1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/pagevec.h> 50 #include <linux/prefetch.h> 51 #include <linux/printk.h> 52 #include <linux/dax.h> 53 #include <linux/psi.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/div64.h> 57 58 #include <linux/swapops.h> 59 #include <linux/balloon_compaction.h> 60 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/vmscan.h> 65 66 struct scan_control { 67 /* How many pages shrink_list() should reclaim */ 68 unsigned long nr_to_reclaim; 69 70 /* 71 * Nodemask of nodes allowed by the caller. If NULL, all nodes 72 * are scanned. 73 */ 74 nodemask_t *nodemask; 75 76 /* 77 * The memory cgroup that hit its limit and as a result is the 78 * primary target of this reclaim invocation. 79 */ 80 struct mem_cgroup *target_mem_cgroup; 81 82 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 83 unsigned int may_writepage:1; 84 85 /* Can mapped pages be reclaimed? */ 86 unsigned int may_unmap:1; 87 88 /* Can pages be swapped as part of reclaim? */ 89 unsigned int may_swap:1; 90 91 /* 92 * Cgroups are not reclaimed below their configured memory.low, 93 * unless we threaten to OOM. If any cgroups are skipped due to 94 * memory.low and nothing was reclaimed, go back for memory.low. 95 */ 96 unsigned int memcg_low_reclaim:1; 97 unsigned int memcg_low_skipped:1; 98 99 unsigned int hibernation_mode:1; 100 101 /* One of the zones is ready for compaction */ 102 unsigned int compaction_ready:1; 103 104 /* Allocation order */ 105 s8 order; 106 107 /* Scan (total_size >> priority) pages at once */ 108 s8 priority; 109 110 /* The highest zone to isolate pages for reclaim from */ 111 s8 reclaim_idx; 112 113 /* This context's GFP mask */ 114 gfp_t gfp_mask; 115 116 /* Incremented by the number of inactive pages that were scanned */ 117 unsigned long nr_scanned; 118 119 /* Number of pages freed so far during a call to shrink_zones() */ 120 unsigned long nr_reclaimed; 121 122 struct { 123 unsigned int dirty; 124 unsigned int unqueued_dirty; 125 unsigned int congested; 126 unsigned int writeback; 127 unsigned int immediate; 128 unsigned int file_taken; 129 unsigned int taken; 130 } nr; 131 132 /* for recording the reclaimed slab by now */ 133 struct reclaim_state reclaim_state; 134 }; 135 136 #ifdef ARCH_HAS_PREFETCH 137 #define prefetch_prev_lru_page(_page, _base, _field) \ 138 do { \ 139 if ((_page)->lru.prev != _base) { \ 140 struct page *prev; \ 141 \ 142 prev = lru_to_page(&(_page->lru)); \ 143 prefetch(&prev->_field); \ 144 } \ 145 } while (0) 146 #else 147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 148 #endif 149 150 #ifdef ARCH_HAS_PREFETCHW 151 #define prefetchw_prev_lru_page(_page, _base, _field) \ 152 do { \ 153 if ((_page)->lru.prev != _base) { \ 154 struct page *prev; \ 155 \ 156 prev = lru_to_page(&(_page->lru)); \ 157 prefetchw(&prev->_field); \ 158 } \ 159 } while (0) 160 #else 161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 162 #endif 163 164 /* 165 * From 0 .. 100. Higher means more swappy. 166 */ 167 int vm_swappiness = 60; 168 /* 169 * The total number of pages which are beyond the high watermark within all 170 * zones. 171 */ 172 unsigned long vm_total_pages; 173 174 static void set_task_reclaim_state(struct task_struct *task, 175 struct reclaim_state *rs) 176 { 177 /* Check for an overwrite */ 178 WARN_ON_ONCE(rs && task->reclaim_state); 179 180 /* Check for the nulling of an already-nulled member */ 181 WARN_ON_ONCE(!rs && !task->reclaim_state); 182 183 task->reclaim_state = rs; 184 } 185 186 static LIST_HEAD(shrinker_list); 187 static DECLARE_RWSEM(shrinker_rwsem); 188 189 #ifdef CONFIG_MEMCG 190 /* 191 * We allow subsystems to populate their shrinker-related 192 * LRU lists before register_shrinker_prepared() is called 193 * for the shrinker, since we don't want to impose 194 * restrictions on their internal registration order. 195 * In this case shrink_slab_memcg() may find corresponding 196 * bit is set in the shrinkers map. 197 * 198 * This value is used by the function to detect registering 199 * shrinkers and to skip do_shrink_slab() calls for them. 200 */ 201 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 202 203 static DEFINE_IDR(shrinker_idr); 204 static int shrinker_nr_max; 205 206 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 207 { 208 int id, ret = -ENOMEM; 209 210 down_write(&shrinker_rwsem); 211 /* This may call shrinker, so it must use down_read_trylock() */ 212 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 213 if (id < 0) 214 goto unlock; 215 216 if (id >= shrinker_nr_max) { 217 if (memcg_expand_shrinker_maps(id)) { 218 idr_remove(&shrinker_idr, id); 219 goto unlock; 220 } 221 222 shrinker_nr_max = id + 1; 223 } 224 shrinker->id = id; 225 ret = 0; 226 unlock: 227 up_write(&shrinker_rwsem); 228 return ret; 229 } 230 231 static void unregister_memcg_shrinker(struct shrinker *shrinker) 232 { 233 int id = shrinker->id; 234 235 BUG_ON(id < 0); 236 237 down_write(&shrinker_rwsem); 238 idr_remove(&shrinker_idr, id); 239 up_write(&shrinker_rwsem); 240 } 241 242 static bool global_reclaim(struct scan_control *sc) 243 { 244 return !sc->target_mem_cgroup; 245 } 246 247 /** 248 * sane_reclaim - is the usual dirty throttling mechanism operational? 249 * @sc: scan_control in question 250 * 251 * The normal page dirty throttling mechanism in balance_dirty_pages() is 252 * completely broken with the legacy memcg and direct stalling in 253 * shrink_page_list() is used for throttling instead, which lacks all the 254 * niceties such as fairness, adaptive pausing, bandwidth proportional 255 * allocation and configurability. 256 * 257 * This function tests whether the vmscan currently in progress can assume 258 * that the normal dirty throttling mechanism is operational. 259 */ 260 static bool sane_reclaim(struct scan_control *sc) 261 { 262 struct mem_cgroup *memcg = sc->target_mem_cgroup; 263 264 if (!memcg) 265 return true; 266 #ifdef CONFIG_CGROUP_WRITEBACK 267 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 268 return true; 269 #endif 270 return false; 271 } 272 273 static void set_memcg_congestion(pg_data_t *pgdat, 274 struct mem_cgroup *memcg, 275 bool congested) 276 { 277 struct mem_cgroup_per_node *mn; 278 279 if (!memcg) 280 return; 281 282 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 283 WRITE_ONCE(mn->congested, congested); 284 } 285 286 static bool memcg_congested(pg_data_t *pgdat, 287 struct mem_cgroup *memcg) 288 { 289 struct mem_cgroup_per_node *mn; 290 291 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 292 return READ_ONCE(mn->congested); 293 294 } 295 #else 296 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 297 { 298 return 0; 299 } 300 301 static void unregister_memcg_shrinker(struct shrinker *shrinker) 302 { 303 } 304 305 static bool global_reclaim(struct scan_control *sc) 306 { 307 return true; 308 } 309 310 static bool sane_reclaim(struct scan_control *sc) 311 { 312 return true; 313 } 314 315 static inline void set_memcg_congestion(struct pglist_data *pgdat, 316 struct mem_cgroup *memcg, bool congested) 317 { 318 } 319 320 static inline bool memcg_congested(struct pglist_data *pgdat, 321 struct mem_cgroup *memcg) 322 { 323 return false; 324 325 } 326 #endif 327 328 /* 329 * This misses isolated pages which are not accounted for to save counters. 330 * As the data only determines if reclaim or compaction continues, it is 331 * not expected that isolated pages will be a dominating factor. 332 */ 333 unsigned long zone_reclaimable_pages(struct zone *zone) 334 { 335 unsigned long nr; 336 337 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 338 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 339 if (get_nr_swap_pages() > 0) 340 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 341 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 342 343 return nr; 344 } 345 346 /** 347 * lruvec_lru_size - Returns the number of pages on the given LRU list. 348 * @lruvec: lru vector 349 * @lru: lru to use 350 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 351 */ 352 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 353 { 354 unsigned long lru_size; 355 int zid; 356 357 if (!mem_cgroup_disabled()) 358 lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 359 else 360 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 361 362 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 363 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 364 unsigned long size; 365 366 if (!managed_zone(zone)) 367 continue; 368 369 if (!mem_cgroup_disabled()) 370 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 371 else 372 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 373 NR_ZONE_LRU_BASE + lru); 374 lru_size -= min(size, lru_size); 375 } 376 377 return lru_size; 378 379 } 380 381 /* 382 * Add a shrinker callback to be called from the vm. 383 */ 384 int prealloc_shrinker(struct shrinker *shrinker) 385 { 386 unsigned int size = sizeof(*shrinker->nr_deferred); 387 388 if (shrinker->flags & SHRINKER_NUMA_AWARE) 389 size *= nr_node_ids; 390 391 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 392 if (!shrinker->nr_deferred) 393 return -ENOMEM; 394 395 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 396 if (prealloc_memcg_shrinker(shrinker)) 397 goto free_deferred; 398 } 399 400 return 0; 401 402 free_deferred: 403 kfree(shrinker->nr_deferred); 404 shrinker->nr_deferred = NULL; 405 return -ENOMEM; 406 } 407 408 void free_prealloced_shrinker(struct shrinker *shrinker) 409 { 410 if (!shrinker->nr_deferred) 411 return; 412 413 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 414 unregister_memcg_shrinker(shrinker); 415 416 kfree(shrinker->nr_deferred); 417 shrinker->nr_deferred = NULL; 418 } 419 420 void register_shrinker_prepared(struct shrinker *shrinker) 421 { 422 down_write(&shrinker_rwsem); 423 list_add_tail(&shrinker->list, &shrinker_list); 424 #ifdef CONFIG_MEMCG_KMEM 425 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 426 idr_replace(&shrinker_idr, shrinker, shrinker->id); 427 #endif 428 up_write(&shrinker_rwsem); 429 } 430 431 int register_shrinker(struct shrinker *shrinker) 432 { 433 int err = prealloc_shrinker(shrinker); 434 435 if (err) 436 return err; 437 register_shrinker_prepared(shrinker); 438 return 0; 439 } 440 EXPORT_SYMBOL(register_shrinker); 441 442 /* 443 * Remove one 444 */ 445 void unregister_shrinker(struct shrinker *shrinker) 446 { 447 if (!shrinker->nr_deferred) 448 return; 449 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 450 unregister_memcg_shrinker(shrinker); 451 down_write(&shrinker_rwsem); 452 list_del(&shrinker->list); 453 up_write(&shrinker_rwsem); 454 kfree(shrinker->nr_deferred); 455 shrinker->nr_deferred = NULL; 456 } 457 EXPORT_SYMBOL(unregister_shrinker); 458 459 #define SHRINK_BATCH 128 460 461 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 462 struct shrinker *shrinker, int priority) 463 { 464 unsigned long freed = 0; 465 unsigned long long delta; 466 long total_scan; 467 long freeable; 468 long nr; 469 long new_nr; 470 int nid = shrinkctl->nid; 471 long batch_size = shrinker->batch ? shrinker->batch 472 : SHRINK_BATCH; 473 long scanned = 0, next_deferred; 474 475 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 476 nid = 0; 477 478 freeable = shrinker->count_objects(shrinker, shrinkctl); 479 if (freeable == 0 || freeable == SHRINK_EMPTY) 480 return freeable; 481 482 /* 483 * copy the current shrinker scan count into a local variable 484 * and zero it so that other concurrent shrinker invocations 485 * don't also do this scanning work. 486 */ 487 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 488 489 total_scan = nr; 490 if (shrinker->seeks) { 491 delta = freeable >> priority; 492 delta *= 4; 493 do_div(delta, shrinker->seeks); 494 } else { 495 /* 496 * These objects don't require any IO to create. Trim 497 * them aggressively under memory pressure to keep 498 * them from causing refetches in the IO caches. 499 */ 500 delta = freeable / 2; 501 } 502 503 total_scan += delta; 504 if (total_scan < 0) { 505 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n", 506 shrinker->scan_objects, total_scan); 507 total_scan = freeable; 508 next_deferred = nr; 509 } else 510 next_deferred = total_scan; 511 512 /* 513 * We need to avoid excessive windup on filesystem shrinkers 514 * due to large numbers of GFP_NOFS allocations causing the 515 * shrinkers to return -1 all the time. This results in a large 516 * nr being built up so when a shrink that can do some work 517 * comes along it empties the entire cache due to nr >>> 518 * freeable. This is bad for sustaining a working set in 519 * memory. 520 * 521 * Hence only allow the shrinker to scan the entire cache when 522 * a large delta change is calculated directly. 523 */ 524 if (delta < freeable / 4) 525 total_scan = min(total_scan, freeable / 2); 526 527 /* 528 * Avoid risking looping forever due to too large nr value: 529 * never try to free more than twice the estimate number of 530 * freeable entries. 531 */ 532 if (total_scan > freeable * 2) 533 total_scan = freeable * 2; 534 535 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 536 freeable, delta, total_scan, priority); 537 538 /* 539 * Normally, we should not scan less than batch_size objects in one 540 * pass to avoid too frequent shrinker calls, but if the slab has less 541 * than batch_size objects in total and we are really tight on memory, 542 * we will try to reclaim all available objects, otherwise we can end 543 * up failing allocations although there are plenty of reclaimable 544 * objects spread over several slabs with usage less than the 545 * batch_size. 546 * 547 * We detect the "tight on memory" situations by looking at the total 548 * number of objects we want to scan (total_scan). If it is greater 549 * than the total number of objects on slab (freeable), we must be 550 * scanning at high prio and therefore should try to reclaim as much as 551 * possible. 552 */ 553 while (total_scan >= batch_size || 554 total_scan >= freeable) { 555 unsigned long ret; 556 unsigned long nr_to_scan = min(batch_size, total_scan); 557 558 shrinkctl->nr_to_scan = nr_to_scan; 559 shrinkctl->nr_scanned = nr_to_scan; 560 ret = shrinker->scan_objects(shrinker, shrinkctl); 561 if (ret == SHRINK_STOP) 562 break; 563 freed += ret; 564 565 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 566 total_scan -= shrinkctl->nr_scanned; 567 scanned += shrinkctl->nr_scanned; 568 569 cond_resched(); 570 } 571 572 if (next_deferred >= scanned) 573 next_deferred -= scanned; 574 else 575 next_deferred = 0; 576 /* 577 * move the unused scan count back into the shrinker in a 578 * manner that handles concurrent updates. If we exhausted the 579 * scan, there is no need to do an update. 580 */ 581 if (next_deferred > 0) 582 new_nr = atomic_long_add_return(next_deferred, 583 &shrinker->nr_deferred[nid]); 584 else 585 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 586 587 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 588 return freed; 589 } 590 591 #ifdef CONFIG_MEMCG 592 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 593 struct mem_cgroup *memcg, int priority) 594 { 595 struct memcg_shrinker_map *map; 596 unsigned long ret, freed = 0; 597 int i; 598 599 if (!mem_cgroup_online(memcg)) 600 return 0; 601 602 if (!down_read_trylock(&shrinker_rwsem)) 603 return 0; 604 605 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 606 true); 607 if (unlikely(!map)) 608 goto unlock; 609 610 for_each_set_bit(i, map->map, shrinker_nr_max) { 611 struct shrink_control sc = { 612 .gfp_mask = gfp_mask, 613 .nid = nid, 614 .memcg = memcg, 615 }; 616 struct shrinker *shrinker; 617 618 shrinker = idr_find(&shrinker_idr, i); 619 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 620 if (!shrinker) 621 clear_bit(i, map->map); 622 continue; 623 } 624 625 /* Call non-slab shrinkers even though kmem is disabled */ 626 if (!memcg_kmem_enabled() && 627 !(shrinker->flags & SHRINKER_NONSLAB)) 628 continue; 629 630 ret = do_shrink_slab(&sc, shrinker, priority); 631 if (ret == SHRINK_EMPTY) { 632 clear_bit(i, map->map); 633 /* 634 * After the shrinker reported that it had no objects to 635 * free, but before we cleared the corresponding bit in 636 * the memcg shrinker map, a new object might have been 637 * added. To make sure, we have the bit set in this 638 * case, we invoke the shrinker one more time and reset 639 * the bit if it reports that it is not empty anymore. 640 * The memory barrier here pairs with the barrier in 641 * memcg_set_shrinker_bit(): 642 * 643 * list_lru_add() shrink_slab_memcg() 644 * list_add_tail() clear_bit() 645 * <MB> <MB> 646 * set_bit() do_shrink_slab() 647 */ 648 smp_mb__after_atomic(); 649 ret = do_shrink_slab(&sc, shrinker, priority); 650 if (ret == SHRINK_EMPTY) 651 ret = 0; 652 else 653 memcg_set_shrinker_bit(memcg, nid, i); 654 } 655 freed += ret; 656 657 if (rwsem_is_contended(&shrinker_rwsem)) { 658 freed = freed ? : 1; 659 break; 660 } 661 } 662 unlock: 663 up_read(&shrinker_rwsem); 664 return freed; 665 } 666 #else /* CONFIG_MEMCG */ 667 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 668 struct mem_cgroup *memcg, int priority) 669 { 670 return 0; 671 } 672 #endif /* CONFIG_MEMCG */ 673 674 /** 675 * shrink_slab - shrink slab caches 676 * @gfp_mask: allocation context 677 * @nid: node whose slab caches to target 678 * @memcg: memory cgroup whose slab caches to target 679 * @priority: the reclaim priority 680 * 681 * Call the shrink functions to age shrinkable caches. 