * will be non-blocking.  To prevent this allocation from being
1115 	 * stalled by pagecache activity.  But note that there may be
1116 	 * stalls if we need to run get_block().  We could test
1117 	 * PagePrivate for that.
1118 	 *
1119 	 * If this process is currently in __generic_file_write_iter() against
1120 	 * this page's queue, we can perform writeback even if that
1121 	 * will block.
1122 	 *
1123 	 * If the page is swapcache, write it back even if that would
1124 	 * block, for some throttling. This happens by accident, because
1125 	 * swap_backing_dev_info is bust: it doesn't reflect the
1126 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1127 	 */
1128 	if (!is_page_cache_freeable(page))
1129 		return PAGE_KEEP;
1130 	if (!mapping) {
1131 		/*
1132 		 * Some data journaling orphaned pages can have
1133 		 * page->mapping == NULL while being dirty with clean buffers.
1134 		 */
1135 		if (page_has_private(page)) {
1136 			if (try_to_free_buffers(page)) {
1137 				ClearPageDirty(page);
1138 				pr_info("%s: orphaned page\n", __func__);
1139 				return PAGE_CLEAN;
1140 			}
1141 		}
1142 		return PAGE_KEEP;
1143 	}
1144 	if (mapping->a_ops->writepage == NULL)
1145 		return PAGE_ACTIVATE;
1146 	if (!may_write_to_inode(mapping->host))
1147 		return PAGE_KEEP;
1148 
1149 	if (clear_page_dirty_for_io(page)) {
1150 		int res;
1151 		struct writeback_control wbc = {
1152 			.sync_mode = WB_SYNC_NONE,
1153 			.nr_to_write = SWAP_CLUSTER_MAX,
1154 			.range_start = 0,
1155 			.range_end = LLONG_MAX,
1156 			.for_reclaim = 1,
1157 		};
1158 
1159 		SetPageReclaim(page);
1160 		res = mapping->a_ops->writepage(page, &wbc);
1161 		if (res < 0)
1162 			handle_write_error(mapping, page, res);
1163 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1164 			ClearPageReclaim(page);
1165 			return PAGE_ACTIVATE;
1166 		}
1167 
1168 		if (!PageWriteback(page)) {
1169 			/* synchronous write or broken a_ops? */
1170 			ClearPageReclaim(page);
1171 		}
1172 		trace_mm_vmscan_writepage(page);
1173 		inc_node_page_state(page, NR_VMSCAN_WRITE);
1174 		return PAGE_SUCCESS;
1175 	}
1176 
1177 	return PAGE_CLEAN;
1178 }
1179 
1180 /*
1181  * Same as remove_mapping, but if the page is removed from the mapping, it
1182  * gets returned with a refcount of 0.
1183  */
1184 static int __remove_mapping(struct address_space *mapping, struct page *page,
1185 			    bool reclaimed, struct mem_cgroup *target_memcg)
1186 {
1187 	int refcount;
1188 	void *shadow = NULL;
1189 
1190 	BUG_ON(!PageLocked(page));
1191 	BUG_ON(mapping != page_mapping(page));
1192 
1193 	if (!PageSwapCache(page))
1194 		spin_lock(&mapping->host->i_lock);
1195 	xa_lock_irq(&mapping->i_pages);
1196 	/*
1197 	 * The non racy check for a busy page.
1198 	 *
1199 	 * Must be careful with the order of the tests. When someone has
1200 	 * a ref to the page, it may be possible that they dirty it then
1201 	 * drop the reference. So if PageDirty is tested before page_count
1202 	 * here, then the following race may occur:
1203 	 *
1204 	 * get_user_pages(&page);
1205 	 * [user mapping goes away]
1206 	 * write_to(page);
1207 	 *				!PageDirty(page)    [good]
1208 	 * SetPageDirty(page);
1209 	 * put_page(page);
1210 	 *				!page_count(page)   [good, discard it]
1211 	 *
1212 	 * [oops, our write_to data is lost]
1213 	 *
1214 	 * Reversing the order of the tests ensures such a situation cannot
1215 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1216 	 * load is not satisfied before that of page->_refcount.
1217 	 *
1218 	 * Note that if SetPageDirty is always performed via set_page_dirty,
1219 	 * and thus under the i_pages lock, then this ordering is not required.
1220 	 */
1221 	refcount = 1 + compound_nr(page);
1222 	if (!page_ref_freeze(page, refcount))
1223 		goto cannot_free;
1224 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1225 	if (unlikely(PageDirty(page))) {
1226 		page_ref_unfreeze(page, refcount);
1227 		goto cannot_free;
1228 	}
1229 
1230 	if (PageSwapCache(page)) {
1231 		swp_entry_t swap = { .val = page_private(page) };
1232 		mem_cgroup_swapout(page, swap);
1233 		if (reclaimed && !mapping_exiting(mapping))
1234 			shadow = workingset_eviction(page, target_memcg);
1235 		__delete_from_swap_cache(page, swap, shadow);
1236 		xa_unlock_irq(&mapping->i_pages);
1237 		put_swap_page(page, swap);
1238 	} else {
1239 		void (*freepage)(struct page *);
1240 
1241 		freepage = mapping->a_ops->freepage;
1242 		/*
1243 		 * Remember a shadow entry for reclaimed file cache in
1244 		 * order to detect refaults, thus thrashing, later on.
1245 		 *
1246 		 * But don't store shadows in an address space that is
1247 		 * already exiting.  This is not just an optimization,
1248 		 * inode reclaim needs to empty out the radix tree or
1249 		 * the nodes are lost.  Don't plant shadows behind its
1250 		 * back.
1251 		 *
1252 		 * We also don't store shadows for DAX mappings because the
1253 		 * only page cache pages found in these are zero pages
1254 		 * covering holes, and because we don't want to mix DAX
1255 		 * exceptional entries and shadow exceptional entries in the
1256 		 * same address_space.
1257 		 */
1258 		if (reclaimed && page_is_file_lru(page) &&
1259 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1260 			shadow = workingset_eviction(page, target_memcg);
1261 		__delete_from_page_cache(page, shadow);
1262 		xa_unlock_irq(&mapping->i_pages);
1263 		if (mapping_shrinkable(mapping))
1264 			inode_add_lru(mapping->host);
1265 		spin_unlock(&mapping->host->i_lock);
1266 
1267 		if (freepage != NULL)
1268 			freepage(page);
1269 	}
1270 
1271 	return 1;
1272 
1273 cannot_free:
1274 	xa_unlock_irq(&mapping->i_pages);
1275 	if (!PageSwapCache(page))
1276 		spin_unlock(&mapping->host->i_lock);
1277 	return 0;
1278 }
1279 
1280 /*
1281  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
1282  * someone else has a ref on the page, abort and return 0.  If it was
1283  * successfully detached, return 1.  Assumes the caller has a single ref on
1284  * this page.
1285  */
1286 int remove_mapping(struct address_space *mapping, struct page *page)
1287 {
1288 	if (__remove_mapping(mapping, page, false, NULL)) {
1289 		/*
1290 		 * Unfreezing the refcount with 1 rather than 2 effectively
1291 		 * drops the pagecache ref for us without requiring another
1292 		 * atomic operation.
1293 		 */
1294 		page_ref_unfreeze(page, 1);
1295 		return 1;
1296 	}
1297 	return 0;
1298 }
1299 
1300 /**
1301  * putback_lru_page - put previously isolated page onto appropriate LRU list
1302  * @page: page to be put back to appropriate lru list
1303  *
1304  * Add previously isolated @page to appropriate LRU list.
1305  * Page may still be unevictable for other reasons.
1306  *
1307  * lru_lock must not be held, interrupts must be enabled.
1308  */
1309 void putback_lru_page(struct page *page)
1310 {
1311 	lru_cache_add(page);
1312 	put_page(page);		/* drop ref from isolate */
1313 }
1314 
1315 enum page_references {
1316 	PAGEREF_RECLAIM,
1317 	PAGEREF_RECLAIM_CLEAN,
1318 	PAGEREF_KEEP,
1319 	PAGEREF_ACTIVATE,
1320 };
1321 
1322 static enum page_references page_check_references(struct page *page,
1323 						  struct scan_control *sc)
1324 {
1325 	int referenced_ptes, referenced_page;
1326 	unsigned long vm_flags;
1327 
1328 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1329 					  &vm_flags);
1330 	referenced_page = TestClearPageReferenced(page);
1331 
1332 	/*
1333 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1334 	 * move the page to the unevictable list.
1335 	 */
1336 	if (vm_flags & VM_LOCKED)
1337 		return PAGEREF_RECLAIM;
1338 
1339 	if (referenced_ptes) {
1340 		/*
1341 		 * All mapped pages start out with page table
1342 		 * references from the instantiating fault, so we need
1343 		 * to look twice if a mapped file page is used more
1344 		 * than once.
1345 		 *
1346 		 * Mark it and spare it for another trip around the
1347 		 * inactive list.  Another page table reference will
1348 		 * lead to its activation.
1349 		 *
1350 		 * Note: the mark is set for activated pages as well
1351 		 * so that recently deactivated but used pages are
1352 		 * quickly recovered.
1353 		 */
1354 		SetPageReferenced(page);
1355 
1356 		if (referenced_page || referenced_ptes > 1)
1357 			return PAGEREF_ACTIVATE;
1358 
1359 		/*
1360 		 * Activate file-backed executable pages after first usage.
1361 		 */
1362 		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1363 			return PAGEREF_ACTIVATE;
1364 
1365 		return PAGEREF_KEEP;
1366 	}
1367 
1368 	/* Reclaim if clean, defer dirty pages to writeback */
1369 	if (referenced_page && !PageSwapBacked(page))
1370 		return PAGEREF_RECLAIM_CLEAN;
1371 
1372 	return PAGEREF_RECLAIM;
1373 }
1374 
1375 /* Check if a page is dirty or under writeback */
1376 static void page_check_dirty_writeback(struct page *page,
1377 				       bool *dirty, bool *writeback)
1378 {
1379 	struct address_space *mapping;
1380 
1381 	/*
1382 	 * Anonymous pages are not handled by flushers and must be written
1383 	 * from reclaim context. Do not stall reclaim based on them
1384 	 */
1385 	if (!page_is_file_lru(page) ||
1386 	    (PageAnon(page) && !PageSwapBacked(page))) {
1387 		*dirty = false;
1388 		*writeback = false;
1389 		return;
1390 	}
1391 
1392 	/* By default assume that the page flags are accurate */
1393 	*dirty = PageDirty(page);
1394 	*writeback = PageWriteback(page);
1395 
1396 	/* Verify dirty/writeback state if the filesystem supports it */
1397 	if (!page_has_private(page))
1398 		return;
1399 
1400 	mapping = page_mapping(page);
1401 	if (mapping && mapping->a_ops->is_dirty_writeback)
1402 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1403 }
1404 
1405 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1406 {
1407 	struct migration_target_control mtc = {
1408 		/*
1409 		 * Allocate from 'node', or fail quickly and quietly.
1410 		 * When this happens, 'page' will likely just be discarded
1411 		 * instead of migrated.
1412 		 */
1413 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1414 			    __GFP_THISNODE  | __GFP_NOWARN |
1415 			    __GFP_NOMEMALLOC | GFP_NOWAIT,
1416 		.nid = node
1417 	};
1418 
1419 	return alloc_migration_target(page, (unsigned long)&mtc);
1420 }
1421 
1422 /*
1423  * Take pages on @demote_list and attempt to demote them to
1424  * another node.  Pages which are not demoted are left on
1425  * @demote_pages.
1426  */
1427 static unsigned int demote_page_list(struct list_head *demote_pages,
1428 				     struct pglist_data *pgdat)
1429 {
1430 	int target_nid = next_demotion_node(pgdat->node_id);
1431 	unsigned int nr_succeeded;
1432 
1433 	if (list_empty(demote_pages))
1434 		return 0;
1435 
1436 	if (target_nid == NUMA_NO_NODE)
1437 		return 0;
1438 
1439 	/* Demotion ignores all cpuset and mempolicy settings */
1440 	migrate_pages(demote_pages, alloc_demote_page, NULL,
1441 			    target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1442 			    &nr_succeeded);
1443 
1444 	if (current_is_kswapd())
1445 		__count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1446 	else
1447 		__count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1448 
1449 	return nr_succeeded;
1450 }
1451 
1452 /*
1453  * shrink_page_list() returns the number of reclaimed pages
1454  */
1455 static unsigned int shrink_page_list(struct list_head *page_list,
1456 				     struct pglist_data *pgdat,
1457 				     struct scan_control *sc,
1458 				     struct reclaim_stat *stat,
1459 				     bool ignore_references)
1460 {
1461 	LIST_HEAD(ret_pages);
1462 	LIST_HEAD(free_pages);
1463 	LIST_HEAD(demote_pages);
1464 	unsigned int nr_reclaimed = 0;
1465 	unsigned int pgactivate = 0;
1466 	bool do_demote_pass;
1467 
1468 	memset(stat, 0, sizeof(*stat));
1469 	cond_resched();
1470 	do_demote_pass = can_demote(pgdat->node_id, sc);
1471 
1472 retry:
1473 	while (!list_empty(page_list)) {
1474 		struct address_space *mapping;
1475 		struct page *page;
1476 		enum page_references references = PAGEREF_RECLAIM;
1477 		bool dirty, writeback, may_enter_fs;
1478 		unsigned int nr_pages;
1479 
1480 		cond_resched();
1481 
1482 		page = lru_to_page(page_list);
1483 		list_del(&page->lru);
1484 
1485 		if (!trylock_page(page))
1486 			goto keep;
1487 
1488 		VM_BUG_ON_PAGE(PageActive(page), page);
1489 
1490 		nr_pages = compound_nr(page);
1491 
1492 		/* Account the number of base pages even though THP */
1493 		sc->nr_scanned += nr_pages;
1494 
1495 		if (unlikely(!page_evictable(page)))
1496 			goto activate_locked;
1497 
1498 		if (!sc->may_unmap && page_mapped(page))
1499 			goto keep_locked;
1500 
1501 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1502 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1503 
1504 		/*
1505 		 * The number of dirty pages determines if a node is marked
1506 		 * reclaim_congested. kswapd will stall and start writing
1507 		 * pages if the tail of the LRU is all dirty unqueued pages.
1508 		 */
1509 		page_check_dirty_writeback(page, &dirty, &writeback);
1510 		if (dirty || writeback)
1511 			stat->nr_dirty++;
1512 
1513 		if (dirty && !writeback)
1514 			stat->nr_unqueued_dirty++;
1515 
1516 		/*
1517 		 * Treat this page as congested if the underlying BDI is or if
1518 		 * pages are cycling through the LRU so quickly that the
1519 		 * pages marked for immediate reclaim are making it to the
1520 		 * end of the LRU a second time.
1521 		 */
1522 		mapping = page_mapping(page);
1523 		if (((dirty || writeback) && mapping &&
1524 		     inode_write_congested(mapping->host)) ||
1525 		    (writeback && PageReclaim(page)))
1526 			stat->nr_congested++;
1527 
1528 		/*
1529 		 * If a page at the tail of the LRU is under writeback, there
1530 		 * are three cases to consider.
1531 		 *
1532 		 * 1) If reclaim is encountering an excessive number of pages
1533 		 *    under writeback and this page is both under writeback and
1534 		 *    PageReclaim then it indicates that pages are being queued
1535 		 *    for IO but are being recycled through the LRU before the
1536 		 *    IO can complete. Waiting on the page itself risks an
1537 		 *    indefinite stall if it is impossible to writeback the
1538 		 *    page due to IO error or disconnected storage so instead
1539 		 *    note that the LRU is being scanned too quickly and the
1540 		 *    caller can stall after page list has been processed.
