xref: /linux/mm/vmscan.c (revision 27258e448eb301cf89e351df87aa8cb916653bf2)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46 
47 #include <linux/swapops.h>
48 
49 #include "internal.h"
50 
51 struct scan_control {
52 	/* Incremented by the number of inactive pages that were scanned */
53 	unsigned long nr_scanned;
54 
55 	/* Number of pages freed so far during a call to shrink_zones() */
56 	unsigned long nr_reclaimed;
57 
58 	/* This context's GFP mask */
59 	gfp_t gfp_mask;
60 
61 	int may_writepage;
62 
63 	/* Can mapped pages be reclaimed? */
64 	int may_unmap;
65 
66 	/* Can pages be swapped as part of reclaim? */
67 	int may_swap;
68 
69 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
70 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
71 	 * In this context, it doesn't matter that we scan the
72 	 * whole list at once. */
73 	int swap_cluster_max;
74 
75 	int swappiness;
76 
77 	int all_unreclaimable;
78 
79 	int order;
80 
81 	/* Which cgroup do we reclaim from */
82 	struct mem_cgroup *mem_cgroup;
83 
84 	/*
85 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
86 	 * are scanned.
87 	 */
88 	nodemask_t	*nodemask;
89 
90 	/* Pluggable isolate pages callback */
91 	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
92 			unsigned long *scanned, int order, int mode,
93 			struct zone *z, struct mem_cgroup *mem_cont,
94 			int active, int file);
95 };
96 
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98 
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field)			\
101 	do {								\
102 		if ((_page)->lru.prev != _base) {			\
103 			struct page *prev;				\
104 									\
105 			prev = lru_to_page(&(_page->lru));		\
106 			prefetch(&prev->_field);			\
107 		}							\
108 	} while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112 
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field)			\
115 	do {								\
116 		if ((_page)->lru.prev != _base) {			\
117 			struct page *prev;				\
118 									\
119 			prev = lru_to_page(&(_page->lru));		\
120 			prefetchw(&prev->_field);			\
121 		}							\
122 	} while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126 
127 /*
128  * From 0 .. 100.  Higher means more swappy.
129  */
130 int vm_swappiness = 60;
131 long vm_total_pages;	/* The total number of pages which the VM controls */
132 
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135 
136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
137 #define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
138 #else
139 #define scanning_global_lru(sc)	(1)
140 #endif
141 
142 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 						  struct scan_control *sc)
144 {
145 	if (!scanning_global_lru(sc))
146 		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147 
148 	return &zone->reclaim_stat;
149 }
150 
151 static unsigned long zone_nr_lru_pages(struct zone *zone,
152 				struct scan_control *sc, enum lru_list lru)
153 {
154 	if (!scanning_global_lru(sc))
155 		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156 
157 	return zone_page_state(zone, NR_LRU_BASE + lru);
158 }
159 
160 
161 /*
162  * Add a shrinker callback to be called from the vm
163  */
164 void register_shrinker(struct shrinker *shrinker)
165 {
166 	shrinker->nr = 0;
167 	down_write(&shrinker_rwsem);
168 	list_add_tail(&shrinker->list, &shrinker_list);
169 	up_write(&shrinker_rwsem);
170 }
171 EXPORT_SYMBOL(register_shrinker);
172 
173 /*
174  * Remove one
175  */
176 void unregister_shrinker(struct shrinker *shrinker)
177 {
178 	down_write(&shrinker_rwsem);
179 	list_del(&shrinker->list);
180 	up_write(&shrinker_rwsem);
181 }
182 EXPORT_SYMBOL(unregister_shrinker);
183 
184 #define SHRINK_BATCH 128
185 /*
186  * Call the shrink functions to age shrinkable caches
187  *
188  * Here we assume it costs one seek to replace a lru page and that it also
189  * takes a seek to recreate a cache object.  With this in mind we age equal
190  * percentages of the lru and ageable caches.  This should balance the seeks
191  * generated by these structures.
192  *
193  * If the vm encountered mapped pages on the LRU it increase the pressure on
194  * slab to avoid swapping.
195  *
196  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197  *
198  * `lru_pages' represents the number of on-LRU pages in all the zones which
199  * are eligible for the caller's allocation attempt.  It is used for balancing
200  * slab reclaim versus page reclaim.
201  *
202  * Returns the number of slab objects which we shrunk.
203  */
204 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 			unsigned long lru_pages)
206 {
207 	struct shrinker *shrinker;
208 	unsigned long ret = 0;
209 
210 	if (scanned == 0)
211 		scanned = SWAP_CLUSTER_MAX;
212 
213 	if (!down_read_trylock(&shrinker_rwsem))
214 		return 1;	/* Assume we'll be able to shrink next time */
215 
216 	list_for_each_entry(shrinker, &shrinker_list, list) {
217 		unsigned long long delta;
218 		unsigned long total_scan;
219 		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
220 
221 		delta = (4 * scanned) / shrinker->seeks;
222 		delta *= max_pass;
223 		do_div(delta, lru_pages + 1);
224 		shrinker->nr += delta;
225 		if (shrinker->nr < 0) {
226 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
227 			       "delete nr=%ld\n",
228 			       shrinker->shrink, shrinker->nr);
229 			shrinker->nr = max_pass;
230 		}
231 
232 		/*
233 		 * Avoid risking looping forever due to too large nr value:
234 		 * never try to free more than twice the estimate number of
235 		 * freeable entries.
236 		 */
237 		if (shrinker->nr > max_pass * 2)
238 			shrinker->nr = max_pass * 2;
239 
240 		total_scan = shrinker->nr;
241 		shrinker->nr = 0;
242 
243 		while (total_scan >= SHRINK_BATCH) {
244 			long this_scan = SHRINK_BATCH;
245 			int shrink_ret;
246 			int nr_before;
247 
248 			nr_before = (*shrinker->shrink)(0, gfp_mask);
249 			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
250 			if (shrink_ret == -1)
251 				break;
252 			if (shrink_ret < nr_before)
253 				ret += nr_before - shrink_ret;
254 			count_vm_events(SLABS_SCANNED, this_scan);
255 			total_scan -= this_scan;
256 
257 			cond_resched();
258 		}
259 
260 		shrinker->nr += total_scan;
261 	}
262 	up_read(&shrinker_rwsem);
263 	return ret;
264 }
265 
266 /* Called without lock on whether page is mapped, so answer is unstable */
267 static inline int page_mapping_inuse(struct page *page)
268 {
269 	struct address_space *mapping;
270 
271 	/* Page is in somebody's page tables. */
272 	if (page_mapped(page))
273 		return 1;
274 
275 	/* Be more reluctant to reclaim swapcache than pagecache */
276 	if (PageSwapCache(page))
277 		return 1;
278 
279 	mapping = page_mapping(page);
280 	if (!mapping)
281 		return 0;
282 
283 	/* File is mmap'd by somebody? */
284 	return mapping_mapped(mapping);
285 }
286 
287 static inline int is_page_cache_freeable(struct page *page)
288 {
289 	/*
290 	 * A freeable page cache page is referenced only by the caller
291 	 * that isolated the page, the page cache radix tree and
292 	 * optional buffer heads at page->private.