682 * 683 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 684 * unaware shrinkers will receive a node id of 0 instead. 685 * 686 * @memcg specifies the memory cgroup to target. Unaware shrinkers 687 * are called only if it is the root cgroup. 688 * 689 * @priority is sc->priority, we take the number of objects and >> by priority 690 * in order to get the scan target. 691 * 692 * Returns the number of reclaimed slab objects. 693 */ 694 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 695 struct mem_cgroup *memcg, 696 int priority) 697 { 698 unsigned long ret, freed = 0; 699 struct shrinker *shrinker; 700 701 /* 702 * The root memcg might be allocated even though memcg is disabled 703 * via "cgroup_disable=memory" boot parameter. This could make 704 * mem_cgroup_is_root() return false, then just run memcg slab 705 * shrink, but skip global shrink. This may result in premature 706 * oom. 707 */ 708 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 709 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 710 711 if (!down_read_trylock(&shrinker_rwsem)) 712 goto out; 713 714 list_for_each_entry(shrinker, &shrinker_list, list) { 715 struct shrink_control sc = { 716 .gfp_mask = gfp_mask, 717 .nid = nid, 718 .memcg = memcg, 719 }; 720 721 ret = do_shrink_slab(&sc, shrinker, priority); 722 if (ret == SHRINK_EMPTY) 723 ret = 0; 724 freed += ret; 725 /* 726 * Bail out if someone want to register a new shrinker to 727 * prevent the regsitration from being stalled for long periods 728 * by parallel ongoing shrinking. 729 */ 730 if (rwsem_is_contended(&shrinker_rwsem)) { 731 freed = freed ? : 1; 732 break; 733 } 734 } 735 736 up_read(&shrinker_rwsem); 737 out: 738 cond_resched(); 739 return freed; 740 } 741 742 void drop_slab_node(int nid) 743 { 744 unsigned long freed; 745 746 do { 747 struct mem_cgroup *memcg = NULL; 748 749 freed = 0; 750 memcg = mem_cgroup_iter(NULL, NULL, NULL); 751 do { 752 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 753 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 754 } while (freed > 10); 755 } 756 757 void drop_slab(void) 758 { 759 int nid; 760 761 for_each_online_node(nid) 762 drop_slab_node(nid); 763 } 764 765 static inline int is_page_cache_freeable(struct page *page) 766 { 767 /* 768 * A freeable page cache page is referenced only by the caller 769 * that isolated the page, the page cache and optional buffer 770 * heads at page->private. 771 */ 772 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ? 773 HPAGE_PMD_NR : 1; 774 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 775 } 776 777 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 778 { 779 if (current->flags & PF_SWAPWRITE) 780 return 1; 781 if (!inode_write_congested(inode)) 782 return 1; 783 if (inode_to_bdi(inode) == current->backing_dev_info) 784 return 1; 785 return 0; 786 } 787 788 /* 789 * We detected a synchronous write error writing a page out. Probably 790 * -ENOSPC. We need to propagate that into the address_space for a subsequent 791 * fsync(), msync() or close(). 792 * 793 * The tricky part is that after writepage we cannot touch the mapping: nothing 794 * prevents it from being freed up. But we have a ref on the page and once 795 * that page is locked, the mapping is pinned. 796 * 797 * We're allowed to run sleeping lock_page() here because we know the caller has 798 * __GFP_FS. 799 */ 800 static void handle_write_error(struct address_space *mapping, 801 struct page *page, int error) 802 { 803 lock_page(page); 804 if (page_mapping(page) == mapping) 805 mapping_set_error(mapping, error); 806 unlock_page(page); 807 } 808 809 /* possible outcome of pageout() */ 810 typedef enum { 811 /* failed to write page out, page is locked */ 812 PAGE_KEEP, 813 /* move page to the active list, page is locked */ 814 PAGE_ACTIVATE, 815 /* page has been sent to the disk successfully, page is unlocked */ 816 PAGE_SUCCESS, 817 /* page is clean and locked */ 818 PAGE_CLEAN, 819 } pageout_t; 820 821 /* 822 * pageout is called by shrink_page_list() for each dirty page. 823 * Calls ->writepage(). 824 */ 825 static pageout_t pageout(struct page *page, struct address_space *mapping, 826 struct scan_control *sc) 827 { 828 /* 829 * If the page is dirty, only perform writeback if that write 830 * will be non-blocking. To prevent this allocation from being 831 * stalled by pagecache activity. But note that there may be 832 * stalls if we need to run get_block(). We could test 833 * PagePrivate for that. 834 * 835 * If this process is currently in __generic_file_write_iter() against 836 * this page's queue, we can perform writeback even if that 837 * will block. 838 * 839 * If the page is swapcache, write it back even if that would 840 * block, for some throttling. This happens by accident, because 841 * swap_backing_dev_info is bust: it doesn't reflect the 842 * congestion state of the swapdevs. Easy to fix, if needed. 843 */ 844 if (!is_page_cache_freeable(page)) 845 return PAGE_KEEP; 846 if (!mapping) { 847 /* 848 * Some data journaling orphaned pages can have 849 * page->mapping == NULL while being dirty with clean buffers. 850 */ 851 if (page_has_private(page)) { 852 if (try_to_free_buffers(page)) { 853 ClearPageDirty(page); 854 pr_info("%s: orphaned page\n", __func__); 855 return PAGE_CLEAN; 856 } 857 } 858 return PAGE_KEEP; 859 } 860 if (mapping->a_ops->writepage == NULL) 861 return PAGE_ACTIVATE; 862 if (!may_write_to_inode(mapping->host, sc)) 863 return PAGE_KEEP; 864 865 if (clear_page_dirty_for_io(page)) { 866 int res; 867 struct writeback_control wbc = { 868 .sync_mode = WB_SYNC_NONE, 869 .nr_to_write = SWAP_CLUSTER_MAX, 870 .range_start = 0, 871 .range_end = LLONG_MAX, 872 .for_reclaim = 1, 873 }; 874 875 SetPageReclaim(page); 876 res = mapping->a_ops->writepage(page, &wbc); 877 if (res < 0) 878 handle_write_error(mapping, page, res); 879 if (res == AOP_WRITEPAGE_ACTIVATE) { 880 ClearPageReclaim(page); 881 return PAGE_ACTIVATE; 882 } 883 884 if (!PageWriteback(page)) { 885 /* synchronous write or broken a_ops? */ 886 ClearPageReclaim(page); 887 } 888 trace_mm_vmscan_writepage(page); 889 inc_node_page_state(page, NR_VMSCAN_WRITE); 890 return PAGE_SUCCESS; 891 } 892 893 return PAGE_CLEAN; 894 } 895 896 /* 897 * Same as remove_mapping, but if the page is removed from the mapping, it 898 * gets returned with a refcount of 0. 899 */ 900 static int __remove_mapping(struct address_space *mapping, struct page *page, 901 bool reclaimed) 902 { 903 unsigned long flags; 904 int refcount; 905 906 BUG_ON(!PageLocked(page)); 907 BUG_ON(mapping != page_mapping(page)); 908 909 xa_lock_irqsave(&mapping->i_pages, flags); 910 /* 911 * The non racy check for a busy page. 912 * 913 * Must be careful with the order of the tests. When someone has 914 * a ref to the page, it may be possible that they dirty it then 915 * drop the reference. So if PageDirty is tested before page_count 916 * here, then the following race may occur: 917 * 918 * get_user_pages(&page); 919 * [user mapping goes away] 920 * write_to(page); 921 * !PageDirty(page) [good] 922 * SetPageDirty(page); 923 * put_page(page); 924 * !page_count(page) [good, discard it] 925 * 926 * [oops, our write_to data is lost] 927 * 928 * Reversing the order of the tests ensures such a situation cannot 929 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 930 * load is not satisfied before that of page->_refcount. 931 * 932 * Note that if SetPageDirty is always performed via set_page_dirty, 933 * and thus under the i_pages lock, then this ordering is not required. 934 */ 935 if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) 936 refcount = 1 + HPAGE_PMD_NR; 937 else 938 refcount = 2; 939 if (!page_ref_freeze(page, refcount)) 940 goto cannot_free; 941 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 942 if (unlikely(PageDirty(page))) { 943 page_ref_unfreeze(page, refcount); 944 goto cannot_free; 945 } 946 947 if (PageSwapCache(page)) { 948 swp_entry_t swap = { .val = page_private(page) }; 949 mem_cgroup_swapout(page, swap); 950 __delete_from_swap_cache(page, swap); 951 xa_unlock_irqrestore(&mapping->i_pages, flags); 952 put_swap_page(page, swap); 953 } else { 954 void (*freepage)(struct page *); 955 void *shadow = NULL; 956 957 freepage = mapping->a_ops->freepage; 958 /* 959 * Remember a shadow entry for reclaimed file cache in 960 * order to detect refaults, thus thrashing, later on. 961 * 962 * But don't store shadows in an address space that is 963 * already exiting. This is not just an optizimation, 964 * inode reclaim needs to empty out the radix tree or 965 * the nodes are lost. Don't plant shadows behind its 966 * back. 967 * 968 * We also don't store shadows for DAX mappings because the 969 * only page cache pages found in these are zero pages 970 * covering holes, and because we don't want to mix DAX 971 * exceptional entries and shadow exceptional entries in the 972 * same address_space. 973 */ 974 if (reclaimed && page_is_file_cache(page) && 975 !mapping_exiting(mapping) && !dax_mapping(mapping)) 976 shadow = workingset_eviction(page); 977 __delete_from_page_cache(page, shadow); 978 xa_unlock_irqrestore(&mapping->i_pages, flags); 979 980 if (freepage != NULL) 981 freepage(page); 982 } 983 984 return 1; 985 986 cannot_free: 987 xa_unlock_irqrestore(&mapping->i_pages, flags); 988 return 0; 989 } 990 991 /* 992 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 993 * someone else has a ref on the page, abort and return 0. If it was 994 * successfully detached, return 1. Assumes the caller has a single ref on 995 * this page. 996 */ 997 int remove_mapping(struct address_space *mapping, struct page *page) 998 { 999 if (__remove_mapping(mapping, page, false)) { 1000 /* 1001 * Unfreezing the refcount with 1 rather than 2 effectively 1002 * drops the pagecache ref for us without requiring another 1003 * atomic operation. 1004 */ 1005 page_ref_unfreeze(page, 1); 1006 return 1; 1007 } 1008 return 0; 1009 } 1010 1011 /** 1012 * putback_lru_page - put previously isolated page onto appropriate LRU list 1013 * @page: page to be put back to appropriate lru list 1014 * 1015 * Add previously isolated @page to appropriate LRU list. 1016 * Page may still be unevictable for other reasons. 1017 * 1018 * lru_lock must not be held, interrupts must be enabled. 1019 */ 1020 void putback_lru_page(struct page *page) 1021 { 1022 lru_cache_add(page); 1023 put_page(page); /* drop ref from isolate */ 1024 } 1025 1026 enum page_references { 1027 PAGEREF_RECLAIM, 1028 PAGEREF_RECLAIM_CLEAN, 1029 PAGEREF_KEEP, 1030 PAGEREF_ACTIVATE, 1031 }; 1032 1033 static enum page_references page_check_references(struct page *page, 1034 struct scan_control *sc) 1035 { 1036 int referenced_ptes, referenced_page; 1037 unsigned long vm_flags; 1038 1039 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1040 &vm_flags); 1041 referenced_page = TestClearPageReferenced(page); 1042 1043 /* 1044 * Mlock lost the isolation race with us. Let try_to_unmap() 1045 * move the page to the unevictable list. 1046 */ 1047 if (vm_flags & VM_LOCKED) 1048 return PAGEREF_RECLAIM; 1049 1050 if (referenced_ptes) { 1051 if (PageSwapBacked(page)) 1052 return PAGEREF_ACTIVATE; 1053 /* 1054 * All mapped pages start out with page table 1055 * references from the instantiating fault, so we need 1056 * to look twice if a mapped file page is used more 1057 * than once. 1058 * 1059 * Mark it and spare it for another trip around the 1060 * inactive list. Another page table reference will 1061 * lead to its activation. 1062 * 1063 * Note: the mark is set for activated pages as well 1064 * so that recently deactivated but used pages are 1065 * quickly recovered. 1066 */ 1067 SetPageReferenced(page); 1068 1069 if (referenced_page || referenced_ptes > 1) 1070 return PAGEREF_ACTIVATE; 1071 1072 /* 1073 * Activate file-backed executable pages after first usage. 1074 */ 1075 if (vm_flags & VM_EXEC) 1076 return PAGEREF_ACTIVATE; 1077 1078 return PAGEREF_KEEP; 1079 } 1080 1081 /* Reclaim if clean, defer dirty pages to writeback */ 1082 if (referenced_page && !PageSwapBacked(page)) 1083 return PAGEREF_RECLAIM_CLEAN; 1084 1085 return PAGEREF_RECLAIM; 1086 } 1087 1088 /* Check if a page is dirty or under writeback */ 1089 static void page_check_dirty_writeback(struct page *page, 1090 bool *dirty, bool *writeback) 1091 { 1092 struct address_space *mapping; 1093 1094 /* 1095 * Anonymous pages are not handled by flushers and must be written 1096 * from reclaim context. Do not stall reclaim based on them 1097 */ 1098 if (!page_is_file_cache(page) || 1099 (PageAnon(page) && !PageSwapBacked(page))) { 1100 *dirty = false; 1101 *writeback = false; 1102 return; 1103 } 1104 1105 /* By default assume that the page flags are accurate */ 1106 *dirty = PageDirty(page); 1107 *writeback = PageWriteback(page); 1108 1109 /* Verify dirty/writeback state if the filesystem supports it */ 1110 if (!page_has_private(page)) 1111 return; 1112 1113 mapping = page_mapping(page); 1114 if (mapping && mapping->a_ops->is_dirty_writeback) 1115 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1116 } 1117 1118 /* 1119 * shrink_page_list() returns the number of reclaimed pages 1120 */ 1121 static unsigned long shrink_page_list(struct list_head *page_list, 1122 struct pglist_data *pgdat, 1123 struct scan_control *sc, 1124 enum ttu_flags ttu_flags, 1125 struct reclaim_stat *stat, 1126 bool ignore_references) 1127 { 1128 LIST_HEAD(ret_pages); 1129 LIST_HEAD(free_pages); 1130 unsigned nr_reclaimed = 0; 1131 unsigned pgactivate = 0; 1132 1133 memset(stat, 0, sizeof(*stat)); 1134 cond_resched(); 1135 1136 while (!list_empty(page_list)) { 1137 struct address_space *mapping; 1138 struct page *page; 1139 int may_enter_fs; 1140 enum page_references references = PAGEREF_RECLAIM; 1141 bool dirty, writeback; 1142 unsigned int nr_pages; 1143 1144 cond_resched(); 1145 1146 page = lru_to_page(page_list); 1147 list_del(&page->lru); 1148 1149 if (!trylock_page(page)) 1150 goto keep; 1151 1152 VM_BUG_ON_PAGE(PageActive(page), page); 1153 1154 nr_pages = compound_nr(page); 1155 1156 /* Account the number of base pages even though THP */ 1157 sc->nr_scanned += nr_pages; 1158 1159 if (unlikely(!page_evictable(page))) 1160 goto activate_locked; 1161 1162 if (!sc->may_unmap && page_mapped(page)) 1163 goto keep_locked; 1164 1165 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1166 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1167 1168 /* 1169 * The number of dirty pages determines if a node is marked 1170 * reclaim_congested which affects wait_iff_congested. kswapd 1171 * will stall and start writing pages if the tail of the LRU 1172 * is all dirty unqueued pages. 1173 */ 1174 page_check_dirty_writeback(page, &dirty, &writeback); 1175 if (dirty || writeback) 1176 stat->nr_dirty++; 1177 1178 if (dirty && !writeback) 1179 stat->nr_unqueued_dirty++; 1180 1181 /* 1182 * Treat this page as congested if the underlying BDI is or if 1183 * pages are cycling through the LRU so quickly that the 1184 * pages marked for immediate reclaim are making it to the 1185 * end of the LRU a second time. 1186 */ 1187 mapping = page_mapping(page); 1188 if (((dirty || writeback) && mapping && 1189 inode_write_congested(mapping->host)) || 1190 (writeback && PageReclaim(page))) 1191 stat->nr_congested++; 1192 1193 /* 1194 * If a page at the tail of the LRU is under writeback, there 1195 * are three cases to consider. 1196 * 1197 * 1) If reclaim is encountering an excessive number of pages 1198 * under writeback and this page is both under writeback and 1199 * PageReclaim then it indicates that pages are being queued 1200 * for IO but are being recycled through the LRU before the 1201 * IO can complete. Waiting on the page itself risks an 1202 * indefinite stall if it is impossible to writeback the 1203 * page due to IO error or disconnected storage so instead 1204 * note that the LRU is being scanned too quickly and the 1205 * caller can stall after page list has been processed. 1206 * 1207 * 2) Global or new memcg reclaim encounters a page that is 1208 * not marked for immediate reclaim, or the caller does not 1209 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1210 * not to fs). In this case mark the page for immediate 1211 * reclaim and continue scanning. 1212 * 1213 * Require may_enter_fs because we would wait on fs, which 1214 * may not have submitted IO yet. And the loop driver might 1215 * enter reclaim, and deadlock if it waits on a page for 1216 * which it is needed to do the write (loop masks off 1217 * __GFP_IO|__GFP_FS for this reason); but more thought 1218 * would probably show more reasons. 