1541 		 *
1542 		 * 2) Global or new memcg reclaim encounters a page that is
1543 		 *    not marked for immediate reclaim, or the caller does not
1544 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1545 		 *    not to fs). In this case mark the page for immediate
1546 		 *    reclaim and continue scanning.
1547 		 *
1548 		 *    Require may_enter_fs because we would wait on fs, which
1549 		 *    may not have submitted IO yet. And the loop driver might
1550 		 *    enter reclaim, and deadlock if it waits on a page for
1551 		 *    which it is needed to do the write (loop masks off
1552 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1553 		 *    would probably show more reasons.
1554 		 *
1555 		 * 3) Legacy memcg encounters a page that is already marked
1556 		 *    PageReclaim. memcg does not have any dirty pages
1557 		 *    throttling so we could easily OOM just because too many
1558 		 *    pages are in writeback and there is nothing else to
1559 		 *    reclaim. Wait for the writeback to complete.
1560 		 *
1561 		 * In cases 1) and 2) we activate the pages to get them out of
1562 		 * the way while we continue scanning for clean pages on the
1563 		 * inactive list and refilling from the active list. The
1564 		 * observation here is that waiting for disk writes is more
1565 		 * expensive than potentially causing reloads down the line.
1566 		 * Since they're marked for immediate reclaim, they won't put
1567 		 * memory pressure on the cache working set any longer than it
1568 		 * takes to write them to disk.
1569 		 */
1570 		if (PageWriteback(page)) {
1571 			/* Case 1 above */
1572 			if (current_is_kswapd() &&
1573 			    PageReclaim(page) &&
1574 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1575 				stat->nr_immediate++;
1576 				goto activate_locked;
1577 
1578 			/* Case 2 above */
1579 			} else if (writeback_throttling_sane(sc) ||
1580 			    !PageReclaim(page) || !may_enter_fs) {
1581 				/*
1582 				 * This is slightly racy - end_page_writeback()
1583 				 * might have just cleared PageReclaim, then
1584 				 * setting PageReclaim here end up interpreted
1585 				 * as PageReadahead - but that does not matter
1586 				 * enough to care.  What we do want is for this
1587 				 * page to have PageReclaim set next time memcg
1588 				 * reclaim reaches the tests above, so it will
1589 				 * then wait_on_page_writeback() to avoid OOM;
1590 				 * and it's also appropriate in global reclaim.
1591 				 */
1592 				SetPageReclaim(page);
1593 				stat->nr_writeback++;
1594 				goto activate_locked;
1595 
1596 			/* Case 3 above */
1597 			} else {
1598 				unlock_page(page);
1599 				wait_on_page_writeback(page);
1600 				/* then go back and try same page again */
1601 				list_add_tail(&page->lru, page_list);
1602 				continue;
1603 			}
1604 		}
1605 
1606 		if (!ignore_references)
1607 			references = page_check_references(page, sc);
1608 
1609 		switch (references) {
1610 		case PAGEREF_ACTIVATE:
1611 			goto activate_locked;
1612 		case PAGEREF_KEEP:
1613 			stat->nr_ref_keep += nr_pages;
1614 			goto keep_locked;
1615 		case PAGEREF_RECLAIM:
1616 		case PAGEREF_RECLAIM_CLEAN:
1617 			; /* try to reclaim the page below */
1618 		}
1619 
1620 		/*
1621 		 * Before reclaiming the page, try to relocate
1622 		 * its contents to another node.
1623 		 */
1624 		if (do_demote_pass &&
1625 		    (thp_migration_supported() || !PageTransHuge(page))) {
1626 			list_add(&page->lru, &demote_pages);
1627 			unlock_page(page);
1628 			continue;
1629 		}
1630 
1631 		/*
1632 		 * Anonymous process memory has backing store?
1633 		 * Try to allocate it some swap space here.
1634 		 * Lazyfree page could be freed directly
1635 		 */
1636 		if (PageAnon(page) && PageSwapBacked(page)) {
1637 			if (!PageSwapCache(page)) {
1638 				if (!(sc->gfp_mask & __GFP_IO))
1639 					goto keep_locked;
1640 				if (page_maybe_dma_pinned(page))
1641 					goto keep_locked;
1642 				if (PageTransHuge(page)) {
1643 					/* cannot split THP, skip it */
1644 					if (!can_split_huge_page(page, NULL))
1645 						goto activate_locked;
1646 					/*
1647 					 * Split pages without a PMD map right
1648 					 * away. Chances are some or all of the
1649 					 * tail pages can be freed without IO.
1650 					 */
1651 					if (!compound_mapcount(page) &&
1652 					    split_huge_page_to_list(page,
1653 								    page_list))
1654 						goto activate_locked;
1655 				}
1656 				if (!add_to_swap(page)) {
1657 					if (!PageTransHuge(page))
1658 						goto activate_locked_split;
1659 					/* Fallback to swap normal pages */
1660 					if (split_huge_page_to_list(page,
1661 								    page_list))
1662 						goto activate_locked;
1663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1664 					count_vm_event(THP_SWPOUT_FALLBACK);
1665 #endif
1666 					if (!add_to_swap(page))
1667 						goto activate_locked_split;
1668 				}
1669 
1670 				may_enter_fs = true;
1671 
1672 				/* Adding to swap updated mapping */
1673 				mapping = page_mapping(page);
1674 			}
1675 		} else if (unlikely(PageTransHuge(page))) {
1676 			/* Split file THP */
1677 			if (split_huge_page_to_list(page, page_list))
1678 				goto keep_locked;
1679 		}
1680 
1681 		/*
1682 		 * THP may get split above, need minus tail pages and update
1683 		 * nr_pages to avoid accounting tail pages twice.
1684 		 *
1685 		 * The tail pages that are added into swap cache successfully
1686 		 * reach here.
1687 		 */
1688 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1689 			sc->nr_scanned -= (nr_pages - 1);
1690 			nr_pages = 1;
1691 		}
1692 
1693 		/*
1694 		 * The page is mapped into the page tables of one or more
1695 		 * processes. Try to unmap it here.
1696 		 */
1697 		if (page_mapped(page)) {
1698 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1699 			bool was_swapbacked = PageSwapBacked(page);
1700 
1701 			if (unlikely(PageTransHuge(page)))
1702 				flags |= TTU_SPLIT_HUGE_PMD;
1703 
1704 			try_to_unmap(page, flags);
1705 			if (page_mapped(page)) {
1706 				stat->nr_unmap_fail += nr_pages;
1707 				if (!was_swapbacked && PageSwapBacked(page))
1708 					stat->nr_lazyfree_fail += nr_pages;
1709 				goto activate_locked;
1710 			}
1711 		}
1712 
1713 		if (PageDirty(page)) {
1714 			/*
1715 			 * Only kswapd can writeback filesystem pages
1716 			 * to avoid risk of stack overflow. But avoid
1717 			 * injecting inefficient single-page IO into
1718 			 * flusher writeback as much as possible: only
1719 			 * write pages when we've encountered many
1720 			 * dirty pages, and when we've already scanned
1721 			 * the rest of the LRU for clean pages and see
1722 			 * the same dirty pages again (PageReclaim).
1723 			 */
1724 			if (page_is_file_lru(page) &&
1725 			    (!current_is_kswapd() || !PageReclaim(page) ||
1726 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1727 				/*
1728 				 * Immediately reclaim when written back.
1729 				 * Similar in principal to deactivate_page()
1730 				 * except we already have the page isolated
1731 				 * and know it's dirty
1732 				 */
1733 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1734 				SetPageReclaim(page);
1735 
1736 				goto activate_locked;
1737 			}
1738 
1739 			if (references == PAGEREF_RECLAIM_CLEAN)
1740 				goto keep_locked;
1741 			if (!may_enter_fs)
1742 				goto keep_locked;
1743 			if (!sc->may_writepage)
1744 				goto keep_locked;
1745 
1746 			/*
1747 			 * Page is dirty. Flush the TLB if a writable entry
1748 			 * potentially exists to avoid CPU writes after IO
1749 			 * starts and then write it out here.
1750 			 */
1751 			try_to_unmap_flush_dirty();
1752 			switch (pageout(page, mapping)) {
1753 			case PAGE_KEEP:
1754 				goto keep_locked;
1755 			case PAGE_ACTIVATE:
1756 				goto activate_locked;
1757 			case PAGE_SUCCESS:
1758 				stat->nr_pageout += thp_nr_pages(page);
1759 
1760 				if (PageWriteback(page))
1761 					goto keep;
1762 				if (PageDirty(page))
1763 					goto keep;
1764 
1765 				/*
1766 				 * A synchronous write - probably a ramdisk.  Go
1767 				 * ahead and try to reclaim the page.
1768 				 */
1769 				if (!trylock_page(page))
1770 					goto keep;
1771 				if (PageDirty(page) || PageWriteback(page))
1772 					goto keep_locked;
1773 				mapping = page_mapping(page);
1774 				fallthrough;
1775 			case PAGE_CLEAN:
1776 				; /* try to free the page below */
1777 			}
1778 		}
1779 
1780 		/*
1781 		 * If the page has buffers, try to free the buffer mappings
1782 		 * associated with this page. If we succeed we try to free
1783 		 * the page as well.
1784 		 *
1785 		 * We do this even if the page is PageDirty().
1786 		 * try_to_release_page() does not perform I/O, but it is
1787 		 * possible for a page to have PageDirty set, but it is actually
1788 		 * clean (all its buffers are clean).  This happens if the
1789 		 * buffers were written out directly, with submit_bh(). ext3
1790 		 * will do this, as well as the blockdev mapping.
1791 		 * try_to_release_page() will discover that cleanness and will
1792 		 * drop the buffers and mark the page clean - it can be freed.
1793 		 *
1794 		 * Rarely, pages can have buffers and no ->mapping.  These are
1795 		 * the pages which were not successfully invalidated in
1796 		 * truncate_cleanup_page().  We try to drop those buffers here
1797 		 * and if that worked, and the page is no longer mapped into
1798 		 * process address space (page_count == 1) it can be freed.
1799 		 * Otherwise, leave the page on the LRU so it is swappable.
1800 		 */
1801 		if (page_has_private(page)) {
1802 			if (!try_to_release_page(page, sc->gfp_mask))
1803 				goto activate_locked;
1804 			if (!mapping && page_count(page) == 1) {
1805 				unlock_page(page);
1806 				if (put_page_testzero(page))
1807 					goto free_it;
1808 				else {
1809 					/*
1810 					 * rare race with speculative reference.
1811 					 * the speculative reference will free
1812 					 * this page shortly, so we may
1813 					 * increment nr_reclaimed here (and
1814 					 * leave it off the LRU).
1815 					 */
1816 					nr_reclaimed++;
1817 					continue;
1818 				}
1819 			}
1820 		}
1821 
1822 		if (PageAnon(page) && !PageSwapBacked(page)) {
1823 			/* follow __remove_mapping for reference */
1824 			if (!page_ref_freeze(page, 1))
1825 				goto keep_locked;
1826 			/*
1827 			 * The page has only one reference left, which is
1828 			 * from the isolation. After the caller puts the
1829 			 * page back on lru and drops the reference, the
1830 			 * page will be freed anyway. It doesn't matter
1831 			 * which lru it goes. So we don't bother checking
1832 			 * PageDirty here.
1833 			 */
1834 			count_vm_event(PGLAZYFREED);
1835 			count_memcg_page_event(page, PGLAZYFREED);
1836 		} else if (!mapping || !__remove_mapping(mapping, page, true,
1837 							 sc->target_mem_cgroup))
1838 			goto keep_locked;
1839 
1840 		unlock_page(page);
1841 free_it:
1842 		/*
1843 		 * THP may get swapped out in a whole, need account
1844 		 * all base pages.
1845 		 */
1846 		nr_reclaimed += nr_pages;
1847 
1848 		/*
1849 		 * Is there need to periodically free_page_list? It would
1850 		 * appear not as the counts should be low
1851 		 */
1852 		if (unlikely(PageTransHuge(page)))
1853 			destroy_compound_page(page);
1854 		else
1855 			list_add(&page->lru, &free_pages);
1856 		continue;
1857 
1858 activate_locked_split:
1859 		/*
1860 		 * The tail pages that are failed to add into swap cache
1861 		 * reach here.  Fixup nr_scanned and nr_pages.
1862 		 */
1863 		if (nr_pages > 1) {
1864 			sc->nr_scanned -= (nr_pages - 1);
1865 			nr_pages = 1;
1866 		}
1867 activate_locked:
1868 		/* Not a candidate for swapping, so reclaim swap space. */
1869 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1870 						PageMlocked(page)))
1871 			try_to_free_swap(page);
1872 		VM_BUG_ON_PAGE(PageActive(page), page);
1873 		if (!PageMlocked(page)) {
1874 			int type = page_is_file_lru(page);
1875 			SetPageActive(page);
1876 			stat->nr_activate[type] += nr_pages;
1877 			count_memcg_page_event(page, PGACTIVATE);
1878 		}
1879 keep_locked:
1880 		unlock_page(page);
1881 keep:
1882 		list_add(&page->lru, &ret_pages);
1883 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1884 	}
1885 	/* 'page_list' is always empty here */
1886 
1887 	/* Migrate pages selected for demotion */
1888 	nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1889 	/* Pages that could not be demoted are still in @demote_pages */
1890 	if (!list_empty(&demote_pages)) {
1891 		/* Pages which failed to demoted go back on @page_list for retry: */
1892 		list_splice_init(&demote_pages, page_list);
1893 		do_demote_pass = false;
1894 		goto retry;
1895 	}
1896 
1897 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1898 
1899 	mem_cgroup_uncharge_list(&free_pages);
1900 	try_to_unmap_flush();
1901 	free_unref_page_list(&free_pages);
1902 
1903 	list_splice(&ret_pages, page_list);
1904 	count_vm_events(PGACTIVATE, pgactivate);
1905 
1906 	return nr_reclaimed;
1907 }
1908 
1909 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1910 					    struct list_head *page_list)
1911 {
1912 	struct scan_control sc = {
1913 		.gfp_mask = GFP_KERNEL,
1914 		.may_unmap = 1,
1915 	};
1916 	struct reclaim_stat stat;
1917 	unsigned int nr_reclaimed;
1918 	struct page *page, *next;
1919 	LIST_HEAD(clean_pages);
1920 	unsigned int noreclaim_flag;
1921 
1922 	list_for_each_entry_safe(page, next, page_list, lru) {
1923 		if (!PageHuge(page) && page_is_file_lru(page) &&
1924 		    !PageDirty(page) && !__PageMovable(page) &&
1925 		    !PageUnevictable(page)) {
1926 			ClearPageActive(page);
1927 			list_move(&page->lru, &clean_pages);
1928 		}
1929 	}
1930 
1931 	/*
1932 	 * We should be safe here since we are only dealing with file pages and
1933 	 * we are not kswapd and therefore cannot write dirty file pages. But
1934 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1935 	 * change in the future.
1936 	 */
1937 	noreclaim_flag = memalloc_noreclaim_save();
1938 	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1939 					&stat, true);
1940 	memalloc_noreclaim_restore(noreclaim_flag);
1941 
1942 	list_splice(&clean_pages, page_list);
1943 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1944 			    -(long)nr_reclaimed);
1945 	/*
1946 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1947 	 * they will rotate back to anonymous LRU in the end if it failed to
1948 	 * discard so isolated count will be mismatched.
1949 	 * Compensate the isolated count for both LRU lists.
1950 	 */
1951 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1952 			    stat.nr_lazyfree_fail);
1953 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1954 			    -(long)stat.nr_lazyfree_fail);
1955 	return nr_reclaimed;
1956 }
1957 
1958 /*
1959  * Attempt to remove the specified page from its LRU.  Only take this page
1960  * if it is of the appropriate PageActive status.  Pages which are being
1961  * freed elsewhere are also ignored.
