xref: /linux/mm/vmscan.c (revision 2ba9268dd603d23e17643437b2246acb6844953b)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
55 
56 #include "internal.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
60 
61 struct scan_control {
62 	/* How many pages shrink_list() should reclaim */
63 	unsigned long nr_to_reclaim;
64 
65 	/* This context's GFP mask */
66 	gfp_t gfp_mask;
67 
68 	/* Allocation order */
69 	int order;
70 
71 	/*
72 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 	 * are scanned.
74 	 */
75 	nodemask_t	*nodemask;
76 
77 	/*
78 	 * The memory cgroup that hit its limit and as a result is the
79 	 * primary target of this reclaim invocation.
80 	 */
81 	struct mem_cgroup *target_mem_cgroup;
82 
83 	/* Scan (total_size >> priority) pages at once */
84 	int priority;
85 
86 	unsigned int may_writepage:1;
87 
88 	/* Can mapped pages be reclaimed? */
89 	unsigned int may_unmap:1;
90 
91 	/* Can pages be swapped as part of reclaim? */
92 	unsigned int may_swap:1;
93 
94 	/* Can cgroups be reclaimed below their normal consumption range? */
95 	unsigned int may_thrash:1;
96 
97 	unsigned int hibernation_mode:1;
98 
99 	/* One of the zones is ready for compaction */
100 	unsigned int compaction_ready:1;
101 
102 	/* Incremented by the number of inactive pages that were scanned */
103 	unsigned long nr_scanned;
104 
105 	/* Number of pages freed so far during a call to shrink_zones() */
106 	unsigned long nr_reclaimed;
107 };
108 
109 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
110 
111 #ifdef ARCH_HAS_PREFETCH
112 #define prefetch_prev_lru_page(_page, _base, _field)			\
113 	do {								\
114 		if ((_page)->lru.prev != _base) {			\
115 			struct page *prev;				\
116 									\
117 			prev = lru_to_page(&(_page->lru));		\
118 			prefetch(&prev->_field);			\
119 		}							\
120 	} while (0)
121 #else
122 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
124 
125 #ifdef ARCH_HAS_PREFETCHW
126 #define prefetchw_prev_lru_page(_page, _base, _field)			\
127 	do {								\
128 		if ((_page)->lru.prev != _base) {			\
129 			struct page *prev;				\
130 									\
131 			prev = lru_to_page(&(_page->lru));		\
132 			prefetchw(&prev->_field);			\
133 		}							\
134 	} while (0)
135 #else
136 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
137 #endif
138 
139 /*
140  * From 0 .. 100.  Higher means more swappy.
141  */
142 int vm_swappiness = 60;
143 /*
144  * The total number of pages which are beyond the high watermark within all
145  * zones.
146  */
147 unsigned long vm_total_pages;
148 
149 static LIST_HEAD(shrinker_list);
150 static DECLARE_RWSEM(shrinker_rwsem);
151 
152 #ifdef CONFIG_MEMCG
153 static bool global_reclaim(struct scan_control *sc)
154 {
155 	return !sc->target_mem_cgroup;
156 }
157 #else
158 static bool global_reclaim(struct scan_control *sc)
159 {
160 	return true;
161 }
162 #endif
163 
164 static unsigned long zone_reclaimable_pages(struct zone *zone)
165 {
166 	int nr;
167 
168 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
169 	     zone_page_state(zone, NR_INACTIVE_FILE);
170 
171 	if (get_nr_swap_pages() > 0)
172 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
173 		      zone_page_state(zone, NR_INACTIVE_ANON);
174 
175 	return nr;
176 }
177 
178 bool zone_reclaimable(struct zone *zone)
179 {
180 	return zone_page_state(zone, NR_PAGES_SCANNED) <
181 		zone_reclaimable_pages(zone) * 6;
182 }
183 
184 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
185 {
186 	if (!mem_cgroup_disabled())
187 		return mem_cgroup_get_lru_size(lruvec, lru);
188 
189 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
190 }
191 
192 /*
193  * Add a shrinker callback to be called from the vm.
194  */
195 int register_shrinker(struct shrinker *shrinker)
196 {
197 	size_t size = sizeof(*shrinker->nr_deferred);
198 
199 	/*
200 	 * If we only have one possible node in the system anyway, save
201 	 * ourselves the trouble and disable NUMA aware behavior. This way we
202 	 * will save memory and some small loop time later.
203 	 */
204 	if (nr_node_ids == 1)
205 		shrinker->flags &= ~SHRINKER_NUMA_AWARE;
206 
207 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
208 		size *= nr_node_ids;
209 
210 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
211 	if (!shrinker->nr_deferred)
212 		return -ENOMEM;
213 
214 	down_write(&shrinker_rwsem);
215 	list_add_tail(&shrinker->list, &shrinker_list);
216 	up_write(&shrinker_rwsem);
217 	return 0;
218 }
219 EXPORT_SYMBOL(register_shrinker);
220 
221 /*
222  * Remove one
223  */
224 void unregister_shrinker(struct shrinker *shrinker)
225 {
226 	down_write(&shrinker_rwsem);
227 	list_del(&shrinker->list);
228 	up_write(&shrinker_rwsem);
229 	kfree(shrinker->nr_deferred);
230 }
231 EXPORT_SYMBOL(unregister_shrinker);
232 
233 #define SHRINK_BATCH 128
234 
235 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
236 				    struct shrinker *shrinker,
237 				    unsigned long nr_scanned,
238 				    unsigned long nr_eligible)
239 {
240 	unsigned long freed = 0;
241 	unsigned long long delta;
242 	long total_scan;
243 	long freeable;
244 	long nr;
245 	long new_nr;
246 	int nid = shrinkctl->nid;
247 	long batch_size = shrinker->batch ? shrinker->batch
248 					  : SHRINK_BATCH;
249 
250 	freeable = shrinker->count_objects(shrinker, shrinkctl);
251 	if (freeable == 0)
252 		return 0;
253 
254 	/*
255 	 * copy the current shrinker scan count into a local variable
256 	 * and zero it so that other concurrent shrinker invocations
257 	 * don't also do this scanning work.
258 	 */
259 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
260 
261 	total_scan = nr;
262 	delta = (4 * nr_scanned) / shrinker->seeks;
263 	delta *= freeable;
264 	do_div(delta, nr_eligible + 1);
265 	total_scan += delta;
266 	if (total_scan < 0) {
267 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
268 		       shrinker->scan_objects, total_scan);
269 		total_scan = freeable;
270 	}
271 
272 	/*
273 	 * We need to avoid excessive windup on filesystem shrinkers
274 	 * due to large numbers of GFP_NOFS allocations causing the
275 	 * shrinkers to return -1 all the time. This results in a large
276 	 * nr being built up so when a shrink that can do some work
277 	 * comes along it empties the entire cache due to nr >>>
278 	 * freeable. This is bad for sustaining a working set in
279 	 * memory.
280 	 *
281 	 * Hence only allow the shrinker to scan the entire cache when
282 	 * a large delta change is calculated directly.
283 	 */
284 	if (delta < freeable / 4)
285 		total_scan = min(total_scan, freeable / 2);
286 
287 	/*
288 	 * Avoid risking looping forever due to too large nr value:
289 	 * never try to free more than twice the estimate number of
290 	 * freeable entries.
291 	 */
292 	if (total_scan > freeable * 2)
293 		total_scan = freeable * 2;
294 
295 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
296 				   nr_scanned, nr_eligible,
297 				   freeable, delta, total_scan);
298 
299 	/*
300 	 * Normally, we should not scan less than batch_size objects in one
301 	 * pass to avoid too frequent shrinker calls, but if the slab has less
302 	 * than batch_size objects in total and we are really tight on memory,
303 	 * we will try to reclaim all available objects, otherwise we can end
304 	 * up failing allocations although there are plenty of reclaimable
305 	 * objects spread over several slabs with usage less than the
306 	 * batch_size.
307 	 *
308 	 * We detect the "tight on memory" situations by looking at the total
309 	 * number of objects we want to scan (total_scan). If it is greater
310 	 * than the total number of objects on slab (freeable), we must be
311 	 * scanning at high prio and therefore should try to reclaim as much as
312 	 * possible.
313 	 */
314 	while (total_scan >= batch_size ||
315 	       total_scan >= freeable) {
316 		unsigned long ret;
317 		unsigned long nr_to_scan = min(batch_size, total_scan);
318 
319 		shrinkctl->nr_to_scan = nr_to_scan;
320 		ret = shrinker->scan_objects(shrinker, shrinkctl);
321 		if (ret == SHRINK_STOP)
322 			break;
323 		freed += ret;
324 
325 		count_vm_events(SLABS_SCANNED, nr_to_scan);
326 		total_scan -= nr_to_scan;
327 
328 		cond_resched();
329 	}
330 
331 	/*
332 	 * move the unused scan count back into the shrinker in a
333 	 * manner that handles concurrent updates. If we exhausted the
334 	 * scan, there is no need to do an update.
335 	 */
336 	if (total_scan > 0)
337 		new_nr = atomic_long_add_return(total_scan,
338 						&shrinker->nr_deferred[nid]);
339 	else
340 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
341 
342 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
343 	return freed;
344 }
345 
346 /**
347  * shrink_slab - shrink slab caches
348  * @gfp_mask: allocation context
349  * @nid: node whose slab caches to target
350  * @memcg: memory cgroup whose slab caches to target
351  * @nr_scanned: pressure numerator
352  * @nr_eligible: pressure denominator
353  *
354  * Call the shrink functions to age shrinkable caches.
355  *
356  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
357  * unaware shrinkers will receive a node id of 0 instead.
358  *
359  * @memcg specifies the memory cgroup to target. If it is not NULL,
360  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
361  * objects from the memory cgroup specified. Otherwise all shrinkers
362  * are called, and memcg aware shrinkers are supposed to scan the
363  * global list then.
364  *
365  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
366  * the available objects should be scanned.  Page reclaim for example
367  * passes the number of pages scanned and the number of pages on the
368  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
369  * when it encountered mapped pages.  The ratio is further biased by
370  * the ->seeks setting of the shrink function, which indicates the
371  * cost to recreate an object relative to that of an LRU page.
372  *
373  * Returns the number of reclaimed slab objects.
374  */
375 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
376 				 struct mem_cgroup *memcg,
377 				 unsigned long nr_scanned,
378 				 unsigned long nr_eligible)
379 {
380 	struct shrinker *shrinker;
381 	unsigned long freed = 0;
382 
383 	if (memcg && !memcg_kmem_is_active(memcg))
384 		return 0;
385 
386 	if (nr_scanned == 0)
387 		nr_scanned = SWAP_CLUSTER_MAX;
388 
389 	if (!down_read_trylock(&shrinker_rwsem)) {
390 		/*
391 		 * If we would return 0, our callers would understand that we
392 		 * have nothing else to shrink and give up trying. By returning
393 		 * 1 we keep it going and assume we'll be able to shrink next
394 		 * time.
395 		 */
396 		freed = 1;
397 		goto out;
398 	}
399 
400 	list_for_each_entry(shrinker, &shrinker_list, list) {
401 		struct shrink_control sc = {
402 			.gfp_mask = gfp_mask,
403 			.nid = nid,
404 			.memcg = memcg,
405 		};
406 
407 		if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
408 			continue;
409 
410 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
411 			sc.nid = 0;
412 
413 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
414 	}
415 
416 	up_read(&shrinker_rwsem);
417 out:
418 	cond_resched();
419 	return freed;
420 }
421 
422 void drop_slab_node(int nid)
423 {
424 	unsigned long freed;
425 
426 	do {
427 		struct mem_cgroup *memcg = NULL;
428 
429 		freed = 0;
430 		do {
431 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
432 					     1000, 1000);
433 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
434 	} while (freed > 10);
435 }
436 
437 void drop_slab(void)
438 {
439 	int nid;
440 
441 	for_each_online_node(nid)
442 		drop_slab_node(nid);
443 }
444 
445 static inline int is_page_cache_freeable(struct page *page)
446 {
447 	/*
448 	 * A freeable page cache page is referenced only by the caller
449 	 * that isolated the page, the page cache radix tree and
450 	 * optional buffer heads at page->private.
451 	 */
452 	return page_count(page) - page_has_private(page) == 2;
453 }
454 
455 static int may_write_to_queue(struct backing_dev_info *bdi,
456 			      struct scan_control *sc)
457 {
458 	if (current->flags & PF_SWAPWRITE)
459 		return 1;
460 	if (!bdi_write_congested(bdi))
461 		return 1;
462 	if (bdi == current->backing_dev_info)
463 		return 1;
464 	return 0;
465 }
466 
467 /*
468  * We detected a synchronous write error writing a page out.  Probably
469  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
470  * fsync(), msync() or close().
471  *
472  * The tricky part is that after writepage we cannot touch the mapping: nothing
473  * prevents it from being freed up.  But we have a ref on the page and once
474  * that page is locked, the mapping is pinned.
475  *
476  * We're allowed to run sleeping lock_page() here because we know the caller has
477  * __GFP_FS.
478  */
479 static void handle_write_error(struct address_space *mapping,
480 				struct page *page, int error)
481 {
482 	lock_page(page);
483 	if (page_mapping(page) == mapping)
484 		mapping_set_error(mapping, error);
485 	unlock_page(page);
486 }
487 
488 /* possible outcome of pageout() */
489 typedef enum {
490 	/* failed to write page out, page is locked */
491 	PAGE_KEEP,
492 	/* move page to the active list, page is locked */
493 	PAGE_ACTIVATE,
494 	/* page has been sent to the disk successfully, page is unlocked */
495 	PAGE_SUCCESS,
496 	/* page is clean and locked */
497 	PAGE_CLEAN,
498 } pageout_t;
499 
500 /*
501  * pageout is called by shrink_page_list() for each dirty page.
502  * Calls ->writepage().
503  */
504 static pageout_t pageout(struct page *page, struct address_space *mapping,
505 			 struct scan_control *sc)
506 {
507 	/*
508 	 * If the page is dirty, only perform writeback if that write
509 	 * will be non-blocking.  To prevent this allocation from being
510 	 * stalled by pagecache activity.  But note that there may be
511 	 * stalls if we need to run get_block().  We could test
512 	 * PagePrivate for that.
513 	 *
514 	 * If this process is currently in __generic_file_write_iter() against
515 	 * this page's queue, we can perform writeback even if that
516 	 * will block.
517 	 *
518 	 * If the page is swapcache, write it back even if that would
519 	 * block, for some throttling. This happens by accident, because
520 	 * swap_backing_dev_info is bust: it doesn't reflect the
521 	 * congestion state of the swapdevs.  Easy to fix, if needed.
522 	 */
523 	if (!is_page_cache_freeable(page))
524 		return PAGE_KEEP;
525 	if (!mapping) {
526 		/*
527 		 * Some data journaling orphaned pages can have
528 		 * page->mapping == NULL while being dirty with clean buffers.