1219 * 1220 * 3) Legacy memcg encounters a page that is already marked 1221 * PageReclaim. memcg does not have any dirty pages 1222 * throttling so we could easily OOM just because too many 1223 * pages are in writeback and there is nothing else to 1224 * reclaim. Wait for the writeback to complete. 1225 * 1226 * In cases 1) and 2) we activate the pages to get them out of 1227 * the way while we continue scanning for clean pages on the 1228 * inactive list and refilling from the active list. The 1229 * observation here is that waiting for disk writes is more 1230 * expensive than potentially causing reloads down the line. 1231 * Since they're marked for immediate reclaim, they won't put 1232 * memory pressure on the cache working set any longer than it 1233 * takes to write them to disk. 1234 */ 1235 if (PageWriteback(page)) { 1236 /* Case 1 above */ 1237 if (current_is_kswapd() && 1238 PageReclaim(page) && 1239 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1240 stat->nr_immediate++; 1241 goto activate_locked; 1242 1243 /* Case 2 above */ 1244 } else if (sane_reclaim(sc) || 1245 !PageReclaim(page) || !may_enter_fs) { 1246 /* 1247 * This is slightly racy - end_page_writeback() 1248 * might have just cleared PageReclaim, then 1249 * setting PageReclaim here end up interpreted 1250 * as PageReadahead - but that does not matter 1251 * enough to care. What we do want is for this 1252 * page to have PageReclaim set next time memcg 1253 * reclaim reaches the tests above, so it will 1254 * then wait_on_page_writeback() to avoid OOM; 1255 * and it's also appropriate in global reclaim. 1256 */ 1257 SetPageReclaim(page); 1258 stat->nr_writeback++; 1259 goto activate_locked; 1260 1261 /* Case 3 above */ 1262 } else { 1263 unlock_page(page); 1264 wait_on_page_writeback(page); 1265 /* then go back and try same page again */ 1266 list_add_tail(&page->lru, page_list); 1267 continue; 1268 } 1269 } 1270 1271 if (!ignore_references) 1272 references = page_check_references(page, sc); 1273 1274 switch (references) { 1275 case PAGEREF_ACTIVATE: 1276 goto activate_locked; 1277 case PAGEREF_KEEP: 1278 stat->nr_ref_keep += nr_pages; 1279 goto keep_locked; 1280 case PAGEREF_RECLAIM: 1281 case PAGEREF_RECLAIM_CLEAN: 1282 ; /* try to reclaim the page below */ 1283 } 1284 1285 /* 1286 * Anonymous process memory has backing store? 1287 * Try to allocate it some swap space here. 1288 * Lazyfree page could be freed directly 1289 */ 1290 if (PageAnon(page) && PageSwapBacked(page)) { 1291 if (!PageSwapCache(page)) { 1292 if (!(sc->gfp_mask & __GFP_IO)) 1293 goto keep_locked; 1294 if (PageTransHuge(page)) { 1295 /* cannot split THP, skip it */ 1296 if (!can_split_huge_page(page, NULL)) 1297 goto activate_locked; 1298 /* 1299 * Split pages without a PMD map right 1300 * away. Chances are some or all of the 1301 * tail pages can be freed without IO. 1302 */ 1303 if (!compound_mapcount(page) && 1304 split_huge_page_to_list(page, 1305 page_list)) 1306 goto activate_locked; 1307 } 1308 if (!add_to_swap(page)) { 1309 if (!PageTransHuge(page)) 1310 goto activate_locked_split; 1311 /* Fallback to swap normal pages */ 1312 if (split_huge_page_to_list(page, 1313 page_list)) 1314 goto activate_locked; 1315 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1316 count_vm_event(THP_SWPOUT_FALLBACK); 1317 #endif 1318 if (!add_to_swap(page)) 1319 goto activate_locked_split; 1320 } 1321 1322 may_enter_fs = 1; 1323 1324 /* Adding to swap updated mapping */ 1325 mapping = page_mapping(page); 1326 } 1327 } else if (unlikely(PageTransHuge(page))) { 1328 /* Split file THP */ 1329 if (split_huge_page_to_list(page, page_list)) 1330 goto keep_locked; 1331 } 1332 1333 /* 1334 * THP may get split above, need minus tail pages and update 1335 * nr_pages to avoid accounting tail pages twice. 1336 * 1337 * The tail pages that are added into swap cache successfully 1338 * reach here. 1339 */ 1340 if ((nr_pages > 1) && !PageTransHuge(page)) { 1341 sc->nr_scanned -= (nr_pages - 1); 1342 nr_pages = 1; 1343 } 1344 1345 /* 1346 * The page is mapped into the page tables of one or more 1347 * processes. Try to unmap it here. 1348 */ 1349 if (page_mapped(page)) { 1350 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1351 1352 if (unlikely(PageTransHuge(page))) 1353 flags |= TTU_SPLIT_HUGE_PMD; 1354 if (!try_to_unmap(page, flags)) { 1355 stat->nr_unmap_fail += nr_pages; 1356 goto activate_locked; 1357 } 1358 } 1359 1360 if (PageDirty(page)) { 1361 /* 1362 * Only kswapd can writeback filesystem pages 1363 * to avoid risk of stack overflow. But avoid 1364 * injecting inefficient single-page IO into 1365 * flusher writeback as much as possible: only 1366 * write pages when we've encountered many 1367 * dirty pages, and when we've already scanned 1368 * the rest of the LRU for clean pages and see 1369 * the same dirty pages again (PageReclaim). 1370 */ 1371 if (page_is_file_cache(page) && 1372 (!current_is_kswapd() || !PageReclaim(page) || 1373 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1374 /* 1375 * Immediately reclaim when written back. 1376 * Similar in principal to deactivate_page() 1377 * except we already have the page isolated 1378 * and know it's dirty 1379 */ 1380 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1381 SetPageReclaim(page); 1382 1383 goto activate_locked; 1384 } 1385 1386 if (references == PAGEREF_RECLAIM_CLEAN) 1387 goto keep_locked; 1388 if (!may_enter_fs) 1389 goto keep_locked; 1390 if (!sc->may_writepage) 1391 goto keep_locked; 1392 1393 /* 1394 * Page is dirty. Flush the TLB if a writable entry 1395 * potentially exists to avoid CPU writes after IO 1396 * starts and then write it out here. 1397 */ 1398 try_to_unmap_flush_dirty(); 1399 switch (pageout(page, mapping, sc)) { 1400 case PAGE_KEEP: 1401 goto keep_locked; 1402 case PAGE_ACTIVATE: 1403 goto activate_locked; 1404 case PAGE_SUCCESS: 1405 if (PageWriteback(page)) 1406 goto keep; 1407 if (PageDirty(page)) 1408 goto keep; 1409 1410 /* 1411 * A synchronous write - probably a ramdisk. Go 1412 * ahead and try to reclaim the page. 1413 */ 1414 if (!trylock_page(page)) 1415 goto keep; 1416 if (PageDirty(page) || PageWriteback(page)) 1417 goto keep_locked; 1418 mapping = page_mapping(page); 1419 case PAGE_CLEAN: 1420 ; /* try to free the page below */ 1421 } 1422 } 1423 1424 /* 1425 * If the page has buffers, try to free the buffer mappings 1426 * associated with this page. If we succeed we try to free 1427 * the page as well. 1428 * 1429 * We do this even if the page is PageDirty(). 1430 * try_to_release_page() does not perform I/O, but it is 1431 * possible for a page to have PageDirty set, but it is actually 1432 * clean (all its buffers are clean). This happens if the 1433 * buffers were written out directly, with submit_bh(). ext3 1434 * will do this, as well as the blockdev mapping. 1435 * try_to_release_page() will discover that cleanness and will 1436 * drop the buffers and mark the page clean - it can be freed. 1437 * 1438 * Rarely, pages can have buffers and no ->mapping. These are 1439 * the pages which were not successfully invalidated in 1440 * truncate_complete_page(). We try to drop those buffers here 1441 * and if that worked, and the page is no longer mapped into 1442 * process address space (page_count == 1) it can be freed. 1443 * Otherwise, leave the page on the LRU so it is swappable. 1444 */ 1445 if (page_has_private(page)) { 1446 if (!try_to_release_page(page, sc->gfp_mask)) 1447 goto activate_locked; 1448 if (!mapping && page_count(page) == 1) { 1449 unlock_page(page); 1450 if (put_page_testzero(page)) 1451 goto free_it; 1452 else { 1453 /* 1454 * rare race with speculative reference. 1455 * the speculative reference will free 1456 * this page shortly, so we may 1457 * increment nr_reclaimed here (and 1458 * leave it off the LRU). 1459 */ 1460 nr_reclaimed++; 1461 continue; 1462 } 1463 } 1464 } 1465 1466 if (PageAnon(page) && !PageSwapBacked(page)) { 1467 /* follow __remove_mapping for reference */ 1468 if (!page_ref_freeze(page, 1)) 1469 goto keep_locked; 1470 if (PageDirty(page)) { 1471 page_ref_unfreeze(page, 1); 1472 goto keep_locked; 1473 } 1474 1475 count_vm_event(PGLAZYFREED); 1476 count_memcg_page_event(page, PGLAZYFREED); 1477 } else if (!mapping || !__remove_mapping(mapping, page, true)) 1478 goto keep_locked; 1479 1480 unlock_page(page); 1481 free_it: 1482 /* 1483 * THP may get swapped out in a whole, need account 1484 * all base pages. 1485 */ 1486 nr_reclaimed += nr_pages; 1487 1488 /* 1489 * Is there need to periodically free_page_list? It would 1490 * appear not as the counts should be low 1491 */ 1492 if (unlikely(PageTransHuge(page))) 1493 (*get_compound_page_dtor(page))(page); 1494 else 1495 list_add(&page->lru, &free_pages); 1496 continue; 1497 1498 activate_locked_split: 1499 /* 1500 * The tail pages that are failed to add into swap cache 1501 * reach here. Fixup nr_scanned and nr_pages. 1502 */ 1503 if (nr_pages > 1) { 1504 sc->nr_scanned -= (nr_pages - 1); 1505 nr_pages = 1; 1506 } 1507 activate_locked: 1508 /* Not a candidate for swapping, so reclaim swap space. */ 1509 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1510 PageMlocked(page))) 1511 try_to_free_swap(page); 1512 VM_BUG_ON_PAGE(PageActive(page), page); 1513 if (!PageMlocked(page)) { 1514 int type = page_is_file_cache(page); 1515 SetPageActive(page); 1516 stat->nr_activate[type] += nr_pages; 1517 count_memcg_page_event(page, PGACTIVATE); 1518 } 1519 keep_locked: 1520 unlock_page(page); 1521 keep: 1522 list_add(&page->lru, &ret_pages); 1523 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1524 } 1525 1526 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1527 1528 mem_cgroup_uncharge_list(&free_pages); 1529 try_to_unmap_flush(); 1530 free_unref_page_list(&free_pages); 1531 1532 list_splice(&ret_pages, page_list); 1533 count_vm_events(PGACTIVATE, pgactivate); 1534 1535 return nr_reclaimed; 1536 } 1537 1538 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1539 struct list_head *page_list) 1540 { 1541 struct scan_control sc = { 1542 .gfp_mask = GFP_KERNEL, 1543 .priority = DEF_PRIORITY, 1544 .may_unmap = 1, 1545 }; 1546 struct reclaim_stat dummy_stat; 1547 unsigned long ret; 1548 struct page *page, *next; 1549 LIST_HEAD(clean_pages); 1550 1551 list_for_each_entry_safe(page, next, page_list, lru) { 1552 if (page_is_file_cache(page) && !PageDirty(page) && 1553 !__PageMovable(page) && !PageUnevictable(page)) { 1554 ClearPageActive(page); 1555 list_move(&page->lru, &clean_pages); 1556 } 1557 } 1558 1559 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1560 TTU_IGNORE_ACCESS, &dummy_stat, true); 1561 list_splice(&clean_pages, page_list); 1562 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1563 return ret; 1564 } 1565 1566 /* 1567 * Attempt to remove the specified page from its LRU. Only take this page 1568 * if it is of the appropriate PageActive status. Pages which are being 1569 * freed elsewhere are also ignored. 1570 * 1571 * page: page to consider 1572 * mode: one of the LRU isolation modes defined above 1573 * 1574 * returns 0 on success, -ve errno on failure. 1575 */ 1576 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1577 { 1578 int ret = -EINVAL; 1579 1580 /* Only take pages on the LRU. */ 1581 if (!PageLRU(page)) 1582 return ret; 1583 1584 /* Compaction should not handle unevictable pages but CMA can do so */ 1585 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1586 return ret; 1587 1588 ret = -EBUSY; 1589 1590 /* 1591 * To minimise LRU disruption, the caller can indicate that it only 1592 * wants to isolate pages it will be able to operate on without 1593 * blocking - clean pages for the most part. 1594 * 1595 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1596 * that it is possible to migrate without blocking 1597 */ 1598 if (mode & ISOLATE_ASYNC_MIGRATE) { 1599 /* All the caller can do on PageWriteback is block */ 1600 if (PageWriteback(page)) 1601 return ret; 1602 1603 if (PageDirty(page)) { 1604 struct address_space *mapping; 1605 bool migrate_dirty; 1606 1607 /* 1608 * Only pages without mappings or that have a 1609 * ->migratepage callback are possible to migrate 1610 * without blocking. However, we can be racing with 1611 * truncation so it's necessary to lock the page 1612 * to stabilise the mapping as truncation holds 1613 * the page lock until after the page is removed 1614 * from the page cache. 1615 */ 1616 if (!trylock_page(page)) 1617 return ret; 1618 1619 mapping = page_mapping(page); 1620 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1621 unlock_page(page); 1622 if (!migrate_dirty) 1623 return ret; 1624 } 1625 } 1626 1627 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1628 return ret; 1629 1630 if (likely(get_page_unless_zero(page))) { 1631 /* 1632 * Be careful not to clear PageLRU until after we're 1633 * sure the page is not being freed elsewhere -- the 1634 * page release code relies on it. 1635 */ 1636 ClearPageLRU(page); 1637 ret = 0; 1638 } 1639 1640 return ret; 1641 } 1642 1643 1644 /* 1645 * Update LRU sizes after isolating pages. The LRU size updates must 1646 * be complete before mem_cgroup_update_lru_size due to a santity check. 1647 */ 1648 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1649 enum lru_list lru, unsigned long *nr_zone_taken) 1650 { 1651 int zid; 1652 1653 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1654 if (!nr_zone_taken[zid]) 1655 continue; 1656 1657 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1658 #ifdef CONFIG_MEMCG 1659 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1660 #endif 1661 } 1662 1663 } 1664 1665 /** 1666 * pgdat->lru_lock is heavily contended. Some of the functions that 1667 * shrink the lists perform better by taking out a batch of pages 1668 * and working on them outside the LRU lock. 1669 * 1670 * For pagecache intensive workloads, this function is the hottest 1671 * spot in the kernel (apart from copy_*_user functions). 1672 * 1673 * Appropriate locks must be held before calling this function. 1674 * 1675 * @nr_to_scan: The number of eligible pages to look through on the list. 1676 * @lruvec: The LRU vector to pull pages from. 1677 * @dst: The temp list to put pages on to. 1678 * @nr_scanned: The number of pages that were scanned. 1679 * @sc: The scan_control struct for this reclaim session 1680 * @mode: One of the LRU isolation modes 1681 * @lru: LRU list id for isolating 1682 * 1683 * returns how many pages were moved onto *@dst. 1684 */ 1685 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1686 struct lruvec *lruvec, struct list_head *dst, 1687 unsigned long *nr_scanned, struct scan_control *sc, 1688 enum lru_list lru) 1689 { 1690 struct list_head *src = &lruvec->lists[lru]; 1691 unsigned long nr_taken = 0; 1692 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1693 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1694 unsigned long skipped = 0; 1695 unsigned long scan, total_scan, nr_pages; 1696 LIST_HEAD(pages_skipped); 1697 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1698 1699 total_scan = 0; 1700 scan = 0; 1701 while (scan < nr_to_scan && !list_empty(src)) { 1702 struct page *page; 1703 1704 page = lru_to_page(src); 1705 prefetchw_prev_lru_page(page, src, flags); 1706 1707 VM_BUG_ON_PAGE(!PageLRU(page), page); 1708 1709 nr_pages = compound_nr(page); 1710 total_scan += nr_pages; 1711 1712 if (page_zonenum(page) > sc->reclaim_idx) { 1713 list_move(&page->lru, &pages_skipped); 1714 nr_skipped[page_zonenum(page)] += nr_pages; 1715 continue; 1716 } 1717 1718 /* 1719 * Do not count skipped pages because that makes the function 1720 * return with no isolated pages if the LRU mostly contains 1721 * ineligible pages. This causes the VM to not reclaim any 1722 * pages, triggering a premature OOM. 1723 * 1724 * Account all tail pages of THP. This would not cause 1725 * premature OOM since __isolate_lru_page() returns -EBUSY 1726 * only when the page is being freed somewhere else. 1727 */ 1728 scan += nr_pages; 1729 switch (__isolate_lru_page(page, mode)) { 1730 case 0: 1731 nr_taken += nr_pages; 1732 nr_zone_taken[page_zonenum(page)] += nr_pages; 1733 list_move(&page->lru, dst); 1734 break; 1735 1736 case -EBUSY: 1737 /* else it is being freed elsewhere */ 1738 list_move(&page->lru, src); 1739 continue; 1740 1741 default: 1742 BUG(); 1743 } 1744 } 1745 1746 /* 1747 * Splice any skipped pages to the start of the LRU list. Note that 1748 * this disrupts the LRU order when reclaiming for lower zones but 1749 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1750 * scanning would soon rescan the same pages to skip and put the 1751 * system at risk of premature OOM. 1752 */ 1753 if (!list_empty(&pages_skipped)) { 1754 int zid; 1755 1756 list_splice(&pages_skipped, src); 1757 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1758 if (!nr_skipped[zid]) 1759 continue; 1760 1761 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1762 skipped += nr_skipped[zid]; 1763 } 1764 } 1765 *nr_scanned = total_scan; 1766 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1767 total_scan, skipped, nr_taken, mode, lru); 1768 update_lru_sizes(lruvec, lru, nr_zone_taken); 1769 return nr_taken; 1770 } 1771 1772 /** 1773 * isolate_lru_page - tries to isolate a page from its LRU list 1774 * @page: page to isolate from its LRU list 1775 * 1776 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1777 * vmstat statistic corresponding to whatever LRU list the page was on. 1778 * 1779 * Returns 0 if the page was removed from an LRU list. 1780 * Returns -EBUSY if the page was not on an LRU list. 1781 * 1782 * The returned page will have PageLRU() cleared. If it was found on 1783 * the active list, it will have PageActive set. If it was found on 1784 * the unevictable list, it will have the PageUnevictable bit set. That flag 1785 * may need to be cleared by the caller before letting the page go. 1786 * 1787 * The vmstat statistic corresponding to the list on which the page was 1788 * found will be decremented. 