1962  *
1963  * page:	page to consider
1964  * mode:	one of the LRU isolation modes defined above
1965  *
1966  * returns true on success, false on failure.
1967  */
1968 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
1969 {
1970 	/* Only take pages on the LRU. */
1971 	if (!PageLRU(page))
1972 		return false;
1973 
1974 	/* Compaction should not handle unevictable pages but CMA can do so */
1975 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1976 		return false;
1977 
1978 	/*
1979 	 * To minimise LRU disruption, the caller can indicate that it only
1980 	 * wants to isolate pages it will be able to operate on without
1981 	 * blocking - clean pages for the most part.
1982 	 *
1983 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1984 	 * that it is possible to migrate without blocking
1985 	 */
1986 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1987 		/* All the caller can do on PageWriteback is block */
1988 		if (PageWriteback(page))
1989 			return false;
1990 
1991 		if (PageDirty(page)) {
1992 			struct address_space *mapping;
1993 			bool migrate_dirty;
1994 
1995 			/*
1996 			 * Only pages without mappings or that have a
1997 			 * ->migratepage callback are possible to migrate
1998 			 * without blocking. However, we can be racing with
1999 			 * truncation so it's necessary to lock the page
2000 			 * to stabilise the mapping as truncation holds
2001 			 * the page lock until after the page is removed
2002 			 * from the page cache.
2003 			 */
2004 			if (!trylock_page(page))
2005 				return false;
2006 
2007 			mapping = page_mapping(page);
2008 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
2009 			unlock_page(page);
2010 			if (!migrate_dirty)
2011 				return false;
2012 		}
2013 	}
2014 
2015 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
2016 		return false;
2017 
2018 	return true;
2019 }
2020 
2021 /*
2022  * Update LRU sizes after isolating pages. The LRU size updates must
2023  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2024  */
2025 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2026 			enum lru_list lru, unsigned long *nr_zone_taken)
2027 {
2028 	int zid;
2029 
2030 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2031 		if (!nr_zone_taken[zid])
2032 			continue;
2033 
2034 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2035 	}
2036 
2037 }
2038 
2039 /*
2040  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2041  *
2042  * lruvec->lru_lock is heavily contended.  Some of the functions that
2043  * shrink the lists perform better by taking out a batch of pages
2044  * and working on them outside the LRU lock.
2045  *
2046  * For pagecache intensive workloads, this function is the hottest
2047  * spot in the kernel (apart from copy_*_user functions).
2048  *
2049  * Lru_lock must be held before calling this function.
2050  *
2051  * @nr_to_scan:	The number of eligible pages to look through on the list.
2052  * @lruvec:	The LRU vector to pull pages from.
2053  * @dst:	The temp list to put pages on to.
2054  * @nr_scanned:	The number of pages that were scanned.
2055  * @sc:		The scan_control struct for this reclaim session
2056  * @lru:	LRU list id for isolating
2057  *
2058  * returns how many pages were moved onto *@dst.
2059  */
2060 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
2061 		struct lruvec *lruvec, struct list_head *dst,
2062 		unsigned long *nr_scanned, struct scan_control *sc,
2063 		enum lru_list lru)
2064 {
2065 	struct list_head *src = &lruvec->lists[lru];
2066 	unsigned long nr_taken = 0;
2067 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2068 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2069 	unsigned long skipped = 0;
2070 	unsigned long scan, total_scan, nr_pages;
2071 	LIST_HEAD(pages_skipped);
2072 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
2073 
2074 	total_scan = 0;
2075 	scan = 0;
2076 	while (scan < nr_to_scan && !list_empty(src)) {
2077 		struct page *page;
2078 
2079 		page = lru_to_page(src);
2080 		prefetchw_prev_lru_page(page, src, flags);
2081 
2082 		nr_pages = compound_nr(page);
2083 		total_scan += nr_pages;
2084 
2085 		if (page_zonenum(page) > sc->reclaim_idx) {
2086 			list_move(&page->lru, &pages_skipped);
2087 			nr_skipped[page_zonenum(page)] += nr_pages;
2088 			continue;
2089 		}
2090 
2091 		/*
2092 		 * Do not count skipped pages because that makes the function
2093 		 * return with no isolated pages if the LRU mostly contains
2094 		 * ineligible pages.  This causes the VM to not reclaim any
2095 		 * pages, triggering a premature OOM.
2096 		 *
2097 		 * Account all tail pages of THP.  This would not cause
2098 		 * premature OOM since __isolate_lru_page() returns -EBUSY
2099 		 * only when the page is being freed somewhere else.
2100 		 */
2101 		scan += nr_pages;
2102 		if (!__isolate_lru_page_prepare(page, mode)) {
2103 			/* It is being freed elsewhere */
2104 			list_move(&page->lru, src);
2105 			continue;
2106 		}
2107 		/*
2108 		 * Be careful not to clear PageLRU until after we're
2109 		 * sure the page is not being freed elsewhere -- the
2110 		 * page release code relies on it.
2111 		 */
2112 		if (unlikely(!get_page_unless_zero(page))) {
2113 			list_move(&page->lru, src);
2114 			continue;
2115 		}
2116 
2117 		if (!TestClearPageLRU(page)) {
2118 			/* Another thread is already isolating this page */
2119 			put_page(page);
2120 			list_move(&page->lru, src);
2121 			continue;
2122 		}
2123 
2124 		nr_taken += nr_pages;
2125 		nr_zone_taken[page_zonenum(page)] += nr_pages;
2126 		list_move(&page->lru, dst);
2127 	}
2128 
2129 	/*
2130 	 * Splice any skipped pages to the start of the LRU list. Note that
2131 	 * this disrupts the LRU order when reclaiming for lower zones but
2132 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2133 	 * scanning would soon rescan the same pages to skip and put the
2134 	 * system at risk of premature OOM.
2135 	 */
2136 	if (!list_empty(&pages_skipped)) {
2137 		int zid;
2138 
2139 		list_splice(&pages_skipped, src);
2140 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2141 			if (!nr_skipped[zid])
2142 				continue;
2143 
2144 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2145 			skipped += nr_skipped[zid];
2146 		}
2147 	}
2148 	*nr_scanned = total_scan;
2149 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2150 				    total_scan, skipped, nr_taken, mode, lru);
2151 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2152 	return nr_taken;
2153 }
2154 
2155 /**
2156  * isolate_lru_page - tries to isolate a page from its LRU list
2157  * @page: page to isolate from its LRU list
2158  *
2159  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
2160  * vmstat statistic corresponding to whatever LRU list the page was on.
2161  *
2162  * Returns 0 if the page was removed from an LRU list.
2163  * Returns -EBUSY if the page was not on an LRU list.
2164  *
2165  * The returned page will have PageLRU() cleared.  If it was found on
2166  * the active list, it will have PageActive set.  If it was found on
2167  * the unevictable list, it will have the PageUnevictable bit set. That flag
2168  * may need to be cleared by the caller before letting the page go.
2169  *
2170  * The vmstat statistic corresponding to the list on which the page was
2171  * found will be decremented.
2172  *
2173  * Restrictions:
2174  *
2175  * (1) Must be called with an elevated refcount on the page. This is a
2176  *     fundamental difference from isolate_lru_pages (which is called
2177  *     without a stable reference).
2178  * (2) the lru_lock must not be held.
2179  * (3) interrupts must be enabled.
2180  */
2181 int isolate_lru_page(struct page *page)
2182 {
2183 	int ret = -EBUSY;
2184 
2185 	VM_BUG_ON_PAGE(!page_count(page), page);
2186 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
2187 
2188 	if (TestClearPageLRU(page)) {
2189 		struct lruvec *lruvec;
2190 
2191 		get_page(page);
2192 		lruvec = lock_page_lruvec_irq(page);
2193 		del_page_from_lru_list(page, lruvec);
2194 		unlock_page_lruvec_irq(lruvec);
2195 		ret = 0;
2196 	}
2197 
2198 	return ret;
2199 }
2200 
2201 /*
2202  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2203  * then get rescheduled. When there are massive number of tasks doing page
2204  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2205  * the LRU list will go small and be scanned faster than necessary, leading to
2206  * unnecessary swapping, thrashing and OOM.
2207  */
2208 static int too_many_isolated(struct pglist_data *pgdat, int file,
2209 		struct scan_control *sc)
2210 {
2211 	unsigned long inactive, isolated;
2212 	bool too_many;
2213 
2214 	if (current_is_kswapd())
2215 		return 0;
2216 
2217 	if (!writeback_throttling_sane(sc))
2218 		return 0;
2219 
2220 	if (file) {
2221 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2222 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2223 	} else {
2224 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2225 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2226 	}
2227 
2228 	/*
2229 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2230 	 * won't get blocked by normal direct-reclaimers, forming a circular
2231 	 * deadlock.
2232 	 */
2233 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2234 		inactive >>= 3;
2235 
2236 	too_many = isolated > inactive;
2237 
2238 	/* Wake up tasks throttled due to too_many_isolated. */
2239 	if (!too_many)
2240 		wake_throttle_isolated(pgdat);
2241 
2242 	return too_many;
2243 }
2244 
2245 /*
2246  * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2247  * On return, @list is reused as a list of pages to be freed by the caller.
2248  *
2249  * Returns the number of pages moved to the given lruvec.
2250  */
2251 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2252 				      struct list_head *list)
2253 {
2254 	int nr_pages, nr_moved = 0;
2255 	LIST_HEAD(pages_to_free);
2256 	struct page *page;
2257 
2258 	while (!list_empty(list)) {
2259 		page = lru_to_page(list);
2260 		VM_BUG_ON_PAGE(PageLRU(page), page);
2261 		list_del(&page->lru);
2262 		if (unlikely(!page_evictable(page))) {
2263 			spin_unlock_irq(&lruvec->lru_lock);
2264 			putback_lru_page(page);
2265 			spin_lock_irq(&lruvec->lru_lock);
2266 			continue;
2267 		}
2268 
2269 		/*
2270 		 * The SetPageLRU needs to be kept here for list integrity.
2271 		 * Otherwise:
2272 		 *   #0 move_pages_to_lru             #1 release_pages
2273 		 *   if !put_page_testzero
2274 		 *				      if (put_page_testzero())
2275 		 *				        !PageLRU //skip lru_lock
2276 		 *     SetPageLRU()
2277 		 *     list_add(&page->lru,)
2278 		 *                                        list_add(&page->lru,)
2279 		 */
2280 		SetPageLRU(page);
2281 
2282 		if (unlikely(put_page_testzero(page))) {
2283 			__clear_page_lru_flags(page);
2284 
2285 			if (unlikely(PageCompound(page))) {
2286 				spin_unlock_irq(&lruvec->lru_lock);
2287 				destroy_compound_page(page);
2288 				spin_lock_irq(&lruvec->lru_lock);
2289 			} else
2290 				list_add(&page->lru, &pages_to_free);
2291 
2292 			continue;
2293 		}
2294 
2295 		/*
2296 		 * All pages were isolated from the same lruvec (and isolation
2297 		 * inhibits memcg migration).
2298 		 */
2299 		VM_BUG_ON_PAGE(!page_matches_lruvec(page, lruvec), page);
2300 		add_page_to_lru_list(page, lruvec);
2301 		nr_pages = thp_nr_pages(page);
2302 		nr_moved += nr_pages;
2303 		if (PageActive(page))
2304 			workingset_age_nonresident(lruvec, nr_pages);
2305 	}
2306 
2307 	/*
2308 	 * To save our caller's stack, now use input list for pages to free.
2309 	 */
2310 	list_splice(&pages_to_free, list);
2311 
2312 	return nr_moved;
2313 }
2314 
2315 /*
2316  * If a kernel thread (such as nfsd for loop-back mounts) services
2317  * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2318  * In that case we should only throttle if the backing device it is
2319  * writing to is congested.  In other cases it is safe to throttle.
2320  */
2321 static int current_may_throttle(void)
2322 {
2323 	return !(current->flags & PF_LOCAL_THROTTLE) ||
2324 		current->backing_dev_info == NULL ||
2325 		bdi_write_congested(current->backing_dev_info);
2326 }
2327 
2328 /*
2329  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2330  * of reclaimed pages
2331  */
2332 static unsigned long
2333 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2334 		     struct scan_control *sc, enum lru_list lru)
2335 {
2336 	LIST_HEAD(page_list);
2337 	unsigned long nr_scanned;
2338 	unsigned int nr_reclaimed = 0;
2339 	unsigned long nr_taken;
2340 	struct reclaim_stat stat;
2341 	bool file = is_file_lru(lru);
2342 	enum vm_event_item item;
2343 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2344 	bool stalled = false;
2345 
2346 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2347 		if (stalled)
2348 			return 0;
2349 
2350 		/* wait a bit for the reclaimer. */
2351 		stalled = true;
2352 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2353 
2354 		/* We are about to die and free our memory. Return now. */
2355 		if (fatal_signal_pending(current))
2356 			return SWAP_CLUSTER_MAX;
2357 	}
2358 
2359 	lru_add_drain();
2360 
2361 	spin_lock_irq(&lruvec->lru_lock);
2362 
2363 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2364 				     &nr_scanned, sc, lru);
2365 
2366 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2367 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2368 	if (!cgroup_reclaim(sc))
2369 		__count_vm_events(item, nr_scanned);
2370 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2371 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2372 
2373 	spin_unlock_irq(&lruvec->lru_lock);
2374 
2375 	if (nr_taken == 0)
2376 		return 0;
2377 
2378 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2379 
2380 	spin_lock_irq(&lruvec->lru_lock);
2381 	move_pages_to_lru(lruvec, &page_list);
2382 
2383 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2384 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2385 	if (!cgroup_reclaim(sc))
2386 		__count_vm_events(item, nr_reclaimed);
2387 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2388 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2389 	spin_unlock_irq(&lruvec->lru_lock);
2390 
2391 	lru_note_cost(lruvec, file, stat.nr_pageout);
2392 	mem_cgroup_uncharge_list(&page_list);
2393 	free_unref_page_list(&page_list);
2394 
2395 	/*
2396 	 * If dirty pages are scanned that are not queued for IO, it
2397 	 * implies that flushers are not doing their job. This can
2398 	 * happen when memory pressure pushes dirty pages to the end of
2399 	 * the LRU before the dirty limits are breached and the dirty
2400 	 * data has expired. It can also happen when the proportion of
2401 	 * dirty pages grows not through writes but through memory
2402 	 * pressure reclaiming all the clean cache. And in some cases,
2403 	 * the flushers simply cannot keep up with the allocation
2404 	 * rate. Nudge the flusher threads in case they are asleep.
2405 	 */
2406 	if (stat.nr_unqueued_dirty == nr_taken)
2407 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2408 
2409 	sc->nr.dirty += stat.nr_dirty;
2410 	sc->nr.congested += stat.nr_congested;
2411 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2412 	sc->nr.writeback += stat.nr_writeback;
2413 	sc->nr.immediate += stat.nr_immediate;
2414 	sc->nr.taken += nr_taken;
2415 	if (file)
2416 		sc->nr.file_taken += nr_taken;
2417 
2418 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2419 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2420 	return nr_reclaimed;
2421 }
2422 
2423 /*
2424  * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2425  *
2426  * We move them the other way if the page is referenced by one or more
2427  * processes.
2428  *
2429  * If the pages are mostly unmapped, the processing is fast and it is
2430  * appropriate to hold lru_lock across the whole operation.  But if
2431  * the pages are mapped, the processing is slow (page_referenced()), so
2432  * we should drop lru_lock around each page.  It's impossible to balance
2433  * this, so instead we remove the pages from the LRU while processing them.