529 		 */
530 		if (page_has_private(page)) {
531 			if (try_to_free_buffers(page)) {
532 				ClearPageDirty(page);
533 				pr_info("%s: orphaned page\n", __func__);
534 				return PAGE_CLEAN;
535 			}
536 		}
537 		return PAGE_KEEP;
538 	}
539 	if (mapping->a_ops->writepage == NULL)
540 		return PAGE_ACTIVATE;
541 	if (!may_write_to_queue(inode_to_bdi(mapping->host), sc))
542 		return PAGE_KEEP;
543 
544 	if (clear_page_dirty_for_io(page)) {
545 		int res;
546 		struct writeback_control wbc = {
547 			.sync_mode = WB_SYNC_NONE,
548 			.nr_to_write = SWAP_CLUSTER_MAX,
549 			.range_start = 0,
550 			.range_end = LLONG_MAX,
551 			.for_reclaim = 1,
552 		};
553 
554 		SetPageReclaim(page);
555 		res = mapping->a_ops->writepage(page, &wbc);
556 		if (res < 0)
557 			handle_write_error(mapping, page, res);
558 		if (res == AOP_WRITEPAGE_ACTIVATE) {
559 			ClearPageReclaim(page);
560 			return PAGE_ACTIVATE;
561 		}
562 
563 		if (!PageWriteback(page)) {
564 			/* synchronous write or broken a_ops? */
565 			ClearPageReclaim(page);
566 		}
567 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
568 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
569 		return PAGE_SUCCESS;
570 	}
571 
572 	return PAGE_CLEAN;
573 }
574 
575 /*
576  * Same as remove_mapping, but if the page is removed from the mapping, it
577  * gets returned with a refcount of 0.
578  */
579 static int __remove_mapping(struct address_space *mapping, struct page *page,
580 			    bool reclaimed)
581 {
582 	BUG_ON(!PageLocked(page));
583 	BUG_ON(mapping != page_mapping(page));
584 
585 	spin_lock_irq(&mapping->tree_lock);
586 	/*
587 	 * The non racy check for a busy page.
588 	 *
589 	 * Must be careful with the order of the tests. When someone has
590 	 * a ref to the page, it may be possible that they dirty it then
591 	 * drop the reference. So if PageDirty is tested before page_count
592 	 * here, then the following race may occur:
593 	 *
594 	 * get_user_pages(&page);
595 	 * [user mapping goes away]
596 	 * write_to(page);
597 	 *				!PageDirty(page)    [good]
598 	 * SetPageDirty(page);
599 	 * put_page(page);
600 	 *				!page_count(page)   [good, discard it]
601 	 *
602 	 * [oops, our write_to data is lost]
603 	 *
604 	 * Reversing the order of the tests ensures such a situation cannot
605 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
606 	 * load is not satisfied before that of page->_count.
607 	 *
608 	 * Note that if SetPageDirty is always performed via set_page_dirty,
609 	 * and thus under tree_lock, then this ordering is not required.
610 	 */
611 	if (!page_freeze_refs(page, 2))
612 		goto cannot_free;
613 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
614 	if (unlikely(PageDirty(page))) {
615 		page_unfreeze_refs(page, 2);
616 		goto cannot_free;
617 	}
618 
619 	if (PageSwapCache(page)) {
620 		swp_entry_t swap = { .val = page_private(page) };
621 		mem_cgroup_swapout(page, swap);
622 		__delete_from_swap_cache(page);
623 		spin_unlock_irq(&mapping->tree_lock);
624 		swapcache_free(swap);
625 	} else {
626 		void (*freepage)(struct page *);
627 		void *shadow = NULL;
628 
629 		freepage = mapping->a_ops->freepage;
630 		/*
631 		 * Remember a shadow entry for reclaimed file cache in
632 		 * order to detect refaults, thus thrashing, later on.
633 		 *
634 		 * But don't store shadows in an address space that is
635 		 * already exiting.  This is not just an optizimation,
636 		 * inode reclaim needs to empty out the radix tree or
637 		 * the nodes are lost.  Don't plant shadows behind its
638 		 * back.
639 		 */
640 		if (reclaimed && page_is_file_cache(page) &&
641 		    !mapping_exiting(mapping))
642 			shadow = workingset_eviction(mapping, page);
643 		__delete_from_page_cache(page, shadow);
644 		spin_unlock_irq(&mapping->tree_lock);
645 
646 		if (freepage != NULL)
647 			freepage(page);
648 	}
649 
650 	return 1;
651 
652 cannot_free:
653 	spin_unlock_irq(&mapping->tree_lock);
654 	return 0;
655 }
656 
657 /*
658  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
659  * someone else has a ref on the page, abort and return 0.  If it was
660  * successfully detached, return 1.  Assumes the caller has a single ref on
661  * this page.
662  */
663 int remove_mapping(struct address_space *mapping, struct page *page)
664 {
665 	if (__remove_mapping(mapping, page, false)) {
666 		/*
667 		 * Unfreezing the refcount with 1 rather than 2 effectively
668 		 * drops the pagecache ref for us without requiring another
669 		 * atomic operation.
670 		 */
671 		page_unfreeze_refs(page, 1);
672 		return 1;
673 	}
674 	return 0;
675 }
676 
677 /**
678  * putback_lru_page - put previously isolated page onto appropriate LRU list
679  * @page: page to be put back to appropriate lru list
680  *
681  * Add previously isolated @page to appropriate LRU list.
682  * Page may still be unevictable for other reasons.
683  *
684  * lru_lock must not be held, interrupts must be enabled.
685  */
686 void putback_lru_page(struct page *page)
687 {
688 	bool is_unevictable;
689 	int was_unevictable = PageUnevictable(page);
690 
691 	VM_BUG_ON_PAGE(PageLRU(page), page);
692 
693 redo:
694 	ClearPageUnevictable(page);
695 
696 	if (page_evictable(page)) {
697 		/*
698 		 * For evictable pages, we can use the cache.
699 		 * In event of a race, worst case is we end up with an
700 		 * unevictable page on [in]active list.
701 		 * We know how to handle that.
702 		 */
703 		is_unevictable = false;
704 		lru_cache_add(page);
705 	} else {
706 		/*
707 		 * Put unevictable pages directly on zone's unevictable
708 		 * list.
709 		 */
710 		is_unevictable = true;
711 		add_page_to_unevictable_list(page);
712 		/*
713 		 * When racing with an mlock or AS_UNEVICTABLE clearing
714 		 * (page is unlocked) make sure that if the other thread
715 		 * does not observe our setting of PG_lru and fails
716 		 * isolation/check_move_unevictable_pages,
717 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
718 		 * the page back to the evictable list.
719 		 *
720 		 * The other side is TestClearPageMlocked() or shmem_lock().
721 		 */
722 		smp_mb();
723 	}
724 
725 	/*
726 	 * page's status can change while we move it among lru. If an evictable
727 	 * page is on unevictable list, it never be freed. To avoid that,
728 	 * check after we added it to the list, again.
729 	 */
730 	if (is_unevictable && page_evictable(page)) {
731 		if (!isolate_lru_page(page)) {
732 			put_page(page);
733 			goto redo;
734 		}
735 		/* This means someone else dropped this page from LRU
736 		 * So, it will be freed or putback to LRU again. There is
737 		 * nothing to do here.
738 		 */
739 	}
740 
741 	if (was_unevictable && !is_unevictable)
742 		count_vm_event(UNEVICTABLE_PGRESCUED);
743 	else if (!was_unevictable && is_unevictable)
744 		count_vm_event(UNEVICTABLE_PGCULLED);
745 
746 	put_page(page);		/* drop ref from isolate */
747 }
748 
749 enum page_references {
750 	PAGEREF_RECLAIM,
751 	PAGEREF_RECLAIM_CLEAN,
752 	PAGEREF_KEEP,
753 	PAGEREF_ACTIVATE,
754 };
755 
756 static enum page_references page_check_references(struct page *page,
757 						  struct scan_control *sc)
758 {
759 	int referenced_ptes, referenced_page;
760 	unsigned long vm_flags;
761 
762 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
763 					  &vm_flags);
764 	referenced_page = TestClearPageReferenced(page);
765 
766 	/*
767 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
768 	 * move the page to the unevictable list.
769 	 */
770 	if (vm_flags & VM_LOCKED)
771 		return PAGEREF_RECLAIM;
772 
773 	if (referenced_ptes) {
774 		if (PageSwapBacked(page))
775 			return PAGEREF_ACTIVATE;
776 		/*
777 		 * All mapped pages start out with page table
778 		 * references from the instantiating fault, so we need
779 		 * to look twice if a mapped file page is used more
780 		 * than once.
781 		 *
782 		 * Mark it and spare it for another trip around the
783 		 * inactive list.  Another page table reference will
784 		 * lead to its activation.
785 		 *
786 		 * Note: the mark is set for activated pages as well
787 		 * so that recently deactivated but used pages are
788 		 * quickly recovered.
789 		 */
790 		SetPageReferenced(page);
791 
792 		if (referenced_page || referenced_ptes > 1)
793 			return PAGEREF_ACTIVATE;
794 
795 		/*
796 		 * Activate file-backed executable pages after first usage.
797 		 */
798 		if (vm_flags & VM_EXEC)
799 			return PAGEREF_ACTIVATE;
800 
801 		return PAGEREF_KEEP;
802 	}
803 
804 	/* Reclaim if clean, defer dirty pages to writeback */
805 	if (referenced_page && !PageSwapBacked(page))
806 		return PAGEREF_RECLAIM_CLEAN;
807 
808 	return PAGEREF_RECLAIM;
809 }
810 
811 /* Check if a page is dirty or under writeback */
812 static void page_check_dirty_writeback(struct page *page,
813 				       bool *dirty, bool *writeback)
814 {
815 	struct address_space *mapping;
816 
817 	/*
818 	 * Anonymous pages are not handled by flushers and must be written
819 	 * from reclaim context. Do not stall reclaim based on them
820 	 */
821 	if (!page_is_file_cache(page)) {
822 		*dirty = false;
823 		*writeback = false;
824 		return;
825 	}
826 
827 	/* By default assume that the page flags are accurate */
828 	*dirty = PageDirty(page);
829 	*writeback = PageWriteback(page);
830 
831 	/* Verify dirty/writeback state if the filesystem supports it */
832 	if (!page_has_private(page))
833 		return;
834 
835 	mapping = page_mapping(page);
836 	if (mapping && mapping->a_ops->is_dirty_writeback)
837 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
838 }
839 
840 /*
841  * shrink_page_list() returns the number of reclaimed pages
842  */
843 static unsigned long shrink_page_list(struct list_head *page_list,
844 				      struct zone *zone,
845 				      struct scan_control *sc,
846 				      enum ttu_flags ttu_flags,
847 				      unsigned long *ret_nr_dirty,
848 				      unsigned long *ret_nr_unqueued_dirty,
849 				      unsigned long *ret_nr_congested,
850 				      unsigned long *ret_nr_writeback,
851 				      unsigned long *ret_nr_immediate,
852 				      bool force_reclaim)
853 {
854 	LIST_HEAD(ret_pages);
855 	LIST_HEAD(free_pages);
856 	int pgactivate = 0;
857 	unsigned long nr_unqueued_dirty = 0;
858 	unsigned long nr_dirty = 0;
859 	unsigned long nr_congested = 0;
860 	unsigned long nr_reclaimed = 0;
861 	unsigned long nr_writeback = 0;
862 	unsigned long nr_immediate = 0;
863 
864 	cond_resched();
865 
866 	while (!list_empty(page_list)) {
867 		struct address_space *mapping;
868 		struct page *page;
869 		int may_enter_fs;
870 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
871 		bool dirty, writeback;
872 
873 		cond_resched();
874 
875 		page = lru_to_page(page_list);
876 		list_del(&page->lru);
877 
878 		if (!trylock_page(page))
879 			goto keep;
880 
881 		VM_BUG_ON_PAGE(PageActive(page), page);
882 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
883 
884 		sc->nr_scanned++;
885 
886 		if (unlikely(!page_evictable(page)))
887 			goto cull_mlocked;
888 
889 		if (!sc->may_unmap && page_mapped(page))
890 			goto keep_locked;
891 
892 		/* Double the slab pressure for mapped and swapcache pages */
893 		if (page_mapped(page) || PageSwapCache(page))
894 			sc->nr_scanned++;
895 
896 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
897 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
898 
899 		/*
900 		 * The number of dirty pages determines if a zone is marked
901 		 * reclaim_congested which affects wait_iff_congested. kswapd
902 		 * will stall and start writing pages if the tail of the LRU
903 		 * is all dirty unqueued pages.
904 		 */
905 		page_check_dirty_writeback(page, &dirty, &writeback);
906 		if (dirty || writeback)
907 			nr_dirty++;
908 
909 		if (dirty && !writeback)
910 			nr_unqueued_dirty++;
911 
912 		/*
913 		 * Treat this page as congested if the underlying BDI is or if
914 		 * pages are cycling through the LRU so quickly that the
915 		 * pages marked for immediate reclaim are making it to the
916 		 * end of the LRU a second time.
917 		 */
918 		mapping = page_mapping(page);
919 		if (((dirty || writeback) && mapping &&
920 		     bdi_write_congested(inode_to_bdi(mapping->host))) ||
921 		    (writeback && PageReclaim(page)))
922 			nr_congested++;
923 
924 		/*
925 		 * If a page at the tail of the LRU is under writeback, there
926 		 * are three cases to consider.
927 		 *
928 		 * 1) If reclaim is encountering an excessive number of pages
929 		 *    under writeback and this page is both under writeback and
930 		 *    PageReclaim then it indicates that pages are being queued
931 		 *    for IO but are being recycled through the LRU before the
932 		 *    IO can complete. Waiting on the page itself risks an
933 		 *    indefinite stall if it is impossible to writeback the
934 		 *    page due to IO error or disconnected storage so instead
935 		 *    note that the LRU is being scanned too quickly and the
936 		 *    caller can stall after page list has been processed.
937 		 *
938 		 * 2) Global reclaim encounters a page, memcg encounters a
939 		 *    page that is not marked for immediate reclaim or
940 		 *    the caller does not have __GFP_IO. In this case mark
941 		 *    the page for immediate reclaim and continue scanning.
942 		 *
943 		 *    __GFP_IO is checked  because a loop driver thread might
944 		 *    enter reclaim, and deadlock if it waits on a page for
945 		 *    which it is needed to do the write (loop masks off
946 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
947 		 *    would probably show more reasons.
948 		 *
949 		 *    Don't require __GFP_FS, since we're not going into the
950 		 *    FS, just waiting on its writeback completion. Worryingly,
951 		 *    ext4 gfs2 and xfs allocate pages with
952 		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
953 		 *    may_enter_fs here is liable to OOM on them.
954 		 *
955 		 * 3) memcg encounters a page that is not already marked
956 		 *    PageReclaim. memcg does not have any dirty pages
957 		 *    throttling so we could easily OOM just because too many
958 		 *    pages are in writeback and there is nothing else to
959 		 *    reclaim. Wait for the writeback to complete.
960 		 */
961 		if (PageWriteback(page)) {
962 			/* Case 1 above */
963 			if (current_is_kswapd() &&
964 			    PageReclaim(page) &&
965 			    test_bit(ZONE_WRITEBACK, &zone->flags)) {
966 				nr_immediate++;
967 				goto keep_locked;
968 
969 			/* Case 2 above */
970 			} else if (global_reclaim(sc) ||
971 			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
972 				/*
973 				 * This is slightly racy - end_page_writeback()
974 				 * might have just cleared PageReclaim, then
975 				 * setting PageReclaim here end up interpreted
976 				 * as PageReadahead - but that does not matter
977 				 * enough to care.  What we do want is for this
978 				 * page to have PageReclaim set next time memcg
979 				 * reclaim reaches the tests above, so it will
980 				 * then wait_on_page_writeback() to avoid OOM;
981 				 * and it's also appropriate in global reclaim.
982 				 */
983 				SetPageReclaim(page);
984 				nr_writeback++;
985 
986 				goto keep_locked;
987 
988 			/* Case 3 above */
989 			} else {
990 				wait_on_page_writeback(page);
991 			}
992 		}
993 
994 		if (!force_reclaim)
995 			references = page_check_references(page, sc);
996 
997 		switch (references) {
998 		case PAGEREF_ACTIVATE:
999 			goto activate_locked;
1000 		case PAGEREF_KEEP:
1001 			goto keep_locked;
1002 		case PAGEREF_RECLAIM:
1003 		case PAGEREF_RECLAIM_CLEAN:
1004 			; /* try to reclaim the page below */
1005 		}
1006 
1007 		/*
1008 		 * Anonymous process memory has backing store?