1789 * 1790 * Restrictions: 1791 * 1792 * (1) Must be called with an elevated refcount on the page. This is a 1793 * fundamentnal difference from isolate_lru_pages (which is called 1794 * without a stable reference). 1795 * (2) the lru_lock must not be held. 1796 * (3) interrupts must be enabled. 1797 */ 1798 int isolate_lru_page(struct page *page) 1799 { 1800 int ret = -EBUSY; 1801 1802 VM_BUG_ON_PAGE(!page_count(page), page); 1803 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1804 1805 if (PageLRU(page)) { 1806 pg_data_t *pgdat = page_pgdat(page); 1807 struct lruvec *lruvec; 1808 1809 spin_lock_irq(&pgdat->lru_lock); 1810 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1811 if (PageLRU(page)) { 1812 int lru = page_lru(page); 1813 get_page(page); 1814 ClearPageLRU(page); 1815 del_page_from_lru_list(page, lruvec, lru); 1816 ret = 0; 1817 } 1818 spin_unlock_irq(&pgdat->lru_lock); 1819 } 1820 return ret; 1821 } 1822 1823 /* 1824 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1825 * then get resheduled. When there are massive number of tasks doing page 1826 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1827 * the LRU list will go small and be scanned faster than necessary, leading to 1828 * unnecessary swapping, thrashing and OOM. 1829 */ 1830 static int too_many_isolated(struct pglist_data *pgdat, int file, 1831 struct scan_control *sc) 1832 { 1833 unsigned long inactive, isolated; 1834 1835 if (current_is_kswapd()) 1836 return 0; 1837 1838 if (!sane_reclaim(sc)) 1839 return 0; 1840 1841 if (file) { 1842 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1843 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1844 } else { 1845 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1846 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1847 } 1848 1849 /* 1850 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1851 * won't get blocked by normal direct-reclaimers, forming a circular 1852 * deadlock. 1853 */ 1854 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1855 inactive >>= 3; 1856 1857 return isolated > inactive; 1858 } 1859 1860 /* 1861 * This moves pages from @list to corresponding LRU list. 1862 * 1863 * We move them the other way if the page is referenced by one or more 1864 * processes, from rmap. 1865 * 1866 * If the pages are mostly unmapped, the processing is fast and it is 1867 * appropriate to hold zone_lru_lock across the whole operation. But if 1868 * the pages are mapped, the processing is slow (page_referenced()) so we 1869 * should drop zone_lru_lock around each page. It's impossible to balance 1870 * this, so instead we remove the pages from the LRU while processing them. 1871 * It is safe to rely on PG_active against the non-LRU pages in here because 1872 * nobody will play with that bit on a non-LRU page. 1873 * 1874 * The downside is that we have to touch page->_refcount against each page. 1875 * But we had to alter page->flags anyway. 1876 * 1877 * Returns the number of pages moved to the given lruvec. 1878 */ 1879 1880 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, 1881 struct list_head *list) 1882 { 1883 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1884 int nr_pages, nr_moved = 0; 1885 LIST_HEAD(pages_to_free); 1886 struct page *page; 1887 enum lru_list lru; 1888 1889 while (!list_empty(list)) { 1890 page = lru_to_page(list); 1891 VM_BUG_ON_PAGE(PageLRU(page), page); 1892 if (unlikely(!page_evictable(page))) { 1893 list_del(&page->lru); 1894 spin_unlock_irq(&pgdat->lru_lock); 1895 putback_lru_page(page); 1896 spin_lock_irq(&pgdat->lru_lock); 1897 continue; 1898 } 1899 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1900 1901 SetPageLRU(page); 1902 lru = page_lru(page); 1903 1904 nr_pages = hpage_nr_pages(page); 1905 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1906 list_move(&page->lru, &lruvec->lists[lru]); 1907 1908 if (put_page_testzero(page)) { 1909 __ClearPageLRU(page); 1910 __ClearPageActive(page); 1911 del_page_from_lru_list(page, lruvec, lru); 1912 1913 if (unlikely(PageCompound(page))) { 1914 spin_unlock_irq(&pgdat->lru_lock); 1915 (*get_compound_page_dtor(page))(page); 1916 spin_lock_irq(&pgdat->lru_lock); 1917 } else 1918 list_add(&page->lru, &pages_to_free); 1919 } else { 1920 nr_moved += nr_pages; 1921 } 1922 } 1923 1924 /* 1925 * To save our caller's stack, now use input list for pages to free. 1926 */ 1927 list_splice(&pages_to_free, list); 1928 1929 return nr_moved; 1930 } 1931 1932 /* 1933 * If a kernel thread (such as nfsd for loop-back mounts) services 1934 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1935 * In that case we should only throttle if the backing device it is 1936 * writing to is congested. In other cases it is safe to throttle. 1937 */ 1938 static int current_may_throttle(void) 1939 { 1940 return !(current->flags & PF_LESS_THROTTLE) || 1941 current->backing_dev_info == NULL || 1942 bdi_write_congested(current->backing_dev_info); 1943 } 1944 1945 /* 1946 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1947 * of reclaimed pages 1948 */ 1949 static noinline_for_stack unsigned long 1950 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1951 struct scan_control *sc, enum lru_list lru) 1952 { 1953 LIST_HEAD(page_list); 1954 unsigned long nr_scanned; 1955 unsigned long nr_reclaimed = 0; 1956 unsigned long nr_taken; 1957 struct reclaim_stat stat; 1958 int file = is_file_lru(lru); 1959 enum vm_event_item item; 1960 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1961 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1962 bool stalled = false; 1963 1964 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1965 if (stalled) 1966 return 0; 1967 1968 /* wait a bit for the reclaimer. */ 1969 msleep(100); 1970 stalled = true; 1971 1972 /* We are about to die and free our memory. Return now. */ 1973 if (fatal_signal_pending(current)) 1974 return SWAP_CLUSTER_MAX; 1975 } 1976 1977 lru_add_drain(); 1978 1979 spin_lock_irq(&pgdat->lru_lock); 1980 1981 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1982 &nr_scanned, sc, lru); 1983 1984 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1985 reclaim_stat->recent_scanned[file] += nr_taken; 1986 1987 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 1988 if (global_reclaim(sc)) 1989 __count_vm_events(item, nr_scanned); 1990 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1991 spin_unlock_irq(&pgdat->lru_lock); 1992 1993 if (nr_taken == 0) 1994 return 0; 1995 1996 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1997 &stat, false); 1998 1999 spin_lock_irq(&pgdat->lru_lock); 2000 2001 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 2002 if (global_reclaim(sc)) 2003 __count_vm_events(item, nr_reclaimed); 2004 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2005 reclaim_stat->recent_rotated[0] += stat.nr_activate[0]; 2006 reclaim_stat->recent_rotated[1] += stat.nr_activate[1]; 2007 2008 move_pages_to_lru(lruvec, &page_list); 2009 2010 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2011 2012 spin_unlock_irq(&pgdat->lru_lock); 2013 2014 mem_cgroup_uncharge_list(&page_list); 2015 free_unref_page_list(&page_list); 2016 2017 /* 2018 * If dirty pages are scanned that are not queued for IO, it 2019 * implies that flushers are not doing their job. This can 2020 * happen when memory pressure pushes dirty pages to the end of 2021 * the LRU before the dirty limits are breached and the dirty 2022 * data has expired. It can also happen when the proportion of 2023 * dirty pages grows not through writes but through memory 2024 * pressure reclaiming all the clean cache. And in some cases, 2025 * the flushers simply cannot keep up with the allocation 2026 * rate. Nudge the flusher threads in case they are asleep. 2027 */ 2028 if (stat.nr_unqueued_dirty == nr_taken) 2029 wakeup_flusher_threads(WB_REASON_VMSCAN); 2030 2031 sc->nr.dirty += stat.nr_dirty; 2032 sc->nr.congested += stat.nr_congested; 2033 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2034 sc->nr.writeback += stat.nr_writeback; 2035 sc->nr.immediate += stat.nr_immediate; 2036 sc->nr.taken += nr_taken; 2037 if (file) 2038 sc->nr.file_taken += nr_taken; 2039 2040 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2041 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2042 return nr_reclaimed; 2043 } 2044 2045 static void shrink_active_list(unsigned long nr_to_scan, 2046 struct lruvec *lruvec, 2047 struct scan_control *sc, 2048 enum lru_list lru) 2049 { 2050 unsigned long nr_taken; 2051 unsigned long nr_scanned; 2052 unsigned long vm_flags; 2053 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2054 LIST_HEAD(l_active); 2055 LIST_HEAD(l_inactive); 2056 struct page *page; 2057 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2058 unsigned nr_deactivate, nr_activate; 2059 unsigned nr_rotated = 0; 2060 int file = is_file_lru(lru); 2061 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2062 2063 lru_add_drain(); 2064 2065 spin_lock_irq(&pgdat->lru_lock); 2066 2067 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2068 &nr_scanned, sc, lru); 2069 2070 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2071 reclaim_stat->recent_scanned[file] += nr_taken; 2072 2073 __count_vm_events(PGREFILL, nr_scanned); 2074 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2075 2076 spin_unlock_irq(&pgdat->lru_lock); 2077 2078 while (!list_empty(&l_hold)) { 2079 cond_resched(); 2080 page = lru_to_page(&l_hold); 2081 list_del(&page->lru); 2082 2083 if (unlikely(!page_evictable(page))) { 2084 putback_lru_page(page); 2085 continue; 2086 } 2087 2088 if (unlikely(buffer_heads_over_limit)) { 2089 if (page_has_private(page) && trylock_page(page)) { 2090 if (page_has_private(page)) 2091 try_to_release_page(page, 0); 2092 unlock_page(page); 2093 } 2094 } 2095 2096 if (page_referenced(page, 0, sc->target_mem_cgroup, 2097 &vm_flags)) { 2098 nr_rotated += hpage_nr_pages(page); 2099 /* 2100 * Identify referenced, file-backed active pages and 2101 * give them one more trip around the active list. So 2102 * that executable code get better chances to stay in 2103 * memory under moderate memory pressure. Anon pages 2104 * are not likely to be evicted by use-once streaming 2105 * IO, plus JVM can create lots of anon VM_EXEC pages, 2106 * so we ignore them here. 2107 */ 2108 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 2109 list_add(&page->lru, &l_active); 2110 continue; 2111 } 2112 } 2113 2114 ClearPageActive(page); /* we are de-activating */ 2115 SetPageWorkingset(page); 2116 list_add(&page->lru, &l_inactive); 2117 } 2118 2119 /* 2120 * Move pages back to the lru list. 2121 */ 2122 spin_lock_irq(&pgdat->lru_lock); 2123 /* 2124 * Count referenced pages from currently used mappings as rotated, 2125 * even though only some of them are actually re-activated. This 2126 * helps balance scan pressure between file and anonymous pages in 2127 * get_scan_count. 2128 */ 2129 reclaim_stat->recent_rotated[file] += nr_rotated; 2130 2131 nr_activate = move_pages_to_lru(lruvec, &l_active); 2132 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2133 /* Keep all free pages in l_active list */ 2134 list_splice(&l_inactive, &l_active); 2135 2136 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2137 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2138 2139 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2140 spin_unlock_irq(&pgdat->lru_lock); 2141 2142 mem_cgroup_uncharge_list(&l_active); 2143 free_unref_page_list(&l_active); 2144 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2145 nr_deactivate, nr_rotated, sc->priority, file); 2146 } 2147 2148 unsigned long reclaim_pages(struct list_head *page_list) 2149 { 2150 int nid = -1; 2151 unsigned long nr_reclaimed = 0; 2152 LIST_HEAD(node_page_list); 2153 struct reclaim_stat dummy_stat; 2154 struct page *page; 2155 struct scan_control sc = { 2156 .gfp_mask = GFP_KERNEL, 2157 .priority = DEF_PRIORITY, 2158 .may_writepage = 1, 2159 .may_unmap = 1, 2160 .may_swap = 1, 2161 }; 2162 2163 while (!list_empty(page_list)) { 2164 page = lru_to_page(page_list); 2165 if (nid == -1) { 2166 nid = page_to_nid(page); 2167 INIT_LIST_HEAD(&node_page_list); 2168 } 2169 2170 if (nid == page_to_nid(page)) { 2171 ClearPageActive(page); 2172 list_move(&page->lru, &node_page_list); 2173 continue; 2174 } 2175 2176 nr_reclaimed += shrink_page_list(&node_page_list, 2177 NODE_DATA(nid), 2178 &sc, 0, 2179 &dummy_stat, false); 2180 while (!list_empty(&node_page_list)) { 2181 page = lru_to_page(&node_page_list); 2182 list_del(&page->lru); 2183 putback_lru_page(page); 2184 } 2185 2186 nid = -1; 2187 } 2188 2189 if (!list_empty(&node_page_list)) { 2190 nr_reclaimed += shrink_page_list(&node_page_list, 2191 NODE_DATA(nid), 2192 &sc, 0, 2193 &dummy_stat, false); 2194 while (!list_empty(&node_page_list)) { 2195 page = lru_to_page(&node_page_list); 2196 list_del(&page->lru); 2197 putback_lru_page(page); 2198 } 2199 } 2200 2201 return nr_reclaimed; 2202 } 2203 2204 /* 2205 * The inactive anon list should be small enough that the VM never has 2206 * to do too much work. 2207 * 2208 * The inactive file list should be small enough to leave most memory 2209 * to the established workingset on the scan-resistant active list, 2210 * but large enough to avoid thrashing the aggregate readahead window. 2211 * 2212 * Both inactive lists should also be large enough that each inactive 2213 * page has a chance to be referenced again before it is reclaimed. 2214 * 2215 * If that fails and refaulting is observed, the inactive list grows. 2216 * 2217 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2218 * on this LRU, maintained by the pageout code. An inactive_ratio 2219 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2220 * 2221 * total target max 2222 * memory ratio inactive 2223 * ------------------------------------- 2224 * 10MB 1 5MB 2225 * 100MB 1 50MB 2226 * 1GB 3 250MB 2227 * 10GB 10 0.9GB 2228 * 100GB 31 3GB 2229 * 1TB 101 10GB 2230 * 10TB 320 32GB 2231 */ 2232 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2233 struct scan_control *sc, bool trace) 2234 { 2235 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2236 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2237 enum lru_list inactive_lru = file * LRU_FILE; 2238 unsigned long inactive, active; 2239 unsigned long inactive_ratio; 2240 unsigned long refaults; 2241 unsigned long gb; 2242 2243 /* 2244 * If we don't have swap space, anonymous page deactivation 2245 * is pointless. 2246 */ 2247 if (!file && !total_swap_pages) 2248 return false; 2249 2250 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2251 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2252 2253 /* 2254 * When refaults are being observed, it means a new workingset 2255 * is being established. Disable active list protection to get 2256 * rid of the stale workingset quickly. 2257 */ 2258 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE); 2259 if (file && lruvec->refaults != refaults) { 2260 inactive_ratio = 0; 2261 } else { 2262 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2263 if (gb) 2264 inactive_ratio = int_sqrt(10 * gb); 2265 else 2266 inactive_ratio = 1; 2267 } 2268 2269 if (trace) 2270 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, 2271 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2272 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2273 inactive_ratio, file); 2274 2275 return inactive * inactive_ratio < active; 2276 } 2277 2278 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2279 struct lruvec *lruvec, struct scan_control *sc) 2280 { 2281 if (is_active_lru(lru)) { 2282 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true)) 2283 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2284 return 0; 2285 } 2286 2287 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2288 } 2289 2290 enum scan_balance { 2291 SCAN_EQUAL, 2292 SCAN_FRACT, 2293 SCAN_ANON, 2294 SCAN_FILE, 2295 }; 2296 2297 /* 2298 * Determine how aggressively the anon and file LRU lists should be 2299 * scanned. The relative value of each set of LRU lists is determined 2300 * by looking at the fraction of the pages scanned we did rotate back 2301 * onto the active list instead of evict. 