1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/prefetch.h> 48 #include <linux/printk.h> 49 50 #include <asm/tlbflush.h> 51 #include <asm/div64.h> 52 53 #include <linux/swapops.h> 54 #include <linux/balloon_compaction.h> 55 56 #include "internal.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/vmscan.h> 60 61 struct scan_control { 62 /* How many pages shrink_list() should reclaim */ 63 unsigned long nr_to_reclaim; 64 65 /* This context's GFP mask */ 66 gfp_t gfp_mask; 67 68 /* Allocation order */ 69 int order; 70 71 /* 72 * Nodemask of nodes allowed by the caller. If NULL, all nodes 73 * are scanned. 74 */ 75 nodemask_t *nodemask; 76 77 /* 78 * The memory cgroup that hit its limit and as a result is the 79 * primary target of this reclaim invocation. 80 */ 81 struct mem_cgroup *target_mem_cgroup; 82 83 /* Scan (total_size >> priority) pages at once */ 84 int priority; 85 86 unsigned int may_writepage:1; 87 88 /* Can mapped pages be reclaimed? */ 89 unsigned int may_unmap:1; 90 91 /* Can pages be swapped as part of reclaim? */ 92 unsigned int may_swap:1; 93 94 /* Can cgroups be reclaimed below their normal consumption range? */ 95 unsigned int may_thrash:1; 96 97 unsigned int hibernation_mode:1; 98 99 /* One of the zones is ready for compaction */ 100 unsigned int compaction_ready:1; 101 102 /* Incremented by the number of inactive pages that were scanned */ 103 unsigned long nr_scanned; 104 105 /* Number of pages freed so far during a call to shrink_zones() */ 106 unsigned long nr_reclaimed; 107 }; 108 109 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 110 111 #ifdef ARCH_HAS_PREFETCH 112 #define prefetch_prev_lru_page(_page, _base, _field) \ 113 do { \ 114 if ((_page)->lru.prev != _base) { \ 115 struct page *prev; \ 116 \ 117 prev = lru_to_page(&(_page->lru)); \ 118 prefetch(&prev->_field); \ 119 } \ 120 } while (0) 121 #else 122 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 123 #endif 124 125 #ifdef ARCH_HAS_PREFETCHW 126 #define prefetchw_prev_lru_page(_page, _base, _field) \ 127 do { \ 128 if ((_page)->lru.prev != _base) { \ 129 struct page *prev; \ 130 \ 131 prev = lru_to_page(&(_page->lru)); \ 132 prefetchw(&prev->_field); \ 133 } \ 134 } while (0) 135 #else 136 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 137 #endif 138 139 /* 140 * From 0 .. 100. Higher means more swappy. 141 */ 142 int vm_swappiness = 60; 143 /* 144 * The total number of pages which are beyond the high watermark within all 145 * zones. 146 */ 147 unsigned long vm_total_pages; 148 149 static LIST_HEAD(shrinker_list); 150 static DECLARE_RWSEM(shrinker_rwsem); 151 152 #ifdef CONFIG_MEMCG 153 static bool global_reclaim(struct scan_control *sc) 154 { 155 return !sc->target_mem_cgroup; 156 } 157 #else 158 static bool global_reclaim(struct scan_control *sc) 159 { 160 return true; 161 } 162 #endif 163 164 static unsigned long zone_reclaimable_pages(struct zone *zone) 165 { 166 int nr; 167 168 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 169 zone_page_state(zone, NR_INACTIVE_FILE); 170 171 if (get_nr_swap_pages() > 0) 172 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 173 zone_page_state(zone, NR_INACTIVE_ANON); 174 175 return nr; 176 } 177 178 bool zone_reclaimable(struct zone *zone) 179 { 180 return zone_page_state(zone, NR_PAGES_SCANNED) < 181 zone_reclaimable_pages(zone) * 6; 182 } 183 184 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) 185 { 186 if (!mem_cgroup_disabled()) 187 return mem_cgroup_get_lru_size(lruvec, lru); 188 189 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); 190 } 191 192 /* 193 * Add a shrinker callback to be called from the vm. 194 */ 195 int register_shrinker(struct shrinker *shrinker) 196 { 197 size_t size = sizeof(*shrinker->nr_deferred); 198 199 /* 200 * If we only have one possible node in the system anyway, save 201 * ourselves the trouble and disable NUMA aware behavior. This way we 202 * will save memory and some small loop time later. 203 */ 204 if (nr_node_ids == 1) 205 shrinker->flags &= ~SHRINKER_NUMA_AWARE; 206 207 if (shrinker->flags & SHRINKER_NUMA_AWARE) 208 size *= nr_node_ids; 209 210 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 211 if (!shrinker->nr_deferred) 212 return -ENOMEM; 213 214 down_write(&shrinker_rwsem); 215 list_add_tail(&shrinker->list, &shrinker_list); 216 up_write(&shrinker_rwsem); 217 return 0; 218 } 219 EXPORT_SYMBOL(register_shrinker); 220 221 /* 222 * Remove one 223 */ 224 void unregister_shrinker(struct shrinker *shrinker) 225 { 226 down_write(&shrinker_rwsem); 227 list_del(&shrinker->list); 228 up_write(&shrinker_rwsem); 229 kfree(shrinker->nr_deferred); 230 } 231 EXPORT_SYMBOL(unregister_shrinker); 232 233 #define SHRINK_BATCH 128 234 235 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 236 struct shrinker *shrinker, 237 unsigned long nr_scanned, 238 unsigned long nr_eligible) 239 { 240 unsigned long freed = 0; 241 unsigned long long delta; 242 long total_scan; 243 long freeable; 244 long nr; 245 long new_nr; 246 int nid = shrinkctl->nid; 247 long batch_size = shrinker->batch ? shrinker->batch 248 : SHRINK_BATCH; 249 250 freeable = shrinker->count_objects(shrinker, shrinkctl); 251 if (freeable == 0) 252 return 0; 253 254 /* 255 * copy the current shrinker scan count into a local variable 256 * and zero it so that other concurrent shrinker invocations 257 * don't also do this scanning work. 258 */ 259 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 260 261 total_scan = nr; 262 delta = (4 * nr_scanned) / shrinker->seeks; 263 delta *= freeable; 264 do_div(delta, nr_eligible + 1); 265 total_scan += delta; 266 if (total_scan < 0) { 267 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 268 shrinker->scan_objects, total_scan); 269 total_scan = freeable; 270 } 271 272 /* 273 * We need to avoid excessive windup on filesystem shrinkers 274 * due to large numbers of GFP_NOFS allocations causing the 275 * shrinkers to return -1 all the time. This results in a large 276 * nr being built up so when a shrink that can do some work 277 * comes along it empties the entire cache due to nr >>> 278 * freeable. This is bad for sustaining a working set in 279 * memory. 280 * 281 * Hence only allow the shrinker to scan the entire cache when 282 * a large delta change is calculated directly. 283 */ 284 if (delta < freeable / 4) 285 total_scan = min(total_scan, freeable / 2); 286 287 /* 288 * Avoid risking looping forever due to too large nr value: 289 * never try to free more than twice the estimate number of 290 * freeable entries. 291 */ 292 if (total_scan > freeable * 2) 293 total_scan = freeable * 2; 294 295 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 296 nr_scanned, nr_eligible, 297 freeable, delta, total_scan); 298 299 /* 300 * Normally, we should not scan less than batch_size objects in one 301 * pass to avoid too frequent shrinker calls, but if the slab has less 302 * than batch_size objects in total and we are really tight on memory, 303 * we will try to reclaim all available objects, otherwise we can end 304 * up failing allocations although there are plenty of reclaimable 305 * objects spread over several slabs with usage less than the 306 * batch_size. 307 * 308 * We detect the "tight on memory" situations by looking at the total 309 * number of objects we want to scan (total_scan). If it is greater 310 * than the total number of objects on slab (freeable), we must be 311 * scanning at high prio and therefore should try to reclaim as much as 312 * possible. 313 */ 314 while (total_scan >= batch_size || 315 total_scan >= freeable) { 316 unsigned long ret; 317 unsigned long nr_to_scan = min(batch_size, total_scan); 318 319 shrinkctl->nr_to_scan = nr_to_scan; 320 ret = shrinker->scan_objects(shrinker, shrinkctl); 321 if (ret == SHRINK_STOP) 322 break; 323 freed += ret; 324 325 count_vm_events(SLABS_SCANNED, nr_to_scan); 326 total_scan -= nr_to_scan; 327 328 cond_resched(); 329 } 330 331 /* 332 * move the unused scan count back into the shrinker in a 333 * manner that handles concurrent updates. If we exhausted the 334 * scan, there is no need to do an update. 335 */ 336 if (total_scan > 0) 337 new_nr = atomic_long_add_return(total_scan, 338 &shrinker->nr_deferred[nid]); 339 else 340 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 341 342 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 343 return freed; 344 } 345 346 /** 347 * shrink_slab - shrink slab caches 348 * @gfp_mask: allocation context 349 * @nid: node whose slab caches to target 350 * @memcg: memory cgroup whose slab caches to target 351 * @nr_scanned: pressure numerator 352 * @nr_eligible: pressure denominator 353 * 354 * Call the shrink functions to age shrinkable caches. 355 * 356 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 357 * unaware shrinkers will receive a node id of 0 instead. 358 * 359 * @memcg specifies the memory cgroup to target. If it is not NULL, 360 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 361 * objects from the memory cgroup specified. Otherwise all shrinkers 362 * are called, and memcg aware shrinkers are supposed to scan the 363 * global list then. 364 * 365 * @nr_scanned and @nr_eligible form a ratio that indicate how much of 366 * the available objects should be scanned. Page reclaim for example 367 * passes the number of pages scanned and the number of pages on the 368 * LRU lists that it considered on @nid, plus a bias in @nr_scanned 369 * when it encountered mapped pages. The ratio is further biased by 370 * the ->seeks setting of the shrink function, which indicates the 371 * cost to recreate an object relative to that of an LRU page. 372 * 373 * Returns the number of reclaimed slab objects. 374 */ 375 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 376 struct mem_cgroup *memcg, 377 unsigned long nr_scanned, 378 unsigned long nr_eligible) 379 { 380 struct shrinker *shrinker; 381 unsigned long freed = 0; 382 383 if (memcg && !memcg_kmem_is_active(memcg)) 384 return 0; 385 386 if (nr_scanned == 0) 387 nr_scanned = SWAP_CLUSTER_MAX; 388 389 if (!down_read_trylock(&shrinker_rwsem)) { 390 /* 391 * If we would return 0, our callers would understand that we 392 * have nothing else to shrink and give up trying. By returning 393 * 1 we keep it going and assume we'll be able to shrink next 394 * time. 395 */ 396 freed = 1; 397 goto out; 398 } 399 400 list_for_each_entry(shrinker, &shrinker_list, list) { 401 struct shrink_control sc = { 402 .gfp_mask = gfp_mask, 403 .nid = nid, 404 .memcg = memcg, 405 }; 406 407 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE)) 408 continue; 409 410 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 411 sc.nid = 0; 412 413 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); 414 } 415 416 up_read(&shrinker_rwsem); 417 out: 418 cond_resched(); 419 return freed; 420 } 421 422 void drop_slab_node(int nid) 423 { 424 unsigned long freed; 425 426 do { 427 struct mem_cgroup *memcg = NULL; 428 429 freed = 0; 430 do { 431 freed += shrink_slab(GFP_KERNEL, nid, memcg, 432 1000, 1000); 433 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 434 } while (freed > 10); 435 } 436 437 void drop_slab(void) 438 { 439 int nid; 440 441 for_each_online_node(nid) 442 drop_slab_node(nid); 443 } 444 445 static inline int is_page_cache_freeable(struct page *page) 446 { 447 /* 448 * A freeable page cache page is referenced only by the caller 449 * that isolated the page, the page cache radix tree and 450 * optional buffer heads at page->private. 451 */ 452 return page_count(page) - page_has_private(page) == 2; 453 } 454 455 static int may_write_to_queue(struct backing_dev_info *bdi, 456 struct scan_control *sc) 457 { 458 if (current->flags & PF_SWAPWRITE) 459 return 1; 460 if (!bdi_write_congested(bdi)) 461 return 1; 462 if (bdi == current->backing_dev_info) 463 return 1; 464 return 0; 465 } 466 467 /* 468 * We detected a synchronous write error writing a page out. Probably 469 * -ENOSPC. We need to propagate that into the address_space for a subsequent 470 * fsync(), msync() or close(). 471 * 472 * The tricky part is that after writepage we cannot touch the mapping: nothing 473 * prevents it from being freed up. But we have a ref on the page and once 474 * that page is locked, the mapping is pinned. 475 * 476 * We're allowed to run sleeping lock_page() here because we know the caller has 477 * __GFP_FS. 478 */ 479 static void handle_write_error(struct address_space *mapping, 480 struct page *page, int error) 481 { 482 lock_page(page); 483 if (page_mapping(page) == mapping) 484 mapping_set_error(mapping, error); 485 unlock_page(page); 486 } 487 488 /* possible outcome of pageout() */ 489 typedef enum { 490 /* failed to write page out, page is locked */ 491 PAGE_KEEP, 492 /* move page to the active list, page is locked */ 493 PAGE_ACTIVATE, 494 /* page has been sent to the disk successfully, page is unlocked */ 495 PAGE_SUCCESS, 496 /* page is clean and locked */ 497 PAGE_CLEAN, 498 } pageout_t; 499 500 /* 501 * pageout is called by shrink_page_list() for each dirty page. 502 * Calls ->writepage(). 503 */ 504 static pageout_t pageout(struct page *page, struct address_space *mapping, 505 struct scan_control *sc) 506 { 507 /* 508 * If the page is dirty, only perform writeback if that write 509 * will be non-blocking. To prevent this allocation from being 510 * stalled by pagecache activity. But note that there may be 511 * stalls if we need to run get_block(). We could test 512 * PagePrivate for that. 513 * 514 * If this process is currently in __generic_file_write_iter() against 515 * this page's queue, we can perform writeback even if that 516 * will block. 517 * 518 * If the page is swapcache, write it back even if that would 519 * block, for some throttling. This happens by accident, because 520 * swap_backing_dev_info is bust: it doesn't reflect the 521 * congestion state of the swapdevs. Easy to fix, if needed. 522 */ 523 if (!is_page_cache_freeable(page)) 524 return PAGE_KEEP; 525 if (!mapping) { 526 /* 527 * Some data journaling orphaned pages can have 528 * page->mapping == NULL while being dirty with clean buffers. 529 */ 530 if (page_has_private(page)) { 531 if (try_to_free_buffers(page)) { 532 ClearPageDirty(page); 533 pr_info("%s: orphaned page\n", __func__); 534 return PAGE_CLEAN; 535 } 536 } 537 return PAGE_KEEP; 538 } 539 if (mapping->a_ops->writepage == NULL) 540 return PAGE_ACTIVATE; 541 if (!may_write_to_queue(inode_to_bdi(mapping->host), sc)) 542 return PAGE_KEEP; 543 544 if (clear_page_dirty_for_io(page)) { 545 int res; 546 struct writeback_control wbc = { 547 .sync_mode = WB_SYNC_NONE, 548 .nr_to_write = SWAP_CLUSTER_MAX, 549 .range_start = 0, 550 .range_end = LLONG_MAX, 551 .for_reclaim = 1, 552 }; 553 554 SetPageReclaim(page); 555 res = mapping->a_ops->writepage(page, &wbc); 556 if (res < 0) 557 handle_write_error(mapping, page, res); 558 if (res == AOP_WRITEPAGE_ACTIVATE) { 559 ClearPageReclaim(page); 560 return PAGE_ACTIVATE; 561 } 562 563 if (!PageWriteback(page)) { 564 /* synchronous write or broken a_ops? */ 565 ClearPageReclaim(page); 566 } 567 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page)); 568 inc_zone_page_state(page, NR_VMSCAN_WRITE); 569 return PAGE_SUCCESS; 570 } 571 572 return PAGE_CLEAN; 573 } 574 575 /* 576 * Same as remove_mapping, but if the page is removed from the mapping, it 577 * gets returned with a refcount of 0. 