2434  * It is safe to rely on PG_active against the non-LRU pages in here because
2435  * nobody will play with that bit on a non-LRU page.
2436  *
2437  * The downside is that we have to touch page->_refcount against each page.
2438  * But we had to alter page->flags anyway.
2439  */
2440 static void shrink_active_list(unsigned long nr_to_scan,
2441 			       struct lruvec *lruvec,
2442 			       struct scan_control *sc,
2443 			       enum lru_list lru)
2444 {
2445 	unsigned long nr_taken;
2446 	unsigned long nr_scanned;
2447 	unsigned long vm_flags;
2448 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2449 	LIST_HEAD(l_active);
2450 	LIST_HEAD(l_inactive);
2451 	struct page *page;
2452 	unsigned nr_deactivate, nr_activate;
2453 	unsigned nr_rotated = 0;
2454 	int file = is_file_lru(lru);
2455 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2456 
2457 	lru_add_drain();
2458 
2459 	spin_lock_irq(&lruvec->lru_lock);
2460 
2461 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2462 				     &nr_scanned, sc, lru);
2463 
2464 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2465 
2466 	if (!cgroup_reclaim(sc))
2467 		__count_vm_events(PGREFILL, nr_scanned);
2468 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2469 
2470 	spin_unlock_irq(&lruvec->lru_lock);
2471 
2472 	while (!list_empty(&l_hold)) {
2473 		cond_resched();
2474 		page = lru_to_page(&l_hold);
2475 		list_del(&page->lru);
2476 
2477 		if (unlikely(!page_evictable(page))) {
2478 			putback_lru_page(page);
2479 			continue;
2480 		}
2481 
2482 		if (unlikely(buffer_heads_over_limit)) {
2483 			if (page_has_private(page) && trylock_page(page)) {
2484 				if (page_has_private(page))
2485 					try_to_release_page(page, 0);
2486 				unlock_page(page);
2487 			}
2488 		}
2489 
2490 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2491 				    &vm_flags)) {
2492 			/*
2493 			 * Identify referenced, file-backed active pages and
2494 			 * give them one more trip around the active list. So
2495 			 * that executable code get better chances to stay in
2496 			 * memory under moderate memory pressure.  Anon pages
2497 			 * are not likely to be evicted by use-once streaming
2498 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2499 			 * so we ignore them here.
2500 			 */
2501 			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2502 				nr_rotated += thp_nr_pages(page);
2503 				list_add(&page->lru, &l_active);
2504 				continue;
2505 			}
2506 		}
2507 
2508 		ClearPageActive(page);	/* we are de-activating */
2509 		SetPageWorkingset(page);
2510 		list_add(&page->lru, &l_inactive);
2511 	}
2512 
2513 	/*
2514 	 * Move pages back to the lru list.
2515 	 */
2516 	spin_lock_irq(&lruvec->lru_lock);
2517 
2518 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2519 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2520 	/* Keep all free pages in l_active list */
2521 	list_splice(&l_inactive, &l_active);
2522 
2523 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2524 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2525 
2526 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2527 	spin_unlock_irq(&lruvec->lru_lock);
2528 
2529 	mem_cgroup_uncharge_list(&l_active);
2530 	free_unref_page_list(&l_active);
2531 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2532 			nr_deactivate, nr_rotated, sc->priority, file);
2533 }
2534 
2535 unsigned long reclaim_pages(struct list_head *page_list)
2536 {
2537 	int nid = NUMA_NO_NODE;
2538 	unsigned int nr_reclaimed = 0;
2539 	LIST_HEAD(node_page_list);
2540 	struct reclaim_stat dummy_stat;
2541 	struct page *page;
2542 	unsigned int noreclaim_flag;
2543 	struct scan_control sc = {
2544 		.gfp_mask = GFP_KERNEL,
2545 		.may_writepage = 1,
2546 		.may_unmap = 1,
2547 		.may_swap = 1,
2548 		.no_demotion = 1,
2549 	};
2550 
2551 	noreclaim_flag = memalloc_noreclaim_save();
2552 
2553 	while (!list_empty(page_list)) {
2554 		page = lru_to_page(page_list);
2555 		if (nid == NUMA_NO_NODE) {
2556 			nid = page_to_nid(page);
2557 			INIT_LIST_HEAD(&node_page_list);
2558 		}
2559 
2560 		if (nid == page_to_nid(page)) {
2561 			ClearPageActive(page);
2562 			list_move(&page->lru, &node_page_list);
2563 			continue;
2564 		}
2565 
2566 		nr_reclaimed += shrink_page_list(&node_page_list,
2567 						NODE_DATA(nid),
2568 						&sc, &dummy_stat, false);
2569 		while (!list_empty(&node_page_list)) {
2570 			page = lru_to_page(&node_page_list);
2571 			list_del(&page->lru);
2572 			putback_lru_page(page);
2573 		}
2574 
2575 		nid = NUMA_NO_NODE;
2576 	}
2577 
2578 	if (!list_empty(&node_page_list)) {
2579 		nr_reclaimed += shrink_page_list(&node_page_list,
2580 						NODE_DATA(nid),
2581 						&sc, &dummy_stat, false);
2582 		while (!list_empty(&node_page_list)) {
2583 			page = lru_to_page(&node_page_list);
2584 			list_del(&page->lru);
2585 			putback_lru_page(page);
2586 		}
2587 	}
2588 
2589 	memalloc_noreclaim_restore(noreclaim_flag);
2590 
2591 	return nr_reclaimed;
2592 }
2593 
2594 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2595 				 struct lruvec *lruvec, struct scan_control *sc)
2596 {
2597 	if (is_active_lru(lru)) {
2598 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2599 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2600 		else
2601 			sc->skipped_deactivate = 1;
2602 		return 0;
2603 	}
2604 
2605 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2606 }
2607 
2608 /*
2609  * The inactive anon list should be small enough that the VM never has
2610  * to do too much work.
2611  *
2612  * The inactive file list should be small enough to leave most memory
2613  * to the established workingset on the scan-resistant active list,
2614  * but large enough to avoid thrashing the aggregate readahead window.
2615  *
2616  * Both inactive lists should also be large enough that each inactive
2617  * page has a chance to be referenced again before it is reclaimed.
2618  *
2619  * If that fails and refaulting is observed, the inactive list grows.
2620  *
2621  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2622  * on this LRU, maintained by the pageout code. An inactive_ratio
2623  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2624  *
2625  * total     target    max
2626  * memory    ratio     inactive
2627  * -------------------------------------
2628  *   10MB       1         5MB
2629  *  100MB       1        50MB
2630  *    1GB       3       250MB
2631  *   10GB      10       0.9GB
2632  *  100GB      31         3GB
2633  *    1TB     101        10GB
2634  *   10TB     320        32GB
2635  */
2636 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2637 {
2638 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2639 	unsigned long inactive, active;
2640 	unsigned long inactive_ratio;
2641 	unsigned long gb;
2642 
2643 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2644 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2645 
2646 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2647 	if (gb)
2648 		inactive_ratio = int_sqrt(10 * gb);
2649 	else
2650 		inactive_ratio = 1;
2651 
2652 	return inactive * inactive_ratio < active;
2653 }
2654 
2655 enum scan_balance {
2656 	SCAN_EQUAL,
2657 	SCAN_FRACT,
2658 	SCAN_ANON,
2659 	SCAN_FILE,
2660 };
2661 
2662 /*
2663  * Determine how aggressively the anon and file LRU lists should be
2664  * scanned.  The relative value of each set of LRU lists is determined
2665  * by looking at the fraction of the pages scanned we did rotate back
2666  * onto the active list instead of evict.
2667  *
2668  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2669  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2670  */
2671 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2672 			   unsigned long *nr)
2673 {
2674 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2675 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2676 	unsigned long anon_cost, file_cost, total_cost;
2677 	int swappiness = mem_cgroup_swappiness(memcg);
2678 	u64 fraction[ANON_AND_FILE];
2679 	u64 denominator = 0;	/* gcc */
2680 	enum scan_balance scan_balance;
2681 	unsigned long ap, fp;
2682 	enum lru_list lru;
2683 
2684 	/* If we have no swap space, do not bother scanning anon pages. */
2685 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2686 		scan_balance = SCAN_FILE;
2687 		goto out;
2688 	}
2689 
2690 	/*
2691 	 * Global reclaim will swap to prevent OOM even with no
2692 	 * swappiness, but memcg users want to use this knob to
2693 	 * disable swapping for individual groups completely when
2694 	 * using the memory controller's swap limit feature would be
2695 	 * too expensive.
2696 	 */
2697 	if (cgroup_reclaim(sc) && !swappiness) {
2698 		scan_balance = SCAN_FILE;
2699 		goto out;
2700 	}
2701 
2702 	/*
2703 	 * Do not apply any pressure balancing cleverness when the
2704 	 * system is close to OOM, scan both anon and file equally
2705 	 * (unless the swappiness setting disagrees with swapping).
2706 	 */
2707 	if (!sc->priority && swappiness) {
2708 		scan_balance = SCAN_EQUAL;
2709 		goto out;
2710 	}
2711 
2712 	/*
2713 	 * If the system is almost out of file pages, force-scan anon.
2714 	 */
2715 	if (sc->file_is_tiny) {
2716 		scan_balance = SCAN_ANON;
2717 		goto out;
2718 	}
2719 
2720 	/*
2721 	 * If there is enough inactive page cache, we do not reclaim
2722 	 * anything from the anonymous working right now.
2723 	 */
2724 	if (sc->cache_trim_mode) {
2725 		scan_balance = SCAN_FILE;
2726 		goto out;
2727 	}
2728 
2729 	scan_balance = SCAN_FRACT;
2730 	/*
2731 	 * Calculate the pressure balance between anon and file pages.
2732 	 *
2733 	 * The amount of pressure we put on each LRU is inversely
2734 	 * proportional to the cost of reclaiming each list, as
2735 	 * determined by the share of pages that are refaulting, times
2736 	 * the relative IO cost of bringing back a swapped out
2737 	 * anonymous page vs reloading a filesystem page (swappiness).
2738 	 *
2739 	 * Although we limit that influence to ensure no list gets
2740 	 * left behind completely: at least a third of the pressure is
2741 	 * applied, before swappiness.
2742 	 *
2743 	 * With swappiness at 100, anon and file have equal IO cost.
2744 	 */
2745 	total_cost = sc->anon_cost + sc->file_cost;
2746 	anon_cost = total_cost + sc->anon_cost;
2747 	file_cost = total_cost + sc->file_cost;
2748 	total_cost = anon_cost + file_cost;
2749 
2750 	ap = swappiness * (total_cost + 1);
2751 	ap /= anon_cost + 1;
2752 
2753 	fp = (200 - swappiness) * (total_cost + 1);
2754 	fp /= file_cost + 1;
2755 
2756 	fraction[0] = ap;
2757 	fraction[1] = fp;
2758 	denominator = ap + fp;
2759 out:
2760 	for_each_evictable_lru(lru) {
2761 		int file = is_file_lru(lru);
2762 		unsigned long lruvec_size;
2763 		unsigned long low, min;
2764 		unsigned long scan;
2765 
2766 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2767 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2768 				      &min, &low);
2769 
2770 		if (min || low) {
2771 			/*
2772 			 * Scale a cgroup's reclaim pressure by proportioning
2773 			 * its current usage to its memory.low or memory.min
2774 			 * setting.
2775 			 *
2776 			 * This is important, as otherwise scanning aggression
2777 			 * becomes extremely binary -- from nothing as we
2778 			 * approach the memory protection threshold, to totally
2779 			 * nominal as we exceed it.  This results in requiring
2780 			 * setting extremely liberal protection thresholds. It
2781 			 * also means we simply get no protection at all if we
2782 			 * set it too low, which is not ideal.
2783 			 *
2784 			 * If there is any protection in place, we reduce scan
2785 			 * pressure by how much of the total memory used is
2786 			 * within protection thresholds.
2787 			 *
2788 			 * There is one special case: in the first reclaim pass,
2789 			 * we skip over all groups that are within their low
2790 			 * protection. If that fails to reclaim enough pages to
2791 			 * satisfy the reclaim goal, we come back and override
2792 			 * the best-effort low protection. However, we still
2793 			 * ideally want to honor how well-behaved groups are in
2794 			 * that case instead of simply punishing them all
2795 			 * equally. As such, we reclaim them based on how much
2796 			 * memory they are using, reducing the scan pressure
2797 			 * again by how much of the total memory used is under
2798 			 * hard protection.
2799 			 */
2800 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2801 			unsigned long protection;
2802 
2803 			/* memory.low scaling, make sure we retry before OOM */
2804 			if (!sc->memcg_low_reclaim && low > min) {
2805 				protection = low;
2806 				sc->memcg_low_skipped = 1;
2807 			} else {
2808 				protection = min;
2809 			}
2810 
2811 			/* Avoid TOCTOU with earlier protection check */
2812 			cgroup_size = max(cgroup_size, protection);
2813 
2814 			scan = lruvec_size - lruvec_size * protection /
2815 				(cgroup_size + 1);
2816 
2817 			/*
2818 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2819 			 * reclaim moving forwards, avoiding decrementing
2820 			 * sc->priority further than desirable.
2821 			 */
2822 			scan = max(scan, SWAP_CLUSTER_MAX);
2823 		} else {
2824 			scan = lruvec_size;
2825 		}
2826 
2827 		scan >>= sc->priority;
2828 
2829 		/*
2830 		 * If the cgroup's already been deleted, make sure to
2831 		 * scrape out the remaining cache.
2832 		 */
2833 		if (!scan && !mem_cgroup_online(memcg))
2834 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2835 
2836 		switch (scan_balance) {
2837 		case SCAN_EQUAL:
2838 			/* Scan lists relative to size */
2839 			break;
2840 		case SCAN_FRACT:
2841 			/*
2842 			 * Scan types proportional to swappiness and
2843 			 * their relative recent reclaim efficiency.
2844 			 * Make sure we don't miss the last page on
2845 			 * the offlined memory cgroups because of a
2846 			 * round-off error.
2847 			 */
2848 			scan = mem_cgroup_online(memcg) ?
2849 			       div64_u64(scan * fraction[file], denominator) :
2850 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2851 						  denominator);
2852 			break;
2853 		case SCAN_FILE:
2854 		case SCAN_ANON:
2855 			/* Scan one type exclusively */
2856 			if ((scan_balance == SCAN_FILE) != file)
2857 				scan = 0;
2858 			break;
2859 		default:
2860 			/* Look ma, no brain */
2861 			BUG();
2862 		}
2863 
2864 		nr[lru] = scan;
2865 	}
2866 }
2867 
2868 /*
2869  * Anonymous LRU management is a waste if there is
2870  * ultimately no way to reclaim the memory.
2871  */
2872 static bool can_age_anon_pages(struct pglist_data *pgdat,
2873 			       struct scan_control *sc)
2874 {
2875 	/* Aging the anon LRU is valuable if swap is present: */
2876 	if (total_swap_pages > 0)
2877 		return true;
2878 
2879 	/* Also valuable if anon pages can be demoted: */
2880 	return can_demote(pgdat->node_id, sc);
2881 }
2882 
2883 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2884 {
2885 	unsigned long nr[NR_LRU_LISTS];
2886 	unsigned long targets[NR_LRU_LISTS];
2887 	unsigned long nr_to_scan;
2888 	enum lru_list lru;
2889 	unsigned long nr_reclaimed = 0;
2890 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2891 	struct blk_plug plug;
2892 	bool scan_adjusted;
2893 
2894 	get_scan_count(lruvec, sc, nr);
2895 
2896 	/* Record the original scan target for proportional adjustments later */
2897 	memcpy(targets, nr, sizeof(nr));
2898 
2899 	/*
2900 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2901 	 * event that can occur when there is little memory pressure e.g.