1009 		 * Try to allocate it some swap space here.
1010 		 */
1011 		if (PageAnon(page) && !PageSwapCache(page)) {
1012 			if (!(sc->gfp_mask & __GFP_IO))
1013 				goto keep_locked;
1014 			if (!add_to_swap(page, page_list))
1015 				goto activate_locked;
1016 			may_enter_fs = 1;
1017 
1018 			/* Adding to swap updated mapping */
1019 			mapping = page_mapping(page);
1020 		}
1021 
1022 		/*
1023 		 * The page is mapped into the page tables of one or more
1024 		 * processes. Try to unmap it here.
1025 		 */
1026 		if (page_mapped(page) && mapping) {
1027 			switch (try_to_unmap(page, ttu_flags)) {
1028 			case SWAP_FAIL:
1029 				goto activate_locked;
1030 			case SWAP_AGAIN:
1031 				goto keep_locked;
1032 			case SWAP_MLOCK:
1033 				goto cull_mlocked;
1034 			case SWAP_SUCCESS:
1035 				; /* try to free the page below */
1036 			}
1037 		}
1038 
1039 		if (PageDirty(page)) {
1040 			/*
1041 			 * Only kswapd can writeback filesystem pages to
1042 			 * avoid risk of stack overflow but only writeback
1043 			 * if many dirty pages have been encountered.
1044 			 */
1045 			if (page_is_file_cache(page) &&
1046 					(!current_is_kswapd() ||
1047 					 !test_bit(ZONE_DIRTY, &zone->flags))) {
1048 				/*
1049 				 * Immediately reclaim when written back.
1050 				 * Similar in principal to deactivate_page()
1051 				 * except we already have the page isolated
1052 				 * and know it's dirty
1053 				 */
1054 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1055 				SetPageReclaim(page);
1056 
1057 				goto keep_locked;
1058 			}
1059 
1060 			if (references == PAGEREF_RECLAIM_CLEAN)
1061 				goto keep_locked;
1062 			if (!may_enter_fs)
1063 				goto keep_locked;
1064 			if (!sc->may_writepage)
1065 				goto keep_locked;
1066 
1067 			/* Page is dirty, try to write it out here */
1068 			switch (pageout(page, mapping, sc)) {
1069 			case PAGE_KEEP:
1070 				goto keep_locked;
1071 			case PAGE_ACTIVATE:
1072 				goto activate_locked;
1073 			case PAGE_SUCCESS:
1074 				if (PageWriteback(page))
1075 					goto keep;
1076 				if (PageDirty(page))
1077 					goto keep;
1078 
1079 				/*
1080 				 * A synchronous write - probably a ramdisk.  Go
1081 				 * ahead and try to reclaim the page.
1082 				 */
1083 				if (!trylock_page(page))
1084 					goto keep;
1085 				if (PageDirty(page) || PageWriteback(page))
1086 					goto keep_locked;
1087 				mapping = page_mapping(page);
1088 			case PAGE_CLEAN:
1089 				; /* try to free the page below */
1090 			}
1091 		}
1092 
1093 		/*
1094 		 * If the page has buffers, try to free the buffer mappings
1095 		 * associated with this page. If we succeed we try to free
1096 		 * the page as well.
1097 		 *
1098 		 * We do this even if the page is PageDirty().
1099 		 * try_to_release_page() does not perform I/O, but it is
1100 		 * possible for a page to have PageDirty set, but it is actually
1101 		 * clean (all its buffers are clean).  This happens if the
1102 		 * buffers were written out directly, with submit_bh(). ext3
1103 		 * will do this, as well as the blockdev mapping.
1104 		 * try_to_release_page() will discover that cleanness and will
1105 		 * drop the buffers and mark the page clean - it can be freed.
1106 		 *
1107 		 * Rarely, pages can have buffers and no ->mapping.  These are
1108 		 * the pages which were not successfully invalidated in
1109 		 * truncate_complete_page().  We try to drop those buffers here
1110 		 * and if that worked, and the page is no longer mapped into
1111 		 * process address space (page_count == 1) it can be freed.
1112 		 * Otherwise, leave the page on the LRU so it is swappable.
1113 		 */
1114 		if (page_has_private(page)) {
1115 			if (!try_to_release_page(page, sc->gfp_mask))
1116 				goto activate_locked;
1117 			if (!mapping && page_count(page) == 1) {
1118 				unlock_page(page);
1119 				if (put_page_testzero(page))
1120 					goto free_it;
1121 				else {
1122 					/*
1123 					 * rare race with speculative reference.
1124 					 * the speculative reference will free
1125 					 * this page shortly, so we may
1126 					 * increment nr_reclaimed here (and
1127 					 * leave it off the LRU).
1128 					 */
1129 					nr_reclaimed++;
1130 					continue;
1131 				}
1132 			}
1133 		}
1134 
1135 		if (!mapping || !__remove_mapping(mapping, page, true))
1136 			goto keep_locked;
1137 
1138 		/*
1139 		 * At this point, we have no other references and there is
1140 		 * no way to pick any more up (removed from LRU, removed
1141 		 * from pagecache). Can use non-atomic bitops now (and
1142 		 * we obviously don't have to worry about waking up a process
1143 		 * waiting on the page lock, because there are no references.
1144 		 */
1145 		__clear_page_locked(page);
1146 free_it:
1147 		nr_reclaimed++;
1148 
1149 		/*
1150 		 * Is there need to periodically free_page_list? It would
1151 		 * appear not as the counts should be low
1152 		 */
1153 		list_add(&page->lru, &free_pages);
1154 		continue;
1155 
1156 cull_mlocked:
1157 		if (PageSwapCache(page))
1158 			try_to_free_swap(page);
1159 		unlock_page(page);
1160 		putback_lru_page(page);
1161 		continue;
1162 
1163 activate_locked:
1164 		/* Not a candidate for swapping, so reclaim swap space. */
1165 		if (PageSwapCache(page) && vm_swap_full())
1166 			try_to_free_swap(page);
1167 		VM_BUG_ON_PAGE(PageActive(page), page);
1168 		SetPageActive(page);
1169 		pgactivate++;
1170 keep_locked:
1171 		unlock_page(page);
1172 keep:
1173 		list_add(&page->lru, &ret_pages);
1174 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1175 	}
1176 
1177 	mem_cgroup_uncharge_list(&free_pages);
1178 	free_hot_cold_page_list(&free_pages, true);
1179 
1180 	list_splice(&ret_pages, page_list);
1181 	count_vm_events(PGACTIVATE, pgactivate);
1182 
1183 	*ret_nr_dirty += nr_dirty;
1184 	*ret_nr_congested += nr_congested;
1185 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1186 	*ret_nr_writeback += nr_writeback;
1187 	*ret_nr_immediate += nr_immediate;
1188 	return nr_reclaimed;
1189 }
1190 
1191 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1192 					    struct list_head *page_list)
1193 {
1194 	struct scan_control sc = {
1195 		.gfp_mask = GFP_KERNEL,
1196 		.priority = DEF_PRIORITY,
1197 		.may_unmap = 1,
1198 	};
1199 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1200 	struct page *page, *next;
1201 	LIST_HEAD(clean_pages);
1202 
1203 	list_for_each_entry_safe(page, next, page_list, lru) {
1204 		if (page_is_file_cache(page) && !PageDirty(page) &&
1205 		    !isolated_balloon_page(page)) {
1206 			ClearPageActive(page);
1207 			list_move(&page->lru, &clean_pages);
1208 		}
1209 	}
1210 
1211 	ret = shrink_page_list(&clean_pages, zone, &sc,
1212 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1213 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1214 	list_splice(&clean_pages, page_list);
1215 	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1216 	return ret;
1217 }
1218 
1219 /*
1220  * Attempt to remove the specified page from its LRU.  Only take this page
1221  * if it is of the appropriate PageActive status.  Pages which are being
1222  * freed elsewhere are also ignored.
1223  *
1224  * page:	page to consider
1225  * mode:	one of the LRU isolation modes defined above
1226  *
1227  * returns 0 on success, -ve errno on failure.
1228  */
1229 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1230 {
1231 	int ret = -EINVAL;
1232 
1233 	/* Only take pages on the LRU. */
1234 	if (!PageLRU(page))
1235 		return ret;
1236 
1237 	/* Compaction should not handle unevictable pages but CMA can do so */
1238 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1239 		return ret;
1240 
1241 	ret = -EBUSY;
1242 
1243 	/*
1244 	 * To minimise LRU disruption, the caller can indicate that it only
1245 	 * wants to isolate pages it will be able to operate on without
1246 	 * blocking - clean pages for the most part.
1247 	 *
1248 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1249 	 * is used by reclaim when it is cannot write to backing storage
1250 	 *
1251 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1252 	 * that it is possible to migrate without blocking
1253 	 */
1254 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1255 		/* All the caller can do on PageWriteback is block */
1256 		if (PageWriteback(page))
1257 			return ret;
1258 
1259 		if (PageDirty(page)) {
1260 			struct address_space *mapping;
1261 
1262 			/* ISOLATE_CLEAN means only clean pages */
1263 			if (mode & ISOLATE_CLEAN)
1264 				return ret;
1265 
1266 			/*
1267 			 * Only pages without mappings or that have a
1268 			 * ->migratepage callback are possible to migrate
1269 			 * without blocking
1270 			 */
1271 			mapping = page_mapping(page);
1272 			if (mapping && !mapping->a_ops->migratepage)
1273 				return ret;
1274 		}
1275 	}
1276 
1277 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1278 		return ret;
1279 
1280 	if (likely(get_page_unless_zero(page))) {
1281 		/*
1282 		 * Be careful not to clear PageLRU until after we're
1283 		 * sure the page is not being freed elsewhere -- the
1284 		 * page release code relies on it.
1285 		 */
1286 		ClearPageLRU(page);
1287 		ret = 0;
1288 	}
1289 
1290 	return ret;
1291 }
1292 
1293 /*
1294  * zone->lru_lock is heavily contended.  Some of the functions that
1295  * shrink the lists perform better by taking out a batch of pages
1296  * and working on them outside the LRU lock.
1297  *
1298  * For pagecache intensive workloads, this function is the hottest
1299  * spot in the kernel (apart from copy_*_user functions).
1300  *
1301  * Appropriate locks must be held before calling this function.
1302  *
1303  * @nr_to_scan:	The number of pages to look through on the list.
1304  * @lruvec:	The LRU vector to pull pages from.
1305  * @dst:	The temp list to put pages on to.
1306  * @nr_scanned:	The number of pages that were scanned.
1307  * @sc:		The scan_control struct for this reclaim session
1308  * @mode:	One of the LRU isolation modes
1309  * @lru:	LRU list id for isolating
1310  *
1311  * returns how many pages were moved onto *@dst.
1312  */
1313 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1314 		struct lruvec *lruvec, struct list_head *dst,
1315 		unsigned long *nr_scanned, struct scan_control *sc,
1316 		isolate_mode_t mode, enum lru_list lru)
1317 {
1318 	struct list_head *src = &lruvec->lists[lru];
1319 	unsigned long nr_taken = 0;
1320 	unsigned long scan;
1321 
1322 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1323 		struct page *page;
1324 		int nr_pages;
1325 
1326 		page = lru_to_page(src);
1327 		prefetchw_prev_lru_page(page, src, flags);
1328 
1329 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1330 
1331 		switch (__isolate_lru_page(page, mode)) {
1332 		case 0:
1333 			nr_pages = hpage_nr_pages(page);
1334 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1335 			list_move(&page->lru, dst);
1336 			nr_taken += nr_pages;
1337 			break;
1338 
1339 		case -EBUSY:
1340 			/* else it is being freed elsewhere */
1341 			list_move(&page->lru, src);
1342 			continue;
1343 
1344 		default:
1345 			BUG();
1346 		}
1347 	}
1348 
1349 	*nr_scanned = scan;
1350 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1351 				    nr_taken, mode, is_file_lru(lru));
1352 	return nr_taken;
1353 }
1354 
1355 /**
1356  * isolate_lru_page - tries to isolate a page from its LRU list
1357  * @page: page to isolate from its LRU list
1358  *
1359  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1360  * vmstat statistic corresponding to whatever LRU list the page was on.
1361  *
1362  * Returns 0 if the page was removed from an LRU list.
1363  * Returns -EBUSY if the page was not on an LRU list.
1364  *
1365  * The returned page will have PageLRU() cleared.  If it was found on
1366  * the active list, it will have PageActive set.  If it was found on
1367  * the unevictable list, it will have the PageUnevictable bit set. That flag
1368  * may need to be cleared by the caller before letting the page go.
1369  *
1370  * The vmstat statistic corresponding to the list on which the page was
1371  * found will be decremented.
1372  *
1373  * Restrictions:
1374  * (1) Must be called with an elevated refcount on the page. This is a
1375  *     fundamentnal difference from isolate_lru_pages (which is called
1376  *     without a stable reference).
1377  * (2) the lru_lock must not be held.
1378  * (3) interrupts must be enabled.
1379  */
1380 int isolate_lru_page(struct page *page)
1381 {
1382 	int ret = -EBUSY;
1383 
1384 	VM_BUG_ON_PAGE(!page_count(page), page);
1385 
1386 	if (PageLRU(page)) {
1387 		struct zone *zone = page_zone(page);
1388 		struct lruvec *lruvec;
1389 
1390 		spin_lock_irq(&zone->lru_lock);
1391 		lruvec = mem_cgroup_page_lruvec(page, zone);
1392 		if (PageLRU(page)) {
1393 			int lru = page_lru(page);
1394 			get_page(page);
1395 			ClearPageLRU(page);
1396 			del_page_from_lru_list(page, lruvec, lru);
1397 			ret = 0;
1398 		}
1399 		spin_unlock_irq(&zone->lru_lock);
1400 	}
1401 	return ret;
1402 }
1403 
1404 /*
1405  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1406  * then get resheduled. When there are massive number of tasks doing page
1407  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1408  * the LRU list will go small and be scanned faster than necessary, leading to
1409  * unnecessary swapping, thrashing and OOM.
1410  */
1411 static int too_many_isolated(struct zone *zone, int file,
1412 		struct scan_control *sc)
1413 {
1414 	unsigned long inactive, isolated;
1415 
1416 	if (current_is_kswapd())
1417 		return 0;
1418 
1419 	if (!global_reclaim(sc))
1420 		return 0;
1421 
1422 	if (file) {
1423 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1424 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1425 	} else {
1426 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1427 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1428 	}
1429 
1430 	/*
1431 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1432 	 * won't get blocked by normal direct-reclaimers, forming a circular
1433 	 * deadlock.
1434 	 */
1435 	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1436 		inactive >>= 3;
1437 
1438 	return isolated > inactive;
1439 }
1440 
1441 static noinline_for_stack void
1442 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1443 {
1444 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1445 	struct zone *zone = lruvec_zone(lruvec);
1446 	LIST_HEAD(pages_to_free);
1447 
1448 	/*
1449 	 * Put back any unfreeable pages.