578 */ 579 static int __remove_mapping(struct address_space *mapping, struct page *page, 580 bool reclaimed) 581 { 582 BUG_ON(!PageLocked(page)); 583 BUG_ON(mapping != page_mapping(page)); 584 585 spin_lock_irq(&mapping->tree_lock); 586 /* 587 * The non racy check for a busy page. 588 * 589 * Must be careful with the order of the tests. When someone has 590 * a ref to the page, it may be possible that they dirty it then 591 * drop the reference. So if PageDirty is tested before page_count 592 * here, then the following race may occur: 593 * 594 * get_user_pages(&page); 595 * [user mapping goes away] 596 * write_to(page); 597 * !PageDirty(page) [good] 598 * SetPageDirty(page); 599 * put_page(page); 600 * !page_count(page) [good, discard it] 601 * 602 * [oops, our write_to data is lost] 603 * 604 * Reversing the order of the tests ensures such a situation cannot 605 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 606 * load is not satisfied before that of page->_count. 607 * 608 * Note that if SetPageDirty is always performed via set_page_dirty, 609 * and thus under tree_lock, then this ordering is not required. 610 */ 611 if (!page_freeze_refs(page, 2)) 612 goto cannot_free; 613 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 614 if (unlikely(PageDirty(page))) { 615 page_unfreeze_refs(page, 2); 616 goto cannot_free; 617 } 618 619 if (PageSwapCache(page)) { 620 swp_entry_t swap = { .val = page_private(page) }; 621 mem_cgroup_swapout(page, swap); 622 __delete_from_swap_cache(page); 623 spin_unlock_irq(&mapping->tree_lock); 624 swapcache_free(swap); 625 } else { 626 void (*freepage)(struct page *); 627 void *shadow = NULL; 628 629 freepage = mapping->a_ops->freepage; 630 /* 631 * Remember a shadow entry for reclaimed file cache in 632 * order to detect refaults, thus thrashing, later on. 633 * 634 * But don't store shadows in an address space that is 635 * already exiting. This is not just an optizimation, 636 * inode reclaim needs to empty out the radix tree or 637 * the nodes are lost. Don't plant shadows behind its 638 * back. 639 */ 640 if (reclaimed && page_is_file_cache(page) && 641 !mapping_exiting(mapping)) 642 shadow = workingset_eviction(mapping, page); 643 __delete_from_page_cache(page, shadow); 644 spin_unlock_irq(&mapping->tree_lock); 645 646 if (freepage != NULL) 647 freepage(page); 648 } 649 650 return 1; 651 652 cannot_free: 653 spin_unlock_irq(&mapping->tree_lock); 654 return 0; 655 } 656 657 /* 658 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 659 * someone else has a ref on the page, abort and return 0. If it was 660 * successfully detached, return 1. Assumes the caller has a single ref on 661 * this page. 662 */ 663 int remove_mapping(struct address_space *mapping, struct page *page) 664 { 665 if (__remove_mapping(mapping, page, false)) { 666 /* 667 * Unfreezing the refcount with 1 rather than 2 effectively 668 * drops the pagecache ref for us without requiring another 669 * atomic operation. 670 */ 671 page_unfreeze_refs(page, 1); 672 return 1; 673 } 674 return 0; 675 } 676 677 /** 678 * putback_lru_page - put previously isolated page onto appropriate LRU list 679 * @page: page to be put back to appropriate lru list 680 * 681 * Add previously isolated @page to appropriate LRU list. 682 * Page may still be unevictable for other reasons. 683 * 684 * lru_lock must not be held, interrupts must be enabled. 685 */ 686 void putback_lru_page(struct page *page) 687 { 688 bool is_unevictable; 689 int was_unevictable = PageUnevictable(page); 690 691 VM_BUG_ON_PAGE(PageLRU(page), page); 692 693 redo: 694 ClearPageUnevictable(page); 695 696 if (page_evictable(page)) { 697 /* 698 * For evictable pages, we can use the cache. 699 * In event of a race, worst case is we end up with an 700 * unevictable page on [in]active list. 701 * We know how to handle that. 702 */ 703 is_unevictable = false; 704 lru_cache_add(page); 705 } else { 706 /* 707 * Put unevictable pages directly on zone's unevictable 708 * list. 709 */ 710 is_unevictable = true; 711 add_page_to_unevictable_list(page); 712 /* 713 * When racing with an mlock or AS_UNEVICTABLE clearing 714 * (page is unlocked) make sure that if the other thread 715 * does not observe our setting of PG_lru and fails 716 * isolation/check_move_unevictable_pages, 717 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 718 * the page back to the evictable list. 719 * 720 * The other side is TestClearPageMlocked() or shmem_lock(). 721 */ 722 smp_mb(); 723 } 724 725 /* 726 * page's status can change while we move it among lru. If an evictable 727 * page is on unevictable list, it never be freed. To avoid that, 728 * check after we added it to the list, again. 729 */ 730 if (is_unevictable && page_evictable(page)) { 731 if (!isolate_lru_page(page)) { 732 put_page(page); 733 goto redo; 734 } 735 /* This means someone else dropped this page from LRU 736 * So, it will be freed or putback to LRU again. There is 737 * nothing to do here. 738 */ 739 } 740 741 if (was_unevictable && !is_unevictable) 742 count_vm_event(UNEVICTABLE_PGRESCUED); 743 else if (!was_unevictable && is_unevictable) 744 count_vm_event(UNEVICTABLE_PGCULLED); 745 746 put_page(page); /* drop ref from isolate */ 747 } 748 749 enum page_references { 750 PAGEREF_RECLAIM, 751 PAGEREF_RECLAIM_CLEAN, 752 PAGEREF_KEEP, 753 PAGEREF_ACTIVATE, 754 }; 755 756 static enum page_references page_check_references(struct page *page, 757 struct scan_control *sc) 758 { 759 int referenced_ptes, referenced_page; 760 unsigned long vm_flags; 761 762 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 763 &vm_flags); 764 referenced_page = TestClearPageReferenced(page); 765 766 /* 767 * Mlock lost the isolation race with us. Let try_to_unmap() 768 * move the page to the unevictable list. 769 */ 770 if (vm_flags & VM_LOCKED) 771 return PAGEREF_RECLAIM; 772 773 if (referenced_ptes) { 774 if (PageSwapBacked(page)) 775 return PAGEREF_ACTIVATE; 776 /* 777 * All mapped pages start out with page table 778 * references from the instantiating fault, so we need 779 * to look twice if a mapped file page is used more 780 * than once. 781 * 782 * Mark it and spare it for another trip around the 783 * inactive list. Another page table reference will 784 * lead to its activation. 785 * 786 * Note: the mark is set for activated pages as well 787 * so that recently deactivated but used pages are 788 * quickly recovered. 789 */ 790 SetPageReferenced(page); 791 792 if (referenced_page || referenced_ptes > 1) 793 return PAGEREF_ACTIVATE; 794 795 /* 796 * Activate file-backed executable pages after first usage. 797 */ 798 if (vm_flags & VM_EXEC) 799 return PAGEREF_ACTIVATE; 800 801 return PAGEREF_KEEP; 802 } 803 804 /* Reclaim if clean, defer dirty pages to writeback */ 805 if (referenced_page && !PageSwapBacked(page)) 806 return PAGEREF_RECLAIM_CLEAN; 807 808 return PAGEREF_RECLAIM; 809 } 810 811 /* Check if a page is dirty or under writeback */ 812 static void page_check_dirty_writeback(struct page *page, 813 bool *dirty, bool *writeback) 814 { 815 struct address_space *mapping; 816 817 /* 818 * Anonymous pages are not handled by flushers and must be written 819 * from reclaim context. Do not stall reclaim based on them 820 */ 821 if (!page_is_file_cache(page)) { 822 *dirty = false; 823 *writeback = false; 824 return; 825 } 826 827 /* By default assume that the page flags are accurate */ 828 *dirty = PageDirty(page); 829 *writeback = PageWriteback(page); 830 831 /* Verify dirty/writeback state if the filesystem supports it */ 832 if (!page_has_private(page)) 833 return; 834 835 mapping = page_mapping(page); 836 if (mapping && mapping->a_ops->is_dirty_writeback) 837 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 838 } 839 840 /* 841 * shrink_page_list() returns the number of reclaimed pages 842 */ 843 static unsigned long shrink_page_list(struct list_head *page_list, 844 struct zone *zone, 845 struct scan_control *sc, 846 enum ttu_flags ttu_flags, 847 unsigned long *ret_nr_dirty, 848 unsigned long *ret_nr_unqueued_dirty, 849 unsigned long *ret_nr_congested, 850 unsigned long *ret_nr_writeback, 851 unsigned long *ret_nr_immediate, 852 bool force_reclaim) 853 { 854 LIST_HEAD(ret_pages); 855 LIST_HEAD(free_pages); 856 int pgactivate = 0; 857 unsigned long nr_unqueued_dirty = 0; 858 unsigned long nr_dirty = 0; 859 unsigned long nr_congested = 0; 860 unsigned long nr_reclaimed = 0; 861 unsigned long nr_writeback = 0; 862 unsigned long nr_immediate = 0; 863 864 cond_resched(); 865 866 while (!list_empty(page_list)) { 867 struct address_space *mapping; 868 struct page *page; 869 int may_enter_fs; 870 enum page_references references = PAGEREF_RECLAIM_CLEAN; 871 bool dirty, writeback; 872 873 cond_resched(); 874 875 page = lru_to_page(page_list); 876 list_del(&page->lru); 877 878 if (!trylock_page(page)) 879 goto keep; 880 881 VM_BUG_ON_PAGE(PageActive(page), page); 882 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 883 884 sc->nr_scanned++; 885 886 if (unlikely(!page_evictable(page))) 887 goto cull_mlocked; 888 889 if (!sc->may_unmap && page_mapped(page)) 890 goto keep_locked; 891 892 /* Double the slab pressure for mapped and swapcache pages */ 893 if (page_mapped(page) || PageSwapCache(page)) 894 sc->nr_scanned++; 895 896 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 897 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 898 899 /* 900 * The number of dirty pages determines if a zone is marked 901 * reclaim_congested which affects wait_iff_congested. kswapd 902 * will stall and start writing pages if the tail of the LRU 903 * is all dirty unqueued pages. 904 */ 905 page_check_dirty_writeback(page, &dirty, &writeback); 906 if (dirty || writeback) 907 nr_dirty++; 908 909 if (dirty && !writeback) 910 nr_unqueued_dirty++; 911 912 /* 913 * Treat this page as congested if the underlying BDI is or if 914 * pages are cycling through the LRU so quickly that the 915 * pages marked for immediate reclaim are making it to the 916 * end of the LRU a second time. 917 */ 918 mapping = page_mapping(page); 919 if (((dirty || writeback) && mapping && 920 bdi_write_congested(inode_to_bdi(mapping->host))) || 921 (writeback && PageReclaim(page))) 922 nr_congested++; 923 924 /* 925 * If a page at the tail of the LRU is under writeback, there 926 * are three cases to consider. 927 * 928 * 1) If reclaim is encountering an excessive number of pages 929 * under writeback and this page is both under writeback and 930 * PageReclaim then it indicates that pages are being queued 931 * for IO but are being recycled through the LRU before the 932 * IO can complete. Waiting on the page itself risks an 933 * indefinite stall if it is impossible to writeback the 934 * page due to IO error or disconnected storage so instead 935 * note that the LRU is being scanned too quickly and the 936 * caller can stall after page list has been processed. 937 * 938 * 2) Global reclaim encounters a page, memcg encounters a 939 * page that is not marked for immediate reclaim or 940 * the caller does not have __GFP_IO. In this case mark 941 * the page for immediate reclaim and continue scanning. 942 * 943 * __GFP_IO is checked because a loop driver thread might 944 * enter reclaim, and deadlock if it waits on a page for 945 * which it is needed to do the write (loop masks off 946 * __GFP_IO|__GFP_FS for this reason); but more thought 947 * would probably show more reasons. 948 * 949 * Don't require __GFP_FS, since we're not going into the 950 * FS, just waiting on its writeback completion. Worryingly, 951 * ext4 gfs2 and xfs allocate pages with 952 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing 953 * may_enter_fs here is liable to OOM on them. 954 * 955 * 3) memcg encounters a page that is not already marked 956 * PageReclaim. memcg does not have any dirty pages 957 * throttling so we could easily OOM just because too many 958 * pages are in writeback and there is nothing else to 959 * reclaim. Wait for the writeback to complete. 960 */ 961 if (PageWriteback(page)) { 962 /* Case 1 above */ 963 if (current_is_kswapd() && 964 PageReclaim(page) && 965 test_bit(ZONE_WRITEBACK, &zone->flags)) { 966 nr_immediate++; 967 goto keep_locked; 968 969 /* Case 2 above */ 970 } else if (global_reclaim(sc) || 971 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) { 972 /* 973 * This is slightly racy - end_page_writeback() 974 * might have just cleared PageReclaim, then 975 * setting PageReclaim here end up interpreted 976 * as PageReadahead - but that does not matter 977 * enough to care. What we do want is for this 978 * page to have PageReclaim set next time memcg 979 * reclaim reaches the tests above, so it will 980 * then wait_on_page_writeback() to avoid OOM; 981 * and it's also appropriate in global reclaim. 982 */ 983 SetPageReclaim(page); 984 nr_writeback++; 985 986 goto keep_locked; 987 988 /* Case 3 above */ 989 } else { 990 wait_on_page_writeback(page); 991 } 992 } 993 994 if (!force_reclaim) 995 references = page_check_references(page, sc); 996 997 switch (references) { 998 case PAGEREF_ACTIVATE: 999 goto activate_locked; 1000 case PAGEREF_KEEP: 1001 goto keep_locked; 1002 case PAGEREF_RECLAIM: 1003 case PAGEREF_RECLAIM_CLEAN: 1004 ; /* try to reclaim the page below */ 1005 } 1006 1007 /* 1008 * Anonymous process memory has backing store? 1009 * Try to allocate it some swap space here. 1010 */ 1011 if (PageAnon(page) && !PageSwapCache(page)) { 1012 if (!(sc->gfp_mask & __GFP_IO)) 1013 goto keep_locked; 1014 if (!add_to_swap(page, page_list)) 1015 goto activate_locked; 1016 may_enter_fs = 1; 1017 1018 /* Adding to swap updated mapping */ 1019 mapping = page_mapping(page); 1020 } 1021 1022 /* 1023 * The page is mapped into the page tables of one or more 1024 * processes. Try to unmap it here. 1025 */ 1026 if (page_mapped(page) && mapping) { 1027 switch (try_to_unmap(page, ttu_flags)) { 1028 case SWAP_FAIL: 1029 goto activate_locked; 1030 case SWAP_AGAIN: 1031 goto keep_locked; 1032 case SWAP_MLOCK: 1033 goto cull_mlocked; 1034 case SWAP_SUCCESS: 1035 ; /* try to free the page below */ 1036 } 1037 } 1038 1039 if (PageDirty(page)) { 1040 /* 1041 * Only kswapd can writeback filesystem pages to 1042 * avoid risk of stack overflow but only writeback 1043 * if many dirty pages have been encountered. 