293 	 */
294 	return page_count(page) - page_has_private(page) == 2;
295 }
296 
297 static int may_write_to_queue(struct backing_dev_info *bdi)
298 {
299 	if (current->flags & PF_SWAPWRITE)
300 		return 1;
301 	if (!bdi_write_congested(bdi))
302 		return 1;
303 	if (bdi == current->backing_dev_info)
304 		return 1;
305 	return 0;
306 }
307 
308 /*
309  * We detected a synchronous write error writing a page out.  Probably
310  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
311  * fsync(), msync() or close().
312  *
313  * The tricky part is that after writepage we cannot touch the mapping: nothing
314  * prevents it from being freed up.  But we have a ref on the page and once
315  * that page is locked, the mapping is pinned.
316  *
317  * We're allowed to run sleeping lock_page() here because we know the caller has
318  * __GFP_FS.
319  */
320 static void handle_write_error(struct address_space *mapping,
321 				struct page *page, int error)
322 {
323 	lock_page(page);
324 	if (page_mapping(page) == mapping)
325 		mapping_set_error(mapping, error);
326 	unlock_page(page);
327 }
328 
329 /* Request for sync pageout. */
330 enum pageout_io {
331 	PAGEOUT_IO_ASYNC,
332 	PAGEOUT_IO_SYNC,
333 };
334 
335 /* possible outcome of pageout() */
336 typedef enum {
337 	/* failed to write page out, page is locked */
338 	PAGE_KEEP,
339 	/* move page to the active list, page is locked */
340 	PAGE_ACTIVATE,
341 	/* page has been sent to the disk successfully, page is unlocked */
342 	PAGE_SUCCESS,
343 	/* page is clean and locked */
344 	PAGE_CLEAN,
345 } pageout_t;
346 
347 /*
348  * pageout is called by shrink_page_list() for each dirty page.
349  * Calls ->writepage().
350  */
351 static pageout_t pageout(struct page *page, struct address_space *mapping,
352 						enum pageout_io sync_writeback)
353 {
354 	/*
355 	 * If the page is dirty, only perform writeback if that write
356 	 * will be non-blocking.  To prevent this allocation from being
357 	 * stalled by pagecache activity.  But note that there may be
358 	 * stalls if we need to run get_block().  We could test
359 	 * PagePrivate for that.
360 	 *
361 	 * If this process is currently in generic_file_write() against
362 	 * this page's queue, we can perform writeback even if that
363 	 * will block.
364 	 *
365 	 * If the page is swapcache, write it back even if that would
366 	 * block, for some throttling. This happens by accident, because
367 	 * swap_backing_dev_info is bust: it doesn't reflect the
368 	 * congestion state of the swapdevs.  Easy to fix, if needed.
369 	 */
370 	if (!is_page_cache_freeable(page))
371 		return PAGE_KEEP;
372 	if (!mapping) {
373 		/*
374 		 * Some data journaling orphaned pages can have
375 		 * page->mapping == NULL while being dirty with clean buffers.
376 		 */
377 		if (page_has_private(page)) {
378 			if (try_to_free_buffers(page)) {
379 				ClearPageDirty(page);
380 				printk("%s: orphaned page\n", __func__);
381 				return PAGE_CLEAN;
382 			}
383 		}
384 		return PAGE_KEEP;
385 	}
386 	if (mapping->a_ops->writepage == NULL)
387 		return PAGE_ACTIVATE;
388 	if (!may_write_to_queue(mapping->backing_dev_info))
389 		return PAGE_KEEP;
390 
391 	if (clear_page_dirty_for_io(page)) {
392 		int res;
393 		struct writeback_control wbc = {
394 			.sync_mode = WB_SYNC_NONE,
395 			.nr_to_write = SWAP_CLUSTER_MAX,
396 			.range_start = 0,
397 			.range_end = LLONG_MAX,
398 			.nonblocking = 1,
399 			.for_reclaim = 1,
400 		};
401 
402 		SetPageReclaim(page);
403 		res = mapping->a_ops->writepage(page, &wbc);
404 		if (res < 0)
405 			handle_write_error(mapping, page, res);
406 		if (res == AOP_WRITEPAGE_ACTIVATE) {
407 			ClearPageReclaim(page);
408 			return PAGE_ACTIVATE;
409 		}
410 
411 		/*
412 		 * Wait on writeback if requested to. This happens when
413 		 * direct reclaiming a large contiguous area and the
414 		 * first attempt to free a range of pages fails.
415 		 */
416 		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
417 			wait_on_page_writeback(page);
418 
419 		if (!PageWriteback(page)) {
420 			/* synchronous write or broken a_ops? */
421 			ClearPageReclaim(page);
422 		}
423 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
424 		return PAGE_SUCCESS;
425 	}
426 
427 	return PAGE_CLEAN;
428 }
429 
430 /*
431  * Same as remove_mapping, but if the page is removed from the mapping, it
432  * gets returned with a refcount of 0.
433  */
434 static int __remove_mapping(struct address_space *mapping, struct page *page)
435 {
436 	BUG_ON(!PageLocked(page));
437 	BUG_ON(mapping != page_mapping(page));
438 
439 	spin_lock_irq(&mapping->tree_lock);
440 	/*
441 	 * The non racy check for a busy page.