1450 	 */
1451 	while (!list_empty(page_list)) {
1452 		struct page *page = lru_to_page(page_list);
1453 		int lru;
1454 
1455 		VM_BUG_ON_PAGE(PageLRU(page), page);
1456 		list_del(&page->lru);
1457 		if (unlikely(!page_evictable(page))) {
1458 			spin_unlock_irq(&zone->lru_lock);
1459 			putback_lru_page(page);
1460 			spin_lock_irq(&zone->lru_lock);
1461 			continue;
1462 		}
1463 
1464 		lruvec = mem_cgroup_page_lruvec(page, zone);
1465 
1466 		SetPageLRU(page);
1467 		lru = page_lru(page);
1468 		add_page_to_lru_list(page, lruvec, lru);
1469 
1470 		if (is_active_lru(lru)) {
1471 			int file = is_file_lru(lru);
1472 			int numpages = hpage_nr_pages(page);
1473 			reclaim_stat->recent_rotated[file] += numpages;
1474 		}
1475 		if (put_page_testzero(page)) {
1476 			__ClearPageLRU(page);
1477 			__ClearPageActive(page);
1478 			del_page_from_lru_list(page, lruvec, lru);
1479 
1480 			if (unlikely(PageCompound(page))) {
1481 				spin_unlock_irq(&zone->lru_lock);
1482 				mem_cgroup_uncharge(page);
1483 				(*get_compound_page_dtor(page))(page);
1484 				spin_lock_irq(&zone->lru_lock);
1485 			} else
1486 				list_add(&page->lru, &pages_to_free);
1487 		}
1488 	}
1489 
1490 	/*
1491 	 * To save our caller's stack, now use input list for pages to free.
1492 	 */
1493 	list_splice(&pages_to_free, page_list);
1494 }
1495 
1496 /*
1497  * If a kernel thread (such as nfsd for loop-back mounts) services
1498  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1499  * In that case we should only throttle if the backing device it is
1500  * writing to is congested.  In other cases it is safe to throttle.
1501  */
1502 static int current_may_throttle(void)
1503 {
1504 	return !(current->flags & PF_LESS_THROTTLE) ||
1505 		current->backing_dev_info == NULL ||
1506 		bdi_write_congested(current->backing_dev_info);
1507 }
1508 
1509 /*
1510  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1511  * of reclaimed pages
1512  */
1513 static noinline_for_stack unsigned long
1514 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1515 		     struct scan_control *sc, enum lru_list lru)
1516 {
1517 	LIST_HEAD(page_list);
1518 	unsigned long nr_scanned;
1519 	unsigned long nr_reclaimed = 0;
1520 	unsigned long nr_taken;
1521 	unsigned long nr_dirty = 0;
1522 	unsigned long nr_congested = 0;
1523 	unsigned long nr_unqueued_dirty = 0;
1524 	unsigned long nr_writeback = 0;
1525 	unsigned long nr_immediate = 0;
1526 	isolate_mode_t isolate_mode = 0;
1527 	int file = is_file_lru(lru);
1528 	struct zone *zone = lruvec_zone(lruvec);
1529 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1530 
1531 	while (unlikely(too_many_isolated(zone, file, sc))) {
1532 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1533 
1534 		/* We are about to die and free our memory. Return now. */
1535 		if (fatal_signal_pending(current))
1536 			return SWAP_CLUSTER_MAX;
1537 	}
1538 
1539 	lru_add_drain();
1540 
1541 	if (!sc->may_unmap)
1542 		isolate_mode |= ISOLATE_UNMAPPED;
1543 	if (!sc->may_writepage)
1544 		isolate_mode |= ISOLATE_CLEAN;
1545 
1546 	spin_lock_irq(&zone->lru_lock);
1547 
1548 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1549 				     &nr_scanned, sc, isolate_mode, lru);
1550 
1551 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1552 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1553 
1554 	if (global_reclaim(sc)) {
1555 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1556 		if (current_is_kswapd())
1557 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1558 		else
1559 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1560 	}
1561 	spin_unlock_irq(&zone->lru_lock);
1562 
1563 	if (nr_taken == 0)
1564 		return 0;
1565 
1566 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1567 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1568 				&nr_writeback, &nr_immediate,
1569 				false);
1570 
1571 	spin_lock_irq(&zone->lru_lock);
1572 
1573 	reclaim_stat->recent_scanned[file] += nr_taken;
1574 
1575 	if (global_reclaim(sc)) {
1576 		if (current_is_kswapd())
1577 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1578 					       nr_reclaimed);
1579 		else
1580 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1581 					       nr_reclaimed);
1582 	}
1583 
1584 	putback_inactive_pages(lruvec, &page_list);
1585 
1586 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1587 
1588 	spin_unlock_irq(&zone->lru_lock);
1589 
1590 	mem_cgroup_uncharge_list(&page_list);
1591 	free_hot_cold_page_list(&page_list, true);
1592 
1593 	/*
1594 	 * If reclaim is isolating dirty pages under writeback, it implies
1595 	 * that the long-lived page allocation rate is exceeding the page
1596 	 * laundering rate. Either the global limits are not being effective
1597 	 * at throttling processes due to the page distribution throughout
1598 	 * zones or there is heavy usage of a slow backing device. The
1599 	 * only option is to throttle from reclaim context which is not ideal
1600 	 * as there is no guarantee the dirtying process is throttled in the
1601 	 * same way balance_dirty_pages() manages.
1602 	 *
1603 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1604 	 * of pages under pages flagged for immediate reclaim and stall if any
1605 	 * are encountered in the nr_immediate check below.
1606 	 */
1607 	if (nr_writeback && nr_writeback == nr_taken)
1608 		set_bit(ZONE_WRITEBACK, &zone->flags);
1609 
1610 	/*
1611 	 * memcg will stall in page writeback so only consider forcibly
1612 	 * stalling for global reclaim
1613 	 */
1614 	if (global_reclaim(sc)) {
1615 		/*
1616 		 * Tag a zone as congested if all the dirty pages scanned were
1617 		 * backed by a congested BDI and wait_iff_congested will stall.
1618 		 */
1619 		if (nr_dirty && nr_dirty == nr_congested)
1620 			set_bit(ZONE_CONGESTED, &zone->flags);
1621 
1622 		/*
1623 		 * If dirty pages are scanned that are not queued for IO, it
1624 		 * implies that flushers are not keeping up. In this case, flag
1625 		 * the zone ZONE_DIRTY and kswapd will start writing pages from
1626 		 * reclaim context.
1627 		 */
1628 		if (nr_unqueued_dirty == nr_taken)
1629 			set_bit(ZONE_DIRTY, &zone->flags);
1630 
1631 		/*
1632 		 * If kswapd scans pages marked marked for immediate
1633 		 * reclaim and under writeback (nr_immediate), it implies
1634 		 * that pages are cycling through the LRU faster than
1635 		 * they are written so also forcibly stall.
1636 		 */
1637 		if (nr_immediate && current_may_throttle())
1638 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1639 	}
1640 
1641 	/*
1642 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1643 	 * is congested. Allow kswapd to continue until it starts encountering
1644 	 * unqueued dirty pages or cycling through the LRU too quickly.
1645 	 */
1646 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1647 	    current_may_throttle())
1648 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1649 
1650 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1651 		zone_idx(zone),
1652 		nr_scanned, nr_reclaimed,
1653 		sc->priority,
1654 		trace_shrink_flags(file));
1655 	return nr_reclaimed;
1656 }
1657 
1658 /*
1659  * This moves pages from the active list to the inactive list.
1660  *
1661  * We move them the other way if the page is referenced by one or more
1662  * processes, from rmap.
1663  *
1664  * If the pages are mostly unmapped, the processing is fast and it is
1665  * appropriate to hold zone->lru_lock across the whole operation.  But if
1666  * the pages are mapped, the processing is slow (page_referenced()) so we
1667  * should drop zone->lru_lock around each page.  It's impossible to balance
1668  * this, so instead we remove the pages from the LRU while processing them.
1669  * It is safe to rely on PG_active against the non-LRU pages in here because
1670  * nobody will play with that bit on a non-LRU page.
1671  *
1672  * The downside is that we have to touch page->_count against each page.
1673  * But we had to alter page->flags anyway.
1674  */
1675 
1676 static void move_active_pages_to_lru(struct lruvec *lruvec,
1677 				     struct list_head *list,
1678 				     struct list_head *pages_to_free,
1679 				     enum lru_list lru)
1680 {
1681 	struct zone *zone = lruvec_zone(lruvec);
1682 	unsigned long pgmoved = 0;
1683 	struct page *page;
1684 	int nr_pages;
1685 
1686 	while (!list_empty(list)) {
1687 		page = lru_to_page(list);
1688 		lruvec = mem_cgroup_page_lruvec(page, zone);
1689 
1690 		VM_BUG_ON_PAGE(PageLRU(page), page);
1691 		SetPageLRU(page);
1692 
1693 		nr_pages = hpage_nr_pages(page);
1694 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1695 		list_move(&page->lru, &lruvec->lists[lru]);
1696 		pgmoved += nr_pages;
1697 
1698 		if (put_page_testzero(page)) {
1699 			__ClearPageLRU(page);
1700 			__ClearPageActive(page);
1701 			del_page_from_lru_list(page, lruvec, lru);
1702 
1703 			if (unlikely(PageCompound(page))) {
1704 				spin_unlock_irq(&zone->lru_lock);
1705 				mem_cgroup_uncharge(page);
1706 				(*get_compound_page_dtor(page))(page);
1707 				spin_lock_irq(&zone->lru_lock);
1708 			} else
1709 				list_add(&page->lru, pages_to_free);
1710 		}
1711 	}
1712 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1713 	if (!is_active_lru(lru))
1714 		__count_vm_events(PGDEACTIVATE, pgmoved);
1715 }
1716 
1717 static void shrink_active_list(unsigned long nr_to_scan,
1718 			       struct lruvec *lruvec,
1719 			       struct scan_control *sc,
1720 			       enum lru_list lru)
1721 {
1722 	unsigned long nr_taken;
1723 	unsigned long nr_scanned;
1724 	unsigned long vm_flags;
1725 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1726 	LIST_HEAD(l_active);
1727 	LIST_HEAD(l_inactive);
1728 	struct page *page;
1729 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1730 	unsigned long nr_rotated = 0;
1731 	isolate_mode_t isolate_mode = 0;
1732 	int file = is_file_lru(lru);
1733 	struct zone *zone = lruvec_zone(lruvec);
1734 
1735 	lru_add_drain();
1736 
1737 	if (!sc->may_unmap)
1738 		isolate_mode |= ISOLATE_UNMAPPED;
1739 	if (!sc->may_writepage)
1740 		isolate_mode |= ISOLATE_CLEAN;
1741 
1742 	spin_lock_irq(&zone->lru_lock);
1743 
1744 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1745 				     &nr_scanned, sc, isolate_mode, lru);
1746 	if (global_reclaim(sc))
1747 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1748 
1749 	reclaim_stat->recent_scanned[file] += nr_taken;
1750 
1751 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1752 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1753 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1754 	spin_unlock_irq(&zone->lru_lock);
1755 
1756 	while (!list_empty(&l_hold)) {
1757 		cond_resched();
1758 		page = lru_to_page(&l_hold);
1759 		list_del(&page->lru);
1760 
1761 		if (unlikely(!page_evictable(page))) {
1762 			putback_lru_page(page);
1763 			continue;
1764 		}
1765 
1766 		if (unlikely(buffer_heads_over_limit)) {
1767 			if (page_has_private(page) && trylock_page(page)) {
1768 				if (page_has_private(page))
1769 					try_to_release_page(page, 0);
1770 				unlock_page(page);
1771 			}
1772 		}
1773 
1774 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1775 				    &vm_flags)) {
1776 			nr_rotated += hpage_nr_pages(page);
1777 			/*
1778 			 * Identify referenced, file-backed active pages and
1779 			 * give them one more trip around the active list. So
1780 			 * that executable code get better chances to stay in
1781 			 * memory under moderate memory pressure.  Anon pages
1782 			 * are not likely to be evicted by use-once streaming
1783 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1784 			 * so we ignore them here.
1785 			 */
1786 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1787 				list_add(&page->lru, &l_active);
1788 				continue;
1789 			}
1790 		}
1791 
1792 		ClearPageActive(page);	/* we are de-activating */
1793 		list_add(&page->lru, &l_inactive);
1794 	}
1795 
1796 	/*
1797 	 * Move pages back to the lru list.
1798 	 */
1799 	spin_lock_irq(&zone->lru_lock);
1800 	/*
1801 	 * Count referenced pages from currently used mappings as rotated,
1802 	 * even though only some of them are actually re-activated.  This
1803 	 * helps balance scan pressure between file and anonymous pages in
1804 	 * get_scan_count.
1805 	 */
1806 	reclaim_stat->recent_rotated[file] += nr_rotated;
1807 
1808 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1809 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1810 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1811 	spin_unlock_irq(&zone->lru_lock);
1812 
1813 	mem_cgroup_uncharge_list(&l_hold);
1814 	free_hot_cold_page_list(&l_hold, true);
1815 }
1816 
1817 #ifdef CONFIG_SWAP
1818 static int inactive_anon_is_low_global(struct zone *zone)
1819 {
1820 	unsigned long active, inactive;
1821 
1822 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1823 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1824 
1825 	if (inactive * zone->inactive_ratio < active)
1826 		return 1;
1827 
1828 	return 0;
1829 }
1830 
1831 /**
1832  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1833  * @lruvec: LRU vector to check
1834  *
1835  * Returns true if the zone does not have enough inactive anon pages,
1836  * meaning some active anon pages need to be deactivated.
1837  */
1838 static int inactive_anon_is_low(struct lruvec *lruvec)
1839 {
1840 	/*
1841 	 * If we don't have swap space, anonymous page deactivation
1842 	 * is pointless.
1843 	 */
1844 	if (!total_swap_pages)
1845 		return 0;
1846 
1847 	if (!mem_cgroup_disabled())
1848 		return mem_cgroup_inactive_anon_is_low(lruvec);
1849 
1850 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1851 }
1852 #else
1853 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1854 {
1855 	return 0;
1856 }
1857 #endif
1858 
1859 /**
1860  * inactive_file_is_low - check if file pages need to be deactivated
1861  * @lruvec: LRU vector to check
1862  *
1863  * When the system is doing streaming IO, memory pressure here
1864  * ensures that active file pages get deactivated, until more
1865  * than half of the file pages are on the inactive list.
1866  *
1867  * Once we get to that situation, protect the system's working
1868  * set from being evicted by disabling active file page aging.
1869  *
1870  * This uses a different ratio than the anonymous pages, because
1871  * the page cache uses a use-once replacement algorithm.
1872  */
1873 static int inactive_file_is_low(struct lruvec *lruvec)
1874 {
1875 	unsigned long inactive;
1876 	unsigned long active;
1877 
1878 	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1879 	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1880 
1881 	return active > inactive;
1882 }
1883 
1884 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1885 {
1886 	if (is_file_lru(lru))
1887 		return inactive_file_is_low(lruvec);
1888 	else
1889 		return inactive_anon_is_low(lruvec);
1890 }
1891 
1892 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1893 				 struct lruvec *lruvec, struct scan_control *sc)
1894 {
1895 	if (is_active_lru(lru)) {
1896 		if (inactive_list_is_low(lruvec, lru))
1897 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1898 		return 0;
1899 	}
1900 
1901 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1902 }
1903 
1904 enum scan_balance {
1905 	SCAN_EQUAL,
1906 	SCAN_FRACT,
1907 	SCAN_ANON,
1908 	SCAN_FILE,
1909 };
1910 
1911 /*
1912  * Determine how aggressively the anon and file LRU lists should be
1913  * scanned.  The relative value of each set of LRU lists is determined
1914  * by looking at the fraction of the pages scanned we did rotate back
1915  * onto the active list instead of evict.