1044 */ 1045 if (page_is_file_cache(page) && 1046 (!current_is_kswapd() || 1047 !test_bit(ZONE_DIRTY, &zone->flags))) { 1048 /* 1049 * Immediately reclaim when written back. 1050 * Similar in principal to deactivate_page() 1051 * except we already have the page isolated 1052 * and know it's dirty 1053 */ 1054 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); 1055 SetPageReclaim(page); 1056 1057 goto keep_locked; 1058 } 1059 1060 if (references == PAGEREF_RECLAIM_CLEAN) 1061 goto keep_locked; 1062 if (!may_enter_fs) 1063 goto keep_locked; 1064 if (!sc->may_writepage) 1065 goto keep_locked; 1066 1067 /* Page is dirty, try to write it out here */ 1068 switch (pageout(page, mapping, sc)) { 1069 case PAGE_KEEP: 1070 goto keep_locked; 1071 case PAGE_ACTIVATE: 1072 goto activate_locked; 1073 case PAGE_SUCCESS: 1074 if (PageWriteback(page)) 1075 goto keep; 1076 if (PageDirty(page)) 1077 goto keep; 1078 1079 /* 1080 * A synchronous write - probably a ramdisk. Go 1081 * ahead and try to reclaim the page. 1082 */ 1083 if (!trylock_page(page)) 1084 goto keep; 1085 if (PageDirty(page) || PageWriteback(page)) 1086 goto keep_locked; 1087 mapping = page_mapping(page); 1088 case PAGE_CLEAN: 1089 ; /* try to free the page below */ 1090 } 1091 } 1092 1093 /* 1094 * If the page has buffers, try to free the buffer mappings 1095 * associated with this page. If we succeed we try to free 1096 * the page as well. 1097 * 1098 * We do this even if the page is PageDirty(). 1099 * try_to_release_page() does not perform I/O, but it is 1100 * possible for a page to have PageDirty set, but it is actually 1101 * clean (all its buffers are clean). This happens if the 1102 * buffers were written out directly, with submit_bh(). ext3 1103 * will do this, as well as the blockdev mapping. 1104 * try_to_release_page() will discover that cleanness and will 1105 * drop the buffers and mark the page clean - it can be freed. 1106 * 1107 * Rarely, pages can have buffers and no ->mapping. These are 1108 * the pages which were not successfully invalidated in 1109 * truncate_complete_page(). We try to drop those buffers here 1110 * and if that worked, and the page is no longer mapped into 1111 * process address space (page_count == 1) it can be freed. 1112 * Otherwise, leave the page on the LRU so it is swappable. 1113 */ 1114 if (page_has_private(page)) { 1115 if (!try_to_release_page(page, sc->gfp_mask)) 1116 goto activate_locked; 1117 if (!mapping && page_count(page) == 1) { 1118 unlock_page(page); 1119 if (put_page_testzero(page)) 1120 goto free_it; 1121 else { 1122 /* 1123 * rare race with speculative reference. 1124 * the speculative reference will free 1125 * this page shortly, so we may 1126 * increment nr_reclaimed here (and 1127 * leave it off the LRU). 1128 */ 1129 nr_reclaimed++; 1130 continue; 1131 } 1132 } 1133 } 1134 1135 if (!mapping || !__remove_mapping(mapping, page, true)) 1136 goto keep_locked; 1137 1138 /* 1139 * At this point, we have no other references and there is 1140 * no way to pick any more up (removed from LRU, removed 1141 * from pagecache). Can use non-atomic bitops now (and 1142 * we obviously don't have to worry about waking up a process 1143 * waiting on the page lock, because there are no references. 1144 */ 1145 __clear_page_locked(page); 1146 free_it: 1147 nr_reclaimed++; 1148 1149 /* 1150 * Is there need to periodically free_page_list? It would 1151 * appear not as the counts should be low 1152 */ 1153 list_add(&page->lru, &free_pages); 1154 continue; 1155 1156 cull_mlocked: 1157 if (PageSwapCache(page)) 1158 try_to_free_swap(page); 1159 unlock_page(page); 1160 putback_lru_page(page); 1161 continue; 1162 1163 activate_locked: 1164 /* Not a candidate for swapping, so reclaim swap space. */ 1165 if (PageSwapCache(page) && vm_swap_full()) 1166 try_to_free_swap(page); 1167 VM_BUG_ON_PAGE(PageActive(page), page); 1168 SetPageActive(page); 1169 pgactivate++; 1170 keep_locked: 1171 unlock_page(page); 1172 keep: 1173 list_add(&page->lru, &ret_pages); 1174 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1175 } 1176 1177 mem_cgroup_uncharge_list(&free_pages); 1178 free_hot_cold_page_list(&free_pages, true); 1179 1180 list_splice(&ret_pages, page_list); 1181 count_vm_events(PGACTIVATE, pgactivate); 1182 1183 *ret_nr_dirty += nr_dirty; 1184 *ret_nr_congested += nr_congested; 1185 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1186 *ret_nr_writeback += nr_writeback; 1187 *ret_nr_immediate += nr_immediate; 1188 return nr_reclaimed; 1189 } 1190 1191 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1192 struct list_head *page_list) 1193 { 1194 struct scan_control sc = { 1195 .gfp_mask = GFP_KERNEL, 1196 .priority = DEF_PRIORITY, 1197 .may_unmap = 1, 1198 }; 1199 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1200 struct page *page, *next; 1201 LIST_HEAD(clean_pages); 1202 1203 list_for_each_entry_safe(page, next, page_list, lru) { 1204 if (page_is_file_cache(page) && !PageDirty(page) && 1205 !isolated_balloon_page(page)) { 1206 ClearPageActive(page); 1207 list_move(&page->lru, &clean_pages); 1208 } 1209 } 1210 1211 ret = shrink_page_list(&clean_pages, zone, &sc, 1212 TTU_UNMAP|TTU_IGNORE_ACCESS, 1213 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1214 list_splice(&clean_pages, page_list); 1215 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); 1216 return ret; 1217 } 1218 1219 /* 1220 * Attempt to remove the specified page from its LRU. Only take this page 1221 * if it is of the appropriate PageActive status. Pages which are being 1222 * freed elsewhere are also ignored. 1223 * 1224 * page: page to consider 1225 * mode: one of the LRU isolation modes defined above 1226 * 1227 * returns 0 on success, -ve errno on failure. 1228 */ 1229 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1230 { 1231 int ret = -EINVAL; 1232 1233 /* Only take pages on the LRU. */ 1234 if (!PageLRU(page)) 1235 return ret; 1236 1237 /* Compaction should not handle unevictable pages but CMA can do so */ 1238 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1239 return ret; 1240 1241 ret = -EBUSY; 1242 1243 /* 1244 * To minimise LRU disruption, the caller can indicate that it only 1245 * wants to isolate pages it will be able to operate on without 1246 * blocking - clean pages for the most part. 1247 * 1248 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1249 * is used by reclaim when it is cannot write to backing storage 1250 * 1251 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1252 * that it is possible to migrate without blocking 1253 */ 1254 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1255 /* All the caller can do on PageWriteback is block */ 1256 if (PageWriteback(page)) 1257 return ret; 1258 1259 if (PageDirty(page)) { 1260 struct address_space *mapping; 1261 1262 /* ISOLATE_CLEAN means only clean pages */ 1263 if (mode & ISOLATE_CLEAN) 1264 return ret; 1265 1266 /* 1267 * Only pages without mappings or that have a 1268 * ->migratepage callback are possible to migrate 1269 * without blocking 1270 */ 1271 mapping = page_mapping(page); 1272 if (mapping && !mapping->a_ops->migratepage) 1273 return ret; 1274 } 1275 } 1276 1277 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1278 return ret; 1279 1280 if (likely(get_page_unless_zero(page))) { 1281 /* 1282 * Be careful not to clear PageLRU until after we're 1283 * sure the page is not being freed elsewhere -- the 1284 * page release code relies on it. 1285 */ 1286 ClearPageLRU(page); 1287 ret = 0; 1288 } 1289 1290 return ret; 1291 } 1292 1293 /* 1294 * zone->lru_lock is heavily contended. Some of the functions that 1295 * shrink the lists perform better by taking out a batch of pages 1296 * and working on them outside the LRU lock. 1297 * 1298 * For pagecache intensive workloads, this function is the hottest 1299 * spot in the kernel (apart from copy_*_user functions). 1300 * 1301 * Appropriate locks must be held before calling this function. 1302 * 1303 * @nr_to_scan: The number of pages to look through on the list. 1304 * @lruvec: The LRU vector to pull pages from. 1305 * @dst: The temp list to put pages on to. 1306 * @nr_scanned: The number of pages that were scanned. 1307 * @sc: The scan_control struct for this reclaim session 1308 * @mode: One of the LRU isolation modes 1309 * @lru: LRU list id for isolating 1310 * 1311 * returns how many pages were moved onto *@dst. 1312 */ 1313 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1314 struct lruvec *lruvec, struct list_head *dst, 1315 unsigned long *nr_scanned, struct scan_control *sc, 1316 isolate_mode_t mode, enum lru_list lru) 1317 { 1318 struct list_head *src = &lruvec->lists[lru]; 1319 unsigned long nr_taken = 0; 1320 unsigned long scan; 1321 1322 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 1323 struct page *page; 1324 int nr_pages; 1325 1326 page = lru_to_page(src); 1327 prefetchw_prev_lru_page(page, src, flags); 1328 1329 VM_BUG_ON_PAGE(!PageLRU(page), page); 1330 1331 switch (__isolate_lru_page(page, mode)) { 1332 case 0: 1333 nr_pages = hpage_nr_pages(page); 1334 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); 1335 list_move(&page->lru, dst); 1336 nr_taken += nr_pages; 1337 break; 1338 1339 case -EBUSY: 1340 /* else it is being freed elsewhere */ 1341 list_move(&page->lru, src); 1342 continue; 1343 1344 default: 1345 BUG(); 1346 } 1347 } 1348 1349 *nr_scanned = scan; 1350 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, 1351 nr_taken, mode, is_file_lru(lru)); 1352 return nr_taken; 1353 } 1354 1355 /** 1356 * isolate_lru_page - tries to isolate a page from its LRU list 1357 * @page: page to isolate from its LRU list 1358 * 1359 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1360 * vmstat statistic corresponding to whatever LRU list the page was on. 1361 * 1362 * Returns 0 if the page was removed from an LRU list. 1363 * Returns -EBUSY if the page was not on an LRU list. 1364 * 1365 * The returned page will have PageLRU() cleared. If it was found on 1366 * the active list, it will have PageActive set. If it was found on 1367 * the unevictable list, it will have the PageUnevictable bit set. That flag 1368 * may need to be cleared by the caller before letting the page go. 1369 * 1370 * The vmstat statistic corresponding to the list on which the page was 1371 * found will be decremented. 1372 * 1373 * Restrictions: 1374 * (1) Must be called with an elevated refcount on the page. This is a 1375 * fundamentnal difference from isolate_lru_pages (which is called 1376 * without a stable reference). 1377 * (2) the lru_lock must not be held. 1378 * (3) interrupts must be enabled. 1379 */ 1380 int isolate_lru_page(struct page *page) 1381 { 1382 int ret = -EBUSY; 1383 1384 VM_BUG_ON_PAGE(!page_count(page), page); 1385 1386 if (PageLRU(page)) { 1387 struct zone *zone = page_zone(page); 1388 struct lruvec *lruvec; 1389 1390 spin_lock_irq(&zone->lru_lock); 1391 lruvec = mem_cgroup_page_lruvec(page, zone); 1392 if (PageLRU(page)) { 1393 int lru = page_lru(page); 1394 get_page(page); 1395 ClearPageLRU(page); 1396 del_page_from_lru_list(page, lruvec, lru); 1397 ret = 0; 1398 } 1399 spin_unlock_irq(&zone->lru_lock); 1400 } 1401 return ret; 1402 } 1403 1404 /* 1405 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1406 * then get resheduled. When there are massive number of tasks doing page 1407 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1408 * the LRU list will go small and be scanned faster than necessary, leading to 1409 * unnecessary swapping, thrashing and OOM. 1410 */ 1411 static int too_many_isolated(struct zone *zone, int file, 1412 struct scan_control *sc) 1413 { 1414 unsigned long inactive, isolated; 1415 1416 if (current_is_kswapd()) 1417 return 0; 1418 1419 if (!global_reclaim(sc)) 1420 return 0; 1421 1422 if (file) { 1423 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1424 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1425 } else { 1426 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1427 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1428 } 1429 1430 /* 1431 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1432 * won't get blocked by normal direct-reclaimers, forming a circular 1433 * deadlock. 1434 */ 1435 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS) 1436 inactive >>= 3; 1437 1438 return isolated > inactive; 1439 } 1440 1441 static noinline_for_stack void 1442 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1443 { 1444 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1445 struct zone *zone = lruvec_zone(lruvec); 1446 LIST_HEAD(pages_to_free); 1447 1448 /* 1449 * Put back any unfreeable pages. 1450 */ 1451 while (!list_empty(page_list)) { 1452 struct page *page = lru_to_page(page_list); 1453 int lru; 1454 1455 VM_BUG_ON_PAGE(PageLRU(page), page); 1456 list_del(&page->lru); 1457 if (unlikely(!page_evictable(page))) { 1458 spin_unlock_irq(&zone->lru_lock); 1459 putback_lru_page(page); 1460 spin_lock_irq(&zone->lru_lock); 1461 continue; 1462 } 1463 1464 lruvec = mem_cgroup_page_lruvec(page, zone); 1465 1466 SetPageLRU(page); 1467 lru = page_lru(page); 1468 add_page_to_lru_list(page, lruvec, lru); 1469 1470 if (is_active_lru(lru)) { 1471 int file = is_file_lru(lru); 1472 int numpages = hpage_nr_pages(page); 1473 reclaim_stat->recent_rotated[file] += numpages; 1474 } 1475 if (put_page_testzero(page)) { 1476 __ClearPageLRU(page); 1477 __ClearPageActive(page); 1478 del_page_from_lru_list(page, lruvec, lru); 1479 1480 if (unlikely(PageCompound(page))) { 1481 spin_unlock_irq(&zone->lru_lock); 1482 mem_cgroup_uncharge(page); 1483 (*get_compound_page_dtor(page))(page); 1484 spin_lock_irq(&zone->lru_lock); 1485 } else 1486 list_add(&page->lru, &pages_to_free); 1487 } 1488 } 1489 1490 /* 1491 * To save our caller's stack, now use input list for pages to free. 1492 */ 1493 list_splice(&pages_to_free, page_list); 1494 } 1495 1496 /* 1497 * If a kernel thread (such as nfsd for loop-back mounts) services 1498 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1499 * In that case we should only throttle if the backing device it is 1500 * writing to is congested. In other cases it is safe to throttle. 1501 */ 1502 static int current_may_throttle(void) 1503 { 1504 return !