442 	 *
443 	 * Must be careful with the order of the tests. When someone has
444 	 * a ref to the page, it may be possible that they dirty it then
445 	 * drop the reference. So if PageDirty is tested before page_count
446 	 * here, then the following race may occur:
447 	 *
448 	 * get_user_pages(&page);
449 	 * [user mapping goes away]
450 	 * write_to(page);
451 	 *				!PageDirty(page)    [good]
452 	 * SetPageDirty(page);
453 	 * put_page(page);
454 	 *				!page_count(page)   [good, discard it]
455 	 *
456 	 * [oops, our write_to data is lost]
457 	 *
458 	 * Reversing the order of the tests ensures such a situation cannot
459 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
460 	 * load is not satisfied before that of page->_count.
461 	 *
462 	 * Note that if SetPageDirty is always performed via set_page_dirty,
463 	 * and thus under tree_lock, then this ordering is not required.
464 	 */
465 	if (!page_freeze_refs(page, 2))
466 		goto cannot_free;
467 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
468 	if (unlikely(PageDirty(page))) {
469 		page_unfreeze_refs(page, 2);
470 		goto cannot_free;
471 	}
472 
473 	if (PageSwapCache(page)) {
474 		swp_entry_t swap = { .val = page_private(page) };
475 		__delete_from_swap_cache(page);
476 		spin_unlock_irq(&mapping->tree_lock);
477 		swapcache_free(swap, page);
478 	} else {
479 		__remove_from_page_cache(page);
480 		spin_unlock_irq(&mapping->tree_lock);
481 		mem_cgroup_uncharge_cache_page(page);
482 	}
483 
484 	return 1;
485 
486 cannot_free:
487 	spin_unlock_irq(&mapping->tree_lock);
488 	return 0;
489 }
490 
491 /*
492  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
493  * someone else has a ref on the page, abort and return 0.  If it was
494  * successfully detached, return 1.  Assumes the caller has a single ref on
495  * this page.
496  */
497 int remove_mapping(struct address_space *mapping, struct page *page)
498 {
499 	if (__remove_mapping(mapping, page)) {
500 		/*
501 		 * Unfreezing the refcount with 1 rather than 2 effectively
502 		 * drops the pagecache ref for us without requiring another
503 		 * atomic operation.
504 		 */
505 		page_unfreeze_refs(page, 1);
506 		return 1;
507 	}
508 	return 0;
509 }
510 
511 /**
512  * putback_lru_page - put previously isolated page onto appropriate LRU list
513  * @page: page to be put back to appropriate lru list
514  *
515  * Add previously isolated @page to appropriate LRU list.
516  * Page may still be unevictable for other reasons.
517  *
518  * lru_lock must not be held, interrupts must be enabled.
519  */
520 void putback_lru_page(struct page *page)
521 {
522 	int lru;
523 	int active = !!TestClearPageActive(page);
524 	int was_unevictable = PageUnevictable(page);
525 
526 	VM_BUG_ON(PageLRU(page));
527 
528 redo:
529 	ClearPageUnevictable(page);
530 
531 	if (page_evictable(page, NULL)) {
532 		/*
533 		 * For evictable pages, we can use the cache.
534 		 * In event of a race, worst case is we end up with an
535 		 * unevictable page on [in]active list.
536 		 * We know how to handle that.
537 		 */
538 		lru = active + page_lru_base_type(page);
539 		lru_cache_add_lru(page, lru);
540 	} else {
541 		/*
542 		 * Put unevictable pages directly on zone's unevictable
543 		 * list.
544 		 */
545 		lru = LRU_UNEVICTABLE;
546 		add_page_to_unevictable_list(page);
547 	}
548 
549 	/*
550 	 * page's status can change while we move it among lru. If an evictable
551 	 * page is on unevictable list, it never be freed. To avoid that,
552 	 * check after we added it to the list, again.
553 	 */
554 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
555 		if (!isolate_lru_page(page)) {
556 			put_page(page);
557 			goto redo;
558 		}
559 		/* This means someone else dropped this page from LRU
560 		 * So, it will be freed or putback to LRU again. There is
561 		 * nothing to do here.
562 		 */
563 	}
564 
565 	if (was_unevictable && lru != LRU_UNEVICTABLE)
566 		count_vm_event(UNEVICTABLE_PGRESCUED);
567 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
568 		count_vm_event(UNEVICTABLE_PGCULLED);
569 
570 	put_page(page);		/* drop ref from isolate */
571 }
572 
573 /*
574  * shrink_page_list() returns the number of reclaimed pages
575  */
576 static unsigned long shrink_page_list(struct list_head *page_list,
577 					struct scan_control *sc,
578 					enum pageout_io sync_writeback)
579 {
580 	LIST_HEAD(ret_pages);
581 	struct pagevec freed_pvec;
582 	int pgactivate = 0;
583 	unsigned long nr_reclaimed = 0;
584 	unsigned long vm_flags;
585 
586 	cond_resched();
587 
588 	pagevec_init(&freed_pvec, 1);
589 	while (!list_empty(page_list)) {
590 		struct address_space *mapping;
591 		struct page *page;
592 		int may_enter_fs;
593 		int referenced;
594 
595 		cond_resched();
596 
597 		page = lru_to_page(page_list);
598 		list_del(&page->lru);
599 
600 		if (!trylock_page(page))
601 			goto keep;
602 
603 		VM_BUG_ON(PageActive(page));
604 
605 		sc->nr_scanned++;
606 
607 		if (unlikely(!page_evictable(page, NULL)))
608 			goto cull_mlocked;
609 
610 		if (!sc->may_unmap && page_mapped(page))
611 			goto keep_locked;
612 
613 		/* Double the slab pressure for mapped and swapcache pages */
614 		if (page_mapped(page) || PageSwapCache(page))
615 			sc->nr_scanned++;
616 
617 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
618 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
619 
620 		if (PageWriteback(page)) {
621 			/*
622 			 * Synchronous reclaim is performed in two passes,
623 			 * first an asynchronous pass over the list to
624 			 * start parallel writeback, and a second synchronous
625 			 * pass to wait for the IO to complete.  Wait here
626 			 * for any page for which writeback has already
627 			 * started.
628 			 */
629 			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
630 				wait_on_page_writeback(page);
631 			else
632 				goto keep_locked;
633 		}
634 
635 		referenced = page_referenced(page, 1,
636 						sc->mem_cgroup, &vm_flags);
637 		/*
638 		 * In active use or really unfreeable?  Activate it.