2902 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2903 	 * when the requested number of pages are reclaimed when scanning at
2904 	 * DEF_PRIORITY on the assumption that the fact we are direct
2905 	 * reclaiming implies that kswapd is not keeping up and it is best to
2906 	 * do a batch of work at once. For memcg reclaim one check is made to
2907 	 * abort proportional reclaim if either the file or anon lru has already
2908 	 * dropped to zero at the first pass.
2909 	 */
2910 	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2911 			 sc->priority == DEF_PRIORITY);
2912 
2913 	blk_start_plug(&plug);
2914 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2915 					nr[LRU_INACTIVE_FILE]) {
2916 		unsigned long nr_anon, nr_file, percentage;
2917 		unsigned long nr_scanned;
2918 
2919 		for_each_evictable_lru(lru) {
2920 			if (nr[lru]) {
2921 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2922 				nr[lru] -= nr_to_scan;
2923 
2924 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2925 							    lruvec, sc);
2926 			}
2927 		}
2928 
2929 		cond_resched();
2930 
2931 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2932 			continue;
2933 
2934 		/*
2935 		 * For kswapd and memcg, reclaim at least the number of pages
2936 		 * requested. Ensure that the anon and file LRUs are scanned
2937 		 * proportionally what was requested by get_scan_count(). We
2938 		 * stop reclaiming one LRU and reduce the amount scanning
2939 		 * proportional to the original scan target.
2940 		 */
2941 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2942 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2943 
2944 		/*
2945 		 * It's just vindictive to attack the larger once the smaller
2946 		 * has gone to zero.  And given the way we stop scanning the
2947 		 * smaller below, this makes sure that we only make one nudge
2948 		 * towards proportionality once we've got nr_to_reclaim.
2949 		 */
2950 		if (!nr_file || !nr_anon)
2951 			break;
2952 
2953 		if (nr_file > nr_anon) {
2954 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2955 						targets[LRU_ACTIVE_ANON] + 1;
2956 			lru = LRU_BASE;
2957 			percentage = nr_anon * 100 / scan_target;
2958 		} else {
2959 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2960 						targets[LRU_ACTIVE_FILE] + 1;
2961 			lru = LRU_FILE;
2962 			percentage = nr_file * 100 / scan_target;
2963 		}
2964 
2965 		/* Stop scanning the smaller of the LRU */
2966 		nr[lru] = 0;
2967 		nr[lru + LRU_ACTIVE] = 0;
2968 
2969 		/*
2970 		 * Recalculate the other LRU scan count based on its original
2971 		 * scan target and the percentage scanning already complete
2972 		 */
2973 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2974 		nr_scanned = targets[lru] - nr[lru];
2975 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2976 		nr[lru] -= min(nr[lru], nr_scanned);
2977 
2978 		lru += LRU_ACTIVE;
2979 		nr_scanned = targets[lru] - nr[lru];
2980 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2981 		nr[lru] -= min(nr[lru], nr_scanned);
2982 
2983 		scan_adjusted = true;
2984 	}
2985 	blk_finish_plug(&plug);
2986 	sc->nr_reclaimed += nr_reclaimed;
2987 
2988 	/*
2989 	 * Even if we did not try to evict anon pages at all, we want to
2990 	 * rebalance the anon lru active/inactive ratio.
2991 	 */
2992 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
2993 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2994 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2995 				   sc, LRU_ACTIVE_ANON);
2996 }
2997 
2998 /* Use reclaim/compaction for costly allocs or under memory pressure */
2999 static bool in_reclaim_compaction(struct scan_control *sc)
3000 {
3001 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3002 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
3003 			 sc->priority < DEF_PRIORITY - 2))
3004 		return true;
3005 
3006 	return false;
3007 }
3008 
3009 /*
3010  * Reclaim/compaction is used for high-order allocation requests. It reclaims
3011  * order-0 pages before compacting the zone. should_continue_reclaim() returns
3012  * true if more pages should be reclaimed such that when the page allocator
3013  * calls try_to_compact_pages() that it will have enough free pages to succeed.
3014  * It will give up earlier than that if there is difficulty reclaiming pages.
3015  */
3016 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3017 					unsigned long nr_reclaimed,
3018 					struct scan_control *sc)
3019 {
3020 	unsigned long pages_for_compaction;
3021 	unsigned long inactive_lru_pages;
3022 	int z;
3023 
3024 	/* If not in reclaim/compaction mode, stop */
3025 	if (!in_reclaim_compaction(sc))
3026 		return false;
3027 
3028 	/*
3029 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3030 	 * number of pages that were scanned. This will return to the caller
3031 	 * with the risk reclaim/compaction and the resulting allocation attempt
3032 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3033 	 * allocations through requiring that the full LRU list has been scanned
3034 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3035 	 * scan, but that approximation was wrong, and there were corner cases
3036 	 * where always a non-zero amount of pages were scanned.
3037 	 */
3038 	if (!nr_reclaimed)
3039 		return false;
3040 
3041 	/* If compaction would go ahead or the allocation would succeed, stop */
3042 	for (z = 0; z <= sc->reclaim_idx; z++) {
3043 		struct zone *zone = &pgdat->node_zones[z];
3044 		if (!managed_zone(zone))
3045 			continue;
3046 
3047 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
3048 		case COMPACT_SUCCESS:
3049 		case COMPACT_CONTINUE:
3050 			return false;
3051 		default:
3052 			/* check next zone */
3053 			;
3054 		}
3055 	}
3056 
3057 	/*
3058 	 * If we have not reclaimed enough pages for compaction and the
3059 	 * inactive lists are large enough, continue reclaiming
3060 	 */
3061 	pages_for_compaction = compact_gap(sc->order);
3062 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
3063 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3064 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3065 
3066 	return inactive_lru_pages > pages_for_compaction;
3067 }
3068 
3069 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
3070 {
3071 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
3072 	struct mem_cgroup *memcg;
3073 
3074 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
3075 	do {
3076 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3077 		unsigned long reclaimed;
3078 		unsigned long scanned;
3079 
3080 		/*
3081 		 * This loop can become CPU-bound when target memcgs
3082 		 * aren't eligible for reclaim - either because they
3083 		 * don't have any reclaimable pages, or because their
3084 		 * memory is explicitly protected. Avoid soft lockups.
3085 		 */
3086 		cond_resched();
3087 
3088 		mem_cgroup_calculate_protection(target_memcg, memcg);
3089 
3090 		if (mem_cgroup_below_min(memcg)) {
3091 			/*
3092 			 * Hard protection.
3093 			 * If there is no reclaimable memory, OOM.
3094 			 */
3095 			continue;
3096 		} else if (mem_cgroup_below_low(memcg)) {
3097 			/*
3098 			 * Soft protection.
3099 			 * Respect the protection only as long as
3100 			 * there is an unprotected supply
3101 			 * of reclaimable memory from other cgroups.
3102 			 */
3103 			if (!sc->memcg_low_reclaim) {
3104 				sc->memcg_low_skipped = 1;
3105 				continue;
3106 			}
3107 			memcg_memory_event(memcg, MEMCG_LOW);
3108 		}
3109 
3110 		reclaimed = sc->nr_reclaimed;
3111 		scanned = sc->nr_scanned;
3112 
3113 		shrink_lruvec(lruvec, sc);
3114 
3115 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3116 			    sc->priority);
3117 
3118 		/* Record the group's reclaim efficiency */
3119 		vmpressure(sc->gfp_mask, memcg, false,
3120 			   sc->nr_scanned - scanned,
3121 			   sc->nr_reclaimed - reclaimed);
3122 
3123 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3124 }
3125 
3126 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3127 {
3128 	struct reclaim_state *reclaim_state = current->reclaim_state;
3129 	unsigned long nr_reclaimed, nr_scanned;
3130 	struct lruvec *target_lruvec;
3131 	bool reclaimable = false;
3132 	unsigned long file;
3133 
3134 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3135 
3136 again:
3137 	/*
3138 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
3139 	 * lruvec stats for heuristics.
3140 	 */
3141 	mem_cgroup_flush_stats();
3142 
3143 	memset(&sc->nr, 0, sizeof(sc->nr));
3144 
3145 	nr_reclaimed = sc->nr_reclaimed;
3146 	nr_scanned = sc->nr_scanned;
3147 
3148 	/*
3149 	 * Determine the scan balance between anon and file LRUs.
3150 	 */
3151 	spin_lock_irq(&target_lruvec->lru_lock);
3152 	sc->anon_cost = target_lruvec->anon_cost;
3153 	sc->file_cost = target_lruvec->file_cost;
3154 	spin_unlock_irq(&target_lruvec->lru_lock);
3155 
3156 	/*
3157 	 * Target desirable inactive:active list ratios for the anon
3158 	 * and file LRU lists.
3159 	 */
3160 	if (!sc->force_deactivate) {
3161 		unsigned long refaults;
3162 
3163 		refaults = lruvec_page_state(target_lruvec,
3164 				WORKINGSET_ACTIVATE_ANON);
3165 		if (refaults != target_lruvec->refaults[0] ||
3166 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3167 			sc->may_deactivate |= DEACTIVATE_ANON;
3168 		else
3169 			sc->may_deactivate &= ~DEACTIVATE_ANON;
3170 
3171 		/*
3172 		 * When refaults are being observed, it means a new
3173 		 * workingset is being established. Deactivate to get
3174 		 * rid of any stale active pages quickly.
3175 		 */
3176 		refaults = lruvec_page_state(target_lruvec,
3177 				WORKINGSET_ACTIVATE_FILE);
3178 		if (refaults != target_lruvec->refaults[1] ||
3179 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3180 			sc->may_deactivate |= DEACTIVATE_FILE;
3181 		else
3182 			sc->may_deactivate &= ~DEACTIVATE_FILE;
3183 	} else
3184 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3185 
3186 	/*
3187 	 * If we have plenty of inactive file pages that aren't
3188 	 * thrashing, try to reclaim those first before touching
3189 	 * anonymous pages.
3190 	 */
3191 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3192 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3193 		sc->cache_trim_mode = 1;
3194 	else
3195 		sc->cache_trim_mode = 0;
3196 
3197 	/*
3198 	 * Prevent the reclaimer from falling into the cache trap: as
3199 	 * cache pages start out inactive, every cache fault will tip
3200 	 * the scan balance towards the file LRU.  And as the file LRU
3201 	 * shrinks, so does the window for rotation from references.
3202 	 * This means we have a runaway feedback loop where a tiny
3203 	 * thrashing file LRU becomes infinitely more attractive than
3204 	 * anon pages.  Try to detect this based on file LRU size.
3205 	 */
3206 	if (!cgroup_reclaim(sc)) {
3207 		unsigned long total_high_wmark = 0;
3208 		unsigned long free, anon;
3209 		int z;
3210 
3211 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3212 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3213 			   node_page_state(pgdat, NR_INACTIVE_FILE);
3214 
3215 		for (z = 0; z < MAX_NR_ZONES; z++) {
3216 			struct zone *zone = &pgdat->node_zones[z];
3217 			if (!managed_zone(zone))
3218 				continue;
3219 
3220 			total_high_wmark += high_wmark_pages(zone);
3221 		}
3222 
3223 		/*
3224 		 * Consider anon: if that's low too, this isn't a
3225 		 * runaway file reclaim problem, but rather just
3226 		 * extreme pressure. Reclaim as per usual then.
3227 		 */
3228 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3229 
3230 		sc->file_is_tiny =
3231 			file + free <= total_high_wmark &&
3232 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
3233 			anon >> sc->priority;
3234 	}
3235 
3236 	shrink_node_memcgs(pgdat, sc);
3237 
3238 	if (reclaim_state) {
3239 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3240 		reclaim_state->reclaimed_slab = 0;
3241 	}
3242 
3243 	/* Record the subtree's reclaim efficiency */
3244 	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3245 		   sc->nr_scanned - nr_scanned,
3246 		   sc->nr_reclaimed - nr_reclaimed);
3247 
3248 	if (sc->nr_reclaimed - nr_reclaimed)
3249 		reclaimable = true;
3250 
3251 	if (current_is_kswapd()) {
3252 		/*
3253 		 * If reclaim is isolating dirty pages under writeback,
3254 		 * it implies that the long-lived page allocation rate
3255 		 * is exceeding the page laundering rate. Either the
3256 		 * global limits are not being effective at throttling
3257 		 * processes due to the page distribution throughout
3258 		 * zones or there is heavy usage of a slow backing
3259 		 * device. The only option is to throttle from reclaim
3260 		 * context which is not ideal as there is no guarantee
3261 		 * the dirtying process is throttled in the same way
3262 		 * balance_dirty_pages() manages.
3263 		 *
3264 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3265 		 * count the number of pages under pages flagged for
3266 		 * immediate reclaim and stall if any are encountered
3267 		 * in the nr_immediate check below.
3268 		 */
3269 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3270 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3271 
3272 		/* Allow kswapd to start writing pages during reclaim.*/
3273 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3274 			set_bit(PGDAT_DIRTY, &pgdat->flags);
3275 
3276 		/*
3277 		 * If kswapd scans pages marked for immediate
3278 		 * reclaim and under writeback (nr_immediate), it
3279 		 * implies that pages are cycling through the LRU
3280 		 * faster than they are written so forcibly stall
3281 		 * until some pages complete writeback.
3282 		 */
3283 		if (sc->nr.immediate)
3284 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3285 	}
3286 
3287 	/*
3288 	 * Tag a node/memcg as congested if all the dirty pages were marked
3289 	 * for writeback and immediate reclaim (counted in nr.congested).
3290 	 *
3291 	 * Legacy memcg will stall in page writeback so avoid forcibly
3292 	 * stalling in reclaim_throttle().
3293 	 */
3294 	if ((current_is_kswapd() ||
3295 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3296 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3297 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3298 
3299 	/*
3300 	 * Stall direct reclaim for IO completions if the lruvec is
3301 	 * node is congested. Allow kswapd to continue until it
3302 	 * starts encountering unqueued dirty pages or cycling through
3303 	 * the LRU too quickly.
3304 	 */
3305 	if (!current_is_kswapd() && current_may_throttle() &&
3306 	    !sc->hibernation_mode &&
3307 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3308 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3309 
3310 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3311 				    sc))
3312 		goto again;
3313 
3314 	/*
3315 	 * Kswapd gives up on balancing particular nodes after too
3316 	 * many failures to reclaim anything from them and goes to
3317 	 * sleep. On reclaim progress, reset the failure counter. A
3318 	 * successful direct reclaim run will revive a dormant kswapd.
3319 	 */
3320 	if (reclaimable)
3321 		pgdat->kswapd_failures = 0;
3322 }
3323 
3324 /*
3325  * Returns true if compaction should go ahead for a costly-order request, or
3326  * the allocation would already succeed without compaction. Return false if we
3327  * should reclaim first.
3328  */
3329 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3330 {
3331 	unsigned long watermark;
3332 	enum compact_result suitable;
3333 
3334 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3335 	if (suitable == COMPACT_SUCCESS)
3336 		/* Allocation should succeed already. Don't reclaim. */
3337 		return true;
3338 	if (suitable == COMPACT_SKIPPED)
3339 		/* Compaction cannot yet proceed. Do reclaim. */
3340 		return false;
3341 
3342 	/*
3343 	 * Compaction is already possible, but it takes time to run and there
3344 	 * are potentially other callers using the pages just freed. So proceed
3345 	 * with reclaim to make a buffer of free pages available to give
3346 	 * compaction a reasonable chance of completing and allocating the page.
3347 	 * Note that we won't actually reclaim the whole buffer in one attempt
3348 	 * as the target watermark in should_continue_reclaim() is lower. But if
3349 	 * we are already above the high+gap watermark, don't reclaim at all.