1916  *
1917  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1918  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1919  */
1920 static void get_scan_count(struct lruvec *lruvec, int swappiness,
1921 			   struct scan_control *sc, unsigned long *nr,
1922 			   unsigned long *lru_pages)
1923 {
1924 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1925 	u64 fraction[2];
1926 	u64 denominator = 0;	/* gcc */
1927 	struct zone *zone = lruvec_zone(lruvec);
1928 	unsigned long anon_prio, file_prio;
1929 	enum scan_balance scan_balance;
1930 	unsigned long anon, file;
1931 	bool force_scan = false;
1932 	unsigned long ap, fp;
1933 	enum lru_list lru;
1934 	bool some_scanned;
1935 	int pass;
1936 
1937 	/*
1938 	 * If the zone or memcg is small, nr[l] can be 0.  This
1939 	 * results in no scanning on this priority and a potential
1940 	 * priority drop.  Global direct reclaim can go to the next
1941 	 * zone and tends to have no problems. Global kswapd is for
1942 	 * zone balancing and it needs to scan a minimum amount. When
1943 	 * reclaiming for a memcg, a priority drop can cause high
1944 	 * latencies, so it's better to scan a minimum amount there as
1945 	 * well.
1946 	 */
1947 	if (current_is_kswapd()) {
1948 		if (!zone_reclaimable(zone))
1949 			force_scan = true;
1950 		if (!mem_cgroup_lruvec_online(lruvec))
1951 			force_scan = true;
1952 	}
1953 	if (!global_reclaim(sc))
1954 		force_scan = true;
1955 
1956 	/* If we have no swap space, do not bother scanning anon pages. */
1957 	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1958 		scan_balance = SCAN_FILE;
1959 		goto out;
1960 	}
1961 
1962 	/*
1963 	 * Global reclaim will swap to prevent OOM even with no
1964 	 * swappiness, but memcg users want to use this knob to
1965 	 * disable swapping for individual groups completely when
1966 	 * using the memory controller's swap limit feature would be
1967 	 * too expensive.
1968 	 */
1969 	if (!global_reclaim(sc) && !swappiness) {
1970 		scan_balance = SCAN_FILE;
1971 		goto out;
1972 	}
1973 
1974 	/*
1975 	 * Do not apply any pressure balancing cleverness when the
1976 	 * system is close to OOM, scan both anon and file equally
1977 	 * (unless the swappiness setting disagrees with swapping).
1978 	 */
1979 	if (!sc->priority && swappiness) {
1980 		scan_balance = SCAN_EQUAL;
1981 		goto out;
1982 	}
1983 
1984 	/*
1985 	 * Prevent the reclaimer from falling into the cache trap: as
1986 	 * cache pages start out inactive, every cache fault will tip
1987 	 * the scan balance towards the file LRU.  And as the file LRU
1988 	 * shrinks, so does the window for rotation from references.
1989 	 * This means we have a runaway feedback loop where a tiny
1990 	 * thrashing file LRU becomes infinitely more attractive than
1991 	 * anon pages.  Try to detect this based on file LRU size.
1992 	 */
1993 	if (global_reclaim(sc)) {
1994 		unsigned long zonefile;
1995 		unsigned long zonefree;
1996 
1997 		zonefree = zone_page_state(zone, NR_FREE_PAGES);
1998 		zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
1999 			   zone_page_state(zone, NR_INACTIVE_FILE);
2000 
2001 		if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2002 			scan_balance = SCAN_ANON;
2003 			goto out;
2004 		}
2005 	}
2006 
2007 	/*
2008 	 * There is enough inactive page cache, do not reclaim
2009 	 * anything from the anonymous working set right now.
2010 	 */
2011 	if (!inactive_file_is_low(lruvec)) {
2012 		scan_balance = SCAN_FILE;
2013 		goto out;
2014 	}
2015 
2016 	scan_balance = SCAN_FRACT;
2017 
2018 	/*
2019 	 * With swappiness at 100, anonymous and file have the same priority.
2020 	 * This scanning priority is essentially the inverse of IO cost.
2021 	 */
2022 	anon_prio = swappiness;
2023 	file_prio = 200 - anon_prio;
2024 
2025 	/*
2026 	 * OK, so we have swap space and a fair amount of page cache
2027 	 * pages.  We use the recently rotated / recently scanned
2028 	 * ratios to determine how valuable each cache is.
2029 	 *
2030 	 * Because workloads change over time (and to avoid overflow)
2031 	 * we keep these statistics as a floating average, which ends
2032 	 * up weighing recent references more than old ones.
2033 	 *
2034 	 * anon in [0], file in [1]
2035 	 */
2036 
2037 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2038 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
2039 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2040 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
2041 
2042 	spin_lock_irq(&zone->lru_lock);
2043 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2044 		reclaim_stat->recent_scanned[0] /= 2;
2045 		reclaim_stat->recent_rotated[0] /= 2;
2046 	}
2047 
2048 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2049 		reclaim_stat->recent_scanned[1] /= 2;
2050 		reclaim_stat->recent_rotated[1] /= 2;
2051 	}
2052 
2053 	/*
2054 	 * The amount of pressure on anon vs file pages is inversely
2055 	 * proportional to the fraction of recently scanned pages on
2056 	 * each list that were recently referenced and in active use.
2057 	 */
2058 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2059 	ap /= reclaim_stat->recent_rotated[0] + 1;
2060 
2061 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2062 	fp /= reclaim_stat->recent_rotated[1] + 1;
2063 	spin_unlock_irq(&zone->lru_lock);
2064 
2065 	fraction[0] = ap;
2066 	fraction[1] = fp;
2067 	denominator = ap + fp + 1;
2068 out:
2069 	some_scanned = false;
2070 	/* Only use force_scan on second pass. */
2071 	for (pass = 0; !some_scanned && pass < 2; pass++) {
2072 		*lru_pages = 0;
2073 		for_each_evictable_lru(lru) {
2074 			int file = is_file_lru(lru);
2075 			unsigned long size;
2076 			unsigned long scan;
2077 
2078 			size = get_lru_size(lruvec, lru);
2079 			scan = size >> sc->priority;
2080 
2081 			if (!scan && pass && force_scan)
2082 				scan = min(size, SWAP_CLUSTER_MAX);
2083 
2084 			switch (scan_balance) {
2085 			case SCAN_EQUAL:
2086 				/* Scan lists relative to size */
2087 				break;
2088 			case SCAN_FRACT:
2089 				/*
2090 				 * Scan types proportional to swappiness and
2091 				 * their relative recent reclaim efficiency.
2092 				 */
2093 				scan = div64_u64(scan * fraction[file],
2094 							denominator);
2095 				break;
2096 			case SCAN_FILE:
2097 			case SCAN_ANON:
2098 				/* Scan one type exclusively */
2099 				if ((scan_balance == SCAN_FILE) != file) {
2100 					size = 0;
2101 					scan = 0;
2102 				}
2103 				break;
2104 			default:
2105 				/* Look ma, no brain */
2106 				BUG();
2107 			}
2108 
2109 			*lru_pages += size;
2110 			nr[lru] = scan;
2111 
2112 			/*
2113 			 * Skip the second pass and don't force_scan,
2114 			 * if we found something to scan.
2115 			 */
2116 			some_scanned |= !!scan;
2117 		}
2118 	}
2119 }
2120 
2121 /*
2122  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2123  */
2124 static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2125 			  struct scan_control *sc, unsigned long *lru_pages)
2126 {
2127 	unsigned long nr[NR_LRU_LISTS];
2128 	unsigned long targets[NR_LRU_LISTS];
2129 	unsigned long nr_to_scan;
2130 	enum lru_list lru;
2131 	unsigned long nr_reclaimed = 0;
2132 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2133 	struct blk_plug plug;
2134 	bool scan_adjusted;
2135 
2136 	get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
2137 
2138 	/* Record the original scan target for proportional adjustments later */
2139 	memcpy(targets, nr, sizeof(nr));
2140 
2141 	/*
2142 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2143 	 * event that can occur when there is little memory pressure e.g.
2144 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2145 	 * when the requested number of pages are reclaimed when scanning at
2146 	 * DEF_PRIORITY on the assumption that the fact we are direct
2147 	 * reclaiming implies that kswapd is not keeping up and it is best to
2148 	 * do a batch of work at once. For memcg reclaim one check is made to
2149 	 * abort proportional reclaim if either the file or anon lru has already
2150 	 * dropped to zero at the first pass.
2151 	 */
2152 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2153 			 sc->priority == DEF_PRIORITY);
2154 
2155 	blk_start_plug(&plug);
2156 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2157 					nr[LRU_INACTIVE_FILE]) {
2158 		unsigned long nr_anon, nr_file, percentage;
2159 		unsigned long nr_scanned;
2160 
2161 		for_each_evictable_lru(lru) {
2162 			if (nr[lru]) {
2163 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2164 				nr[lru] -= nr_to_scan;
2165 
2166 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2167 							    lruvec, sc);
2168 			}
2169 		}
2170 
2171 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2172 			continue;
2173 
2174 		/*
2175 		 * For kswapd and memcg, reclaim at least the number of pages
2176 		 * requested. Ensure that the anon and file LRUs are scanned
2177 		 * proportionally what was requested by get_scan_count(). We
2178 		 * stop reclaiming one LRU and reduce the amount scanning
2179 		 * proportional to the original scan target.
2180 		 */
2181 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2182 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2183 
2184 		/*
2185 		 * It's just vindictive to attack the larger once the smaller
2186 		 * has gone to zero.  And given the way we stop scanning the
2187 		 * smaller below, this makes sure that we only make one nudge
2188 		 * towards proportionality once we've got nr_to_reclaim.
2189 		 */
2190 		if (!nr_file || !nr_anon)
2191 			break;
2192 
2193 		if (nr_file > nr_anon) {
2194 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2195 						targets[LRU_ACTIVE_ANON] + 1;
2196 			lru = LRU_BASE;
2197 			percentage = nr_anon * 100 / scan_target;
2198 		} else {
2199 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2200 						targets[LRU_ACTIVE_FILE] + 1;
2201 			lru = LRU_FILE;
2202 			percentage = nr_file * 100 / scan_target;
2203 		}
2204 
2205 		/* Stop scanning the smaller of the LRU */
2206 		nr[lru] = 0;
2207 		nr[lru + LRU_ACTIVE] = 0;
2208 
2209 		/*
2210 		 * Recalculate the other LRU scan count based on its original
2211 		 * scan target and the percentage scanning already complete
2212 		 */
2213 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2214 		nr_scanned = targets[lru] - nr[lru];
2215 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2216 		nr[lru] -= min(nr[lru], nr_scanned);
2217 
2218 		lru += LRU_ACTIVE;
2219 		nr_scanned = targets[lru] - nr[lru];
2220 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2221 		nr[lru] -= min(nr[lru], nr_scanned);
2222 
2223 		scan_adjusted = true;
2224 	}
2225 	blk_finish_plug(&plug);
2226 	sc->nr_reclaimed += nr_reclaimed;
2227 
2228 	/*
2229 	 * Even if we did not try to evict anon pages at all, we want to
2230 	 * rebalance the anon lru active/inactive ratio.
2231 	 */
2232 	if (inactive_anon_is_low(lruvec))
2233 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2234 				   sc, LRU_ACTIVE_ANON);
2235 
2236 	throttle_vm_writeout(sc->gfp_mask);
2237 }
2238 
2239 /* Use reclaim/compaction for costly allocs or under memory pressure */
2240 static bool in_reclaim_compaction(struct scan_control *sc)
2241 {
2242 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2243 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2244 			 sc->priority < DEF_PRIORITY - 2))
2245 		return true;
2246 
2247 	return false;
2248 }
2249 
2250 /*
2251  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2252  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2253  * true if more pages should be reclaimed such that when the page allocator
2254  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2255  * It will give up earlier than that if there is difficulty reclaiming pages.
2256  */
2257 static inline bool should_continue_reclaim(struct zone *zone,
2258 					unsigned long nr_reclaimed,
2259 					unsigned long nr_scanned,
2260 					struct scan_control *sc)
2261 {
2262 	unsigned long pages_for_compaction;
2263 	unsigned long inactive_lru_pages;
2264 
2265 	/* If not in reclaim/compaction mode, stop */
2266 	if (!in_reclaim_compaction(sc))
2267 		return false;
2268 
2269 	/* Consider stopping depending on scan and reclaim activity */
2270 	if (sc->gfp_mask & __GFP_REPEAT) {
2271 		/*
2272 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2273 		 * full LRU list has been scanned and we are still failing
2274 		 * to reclaim pages. This full LRU scan is potentially
2275 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2276 		 */
2277 		if (!nr_reclaimed && !nr_scanned)
2278 			return false;
2279 	} else {
2280 		/*
2281 		 * For non-__GFP_REPEAT allocations which can presumably
2282 		 * fail without consequence, stop if we failed to reclaim
2283 		 * any pages from the last SWAP_CLUSTER_MAX number of
2284 		 * pages that were scanned. This will return to the
2285 		 * caller faster at the risk reclaim/compaction and
2286 		 * the resulting allocation attempt fails
2287 		 */
2288 		if (!nr_reclaimed)
2289 			return false;
2290 	}
2291 
2292 	/*
2293 	 * If we have not reclaimed enough pages for compaction and the
2294 	 * inactive lists are large enough, continue reclaiming
2295 	 */
2296 	pages_for_compaction = (2UL << sc->order);
2297 	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2298 	if (get_nr_swap_pages() > 0)
2299 		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2300 	if (sc->nr_reclaimed < pages_for_compaction &&
2301 			inactive_lru_pages > pages_for_compaction)
2302 		return true;
2303 
2304 	/* If compaction would go ahead or the allocation would succeed, stop */
2305 	switch (compaction_suitable(zone, sc->order, 0, 0)) {
2306 	case COMPACT_PARTIAL:
2307 	case COMPACT_CONTINUE:
2308 		return false;
2309 	default:
2310 		return true;
2311 	}
2312 }
2313 
2314 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2315 			bool is_classzone)
2316 {
2317 	struct reclaim_state *reclaim_state = current->reclaim_state;
2318 	unsigned long nr_reclaimed, nr_scanned;
2319 	bool reclaimable = false;
2320 
2321 	do {
2322 		struct mem_cgroup *root = sc->target_mem_cgroup;
2323 		struct mem_cgroup_reclaim_cookie reclaim = {
2324 			.zone = zone,
2325 			.priority = sc->priority,
2326 		};
2327 		unsigned long zone_lru_pages = 0;
2328 		struct mem_cgroup *memcg;
2329 
2330 		nr_reclaimed = sc->nr_reclaimed;
2331 		nr_scanned = sc->nr_scanned;
2332 
2333 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2334 		do {
2335 			unsigned long lru_pages;
2336 			unsigned long scanned;
2337 			struct lruvec *lruvec;
2338 			int swappiness;
2339 
2340 			if (mem_cgroup_low(root, memcg)) {
2341 				if (!sc->may_thrash)
2342 					continue;
2343 				mem_cgroup_events(memcg, MEMCG_LOW, 1);
2344 			}
2345 
2346 			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2347 			swappiness = mem_cgroup_swappiness(memcg);
2348 			scanned = sc->nr_scanned;
2349 
2350 			shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2351 			zone_lru_pages += lru_pages;
2352 
2353 			if (memcg && is_classzone)
2354 				shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2355 					    memcg, sc->nr_scanned - scanned,
2356 					    lru_pages);
2357 
2358 			/*
2359 			 * Direct reclaim and kswapd have to scan all memory
2360 			 * cgroups to fulfill the overall scan target for the
2361 			 * zone.
2362 			 *
2363 			 * Limit reclaim, on the other hand, only cares about
2364 			 * nr_to_reclaim pages to be reclaimed and it will
2365 			 * retry with decreasing priority if one round over the
2366 			 * whole hierarchy is not sufficient.