2302 * 2303 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2304 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2305 */ 2306 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2307 struct scan_control *sc, unsigned long *nr, 2308 unsigned long *lru_pages) 2309 { 2310 int swappiness = mem_cgroup_swappiness(memcg); 2311 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2312 u64 fraction[2]; 2313 u64 denominator = 0; /* gcc */ 2314 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2315 unsigned long anon_prio, file_prio; 2316 enum scan_balance scan_balance; 2317 unsigned long anon, file; 2318 unsigned long ap, fp; 2319 enum lru_list lru; 2320 2321 /* If we have no swap space, do not bother scanning anon pages. */ 2322 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2323 scan_balance = SCAN_FILE; 2324 goto out; 2325 } 2326 2327 /* 2328 * Global reclaim will swap to prevent OOM even with no 2329 * swappiness, but memcg users want to use this knob to 2330 * disable swapping for individual groups completely when 2331 * using the memory controller's swap limit feature would be 2332 * too expensive. 2333 */ 2334 if (!global_reclaim(sc) && !swappiness) { 2335 scan_balance = SCAN_FILE; 2336 goto out; 2337 } 2338 2339 /* 2340 * Do not apply any pressure balancing cleverness when the 2341 * system is close to OOM, scan both anon and file equally 2342 * (unless the swappiness setting disagrees with swapping). 2343 */ 2344 if (!sc->priority && swappiness) { 2345 scan_balance = SCAN_EQUAL; 2346 goto out; 2347 } 2348 2349 /* 2350 * Prevent the reclaimer from falling into the cache trap: as 2351 * cache pages start out inactive, every cache fault will tip 2352 * the scan balance towards the file LRU. And as the file LRU 2353 * shrinks, so does the window for rotation from references. 2354 * This means we have a runaway feedback loop where a tiny 2355 * thrashing file LRU becomes infinitely more attractive than 2356 * anon pages. Try to detect this based on file LRU size. 2357 */ 2358 if (global_reclaim(sc)) { 2359 unsigned long pgdatfile; 2360 unsigned long pgdatfree; 2361 int z; 2362 unsigned long total_high_wmark = 0; 2363 2364 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2365 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2366 node_page_state(pgdat, NR_INACTIVE_FILE); 2367 2368 for (z = 0; z < MAX_NR_ZONES; z++) { 2369 struct zone *zone = &pgdat->node_zones[z]; 2370 if (!managed_zone(zone)) 2371 continue; 2372 2373 total_high_wmark += high_wmark_pages(zone); 2374 } 2375 2376 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2377 /* 2378 * Force SCAN_ANON if there are enough inactive 2379 * anonymous pages on the LRU in eligible zones. 2380 * Otherwise, the small LRU gets thrashed. 2381 */ 2382 if (!inactive_list_is_low(lruvec, false, sc, false) && 2383 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) 2384 >> sc->priority) { 2385 scan_balance = SCAN_ANON; 2386 goto out; 2387 } 2388 } 2389 } 2390 2391 /* 2392 * If there is enough inactive page cache, i.e. if the size of the 2393 * inactive list is greater than that of the active list *and* the 2394 * inactive list actually has some pages to scan on this priority, we 2395 * do not reclaim anything from the anonymous working set right now. 2396 * Without the second condition we could end up never scanning an 2397 * lruvec even if it has plenty of old anonymous pages unless the 2398 * system is under heavy pressure. 2399 */ 2400 if (!inactive_list_is_low(lruvec, true, sc, false) && 2401 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2402 scan_balance = SCAN_FILE; 2403 goto out; 2404 } 2405 2406 scan_balance = SCAN_FRACT; 2407 2408 /* 2409 * With swappiness at 100, anonymous and file have the same priority. 2410 * This scanning priority is essentially the inverse of IO cost. 2411 */ 2412 anon_prio = swappiness; 2413 file_prio = 200 - anon_prio; 2414 2415 /* 2416 * OK, so we have swap space and a fair amount of page cache 2417 * pages. We use the recently rotated / recently scanned 2418 * ratios to determine how valuable each cache is. 2419 * 2420 * Because workloads change over time (and to avoid overflow) 2421 * we keep these statistics as a floating average, which ends 2422 * up weighing recent references more than old ones. 2423 * 2424 * anon in [0], file in [1] 2425 */ 2426 2427 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2428 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2429 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2430 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2431 2432 spin_lock_irq(&pgdat->lru_lock); 2433 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2434 reclaim_stat->recent_scanned[0] /= 2; 2435 reclaim_stat->recent_rotated[0] /= 2; 2436 } 2437 2438 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2439 reclaim_stat->recent_scanned[1] /= 2; 2440 reclaim_stat->recent_rotated[1] /= 2; 2441 } 2442 2443 /* 2444 * The amount of pressure on anon vs file pages is inversely 2445 * proportional to the fraction of recently scanned pages on 2446 * each list that were recently referenced and in active use. 2447 */ 2448 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2449 ap /= reclaim_stat->recent_rotated[0] + 1; 2450 2451 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2452 fp /= reclaim_stat->recent_rotated[1] + 1; 2453 spin_unlock_irq(&pgdat->lru_lock); 2454 2455 fraction[0] = ap; 2456 fraction[1] = fp; 2457 denominator = ap + fp + 1; 2458 out: 2459 *lru_pages = 0; 2460 for_each_evictable_lru(lru) { 2461 int file = is_file_lru(lru); 2462 unsigned long lruvec_size; 2463 unsigned long scan; 2464 unsigned long protection; 2465 2466 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2467 protection = mem_cgroup_protection(memcg, 2468 sc->memcg_low_reclaim); 2469 2470 if (protection) { 2471 /* 2472 * Scale a cgroup's reclaim pressure by proportioning 2473 * its current usage to its memory.low or memory.min 2474 * setting. 2475 * 2476 * This is important, as otherwise scanning aggression 2477 * becomes extremely binary -- from nothing as we 2478 * approach the memory protection threshold, to totally 2479 * nominal as we exceed it. This results in requiring 2480 * setting extremely liberal protection thresholds. It 2481 * also means we simply get no protection at all if we 2482 * set it too low, which is not ideal. 2483 * 2484 * If there is any protection in place, we reduce scan 2485 * pressure by how much of the total memory used is 2486 * within protection thresholds. 2487 * 2488 * There is one special case: in the first reclaim pass, 2489 * we skip over all groups that are within their low 2490 * protection. If that fails to reclaim enough pages to 2491 * satisfy the reclaim goal, we come back and override 2492 * the best-effort low protection. However, we still 2493 * ideally want to honor how well-behaved groups are in 2494 * that case instead of simply punishing them all 2495 * equally. As such, we reclaim them based on how much 2496 * memory they are using, reducing the scan pressure 2497 * again by how much of the total memory used is under 2498 * hard protection. 2499 */ 2500 unsigned long cgroup_size = mem_cgroup_size(memcg); 2501 2502 /* Avoid TOCTOU with earlier protection check */ 2503 cgroup_size = max(cgroup_size, protection); 2504 2505 scan = lruvec_size - lruvec_size * protection / 2506 cgroup_size; 2507 2508 /* 2509 * Minimally target SWAP_CLUSTER_MAX pages to keep 2510 * reclaim moving forwards, avoiding decremeting 2511 * sc->priority further than desirable. 2512 */ 2513 scan = max(scan, SWAP_CLUSTER_MAX); 2514 } else { 2515 scan = lruvec_size; 2516 } 2517 2518 scan >>= sc->priority; 2519 2520 /* 2521 * If the cgroup's already been deleted, make sure to 2522 * scrape out the remaining cache. 2523 */ 2524 if (!scan && !mem_cgroup_online(memcg)) 2525 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2526 2527 switch (scan_balance) { 2528 case SCAN_EQUAL: 2529 /* Scan lists relative to size */ 2530 break; 2531 case SCAN_FRACT: 2532 /* 2533 * Scan types proportional to swappiness and 2534 * their relative recent reclaim efficiency. 2535 * Make sure we don't miss the last page 2536 * because of a round-off error. 2537 */ 2538 scan = DIV64_U64_ROUND_UP(scan * fraction[file], 2539 denominator); 2540 break; 2541 case SCAN_FILE: 2542 case SCAN_ANON: 2543 /* Scan one type exclusively */ 2544 if ((scan_balance == SCAN_FILE) != file) { 2545 lruvec_size = 0; 2546 scan = 0; 2547 } 2548 break; 2549 default: 2550 /* Look ma, no brain */ 2551 BUG(); 2552 } 2553 2554 *lru_pages += lruvec_size; 2555 nr[lru] = scan; 2556 } 2557 } 2558 2559 /* 2560 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2561 */ 2562 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2563 struct scan_control *sc, unsigned long *lru_pages) 2564 { 2565 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2566 unsigned long nr[NR_LRU_LISTS]; 2567 unsigned long targets[NR_LRU_LISTS]; 2568 unsigned long nr_to_scan; 2569 enum lru_list lru; 2570 unsigned long nr_reclaimed = 0; 2571 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2572 struct blk_plug plug; 2573 bool scan_adjusted; 2574 2575 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2576 2577 /* Record the original scan target for proportional adjustments later */ 2578 memcpy(targets, nr, sizeof(nr)); 2579 2580 /* 2581 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2582 * event that can occur when there is little memory pressure e.g. 2583 * multiple streaming readers/writers. Hence, we do not abort scanning 2584 * when the requested number of pages are reclaimed when scanning at 2585 * DEF_PRIORITY on the assumption that the fact we are direct 2586 * reclaiming implies that kswapd is not keeping up and it is best to 2587 * do a batch of work at once. For memcg reclaim one check is made to 2588 * abort proportional reclaim if either the file or anon lru has already 2589 * dropped to zero at the first pass. 2590 */ 2591 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2592 sc->priority == DEF_PRIORITY); 2593 2594 blk_start_plug(&plug); 2595 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2596 nr[LRU_INACTIVE_FILE]) { 2597 unsigned long nr_anon, nr_file, percentage; 2598 unsigned long nr_scanned; 2599 2600 for_each_evictable_lru(lru) { 2601 if (nr[lru]) { 2602 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2603 nr[lru] -= nr_to_scan; 2604 2605 nr_reclaimed += shrink_list(lru, nr_to_scan, 2606 lruvec, sc); 2607 } 2608 } 2609 2610 cond_resched(); 2611 2612 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2613 continue; 2614 2615 /* 2616 * For kswapd and memcg, reclaim at least the number of pages 2617 * requested. Ensure that the anon and file LRUs are scanned 2618 * proportionally what was requested by get_scan_count(). We 2619 * stop reclaiming one LRU and reduce the amount scanning 2620 * proportional to the original scan target. 2621 */ 2622 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2623 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2624 2625 /* 2626 * It's just vindictive to attack the larger once the smaller 2627 * has gone to zero. And given the way we stop scanning the 2628 * smaller below, this makes sure that we only make one nudge 2629 * towards proportionality once we've got nr_to_reclaim. 2630 */ 2631 if (!nr_file || !nr_anon) 2632 break; 2633 2634 if (nr_file > nr_anon) { 2635 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2636 targets[LRU_ACTIVE_ANON] + 1; 2637 lru = LRU_BASE; 2638 percentage = nr_anon * 100 / scan_target; 2639 } else { 2640 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2641 targets[LRU_ACTIVE_FILE] + 1; 2642 lru = LRU_FILE; 2643 percentage = nr_file * 100 / scan_target; 2644 } 2645 2646 /* Stop scanning the smaller of the LRU */ 2647 nr[lru] = 0; 2648 nr[lru + LRU_ACTIVE] = 0; 2649 2650 /* 2651 * Recalculate the other LRU scan count based on its original 2652 * scan target and the percentage scanning already complete 2653 */ 2654 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2655 nr_scanned = targets[lru] - nr[lru]; 2656 nr[lru] = targets[lru] * (100 - percentage) / 100; 2657 nr[lru] -= min(nr[lru], nr_scanned); 2658 2659 lru += LRU_ACTIVE; 2660 nr_scanned = targets[lru] - nr[lru]; 2661 nr[lru] = targets[lru] * (100 - percentage) / 100; 2662 nr[lru] -= min(nr[lru], nr_scanned); 2663 2664 scan_adjusted = true; 2665 } 2666 blk_finish_plug(&plug); 2667 sc->nr_reclaimed += nr_reclaimed; 2668 2669 /* 2670 * Even if we did not try to evict anon pages at all, we want to 2671 * rebalance the anon lru active/inactive ratio. 2672 */ 2673 if (inactive_list_is_low(lruvec, false, sc, true)) 2674 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2675 sc, LRU_ACTIVE_ANON); 2676 } 2677 2678 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2679 static bool in_reclaim_compaction(struct scan_control *sc) 2680 { 2681 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2682 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2683 sc->priority < DEF_PRIORITY - 2)) 2684 return true; 2685 2686 return false; 2687 } 2688 2689 /* 2690 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2691 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2692 * true if more pages should be reclaimed such that when the page allocator 2693 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2694 * It will give up earlier than that if there is difficulty reclaiming pages. 2695 */ 2696 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2697 unsigned long nr_reclaimed, 2698 struct scan_control *sc) 2699 { 2700 unsigned long pages_for_compaction; 2701 unsigned long inactive_lru_pages; 2702 int z; 2703 2704 /* If not in reclaim/compaction mode, stop */ 2705 if (!in_reclaim_compaction(sc)) 2706 return false; 2707 2708 /* 2709 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 2710 * number of pages that were scanned. This will return to the caller 2711 * with the risk reclaim/compaction and the resulting allocation attempt 2712 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 2713 * allocations through requiring that the full LRU list has been scanned 2714 * first, by assuming that zero delta of sc->nr_scanned means full LRU 2715 * scan, but that approximation was wrong, and there were corner cases 2716 * where always a non-zero amount of pages were scanned. 2717 */ 2718 if (!nr_reclaimed) 2719 return false; 2720 2721 /* If compaction would go ahead or the allocation would succeed, stop */ 2722 for (z = 0; z <= sc->reclaim_idx; z++) { 2723 struct zone *zone = &pgdat->node_zones[z]; 2724 if (!managed_zone(zone)) 2725 continue; 2726 2727 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2728 case COMPACT_SUCCESS: 2729 case COMPACT_CONTINUE: 2730 return false; 2731 default: 2732 /* check next zone */ 2733 ; 2734 } 2735 } 2736 2737 /* 2738 * If we have not reclaimed enough pages for compaction and the 2739 * inactive lists are large enough, continue reclaiming 2740 */ 2741 pages_for_compaction = compact_gap(sc->order); 2742 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2743 if (get_nr_swap_pages() > 0) 2744 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2745 2746 return inactive_lru_pages > pages_for_compaction; 2747 } 2748 2749 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg) 2750 { 2751 return test_bit(PGDAT_CONGESTED, &pgdat->flags) || 2752 (memcg && memcg_congested(pgdat, memcg)); 2753 } 2754 2755 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2756 { 2757 struct reclaim_state *reclaim_state = current->reclaim_state; 2758 unsigned long nr_reclaimed, nr_scanned; 2759 bool reclaimable = false; 2760 2761 do { 2762 struct mem_cgroup *root = sc->target_mem_cgroup; 2763 unsigned long node_lru_pages = 0; 2764 struct mem_cgroup *memcg; 2765 2766 memset(&sc->nr, 0, sizeof(sc->nr)); 2767 2768 nr_reclaimed = sc->nr_reclaimed; 2769 nr_scanned = sc->nr_scanned; 2770 2771 memcg = mem_cgroup_iter(root, NULL, NULL); 2772 do { 2773 unsigned long lru_pages; 2774 unsigned long reclaimed; 2775 unsigned long scanned; 2776 2777 switch (mem_cgroup_protected(root, memcg)) { 2778 case MEMCG_PROT_MIN: 2779 /* 2780 * Hard protection. 2781 * If there is no reclaimable memory, OOM. 2782 */ 2783 continue; 2784 case MEMCG_PROT_LOW: 2785 /* 2786 * Soft protection. 2787 * Respect the protection only as long as 2788 * there is an unprotected supply 2789 * of reclaimable memory from other cgroups. 2790 */ 2791 if (!sc->memcg_low_reclaim) { 2792 sc->memcg_low_skipped = 1; 2793 continue; 2794 } 2795 memcg_memory_event(memcg, MEMCG_LOW); 2796 break; 2797 case MEMCG_PROT_NONE: 2798 /* 2799 * All protection thresholds breached. We may 2800 * still choose to vary the scan pressure 2801 * applied based on by how much the cgroup in 2802 * question has exceeded its protection 2803 * thresholds (see get_scan_count). 