(current->flags & PF_LESS_THROTTLE) || 1505 current->backing_dev_info == NULL || 1506 bdi_write_congested(current->backing_dev_info); 1507 } 1508 1509 /* 1510 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1511 * of reclaimed pages 1512 */ 1513 static noinline_for_stack unsigned long 1514 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1515 struct scan_control *sc, enum lru_list lru) 1516 { 1517 LIST_HEAD(page_list); 1518 unsigned long nr_scanned; 1519 unsigned long nr_reclaimed = 0; 1520 unsigned long nr_taken; 1521 unsigned long nr_dirty = 0; 1522 unsigned long nr_congested = 0; 1523 unsigned long nr_unqueued_dirty = 0; 1524 unsigned long nr_writeback = 0; 1525 unsigned long nr_immediate = 0; 1526 isolate_mode_t isolate_mode = 0; 1527 int file = is_file_lru(lru); 1528 struct zone *zone = lruvec_zone(lruvec); 1529 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1530 1531 while (unlikely(too_many_isolated(zone, file, sc))) { 1532 congestion_wait(BLK_RW_ASYNC, HZ/10); 1533 1534 /* We are about to die and free our memory. Return now. */ 1535 if (fatal_signal_pending(current)) 1536 return SWAP_CLUSTER_MAX; 1537 } 1538 1539 lru_add_drain(); 1540 1541 if (!sc->may_unmap) 1542 isolate_mode |= ISOLATE_UNMAPPED; 1543 if (!sc->may_writepage) 1544 isolate_mode |= ISOLATE_CLEAN; 1545 1546 spin_lock_irq(&zone->lru_lock); 1547 1548 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1549 &nr_scanned, sc, isolate_mode, lru); 1550 1551 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1552 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1553 1554 if (global_reclaim(sc)) { 1555 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); 1556 if (current_is_kswapd()) 1557 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); 1558 else 1559 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); 1560 } 1561 spin_unlock_irq(&zone->lru_lock); 1562 1563 if (nr_taken == 0) 1564 return 0; 1565 1566 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1567 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1568 &nr_writeback, &nr_immediate, 1569 false); 1570 1571 spin_lock_irq(&zone->lru_lock); 1572 1573 reclaim_stat->recent_scanned[file] += nr_taken; 1574 1575 if (global_reclaim(sc)) { 1576 if (current_is_kswapd()) 1577 __count_zone_vm_events(PGSTEAL_KSWAPD, zone, 1578 nr_reclaimed); 1579 else 1580 __count_zone_vm_events(PGSTEAL_DIRECT, zone, 1581 nr_reclaimed); 1582 } 1583 1584 putback_inactive_pages(lruvec, &page_list); 1585 1586 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1587 1588 spin_unlock_irq(&zone->lru_lock); 1589 1590 mem_cgroup_uncharge_list(&page_list); 1591 free_hot_cold_page_list(&page_list, true); 1592 1593 /* 1594 * If reclaim is isolating dirty pages under writeback, it implies 1595 * that the long-lived page allocation rate is exceeding the page 1596 * laundering rate. Either the global limits are not being effective 1597 * at throttling processes due to the page distribution throughout 1598 * zones or there is heavy usage of a slow backing device. The 1599 * only option is to throttle from reclaim context which is not ideal 1600 * as there is no guarantee the dirtying process is throttled in the 1601 * same way balance_dirty_pages() manages. 1602 * 1603 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1604 * of pages under pages flagged for immediate reclaim and stall if any 1605 * are encountered in the nr_immediate check below. 1606 */ 1607 if (nr_writeback && nr_writeback == nr_taken) 1608 set_bit(ZONE_WRITEBACK, &zone->flags); 1609 1610 /* 1611 * memcg will stall in page writeback so only consider forcibly 1612 * stalling for global reclaim 1613 */ 1614 if (global_reclaim(sc)) { 1615 /* 1616 * Tag a zone as congested if all the dirty pages scanned were 1617 * backed by a congested BDI and wait_iff_congested will stall. 1618 */ 1619 if (nr_dirty && nr_dirty == nr_congested) 1620 set_bit(ZONE_CONGESTED, &zone->flags); 1621 1622 /* 1623 * If dirty pages are scanned that are not queued for IO, it 1624 * implies that flushers are not keeping up. In this case, flag 1625 * the zone ZONE_DIRTY and kswapd will start writing pages from 1626 * reclaim context. 1627 */ 1628 if (nr_unqueued_dirty == nr_taken) 1629 set_bit(ZONE_DIRTY, &zone->flags); 1630 1631 /* 1632 * If kswapd scans pages marked marked for immediate 1633 * reclaim and under writeback (nr_immediate), it implies 1634 * that pages are cycling through the LRU faster than 1635 * they are written so also forcibly stall. 1636 */ 1637 if (nr_immediate && current_may_throttle()) 1638 congestion_wait(BLK_RW_ASYNC, HZ/10); 1639 } 1640 1641 /* 1642 * Stall direct reclaim for IO completions if underlying BDIs or zone 1643 * is congested. Allow kswapd to continue until it starts encountering 1644 * unqueued dirty pages or cycling through the LRU too quickly. 1645 */ 1646 if (!sc->hibernation_mode && !current_is_kswapd() && 1647 current_may_throttle()) 1648 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); 1649 1650 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, 1651 zone_idx(zone), 1652 nr_scanned, nr_reclaimed, 1653 sc->priority, 1654 trace_shrink_flags(file)); 1655 return nr_reclaimed; 1656 } 1657 1658 /* 1659 * This moves pages from the active list to the inactive list. 1660 * 1661 * We move them the other way if the page is referenced by one or more 1662 * processes, from rmap. 1663 * 1664 * If the pages are mostly unmapped, the processing is fast and it is 1665 * appropriate to hold zone->lru_lock across the whole operation. But if 1666 * the pages are mapped, the processing is slow (page_referenced()) so we 1667 * should drop zone->lru_lock around each page. It's impossible to balance 1668 * this, so instead we remove the pages from the LRU while processing them. 1669 * It is safe to rely on PG_active against the non-LRU pages in here because 1670 * nobody will play with that bit on a non-LRU page. 1671 * 1672 * The downside is that we have to touch page->_count against each page. 1673 * But we had to alter page->flags anyway. 1674 */ 1675 1676 static void move_active_pages_to_lru(struct lruvec *lruvec, 1677 struct list_head *list, 1678 struct list_head *pages_to_free, 1679 enum lru_list lru) 1680 { 1681 struct zone *zone = lruvec_zone(lruvec); 1682 unsigned long pgmoved = 0; 1683 struct page *page; 1684 int nr_pages; 1685 1686 while (!list_empty(list)) { 1687 page = lru_to_page(list); 1688 lruvec = mem_cgroup_page_lruvec(page, zone); 1689 1690 VM_BUG_ON_PAGE(PageLRU(page), page); 1691 SetPageLRU(page); 1692 1693 nr_pages = hpage_nr_pages(page); 1694 mem_cgroup_update_lru_size(lruvec, lru, nr_pages); 1695 list_move(&page->lru, &lruvec->lists[lru]); 1696 pgmoved += nr_pages; 1697 1698 if (put_page_testzero(page)) { 1699 __ClearPageLRU(page); 1700 __ClearPageActive(page); 1701 del_page_from_lru_list(page, lruvec, lru); 1702 1703 if (unlikely(PageCompound(page))) { 1704 spin_unlock_irq(&zone->lru_lock); 1705 mem_cgroup_uncharge(page); 1706 (*get_compound_page_dtor(page))(page); 1707 spin_lock_irq(&zone->lru_lock); 1708 } else 1709 list_add(&page->lru, pages_to_free); 1710 } 1711 } 1712 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1713 if (!is_active_lru(lru)) 1714 __count_vm_events(PGDEACTIVATE, pgmoved); 1715 } 1716 1717 static void shrink_active_list(unsigned long nr_to_scan, 1718 struct lruvec *lruvec, 1719 struct scan_control *sc, 1720 enum lru_list lru) 1721 { 1722 unsigned long nr_taken; 1723 unsigned long nr_scanned; 1724 unsigned long vm_flags; 1725 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1726 LIST_HEAD(l_active); 1727 LIST_HEAD(l_inactive); 1728 struct page *page; 1729 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1730 unsigned long nr_rotated = 0; 1731 isolate_mode_t isolate_mode = 0; 1732 int file = is_file_lru(lru); 1733 struct zone *zone = lruvec_zone(lruvec); 1734 1735 lru_add_drain(); 1736 1737 if (!sc->may_unmap) 1738 isolate_mode |= ISOLATE_UNMAPPED; 1739 if (!sc->may_writepage) 1740 isolate_mode |= ISOLATE_CLEAN; 1741 1742 spin_lock_irq(&zone->lru_lock); 1743 1744 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1745 &nr_scanned, sc, isolate_mode, lru); 1746 if (global_reclaim(sc)) 1747 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); 1748 1749 reclaim_stat->recent_scanned[file] += nr_taken; 1750 1751 __count_zone_vm_events(PGREFILL, zone, nr_scanned); 1752 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1753 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1754 spin_unlock_irq(&zone->lru_lock); 1755 1756 while (!list_empty(&l_hold)) { 1757 cond_resched(); 1758 page = lru_to_page(&l_hold); 1759 list_del(&page->lru); 1760 1761 if (unlikely(!page_evictable(page))) { 1762 putback_lru_page(page); 1763 continue; 1764 } 1765 1766 if (unlikely(buffer_heads_over_limit)) { 1767 if (page_has_private(page) && trylock_page(page)) { 1768 if (page_has_private(page)) 1769 try_to_release_page(page, 0); 1770 unlock_page(page); 1771 } 1772 } 1773 1774 if (page_referenced(page, 0, sc->target_mem_cgroup, 1775 &vm_flags)) { 1776 nr_rotated += hpage_nr_pages(page); 1777 /* 1778 * Identify referenced, file-backed active pages and 1779 * give them one more trip around the active list. So 1780 * that executable code get better chances to stay in 1781 * memory under moderate memory pressure. Anon pages 1782 * are not likely to be evicted by use-once streaming 1783 * IO, plus JVM can create lots of anon VM_EXEC pages, 1784 * so we ignore them here. 1785 */ 1786 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1787 list_add(&page->lru, &l_active); 1788 continue; 1789 } 1790 } 1791 1792 ClearPageActive(page); /* we are de-activating */ 1793 list_add(&page->lru, &l_inactive); 1794 } 1795 1796 /* 1797 * Move pages back to the lru list. 1798 */ 1799 spin_lock_irq(&zone->lru_lock); 1800 /* 1801 * Count referenced pages from currently used mappings as rotated, 1802 * even though only some of them are actually re-activated. This 1803 * helps balance scan pressure between file and anonymous pages in 1804 * get_scan_count. 1805 */ 1806 reclaim_stat->recent_rotated[file] += nr_rotated; 1807 1808 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1809 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1810 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1811 spin_unlock_irq(&zone->lru_lock); 1812 1813 mem_cgroup_uncharge_list(&l_hold); 1814 free_hot_cold_page_list(&l_hold, true); 1815 } 1816 1817 #ifdef CONFIG_SWAP 1818 static int inactive_anon_is_low_global(struct zone *zone) 1819 { 1820 unsigned long active, inactive; 1821 1822 active = zone_page_state(zone, NR_ACTIVE_ANON); 1823 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1824 1825 if (inactive * zone->inactive_ratio < active) 1826 return 1; 1827 1828 return 0; 1829 } 1830 1831 /** 1832 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1833 * @lruvec: LRU vector to check 1834 * 1835 * Returns true if the zone does not have enough inactive anon pages, 1836 * meaning some active anon pages need to be deactivated. 1837 */ 1838 static int inactive_anon_is_low(struct lruvec *lruvec) 1839 { 1840 /* 1841 * If we don't have swap space, anonymous page deactivation 1842 * is pointless. 1843 */ 1844 if (!total_swap_pages) 1845 return 0; 1846 1847 if (!mem_cgroup_disabled()) 1848 return mem_cgroup_inactive_anon_is_low(lruvec); 1849 1850 return inactive_anon_is_low_global(lruvec_zone(lruvec)); 1851 } 1852 #else 1853 static inline int inactive_anon_is_low(struct lruvec *lruvec) 1854 { 1855 return 0; 1856 } 1857 #endif 1858 1859 /** 1860 * inactive_file_is_low - check if file pages need to be deactivated 1861 * @lruvec: LRU vector to check 1862 * 1863 * When the system is doing streaming IO, memory pressure here 1864 * ensures that active file pages get deactivated, until more 1865 * than half of the file pages are on the inactive list. 1866 * 1867 * Once we get to that situation, protect the system's working 1868 * set from being evicted by disabling active file page aging. 1869 * 1870 * This uses a different ratio than the anonymous pages, because 1871 * the page cache uses a use-once replacement algorithm. 1872 */ 1873 static int inactive_file_is_low(struct lruvec *lruvec) 1874 { 1875 unsigned long inactive; 1876 unsigned long active; 1877 1878 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE); 1879 active = get_lru_size(lruvec, LRU_ACTIVE_FILE); 1880 1881 return active > inactive; 1882 } 1883 1884 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) 1885 { 1886 if (is_file_lru(lru)) 1887 return inactive_file_is_low(lruvec); 1888 else 1889 return inactive_anon_is_low(lruvec); 1890 } 1891 1892 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1893 struct lruvec *lruvec, struct scan_control *sc) 1894 { 1895 if (is_active_lru(lru)) { 1896 if (inactive_list_is_low(lruvec, lru)) 1897 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1898 return 0; 1899 } 1900 1901 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1902 } 1903 1904 enum scan_balance { 1905 SCAN_EQUAL, 1906 SCAN_FRACT, 1907 SCAN_ANON, 1908 SCAN_FILE, 1909 }; 1910 1911 /* 1912 * Determine how aggressively the anon and file LRU lists should be 1913 * scanned. The relative value of each set of LRU lists is determined 1914 * by looking at the fraction of the pages scanned we did rotate back 1915 * onto the active list instead of evict. 1916 * 1917 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1918 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1919 */ 1920 static void get_scan_count(struct lruvec *lruvec, int swappiness, 1921 struct scan_control *sc, unsigned long *nr, 1922 unsigned long *lru_pages) 1923 { 1924 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1925 u64 fraction[2]; 1926 u64 denominator = 0; /* gcc */ 1927 struct zone *zone = lruvec_zone(lruvec); 1928 unsigned long anon_prio, file_prio; 1929 enum scan_balance scan_balance; 1930 unsigned long anon, file; 1931 bool force_scan = false; 1932 unsigned long ap, fp; 1933 enum lru_list lru; 1934 bool some_scanned; 1935 int pass; 1936 1937 /* 1938 * If the zone or memcg is small, nr[l] can be 0. This 1939 * results in no scanning on this priority and a potential 1940 * priority drop. Global direct reclaim can go to the next 1941 * zone and tends to have no problems. Global kswapd is for 1942 * zone balancing and it needs to scan a minimum amount. When 1943 * reclaiming for a memcg, a priority drop can cause high 1944 * latencies, so it's better to scan a minimum amount there as 1945 * well. 1946 */ 1947 if (current_is_kswapd()) { 1948 if (!zone_reclaimable(zone)) 1949 force_scan = true; 1950 if (!mem_cgroup_lruvec_online(lruvec)) 1951 force_scan = true; 1952 } 1953 if (!global_reclaim(sc)) 1954 force_scan = true; 1955 1956 /* If we have no swap space, do not bother scanning anon pages. */ 1957 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) { 1958 scan_balance = SCAN_FILE; 1959 goto out; 1960 } 1961 1962 /* 1963 * Global reclaim will swap to prevent OOM even with no 1964 * swappiness, but memcg users want to use this knob to 1965 * disable swapping for individual groups completely when 1966 * using the memory controller's swap limit feature would be 1967 * too expensive. 1968 */ 1969 if (!global_reclaim(sc) && !swappiness) { 1970 scan_balance = SCAN_FILE; 1971 goto out; 1972 } 1973 1974 /* 1975 * Do not apply any pressure balancing cleverness when the 1976 * system is close to OOM, scan both anon and file equally 1977 * (unless the swappiness setting disagrees with swapping). 