639 		 * If page which have PG_mlocked lost isoltation race,
640 		 * try_to_unmap moves it to unevictable list
641 		 */
642 		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
643 					referenced && page_mapping_inuse(page)
644 					&& !(vm_flags & VM_LOCKED))
645 			goto activate_locked;
646 
647 		/*
648 		 * Anonymous process memory has backing store?
649 		 * Try to allocate it some swap space here.
650 		 */
651 		if (PageAnon(page) && !PageSwapCache(page)) {
652 			if (!(sc->gfp_mask & __GFP_IO))
653 				goto keep_locked;
654 			if (!add_to_swap(page))
655 				goto activate_locked;
656 			may_enter_fs = 1;
657 		}
658 
659 		mapping = page_mapping(page);
660 
661 		/*
662 		 * The page is mapped into the page tables of one or more
663 		 * processes. Try to unmap it here.
664 		 */
665 		if (page_mapped(page) && mapping) {
666 			switch (try_to_unmap(page, 0)) {
667 			case SWAP_FAIL:
668 				goto activate_locked;
669 			case SWAP_AGAIN:
670 				goto keep_locked;
671 			case SWAP_MLOCK:
672 				goto cull_mlocked;
673 			case SWAP_SUCCESS:
674 				; /* try to free the page below */
675 			}
676 		}
677 
678 		if (PageDirty(page)) {
679 			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
680 				goto keep_locked;
681 			if (!may_enter_fs)
682 				goto keep_locked;
683 			if (!sc->may_writepage)
684 				goto keep_locked;
685 
686 			/* Page is dirty, try to write it out here */
687 			switch (pageout(page, mapping, sync_writeback)) {
688 			case PAGE_KEEP:
689 				goto keep_locked;
690 			case PAGE_ACTIVATE:
691 				goto activate_locked;
692 			case PAGE_SUCCESS:
693 				if (PageWriteback(page) || PageDirty(page))
694 					goto keep;
695 				/*
696 				 * A synchronous write - probably a ramdisk.  Go
697 				 * ahead and try to reclaim the page.
698 				 */
699 				if (!trylock_page(page))
700 					goto keep;
701 				if (PageDirty(page) || PageWriteback(page))
702 					goto keep_locked;
703 				mapping = page_mapping(page);
704 			case PAGE_CLEAN:
705 				; /* try to free the page below */
706 			}
707 		}
708 
709 		/*
710 		 * If the page has buffers, try to free the buffer mappings
711 		 * associated with this page. If we succeed we try to free
712 		 * the page as well.
713 		 *
714 		 * We do this even if the page is PageDirty().
715 		 * try_to_release_page() does not perform I/O, but it is
716 		 * possible for a page to have PageDirty set, but it is actually
717 		 * clean (all its buffers are clean).  This happens if the
718 		 * buffers were written out directly, with submit_bh(). ext3
719 		 * will do this, as well as the blockdev mapping.
720 		 * try_to_release_page() will discover that cleanness and will
721 		 * drop the buffers and mark the page clean - it can be freed.
722 		 *
723 		 * Rarely, pages can have buffers and no ->mapping.  These are
724 		 * the pages which were not successfully invalidated in
725 		 * truncate_complete_page().  We try to drop those buffers here
726 		 * and if that worked, and the page is no longer mapped into
727 		 * process address space (page_count == 1) it can be freed.
728 		 * Otherwise, leave the page on the LRU so it is swappable.
729 		 */
730 		if (page_has_private(page)) {
731 			if (!try_to_release_page(page, sc->gfp_mask))
732 				goto activate_locked;
733 			if (!mapping && page_count(page) == 1) {
734 				unlock_page(page);
735 				if (put_page_testzero(page))
736 					goto free_it;
737 				else {
738 					/*
739 					 * rare race with speculative reference.
740 					 * the speculative reference will free
741 					 * this page shortly, so we may
742 					 * increment nr_reclaimed here (and
743 					 * leave it off the LRU).
744 					 */
745 					nr_reclaimed++;
746 					continue;
747 				}
748 			}
749 		}
750 
751 		if (!mapping || !__remove_mapping(mapping, page))
752 			goto keep_locked;
753 
754 		/*
755 		 * At this point, we have no other references and there is
756 		 * no way to pick any more up (removed from LRU, removed
757 		 * from pagecache). Can use non-atomic bitops now (and
758 		 * we obviously don't have to worry about waking up a process
759 		 * waiting on the page lock, because there are no references.
760 		 */
761 		__clear_page_locked(page);
762 free_it:
763 		nr_reclaimed++;
764 		if (!pagevec_add(&freed_pvec, page)) {
765 			__pagevec_free(&freed_pvec);
766 			pagevec_reinit(&freed_pvec);
767 		}
768 		continue;
769 
770 cull_mlocked:
771 		if (PageSwapCache(page))
772 			try_to_free_swap(page);
773 		unlock_page(page);
774 		putback_lru_page(page);
775 		continue;
776 
777 activate_locked:
778 		/* Not a candidate for swapping, so reclaim swap space. */
779 		if (PageSwapCache(page) && vm_swap_full())
780 			try_to_free_swap(page);
781 		VM_BUG_ON(PageActive(page));
782 		SetPageActive(page);
783 		pgactivate++;
784 keep_locked:
785 		unlock_page(page);
786 keep:
787 		list_add(&page->lru, &ret_pages);
788 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
789 	}
790 	list_splice(&ret_pages, page_list);
791 	if (pagevec_count(&freed_pvec))
792 		__pagevec_free(&freed_pvec);
793 	count_vm_events(PGACTIVATE, pgactivate);
794 	return nr_reclaimed;
795 }
796 
797 /* LRU Isolation modes. */
798 #define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
799 #define ISOLATE_ACTIVE 1	/* Isolate active pages. */
800 #define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
801 
802 /*
803  * Attempt to remove the specified page from its LRU.  Only take this page
804  * if it is of the appropriate PageActive status.  Pages which are being
805  * freed elsewhere are also ignored.
806  *
807  * page:	page to consider
808  * mode:	one of the LRU isolation modes defined above
809  *
810  * returns 0 on success, -ve errno on failure.