2804 */ 2805 break; 2806 } 2807 2808 reclaimed = sc->nr_reclaimed; 2809 scanned = sc->nr_scanned; 2810 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2811 node_lru_pages += lru_pages; 2812 2813 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 2814 sc->priority); 2815 2816 /* Record the group's reclaim efficiency */ 2817 vmpressure(sc->gfp_mask, memcg, false, 2818 sc->nr_scanned - scanned, 2819 sc->nr_reclaimed - reclaimed); 2820 2821 } while ((memcg = mem_cgroup_iter(root, memcg, NULL))); 2822 2823 if (reclaim_state) { 2824 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2825 reclaim_state->reclaimed_slab = 0; 2826 } 2827 2828 /* Record the subtree's reclaim efficiency */ 2829 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2830 sc->nr_scanned - nr_scanned, 2831 sc->nr_reclaimed - nr_reclaimed); 2832 2833 if (sc->nr_reclaimed - nr_reclaimed) 2834 reclaimable = true; 2835 2836 if (current_is_kswapd()) { 2837 /* 2838 * If reclaim is isolating dirty pages under writeback, 2839 * it implies that the long-lived page allocation rate 2840 * is exceeding the page laundering rate. Either the 2841 * global limits are not being effective at throttling 2842 * processes due to the page distribution throughout 2843 * zones or there is heavy usage of a slow backing 2844 * device. The only option is to throttle from reclaim 2845 * context which is not ideal as there is no guarantee 2846 * the dirtying process is throttled in the same way 2847 * balance_dirty_pages() manages. 2848 * 2849 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2850 * count the number of pages under pages flagged for 2851 * immediate reclaim and stall if any are encountered 2852 * in the nr_immediate check below. 2853 */ 2854 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2855 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2856 2857 /* 2858 * Tag a node as congested if all the dirty pages 2859 * scanned were backed by a congested BDI and 2860 * wait_iff_congested will stall. 2861 */ 2862 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2863 set_bit(PGDAT_CONGESTED, &pgdat->flags); 2864 2865 /* Allow kswapd to start writing pages during reclaim.*/ 2866 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2867 set_bit(PGDAT_DIRTY, &pgdat->flags); 2868 2869 /* 2870 * If kswapd scans pages marked marked for immediate 2871 * reclaim and under writeback (nr_immediate), it 2872 * implies that pages are cycling through the LRU 2873 * faster than they are written so also forcibly stall. 2874 */ 2875 if (sc->nr.immediate) 2876 congestion_wait(BLK_RW_ASYNC, HZ/10); 2877 } 2878 2879 /* 2880 * Legacy memcg will stall in page writeback so avoid forcibly 2881 * stalling in wait_iff_congested(). 2882 */ 2883 if (!global_reclaim(sc) && sane_reclaim(sc) && 2884 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2885 set_memcg_congestion(pgdat, root, true); 2886 2887 /* 2888 * Stall direct reclaim for IO completions if underlying BDIs 2889 * and node is congested. Allow kswapd to continue until it 2890 * starts encountering unqueued dirty pages or cycling through 2891 * the LRU too quickly. 2892 */ 2893 if (!sc->hibernation_mode && !current_is_kswapd() && 2894 current_may_throttle() && pgdat_memcg_congested(pgdat, root)) 2895 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2896 2897 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2898 sc)); 2899 2900 /* 2901 * Kswapd gives up on balancing particular nodes after too 2902 * many failures to reclaim anything from them and goes to 2903 * sleep. On reclaim progress, reset the failure counter. A 2904 * successful direct reclaim run will revive a dormant kswapd. 2905 */ 2906 if (reclaimable) 2907 pgdat->kswapd_failures = 0; 2908 2909 return reclaimable; 2910 } 2911 2912 /* 2913 * Returns true if compaction should go ahead for a costly-order request, or 2914 * the allocation would already succeed without compaction. Return false if we 2915 * should reclaim first. 2916 */ 2917 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2918 { 2919 unsigned long watermark; 2920 enum compact_result suitable; 2921 2922 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2923 if (suitable == COMPACT_SUCCESS) 2924 /* Allocation should succeed already. Don't reclaim. */ 2925 return true; 2926 if (suitable == COMPACT_SKIPPED) 2927 /* Compaction cannot yet proceed. Do reclaim. */ 2928 return false; 2929 2930 /* 2931 * Compaction is already possible, but it takes time to run and there 2932 * are potentially other callers using the pages just freed. So proceed 2933 * with reclaim to make a buffer of free pages available to give 2934 * compaction a reasonable chance of completing and allocating the page. 2935 * Note that we won't actually reclaim the whole buffer in one attempt 2936 * as the target watermark in should_continue_reclaim() is lower. But if 2937 * we are already above the high+gap watermark, don't reclaim at all. 2938 */ 2939 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2940 2941 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2942 } 2943 2944 /* 2945 * This is the direct reclaim path, for page-allocating processes. We only 2946 * try to reclaim pages from zones which will satisfy the caller's allocation 2947 * request. 2948 * 2949 * If a zone is deemed to be full of pinned pages then just give it a light 2950 * scan then give up on it. 2951 */ 2952 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2953 { 2954 struct zoneref *z; 2955 struct zone *zone; 2956 unsigned long nr_soft_reclaimed; 2957 unsigned long nr_soft_scanned; 2958 gfp_t orig_mask; 2959 pg_data_t *last_pgdat = NULL; 2960 2961 /* 2962 * If the number of buffer_heads in the machine exceeds the maximum 2963 * allowed level, force direct reclaim to scan the highmem zone as 2964 * highmem pages could be pinning lowmem pages storing buffer_heads 2965 */ 2966 orig_mask = sc->gfp_mask; 2967 if (buffer_heads_over_limit) { 2968 sc->gfp_mask |= __GFP_HIGHMEM; 2969 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2970 } 2971 2972 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2973 sc->reclaim_idx, sc->nodemask) { 2974 /* 2975 * Take care memory controller reclaiming has small influence 2976 * to global LRU. 2977 */ 2978 if (global_reclaim(sc)) { 2979 if (!cpuset_zone_allowed(zone, 2980 GFP_KERNEL | __GFP_HARDWALL)) 2981 continue; 2982 2983 /* 2984 * If we already have plenty of memory free for 2985 * compaction in this zone, don't free any more. 2986 * Even though compaction is invoked for any 2987 * non-zero order, only frequent costly order 2988 * reclamation is disruptive enough to become a 2989 * noticeable problem, like transparent huge 2990 * page allocations. 2991 */ 2992 if (IS_ENABLED(CONFIG_COMPACTION) && 2993 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2994 compaction_ready(zone, sc)) { 2995 sc->compaction_ready = true; 2996 continue; 2997 } 2998 2999 /* 3000 * Shrink each node in the zonelist once. If the 3001 * zonelist is ordered by zone (not the default) then a 3002 * node may be shrunk multiple times but in that case 3003 * the user prefers lower zones being preserved. 3004 */ 3005 if (zone->zone_pgdat == last_pgdat) 3006 continue; 3007 3008 /* 3009 * This steals pages from memory cgroups over softlimit 3010 * and returns the number of reclaimed pages and 3011 * scanned pages. This works for global memory pressure 3012 * and balancing, not for a memcg's limit. 3013 */ 3014 nr_soft_scanned = 0; 3015 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 3016 sc->order, sc->gfp_mask, 3017 &nr_soft_scanned); 3018 sc->nr_reclaimed += nr_soft_reclaimed; 3019 sc->nr_scanned += nr_soft_scanned; 3020 /* need some check for avoid more shrink_zone() */ 3021 } 3022 3023 /* See comment about same check for global reclaim above */ 3024 if (zone->zone_pgdat == last_pgdat) 3025 continue; 3026 last_pgdat = zone->zone_pgdat; 3027 shrink_node(zone->zone_pgdat, sc); 3028 } 3029 3030 /* 3031 * Restore to original mask to avoid the impact on the caller if we 3032 * promoted it to __GFP_HIGHMEM. 3033 */ 3034 sc->gfp_mask = orig_mask; 3035 } 3036 3037 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) 3038 { 3039 struct mem_cgroup *memcg; 3040 3041 memcg = mem_cgroup_iter(root_memcg, NULL, NULL); 3042 do { 3043 unsigned long refaults; 3044 struct lruvec *lruvec; 3045 3046 lruvec = mem_cgroup_lruvec(pgdat, memcg); 3047 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE); 3048 lruvec->refaults = refaults; 3049 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); 3050 } 3051 3052 /* 3053 * This is the main entry point to direct page reclaim. 3054 * 3055 * If a full scan of the inactive list fails to free enough memory then we 3056 * are "out of memory" and something needs to be killed. 3057 * 3058 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3059 * high - the zone may be full of dirty or under-writeback pages, which this 3060 * caller can't do much about. We kick the writeback threads and take explicit 3061 * naps in the hope that some of these pages can be written. But if the 3062 * allocating task holds filesystem locks which prevent writeout this might not 3063 * work, and the allocation attempt will fail. 3064 * 3065 * returns: 0, if no pages reclaimed 3066 * else, the number of pages reclaimed 3067 */ 3068 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3069 struct scan_control *sc) 3070 { 3071 int initial_priority = sc->priority; 3072 pg_data_t *last_pgdat; 3073 struct zoneref *z; 3074 struct zone *zone; 3075 retry: 3076 delayacct_freepages_start(); 3077 3078 if (global_reclaim(sc)) 3079 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3080 3081 do { 3082 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3083 sc->priority); 3084 sc->nr_scanned = 0; 3085 shrink_zones(zonelist, sc); 3086 3087 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3088 break; 3089 3090 if (sc->compaction_ready) 3091 break; 3092 3093 /* 3094 * If we're getting trouble reclaiming, start doing 3095 * writepage even in laptop mode. 3096 */ 3097 if (sc->priority < DEF_PRIORITY - 2) 3098 sc->may_writepage = 1; 3099 } while (--sc->priority >= 0); 3100 3101 last_pgdat = NULL; 3102 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3103 sc->nodemask) { 3104 if (zone->zone_pgdat == last_pgdat) 3105 continue; 3106 last_pgdat = zone->zone_pgdat; 3107 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3108 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false); 3109 } 3110 3111 delayacct_freepages_end(); 3112 3113 if (sc->nr_reclaimed) 3114 return sc->nr_reclaimed; 3115 3116 /* Aborted reclaim to try compaction? don't OOM, then */ 3117 if (sc->compaction_ready) 3118 return 1; 3119 3120 /* Untapped cgroup reserves? Don't OOM, retry. */ 3121 if (sc->memcg_low_skipped) { 3122 sc->priority = initial_priority; 3123 sc->memcg_low_reclaim = 1; 3124 sc->memcg_low_skipped = 0; 3125 goto retry; 3126 } 3127 3128 return 0; 3129 } 3130 3131 static bool allow_direct_reclaim(pg_data_t *pgdat) 3132 { 3133 struct zone *zone; 3134 unsigned long pfmemalloc_reserve = 0; 3135 unsigned long free_pages = 0; 3136 int i; 3137 bool wmark_ok; 3138 3139 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3140 return true; 3141 3142 for (i = 0; i <= ZONE_NORMAL; i++) { 3143 zone = &pgdat->node_zones[i]; 3144 if (!managed_zone(zone)) 3145 continue; 3146 3147 if (!zone_reclaimable_pages(zone)) 3148 continue; 3149 3150 pfmemalloc_reserve += min_wmark_pages(zone); 3151 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3152 } 3153 3154 /* If there are no reserves (unexpected config) then do not throttle */ 3155 if (!pfmemalloc_reserve) 3156 return true; 3157 3158 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3159 3160 /* kswapd must be awake if processes are being throttled */ 3161 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3162 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 3163 (enum zone_type)ZONE_NORMAL); 3164 wake_up_interruptible(&pgdat->kswapd_wait); 3165 } 3166 3167 return wmark_ok; 3168 } 3169 3170 /* 3171 * Throttle direct reclaimers if backing storage is backed by the network 3172 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3173 * depleted. kswapd will continue to make progress and wake the processes 3174 * when the low watermark is reached. 3175 * 3176 * Returns true if a fatal signal was delivered during throttling. If this 3177 * happens, the page allocator should not consider triggering the OOM killer. 3178 */ 3179 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3180 nodemask_t *nodemask) 3181 { 3182 struct zoneref *z; 3183 struct zone *zone; 3184 pg_data_t *pgdat = NULL; 3185 3186 /* 3187 * Kernel threads should not be throttled as they may be indirectly 3188 * responsible for cleaning pages necessary for reclaim to make forward 3189 * progress. kjournald for example may enter direct reclaim while 3190 * committing a transaction where throttling it could forcing other 3191 * processes to block on log_wait_commit(). 3192 */ 3193 if (current->flags & PF_KTHREAD) 3194 goto out; 3195 3196 /* 3197 * If a fatal signal is pending, this process should not throttle. 3198 * It should return quickly so it can exit and free its memory 3199 */ 3200 if (fatal_signal_pending(current)) 3201 goto out; 3202 3203 /* 3204 * Check if the pfmemalloc reserves are ok by finding the first node 3205 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3206 * GFP_KERNEL will be required for allocating network buffers when 3207 * swapping over the network so ZONE_HIGHMEM is unusable. 3208 * 3209 * Throttling is based on the first usable node and throttled processes 3210 * wait on a queue until kswapd makes progress and wakes them. There 3211 * is an affinity then between processes waking up and where reclaim 3212 * progress has been made assuming the process wakes on the same node. 3213 * More importantly, processes running on remote nodes will not compete 3214 * for remote pfmemalloc reserves and processes on different nodes 3215 * should make reasonable progress. 3216 */ 3217 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3218 gfp_zone(gfp_mask), nodemask) { 3219 if (zone_idx(zone) > ZONE_NORMAL) 3220 continue; 3221 3222 /* Throttle based on the first usable node */ 3223 pgdat = zone->zone_pgdat; 3224 if (allow_direct_reclaim(pgdat)) 3225 goto out; 3226 break; 3227 } 3228 3229 /* If no zone was usable by the allocation flags then do not throttle */ 3230 if (!pgdat) 3231 goto out; 3232 3233 /* Account for the throttling */ 3234 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3235 3236 /* 3237 * If the caller cannot enter the filesystem, it's possible that it 3238 * is due to the caller holding an FS lock or performing a journal 3239 * transaction in the case of a filesystem like ext[3|4]. In this case, 3240 * it is not safe to block on pfmemalloc_wait as kswapd could be 3241 * blocked waiting on the same lock. Instead, throttle for up to a 3242 * second before continuing. 3243 */ 3244 if (!(gfp_mask & __GFP_FS)) { 3245 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3246 allow_direct_reclaim(pgdat), HZ); 3247 3248 goto check_pending; 3249 } 3250 3251 /* Throttle until kswapd wakes the process */ 3252 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3253 allow_direct_reclaim(pgdat)); 3254 3255 check_pending: 3256 if (fatal_signal_pending(current)) 3257 return true; 3258 3259 out: 3260 return false; 3261 } 3262 3263 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3264 gfp_t gfp_mask, nodemask_t *nodemask) 3265 { 3266 unsigned long nr_reclaimed; 3267 struct scan_control sc = { 3268 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3269 .gfp_mask = current_gfp_context(gfp_mask), 3270 .reclaim_idx = gfp_zone(gfp_mask), 3271 .order = order, 3272 .nodemask = nodemask, 3273 .priority = DEF_PRIORITY, 3274 .may_writepage = !laptop_mode, 3275 .may_unmap = 1, 3276 .may_swap = 1, 3277 }; 3278 3279 /* 3280 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3281 * Confirm they are large enough for max values. 3282 */ 3283 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3284 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3285 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3286 3287 /* 3288 * Do not enter reclaim if fatal signal was delivered while throttled. 3289 * 1 is returned so that the page allocator does not OOM kill at this 3290 * point. 