2367 			 */
2368 			if (!global_reclaim(sc) &&
2369 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2370 				mem_cgroup_iter_break(root, memcg);
2371 				break;
2372 			}
2373 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2374 
2375 		/*
2376 		 * Shrink the slab caches in the same proportion that
2377 		 * the eligible LRU pages were scanned.
2378 		 */
2379 		if (global_reclaim(sc) && is_classzone)
2380 			shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2381 				    sc->nr_scanned - nr_scanned,
2382 				    zone_lru_pages);
2383 
2384 		if (reclaim_state) {
2385 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2386 			reclaim_state->reclaimed_slab = 0;
2387 		}
2388 
2389 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2390 			   sc->nr_scanned - nr_scanned,
2391 			   sc->nr_reclaimed - nr_reclaimed);
2392 
2393 		if (sc->nr_reclaimed - nr_reclaimed)
2394 			reclaimable = true;
2395 
2396 	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2397 					 sc->nr_scanned - nr_scanned, sc));
2398 
2399 	return reclaimable;
2400 }
2401 
2402 /*
2403  * Returns true if compaction should go ahead for a high-order request, or
2404  * the high-order allocation would succeed without compaction.
2405  */
2406 static inline bool compaction_ready(struct zone *zone, int order)
2407 {
2408 	unsigned long balance_gap, watermark;
2409 	bool watermark_ok;
2410 
2411 	/*
2412 	 * Compaction takes time to run and there are potentially other
2413 	 * callers using the pages just freed. Continue reclaiming until
2414 	 * there is a buffer of free pages available to give compaction
2415 	 * a reasonable chance of completing and allocating the page
2416 	 */
2417 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2418 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2419 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2420 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2421 
2422 	/*
2423 	 * If compaction is deferred, reclaim up to a point where
2424 	 * compaction will have a chance of success when re-enabled
2425 	 */
2426 	if (compaction_deferred(zone, order))
2427 		return watermark_ok;
2428 
2429 	/*
2430 	 * If compaction is not ready to start and allocation is not likely
2431 	 * to succeed without it, then keep reclaiming.
2432 	 */
2433 	if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2434 		return false;
2435 
2436 	return watermark_ok;
2437 }
2438 
2439 /*
2440  * This is the direct reclaim path, for page-allocating processes.  We only
2441  * try to reclaim pages from zones which will satisfy the caller's allocation
2442  * request.
2443  *
2444  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2445  * Because:
2446  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2447  *    allocation or
2448  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2449  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2450  *    zone defense algorithm.
2451  *
2452  * If a zone is deemed to be full of pinned pages then just give it a light
2453  * scan then give up on it.
2454  *
2455  * Returns true if a zone was reclaimable.
2456  */
2457 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2458 {
2459 	struct zoneref *z;
2460 	struct zone *zone;
2461 	unsigned long nr_soft_reclaimed;
2462 	unsigned long nr_soft_scanned;
2463 	gfp_t orig_mask;
2464 	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2465 	bool reclaimable = false;
2466 
2467 	/*
2468 	 * If the number of buffer_heads in the machine exceeds the maximum
2469 	 * allowed level, force direct reclaim to scan the highmem zone as
2470 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2471 	 */
2472 	orig_mask = sc->gfp_mask;
2473 	if (buffer_heads_over_limit)
2474 		sc->gfp_mask |= __GFP_HIGHMEM;
2475 
2476 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2477 					requested_highidx, sc->nodemask) {
2478 		enum zone_type classzone_idx;
2479 
2480 		if (!populated_zone(zone))
2481 			continue;
2482 
2483 		classzone_idx = requested_highidx;
2484 		while (!populated_zone(zone->zone_pgdat->node_zones +
2485 							classzone_idx))
2486 			classzone_idx--;
2487 
2488 		/*
2489 		 * Take care memory controller reclaiming has small influence
2490 		 * to global LRU.
2491 		 */
2492 		if (global_reclaim(sc)) {
2493 			if (!cpuset_zone_allowed(zone,
2494 						 GFP_KERNEL | __GFP_HARDWALL))
2495 				continue;
2496 
2497 			if (sc->priority != DEF_PRIORITY &&
2498 			    !zone_reclaimable(zone))
2499 				continue;	/* Let kswapd poll it */
2500 
2501 			/*
2502 			 * If we already have plenty of memory free for
2503 			 * compaction in this zone, don't free any more.
2504 			 * Even though compaction is invoked for any
2505 			 * non-zero order, only frequent costly order
2506 			 * reclamation is disruptive enough to become a
2507 			 * noticeable problem, like transparent huge
2508 			 * page allocations.
2509 			 */
2510 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2511 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2512 			    zonelist_zone_idx(z) <= requested_highidx &&
2513 			    compaction_ready(zone, sc->order)) {
2514 				sc->compaction_ready = true;
2515 				continue;
2516 			}
2517 
2518 			/*
2519 			 * This steals pages from memory cgroups over softlimit
2520 			 * and returns the number of reclaimed pages and
2521 			 * scanned pages. This works for global memory pressure
2522 			 * and balancing, not for a memcg's limit.
2523 			 */
2524 			nr_soft_scanned = 0;
2525 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2526 						sc->order, sc->gfp_mask,
2527 						&nr_soft_scanned);
2528 			sc->nr_reclaimed += nr_soft_reclaimed;
2529 			sc->nr_scanned += nr_soft_scanned;
2530 			if (nr_soft_reclaimed)
2531 				reclaimable = true;
2532 			/* need some check for avoid more shrink_zone() */
2533 		}
2534 
2535 		if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2536 			reclaimable = true;
2537 
2538 		if (global_reclaim(sc) &&
2539 		    !reclaimable && zone_reclaimable(zone))
2540 			reclaimable = true;
2541 	}
2542 
2543 	/*
2544 	 * Restore to original mask to avoid the impact on the caller if we
2545 	 * promoted it to __GFP_HIGHMEM.
2546 	 */
2547 	sc->gfp_mask = orig_mask;
2548 
2549 	return reclaimable;
2550 }
2551 
2552 /*
2553  * This is the main entry point to direct page reclaim.
2554  *
2555  * If a full scan of the inactive list fails to free enough memory then we
2556  * are "out of memory" and something needs to be killed.
2557  *
2558  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2559  * high - the zone may be full of dirty or under-writeback pages, which this
2560  * caller can't do much about.  We kick the writeback threads and take explicit
2561  * naps in the hope that some of these pages can be written.  But if the
2562  * allocating task holds filesystem locks which prevent writeout this might not
2563  * work, and the allocation attempt will fail.
2564  *
2565  * returns:	0, if no pages reclaimed
2566  * 		else, the number of pages reclaimed
2567  */
2568 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2569 					  struct scan_control *sc)
2570 {
2571 	int initial_priority = sc->priority;
2572 	unsigned long total_scanned = 0;
2573 	unsigned long writeback_threshold;
2574 	bool zones_reclaimable;
2575 retry:
2576 	delayacct_freepages_start();
2577 
2578 	if (global_reclaim(sc))
2579 		count_vm_event(ALLOCSTALL);
2580 
2581 	do {
2582 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2583 				sc->priority);
2584 		sc->nr_scanned = 0;
2585 		zones_reclaimable = shrink_zones(zonelist, sc);
2586 
2587 		total_scanned += sc->nr_scanned;
2588 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2589 			break;
2590 
2591 		if (sc->compaction_ready)
2592 			break;
2593 
2594 		/*
2595 		 * If we're getting trouble reclaiming, start doing
2596 		 * writepage even in laptop mode.
2597 		 */
2598 		if (sc->priority < DEF_PRIORITY - 2)
2599 			sc->may_writepage = 1;
2600 
2601 		/*
2602 		 * Try to write back as many pages as we just scanned.  This
2603 		 * tends to cause slow streaming writers to write data to the
2604 		 * disk smoothly, at the dirtying rate, which is nice.   But
2605 		 * that's undesirable in laptop mode, where we *want* lumpy
2606 		 * writeout.  So in laptop mode, write out the whole world.
2607 		 */
2608 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2609 		if (total_scanned > writeback_threshold) {
2610 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2611 						WB_REASON_TRY_TO_FREE_PAGES);
2612 			sc->may_writepage = 1;
2613 		}
2614 	} while (--sc->priority >= 0);
2615 
2616 	delayacct_freepages_end();
2617 
2618 	if (sc->nr_reclaimed)
2619 		return sc->nr_reclaimed;
2620 
2621 	/* Aborted reclaim to try compaction? don't OOM, then */
2622 	if (sc->compaction_ready)
2623 		return 1;
2624 
2625 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2626 	if (!sc->may_thrash) {
2627 		sc->priority = initial_priority;
2628 		sc->may_thrash = 1;
2629 		goto retry;
2630 	}
2631 
2632 	/* Any of the zones still reclaimable?  Don't OOM. */
2633 	if (zones_reclaimable)
2634 		return 1;
2635 
2636 	return 0;
2637 }
2638 
2639 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2640 {
2641 	struct zone *zone;
2642 	unsigned long pfmemalloc_reserve = 0;
2643 	unsigned long free_pages = 0;
2644 	int i;
2645 	bool wmark_ok;
2646 
2647 	for (i = 0; i <= ZONE_NORMAL; i++) {
2648 		zone = &pgdat->node_zones[i];
2649 		if (!populated_zone(zone))
2650 			continue;
2651 
2652 		pfmemalloc_reserve += min_wmark_pages(zone);
2653 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2654 	}
2655 
2656 	/* If there are no reserves (unexpected config) then do not throttle */
2657 	if (!pfmemalloc_reserve)
2658 		return true;
2659 
2660 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2661 
2662 	/* kswapd must be awake if processes are being throttled */
2663 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2664 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2665 						(enum zone_type)ZONE_NORMAL);
2666 		wake_up_interruptible(&pgdat->kswapd_wait);
2667 	}
2668 
2669 	return wmark_ok;
2670 }
2671 
2672 /*
2673  * Throttle direct reclaimers if backing storage is backed by the network
2674  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2675  * depleted. kswapd will continue to make progress and wake the processes
2676  * when the low watermark is reached.
2677  *
2678  * Returns true if a fatal signal was delivered during throttling. If this
2679  * happens, the page allocator should not consider triggering the OOM killer.
2680  */
2681 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2682 					nodemask_t *nodemask)
2683 {
2684 	struct zoneref *z;
2685 	struct zone *zone;
2686 	pg_data_t *pgdat = NULL;
2687 
2688 	/*
2689 	 * Kernel threads should not be throttled as they may be indirectly
2690 	 * responsible for cleaning pages necessary for reclaim to make forward
2691 	 * progress. kjournald for example may enter direct reclaim while
2692 	 * committing a transaction where throttling it could forcing other
2693 	 * processes to block on log_wait_commit().
2694 	 */
2695 	if (current->flags & PF_KTHREAD)
2696 		goto out;
2697 
2698 	/*
2699 	 * If a fatal signal is pending, this process should not throttle.
2700 	 * It should return quickly so it can exit and free its memory
2701 	 */
2702 	if (fatal_signal_pending(current))
2703 		goto out;
2704 
2705 	/*
2706 	 * Check if the pfmemalloc reserves are ok by finding the first node
2707 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2708 	 * GFP_KERNEL will be required for allocating network buffers when
2709 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2710 	 *
2711 	 * Throttling is based on the first usable node and throttled processes
2712 	 * wait on a queue until kswapd makes progress and wakes them. There
2713 	 * is an affinity then between processes waking up and where reclaim
2714 	 * progress has been made assuming the process wakes on the same node.
2715 	 * More importantly, processes running on remote nodes will not compete
2716 	 * for remote pfmemalloc reserves and processes on different nodes
2717 	 * should make reasonable progress.
2718 	 */
2719 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2720 					gfp_zone(gfp_mask), nodemask) {
2721 		if (zone_idx(zone) > ZONE_NORMAL)
2722 			continue;
2723 
2724 		/* Throttle based on the first usable node */
2725 		pgdat = zone->zone_pgdat;
2726 		if (pfmemalloc_watermark_ok(pgdat))
2727 			goto out;
2728 		break;
2729 	}
2730 
2731 	/* If no zone was usable by the allocation flags then do not throttle */
2732 	if (!pgdat)
2733 		goto out;
2734 
2735 	/* Account for the throttling */
2736 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2737 
2738 	/*
2739 	 * If the caller cannot enter the filesystem, it's possible that it
2740 	 * is due to the caller holding an FS lock or performing a journal
2741 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2742 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2743 	 * blocked waiting on the same lock. Instead, throttle for up to a
2744 	 * second before continuing.
2745 	 */
2746 	if (!(gfp_mask & __GFP_FS)) {
2747 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2748 			pfmemalloc_watermark_ok(pgdat), HZ);
2749 
2750 		goto check_pending;
2751 	}
2752 
2753 	/* Throttle until kswapd wakes the process */
2754 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2755 		pfmemalloc_watermark_ok(pgdat));
2756 
2757 check_pending:
2758 	if (fatal_signal_pending(current))
2759 		return true;
2760 
2761 out:
2762 	return false;
2763 }
2764 
2765 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2766 				gfp_t gfp_mask, nodemask_t *nodemask)
2767 {
2768 	unsigned long nr_reclaimed;
2769 	struct scan_control sc = {
2770 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2771 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2772 		.order = order,
2773 		.nodemask = nodemask,
2774 		.priority = DEF_PRIORITY,
2775 		.may_writepage = !laptop_mode,
2776 		.may_unmap = 1,
2777 		.may_swap = 1,
2778 	};
2779 
2780 	/*
2781 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2782 	 * 1 is returned so that the page allocator does not OOM kill at this
2783 	 * point.
2784 	 */
2785 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2786 		return 1;
2787 
2788 	trace_mm_vmscan_direct_reclaim_begin(order,
2789 				sc.may_writepage,
2790 				gfp_mask);
2791 
2792 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2793 
2794 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2795 
2796 	return nr_reclaimed;
2797 }
2798 
2799 #ifdef CONFIG_MEMCG
2800 
2801 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2802 						gfp_t gfp_mask, bool noswap,
2803 						struct zone *zone,
2804 						unsigned long *nr_scanned)
2805 {
2806 	struct scan_control sc = {
2807 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2808 		.target_mem_cgroup = memcg,
2809 		.may_writepage = !laptop_mode,
2810 		.may_unmap = 1,
2811 		.may_swap = !noswap,
2812 	};
2813 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2814 	int swappiness = mem_cgroup_swappiness(memcg);
2815 	unsigned long lru_pages;
2816 
2817 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2818 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2819 
2820 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2821 						      sc.may_writepage,
2822 						      sc.gfp_mask);
2823 
2824 	/*
2825 	 * NOTE: Although we can get the priority field, using it
2826 	 * here is not a good idea, since it limits the pages we can scan.
2827 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2828 	 * will pick up pages from other mem cgroup's as well. We hack
2829 	 * the priority and make it zero.
2830 	 */
2831 	shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
2832 
2833 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2834 
2835 	*nr_scanned = sc.nr_scanned;
2836 	return sc.nr_reclaimed;
2837 }
2838 
2839 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2840 					   unsigned long nr_pages,
2841 					   gfp_t gfp_mask,
2842 					   bool may_swap)
2843 {
2844 	struct zonelist *zonelist;
2845 	unsigned long nr_reclaimed;
2846 	int nid;
2847 	struct scan_control sc = {
2848 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2849 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2850 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2851 		.target_mem_cgroup = memcg,
2852 		.priority = DEF_PRIORITY,
2853 		.may_writepage = !laptop_mode,
2854 		.may_unmap = 1,
2855 		.may_swap = may_swap,
2856 	};
2857 
2858 	/*
2859 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2860 	 * take care of from where we get pages. So the node where we start the
2861 	 * scan does not need to be the current node.