1978 */ 1979 if (!sc->priority && swappiness) { 1980 scan_balance = SCAN_EQUAL; 1981 goto out; 1982 } 1983 1984 /* 1985 * Prevent the reclaimer from falling into the cache trap: as 1986 * cache pages start out inactive, every cache fault will tip 1987 * the scan balance towards the file LRU. And as the file LRU 1988 * shrinks, so does the window for rotation from references. 1989 * This means we have a runaway feedback loop where a tiny 1990 * thrashing file LRU becomes infinitely more attractive than 1991 * anon pages. Try to detect this based on file LRU size. 1992 */ 1993 if (global_reclaim(sc)) { 1994 unsigned long zonefile; 1995 unsigned long zonefree; 1996 1997 zonefree = zone_page_state(zone, NR_FREE_PAGES); 1998 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) + 1999 zone_page_state(zone, NR_INACTIVE_FILE); 2000 2001 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) { 2002 scan_balance = SCAN_ANON; 2003 goto out; 2004 } 2005 } 2006 2007 /* 2008 * There is enough inactive page cache, do not reclaim 2009 * anything from the anonymous working set right now. 2010 */ 2011 if (!inactive_file_is_low(lruvec)) { 2012 scan_balance = SCAN_FILE; 2013 goto out; 2014 } 2015 2016 scan_balance = SCAN_FRACT; 2017 2018 /* 2019 * With swappiness at 100, anonymous and file have the same priority. 2020 * This scanning priority is essentially the inverse of IO cost. 2021 */ 2022 anon_prio = swappiness; 2023 file_prio = 200 - anon_prio; 2024 2025 /* 2026 * OK, so we have swap space and a fair amount of page cache 2027 * pages. We use the recently rotated / recently scanned 2028 * ratios to determine how valuable each cache is. 2029 * 2030 * Because workloads change over time (and to avoid overflow) 2031 * we keep these statistics as a floating average, which ends 2032 * up weighing recent references more than old ones. 2033 * 2034 * anon in [0], file in [1] 2035 */ 2036 2037 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + 2038 get_lru_size(lruvec, LRU_INACTIVE_ANON); 2039 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + 2040 get_lru_size(lruvec, LRU_INACTIVE_FILE); 2041 2042 spin_lock_irq(&zone->lru_lock); 2043 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2044 reclaim_stat->recent_scanned[0] /= 2; 2045 reclaim_stat->recent_rotated[0] /= 2; 2046 } 2047 2048 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2049 reclaim_stat->recent_scanned[1] /= 2; 2050 reclaim_stat->recent_rotated[1] /= 2; 2051 } 2052 2053 /* 2054 * The amount of pressure on anon vs file pages is inversely 2055 * proportional to the fraction of recently scanned pages on 2056 * each list that were recently referenced and in active use. 2057 */ 2058 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2059 ap /= reclaim_stat->recent_rotated[0] + 1; 2060 2061 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2062 fp /= reclaim_stat->recent_rotated[1] + 1; 2063 spin_unlock_irq(&zone->lru_lock); 2064 2065 fraction[0] = ap; 2066 fraction[1] = fp; 2067 denominator = ap + fp + 1; 2068 out: 2069 some_scanned = false; 2070 /* Only use force_scan on second pass. */ 2071 for (pass = 0; !some_scanned && pass < 2; pass++) { 2072 *lru_pages = 0; 2073 for_each_evictable_lru(lru) { 2074 int file = is_file_lru(lru); 2075 unsigned long size; 2076 unsigned long scan; 2077 2078 size = get_lru_size(lruvec, lru); 2079 scan = size >> sc->priority; 2080 2081 if (!scan && pass && force_scan) 2082 scan = min(size, SWAP_CLUSTER_MAX); 2083 2084 switch (scan_balance) { 2085 case SCAN_EQUAL: 2086 /* Scan lists relative to size */ 2087 break; 2088 case SCAN_FRACT: 2089 /* 2090 * Scan types proportional to swappiness and 2091 * their relative recent reclaim efficiency. 2092 */ 2093 scan = div64_u64(scan * fraction[file], 2094 denominator); 2095 break; 2096 case SCAN_FILE: 2097 case SCAN_ANON: 2098 /* Scan one type exclusively */ 2099 if ((scan_balance == SCAN_FILE) != file) { 2100 size = 0; 2101 scan = 0; 2102 } 2103 break; 2104 default: 2105 /* Look ma, no brain */ 2106 BUG(); 2107 } 2108 2109 *lru_pages += size; 2110 nr[lru] = scan; 2111 2112 /* 2113 * Skip the second pass and don't force_scan, 2114 * if we found something to scan. 2115 */ 2116 some_scanned |= !!scan; 2117 } 2118 } 2119 } 2120 2121 /* 2122 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 2123 */ 2124 static void shrink_lruvec(struct lruvec *lruvec, int swappiness, 2125 struct scan_control *sc, unsigned long *lru_pages) 2126 { 2127 unsigned long nr[NR_LRU_LISTS]; 2128 unsigned long targets[NR_LRU_LISTS]; 2129 unsigned long nr_to_scan; 2130 enum lru_list lru; 2131 unsigned long nr_reclaimed = 0; 2132 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2133 struct blk_plug plug; 2134 bool scan_adjusted; 2135 2136 get_scan_count(lruvec, swappiness, sc, nr, lru_pages); 2137 2138 /* Record the original scan target for proportional adjustments later */ 2139 memcpy(targets, nr, sizeof(nr)); 2140 2141 /* 2142 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2143 * event that can occur when there is little memory pressure e.g. 2144 * multiple streaming readers/writers. Hence, we do not abort scanning 2145 * when the requested number of pages are reclaimed when scanning at 2146 * DEF_PRIORITY on the assumption that the fact we are direct 2147 * reclaiming implies that kswapd is not keeping up and it is best to 2148 * do a batch of work at once. For memcg reclaim one check is made to 2149 * abort proportional reclaim if either the file or anon lru has already 2150 * dropped to zero at the first pass. 2151 */ 2152 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2153 sc->priority == DEF_PRIORITY); 2154 2155 blk_start_plug(&plug); 2156 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2157 nr[LRU_INACTIVE_FILE]) { 2158 unsigned long nr_anon, nr_file, percentage; 2159 unsigned long nr_scanned; 2160 2161 for_each_evictable_lru(lru) { 2162 if (nr[lru]) { 2163 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2164 nr[lru] -= nr_to_scan; 2165 2166 nr_reclaimed += shrink_list(lru, nr_to_scan, 2167 lruvec, sc); 2168 } 2169 } 2170 2171 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2172 continue; 2173 2174 /* 2175 * For kswapd and memcg, reclaim at least the number of pages 2176 * requested. Ensure that the anon and file LRUs are scanned 2177 * proportionally what was requested by get_scan_count(). We 2178 * stop reclaiming one LRU and reduce the amount scanning 2179 * proportional to the original scan target. 2180 */ 2181 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2182 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2183 2184 /* 2185 * It's just vindictive to attack the larger once the smaller 2186 * has gone to zero. And given the way we stop scanning the 2187 * smaller below, this makes sure that we only make one nudge 2188 * towards proportionality once we've got nr_to_reclaim. 2189 */ 2190 if (!nr_file || !nr_anon) 2191 break; 2192 2193 if (nr_file > nr_anon) { 2194 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2195 targets[LRU_ACTIVE_ANON] + 1; 2196 lru = LRU_BASE; 2197 percentage = nr_anon * 100 / scan_target; 2198 } else { 2199 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2200 targets[LRU_ACTIVE_FILE] + 1; 2201 lru = LRU_FILE; 2202 percentage = nr_file * 100 / scan_target; 2203 } 2204 2205 /* Stop scanning the smaller of the LRU */ 2206 nr[lru] = 0; 2207 nr[lru + LRU_ACTIVE] = 0; 2208 2209 /* 2210 * Recalculate the other LRU scan count based on its original 2211 * scan target and the percentage scanning already complete 2212 */ 2213 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2214 nr_scanned = targets[lru] - nr[lru]; 2215 nr[lru] = targets[lru] * (100 - percentage) / 100; 2216 nr[lru] -= min(nr[lru], nr_scanned); 2217 2218 lru += LRU_ACTIVE; 2219 nr_scanned = targets[lru] - nr[lru]; 2220 nr[lru] = targets[lru] * (100 - percentage) / 100; 2221 nr[lru] -= min(nr[lru], nr_scanned); 2222 2223 scan_adjusted = true; 2224 } 2225 blk_finish_plug(&plug); 2226 sc->nr_reclaimed += nr_reclaimed; 2227 2228 /* 2229 * Even if we did not try to evict anon pages at all, we want to 2230 * rebalance the anon lru active/inactive ratio. 2231 */ 2232 if (inactive_anon_is_low(lruvec)) 2233 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2234 sc, LRU_ACTIVE_ANON); 2235 2236 throttle_vm_writeout(sc->gfp_mask); 2237 } 2238 2239 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2240 static bool in_reclaim_compaction(struct scan_control *sc) 2241 { 2242 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2243 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2244 sc->priority < DEF_PRIORITY - 2)) 2245 return true; 2246 2247 return false; 2248 } 2249 2250 /* 2251 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2252 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2253 * true if more pages should be reclaimed such that when the page allocator 2254 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2255 * It will give up earlier than that if there is difficulty reclaiming pages. 2256 */ 2257 static inline bool should_continue_reclaim(struct zone *zone, 2258 unsigned long nr_reclaimed, 2259 unsigned long nr_scanned, 2260 struct scan_control *sc) 2261 { 2262 unsigned long pages_for_compaction; 2263 unsigned long inactive_lru_pages; 2264 2265 /* If not in reclaim/compaction mode, stop */ 2266 if (!in_reclaim_compaction(sc)) 2267 return false; 2268 2269 /* Consider stopping depending on scan and reclaim activity */ 2270 if (sc->gfp_mask & __GFP_REPEAT) { 2271 /* 2272 * For __GFP_REPEAT allocations, stop reclaiming if the 2273 * full LRU list has been scanned and we are still failing 2274 * to reclaim pages. This full LRU scan is potentially 2275 * expensive but a __GFP_REPEAT caller really wants to succeed 2276 */ 2277 if (!nr_reclaimed && !nr_scanned) 2278 return false; 2279 } else { 2280 /* 2281 * For non-__GFP_REPEAT allocations which can presumably 2282 * fail without consequence, stop if we failed to reclaim 2283 * any pages from the last SWAP_CLUSTER_MAX number of 2284 * pages that were scanned. This will return to the 2285 * caller faster at the risk reclaim/compaction and 2286 * the resulting allocation attempt fails 2287 */ 2288 if (!nr_reclaimed) 2289 return false; 2290 } 2291 2292 /* 2293 * If we have not reclaimed enough pages for compaction and the 2294 * inactive lists are large enough, continue reclaiming 2295 */ 2296 pages_for_compaction = (2UL << sc->order); 2297 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); 2298 if (get_nr_swap_pages() > 0) 2299 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); 2300 if (sc->nr_reclaimed < pages_for_compaction && 2301 inactive_lru_pages > pages_for_compaction) 2302 return true; 2303 2304 /* If compaction would go ahead or the allocation would succeed, stop */ 2305 switch (compaction_suitable(zone, sc->order, 0, 0)) { 2306 case COMPACT_PARTIAL: 2307 case COMPACT_CONTINUE: 2308 return false; 2309 default: 2310 return true; 2311 } 2312 } 2313 2314 static bool shrink_zone(struct zone *zone, struct scan_control *sc, 2315 bool is_classzone) 2316 { 2317 struct reclaim_state *reclaim_state = current->reclaim_state; 2318 unsigned long nr_reclaimed, nr_scanned; 2319 bool reclaimable = false; 2320 2321 do { 2322 struct mem_cgroup *root = sc->target_mem_cgroup; 2323 struct mem_cgroup_reclaim_cookie reclaim = { 2324 .zone = zone, 2325 .priority = sc->priority, 2326 }; 2327 unsigned long zone_lru_pages = 0; 2328 struct mem_cgroup *memcg; 2329 2330 nr_reclaimed = sc->nr_reclaimed; 2331 nr_scanned = sc->nr_scanned; 2332 2333 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2334 do { 2335 unsigned long lru_pages; 2336 unsigned long scanned; 2337 struct lruvec *lruvec; 2338 int swappiness; 2339 2340 if (mem_cgroup_low(root, memcg)) { 2341 if (!sc->may_thrash) 2342 continue; 2343 mem_cgroup_events(memcg, MEMCG_LOW, 1); 2344 } 2345 2346 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2347 swappiness = mem_cgroup_swappiness(memcg); 2348 scanned = sc->nr_scanned; 2349 2350 shrink_lruvec(lruvec, swappiness, sc, &lru_pages); 2351 zone_lru_pages += lru_pages; 2352 2353 if (memcg && is_classzone) 2354 shrink_slab(sc->gfp_mask, zone_to_nid(zone), 2355 memcg, sc->nr_scanned - scanned, 2356 lru_pages); 2357 2358 /* 2359 * Direct reclaim and kswapd have to scan all memory 2360 * cgroups to fulfill the overall scan target for the 2361 * zone. 2362 * 2363 * Limit reclaim, on the other hand, only cares about 2364 * nr_to_reclaim pages to be reclaimed and it will 2365 * retry with decreasing priority if one round over the 2366 * whole hierarchy is not sufficient. 2367 */ 2368 if (!global_reclaim(sc) && 2369 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2370 mem_cgroup_iter_break(root, memcg); 2371 break; 2372 } 2373 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2374 2375 /* 2376 * Shrink the slab caches in the same proportion that 2377 * the eligible LRU pages were scanned. 2378 */ 2379 if (global_reclaim(sc) && is_classzone) 2380 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL, 2381 sc->nr_scanned - nr_scanned, 2382 zone_lru_pages); 2383 2384 if (reclaim_state) { 2385 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2386 reclaim_state->reclaimed_slab = 0; 2387 } 2388 2389 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, 2390 sc->nr_scanned - nr_scanned, 2391 sc->nr_reclaimed - nr_reclaimed); 2392 2393 if (sc->nr_reclaimed - nr_reclaimed) 2394 reclaimable = true; 2395 2396 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, 2397 sc->nr_scanned - nr_scanned, sc)); 2398 2399 return reclaimable; 2400 } 2401 2402 /* 2403 * Returns true if compaction should go ahead for a high-order request, or 2404 * the high-order allocation would succeed without compaction. 2405 */ 2406 static inline bool compaction_ready(struct zone *zone, int order) 2407 { 2408 unsigned long balance_gap, watermark; 2409 bool watermark_ok; 2410 2411 /* 2412 * Compaction takes time to run and there are potentially other 2413 * callers using the pages just freed. Continue reclaiming until 2414 * there is a buffer of free pages available to give compaction 2415 * a reasonable chance of completing and allocating the page 2416 */ 2417 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 2418 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 2419 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order); 2420 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); 2421 2422 /* 2423 * If compaction is deferred, reclaim up to a point where 2424 * compaction will have a chance of success when re-enabled 2425 */ 2426 if (compaction_deferred(zone, order)) 2427 return watermark_ok; 2428 2429 /* 2430 * If compaction is not ready to start and allocation is not likely 2431 * to succeed without it, then keep reclaiming. 2432 */ 2433 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED) 2434 return false; 2435 2436 return watermark_ok; 2437 } 2438 2439 /* 2440 * This is the direct reclaim path, for page-allocating processes. We only 2441 * try to reclaim pages from zones which will satisfy the caller's allocation 2442 * request. 