3350 	 */
3351 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3352 
3353 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3354 }
3355 
3356 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3357 {
3358 	/*
3359 	 * If reclaim is making progress greater than 12% efficiency then
3360 	 * wake all the NOPROGRESS throttled tasks.
3361 	 */
3362 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
3363 		wait_queue_head_t *wqh;
3364 
3365 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3366 		if (waitqueue_active(wqh))
3367 			wake_up(wqh);
3368 
3369 		return;
3370 	}
3371 
3372 	/*
3373 	 * Do not throttle kswapd on NOPROGRESS as it will throttle on
3374 	 * VMSCAN_THROTTLE_WRITEBACK if there are too many pages under
3375 	 * writeback and marked for immediate reclaim at the tail of
3376 	 * the LRU.
3377 	 */
3378 	if (current_is_kswapd())
3379 		return;
3380 
3381 	/* Throttle if making no progress at high prioities. */
3382 	if (sc->priority < DEF_PRIORITY - 2)
3383 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
3384 }
3385 
3386 /*
3387  * This is the direct reclaim path, for page-allocating processes.  We only
3388  * try to reclaim pages from zones which will satisfy the caller's allocation
3389  * request.
3390  *
3391  * If a zone is deemed to be full of pinned pages then just give it a light
3392  * scan then give up on it.
3393  */
3394 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3395 {
3396 	struct zoneref *z;
3397 	struct zone *zone;
3398 	unsigned long nr_soft_reclaimed;
3399 	unsigned long nr_soft_scanned;
3400 	gfp_t orig_mask;
3401 	pg_data_t *last_pgdat = NULL;
3402 
3403 	/*
3404 	 * If the number of buffer_heads in the machine exceeds the maximum
3405 	 * allowed level, force direct reclaim to scan the highmem zone as
3406 	 * highmem pages could be pinning lowmem pages storing buffer_heads
3407 	 */
3408 	orig_mask = sc->gfp_mask;
3409 	if (buffer_heads_over_limit) {
3410 		sc->gfp_mask |= __GFP_HIGHMEM;
3411 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3412 	}
3413 
3414 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3415 					sc->reclaim_idx, sc->nodemask) {
3416 		/*
3417 		 * Take care memory controller reclaiming has small influence
3418 		 * to global LRU.
3419 		 */
3420 		if (!cgroup_reclaim(sc)) {
3421 			if (!cpuset_zone_allowed(zone,
3422 						 GFP_KERNEL | __GFP_HARDWALL))
3423 				continue;
3424 
3425 			/*
3426 			 * If we already have plenty of memory free for
3427 			 * compaction in this zone, don't free any more.
3428 			 * Even though compaction is invoked for any
3429 			 * non-zero order, only frequent costly order
3430 			 * reclamation is disruptive enough to become a
3431 			 * noticeable problem, like transparent huge
3432 			 * page allocations.
3433 			 */
3434 			if (IS_ENABLED(CONFIG_COMPACTION) &&
3435 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3436 			    compaction_ready(zone, sc)) {
3437 				sc->compaction_ready = true;
3438 				continue;
3439 			}
3440 
3441 			/*
3442 			 * Shrink each node in the zonelist once. If the
3443 			 * zonelist is ordered by zone (not the default) then a
3444 			 * node may be shrunk multiple times but in that case
3445 			 * the user prefers lower zones being preserved.
3446 			 */
3447 			if (zone->zone_pgdat == last_pgdat)
3448 				continue;
3449 
3450 			/*
3451 			 * This steals pages from memory cgroups over softlimit
3452 			 * and returns the number of reclaimed pages and
3453 			 * scanned pages. This works for global memory pressure
3454 			 * and balancing, not for a memcg's limit.
3455 			 */
3456 			nr_soft_scanned = 0;
3457 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3458 						sc->order, sc->gfp_mask,
3459 						&nr_soft_scanned);
3460 			sc->nr_reclaimed += nr_soft_reclaimed;
3461 			sc->nr_scanned += nr_soft_scanned;
3462 			/* need some check for avoid more shrink_zone() */
3463 		}
3464 
3465 		/* See comment about same check for global reclaim above */
3466 		if (zone->zone_pgdat == last_pgdat)
3467 			continue;
3468 		last_pgdat = zone->zone_pgdat;
3469 		shrink_node(zone->zone_pgdat, sc);
3470 		consider_reclaim_throttle(zone->zone_pgdat, sc);
3471 	}
3472 
3473 	/*
3474 	 * Restore to original mask to avoid the impact on the caller if we
3475 	 * promoted it to __GFP_HIGHMEM.
3476 	 */
3477 	sc->gfp_mask = orig_mask;
3478 }
3479 
3480 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3481 {
3482 	struct lruvec *target_lruvec;
3483 	unsigned long refaults;
3484 
3485 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3486 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3487 	target_lruvec->refaults[0] = refaults;
3488 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3489 	target_lruvec->refaults[1] = refaults;
3490 }
3491 
3492 /*
3493  * This is the main entry point to direct page reclaim.
3494  *
3495  * If a full scan of the inactive list fails to free enough memory then we
3496  * are "out of memory" and something needs to be killed.
3497  *
3498  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3499  * high - the zone may be full of dirty or under-writeback pages, which this
3500  * caller can't do much about.  We kick the writeback threads and take explicit
3501  * naps in the hope that some of these pages can be written.  But if the
3502  * allocating task holds filesystem locks which prevent writeout this might not
3503  * work, and the allocation attempt will fail.
3504  *
3505  * returns:	0, if no pages reclaimed
3506  * 		else, the number of pages reclaimed
3507  */
3508 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3509 					  struct scan_control *sc)
3510 {
3511 	int initial_priority = sc->priority;
3512 	pg_data_t *last_pgdat;
3513 	struct zoneref *z;
3514 	struct zone *zone;
3515 retry:
3516 	delayacct_freepages_start();
3517 
3518 	if (!cgroup_reclaim(sc))
3519 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3520 
3521 	do {
3522 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3523 				sc->priority);
3524 		sc->nr_scanned = 0;
3525 		shrink_zones(zonelist, sc);
3526 
3527 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3528 			break;
3529 
3530 		if (sc->compaction_ready)
3531 			break;
3532 
3533 		/*
3534 		 * If we're getting trouble reclaiming, start doing
3535 		 * writepage even in laptop mode.
3536 		 */
3537 		if (sc->priority < DEF_PRIORITY - 2)
3538 			sc->may_writepage = 1;
3539 	} while (--sc->priority >= 0);
3540 
3541 	last_pgdat = NULL;
3542 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3543 					sc->nodemask) {
3544 		if (zone->zone_pgdat == last_pgdat)
3545 			continue;
3546 		last_pgdat = zone->zone_pgdat;
3547 
3548 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3549 
3550 		if (cgroup_reclaim(sc)) {
3551 			struct lruvec *lruvec;
3552 
3553 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3554 						   zone->zone_pgdat);
3555 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3556 		}
3557 	}
3558 
3559 	delayacct_freepages_end();
3560 
3561 	if (sc->nr_reclaimed)
3562 		return sc->nr_reclaimed;
3563 
3564 	/* Aborted reclaim to try compaction? don't OOM, then */
3565 	if (sc->compaction_ready)
3566 		return 1;
3567 
3568 	/*
3569 	 * We make inactive:active ratio decisions based on the node's
3570 	 * composition of memory, but a restrictive reclaim_idx or a
3571 	 * memory.low cgroup setting can exempt large amounts of
3572 	 * memory from reclaim. Neither of which are very common, so
3573 	 * instead of doing costly eligibility calculations of the
3574 	 * entire cgroup subtree up front, we assume the estimates are
3575 	 * good, and retry with forcible deactivation if that fails.
3576 	 */
3577 	if (sc->skipped_deactivate) {
3578 		sc->priority = initial_priority;
3579 		sc->force_deactivate = 1;
3580 		sc->skipped_deactivate = 0;
3581 		goto retry;
3582 	}
3583 
3584 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3585 	if (sc->memcg_low_skipped) {
3586 		sc->priority = initial_priority;
3587 		sc->force_deactivate = 0;
3588 		sc->memcg_low_reclaim = 1;
3589 		sc->memcg_low_skipped = 0;
3590 		goto retry;
3591 	}
3592 
3593 	return 0;
3594 }
3595 
3596 static bool allow_direct_reclaim(pg_data_t *pgdat)
3597 {
3598 	struct zone *zone;
3599 	unsigned long pfmemalloc_reserve = 0;
3600 	unsigned long free_pages = 0;
3601 	int i;
3602 	bool wmark_ok;
3603 
3604 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3605 		return true;
3606 
3607 	for (i = 0; i <= ZONE_NORMAL; i++) {
3608 		zone = &pgdat->node_zones[i];
3609 		if (!managed_zone(zone))
3610 			continue;
3611 
3612 		if (!zone_reclaimable_pages(zone))
3613 			continue;
3614 
3615 		pfmemalloc_reserve += min_wmark_pages(zone);
3616 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3617 	}
3618 
3619 	/* If there are no reserves (unexpected config) then do not throttle */
3620 	if (!pfmemalloc_reserve)
3621 		return true;
3622 
3623 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3624 
3625 	/* kswapd must be awake if processes are being throttled */
3626 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3627 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3628 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3629 
3630 		wake_up_interruptible(&pgdat->kswapd_wait);
3631 	}
3632 
3633 	return wmark_ok;
3634 }
3635 
3636 /*
3637  * Throttle direct reclaimers if backing storage is backed by the network
3638  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3639  * depleted. kswapd will continue to make progress and wake the processes
3640  * when the low watermark is reached.
3641  *
3642  * Returns true if a fatal signal was delivered during throttling. If this
3643  * happens, the page allocator should not consider triggering the OOM killer.
3644  */
3645 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3646 					nodemask_t *nodemask)
3647 {
3648 	struct zoneref *z;
3649 	struct zone *zone;
3650 	pg_data_t *pgdat = NULL;
3651 
3652 	/*
3653 	 * Kernel threads should not be throttled as they may be indirectly
3654 	 * responsible for cleaning pages necessary for reclaim to make forward
3655 	 * progress. kjournald for example may enter direct reclaim while
3656 	 * committing a transaction where throttling it could forcing other
3657 	 * processes to block on log_wait_commit().
3658 	 */
3659 	if (current->flags & PF_KTHREAD)
3660 		goto out;
3661 
3662 	/*
3663 	 * If a fatal signal is pending, this process should not throttle.
3664 	 * It should return quickly so it can exit and free its memory
3665 	 */
3666 	if (fatal_signal_pending(current))
3667 		goto out;
3668 
3669 	/*
3670 	 * Check if the pfmemalloc reserves are ok by finding the first node
3671 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3672 	 * GFP_KERNEL will be required for allocating network buffers when
3673 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3674 	 *
3675 	 * Throttling is based on the first usable node and throttled processes
3676 	 * wait on a queue until kswapd makes progress and wakes them. There
3677 	 * is an affinity then between processes waking up and where reclaim
3678 	 * progress has been made assuming the process wakes on the same node.
3679 	 * More importantly, processes running on remote nodes will not compete
3680 	 * for remote pfmemalloc reserves and processes on different nodes
3681 	 * should make reasonable progress.
3682 	 */
3683 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3684 					gfp_zone(gfp_mask), nodemask) {
3685 		if (zone_idx(zone) > ZONE_NORMAL)
3686 			continue;
3687 
3688 		/* Throttle based on the first usable node */
3689 		pgdat = zone->zone_pgdat;
3690 		if (allow_direct_reclaim(pgdat))
3691 			goto out;
3692 		break;
3693 	}
3694 
3695 	/* If no zone was usable by the allocation flags then do not throttle */
3696 	if (!pgdat)
3697 		goto out;
3698 
3699 	/* Account for the throttling */
3700 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3701 
3702 	/*
3703 	 * If the caller cannot enter the filesystem, it's possible that it
3704 	 * is due to the caller holding an FS lock or performing a journal
3705 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3706 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3707 	 * blocked waiting on the same lock. Instead, throttle for up to a
3708 	 * second before continuing.
3709 	 */
3710 	if (!(gfp_mask & __GFP_FS))
3711 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3712 			allow_direct_reclaim(pgdat), HZ);
3713 	else
3714 		/* Throttle until kswapd wakes the process */
3715 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3716 			allow_direct_reclaim(pgdat));
3717 
3718 	if (fatal_signal_pending(current))
3719 		return true;
3720 
3721 out:
3722 	return false;
3723 }
3724 
3725 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3726 				gfp_t gfp_mask, nodemask_t *nodemask)
3727 {
3728 	unsigned long nr_reclaimed;
3729 	struct scan_control sc = {
3730 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3731 		.gfp_mask = current_gfp_context(gfp_mask),
3732 		.reclaim_idx = gfp_zone(gfp_mask),
3733 		.order = order,
3734 		.nodemask = nodemask,
3735 		.priority = DEF_PRIORITY,
3736 		.may_writepage = !laptop_mode,
3737 		.may_unmap = 1,
3738 		.may_swap = 1,
3739 	};
3740 
3741 	/*
3742 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3743 	 * Confirm they are large enough for max values.
3744 	 */
3745 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3746 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3747 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3748 
3749 	/*
3750 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3751 	 * 1 is returned so that the page allocator does not OOM kill at this
3752 	 * point.
3753 	 */
3754 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3755 		return 1;
3756 
3757 	set_task_reclaim_state(current, &sc.reclaim_state);
3758 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3759 
3760 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3761 
3762 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3763 	set_task_reclaim_state(current, NULL);
3764 
3765 	return nr_reclaimed;
3766 }
3767 
3768 #ifdef CONFIG_MEMCG
3769 
3770 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3771 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3772 						gfp_t gfp_mask, bool noswap,
3773 						pg_data_t *pgdat,
3774 						unsigned long *nr_scanned)
3775 {
3776 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3777 	struct scan_control sc = {
3778 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3779 		.target_mem_cgroup = memcg,
3780 		.may_writepage = !laptop_mode,
3781 		.may_unmap = 1,
3782 		.reclaim_idx = MAX_NR_ZONES - 1,
3783 		.may_swap = !noswap,
3784 	};
3785 
3786 	WARN_ON_ONCE(!current->reclaim_state);
3787 
3788 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3789 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3790 
3791 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3792 						      sc.gfp_mask);
3793 
3794 	/*
3795 	 * NOTE: Although we can get the priority field, using it
3796 	 * here is not a good idea, since it limits the pages we can scan.
3797 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3798 	 * will pick up pages from other mem cgroup's as well. We hack
3799 	 * the priority and make it zero.
3800 	 */
3801 	shrink_lruvec(lruvec, &sc);
3802 
3803 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3804 
3805 	*nr_scanned = sc.nr_scanned;
3806 
3807 	return sc.nr_reclaimed;
3808 }
3809 
3810 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3811 					   unsigned long nr_pages,
3812 					   gfp_t gfp_mask,
3813 					   bool may_swap)
3814 {
3815 	unsigned long nr_reclaimed;
3816 	unsigned int noreclaim_flag;
3817 	struct scan_control sc = {
3818 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3819 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3820 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3821 		.reclaim_idx = MAX_NR_ZONES - 1,
3822 		.target_mem_cgroup = memcg,
3823 		.priority = DEF_PRIORITY,
3824 		.may_writepage = !laptop_mode,
3825 		.may_unmap = 1,
3826 		.may_swap = may_swap,
3827 	};
3828 	/*
3829 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3830 	 * equal pressure on all the nodes. This is based on the assumption that
3831 	 * the reclaim does not bail out early.