811  */
812 int __isolate_lru_page(struct page *page, int mode, int file)
813 {
814 	int ret = -EINVAL;
815 
816 	/* Only take pages on the LRU. */
817 	if (!PageLRU(page))
818 		return ret;
819 
820 	/*
821 	 * When checking the active state, we need to be sure we are
822 	 * dealing with comparible boolean values.  Take the logical not
823 	 * of each.
824 	 */
825 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
826 		return ret;
827 
828 	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
829 		return ret;
830 
831 	/*
832 	 * When this function is being called for lumpy reclaim, we
833 	 * initially look into all LRU pages, active, inactive and
834 	 * unevictable; only give shrink_page_list evictable pages.
835 	 */
836 	if (PageUnevictable(page))
837 		return ret;
838 
839 	ret = -EBUSY;
840 
841 	if (likely(get_page_unless_zero(page))) {
842 		/*
843 		 * Be careful not to clear PageLRU until after we're
844 		 * sure the page is not being freed elsewhere -- the
845 		 * page release code relies on it.
846 		 */
847 		ClearPageLRU(page);
848 		ret = 0;
849 	}
850 
851 	return ret;
852 }
853 
854 /*
855  * zone->lru_lock is heavily contended.  Some of the functions that
856  * shrink the lists perform better by taking out a batch of pages
857  * and working on them outside the LRU lock.
858  *
859  * For pagecache intensive workloads, this function is the hottest
860  * spot in the kernel (apart from copy_*_user functions).
861  *
862  * Appropriate locks must be held before calling this function.
863  *
864  * @nr_to_scan:	The number of pages to look through on the list.
865  * @src:	The LRU list to pull pages off.
866  * @dst:	The temp list to put pages on to.
867  * @scanned:	The number of pages that were scanned.
868  * @order:	The caller's attempted allocation order
869  * @mode:	One of the LRU isolation modes
870  * @file:	True [1] if isolating file [!anon] pages
871  *
872  * returns how many pages were moved onto *@dst.
873  */
874 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
875 		struct list_head *src, struct list_head *dst,
876 		unsigned long *scanned, int order, int mode, int file)
877 {
878 	unsigned long nr_taken = 0;
879 	unsigned long scan;
880 
881 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
882 		struct page *page;
883 		unsigned long pfn;
884 		unsigned long end_pfn;
885 		unsigned long page_pfn;
886 		int zone_id;
887 
888 		page = lru_to_page(src);
889 		prefetchw_prev_lru_page(page, src, flags);
890 
891 		VM_BUG_ON(!PageLRU(page));
892 
893 		switch (__isolate_lru_page(page, mode, file)) {
894 		case 0:
895 			list_move(&page->lru, dst);
896 			mem_cgroup_del_lru(page);
897 			nr_taken++;
898 			break;
899 
900 		case -EBUSY:
901 			/* else it is being freed elsewhere */
902 			list_move(&page->lru, src);
903 			mem_cgroup_rotate_lru_list(page, page_lru(page));
904 			continue;
905 
906 		default:
907 			BUG();
908 		}
909 
910 		if (!order)
911 			continue;
912 
913 		/*
914 		 * Attempt to take all pages in the order aligned region
915 		 * surrounding the tag page.  Only take those pages of
916 		 * the same active state as that tag page.  We may safely
917 		 * round the target page pfn down to the requested order
918 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
919 		 * where that page is in a different zone we will detect
920 		 * it from its zone id and abort this block scan.
921 		 */
922 		zone_id = page_zone_id(page);
923 		page_pfn = page_to_pfn(page);
924 		pfn = page_pfn & ~((1 << order) - 1);
925 		end_pfn = pfn + (1 << order);
926 		for (; pfn < end_pfn; pfn++) {
927 			struct page *cursor_page;
928 
929 			/* The target page is in the block, ignore it. */
930 			if (unlikely(pfn == page_pfn))
931 				continue;
932 
933 			/* Avoid holes within the zone. */
934 			if (unlikely(!pfn_valid_within(pfn)))
935 				break;
936 
937 			cursor_page = pfn_to_page(pfn);
938 
939 			/* Check that we have not crossed a zone boundary. */
940 			if (unlikely(page_zone_id(cursor_page) != zone_id))
941 				continue;
942 
943 			/*
944 			 * If we don't have enough swap space, reclaiming of
945 			 * anon page which don't already have a swap slot is
946 			 * pointless.
947 			 */
948 			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
949 					!PageSwapCache(cursor_page))
950 				continue;
951 
952 			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
953 				list_move(&cursor_page->lru, dst);
954 				mem_cgroup_del_lru(cursor_page);
955 				nr_taken++;
956 				scan++;
957 			}
958 		}
959 	}
960 
961 	*scanned = scan;
962 	return nr_taken;
963 }
964 
965 static unsigned long isolate_pages_global(unsigned long nr,
966 					struct list_head *dst,
967 					unsigned long *scanned, int order,
968 					int mode, struct zone *z,
969 					struct mem_cgroup *mem_cont,
970 					int active, int file)
971 {
972 	int lru = LRU_BASE;
973 	if (active)
974 		lru += LRU_ACTIVE;
975 	if (file)
976 		lru += LRU_FILE;
977 	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
978 								mode, file);
979 }
980 
981 /*
982  * clear_active_flags() is a helper for shrink_active_list(), clearing
983  * any active bits from the pages in the list.
984  */
985 static unsigned long clear_active_flags(struct list_head *page_list,
986 					unsigned int *count)
987 {
988 	int nr_active = 0;
989 	int lru;
990 	struct page *page;
991 
992 	list_for_each_entry(page, page_list, lru) {
993 		lru = page_lru_base_type(page);
994 		if (PageActive(page)) {
995 			lru += LRU_ACTIVE;
996 			ClearPageActive(page);
997 			nr_active++;
998 		}
999 		count[lru]++;
1000 	}
1001 
1002 	return nr_active;
1003 }
1004 
1005 /**
1006  * isolate_lru_page - tries to isolate a page from its LRU list
1007  * @page: page to isolate from its LRU list
1008  *
1009  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1010  * vmstat statistic corresponding to whatever LRU list the page was on.
1011  *
1012  * Returns 0 if the page was removed from an LRU list.
1013  * Returns -EBUSY if the page was not on an LRU list.
1014  *
1015  * The returned page will have PageLRU() cleared.  If it was found on
1016  * the active list, it will have PageActive set.  If it was found on
1017  * the unevictable list, it will have the PageUnevictable bit set. That flag
1018  * may need to be cleared by the caller before letting the page go.