2443 * 2444 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 2445 * Because: 2446 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 2447 * allocation or 2448 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 2449 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 2450 * zone defense algorithm. 2451 * 2452 * If a zone is deemed to be full of pinned pages then just give it a light 2453 * scan then give up on it. 2454 * 2455 * Returns true if a zone was reclaimable. 2456 */ 2457 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2458 { 2459 struct zoneref *z; 2460 struct zone *zone; 2461 unsigned long nr_soft_reclaimed; 2462 unsigned long nr_soft_scanned; 2463 gfp_t orig_mask; 2464 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask); 2465 bool reclaimable = false; 2466 2467 /* 2468 * If the number of buffer_heads in the machine exceeds the maximum 2469 * allowed level, force direct reclaim to scan the highmem zone as 2470 * highmem pages could be pinning lowmem pages storing buffer_heads 2471 */ 2472 orig_mask = sc->gfp_mask; 2473 if (buffer_heads_over_limit) 2474 sc->gfp_mask |= __GFP_HIGHMEM; 2475 2476 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2477 requested_highidx, sc->nodemask) { 2478 enum zone_type classzone_idx; 2479 2480 if (!populated_zone(zone)) 2481 continue; 2482 2483 classzone_idx = requested_highidx; 2484 while (!populated_zone(zone->zone_pgdat->node_zones + 2485 classzone_idx)) 2486 classzone_idx--; 2487 2488 /* 2489 * Take care memory controller reclaiming has small influence 2490 * to global LRU. 2491 */ 2492 if (global_reclaim(sc)) { 2493 if (!cpuset_zone_allowed(zone, 2494 GFP_KERNEL | __GFP_HARDWALL)) 2495 continue; 2496 2497 if (sc->priority != DEF_PRIORITY && 2498 !zone_reclaimable(zone)) 2499 continue; /* Let kswapd poll it */ 2500 2501 /* 2502 * If we already have plenty of memory free for 2503 * compaction in this zone, don't free any more. 2504 * Even though compaction is invoked for any 2505 * non-zero order, only frequent costly order 2506 * reclamation is disruptive enough to become a 2507 * noticeable problem, like transparent huge 2508 * page allocations. 2509 */ 2510 if (IS_ENABLED(CONFIG_COMPACTION) && 2511 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2512 zonelist_zone_idx(z) <= requested_highidx && 2513 compaction_ready(zone, sc->order)) { 2514 sc->compaction_ready = true; 2515 continue; 2516 } 2517 2518 /* 2519 * This steals pages from memory cgroups over softlimit 2520 * and returns the number of reclaimed pages and 2521 * scanned pages. This works for global memory pressure 2522 * and balancing, not for a memcg's limit. 2523 */ 2524 nr_soft_scanned = 0; 2525 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2526 sc->order, sc->gfp_mask, 2527 &nr_soft_scanned); 2528 sc->nr_reclaimed += nr_soft_reclaimed; 2529 sc->nr_scanned += nr_soft_scanned; 2530 if (nr_soft_reclaimed) 2531 reclaimable = true; 2532 /* need some check for avoid more shrink_zone() */ 2533 } 2534 2535 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx)) 2536 reclaimable = true; 2537 2538 if (global_reclaim(sc) && 2539 !reclaimable && zone_reclaimable(zone)) 2540 reclaimable = true; 2541 } 2542 2543 /* 2544 * Restore to original mask to avoid the impact on the caller if we 2545 * promoted it to __GFP_HIGHMEM. 2546 */ 2547 sc->gfp_mask = orig_mask; 2548 2549 return reclaimable; 2550 } 2551 2552 /* 2553 * This is the main entry point to direct page reclaim. 2554 * 2555 * If a full scan of the inactive list fails to free enough memory then we 2556 * are "out of memory" and something needs to be killed. 2557 * 2558 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2559 * high - the zone may be full of dirty or under-writeback pages, which this 2560 * caller can't do much about. We kick the writeback threads and take explicit 2561 * naps in the hope that some of these pages can be written. But if the 2562 * allocating task holds filesystem locks which prevent writeout this might not 2563 * work, and the allocation attempt will fail. 2564 * 2565 * returns: 0, if no pages reclaimed 2566 * else, the number of pages reclaimed 2567 */ 2568 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2569 struct scan_control *sc) 2570 { 2571 int initial_priority = sc->priority; 2572 unsigned long total_scanned = 0; 2573 unsigned long writeback_threshold; 2574 bool zones_reclaimable; 2575 retry: 2576 delayacct_freepages_start(); 2577 2578 if (global_reclaim(sc)) 2579 count_vm_event(ALLOCSTALL); 2580 2581 do { 2582 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2583 sc->priority); 2584 sc->nr_scanned = 0; 2585 zones_reclaimable = shrink_zones(zonelist, sc); 2586 2587 total_scanned += sc->nr_scanned; 2588 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2589 break; 2590 2591 if (sc->compaction_ready) 2592 break; 2593 2594 /* 2595 * If we're getting trouble reclaiming, start doing 2596 * writepage even in laptop mode. 2597 */ 2598 if (sc->priority < DEF_PRIORITY - 2) 2599 sc->may_writepage = 1; 2600 2601 /* 2602 * Try to write back as many pages as we just scanned. This 2603 * tends to cause slow streaming writers to write data to the 2604 * disk smoothly, at the dirtying rate, which is nice. But 2605 * that's undesirable in laptop mode, where we *want* lumpy 2606 * writeout. So in laptop mode, write out the whole world. 2607 */ 2608 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2609 if (total_scanned > writeback_threshold) { 2610 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2611 WB_REASON_TRY_TO_FREE_PAGES); 2612 sc->may_writepage = 1; 2613 } 2614 } while (--sc->priority >= 0); 2615 2616 delayacct_freepages_end(); 2617 2618 if (sc->nr_reclaimed) 2619 return sc->nr_reclaimed; 2620 2621 /* Aborted reclaim to try compaction? don't OOM, then */ 2622 if (sc->compaction_ready) 2623 return 1; 2624 2625 /* Untapped cgroup reserves? Don't OOM, retry. */ 2626 if (!sc->may_thrash) { 2627 sc->priority = initial_priority; 2628 sc->may_thrash = 1; 2629 goto retry; 2630 } 2631 2632 /* Any of the zones still reclaimable? Don't OOM. */ 2633 if (zones_reclaimable) 2634 return 1; 2635 2636 return 0; 2637 } 2638 2639 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2640 { 2641 struct zone *zone; 2642 unsigned long pfmemalloc_reserve = 0; 2643 unsigned long free_pages = 0; 2644 int i; 2645 bool wmark_ok; 2646 2647 for (i = 0; i <= ZONE_NORMAL; i++) { 2648 zone = &pgdat->node_zones[i]; 2649 if (!populated_zone(zone)) 2650 continue; 2651 2652 pfmemalloc_reserve += min_wmark_pages(zone); 2653 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2654 } 2655 2656 /* If there are no reserves (unexpected config) then do not throttle */ 2657 if (!pfmemalloc_reserve) 2658 return true; 2659 2660 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2661 2662 /* kswapd must be awake if processes are being throttled */ 2663 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2664 pgdat->classzone_idx = min(pgdat->classzone_idx, 2665 (enum zone_type)ZONE_NORMAL); 2666 wake_up_interruptible(&pgdat->kswapd_wait); 2667 } 2668 2669 return wmark_ok; 2670 } 2671 2672 /* 2673 * Throttle direct reclaimers if backing storage is backed by the network 2674 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2675 * depleted. kswapd will continue to make progress and wake the processes 2676 * when the low watermark is reached. 2677 * 2678 * Returns true if a fatal signal was delivered during throttling. If this 2679 * happens, the page allocator should not consider triggering the OOM killer. 2680 */ 2681 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2682 nodemask_t *nodemask) 2683 { 2684 struct zoneref *z; 2685 struct zone *zone; 2686 pg_data_t *pgdat = NULL; 2687 2688 /* 2689 * Kernel threads should not be throttled as they may be indirectly 2690 * responsible for cleaning pages necessary for reclaim to make forward 2691 * progress. kjournald for example may enter direct reclaim while 2692 * committing a transaction where throttling it could forcing other 2693 * processes to block on log_wait_commit(). 2694 */ 2695 if (current->flags & PF_KTHREAD) 2696 goto out; 2697 2698 /* 2699 * If a fatal signal is pending, this process should not throttle. 2700 * It should return quickly so it can exit and free its memory 2701 */ 2702 if (fatal_signal_pending(current)) 2703 goto out; 2704 2705 /* 2706 * Check if the pfmemalloc reserves are ok by finding the first node 2707 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2708 * GFP_KERNEL will be required for allocating network buffers when 2709 * swapping over the network so ZONE_HIGHMEM is unusable. 2710 * 2711 * Throttling is based on the first usable node and throttled processes 2712 * wait on a queue until kswapd makes progress and wakes them. There 2713 * is an affinity then between processes waking up and where reclaim 2714 * progress has been made assuming the process wakes on the same node. 2715 * More importantly, processes running on remote nodes will not compete 2716 * for remote pfmemalloc reserves and processes on different nodes 2717 * should make reasonable progress. 2718 */ 2719 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2720 gfp_zone(gfp_mask), nodemask) { 2721 if (zone_idx(zone) > ZONE_NORMAL) 2722 continue; 2723 2724 /* Throttle based on the first usable node */ 2725 pgdat = zone->zone_pgdat; 2726 if (pfmemalloc_watermark_ok(pgdat)) 2727 goto out; 2728 break; 2729 } 2730 2731 /* If no zone was usable by the allocation flags then do not throttle */ 2732 if (!pgdat) 2733 goto out; 2734 2735 /* Account for the throttling */ 2736 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2737 2738 /* 2739 * If the caller cannot enter the filesystem, it's possible that it 2740 * is due to the caller holding an FS lock or performing a journal 2741 * transaction in the case of a filesystem like ext[3|4]. In this case, 2742 * it is not safe to block on pfmemalloc_wait as kswapd could be 2743 * blocked waiting on the same lock. Instead, throttle for up to a 2744 * second before continuing. 2745 */ 2746 if (!(gfp_mask & __GFP_FS)) { 2747 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2748 pfmemalloc_watermark_ok(pgdat), HZ); 2749 2750 goto check_pending; 2751 } 2752 2753 /* Throttle until kswapd wakes the process */ 2754 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2755 pfmemalloc_watermark_ok(pgdat)); 2756 2757 check_pending: 2758 if (fatal_signal_pending(current)) 2759 return true; 2760 2761 out: 2762 return false; 2763 } 2764 2765 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2766 gfp_t gfp_mask, nodemask_t *nodemask) 2767 { 2768 unsigned long nr_reclaimed; 2769 struct scan_control sc = { 2770 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2771 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2772 .order = order, 2773 .nodemask = nodemask, 2774 .priority = DEF_PRIORITY, 2775 .may_writepage = !laptop_mode, 2776 .may_unmap = 1, 2777 .may_swap = 1, 2778 }; 2779 2780 /* 2781 * Do not enter reclaim if fatal signal was delivered while throttled. 2782 * 1 is returned so that the page allocator does not OOM kill at this 2783 * point. 2784 */ 2785 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2786 return 1; 2787 2788 trace_mm_vmscan_direct_reclaim_begin(order, 2789 sc.may_writepage, 2790 gfp_mask); 2791 2792 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2793 2794 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2795 2796 return nr_reclaimed; 2797 } 2798 2799 #ifdef CONFIG_MEMCG 2800 2801 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, 2802 gfp_t gfp_mask, bool noswap, 2803 struct zone *zone, 2804 unsigned long *nr_scanned) 2805 { 2806 struct scan_control sc = { 2807 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2808 .target_mem_cgroup = memcg, 2809 .may_writepage = !laptop_mode, 2810 .may_unmap = 1, 2811 .may_swap = !noswap, 2812 }; 2813 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2814 int swappiness = mem_cgroup_swappiness(memcg); 2815 unsigned long lru_pages; 2816 2817 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2818 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2819 2820 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2821 sc.may_writepage, 2822 sc.gfp_mask); 2823 2824 /* 2825 * NOTE: Although we can get the priority field, using it 2826 * here is not a good idea, since it limits the pages we can scan. 2827 * if we don't reclaim here, the shrink_zone from balance_pgdat 2828 * will pick up pages from other mem cgroup's as well. We hack 2829 * the priority and make it zero. 2830 */ 2831 shrink_lruvec(lruvec, swappiness, &sc, &lru_pages); 2832 2833 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2834 2835 *nr_scanned = sc.nr_scanned; 2836 return sc.nr_reclaimed; 2837 } 2838 2839 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2840 unsigned long nr_pages, 2841 gfp_t gfp_mask, 2842 bool may_swap) 2843 { 2844 struct zonelist *zonelist; 2845 unsigned long nr_reclaimed; 2846 int nid; 2847 struct scan_control sc = { 2848 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 2849 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2850 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2851 .target_mem_cgroup = memcg, 2852 .priority = DEF_PRIORITY, 2853 .may_writepage = !laptop_mode, 2854 .may_unmap = 1, 2855 .may_swap = may_swap, 2856 }; 2857 2858 /* 2859 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2860 * take care of from where we get pages. So the node where we start the 2861 * scan does not need to be the current node. 2862 */ 2863 nid = mem_cgroup_select_victim_node(memcg); 2864 2865 zonelist = NODE_DATA(nid)->node_zonelists; 2866 2867 trace_mm_vmscan_memcg_reclaim_begin(0, 2868 sc.may_writepage, 2869 sc.gfp_mask); 2870 2871 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2872 2873 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2874 2875 return nr_reclaimed; 2876 } 2877 #endif 2878 2879 static void age_active_anon(struct zone *zone, struct scan_control *sc) 2880 { 2881 struct mem_cgroup *memcg; 2882 2883 if (!total_swap_pages) 2884 return; 2885 2886 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2887 do { 2888 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2889 2890 if (inactive_anon_is_low(lruvec)) 2891 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2892 sc, LRU_ACTIVE_ANON); 2893 2894 memcg = mem_cgroup_iter(NULL, memcg, NULL); 2895 } while (memcg); 2896 } 2897 2898 static bool zone_balanced(struct zone *zone, int order, 2899 unsigned long balance_gap, int classzone_idx) 2900 { 2901 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) + 2902 balance_gap, classzone_idx, 0)) 2903 return false; 2904 2905 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone, 2906 order, 0, classzone_idx) == COMPACT_SKIPPED) 2907 return false; 2908 2909 return true; 2910 } 2911 2912 /* 2913 * pgdat_balanced() is used when checking if a node is balanced. 