2862 	 */
2863 	nid = mem_cgroup_select_victim_node(memcg);
2864 
2865 	zonelist = NODE_DATA(nid)->node_zonelists;
2866 
2867 	trace_mm_vmscan_memcg_reclaim_begin(0,
2868 					    sc.may_writepage,
2869 					    sc.gfp_mask);
2870 
2871 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2872 
2873 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2874 
2875 	return nr_reclaimed;
2876 }
2877 #endif
2878 
2879 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2880 {
2881 	struct mem_cgroup *memcg;
2882 
2883 	if (!total_swap_pages)
2884 		return;
2885 
2886 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2887 	do {
2888 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2889 
2890 		if (inactive_anon_is_low(lruvec))
2891 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2892 					   sc, LRU_ACTIVE_ANON);
2893 
2894 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2895 	} while (memcg);
2896 }
2897 
2898 static bool zone_balanced(struct zone *zone, int order,
2899 			  unsigned long balance_gap, int classzone_idx)
2900 {
2901 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2902 				    balance_gap, classzone_idx, 0))
2903 		return false;
2904 
2905 	if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2906 				order, 0, classzone_idx) == COMPACT_SKIPPED)
2907 		return false;
2908 
2909 	return true;
2910 }
2911 
2912 /*
2913  * pgdat_balanced() is used when checking if a node is balanced.
2914  *
2915  * For order-0, all zones must be balanced!
2916  *
2917  * For high-order allocations only zones that meet watermarks and are in a
2918  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2919  * total of balanced pages must be at least 25% of the zones allowed by
2920  * classzone_idx for the node to be considered balanced. Forcing all zones to
2921  * be balanced for high orders can cause excessive reclaim when there are
2922  * imbalanced zones.
2923  * The choice of 25% is due to
2924  *   o a 16M DMA zone that is balanced will not balance a zone on any
2925  *     reasonable sized machine
2926  *   o On all other machines, the top zone must be at least a reasonable
2927  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2928  *     would need to be at least 256M for it to be balance a whole node.
2929  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2930  *     to balance a node on its own. These seemed like reasonable ratios.
2931  */
2932 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2933 {
2934 	unsigned long managed_pages = 0;
2935 	unsigned long balanced_pages = 0;
2936 	int i;
2937 
2938 	/* Check the watermark levels */
2939 	for (i = 0; i <= classzone_idx; i++) {
2940 		struct zone *zone = pgdat->node_zones + i;
2941 
2942 		if (!populated_zone(zone))
2943 			continue;
2944 
2945 		managed_pages += zone->managed_pages;
2946 
2947 		/*
2948 		 * A special case here:
2949 		 *
2950 		 * balance_pgdat() skips over all_unreclaimable after
2951 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2952 		 * they must be considered balanced here as well!
2953 		 */
2954 		if (!zone_reclaimable(zone)) {
2955 			balanced_pages += zone->managed_pages;
2956 			continue;
2957 		}
2958 
2959 		if (zone_balanced(zone, order, 0, i))
2960 			balanced_pages += zone->managed_pages;
2961 		else if (!order)
2962 			return false;
2963 	}
2964 
2965 	if (order)
2966 		return balanced_pages >= (managed_pages >> 2);
2967 	else
2968 		return true;
2969 }
2970 
2971 /*
2972  * Prepare kswapd for sleeping. This verifies that there are no processes
2973  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2974  *
2975  * Returns true if kswapd is ready to sleep
2976  */
2977 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2978 					int classzone_idx)
2979 {
2980 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2981 	if (remaining)
2982 		return false;
2983 
2984 	/*
2985 	 * The throttled processes are normally woken up in balance_pgdat() as
2986 	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
2987 	 * race between when kswapd checks the watermarks and a process gets
2988 	 * throttled. There is also a potential race if processes get
2989 	 * throttled, kswapd wakes, a large process exits thereby balancing the
2990 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
2991 	 * the wake up checks. If kswapd is going to sleep, no process should
2992 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
2993 	 * the wake up is premature, processes will wake kswapd and get
2994 	 * throttled again. The difference from wake ups in balance_pgdat() is
2995 	 * that here we are under prepare_to_wait().
2996 	 */
2997 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
2998 		wake_up_all(&pgdat->pfmemalloc_wait);
2999 
3000 	return pgdat_balanced(pgdat, order, classzone_idx);
3001 }
3002 
3003 /*
3004  * kswapd shrinks the zone by the number of pages required to reach
3005  * the high watermark.
3006  *
3007  * Returns true if kswapd scanned at least the requested number of pages to
3008  * reclaim or if the lack of progress was due to pages under writeback.
3009  * This is used to determine if the scanning priority needs to be raised.
3010  */
3011 static bool kswapd_shrink_zone(struct zone *zone,
3012 			       int classzone_idx,
3013 			       struct scan_control *sc,
3014 			       unsigned long *nr_attempted)
3015 {
3016 	int testorder = sc->order;
3017 	unsigned long balance_gap;
3018 	bool lowmem_pressure;
3019 
3020 	/* Reclaim above the high watermark. */
3021 	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3022 
3023 	/*
3024 	 * Kswapd reclaims only single pages with compaction enabled. Trying
3025 	 * too hard to reclaim until contiguous free pages have become
3026 	 * available can hurt performance by evicting too much useful data
3027 	 * from memory. Do not reclaim more than needed for compaction.
3028 	 */
3029 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3030 			compaction_suitable(zone, sc->order, 0, classzone_idx)
3031 							!= COMPACT_SKIPPED)
3032 		testorder = 0;
3033 
3034 	/*
3035 	 * We put equal pressure on every zone, unless one zone has way too
3036 	 * many pages free already. The "too many pages" is defined as the
3037 	 * high wmark plus a "gap" where the gap is either the low
3038 	 * watermark or 1% of the zone, whichever is smaller.
3039 	 */
3040 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3041 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3042 
3043 	/*
3044 	 * If there is no low memory pressure or the zone is balanced then no
3045 	 * reclaim is necessary
3046 	 */
3047 	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3048 	if (!lowmem_pressure && zone_balanced(zone, testorder,
3049 						balance_gap, classzone_idx))
3050 		return true;
3051 
3052 	shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3053 
3054 	/* Account for the number of pages attempted to reclaim */
3055 	*nr_attempted += sc->nr_to_reclaim;
3056 
3057 	clear_bit(ZONE_WRITEBACK, &zone->flags);
3058 
3059 	/*
3060 	 * If a zone reaches its high watermark, consider it to be no longer
3061 	 * congested. It's possible there are dirty pages backed by congested
3062 	 * BDIs but as pressure is relieved, speculatively avoid congestion
3063 	 * waits.
3064 	 */
3065 	if (zone_reclaimable(zone) &&
3066 	    zone_balanced(zone, testorder, 0, classzone_idx)) {
3067 		clear_bit(ZONE_CONGESTED, &zone->flags);
3068 		clear_bit(ZONE_DIRTY, &zone->flags);
3069 	}
3070 
3071 	return sc->nr_scanned >= sc->nr_to_reclaim;
3072 }
3073 
3074 /*
3075  * For kswapd, balance_pgdat() will work across all this node's zones until
3076  * they are all at high_wmark_pages(zone).
3077  *
3078  * Returns the final order kswapd was reclaiming at
3079  *
3080  * There is special handling here for zones which are full of pinned pages.
3081  * This can happen if the pages are all mlocked, or if they are all used by
3082  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
3083  * What we do is to detect the case where all pages in the zone have been
3084  * scanned twice and there has been zero successful reclaim.  Mark the zone as
3085  * dead and from now on, only perform a short scan.  Basically we're polling
3086  * the zone for when the problem goes away.
3087  *
3088  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3089  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3090  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3091  * lower zones regardless of the number of free pages in the lower zones. This
3092  * interoperates with the page allocator fallback scheme to ensure that aging
3093  * of pages is balanced across the zones.
3094  */
3095 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3096 							int *classzone_idx)
3097 {
3098 	int i;
3099 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3100 	unsigned long nr_soft_reclaimed;
3101 	unsigned long nr_soft_scanned;
3102 	struct scan_control sc = {
3103 		.gfp_mask = GFP_KERNEL,
3104 		.order = order,
3105 		.priority = DEF_PRIORITY,
3106 		.may_writepage = !laptop_mode,
3107 		.may_unmap = 1,
3108 		.may_swap = 1,
3109 	};
3110 	count_vm_event(PAGEOUTRUN);
3111 
3112 	do {
3113 		unsigned long nr_attempted = 0;
3114 		bool raise_priority = true;
3115 		bool pgdat_needs_compaction = (order > 0);
3116 
3117 		sc.nr_reclaimed = 0;
3118 
3119 		/*
3120 		 * Scan in the highmem->dma direction for the highest
3121 		 * zone which needs scanning
3122 		 */
3123 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3124 			struct zone *zone = pgdat->node_zones + i;
3125 
3126 			if (!populated_zone(zone))
3127 				continue;
3128 
3129 			if (sc.priority != DEF_PRIORITY &&
3130 			    !zone_reclaimable(zone))
3131 				continue;
3132 
3133 			/*
3134 			 * Do some background aging of the anon list, to give
3135 			 * pages a chance to be referenced before reclaiming.
3136 			 */
3137 			age_active_anon(zone, &sc);
3138 
3139 			/*
3140 			 * If the number of buffer_heads in the machine
3141 			 * exceeds the maximum allowed level and this node
3142 			 * has a highmem zone, force kswapd to reclaim from
3143 			 * it to relieve lowmem pressure.
3144 			 */
3145 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
3146 				end_zone = i;
3147 				break;
3148 			}
3149 
3150 			if (!zone_balanced(zone, order, 0, 0)) {
3151 				end_zone = i;
3152 				break;
3153 			} else {
3154 				/*
3155 				 * If balanced, clear the dirty and congested
3156 				 * flags
3157 				 */
3158 				clear_bit(ZONE_CONGESTED, &zone->flags);
3159 				clear_bit(ZONE_DIRTY, &zone->flags);
3160 			}
3161 		}
3162 
3163 		if (i < 0)
3164 			goto out;
3165 
3166 		for (i = 0; i <= end_zone; i++) {
3167 			struct zone *zone = pgdat->node_zones + i;
3168 
3169 			if (!populated_zone(zone))
3170 				continue;
3171 
3172 			/*
3173 			 * If any zone is currently balanced then kswapd will
3174 			 * not call compaction as it is expected that the
3175 			 * necessary pages are already available.
3176 			 */
3177 			if (pgdat_needs_compaction &&
3178 					zone_watermark_ok(zone, order,
3179 						low_wmark_pages(zone),
3180 						*classzone_idx, 0))
3181 				pgdat_needs_compaction = false;
3182 		}
3183 
3184 		/*
3185 		 * If we're getting trouble reclaiming, start doing writepage
3186 		 * even in laptop mode.
3187 		 */
3188 		if (sc.priority < DEF_PRIORITY - 2)
3189 			sc.may_writepage = 1;
3190 
3191 		/*
3192 		 * Now scan the zone in the dma->highmem direction, stopping
3193 		 * at the last zone which needs scanning.
3194 		 *
3195 		 * We do this because the page allocator works in the opposite
3196 		 * direction.  This prevents the page allocator from allocating
3197 		 * pages behind kswapd's direction of progress, which would
3198 		 * cause too much scanning of the lower zones.
3199 		 */
3200 		for (i = 0; i <= end_zone; i++) {
3201 			struct zone *zone = pgdat->node_zones + i;
3202 
3203 			if (!populated_zone(zone))
3204 				continue;
3205 
3206 			if (sc.priority != DEF_PRIORITY &&
3207 			    !zone_reclaimable(zone))
3208 				continue;
3209 
3210 			sc.nr_scanned = 0;
3211 
3212 			nr_soft_scanned = 0;
3213 			/*
3214 			 * Call soft limit reclaim before calling shrink_zone.
3215 			 */
3216 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3217 							order, sc.gfp_mask,
3218 							&nr_soft_scanned);
3219 			sc.nr_reclaimed += nr_soft_reclaimed;
3220 
3221 			/*
3222 			 * There should be no need to raise the scanning
3223 			 * priority if enough pages are already being scanned
3224 			 * that that high watermark would be met at 100%
3225 			 * efficiency.
3226 			 */
3227 			if (kswapd_shrink_zone(zone, end_zone,
3228 					       &sc, &nr_attempted))
3229 				raise_priority = false;
3230 		}
3231 
3232 		/*
3233 		 * If the low watermark is met there is no need for processes
3234 		 * to be throttled on pfmemalloc_wait as they should not be
3235 		 * able to safely make forward progress. Wake them
3236 		 */
3237 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3238 				pfmemalloc_watermark_ok(pgdat))
3239 			wake_up_all(&pgdat->pfmemalloc_wait);
3240 
3241 		/*
3242 		 * Fragmentation may mean that the system cannot be rebalanced
3243 		 * for high-order allocations in all zones. If twice the
3244 		 * allocation size has been reclaimed and the zones are still
3245 		 * not balanced then recheck the watermarks at order-0 to
3246 		 * prevent kswapd reclaiming excessively. Assume that a
3247 		 * process requested a high-order can direct reclaim/compact.
3248 		 */
3249 		if (order && sc.nr_reclaimed >= 2UL << order)
3250 			order = sc.order = 0;
3251 
3252 		/* Check if kswapd should be suspending */
3253 		if (try_to_freeze() || kthread_should_stop())
3254 			break;
3255 
3256 		/*
3257 		 * Compact if necessary and kswapd is reclaiming at least the
3258 		 * high watermark number of pages as requsted
3259 		 */
3260 		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3261 			compact_pgdat(pgdat, order);
3262 
3263 		/*
3264 		 * Raise priority if scanning rate is too low or there was no
3265 		 * progress in reclaiming pages
3266 		 */
3267 		if (raise_priority || !sc.nr_reclaimed)
3268 			sc.priority--;
3269 	} while (sc.priority >= 1 &&
3270 		 !pgdat_balanced(pgdat, order, *classzone_idx));
3271 
3272 out:
3273 	/*
3274 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3275 	 * makes a decision on the order we were last reclaiming at. However,
3276 	 * if another caller entered the allocator slow path while kswapd
3277 	 * was awake, order will remain at the higher level
3278 	 */
3279 	*classzone_idx = end_zone;
3280 	return order;
3281 }
3282 
3283 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3284 {
3285 	long remaining = 0;
3286 	DEFINE_WAIT(wait);
3287 
3288 	if (freezing(current) || kthread_should_stop())
3289 		return;
3290 
3291 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3292 
3293 	/* Try to sleep for a short interval */
3294 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3295 		remaining = schedule_timeout(HZ/10);
3296 		finish_wait(&pgdat->kswapd_wait, &wait);
3297 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3298 	}
3299 
3300 	/*
3301 	 * After a short sleep, check if it was a premature sleep. If not, then
3302 	 * go fully to sleep until explicitly woken up.
3303 	 */
3304 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3305 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3306 
3307 		/*
3308 		 * vmstat counters are not perfectly accurate and the estimated
3309 		 * value for counters such as NR_FREE_PAGES can deviate from the
3310 		 * true value by nr_online_cpus * threshold. To avoid the zone
3311 		 * watermarks being breached while under pressure, we reduce the
3312 		 * per-cpu vmstat threshold while kswapd is awake and restore
3313 		 * them before going back to sleep.
3314 		 */
3315 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3316 
3317 		/*
3318 		 * Compaction records what page blocks it recently failed to
3319 		 * isolate pages from and skips them in the future scanning.