3832 	 */
3833 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3834 
3835 	set_task_reclaim_state(current, &sc.reclaim_state);
3836 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3837 	noreclaim_flag = memalloc_noreclaim_save();
3838 
3839 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3840 
3841 	memalloc_noreclaim_restore(noreclaim_flag);
3842 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3843 	set_task_reclaim_state(current, NULL);
3844 
3845 	return nr_reclaimed;
3846 }
3847 #endif
3848 
3849 static void age_active_anon(struct pglist_data *pgdat,
3850 				struct scan_control *sc)
3851 {
3852 	struct mem_cgroup *memcg;
3853 	struct lruvec *lruvec;
3854 
3855 	if (!can_age_anon_pages(pgdat, sc))
3856 		return;
3857 
3858 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3859 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3860 		return;
3861 
3862 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3863 	do {
3864 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3865 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3866 				   sc, LRU_ACTIVE_ANON);
3867 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3868 	} while (memcg);
3869 }
3870 
3871 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3872 {
3873 	int i;
3874 	struct zone *zone;
3875 
3876 	/*
3877 	 * Check for watermark boosts top-down as the higher zones
3878 	 * are more likely to be boosted. Both watermarks and boosts
3879 	 * should not be checked at the same time as reclaim would
3880 	 * start prematurely when there is no boosting and a lower
3881 	 * zone is balanced.
3882 	 */
3883 	for (i = highest_zoneidx; i >= 0; i--) {
3884 		zone = pgdat->node_zones + i;
3885 		if (!managed_zone(zone))
3886 			continue;
3887 
3888 		if (zone->watermark_boost)
3889 			return true;
3890 	}
3891 
3892 	return false;
3893 }
3894 
3895 /*
3896  * Returns true if there is an eligible zone balanced for the request order
3897  * and highest_zoneidx
3898  */
3899 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3900 {
3901 	int i;
3902 	unsigned long mark = -1;
3903 	struct zone *zone;
3904 
3905 	/*
3906 	 * Check watermarks bottom-up as lower zones are more likely to
3907 	 * meet watermarks.
3908 	 */
3909 	for (i = 0; i <= highest_zoneidx; i++) {
3910 		zone = pgdat->node_zones + i;
3911 
3912 		if (!managed_zone(zone))
3913 			continue;
3914 
3915 		mark = high_wmark_pages(zone);
3916 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3917 			return true;
3918 	}
3919 
3920 	/*
3921 	 * If a node has no populated zone within highest_zoneidx, it does not
3922 	 * need balancing by definition. This can happen if a zone-restricted
3923 	 * allocation tries to wake a remote kswapd.
3924 	 */
3925 	if (mark == -1)
3926 		return true;
3927 
3928 	return false;
3929 }
3930 
3931 /* Clear pgdat state for congested, dirty or under writeback. */
3932 static void clear_pgdat_congested(pg_data_t *pgdat)
3933 {
3934 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3935 
3936 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3937 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3938 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3939 }
3940 
3941 /*
3942  * Prepare kswapd for sleeping. This verifies that there are no processes
3943  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3944  *
3945  * Returns true if kswapd is ready to sleep
3946  */
3947 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3948 				int highest_zoneidx)
3949 {
3950 	/*
3951 	 * The throttled processes are normally woken up in balance_pgdat() as
3952 	 * soon as allow_direct_reclaim() is true. But there is a potential
3953 	 * race between when kswapd checks the watermarks and a process gets
3954 	 * throttled. There is also a potential race if processes get
3955 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3956 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3957 	 * the wake up checks. If kswapd is going to sleep, no process should
3958 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3959 	 * the wake up is premature, processes will wake kswapd and get
3960 	 * throttled again. The difference from wake ups in balance_pgdat() is
3961 	 * that here we are under prepare_to_wait().
3962 	 */
3963 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3964 		wake_up_all(&pgdat->pfmemalloc_wait);
3965 
3966 	/* Hopeless node, leave it to direct reclaim */
3967 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3968 		return true;
3969 
3970 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3971 		clear_pgdat_congested(pgdat);
3972 		return true;
3973 	}
3974 
3975 	return false;
3976 }
3977 
3978 /*
3979  * kswapd shrinks a node of pages that are at or below the highest usable
3980  * zone that is currently unbalanced.
3981  *
3982  * Returns true if kswapd scanned at least the requested number of pages to
3983  * reclaim or if the lack of progress was due to pages under writeback.
3984  * This is used to determine if the scanning priority needs to be raised.
3985  */
3986 static bool kswapd_shrink_node(pg_data_t *pgdat,
3987 			       struct scan_control *sc)
3988 {
3989 	struct zone *zone;
3990 	int z;
3991 
3992 	/* Reclaim a number of pages proportional to the number of zones */
3993 	sc->nr_to_reclaim = 0;
3994 	for (z = 0; z <= sc->reclaim_idx; z++) {
3995 		zone = pgdat->node_zones + z;
3996 		if (!managed_zone(zone))
3997 			continue;
3998 
3999 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4000 	}
4001 
4002 	/*
4003 	 * Historically care was taken to put equal pressure on all zones but
4004 	 * now pressure is applied based on node LRU order.
4005 	 */
4006 	shrink_node(pgdat, sc);
4007 
4008 	/*
4009 	 * Fragmentation may mean that the system cannot be rebalanced for
4010 	 * high-order allocations. If twice the allocation size has been
4011 	 * reclaimed then recheck watermarks only at order-0 to prevent
4012 	 * excessive reclaim. Assume that a process requested a high-order
4013 	 * can direct reclaim/compact.
4014 	 */
4015 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
4016 		sc->order = 0;
4017 
4018 	return sc->nr_scanned >= sc->nr_to_reclaim;
4019 }
4020 
4021 /* Page allocator PCP high watermark is lowered if reclaim is active. */
4022 static inline void
4023 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4024 {
4025 	int i;
4026 	struct zone *zone;
4027 
4028 	for (i = 0; i <= highest_zoneidx; i++) {
4029 		zone = pgdat->node_zones + i;
4030 
4031 		if (!managed_zone(zone))
4032 			continue;
4033 
4034 		if (active)
4035 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4036 		else
4037 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4038 	}
4039 }
4040 
4041 static inline void
4042 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4043 {
4044 	update_reclaim_active(pgdat, highest_zoneidx, true);
4045 }
4046 
4047 static inline void
4048 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4049 {
4050 	update_reclaim_active(pgdat, highest_zoneidx, false);
4051 }
4052 
4053 /*
4054  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4055  * that are eligible for use by the caller until at least one zone is
4056  * balanced.
4057  *
4058  * Returns the order kswapd finished reclaiming at.
4059  *
4060  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
4061  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
4062  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
4063  * or lower is eligible for reclaim until at least one usable zone is
4064  * balanced.
4065  */
4066 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
4067 {
4068 	int i;
4069 	unsigned long nr_soft_reclaimed;
4070 	unsigned long nr_soft_scanned;
4071 	unsigned long pflags;
4072 	unsigned long nr_boost_reclaim;
4073 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4074 	bool boosted;
4075 	struct zone *zone;
4076 	struct scan_control sc = {
4077 		.gfp_mask = GFP_KERNEL,
4078 		.order = order,
4079 		.may_unmap = 1,
4080 	};
4081 
4082 	set_task_reclaim_state(current, &sc.reclaim_state);
4083 	psi_memstall_enter(&pflags);
4084 	__fs_reclaim_acquire(_THIS_IP_);
4085 
4086 	count_vm_event(PAGEOUTRUN);
4087 
4088 	/*
4089 	 * Account for the reclaim boost. Note that the zone boost is left in
4090 	 * place so that parallel allocations that are near the watermark will
4091 	 * stall or direct reclaim until kswapd is finished.
4092 	 */
4093 	nr_boost_reclaim = 0;
4094 	for (i = 0; i <= highest_zoneidx; i++) {
4095 		zone = pgdat->node_zones + i;
4096 		if (!managed_zone(zone))
4097 			continue;
4098 
4099 		nr_boost_reclaim += zone->watermark_boost;
4100 		zone_boosts[i] = zone->watermark_boost;
4101 	}
4102 	boosted = nr_boost_reclaim;
4103 
4104 restart:
4105 	set_reclaim_active(pgdat, highest_zoneidx);
4106 	sc.priority = DEF_PRIORITY;
4107 	do {
4108 		unsigned long nr_reclaimed = sc.nr_reclaimed;
4109 		bool raise_priority = true;
4110 		bool balanced;
4111 		bool ret;
4112 
4113 		sc.reclaim_idx = highest_zoneidx;
4114 
4115 		/*
4116 		 * If the number of buffer_heads exceeds the maximum allowed
4117 		 * then consider reclaiming from all zones. This has a dual
4118 		 * purpose -- on 64-bit systems it is expected that
4119 		 * buffer_heads are stripped during active rotation. On 32-bit
4120 		 * systems, highmem pages can pin lowmem memory and shrinking
4121 		 * buffers can relieve lowmem pressure. Reclaim may still not
4122 		 * go ahead if all eligible zones for the original allocation
4123 		 * request are balanced to avoid excessive reclaim from kswapd.
4124 		 */
4125 		if (buffer_heads_over_limit) {
4126 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4127 				zone = pgdat->node_zones + i;
4128 				if (!managed_zone(zone))
4129 					continue;
4130 
4131 				sc.reclaim_idx = i;
4132 				break;
4133 			}
4134 		}
4135 
4136 		/*
4137 		 * If the pgdat is imbalanced then ignore boosting and preserve
4138 		 * the watermarks for a later time and restart. Note that the
4139 		 * zone watermarks will be still reset at the end of balancing
4140 		 * on the grounds that the normal reclaim should be enough to
4141 		 * re-evaluate if boosting is required when kswapd next wakes.
4142 		 */
4143 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4144 		if (!balanced && nr_boost_reclaim) {
4145 			nr_boost_reclaim = 0;
4146 			goto restart;
4147 		}
4148 
4149 		/*
4150 		 * If boosting is not active then only reclaim if there are no
4151 		 * eligible zones. Note that sc.reclaim_idx is not used as
4152 		 * buffer_heads_over_limit may have adjusted it.
4153 		 */
4154 		if (!nr_boost_reclaim && balanced)
4155 			goto out;
4156 
4157 		/* Limit the priority of boosting to avoid reclaim writeback */
4158 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4159 			raise_priority = false;
4160 
4161 		/*
4162 		 * Do not writeback or swap pages for boosted reclaim. The
4163 		 * intent is to relieve pressure not issue sub-optimal IO
4164 		 * from reclaim context. If no pages are reclaimed, the
4165 		 * reclaim will be aborted.
4166 		 */
4167 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4168 		sc.may_swap = !nr_boost_reclaim;
4169 
4170 		/*
4171 		 * Do some background aging of the anon list, to give
4172 		 * pages a chance to be referenced before reclaiming. All
4173 		 * pages are rotated regardless of classzone as this is
4174 		 * about consistent aging.
4175 		 */
4176 		age_active_anon(pgdat, &sc);
4177 
4178 		/*
4179 		 * If we're getting trouble reclaiming, start doing writepage
4180 		 * even in laptop mode.
4181 		 */
4182 		if (sc.priority < DEF_PRIORITY - 2)
4183 			sc.may_writepage = 1;
4184 
4185 		/* Call soft limit reclaim before calling shrink_node. */
4186 		sc.nr_scanned = 0;
4187 		nr_soft_scanned = 0;
4188 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4189 						sc.gfp_mask, &nr_soft_scanned);
4190 		sc.nr_reclaimed += nr_soft_reclaimed;
4191 
4192 		/*
4193 		 * There should be no need to raise the scanning priority if
4194 		 * enough pages are already being scanned that that high
4195 		 * watermark would be met at 100% efficiency.
4196 		 */
4197 		if (kswapd_shrink_node(pgdat, &sc))
4198 			raise_priority = false;
4199 
4200 		/*
4201 		 * If the low watermark is met there is no need for processes
4202 		 * to be throttled on pfmemalloc_wait as they should not be
4203 		 * able to safely make forward progress. Wake them
4204 		 */
4205 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4206 				allow_direct_reclaim(pgdat))
4207 			wake_up_all(&pgdat->pfmemalloc_wait);
4208 
4209 		/* Check if kswapd should be suspending */
4210 		__fs_reclaim_release(_THIS_IP_);
4211 		ret = try_to_freeze();
4212 		__fs_reclaim_acquire(_THIS_IP_);
4213 		if (ret || kthread_should_stop())
4214 			break;
4215 
4216 		/*
4217 		 * Raise priority if scanning rate is too low or there was no
4218 		 * progress in reclaiming pages
4219 		 */
4220 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4221 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4222 
4223 		/*
4224 		 * If reclaim made no progress for a boost, stop reclaim as
4225 		 * IO cannot be queued and it could be an infinite loop in
4226 		 * extreme circumstances.
4227 		 */
4228 		if (nr_boost_reclaim && !nr_reclaimed)
4229 			break;
4230 
4231 		if (raise_priority || !nr_reclaimed)
4232 			sc.priority--;
4233 	} while (sc.priority >= 1);
4234 
4235 	if (!sc.nr_reclaimed)
4236 		pgdat->kswapd_failures++;
4237 
4238 out:
4239 	clear_reclaim_active(pgdat, highest_zoneidx);
4240 
4241 	/* If reclaim was boosted, account for the reclaim done in this pass */
4242 	if (boosted) {
4243 		unsigned long flags;
4244 
4245 		for (i = 0; i <= highest_zoneidx; i++) {
4246 			if (!zone_boosts[i])
4247 				continue;
4248 
4249 			/* Increments are under the zone lock */
4250 			zone = pgdat->node_zones + i;
4251 			spin_lock_irqsave(&zone->lock, flags);
4252 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4253 			spin_unlock_irqrestore(&zone->lock, flags);
4254 		}
4255 
4256 		/*
4257 		 * As there is now likely space, wakeup kcompact to defragment
4258 		 * pageblocks.
4259 		 */
4260 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4261 	}
4262 
4263 	snapshot_refaults(NULL, pgdat);
4264 	__fs_reclaim_release(_THIS_IP_);
4265 	psi_memstall_leave(&pflags);
4266 	set_task_reclaim_state(current, NULL);
4267 
4268 	/*
4269 	 * Return the order kswapd stopped reclaiming at as
4270 	 * prepare_kswapd_sleep() takes it into account. If another caller
4271 	 * entered the allocator slow path while kswapd was awake, order will
4272 	 * remain at the higher level.
4273 	 */
4274 	return sc.order;
4275 }
4276 
4277 /*
4278  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4279  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4280  * not a valid index then either kswapd runs for first time or kswapd couldn't
4281  * sleep after previous reclaim attempt (node is still unbalanced). In that
4282  * case return the zone index of the previous kswapd reclaim cycle.
4283  */
4284 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4285 					   enum zone_type prev_highest_zoneidx)
4286 {
4287 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4288 
4289 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4290 }
4291 
4292 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4293 				unsigned int highest_zoneidx)
4294 {
4295 	long remaining = 0;
4296 	DEFINE_WAIT(wait);
4297 
4298 	if (freezing(current) || kthread_should_stop())
4299 		return;
4300 
4301 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4302 
4303 	/*
4304 	 * Try to sleep for a short interval. Note that kcompactd will only be
4305 	 * woken if it is possible to sleep for a short interval. This is
4306 	 * deliberate on the assumption that if reclaim cannot keep an
4307 	 * eligible zone balanced that it's also unlikely that compaction will
4308 	 * succeed.
4309 	 */
4310 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4311 		/*
4312 		 * Compaction records what page blocks it recently failed to
4313 		 * isolate pages from and skips them in the future scanning.
4314 		 * When kswapd is going to sleep, it is reasonable to assume
4315 		 * that pages and compaction may succeed so reset the cache.
4316 		 */
4317 		reset_isolation_suitable(pgdat);
4318 
4319 		/*
4320 		 * We have freed the memory, now we should compact it to make
4321 		 * allocation of the requested order possible.