2914 * 2915 * For order-0, all zones must be balanced! 2916 * 2917 * For high-order allocations only zones that meet watermarks and are in a 2918 * zone allowed by the callers classzone_idx are added to balanced_pages. The 2919 * total of balanced pages must be at least 25% of the zones allowed by 2920 * classzone_idx for the node to be considered balanced. Forcing all zones to 2921 * be balanced for high orders can cause excessive reclaim when there are 2922 * imbalanced zones. 2923 * The choice of 25% is due to 2924 * o a 16M DMA zone that is balanced will not balance a zone on any 2925 * reasonable sized machine 2926 * o On all other machines, the top zone must be at least a reasonable 2927 * percentage of the middle zones. For example, on 32-bit x86, highmem 2928 * would need to be at least 256M for it to be balance a whole node. 2929 * Similarly, on x86-64 the Normal zone would need to be at least 1G 2930 * to balance a node on its own. These seemed like reasonable ratios. 2931 */ 2932 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 2933 { 2934 unsigned long managed_pages = 0; 2935 unsigned long balanced_pages = 0; 2936 int i; 2937 2938 /* Check the watermark levels */ 2939 for (i = 0; i <= classzone_idx; i++) { 2940 struct zone *zone = pgdat->node_zones + i; 2941 2942 if (!populated_zone(zone)) 2943 continue; 2944 2945 managed_pages += zone->managed_pages; 2946 2947 /* 2948 * A special case here: 2949 * 2950 * balance_pgdat() skips over all_unreclaimable after 2951 * DEF_PRIORITY. Effectively, it considers them balanced so 2952 * they must be considered balanced here as well! 2953 */ 2954 if (!zone_reclaimable(zone)) { 2955 balanced_pages += zone->managed_pages; 2956 continue; 2957 } 2958 2959 if (zone_balanced(zone, order, 0, i)) 2960 balanced_pages += zone->managed_pages; 2961 else if (!order) 2962 return false; 2963 } 2964 2965 if (order) 2966 return balanced_pages >= (managed_pages >> 2); 2967 else 2968 return true; 2969 } 2970 2971 /* 2972 * Prepare kswapd for sleeping. This verifies that there are no processes 2973 * waiting in throttle_direct_reclaim() and that watermarks have been met. 2974 * 2975 * Returns true if kswapd is ready to sleep 2976 */ 2977 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, 2978 int classzone_idx) 2979 { 2980 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 2981 if (remaining) 2982 return false; 2983 2984 /* 2985 * The throttled processes are normally woken up in balance_pgdat() as 2986 * soon as pfmemalloc_watermark_ok() is true. But there is a potential 2987 * race between when kswapd checks the watermarks and a process gets 2988 * throttled. There is also a potential race if processes get 2989 * throttled, kswapd wakes, a large process exits thereby balancing the 2990 * zones, which causes kswapd to exit balance_pgdat() before reaching 2991 * the wake up checks. If kswapd is going to sleep, no process should 2992 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 2993 * the wake up is premature, processes will wake kswapd and get 2994 * throttled again. The difference from wake ups in balance_pgdat() is 2995 * that here we are under prepare_to_wait(). 2996 */ 2997 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 2998 wake_up_all(&pgdat->pfmemalloc_wait); 2999 3000 return pgdat_balanced(pgdat, order, classzone_idx); 3001 } 3002 3003 /* 3004 * kswapd shrinks the zone by the number of pages required to reach 3005 * the high watermark. 3006 * 3007 * Returns true if kswapd scanned at least the requested number of pages to 3008 * reclaim or if the lack of progress was due to pages under writeback. 3009 * This is used to determine if the scanning priority needs to be raised. 3010 */ 3011 static bool kswapd_shrink_zone(struct zone *zone, 3012 int classzone_idx, 3013 struct scan_control *sc, 3014 unsigned long *nr_attempted) 3015 { 3016 int testorder = sc->order; 3017 unsigned long balance_gap; 3018 bool lowmem_pressure; 3019 3020 /* Reclaim above the high watermark. */ 3021 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); 3022 3023 /* 3024 * Kswapd reclaims only single pages with compaction enabled. Trying 3025 * too hard to reclaim until contiguous free pages have become 3026 * available can hurt performance by evicting too much useful data 3027 * from memory. Do not reclaim more than needed for compaction. 3028 */ 3029 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 3030 compaction_suitable(zone, sc->order, 0, classzone_idx) 3031 != COMPACT_SKIPPED) 3032 testorder = 0; 3033 3034 /* 3035 * We put equal pressure on every zone, unless one zone has way too 3036 * many pages free already. The "too many pages" is defined as the 3037 * high wmark plus a "gap" where the gap is either the low 3038 * watermark or 1% of the zone, whichever is smaller. 3039 */ 3040 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 3041 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 3042 3043 /* 3044 * If there is no low memory pressure or the zone is balanced then no 3045 * reclaim is necessary 3046 */ 3047 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone)); 3048 if (!lowmem_pressure && zone_balanced(zone, testorder, 3049 balance_gap, classzone_idx)) 3050 return true; 3051 3052 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx); 3053 3054 /* Account for the number of pages attempted to reclaim */ 3055 *nr_attempted += sc->nr_to_reclaim; 3056 3057 clear_bit(ZONE_WRITEBACK, &zone->flags); 3058 3059 /* 3060 * If a zone reaches its high watermark, consider it to be no longer 3061 * congested. It's possible there are dirty pages backed by congested 3062 * BDIs but as pressure is relieved, speculatively avoid congestion 3063 * waits. 3064 */ 3065 if (zone_reclaimable(zone) && 3066 zone_balanced(zone, testorder, 0, classzone_idx)) { 3067 clear_bit(ZONE_CONGESTED, &zone->flags); 3068 clear_bit(ZONE_DIRTY, &zone->flags); 3069 } 3070 3071 return sc->nr_scanned >= sc->nr_to_reclaim; 3072 } 3073 3074 /* 3075 * For kswapd, balance_pgdat() will work across all this node's zones until 3076 * they are all at high_wmark_pages(zone). 3077 * 3078 * Returns the final order kswapd was reclaiming at 3079 * 3080 * There is special handling here for zones which are full of pinned pages. 3081 * This can happen if the pages are all mlocked, or if they are all used by 3082 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 3083 * What we do is to detect the case where all pages in the zone have been 3084 * scanned twice and there has been zero successful reclaim. Mark the zone as 3085 * dead and from now on, only perform a short scan. Basically we're polling 3086 * the zone for when the problem goes away. 3087 * 3088 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3089 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3090 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 3091 * lower zones regardless of the number of free pages in the lower zones. This 3092 * interoperates with the page allocator fallback scheme to ensure that aging 3093 * of pages is balanced across the zones. 3094 */ 3095 static unsigned long balance_pgdat(pg_data_t *pgdat, int order, 3096 int *classzone_idx) 3097 { 3098 int i; 3099 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 3100 unsigned long nr_soft_reclaimed; 3101 unsigned long nr_soft_scanned; 3102 struct scan_control sc = { 3103 .gfp_mask = GFP_KERNEL, 3104 .order = order, 3105 .priority = DEF_PRIORITY, 3106 .may_writepage = !laptop_mode, 3107 .may_unmap = 1, 3108 .may_swap = 1, 3109 }; 3110 count_vm_event(PAGEOUTRUN); 3111 3112 do { 3113 unsigned long nr_attempted = 0; 3114 bool raise_priority = true; 3115 bool pgdat_needs_compaction = (order > 0); 3116 3117 sc.nr_reclaimed = 0; 3118 3119 /* 3120 * Scan in the highmem->dma direction for the highest 3121 * zone which needs scanning 3122 */ 3123 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 3124 struct zone *zone = pgdat->node_zones + i; 3125 3126 if (!populated_zone(zone)) 3127 continue; 3128 3129 if (sc.priority != DEF_PRIORITY && 3130 !zone_reclaimable(zone)) 3131 continue; 3132 3133 /* 3134 * Do some background aging of the anon list, to give 3135 * pages a chance to be referenced before reclaiming. 3136 */ 3137 age_active_anon(zone, &sc); 3138 3139 /* 3140 * If the number of buffer_heads in the machine 3141 * exceeds the maximum allowed level and this node 3142 * has a highmem zone, force kswapd to reclaim from 3143 * it to relieve lowmem pressure. 3144 */ 3145 if (buffer_heads_over_limit && is_highmem_idx(i)) { 3146 end_zone = i; 3147 break; 3148 } 3149 3150 if (!zone_balanced(zone, order, 0, 0)) { 3151 end_zone = i; 3152 break; 3153 } else { 3154 /* 3155 * If balanced, clear the dirty and congested 3156 * flags 3157 */ 3158 clear_bit(ZONE_CONGESTED, &zone->flags); 3159 clear_bit(ZONE_DIRTY, &zone->flags); 3160 } 3161 } 3162 3163 if (i < 0) 3164 goto out; 3165 3166 for (i = 0; i <= end_zone; i++) { 3167 struct zone *zone = pgdat->node_zones + i; 3168 3169 if (!populated_zone(zone)) 3170 continue; 3171 3172 /* 3173 * If any zone is currently balanced then kswapd will 3174 * not call compaction as it is expected that the 3175 * necessary pages are already available. 3176 */ 3177 if (pgdat_needs_compaction && 3178 zone_watermark_ok(zone, order, 3179 low_wmark_pages(zone), 3180 *classzone_idx, 0)) 3181 pgdat_needs_compaction = false; 3182 } 3183 3184 /* 3185 * If we're getting trouble reclaiming, start doing writepage 3186 * even in laptop mode. 3187 */ 3188 if (sc.priority < DEF_PRIORITY - 2) 3189 sc.may_writepage = 1; 3190 3191 /* 3192 * Now scan the zone in the dma->highmem direction, stopping 3193 * at the last zone which needs scanning. 3194 * 3195 * We do this because the page allocator works in the opposite 3196 * direction. This prevents the page allocator from allocating 3197 * pages behind kswapd's direction of progress, which would 3198 * cause too much scanning of the lower zones. 3199 */ 3200 for (i = 0; i <= end_zone; i++) { 3201 struct zone *zone = pgdat->node_zones + i; 3202 3203 if (!populated_zone(zone)) 3204 continue; 3205 3206 if (sc.priority != DEF_PRIORITY && 3207 !zone_reclaimable(zone)) 3208 continue; 3209 3210 sc.nr_scanned = 0; 3211 3212 nr_soft_scanned = 0; 3213 /* 3214 * Call soft limit reclaim before calling shrink_zone. 3215 */ 3216 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 3217 order, sc.gfp_mask, 3218 &nr_soft_scanned); 3219 sc.nr_reclaimed += nr_soft_reclaimed; 3220 3221 /* 3222 * There should be no need to raise the scanning 3223 * priority if enough pages are already being scanned 3224 * that that high watermark would be met at 100% 3225 * efficiency. 3226 */ 3227 if (kswapd_shrink_zone(zone, end_zone, 3228 &sc, &nr_attempted)) 3229 raise_priority = false; 3230 } 3231 3232 /* 3233 * If the low watermark is met there is no need for processes 3234 * to be throttled on pfmemalloc_wait as they should not be 3235 * able to safely make forward progress. Wake them 3236 */ 3237 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3238 pfmemalloc_watermark_ok(pgdat)) 3239 wake_up_all(&pgdat->pfmemalloc_wait); 3240 3241 /* 3242 * Fragmentation may mean that the system cannot be rebalanced 3243 * for high-order allocations in all zones. If twice the 3244 * allocation size has been reclaimed and the zones are still 3245 * not balanced then recheck the watermarks at order-0 to 3246 * prevent kswapd reclaiming excessively. Assume that a 3247 * process requested a high-order can direct reclaim/compact. 3248 */ 3249 if (order && sc.nr_reclaimed >= 2UL << order) 3250 order = sc.order = 0; 3251 3252 /* Check if kswapd should be suspending */ 3253 if (try_to_freeze() || kthread_should_stop()) 3254 break; 3255 3256 /* 3257 * Compact if necessary and kswapd is reclaiming at least the 3258 * high watermark number of pages as requsted 3259 */ 3260 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted) 3261 compact_pgdat(pgdat, order); 3262 3263 /* 3264 * Raise priority if scanning rate is too low or there was no 3265 * progress in reclaiming pages 3266 */ 3267 if (raise_priority || !sc.nr_reclaimed) 3268 sc.priority--; 3269 } while (sc.priority >= 1 && 3270 !pgdat_balanced(pgdat, order, *classzone_idx)); 3271 3272 out: 3273 /* 3274 * Return the order we were reclaiming at so prepare_kswapd_sleep() 3275 * makes a decision on the order we were last reclaiming at. However, 3276 * if another caller entered the allocator slow path while kswapd 3277 * was awake, order will remain at the higher level 3278 */ 3279 *classzone_idx = end_zone; 3280 return order; 3281 } 3282 3283 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3284 { 3285 long remaining = 0; 3286 DEFINE_WAIT(wait); 3287 3288 if (freezing(current) || kthread_should_stop()) 3289 return; 3290 3291 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3292 3293 /* Try to sleep for a short interval */ 3294 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3295 remaining = schedule_timeout(HZ/10); 3296 finish_wait(&pgdat->kswapd_wait, &wait); 3297 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3298 } 3299 3300 /* 3301 * After a short sleep, check if it was a premature sleep. If not, then 3302 * go fully to sleep until explicitly woken up. 3303 */ 3304 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3305 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3306 3307 /* 3308 * vmstat counters are not perfectly accurate and the estimated 3309 * value for counters such as NR_FREE_PAGES can deviate from the 3310 * true value by nr_online_cpus * threshold. To avoid the zone 3311 * watermarks being breached while under pressure, we reduce the 3312 * per-cpu vmstat threshold while kswapd is awake and restore 3313 * them before going back to sleep. 3314 */ 3315 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3316 3317 /* 3318 * Compaction records what page blocks it recently failed to 3319 * isolate pages from and skips them in the future scanning. 3320 * When kswapd is going to sleep, it is reasonable to assume 3321 * that pages and compaction may succeed so reset the cache. 3322 */ 3323 reset_isolation_suitable(pgdat); 3324 3325 if (!kthread_should_stop()) 3326 schedule(); 3327 3328 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3329 } else { 3330 if (remaining) 3331 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3332 else 3333 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3334 } 3335 finish_wait(&pgdat->kswapd_wait, &wait); 3336 } 3337 3338 /* 3339 * The background pageout daemon, started as a kernel thread 3340 * from the init process. 3341 * 3342 * This basically trickles out pages so that we have _some_ 3343 * free memory available even if there is no other activity 3344 * that frees anything up. This is needed for things like routing 3345 * etc, where we otherwise might have all activity going on in 3346 * asynchronous contexts that cannot page things out. 3347 * 3348 * If there are applications that are active memory-allocators 3349 * (most normal use), this basically shouldn't matter. 