1019  *
1020  * The vmstat statistic corresponding to the list on which the page was
1021  * found will be decremented.
1022  *
1023  * Restrictions:
1024  * (1) Must be called with an elevated refcount on the page. This is a
1025  *     fundamentnal difference from isolate_lru_pages (which is called
1026  *     without a stable reference).
1027  * (2) the lru_lock must not be held.
1028  * (3) interrupts must be enabled.
1029  */
1030 int isolate_lru_page(struct page *page)
1031 {
1032 	int ret = -EBUSY;
1033 
1034 	if (PageLRU(page)) {
1035 		struct zone *zone = page_zone(page);
1036 
1037 		spin_lock_irq(&zone->lru_lock);
1038 		if (PageLRU(page) && get_page_unless_zero(page)) {
1039 			int lru = page_lru(page);
1040 			ret = 0;
1041 			ClearPageLRU(page);
1042 
1043 			del_page_from_lru_list(zone, page, lru);
1044 		}
1045 		spin_unlock_irq(&zone->lru_lock);
1046 	}
1047 	return ret;
1048 }
1049 
1050 /*
1051  * Are there way too many processes in the direct reclaim path already?
1052  */
1053 static int too_many_isolated(struct zone *zone, int file,
1054 		struct scan_control *sc)
1055 {
1056 	unsigned long inactive, isolated;
1057 
1058 	if (current_is_kswapd())
1059 		return 0;
1060 
1061 	if (!scanning_global_lru(sc))
1062 		return 0;
1063 
1064 	if (file) {
1065 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1066 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1067 	} else {
1068 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1069 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1070 	}
1071 
1072 	return isolated > inactive;
1073 }
1074 
1075 /*
1076  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1077  * of reclaimed pages
1078  */
1079 static unsigned long shrink_inactive_list(unsigned long max_scan,
1080 			struct zone *zone, struct scan_control *sc,
1081 			int priority, int file)
1082 {
1083 	LIST_HEAD(page_list);
1084 	struct pagevec pvec;
1085 	unsigned long nr_scanned = 0;
1086 	unsigned long nr_reclaimed = 0;
1087 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1088 	int lumpy_reclaim = 0;
1089 
1090 	while (unlikely(too_many_isolated(zone, file, sc))) {
1091 		congestion_wait(WRITE, HZ/10);
1092 
1093 		/* We are about to die and free our memory. Return now. */
1094 		if (fatal_signal_pending(current))
1095 			return SWAP_CLUSTER_MAX;
1096 	}
1097 
1098 	/*
1099 	 * If we need a large contiguous chunk of memory, or have
1100 	 * trouble getting a small set of contiguous pages, we
1101 	 * will reclaim both active and inactive pages.
1102 	 *
1103 	 * We use the same threshold as pageout congestion_wait below.
1104 	 */
1105 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1106 		lumpy_reclaim = 1;
1107 	else if (sc->order && priority < DEF_PRIORITY - 2)
1108 		lumpy_reclaim = 1;
1109 
1110 	pagevec_init(&pvec, 1);
1111 
1112 	lru_add_drain();
1113 	spin_lock_irq(&zone->lru_lock);
1114 	do {
1115 		struct page *page;
1116 		unsigned long nr_taken;
1117 		unsigned long nr_scan;
1118 		unsigned long nr_freed;
1119 		unsigned long nr_active;
1120 		unsigned int count[NR_LRU_LISTS] = { 0, };
1121 		int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1122 		unsigned long nr_anon;
1123 		unsigned long nr_file;
1124 
1125 		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1126 			     &page_list, &nr_scan, sc->order, mode,
1127 				zone, sc->mem_cgroup, 0, file);
1128 
1129 		if (scanning_global_lru(sc)) {
1130 			zone->pages_scanned += nr_scan;
1131 			if (current_is_kswapd())
1132 				__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1133 						       nr_scan);
1134 			else
1135 				__count_zone_vm_events(PGSCAN_DIRECT, zone,
1136 						       nr_scan);
1137 		}
1138 
1139 		if (nr_taken == 0)
1140 			goto done;
1141 
1142 		nr_active = clear_active_flags(&page_list, count);
1143 		__count_vm_events(PGDEACTIVATE, nr_active);
1144 
1145 		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1146 						-count[LRU_ACTIVE_FILE]);
1147 		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1148 						-count[LRU_INACTIVE_FILE]);
1149 		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1150 						-count[LRU_ACTIVE_ANON]);
1151 		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1152 						-count[LRU_INACTIVE_ANON]);
1153 
1154 		nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1155 		nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1156 		__mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1157 		__mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1158 
1159 		reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1160 		reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1161 		reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1162 		reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1163 
1164 		spin_unlock_irq(&zone->lru_lock);
1165 
1166 		nr_scanned += nr_scan;
1167 		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1168 
1169 		/*
1170 		 * If we are direct reclaiming for contiguous pages and we do
1171 		 * not reclaim everything in the list, try again and wait
1172 		 * for IO to complete. This will stall high-order allocations
1173 		 * but that should be acceptable to the caller
1174 		 */
1175 		if (nr_freed < nr_taken && !current_is_kswapd() &&
1176 		    lumpy_reclaim) {
1177 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1178 
1179 			/*
1180 			 * The attempt at page out may have made some
1181 			 * of the pages active, mark them inactive again.
1182 			 */
1183 			nr_active = clear_active_flags(&page_list, count);
1184 			count_vm_events(PGDEACTIVATE, nr_active);
1185 
1186 			nr_freed += shrink_page_list(&page_list, sc,
1187 							PAGEOUT_IO_SYNC);
1188 		}
1189 
1190 		nr_reclaimed += nr_freed;
1191 
1192 		local_irq_disable();
1193 		if (current_is_kswapd())
1194 			__count_vm_events(KSWAPD_STEAL, nr_freed);
1195 		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
1196 
1197 		spin_lock(&zone->lru_lock);
1198 		/*
1199 		 * Put back any unfreeable pages.