3320 		 * When kswapd is going to sleep, it is reasonable to assume
3321 		 * that pages and compaction may succeed so reset the cache.
3322 		 */
3323 		reset_isolation_suitable(pgdat);
3324 
3325 		if (!kthread_should_stop())
3326 			schedule();
3327 
3328 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3329 	} else {
3330 		if (remaining)
3331 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3332 		else
3333 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3334 	}
3335 	finish_wait(&pgdat->kswapd_wait, &wait);
3336 }
3337 
3338 /*
3339  * The background pageout daemon, started as a kernel thread
3340  * from the init process.
3341  *
3342  * This basically trickles out pages so that we have _some_
3343  * free memory available even if there is no other activity
3344  * that frees anything up. This is needed for things like routing
3345  * etc, where we otherwise might have all activity going on in
3346  * asynchronous contexts that cannot page things out.
3347  *
3348  * If there are applications that are active memory-allocators
3349  * (most normal use), this basically shouldn't matter.
3350  */
3351 static int kswapd(void *p)
3352 {
3353 	unsigned long order, new_order;
3354 	unsigned balanced_order;
3355 	int classzone_idx, new_classzone_idx;
3356 	int balanced_classzone_idx;
3357 	pg_data_t *pgdat = (pg_data_t*)p;
3358 	struct task_struct *tsk = current;
3359 
3360 	struct reclaim_state reclaim_state = {
3361 		.reclaimed_slab = 0,
3362 	};
3363 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3364 
3365 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3366 
3367 	if (!cpumask_empty(cpumask))
3368 		set_cpus_allowed_ptr(tsk, cpumask);
3369 	current->reclaim_state = &reclaim_state;
3370 
3371 	/*
3372 	 * Tell the memory management that we're a "memory allocator",
3373 	 * and that if we need more memory we should get access to it
3374 	 * regardless (see "__alloc_pages()"). "kswapd" should
3375 	 * never get caught in the normal page freeing logic.
3376 	 *
3377 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3378 	 * you need a small amount of memory in order to be able to
3379 	 * page out something else, and this flag essentially protects
3380 	 * us from recursively trying to free more memory as we're
3381 	 * trying to free the first piece of memory in the first place).
3382 	 */
3383 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3384 	set_freezable();
3385 
3386 	order = new_order = 0;
3387 	balanced_order = 0;
3388 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3389 	balanced_classzone_idx = classzone_idx;
3390 	for ( ; ; ) {
3391 		bool ret;
3392 
3393 		/*
3394 		 * If the last balance_pgdat was unsuccessful it's unlikely a
3395 		 * new request of a similar or harder type will succeed soon
3396 		 * so consider going to sleep on the basis we reclaimed at
3397 		 */
3398 		if (balanced_classzone_idx >= new_classzone_idx &&
3399 					balanced_order == new_order) {
3400 			new_order = pgdat->kswapd_max_order;
3401 			new_classzone_idx = pgdat->classzone_idx;
3402 			pgdat->kswapd_max_order =  0;
3403 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3404 		}
3405 
3406 		if (order < new_order || classzone_idx > new_classzone_idx) {
3407 			/*
3408 			 * Don't sleep if someone wants a larger 'order'
3409 			 * allocation or has tigher zone constraints
3410 			 */
3411 			order = new_order;
3412 			classzone_idx = new_classzone_idx;
3413 		} else {
3414 			kswapd_try_to_sleep(pgdat, balanced_order,
3415 						balanced_classzone_idx);
3416 			order = pgdat->kswapd_max_order;
3417 			classzone_idx = pgdat->classzone_idx;
3418 			new_order = order;
3419 			new_classzone_idx = classzone_idx;
3420 			pgdat->kswapd_max_order = 0;
3421 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3422 		}
3423 
3424 		ret = try_to_freeze();
3425 		if (kthread_should_stop())
3426 			break;
3427 
3428 		/*
3429 		 * We can speed up thawing tasks if we don't call balance_pgdat
3430 		 * after returning from the refrigerator
3431 		 */
3432 		if (!ret) {
3433 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3434 			balanced_classzone_idx = classzone_idx;
3435 			balanced_order = balance_pgdat(pgdat, order,
3436 						&balanced_classzone_idx);
3437 		}
3438 	}
3439 
3440 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3441 	current->reclaim_state = NULL;
3442 	lockdep_clear_current_reclaim_state();
3443 
3444 	return 0;
3445 }
3446 
3447 /*
3448  * A zone is low on free memory, so wake its kswapd task to service it.
3449  */
3450 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3451 {
3452 	pg_data_t *pgdat;
3453 
3454 	if (!populated_zone(zone))
3455 		return;
3456 
3457 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3458 		return;
3459 	pgdat = zone->zone_pgdat;
3460 	if (pgdat->kswapd_max_order < order) {
3461 		pgdat->kswapd_max_order = order;
3462 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3463 	}
3464 	if (!waitqueue_active(&pgdat->kswapd_wait))
3465 		return;
3466 	if (zone_balanced(zone, order, 0, 0))
3467 		return;
3468 
3469 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3470 	wake_up_interruptible(&pgdat->kswapd_wait);
3471 }
3472 
3473 #ifdef CONFIG_HIBERNATION
3474 /*
3475  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3476  * freed pages.
3477  *
3478  * Rather than trying to age LRUs the aim is to preserve the overall
3479  * LRU order by reclaiming preferentially
3480  * inactive > active > active referenced > active mapped
3481  */
3482 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3483 {
3484 	struct reclaim_state reclaim_state;
3485 	struct scan_control sc = {
3486 		.nr_to_reclaim = nr_to_reclaim,
3487 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3488 		.priority = DEF_PRIORITY,
3489 		.may_writepage = 1,
3490 		.may_unmap = 1,
3491 		.may_swap = 1,
3492 		.hibernation_mode = 1,
3493 	};
3494 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3495 	struct task_struct *p = current;
3496 	unsigned long nr_reclaimed;
3497 
3498 	p->flags |= PF_MEMALLOC;
3499 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3500 	reclaim_state.reclaimed_slab = 0;
3501 	p->reclaim_state = &reclaim_state;
3502 
3503 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3504 
3505 	p->reclaim_state = NULL;
3506 	lockdep_clear_current_reclaim_state();
3507 	p->flags &= ~PF_MEMALLOC;
3508 
3509 	return nr_reclaimed;
3510 }
3511 #endif /* CONFIG_HIBERNATION */
3512 
3513 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3514    not required for correctness.  So if the last cpu in a node goes
3515    away, we get changed to run anywhere: as the first one comes back,
3516    restore their cpu bindings. */
3517 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3518 			void *hcpu)
3519 {
3520 	int nid;
3521 
3522 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3523 		for_each_node_state(nid, N_MEMORY) {
3524 			pg_data_t *pgdat = NODE_DATA(nid);
3525 			const struct cpumask *mask;
3526 
3527 			mask = cpumask_of_node(pgdat->node_id);
3528 
3529 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3530 				/* One of our CPUs online: restore mask */
3531 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3532 		}
3533 	}
3534 	return NOTIFY_OK;
3535 }
3536 
3537 /*
3538  * This kswapd start function will be called by init and node-hot-add.
3539  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3540  */
3541 int kswapd_run(int nid)
3542 {
3543 	pg_data_t *pgdat = NODE_DATA(nid);
3544 	int ret = 0;
3545 
3546 	if (pgdat->kswapd)
3547 		return 0;
3548 
3549 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3550 	if (IS_ERR(pgdat->kswapd)) {
3551 		/* failure at boot is fatal */
3552 		BUG_ON(system_state == SYSTEM_BOOTING);
3553 		pr_err("Failed to start kswapd on node %d\n", nid);
3554 		ret = PTR_ERR(pgdat->kswapd);
3555 		pgdat->kswapd = NULL;
3556 	}
3557 	return ret;
3558 }
3559 
3560 /*
3561  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3562  * hold mem_hotplug_begin/end().
3563  */
3564 void kswapd_stop(int nid)
3565 {
3566 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3567 
3568 	if (kswapd) {
3569 		kthread_stop(kswapd);
3570 		NODE_DATA(nid)->kswapd = NULL;
3571 	}
3572 }
3573 
3574 static int __init kswapd_init(void)
3575 {
3576 	int nid;
3577 
3578 	swap_setup();
3579 	for_each_node_state(nid, N_MEMORY)
3580  		kswapd_run(nid);
3581 	hotcpu_notifier(cpu_callback, 0);
3582 	return 0;
3583 }
3584 
3585 module_init(kswapd_init)
3586 
3587 #ifdef CONFIG_NUMA
3588 /*
3589  * Zone reclaim mode
3590  *
3591  * If non-zero call zone_reclaim when the number of free pages falls below
3592  * the watermarks.
3593  */
3594 int zone_reclaim_mode __read_mostly;
3595 
3596 #define RECLAIM_OFF 0
3597 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3598 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3599 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3600 
3601 /*
3602  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3603  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3604  * a zone.
3605  */
3606 #define ZONE_RECLAIM_PRIORITY 4
3607 
3608 /*
3609  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3610  * occur.
3611  */
3612 int sysctl_min_unmapped_ratio = 1;
3613 
3614 /*
3615  * If the number of slab pages in a zone grows beyond this percentage then
3616  * slab reclaim needs to occur.
3617  */
3618 int sysctl_min_slab_ratio = 5;
3619 
3620 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3621 {
3622 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3623 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3624 		zone_page_state(zone, NR_ACTIVE_FILE);
3625 
3626 	/*
3627 	 * It's possible for there to be more file mapped pages than
3628 	 * accounted for by the pages on the file LRU lists because
3629 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3630 	 */
3631 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3632 }
3633 
3634 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3635 static long zone_pagecache_reclaimable(struct zone *zone)
3636 {
3637 	long nr_pagecache_reclaimable;
3638 	long delta = 0;
3639 
3640 	/*
3641 	 * If RECLAIM_SWAP is set, then all file pages are considered
3642 	 * potentially reclaimable. Otherwise, we have to worry about
3643 	 * pages like swapcache and zone_unmapped_file_pages() provides
3644 	 * a better estimate
3645 	 */
3646 	if (zone_reclaim_mode & RECLAIM_SWAP)
3647 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3648 	else
3649 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3650 
3651 	/* If we can't clean pages, remove dirty pages from consideration */
3652 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3653 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3654 
3655 	/* Watch for any possible underflows due to delta */
3656 	if (unlikely(delta > nr_pagecache_reclaimable))
3657 		delta = nr_pagecache_reclaimable;
3658 
3659 	return nr_pagecache_reclaimable - delta;
3660 }
3661 
3662 /*
3663  * Try to free up some pages from this zone through reclaim.
3664  */
3665 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3666 {
3667 	/* Minimum pages needed in order to stay on node */
3668 	const unsigned long nr_pages = 1 << order;
3669 	struct task_struct *p = current;
3670 	struct reclaim_state reclaim_state;
3671 	struct scan_control sc = {
3672 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3673 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3674 		.order = order,
3675 		.priority = ZONE_RECLAIM_PRIORITY,
3676 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3677 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3678 		.may_swap = 1,
3679 	};
3680 
3681 	cond_resched();
3682 	/*
3683 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3684 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3685 	 * and RECLAIM_SWAP.
3686 	 */
3687 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3688 	lockdep_set_current_reclaim_state(gfp_mask);
3689 	reclaim_state.reclaimed_slab = 0;
3690 	p->reclaim_state = &reclaim_state;
3691 
3692 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3693 		/*
3694 		 * Free memory by calling shrink zone with increasing
3695 		 * priorities until we have enough memory freed.
3696 		 */
3697 		do {
3698 			shrink_zone(zone, &sc, true);
3699 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3700 	}
3701 
3702 	p->reclaim_state = NULL;
3703 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3704 	lockdep_clear_current_reclaim_state();
3705 	return sc.nr_reclaimed >= nr_pages;
3706 }
3707 
3708 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3709 {
3710 	int node_id;
3711 	int ret;
3712 
3713 	/*
3714 	 * Zone reclaim reclaims unmapped file backed pages and
3715 	 * slab pages if we are over the defined limits.
3716 	 *
3717 	 * A small portion of unmapped file backed pages is needed for
3718 	 * file I/O otherwise pages read by file I/O will be immediately
3719 	 * thrown out if the zone is overallocated. So we do not reclaim
3720 	 * if less than a specified percentage of the zone is used by
3721 	 * unmapped file backed pages.
3722 	 */
3723 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3724 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3725 		return ZONE_RECLAIM_FULL;
3726 
3727 	if (!zone_reclaimable(zone))
3728 		return ZONE_RECLAIM_FULL;
3729 
3730 	/*
3731 	 * Do not scan if the allocation should not be delayed.
3732 	 */
3733 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3734 		return ZONE_RECLAIM_NOSCAN;
3735 
3736 	/*
3737 	 * Only run zone reclaim on the local zone or on zones that do not
3738 	 * have associated processors. This will favor the local processor
3739 	 * over remote processors and spread off node memory allocations
3740 	 * as wide as possible.
3741 	 */
3742 	node_id = zone_to_nid(zone);
3743 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3744 		return ZONE_RECLAIM_NOSCAN;
3745 
3746 	if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3747 		return ZONE_RECLAIM_NOSCAN;
3748 
3749 	ret = __zone_reclaim(zone, gfp_mask, order);
3750 	clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3751 
3752 	if (!ret)
3753 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3754 
3755 	return ret;
3756 }
3757 #endif
3758 
3759 /*
3760  * page_evictable - test whether a page is evictable
3761  * @page: the page to test
3762  *
3763  * Test whether page is evictable--i.e., should be placed on active/inactive
3764  * lists vs unevictable list.
3765  *
3766  * Reasons page might not be evictable:
3767  * (1) page's mapping marked unevictable
3768  * (2) page is part of an mlocked VMA
3769  *
3770  */
3771 int page_evictable(struct page *page)
3772 {
3773 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3774 }
3775 
3776 #ifdef CONFIG_SHMEM
3777 /**
3778  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3779  * @pages:	array of pages to check
3780  * @nr_pages:	number of pages to check
3781  *
3782  * Checks pages for evictability and moves them to the appropriate lru list.
3783  *
3784  * This function is only used for SysV IPC SHM_UNLOCK.
3785  */
3786 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3787 {
3788 	struct lruvec *lruvec;
3789 	struct zone *zone = NULL;
3790 	int pgscanned = 0;
3791 	int pgrescued = 0;
3792 	int i;
3793 
3794 	for (i = 0; i < nr_pages; i++) {
3795 		struct page *page = pages[i];
3796 		struct zone *pagezone;
3797 
3798 		pgscanned++;
3799 		pagezone = page_zone(page);
3800 		if (pagezone != zone) {
3801 			if (zone)
3802 				spin_unlock_irq(&zone->lru_lock);
3803 			zone = pagezone;
3804 			spin_lock_irq(&zone->lru_lock);
3805 		}
3806 		lruvec = mem_cgroup_page_lruvec(page, zone);
3807 
3808 		if (!PageLRU(page) || !PageUnevictable(page))
3809 			continue;
3810 
3811 		if (page_evictable(page)) {
3812 			enum lru_list lru = page_lru_base_type(page);
3813 
3814 			VM_BUG_ON_PAGE(PageActive(page), page);
3815 			ClearPageUnevictable(page);
3816 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3817 			add_page_to_lru_list(page, lruvec, lru);
3818 			pgrescued++;
3819 		}
3820 	}
3821 
3822 	if (zone) {
3823 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3824 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3825 		spin_unlock_irq(&zone->lru_lock);
3826 	}
3827 }
3828 #endif /* CONFIG_SHMEM */
3829