3350 */ 3351 static int kswapd(void *p) 3352 { 3353 unsigned long order, new_order; 3354 unsigned balanced_order; 3355 int classzone_idx, new_classzone_idx; 3356 int balanced_classzone_idx; 3357 pg_data_t *pgdat = (pg_data_t*)p; 3358 struct task_struct *tsk = current; 3359 3360 struct reclaim_state reclaim_state = { 3361 .reclaimed_slab = 0, 3362 }; 3363 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3364 3365 lockdep_set_current_reclaim_state(GFP_KERNEL); 3366 3367 if (!cpumask_empty(cpumask)) 3368 set_cpus_allowed_ptr(tsk, cpumask); 3369 current->reclaim_state = &reclaim_state; 3370 3371 /* 3372 * Tell the memory management that we're a "memory allocator", 3373 * and that if we need more memory we should get access to it 3374 * regardless (see "__alloc_pages()"). "kswapd" should 3375 * never get caught in the normal page freeing logic. 3376 * 3377 * (Kswapd normally doesn't need memory anyway, but sometimes 3378 * you need a small amount of memory in order to be able to 3379 * page out something else, and this flag essentially protects 3380 * us from recursively trying to free more memory as we're 3381 * trying to free the first piece of memory in the first place). 3382 */ 3383 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3384 set_freezable(); 3385 3386 order = new_order = 0; 3387 balanced_order = 0; 3388 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; 3389 balanced_classzone_idx = classzone_idx; 3390 for ( ; ; ) { 3391 bool ret; 3392 3393 /* 3394 * If the last balance_pgdat was unsuccessful it's unlikely a 3395 * new request of a similar or harder type will succeed soon 3396 * so consider going to sleep on the basis we reclaimed at 3397 */ 3398 if (balanced_classzone_idx >= new_classzone_idx && 3399 balanced_order == new_order) { 3400 new_order = pgdat->kswapd_max_order; 3401 new_classzone_idx = pgdat->classzone_idx; 3402 pgdat->kswapd_max_order = 0; 3403 pgdat->classzone_idx = pgdat->nr_zones - 1; 3404 } 3405 3406 if (order < new_order || classzone_idx > new_classzone_idx) { 3407 /* 3408 * Don't sleep if someone wants a larger 'order' 3409 * allocation or has tigher zone constraints 3410 */ 3411 order = new_order; 3412 classzone_idx = new_classzone_idx; 3413 } else { 3414 kswapd_try_to_sleep(pgdat, balanced_order, 3415 balanced_classzone_idx); 3416 order = pgdat->kswapd_max_order; 3417 classzone_idx = pgdat->classzone_idx; 3418 new_order = order; 3419 new_classzone_idx = classzone_idx; 3420 pgdat->kswapd_max_order = 0; 3421 pgdat->classzone_idx = pgdat->nr_zones - 1; 3422 } 3423 3424 ret = try_to_freeze(); 3425 if (kthread_should_stop()) 3426 break; 3427 3428 /* 3429 * We can speed up thawing tasks if we don't call balance_pgdat 3430 * after returning from the refrigerator 3431 */ 3432 if (!ret) { 3433 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 3434 balanced_classzone_idx = classzone_idx; 3435 balanced_order = balance_pgdat(pgdat, order, 3436 &balanced_classzone_idx); 3437 } 3438 } 3439 3440 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3441 current->reclaim_state = NULL; 3442 lockdep_clear_current_reclaim_state(); 3443 3444 return 0; 3445 } 3446 3447 /* 3448 * A zone is low on free memory, so wake its kswapd task to service it. 3449 */ 3450 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3451 { 3452 pg_data_t *pgdat; 3453 3454 if (!populated_zone(zone)) 3455 return; 3456 3457 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3458 return; 3459 pgdat = zone->zone_pgdat; 3460 if (pgdat->kswapd_max_order < order) { 3461 pgdat->kswapd_max_order = order; 3462 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 3463 } 3464 if (!waitqueue_active(&pgdat->kswapd_wait)) 3465 return; 3466 if (zone_balanced(zone, order, 0, 0)) 3467 return; 3468 3469 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3470 wake_up_interruptible(&pgdat->kswapd_wait); 3471 } 3472 3473 #ifdef CONFIG_HIBERNATION 3474 /* 3475 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3476 * freed pages. 3477 * 3478 * Rather than trying to age LRUs the aim is to preserve the overall 3479 * LRU order by reclaiming preferentially 3480 * inactive > active > active referenced > active mapped 3481 */ 3482 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3483 { 3484 struct reclaim_state reclaim_state; 3485 struct scan_control sc = { 3486 .nr_to_reclaim = nr_to_reclaim, 3487 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3488 .priority = DEF_PRIORITY, 3489 .may_writepage = 1, 3490 .may_unmap = 1, 3491 .may_swap = 1, 3492 .hibernation_mode = 1, 3493 }; 3494 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3495 struct task_struct *p = current; 3496 unsigned long nr_reclaimed; 3497 3498 p->flags |= PF_MEMALLOC; 3499 lockdep_set_current_reclaim_state(sc.gfp_mask); 3500 reclaim_state.reclaimed_slab = 0; 3501 p->reclaim_state = &reclaim_state; 3502 3503 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3504 3505 p->reclaim_state = NULL; 3506 lockdep_clear_current_reclaim_state(); 3507 p->flags &= ~PF_MEMALLOC; 3508 3509 return nr_reclaimed; 3510 } 3511 #endif /* CONFIG_HIBERNATION */ 3512 3513 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3514 not required for correctness. So if the last cpu in a node goes 3515 away, we get changed to run anywhere: as the first one comes back, 3516 restore their cpu bindings. */ 3517 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3518 void *hcpu) 3519 { 3520 int nid; 3521 3522 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3523 for_each_node_state(nid, N_MEMORY) { 3524 pg_data_t *pgdat = NODE_DATA(nid); 3525 const struct cpumask *mask; 3526 3527 mask = cpumask_of_node(pgdat->node_id); 3528 3529 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3530 /* One of our CPUs online: restore mask */ 3531 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3532 } 3533 } 3534 return NOTIFY_OK; 3535 } 3536 3537 /* 3538 * This kswapd start function will be called by init and node-hot-add. 3539 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3540 */ 3541 int kswapd_run(int nid) 3542 { 3543 pg_data_t *pgdat = NODE_DATA(nid); 3544 int ret = 0; 3545 3546 if (pgdat->kswapd) 3547 return 0; 3548 3549 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3550 if (IS_ERR(pgdat->kswapd)) { 3551 /* failure at boot is fatal */ 3552 BUG_ON(system_state == SYSTEM_BOOTING); 3553 pr_err("Failed to start kswapd on node %d\n", nid); 3554 ret = PTR_ERR(pgdat->kswapd); 3555 pgdat->kswapd = NULL; 3556 } 3557 return ret; 3558 } 3559 3560 /* 3561 * Called by memory hotplug when all memory in a node is offlined. Caller must 3562 * hold mem_hotplug_begin/end(). 3563 */ 3564 void kswapd_stop(int nid) 3565 { 3566 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3567 3568 if (kswapd) { 3569 kthread_stop(kswapd); 3570 NODE_DATA(nid)->kswapd = NULL; 3571 } 3572 } 3573 3574 static int __init kswapd_init(void) 3575 { 3576 int nid; 3577 3578 swap_setup(); 3579 for_each_node_state(nid, N_MEMORY) 3580 kswapd_run(nid); 3581 hotcpu_notifier(cpu_callback, 0); 3582 return 0; 3583 } 3584 3585 module_init(kswapd_init) 3586 3587 #ifdef CONFIG_NUMA 3588 /* 3589 * Zone reclaim mode 3590 * 3591 * If non-zero call zone_reclaim when the number of free pages falls below 3592 * the watermarks. 3593 */ 3594 int zone_reclaim_mode __read_mostly; 3595 3596 #define RECLAIM_OFF 0 3597 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3598 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3599 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 3600 3601 /* 3602 * Priority for ZONE_RECLAIM. This determines the fraction of pages 3603 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3604 * a zone. 3605 */ 3606 #define ZONE_RECLAIM_PRIORITY 4 3607 3608 /* 3609 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 3610 * occur. 3611 */ 3612 int sysctl_min_unmapped_ratio = 1; 3613 3614 /* 3615 * If the number of slab pages in a zone grows beyond this percentage then 3616 * slab reclaim needs to occur. 3617 */ 3618 int sysctl_min_slab_ratio = 5; 3619 3620 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 3621 { 3622 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 3623 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 3624 zone_page_state(zone, NR_ACTIVE_FILE); 3625 3626 /* 3627 * It's possible for there to be more file mapped pages than 3628 * accounted for by the pages on the file LRU lists because 3629 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3630 */ 3631 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3632 } 3633 3634 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3635 static long zone_pagecache_reclaimable(struct zone *zone) 3636 { 3637 long nr_pagecache_reclaimable; 3638 long delta = 0; 3639 3640 /* 3641 * If RECLAIM_SWAP is set, then all file pages are considered 3642 * potentially reclaimable. Otherwise, we have to worry about 3643 * pages like swapcache and zone_unmapped_file_pages() provides 3644 * a better estimate 3645 */ 3646 if (zone_reclaim_mode & RECLAIM_SWAP) 3647 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 3648 else 3649 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 3650 3651 /* If we can't clean pages, remove dirty pages from consideration */ 3652 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 3653 delta += zone_page_state(zone, NR_FILE_DIRTY); 3654 3655 /* Watch for any possible underflows due to delta */ 3656 if (unlikely(delta > nr_pagecache_reclaimable)) 3657 delta = nr_pagecache_reclaimable; 3658 3659 return nr_pagecache_reclaimable - delta; 3660 } 3661 3662 /* 3663 * Try to free up some pages from this zone through reclaim. 3664 */ 3665 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3666 { 3667 /* Minimum pages needed in order to stay on node */ 3668 const unsigned long nr_pages = 1 << order; 3669 struct task_struct *p = current; 3670 struct reclaim_state reclaim_state; 3671 struct scan_control sc = { 3672 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3673 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3674 .order = order, 3675 .priority = ZONE_RECLAIM_PRIORITY, 3676 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 3677 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 3678 .may_swap = 1, 3679 }; 3680 3681 cond_resched(); 3682 /* 3683 * We need to be able to allocate from the reserves for RECLAIM_SWAP 3684 * and we also need to be able to write out pages for RECLAIM_WRITE 3685 * and RECLAIM_SWAP. 3686 */ 3687 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3688 lockdep_set_current_reclaim_state(gfp_mask); 3689 reclaim_state.reclaimed_slab = 0; 3690 p->reclaim_state = &reclaim_state; 3691 3692 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 3693 /* 3694 * Free memory by calling shrink zone with increasing 3695 * priorities until we have enough memory freed. 3696 */ 3697 do { 3698 shrink_zone(zone, &sc, true); 3699 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3700 } 3701 3702 p->reclaim_state = NULL; 3703 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3704 lockdep_clear_current_reclaim_state(); 3705 return sc.nr_reclaimed >= nr_pages; 3706 } 3707 3708 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3709 { 3710 int node_id; 3711 int ret; 3712 3713 /* 3714 * Zone reclaim reclaims unmapped file backed pages and 3715 * slab pages if we are over the defined limits. 3716 * 3717 * A small portion of unmapped file backed pages is needed for 3718 * file I/O otherwise pages read by file I/O will be immediately 3719 * thrown out if the zone is overallocated. So we do not reclaim 3720 * if less than a specified percentage of the zone is used by 3721 * unmapped file backed pages. 3722 */ 3723 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3724 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3725 return ZONE_RECLAIM_FULL; 3726 3727 if (!zone_reclaimable(zone)) 3728 return ZONE_RECLAIM_FULL; 3729 3730 /* 3731 * Do not scan if the allocation should not be delayed. 3732 */ 3733 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 3734 return ZONE_RECLAIM_NOSCAN; 3735 3736 /* 3737 * Only run zone reclaim on the local zone or on zones that do not 3738 * have associated processors. This will favor the local processor 3739 * over remote processors and spread off node memory allocations 3740 * as wide as possible. 3741 */ 3742 node_id = zone_to_nid(zone); 3743 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3744 return ZONE_RECLAIM_NOSCAN; 3745 3746 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags)) 3747 return ZONE_RECLAIM_NOSCAN; 3748 3749 ret = __zone_reclaim(zone, gfp_mask, order); 3750 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 3751 3752 if (!ret) 3753 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3754 3755 return ret; 3756 } 3757 #endif 3758 3759 /* 3760 * page_evictable - test whether a page is evictable 3761 * @page: the page to test 3762 * 3763 * Test whether page is evictable--i.e., should be placed on active/inactive 3764 * lists vs unevictable list. 3765 * 3766 * Reasons page might not be evictable: 3767 * (1) page's mapping marked unevictable 3768 * (2) page is part of an mlocked VMA 3769 * 3770 */ 3771 int page_evictable(struct page *page) 3772 { 3773 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3774 } 3775 3776 #ifdef CONFIG_SHMEM 3777 /** 3778 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3779 * @pages: array of pages to check 3780 * @nr_pages: number of pages to check 3781 * 3782 * Checks pages for evictability and moves them to the appropriate lru list. 3783 * 3784 * This function is only used for SysV IPC SHM_UNLOCK. 3785 */ 3786 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3787 { 3788 struct lruvec *lruvec; 3789 struct zone *zone = NULL; 3790 int pgscanned = 0; 3791 int pgrescued = 0; 3792 int i; 3793 3794 for (i = 0; i < nr_pages; i++) { 3795 struct page *page = pages[i]; 3796 struct zone *pagezone; 3797 3798 pgscanned++; 3799 pagezone = page_zone(page); 3800 if (pagezone != zone) { 3801 if (zone) 3802 spin_unlock_irq(&zone->lru_lock); 3803 zone = pagezone; 3804 spin_lock_irq(&zone->lru_lock); 3805 } 3806 lruvec = mem_cgroup_page_lruvec(page, zone); 3807 3808 if (!PageLRU(page) || !PageUnevictable(page)) 3809 continue; 3810 3811 if (page_evictable(page)) { 3812 enum lru_list lru = page_lru_base_type(page); 3813 3814 VM_BUG_ON_PAGE(PageActive(page), page); 3815 ClearPageUnevictable(page); 3816 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3817 add_page_to_lru_list(page, lruvec, lru); 3818 pgrescued++; 3819 } 3820 } 3821 3822 if (zone) { 3823 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3824 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3825 spin_unlock_irq(&zone->lru_lock); 3826 } 3827 } 3828 #endif /* CONFIG_SHMEM */ 3829