3291 */ 3292 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3293 return 1; 3294 3295 set_task_reclaim_state(current, &sc.reclaim_state); 3296 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3297 3298 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3299 3300 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3301 set_task_reclaim_state(current, NULL); 3302 3303 return nr_reclaimed; 3304 } 3305 3306 #ifdef CONFIG_MEMCG 3307 3308 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3309 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3310 gfp_t gfp_mask, bool noswap, 3311 pg_data_t *pgdat, 3312 unsigned long *nr_scanned) 3313 { 3314 struct scan_control sc = { 3315 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3316 .target_mem_cgroup = memcg, 3317 .may_writepage = !laptop_mode, 3318 .may_unmap = 1, 3319 .reclaim_idx = MAX_NR_ZONES - 1, 3320 .may_swap = !noswap, 3321 }; 3322 unsigned long lru_pages; 3323 3324 WARN_ON_ONCE(!current->reclaim_state); 3325 3326 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3327 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3328 3329 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3330 sc.gfp_mask); 3331 3332 /* 3333 * NOTE: Although we can get the priority field, using it 3334 * here is not a good idea, since it limits the pages we can scan. 3335 * if we don't reclaim here, the shrink_node from balance_pgdat 3336 * will pick up pages from other mem cgroup's as well. We hack 3337 * the priority and make it zero. 3338 */ 3339 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3340 3341 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3342 3343 *nr_scanned = sc.nr_scanned; 3344 3345 return sc.nr_reclaimed; 3346 } 3347 3348 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3349 unsigned long nr_pages, 3350 gfp_t gfp_mask, 3351 bool may_swap) 3352 { 3353 struct zonelist *zonelist; 3354 unsigned long nr_reclaimed; 3355 unsigned long pflags; 3356 int nid; 3357 unsigned int noreclaim_flag; 3358 struct scan_control sc = { 3359 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3360 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3361 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3362 .reclaim_idx = MAX_NR_ZONES - 1, 3363 .target_mem_cgroup = memcg, 3364 .priority = DEF_PRIORITY, 3365 .may_writepage = !laptop_mode, 3366 .may_unmap = 1, 3367 .may_swap = may_swap, 3368 }; 3369 3370 set_task_reclaim_state(current, &sc.reclaim_state); 3371 /* 3372 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3373 * take care of from where we get pages. So the node where we start the 3374 * scan does not need to be the current node. 3375 */ 3376 nid = mem_cgroup_select_victim_node(memcg); 3377 3378 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3379 3380 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3381 3382 psi_memstall_enter(&pflags); 3383 noreclaim_flag = memalloc_noreclaim_save(); 3384 3385 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3386 3387 memalloc_noreclaim_restore(noreclaim_flag); 3388 psi_memstall_leave(&pflags); 3389 3390 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3391 set_task_reclaim_state(current, NULL); 3392 3393 return nr_reclaimed; 3394 } 3395 #endif 3396 3397 static void age_active_anon(struct pglist_data *pgdat, 3398 struct scan_control *sc) 3399 { 3400 struct mem_cgroup *memcg; 3401 3402 if (!total_swap_pages) 3403 return; 3404 3405 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3406 do { 3407 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3408 3409 if (inactive_list_is_low(lruvec, false, sc, true)) 3410 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3411 sc, LRU_ACTIVE_ANON); 3412 3413 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3414 } while (memcg); 3415 } 3416 3417 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx) 3418 { 3419 int i; 3420 struct zone *zone; 3421 3422 /* 3423 * Check for watermark boosts top-down as the higher zones 3424 * are more likely to be boosted. Both watermarks and boosts 3425 * should not be checked at the time time as reclaim would 3426 * start prematurely when there is no boosting and a lower 3427 * zone is balanced. 3428 */ 3429 for (i = classzone_idx; i >= 0; i--) { 3430 zone = pgdat->node_zones + i; 3431 if (!managed_zone(zone)) 3432 continue; 3433 3434 if (zone->watermark_boost) 3435 return true; 3436 } 3437 3438 return false; 3439 } 3440 3441 /* 3442 * Returns true if there is an eligible zone balanced for the request order 3443 * and classzone_idx 3444 */ 3445 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3446 { 3447 int i; 3448 unsigned long mark = -1; 3449 struct zone *zone; 3450 3451 /* 3452 * Check watermarks bottom-up as lower zones are more likely to 3453 * meet watermarks. 3454 */ 3455 for (i = 0; i <= classzone_idx; i++) { 3456 zone = pgdat->node_zones + i; 3457 3458 if (!managed_zone(zone)) 3459 continue; 3460 3461 mark = high_wmark_pages(zone); 3462 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3463 return true; 3464 } 3465 3466 /* 3467 * If a node has no populated zone within classzone_idx, it does not 3468 * need balancing by definition. This can happen if a zone-restricted 3469 * allocation tries to wake a remote kswapd. 3470 */ 3471 if (mark == -1) 3472 return true; 3473 3474 return false; 3475 } 3476 3477 /* Clear pgdat state for congested, dirty or under writeback. */ 3478 static void clear_pgdat_congested(pg_data_t *pgdat) 3479 { 3480 clear_bit(PGDAT_CONGESTED, &pgdat->flags); 3481 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3482 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3483 } 3484 3485 /* 3486 * Prepare kswapd for sleeping. This verifies that there are no processes 3487 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3488 * 3489 * Returns true if kswapd is ready to sleep 3490 */ 3491 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3492 { 3493 /* 3494 * The throttled processes are normally woken up in balance_pgdat() as 3495 * soon as allow_direct_reclaim() is true. But there is a potential 3496 * race between when kswapd checks the watermarks and a process gets 3497 * throttled. There is also a potential race if processes get 3498 * throttled, kswapd wakes, a large process exits thereby balancing the 3499 * zones, which causes kswapd to exit balance_pgdat() before reaching 3500 * the wake up checks. If kswapd is going to sleep, no process should 3501 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3502 * the wake up is premature, processes will wake kswapd and get 3503 * throttled again. The difference from wake ups in balance_pgdat() is 3504 * that here we are under prepare_to_wait(). 3505 */ 3506 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3507 wake_up_all(&pgdat->pfmemalloc_wait); 3508 3509 /* Hopeless node, leave it to direct reclaim */ 3510 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3511 return true; 3512 3513 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3514 clear_pgdat_congested(pgdat); 3515 return true; 3516 } 3517 3518 return false; 3519 } 3520 3521 /* 3522 * kswapd shrinks a node of pages that are at or below the highest usable 3523 * zone that is currently unbalanced. 3524 * 3525 * Returns true if kswapd scanned at least the requested number of pages to 3526 * reclaim or if the lack of progress was due to pages under writeback. 3527 * This is used to determine if the scanning priority needs to be raised. 3528 */ 3529 static bool kswapd_shrink_node(pg_data_t *pgdat, 3530 struct scan_control *sc) 3531 { 3532 struct zone *zone; 3533 int z; 3534 3535 /* Reclaim a number of pages proportional to the number of zones */ 3536 sc->nr_to_reclaim = 0; 3537 for (z = 0; z <= sc->reclaim_idx; z++) { 3538 zone = pgdat->node_zones + z; 3539 if (!managed_zone(zone)) 3540 continue; 3541 3542 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3543 } 3544 3545 /* 3546 * Historically care was taken to put equal pressure on all zones but 3547 * now pressure is applied based on node LRU order. 3548 */ 3549 shrink_node(pgdat, sc); 3550 3551 /* 3552 * Fragmentation may mean that the system cannot be rebalanced for 3553 * high-order allocations. If twice the allocation size has been 3554 * reclaimed then recheck watermarks only at order-0 to prevent 3555 * excessive reclaim. Assume that a process requested a high-order 3556 * can direct reclaim/compact. 3557 */ 3558 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3559 sc->order = 0; 3560 3561 return sc->nr_scanned >= sc->nr_to_reclaim; 3562 } 3563 3564 /* 3565 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3566 * that are eligible for use by the caller until at least one zone is 3567 * balanced. 3568 * 3569 * Returns the order kswapd finished reclaiming at. 3570 * 3571 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3572 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3573 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3574 * or lower is eligible for reclaim until at least one usable zone is 3575 * balanced. 3576 */ 3577 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3578 { 3579 int i; 3580 unsigned long nr_soft_reclaimed; 3581 unsigned long nr_soft_scanned; 3582 unsigned long pflags; 3583 unsigned long nr_boost_reclaim; 3584 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3585 bool boosted; 3586 struct zone *zone; 3587 struct scan_control sc = { 3588 .gfp_mask = GFP_KERNEL, 3589 .order = order, 3590 .may_unmap = 1, 3591 }; 3592 3593 set_task_reclaim_state(current, &sc.reclaim_state); 3594 psi_memstall_enter(&pflags); 3595 __fs_reclaim_acquire(); 3596 3597 count_vm_event(PAGEOUTRUN); 3598 3599 /* 3600 * Account for the reclaim boost. Note that the zone boost is left in 3601 * place so that parallel allocations that are near the watermark will 3602 * stall or direct reclaim until kswapd is finished. 3603 */ 3604 nr_boost_reclaim = 0; 3605 for (i = 0; i <= classzone_idx; i++) { 3606 zone = pgdat->node_zones + i; 3607 if (!managed_zone(zone)) 3608 continue; 3609 3610 nr_boost_reclaim += zone->watermark_boost; 3611 zone_boosts[i] = zone->watermark_boost; 3612 } 3613 boosted = nr_boost_reclaim; 3614 3615 restart: 3616 sc.priority = DEF_PRIORITY; 3617 do { 3618 unsigned long nr_reclaimed = sc.nr_reclaimed; 3619 bool raise_priority = true; 3620 bool balanced; 3621 bool ret; 3622 3623 sc.reclaim_idx = classzone_idx; 3624 3625 /* 3626 * If the number of buffer_heads exceeds the maximum allowed 3627 * then consider reclaiming from all zones. This has a dual 3628 * purpose -- on 64-bit systems it is expected that 3629 * buffer_heads are stripped during active rotation. On 32-bit 3630 * systems, highmem pages can pin lowmem memory and shrinking 3631 * buffers can relieve lowmem pressure. Reclaim may still not 3632 * go ahead if all eligible zones for the original allocation 3633 * request are balanced to avoid excessive reclaim from kswapd. 3634 */ 3635 if (buffer_heads_over_limit) { 3636 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3637 zone = pgdat->node_zones + i; 3638 if (!managed_zone(zone)) 3639 continue; 3640 3641 sc.reclaim_idx = i; 3642 break; 3643 } 3644 } 3645 3646 /* 3647 * If the pgdat is imbalanced then ignore boosting and preserve 3648 * the watermarks for a later time and restart. Note that the 3649 * zone watermarks will be still reset at the end of balancing 3650 * on the grounds that the normal reclaim should be enough to 3651 * re-evaluate if boosting is required when kswapd next wakes. 3652 */ 3653 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx); 3654 if (!balanced && nr_boost_reclaim) { 3655 nr_boost_reclaim = 0; 3656 goto restart; 3657 } 3658 3659 /* 3660 * If boosting is not active then only reclaim if there are no 3661 * eligible zones. Note that sc.reclaim_idx is not used as 3662 * buffer_heads_over_limit may have adjusted it. 3663 */ 3664 if (!nr_boost_reclaim && balanced) 3665 goto out; 3666 3667 /* Limit the priority of boosting to avoid reclaim writeback */ 3668 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3669 raise_priority = false; 3670 3671 /* 3672 * Do not writeback or swap pages for boosted reclaim. The 3673 * intent is to relieve pressure not issue sub-optimal IO 3674 * from reclaim context. If no pages are reclaimed, the 3675 * reclaim will be aborted. 3676 */ 3677 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3678 sc.may_swap = !nr_boost_reclaim; 3679 3680 /* 3681 * Do some background aging of the anon list, to give 3682 * pages a chance to be referenced before reclaiming. All 3683 * pages are rotated regardless of classzone as this is 3684 * about consistent aging. 3685 */ 3686 age_active_anon(pgdat, &sc); 3687 3688 /* 3689 * If we're getting trouble reclaiming, start doing writepage 3690 * even in laptop mode. 3691 */ 3692 if (sc.priority < DEF_PRIORITY - 2) 3693 sc.may_writepage = 1; 3694 3695 /* Call soft limit reclaim before calling shrink_node. */ 3696 sc.nr_scanned = 0; 3697 nr_soft_scanned = 0; 3698 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3699 sc.gfp_mask, &nr_soft_scanned); 3700 sc.nr_reclaimed += nr_soft_reclaimed; 3701 3702 /* 3703 * There should be no need to raise the scanning priority if 3704 * enough pages are already being scanned that that high 3705 * watermark would be met at 100% efficiency. 3706 */ 3707 if (kswapd_shrink_node(pgdat, &sc)) 3708 raise_priority = false; 3709 3710 /* 3711 * If the low watermark is met there is no need for processes 3712 * to be throttled on pfmemalloc_wait as they should not be 3713 * able to safely make forward progress. Wake them 3714 */ 3715 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3716 allow_direct_reclaim(pgdat)) 3717 wake_up_all(&pgdat->pfmemalloc_wait); 3718 3719 /* Check if kswapd should be suspending */ 3720 __fs_reclaim_release(); 3721 ret = try_to_freeze(); 3722 __fs_reclaim_acquire(); 3723 if (ret || kthread_should_stop()) 3724 break; 3725 3726 /* 3727 * Raise priority if scanning rate is too low or there was no 3728 * progress in reclaiming pages 3729 */ 3730 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3731 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3732 3733 /* 3734 * If reclaim made no progress for a boost, stop reclaim as 3735 * IO cannot be queued and it could be an infinite loop in 3736 * extreme circumstances. 3737 */ 3738 if (nr_boost_reclaim && !nr_reclaimed) 3739 break; 3740 3741 if (raise_priority || !nr_reclaimed) 3742 sc.priority--; 3743 } while (sc.priority >= 1); 3744 3745 if (!sc.nr_reclaimed) 3746 pgdat->kswapd_failures++; 3747 3748 out: 3749 /* If reclaim was boosted, account for the reclaim done in this pass */ 3750 if (boosted) { 3751 unsigned long flags; 3752 3753 for (i = 0; i <= classzone_idx; i++) { 3754 if (!zone_boosts[i]) 3755 continue; 3756 3757 /* Increments are under the zone lock */ 3758 zone = pgdat->node_zones + i; 3759 spin_lock_irqsave(&zone->lock, flags); 3760 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3761 spin_unlock_irqrestore(&zone->lock, flags); 3762 } 3763 3764 /* 3765 * As there is now likely space, wakeup kcompact to defragment 3766 * pageblocks. 3767 */ 3768 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx); 3769 } 3770 3771 snapshot_refaults(NULL, pgdat); 3772 __fs_reclaim_release(); 3773 psi_memstall_leave(&pflags); 3774 set_task_reclaim_state(current, NULL); 3775 3776 /* 3777 * Return the order kswapd stopped reclaiming at as 3778 * prepare_kswapd_sleep() takes it into account. If another caller 3779 * entered the allocator slow path while kswapd was awake, order will 3780 * remain at the higher level. 3781 */ 3782 return sc.order; 3783 } 3784 3785 /* 3786 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be 3787 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not 3788 * a valid index then either kswapd runs for first time or kswapd couldn't sleep 3789 * after previous reclaim attempt (node is still unbalanced). In that case 3790 * return the zone index of the previous kswapd reclaim cycle. 3791 */ 3792 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3793 enum zone_type prev_classzone_idx) 3794 { 3795 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3796 return prev_classzone_idx; 3797 return pgdat->kswapd_classzone_idx; 3798 } 3799 3800 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3801 unsigned int classzone_idx) 3802 { 3803 long remaining = 0; 3804 DEFINE_WAIT(wait); 3805 3806 if (freezing(current) || kthread_should_stop()) 3807 return; 3808 3809 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3810 3811 /* 3812 * Try to sleep for a short interval. Note that kcompactd will only be 3813 * woken if it is possible to sleep for a short interval. This is 3814 * deliberate on the assumption that if reclaim cannot keep an 3815 * eligible zone balanced that it's also unlikely that compaction will 3816 * succeed. 3817 */ 3818 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3819 /* 3820 * Compaction records what page blocks it recently failed to 3821 * isolate pages from and skips them in the future scanning. 3822 * When kswapd is going to sleep, it is reasonable to assume 3823 * that pages and compaction may succeed so reset the cache. 3824 */ 3825 reset_isolation_suitable(pgdat); 3826 3827 /* 3828 * We have freed the memory, now we should compact it to make 3829 * allocation of the requested order possible. 3830 */ 3831 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3832 3833 remaining = schedule_timeout(HZ/10); 3834 3835 /* 3836 * If woken prematurely then reset kswapd_classzone_idx and 3837 * order. The values will either be from a wakeup request or 3838 * the previous request that slept prematurely. 