4322 		 */
4323 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4324 
4325 		remaining = schedule_timeout(HZ/10);
4326 
4327 		/*
4328 		 * If woken prematurely then reset kswapd_highest_zoneidx and
4329 		 * order. The values will either be from a wakeup request or
4330 		 * the previous request that slept prematurely.
4331 		 */
4332 		if (remaining) {
4333 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4334 					kswapd_highest_zoneidx(pgdat,
4335 							highest_zoneidx));
4336 
4337 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4338 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4339 		}
4340 
4341 		finish_wait(&pgdat->kswapd_wait, &wait);
4342 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4343 	}
4344 
4345 	/*
4346 	 * After a short sleep, check if it was a premature sleep. If not, then
4347 	 * go fully to sleep until explicitly woken up.
4348 	 */
4349 	if (!remaining &&
4350 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4351 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4352 
4353 		/*
4354 		 * vmstat counters are not perfectly accurate and the estimated
4355 		 * value for counters such as NR_FREE_PAGES can deviate from the
4356 		 * true value by nr_online_cpus * threshold. To avoid the zone
4357 		 * watermarks being breached while under pressure, we reduce the
4358 		 * per-cpu vmstat threshold while kswapd is awake and restore
4359 		 * them before going back to sleep.
4360 		 */
4361 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4362 
4363 		if (!kthread_should_stop())
4364 			schedule();
4365 
4366 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4367 	} else {
4368 		if (remaining)
4369 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4370 		else
4371 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4372 	}
4373 	finish_wait(&pgdat->kswapd_wait, &wait);
4374 }
4375 
4376 /*
4377  * The background pageout daemon, started as a kernel thread
4378  * from the init process.
4379  *
4380  * This basically trickles out pages so that we have _some_
4381  * free memory available even if there is no other activity
4382  * that frees anything up. This is needed for things like routing
4383  * etc, where we otherwise might have all activity going on in
4384  * asynchronous contexts that cannot page things out.
4385  *
4386  * If there are applications that are active memory-allocators
4387  * (most normal use), this basically shouldn't matter.
4388  */
4389 static int kswapd(void *p)
4390 {
4391 	unsigned int alloc_order, reclaim_order;
4392 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4393 	pg_data_t *pgdat = (pg_data_t *)p;
4394 	struct task_struct *tsk = current;
4395 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4396 
4397 	if (!cpumask_empty(cpumask))
4398 		set_cpus_allowed_ptr(tsk, cpumask);
4399 
4400 	/*
4401 	 * Tell the memory management that we're a "memory allocator",
4402 	 * and that if we need more memory we should get access to it
4403 	 * regardless (see "__alloc_pages()"). "kswapd" should
4404 	 * never get caught in the normal page freeing logic.
4405 	 *
4406 	 * (Kswapd normally doesn't need memory anyway, but sometimes
4407 	 * you need a small amount of memory in order to be able to
4408 	 * page out something else, and this flag essentially protects
4409 	 * us from recursively trying to free more memory as we're
4410 	 * trying to free the first piece of memory in the first place).
4411 	 */
4412 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
4413 	set_freezable();
4414 
4415 	WRITE_ONCE(pgdat->kswapd_order, 0);
4416 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4417 	atomic_set(&pgdat->nr_writeback_throttled, 0);
4418 	for ( ; ; ) {
4419 		bool ret;
4420 
4421 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4422 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4423 							highest_zoneidx);
4424 
4425 kswapd_try_sleep:
4426 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4427 					highest_zoneidx);
4428 
4429 		/* Read the new order and highest_zoneidx */
4430 		alloc_order = READ_ONCE(pgdat->kswapd_order);
4431 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4432 							highest_zoneidx);
4433 		WRITE_ONCE(pgdat->kswapd_order, 0);
4434 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4435 
4436 		ret = try_to_freeze();
4437 		if (kthread_should_stop())
4438 			break;
4439 
4440 		/*
4441 		 * We can speed up thawing tasks if we don't call balance_pgdat
4442 		 * after returning from the refrigerator
4443 		 */
4444 		if (ret)
4445 			continue;
4446 
4447 		/*
4448 		 * Reclaim begins at the requested order but if a high-order
4449 		 * reclaim fails then kswapd falls back to reclaiming for
4450 		 * order-0. If that happens, kswapd will consider sleeping
4451 		 * for the order it finished reclaiming at (reclaim_order)
4452 		 * but kcompactd is woken to compact for the original
4453 		 * request (alloc_order).
4454 		 */
4455 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4456 						alloc_order);
4457 		reclaim_order = balance_pgdat(pgdat, alloc_order,
4458 						highest_zoneidx);
4459 		if (reclaim_order < alloc_order)
4460 			goto kswapd_try_sleep;
4461 	}
4462 
4463 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
4464 
4465 	return 0;
4466 }
4467 
4468 /*
4469  * A zone is low on free memory or too fragmented for high-order memory.  If
4470  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4471  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
4472  * has failed or is not needed, still wake up kcompactd if only compaction is
4473  * needed.
4474  */
4475 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4476 		   enum zone_type highest_zoneidx)
4477 {
4478 	pg_data_t *pgdat;
4479 	enum zone_type curr_idx;
4480 
4481 	if (!managed_zone(zone))
4482 		return;
4483 
4484 	if (!cpuset_zone_allowed(zone, gfp_flags))
4485 		return;
4486 
4487 	pgdat = zone->zone_pgdat;
4488 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4489 
4490 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4491 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4492 
4493 	if (READ_ONCE(pgdat->kswapd_order) < order)
4494 		WRITE_ONCE(pgdat->kswapd_order, order);
4495 
4496 	if (!waitqueue_active(&pgdat->kswapd_wait))
4497 		return;
4498 
4499 	/* Hopeless node, leave it to direct reclaim if possible */
4500 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4501 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4502 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4503 		/*
4504 		 * There may be plenty of free memory available, but it's too
4505 		 * fragmented for high-order allocations.  Wake up kcompactd
4506 		 * and rely on compaction_suitable() to determine if it's
4507 		 * needed.  If it fails, it will defer subsequent attempts to
4508 		 * ratelimit its work.
4509 		 */
4510 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4511 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
4512 		return;
4513 	}
4514 
4515 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4516 				      gfp_flags);
4517 	wake_up_interruptible(&pgdat->kswapd_wait);
4518 }
4519 
4520 #ifdef CONFIG_HIBERNATION
4521 /*
4522  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4523  * freed pages.
4524  *
4525  * Rather than trying to age LRUs the aim is to preserve the overall
4526  * LRU order by reclaiming preferentially
4527  * inactive > active > active referenced > active mapped
4528  */
4529 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4530 {
4531 	struct scan_control sc = {
4532 		.nr_to_reclaim = nr_to_reclaim,
4533 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4534 		.reclaim_idx = MAX_NR_ZONES - 1,
4535 		.priority = DEF_PRIORITY,
4536 		.may_writepage = 1,
4537 		.may_unmap = 1,
4538 		.may_swap = 1,
4539 		.hibernation_mode = 1,
4540 	};
4541 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4542 	unsigned long nr_reclaimed;
4543 	unsigned int noreclaim_flag;
4544 
4545 	fs_reclaim_acquire(sc.gfp_mask);
4546 	noreclaim_flag = memalloc_noreclaim_save();
4547 	set_task_reclaim_state(current, &sc.reclaim_state);
4548 
4549 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4550 
4551 	set_task_reclaim_state(current, NULL);
4552 	memalloc_noreclaim_restore(noreclaim_flag);
4553 	fs_reclaim_release(sc.gfp_mask);
4554 
4555 	return nr_reclaimed;
4556 }
4557 #endif /* CONFIG_HIBERNATION */
4558 
4559 /*
4560  * This kswapd start function will be called by init and node-hot-add.
4561  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4562  */
4563 void kswapd_run(int nid)
4564 {
4565 	pg_data_t *pgdat = NODE_DATA(nid);
4566 
4567 	if (pgdat->kswapd)
4568 		return;
4569 
4570 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4571 	if (IS_ERR(pgdat->kswapd)) {
4572 		/* failure at boot is fatal */
4573 		BUG_ON(system_state < SYSTEM_RUNNING);
4574 		pr_err("Failed to start kswapd on node %d\n", nid);
4575 		pgdat->kswapd = NULL;
4576 	}
4577 }
4578 
4579 /*
4580  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4581  * hold mem_hotplug_begin/end().
4582  */
4583 void kswapd_stop(int nid)
4584 {
4585 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4586 
4587 	if (kswapd) {
4588 		kthread_stop(kswapd);
4589 		NODE_DATA(nid)->kswapd = NULL;
4590 	}
4591 }
4592 
4593 static int __init kswapd_init(void)
4594 {
4595 	int nid;
4596 
4597 	swap_setup();
4598 	for_each_node_state(nid, N_MEMORY)
4599  		kswapd_run(nid);
4600 	return 0;
4601 }
4602 
4603 module_init(kswapd_init)
4604 
4605 #ifdef CONFIG_NUMA
4606 /*
4607  * Node reclaim mode
4608  *
4609  * If non-zero call node_reclaim when the number of free pages falls below
4610  * the watermarks.
4611  */
4612 int node_reclaim_mode __read_mostly;
4613 
4614 /*
4615  * Priority for NODE_RECLAIM. This determines the fraction of pages
4616  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4617  * a zone.
4618  */
4619 #define NODE_RECLAIM_PRIORITY 4
4620 
4621 /*
4622  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4623  * occur.
4624  */
4625 int sysctl_min_unmapped_ratio = 1;
4626 
4627 /*
4628  * If the number of slab pages in a zone grows beyond this percentage then
4629  * slab reclaim needs to occur.
4630  */
4631 int sysctl_min_slab_ratio = 5;
4632 
4633 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4634 {
4635 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4636 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4637 		node_page_state(pgdat, NR_ACTIVE_FILE);
4638 
4639 	/*
4640 	 * It's possible for there to be more file mapped pages than
4641 	 * accounted for by the pages on the file LRU lists because
4642 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4643 	 */
4644 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4645 }
4646 
4647 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4648 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4649 {
4650 	unsigned long nr_pagecache_reclaimable;
4651 	unsigned long delta = 0;
4652 
4653 	/*
4654 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4655 	 * potentially reclaimable. Otherwise, we have to worry about
4656 	 * pages like swapcache and node_unmapped_file_pages() provides
4657 	 * a better estimate
4658 	 */
4659 	if (node_reclaim_mode & RECLAIM_UNMAP)
4660 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4661 	else
4662 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4663 
4664 	/* If we can't clean pages, remove dirty pages from consideration */
4665 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4666 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4667 
4668 	/* Watch for any possible underflows due to delta */
4669 	if (unlikely(delta > nr_pagecache_reclaimable))
4670 		delta = nr_pagecache_reclaimable;
4671 
4672 	return nr_pagecache_reclaimable - delta;
4673 }
4674 
4675 /*
4676  * Try to free up some pages from this node through reclaim.
4677  */
4678 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4679 {
4680 	/* Minimum pages needed in order to stay on node */
4681 	const unsigned long nr_pages = 1 << order;
4682 	struct task_struct *p = current;
4683 	unsigned int noreclaim_flag;
4684 	struct scan_control sc = {
4685 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4686 		.gfp_mask = current_gfp_context(gfp_mask),
4687 		.order = order,
4688 		.priority = NODE_RECLAIM_PRIORITY,
4689 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4690 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4691 		.may_swap = 1,
4692 		.reclaim_idx = gfp_zone(gfp_mask),
4693 	};
4694 	unsigned long pflags;
4695 
4696 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4697 					   sc.gfp_mask);
4698 
4699 	cond_resched();
4700 	psi_memstall_enter(&pflags);
4701 	fs_reclaim_acquire(sc.gfp_mask);
4702 	/*
4703 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4704 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4705 	 * and RECLAIM_UNMAP.
4706 	 */
4707 	noreclaim_flag = memalloc_noreclaim_save();
4708 	p->flags |= PF_SWAPWRITE;
4709 	set_task_reclaim_state(p, &sc.reclaim_state);
4710 
4711 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4712 		/*
4713 		 * Free memory by calling shrink node with increasing
4714 		 * priorities until we have enough memory freed.
4715 		 */
4716 		do {
4717 			shrink_node(pgdat, &sc);
4718 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4719 	}
4720 
4721 	set_task_reclaim_state(p, NULL);
4722 	current->flags &= ~PF_SWAPWRITE;
4723 	memalloc_noreclaim_restore(noreclaim_flag);
4724 	fs_reclaim_release(sc.gfp_mask);
4725 	psi_memstall_leave(&pflags);
4726 
4727 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4728 
4729 	return sc.nr_reclaimed >= nr_pages;
4730 }
4731 
4732 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4733 {
4734 	int ret;
4735 
4736 	/*
4737 	 * Node reclaim reclaims unmapped file backed pages and
4738 	 * slab pages if we are over the defined limits.
4739 	 *
4740 	 * A small portion of unmapped file backed pages is needed for
4741 	 * file I/O otherwise pages read by file I/O will be immediately
4742 	 * thrown out if the node is overallocated. So we do not reclaim
4743 	 * if less than a specified percentage of the node is used by
4744 	 * unmapped file backed pages.
4745 	 */
4746 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4747 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4748 	    pgdat->min_slab_pages)
4749 		return NODE_RECLAIM_FULL;
4750 
4751 	/*
4752 	 * Do not scan if the allocation should not be delayed.
4753 	 */
4754 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4755 		return NODE_RECLAIM_NOSCAN;
4756 
4757 	/*
4758 	 * Only run node reclaim on the local node or on nodes that do not
4759 	 * have associated processors. This will favor the local processor
4760 	 * over remote processors and spread off node memory allocations
4761 	 * as wide as possible.
4762 	 */
4763 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4764 		return NODE_RECLAIM_NOSCAN;
4765 
4766 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4767 		return NODE_RECLAIM_NOSCAN;
4768 
4769 	ret = __node_reclaim(pgdat, gfp_mask, order);
4770 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4771 
4772 	if (!ret)
4773 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4774 
4775 	return ret;
4776 }
4777 #endif
4778 
4779 /**
4780  * check_move_unevictable_pages - check pages for evictability and move to
4781  * appropriate zone lru list
4782  * @pvec: pagevec with lru pages to check
4783  *
4784  * Checks pages for evictability, if an evictable page is in the unevictable
4785  * lru list, moves it to the appropriate evictable lru list. This function
4786  * should be only used for lru pages.
4787  */
4788 void check_move_unevictable_pages(struct pagevec *pvec)
4789 {
4790 	struct lruvec *lruvec = NULL;
4791 	int pgscanned = 0;
4792 	int pgrescued = 0;
4793 	int i;
4794 
4795 	for (i = 0; i < pvec->nr; i++) {
4796 		struct page *page = pvec->pages[i];
4797 		int nr_pages;
4798 
4799 		if (PageTransTail(page))
4800 			continue;
4801 
4802 		nr_pages = thp_nr_pages(page);
4803 		pgscanned += nr_pages;
4804 
4805 		/* block memcg migration during page moving between lru */
4806 		if (!TestClearPageLRU(page))
4807 			continue;
4808 
4809 		lruvec = relock_page_lruvec_irq(page, lruvec);
4810 		if (page_evictable(page) && PageUnevictable(page)) {
4811 			del_page_from_lru_list(page, lruvec);
4812 			ClearPageUnevictable(page);
4813 			add_page_to_lru_list(page, lruvec);
4814 			pgrescued += nr_pages;
4815 		}
4816 		SetPageLRU(page);
4817 	}
4818 
4819 	if (lruvec) {
4820 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4821 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4822 		unlock_page_lruvec_irq(lruvec);
4823 	} else if (pgscanned) {
4824 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4825 	}
4826 }
4827 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4828