1200 		 */
1201 		while (!list_empty(&page_list)) {
1202 			int lru;
1203 			page = lru_to_page(&page_list);
1204 			VM_BUG_ON(PageLRU(page));
1205 			list_del(&page->lru);
1206 			if (unlikely(!page_evictable(page, NULL))) {
1207 				spin_unlock_irq(&zone->lru_lock);
1208 				putback_lru_page(page);
1209 				spin_lock_irq(&zone->lru_lock);
1210 				continue;
1211 			}
1212 			SetPageLRU(page);
1213 			lru = page_lru(page);
1214 			add_page_to_lru_list(zone, page, lru);
1215 			if (is_active_lru(lru)) {
1216 				int file = is_file_lru(lru);
1217 				reclaim_stat->recent_rotated[file]++;
1218 			}
1219 			if (!pagevec_add(&pvec, page)) {
1220 				spin_unlock_irq(&zone->lru_lock);
1221 				__pagevec_release(&pvec);
1222 				spin_lock_irq(&zone->lru_lock);
1223 			}
1224 		}
1225 		__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1226 		__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1227 
1228   	} while (nr_scanned < max_scan);
1229 
1230 done:
1231 	spin_unlock_irq(&zone->lru_lock);
1232 	pagevec_release(&pvec);
1233 	return nr_reclaimed;
1234 }
1235 
1236 /*
1237  * We are about to scan this zone at a certain priority level.  If that priority
1238  * level is smaller (ie: more urgent) than the previous priority, then note
1239  * that priority level within the zone.  This is done so that when the next
1240  * process comes in to scan this zone, it will immediately start out at this
1241  * priority level rather than having to build up its own scanning priority.
1242  * Here, this priority affects only the reclaim-mapped threshold.
1243  */
1244 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1245 {
1246 	if (priority < zone->prev_priority)
1247 		zone->prev_priority = priority;
1248 }
1249 
1250 /*
1251  * This moves pages from the active list to the inactive list.
1252  *
1253  * We move them the other way if the page is referenced by one or more
1254  * processes, from rmap.
1255  *
1256  * If the pages are mostly unmapped, the processing is fast and it is
1257  * appropriate to hold zone->lru_lock across the whole operation.  But if
1258  * the pages are mapped, the processing is slow (page_referenced()) so we
1259  * should drop zone->lru_lock around each page.  It's impossible to balance
1260  * this, so instead we remove the pages from the LRU while processing them.
1261  * It is safe to rely on PG_active against the non-LRU pages in here because
1262  * nobody will play with that bit on a non-LRU page.
1263  *
1264  * The downside is that we have to touch page->_count against each page.
1265  * But we had to alter page->flags anyway.
1266  */
1267 
1268 static void move_active_pages_to_lru(struct zone *zone,
1269 				     struct list_head *list,
1270 				     enum lru_list lru)
1271 {
1272 	unsigned long pgmoved = 0;
1273 	struct pagevec pvec;
1274 	struct page *page;
1275 
1276 	pagevec_init(&pvec, 1);
1277 
1278 	while (!list_empty(list)) {
1279 		page = lru_to_page(list);
1280 
1281 		VM_BUG_ON(PageLRU(page));
1282 		SetPageLRU(page);
1283 
1284 		list_move(&page->lru, &zone->lru[lru].list);
1285 		mem_cgroup_add_lru_list(page, lru);
1286 		pgmoved++;
1287 
1288 		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1289 			spin_unlock_irq(&zone->lru_lock);
1290 			if (buffer_heads_over_limit)
1291 				pagevec_strip(&pvec);
1292 			__pagevec_release(&pvec);
1293 			spin_lock_irq(&zone->lru_lock);
1294 		}
1295 	}
1296 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1297 	if (!is_active_lru(lru))
1298 		__count_vm_events(PGDEACTIVATE, pgmoved);
1299 }
1300 
1301 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1302 			struct scan_control *sc, int priority, int file)
1303 {
1304 	unsigned long nr_taken;
1305 	unsigned long pgscanned;
1306 	unsigned long vm_flags;
1307 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1308 	LIST_HEAD(l_active);
1309 	LIST_HEAD(l_inactive);
1310 	struct page *page;
1311 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1312 	unsigned long nr_rotated = 0;
1313 
1314 	lru_add_drain();
1315 	spin_lock_irq(&zone->lru_lock);
1316 	nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1317 					ISOLATE_ACTIVE, zone,
1318 					sc->mem_cgroup, 1, file);
1319 	/*
1320 	 * zone->pages_scanned is used for detect zone's oom
1321 	 * mem_cgroup remembers nr_scan by itself.
1322 	 */
1323 	if (scanning_global_lru(sc)) {
1324 		zone->pages_scanned += pgscanned;
1325 	}
1326 	reclaim_stat->recent_scanned[file] += nr_taken;
1327 
1328 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1329 	if (file)
1330 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1331 	else
1332 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1333 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1334 	spin_unlock_irq(&zone->lru_lock);
1335 
1336 	while (!list_empty(&l_hold)) {
1337 		cond_resched();
1338 		page = lru_to_page(&l_hold);
1339 		list_del(&page->lru);
1340 
1341 		if (unlikely(!page_evictable(page, NULL))) {
1342 			putback_lru_page(page);
1343 			continue;
1344 		}
1345 
1346 		/* page_referenced clears PageReferenced */
1347 		if (page_mapping_inuse(page) &&
1348 		    page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1349 			nr_rotated++;
1350 			/*
1351 			 * Identify referenced, file-backed active pages and
1352 			 * give them one more trip around the active list. So
1353 			 * that executable code get better chances to stay in
1354 			 * memory under moderate memory pressure.  Anon pages
1355 			 * are not likely to be evicted by use-once streaming
1356 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1357 			 * so we ignore them here.
1358 			 */
1359 			if ((vm_flags & VM_EXEC) && !PageAnon(page)) {
1360 				list_add(&page->lru, &l_active);
1361 				continue;
1362 			}
1363 		}
1364 
1365 		ClearPageActive(page);	/* we are de-activating */
1366 		list_add(&page->lru, &l_inactive);
1367 	}
1368 
1369 	/*
1370 	 * Move pages back to the lru list.
1371 	 */
1372 	spin_lock_irq(&zone->lru_lock);
1373 	/*
1374 	 * Count referenced pages from currently used mappings as rotated,
1375 	 * even though only some of them are actually re-activated.  This
1376 	 * helps balance scan pressure between file and anonymous pages in
1377 	 * get_scan_ratio.