3839 */ 3840 if (remaining) { 3841 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3842 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3843 } 3844 3845 finish_wait(&pgdat->kswapd_wait, &wait); 3846 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3847 } 3848 3849 /* 3850 * After a short sleep, check if it was a premature sleep. If not, then 3851 * go fully to sleep until explicitly woken up. 3852 */ 3853 if (!remaining && 3854 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3855 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3856 3857 /* 3858 * vmstat counters are not perfectly accurate and the estimated 3859 * value for counters such as NR_FREE_PAGES can deviate from the 3860 * true value by nr_online_cpus * threshold. To avoid the zone 3861 * watermarks being breached while under pressure, we reduce the 3862 * per-cpu vmstat threshold while kswapd is awake and restore 3863 * them before going back to sleep. 3864 */ 3865 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3866 3867 if (!kthread_should_stop()) 3868 schedule(); 3869 3870 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3871 } else { 3872 if (remaining) 3873 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3874 else 3875 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3876 } 3877 finish_wait(&pgdat->kswapd_wait, &wait); 3878 } 3879 3880 /* 3881 * The background pageout daemon, started as a kernel thread 3882 * from the init process. 3883 * 3884 * This basically trickles out pages so that we have _some_ 3885 * free memory available even if there is no other activity 3886 * that frees anything up. This is needed for things like routing 3887 * etc, where we otherwise might have all activity going on in 3888 * asynchronous contexts that cannot page things out. 3889 * 3890 * If there are applications that are active memory-allocators 3891 * (most normal use), this basically shouldn't matter. 3892 */ 3893 static int kswapd(void *p) 3894 { 3895 unsigned int alloc_order, reclaim_order; 3896 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3897 pg_data_t *pgdat = (pg_data_t*)p; 3898 struct task_struct *tsk = current; 3899 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3900 3901 if (!cpumask_empty(cpumask)) 3902 set_cpus_allowed_ptr(tsk, cpumask); 3903 3904 /* 3905 * Tell the memory management that we're a "memory allocator", 3906 * and that if we need more memory we should get access to it 3907 * regardless (see "__alloc_pages()"). "kswapd" should 3908 * never get caught in the normal page freeing logic. 3909 * 3910 * (Kswapd normally doesn't need memory anyway, but sometimes 3911 * you need a small amount of memory in order to be able to 3912 * page out something else, and this flag essentially protects 3913 * us from recursively trying to free more memory as we're 3914 * trying to free the first piece of memory in the first place). 3915 */ 3916 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3917 set_freezable(); 3918 3919 pgdat->kswapd_order = 0; 3920 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3921 for ( ; ; ) { 3922 bool ret; 3923 3924 alloc_order = reclaim_order = pgdat->kswapd_order; 3925 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3926 3927 kswapd_try_sleep: 3928 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3929 classzone_idx); 3930 3931 /* Read the new order and classzone_idx */ 3932 alloc_order = reclaim_order = pgdat->kswapd_order; 3933 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3934 pgdat->kswapd_order = 0; 3935 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3936 3937 ret = try_to_freeze(); 3938 if (kthread_should_stop()) 3939 break; 3940 3941 /* 3942 * We can speed up thawing tasks if we don't call balance_pgdat 3943 * after returning from the refrigerator 3944 */ 3945 if (ret) 3946 continue; 3947 3948 /* 3949 * Reclaim begins at the requested order but if a high-order 3950 * reclaim fails then kswapd falls back to reclaiming for 3951 * order-0. If that happens, kswapd will consider sleeping 3952 * for the order it finished reclaiming at (reclaim_order) 3953 * but kcompactd is woken to compact for the original 3954 * request (alloc_order). 3955 */ 3956 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3957 alloc_order); 3958 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3959 if (reclaim_order < alloc_order) 3960 goto kswapd_try_sleep; 3961 } 3962 3963 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3964 3965 return 0; 3966 } 3967 3968 /* 3969 * A zone is low on free memory or too fragmented for high-order memory. If 3970 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3971 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3972 * has failed or is not needed, still wake up kcompactd if only compaction is 3973 * needed. 3974 */ 3975 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3976 enum zone_type classzone_idx) 3977 { 3978 pg_data_t *pgdat; 3979 3980 if (!managed_zone(zone)) 3981 return; 3982 3983 if (!cpuset_zone_allowed(zone, gfp_flags)) 3984 return; 3985 pgdat = zone->zone_pgdat; 3986 3987 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3988 pgdat->kswapd_classzone_idx = classzone_idx; 3989 else 3990 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, 3991 classzone_idx); 3992 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3993 if (!waitqueue_active(&pgdat->kswapd_wait)) 3994 return; 3995 3996 /* Hopeless node, leave it to direct reclaim if possible */ 3997 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3998 (pgdat_balanced(pgdat, order, classzone_idx) && 3999 !pgdat_watermark_boosted(pgdat, classzone_idx))) { 4000 /* 4001 * There may be plenty of free memory available, but it's too 4002 * fragmented for high-order allocations. Wake up kcompactd 4003 * and rely on compaction_suitable() to determine if it's 4004 * needed. If it fails, it will defer subsequent attempts to 4005 * ratelimit its work. 4006 */ 4007 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 4008 wakeup_kcompactd(pgdat, order, classzone_idx); 4009 return; 4010 } 4011 4012 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, 4013 gfp_flags); 4014 wake_up_interruptible(&pgdat->kswapd_wait); 4015 } 4016 4017 #ifdef CONFIG_HIBERNATION 4018 /* 4019 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 4020 * freed pages. 4021 * 4022 * Rather than trying to age LRUs the aim is to preserve the overall 4023 * LRU order by reclaiming preferentially 4024 * inactive > active > active referenced > active mapped 4025 */ 4026 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4027 { 4028 struct scan_control sc = { 4029 .nr_to_reclaim = nr_to_reclaim, 4030 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4031 .reclaim_idx = MAX_NR_ZONES - 1, 4032 .priority = DEF_PRIORITY, 4033 .may_writepage = 1, 4034 .may_unmap = 1, 4035 .may_swap = 1, 4036 .hibernation_mode = 1, 4037 }; 4038 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4039 unsigned long nr_reclaimed; 4040 unsigned int noreclaim_flag; 4041 4042 fs_reclaim_acquire(sc.gfp_mask); 4043 noreclaim_flag = memalloc_noreclaim_save(); 4044 set_task_reclaim_state(current, &sc.reclaim_state); 4045 4046 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4047 4048 set_task_reclaim_state(current, NULL); 4049 memalloc_noreclaim_restore(noreclaim_flag); 4050 fs_reclaim_release(sc.gfp_mask); 4051 4052 return nr_reclaimed; 4053 } 4054 #endif /* CONFIG_HIBERNATION */ 4055 4056 /* It's optimal to keep kswapds on the same CPUs as their memory, but 4057 not required for correctness. So if the last cpu in a node goes 4058 away, we get changed to run anywhere: as the first one comes back, 4059 restore their cpu bindings. */ 4060 static int kswapd_cpu_online(unsigned int cpu) 4061 { 4062 int nid; 4063 4064 for_each_node_state(nid, N_MEMORY) { 4065 pg_data_t *pgdat = NODE_DATA(nid); 4066 const struct cpumask *mask; 4067 4068 mask = cpumask_of_node(pgdat->node_id); 4069 4070 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 4071 /* One of our CPUs online: restore mask */ 4072 set_cpus_allowed_ptr(pgdat->kswapd, mask); 4073 } 4074 return 0; 4075 } 4076 4077 /* 4078 * This kswapd start function will be called by init and node-hot-add. 4079 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4080 */ 4081 int kswapd_run(int nid) 4082 { 4083 pg_data_t *pgdat = NODE_DATA(nid); 4084 int ret = 0; 4085 4086 if (pgdat->kswapd) 4087 return 0; 4088 4089 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4090 if (IS_ERR(pgdat->kswapd)) { 4091 /* failure at boot is fatal */ 4092 BUG_ON(system_state < SYSTEM_RUNNING); 4093 pr_err("Failed to start kswapd on node %d\n", nid); 4094 ret = PTR_ERR(pgdat->kswapd); 4095 pgdat->kswapd = NULL; 4096 } 4097 return ret; 4098 } 4099 4100 /* 4101 * Called by memory hotplug when all memory in a node is offlined. Caller must 4102 * hold mem_hotplug_begin/end(). 4103 */ 4104 void kswapd_stop(int nid) 4105 { 4106 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4107 4108 if (kswapd) { 4109 kthread_stop(kswapd); 4110 NODE_DATA(nid)->kswapd = NULL; 4111 } 4112 } 4113 4114 static int __init kswapd_init(void) 4115 { 4116 int nid, ret; 4117 4118 swap_setup(); 4119 for_each_node_state(nid, N_MEMORY) 4120 kswapd_run(nid); 4121 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 4122 "mm/vmscan:online", kswapd_cpu_online, 4123 NULL); 4124 WARN_ON(ret < 0); 4125 return 0; 4126 } 4127 4128 module_init(kswapd_init) 4129 4130 #ifdef CONFIG_NUMA 4131 /* 4132 * Node reclaim mode 4133 * 4134 * If non-zero call node_reclaim when the number of free pages falls below 4135 * the watermarks. 4136 */ 4137 int node_reclaim_mode __read_mostly; 4138 4139 #define RECLAIM_OFF 0 4140 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 4141 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 4142 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 4143 4144 /* 4145 * Priority for NODE_RECLAIM. This determines the fraction of pages 4146 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4147 * a zone. 4148 */ 4149 #define NODE_RECLAIM_PRIORITY 4 4150 4151 /* 4152 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4153 * occur. 4154 */ 4155 int sysctl_min_unmapped_ratio = 1; 4156 4157 /* 4158 * If the number of slab pages in a zone grows beyond this percentage then 4159 * slab reclaim needs to occur. 4160 */ 4161 int sysctl_min_slab_ratio = 5; 4162 4163 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4164 { 4165 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4166 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4167 node_page_state(pgdat, NR_ACTIVE_FILE); 4168 4169 /* 4170 * It's possible for there to be more file mapped pages than 4171 * accounted for by the pages on the file LRU lists because 4172 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4173 */ 4174 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4175 } 4176 4177 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4178 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4179 { 4180 unsigned long nr_pagecache_reclaimable; 4181 unsigned long delta = 0; 4182 4183 /* 4184 * If RECLAIM_UNMAP is set, then all file pages are considered 4185 * potentially reclaimable. Otherwise, we have to worry about 4186 * pages like swapcache and node_unmapped_file_pages() provides 4187 * a better estimate 4188 */ 4189 if (node_reclaim_mode & RECLAIM_UNMAP) 4190 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4191 else 4192 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4193 4194 /* If we can't clean pages, remove dirty pages from consideration */ 4195 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4196 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4197 4198 /* Watch for any possible underflows due to delta */ 4199 if (unlikely(delta > nr_pagecache_reclaimable)) 4200 delta = nr_pagecache_reclaimable; 4201 4202 return nr_pagecache_reclaimable - delta; 4203 } 4204 4205 /* 4206 * Try to free up some pages from this node through reclaim. 4207 */ 4208 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4209 { 4210 /* Minimum pages needed in order to stay on node */ 4211 const unsigned long nr_pages = 1 << order; 4212 struct task_struct *p = current; 4213 unsigned int noreclaim_flag; 4214 struct scan_control sc = { 4215 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4216 .gfp_mask = current_gfp_context(gfp_mask), 4217 .order = order, 4218 .priority = NODE_RECLAIM_PRIORITY, 4219 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4220 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4221 .may_swap = 1, 4222 .reclaim_idx = gfp_zone(gfp_mask), 4223 }; 4224 4225 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4226 sc.gfp_mask); 4227 4228 cond_resched(); 4229 fs_reclaim_acquire(sc.gfp_mask); 4230 /* 4231 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4232 * and we also need to be able to write out pages for RECLAIM_WRITE 4233 * and RECLAIM_UNMAP. 4234 */ 4235 noreclaim_flag = memalloc_noreclaim_save(); 4236 p->flags |= PF_SWAPWRITE; 4237 set_task_reclaim_state(p, &sc.reclaim_state); 4238 4239 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4240 /* 4241 * Free memory by calling shrink node with increasing 4242 * priorities until we have enough memory freed. 4243 */ 4244 do { 4245 shrink_node(pgdat, &sc); 4246 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4247 } 4248 4249 set_task_reclaim_state(p, NULL); 4250 current->flags &= ~PF_SWAPWRITE; 4251 memalloc_noreclaim_restore(noreclaim_flag); 4252 fs_reclaim_release(sc.gfp_mask); 4253 4254 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4255 4256 return sc.nr_reclaimed >= nr_pages; 4257 } 4258 4259 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4260 { 4261 int ret; 4262 4263 /* 4264 * Node reclaim reclaims unmapped file backed pages and 4265 * slab pages if we are over the defined limits. 4266 * 4267 * A small portion of unmapped file backed pages is needed for 4268 * file I/O otherwise pages read by file I/O will be immediately 4269 * thrown out if the node is overallocated. So we do not reclaim 4270 * if less than a specified percentage of the node is used by 4271 * unmapped file backed pages. 4272 */ 4273 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4274 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 4275 return NODE_RECLAIM_FULL; 4276 4277 /* 4278 * Do not scan if the allocation should not be delayed. 4279 */ 4280 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4281 return NODE_RECLAIM_NOSCAN; 4282 4283 /* 4284 * Only run node reclaim on the local node or on nodes that do not 4285 * have associated processors. This will favor the local processor 4286 * over remote processors and spread off node memory allocations 4287 * as wide as possible. 4288 */ 4289 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4290 return NODE_RECLAIM_NOSCAN; 4291 4292 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4293 return NODE_RECLAIM_NOSCAN; 4294 4295 ret = __node_reclaim(pgdat, gfp_mask, order); 4296 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4297 4298 if (!ret) 4299 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4300 4301 return ret; 4302 } 4303 #endif 4304 4305 /* 4306 * page_evictable - test whether a page is evictable 4307 * @page: the page to test 4308 * 4309 * Test whether page is evictable--i.e., should be placed on active/inactive 4310 * lists vs unevictable list. 4311 * 4312 * Reasons page might not be evictable: 4313 * (1) page's mapping marked unevictable 4314 * (2) page is part of an mlocked VMA 4315 * 4316 */ 4317 int page_evictable(struct page *page) 4318 { 4319 int ret; 4320 4321 /* Prevent address_space of inode and swap cache from being freed */ 4322 rcu_read_lock(); 4323 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 4324 rcu_read_unlock(); 4325 return ret; 4326 } 4327 4328 /** 4329 * check_move_unevictable_pages - check pages for evictability and move to 4330 * appropriate zone lru list 4331 * @pvec: pagevec with lru pages to check 4332 * 4333 * Checks pages for evictability, if an evictable page is in the unevictable 4334 * lru list, moves it to the appropriate evictable lru list. This function 4335 * should be only used for lru pages. 4336 */ 4337 void check_move_unevictable_pages(struct pagevec *pvec) 4338 { 4339 struct lruvec *lruvec; 4340 struct pglist_data *pgdat = NULL; 4341 int pgscanned = 0; 4342 int pgrescued = 0; 4343 int i; 4344 4345 for (i = 0; i < pvec->nr; i++) { 4346 struct page *page = pvec->pages[i]; 4347 struct pglist_data *pagepgdat = page_pgdat(page); 4348 4349 pgscanned++; 4350 if (pagepgdat != pgdat) { 4351 if (pgdat) 4352 spin_unlock_irq(&pgdat->lru_lock); 4353 pgdat = pagepgdat; 4354 spin_lock_irq(&pgdat->lru_lock); 4355 } 4356 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4357 4358 if (!PageLRU(page) || !PageUnevictable(page)) 4359 continue; 4360 4361 if (page_evictable(page)) { 4362 enum lru_list lru = page_lru_base_type(page); 4363 4364 VM_BUG_ON_PAGE(PageActive(page), page); 4365 ClearPageUnevictable(page); 4366 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4367 add_page_to_lru_list(page, lruvec, lru); 4368 pgrescued++; 4369 } 4370 } 4371 4372 if (pgdat) { 4373 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4374 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4375 spin_unlock_irq(&pgdat->lru_lock); 4376 } 4377 } 4378 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4379