1378 	 */
1379 	reclaim_stat->recent_rotated[file] += nr_rotated;
1380 
1381 	move_active_pages_to_lru(zone, &l_active,
1382 						LRU_ACTIVE + file * LRU_FILE);
1383 	move_active_pages_to_lru(zone, &l_inactive,
1384 						LRU_BASE   + file * LRU_FILE);
1385 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1386 	spin_unlock_irq(&zone->lru_lock);
1387 }
1388 
1389 static int inactive_anon_is_low_global(struct zone *zone)
1390 {
1391 	unsigned long active, inactive;
1392 
1393 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1394 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1395 
1396 	if (inactive * zone->inactive_ratio < active)
1397 		return 1;
1398 
1399 	return 0;
1400 }
1401 
1402 /**
1403  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1404  * @zone: zone to check
1405  * @sc:   scan control of this context
1406  *
1407  * Returns true if the zone does not have enough inactive anon pages,
1408  * meaning some active anon pages need to be deactivated.
1409  */
1410 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1411 {
1412 	int low;
1413 
1414 	if (scanning_global_lru(sc))
1415 		low = inactive_anon_is_low_global(zone);
1416 	else
1417 		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1418 	return low;
1419 }
1420 
1421 static int inactive_file_is_low_global(struct zone *zone)
1422 {
1423 	unsigned long active, inactive;
1424 
1425 	active = zone_page_state(zone, NR_ACTIVE_FILE);
1426 	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1427 
1428 	return (active > inactive);
1429 }
1430 
1431 /**
1432  * inactive_file_is_low - check if file pages need to be deactivated
1433  * @zone: zone to check
1434  * @sc:   scan control of this context
1435  *
1436  * When the system is doing streaming IO, memory pressure here
1437  * ensures that active file pages get deactivated, until more
1438  * than half of the file pages are on the inactive list.
1439  *
1440  * Once we get to that situation, protect the system's working
1441  * set from being evicted by disabling active file page aging.
1442  *
1443  * This uses a different ratio than the anonymous pages, because
1444  * the page cache uses a use-once replacement algorithm.
1445  */
1446 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1447 {
1448 	int low;
1449 
1450 	if (scanning_global_lru(sc))
1451 		low = inactive_file_is_low_global(zone);
1452 	else
1453 		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1454 	return low;
1455 }
1456 
1457 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1458 	struct zone *zone, struct scan_control *sc, int priority)
1459 {
1460 	int file = is_file_lru(lru);
1461 
1462 	if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) {
1463 		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1464 		return 0;
1465 	}
1466 
1467 	if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1468 		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1469 		return 0;
1470 	}
1471 	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1472 }
1473 
1474 /*
1475  * Determine how aggressively the anon and file LRU lists should be
1476  * scanned.  The relative value of each set of LRU lists is determined
1477  * by looking at the fraction of the pages scanned we did rotate back
1478  * onto the active list instead of evict.
1479  *
1480  * percent[0] specifies how much pressure to put on ram/swap backed
1481  * memory, while percent[1] determines pressure on the file LRUs.
1482  */
1483 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1484 					unsigned long *percent)
1485 {
1486 	unsigned long anon, file, free;
1487 	unsigned long anon_prio, file_prio;
1488 	unsigned long ap, fp;
1489 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1490 
1491 	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1492 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1493 	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1494 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1495 
1496 	if (scanning_global_lru(sc)) {
1497 		free  = zone_page_state(zone, NR_FREE_PAGES);
1498 		/* If we have very few page cache pages,
1499 		   force-scan anon pages. */
1500 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1501 			percent[0] = 100;
1502 			percent[1] = 0;
1503 			return;
1504 		}
1505 	}
1506 
1507 	/*
1508 	 * OK, so we have swap space and a fair amount of page cache
1509 	 * pages.  We use the recently rotated / recently scanned
1510 	 * ratios to determine how valuable each cache is.
1511 	 *
1512 	 * Because workloads change over time (and to avoid overflow)
1513 	 * we keep these statistics as a floating average, which ends
1514 	 * up weighing recent references more than old ones.
1515 	 *
1516 	 * anon in [0], file in [1]
1517 	 */
1518 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1519 		spin_lock_irq(&zone->lru_lock);
1520 		reclaim_stat->recent_scanned[0] /= 2;
1521 		reclaim_stat->recent_rotated[0] /= 2;
1522 		spin_unlock_irq(&zone->lru_lock);
1523 	}
1524 
1525 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1526 		spin_lock_irq(&zone->lru_lock);
1527 		reclaim_stat->recent_scanned[1] /= 2;
1528 		reclaim_stat->recent_rotated[1] /= 2;
1529 		spin_unlock_irq(&zone->lru_lock);
1530 	}
1531 
1532 	/*
1533 	 * With swappiness at 100, anonymous and file have the same priority.
1534 	 * This scanning priority is essentially the inverse of IO cost.
1535 	 */
1536 	anon_prio = sc->swappiness;
1537 	file_prio = 200 - sc->swappiness;
1538 
1539 	/*
1540 	 * The amount of pressure on anon vs file pages is inversely
1541 	 * proportional to the fraction of recently scanned pages on
1542 	 * each list that were recently referenced and in active use.
1543 	 */
1544 	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1545 	ap /= reclaim_stat->recent_rotated[0] + 1;
1546 
1547 	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1548 	fp /= reclaim_stat->recent_rotated[1] + 1;
1549 
1550 	/* Normalize to percentages */
1551 	percent[0] = 100 * ap / (ap + fp + 1);
1552 	percent[1] = 100 - percent[0];
1553 }
1554 
1555 /*
1556  * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1557  * until we collected @swap_cluster_max pages to scan.
1558  */
1559 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1560 				       unsigned long *nr_saved_scan,
1561 				       unsigned long swap_cluster_max)
1562 {
1563 	unsigned long nr;
1564 
1565 	*nr_saved_scan += nr_to_scan;
1566 	nr = *nr_saved_scan;
1567 
1568 	if (nr >= swap_cluster_max)
1569 		*nr_saved_scan = 0;
1570 	else
1571 		nr = 0;
1572 
1573 	return nr;
1574 }
1575 
1576 /*
1577  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1578  */
1579 static void shrink_zone(int priority, struct zone *zone,
1580 				struct scan_control *sc)
1581 {
1582 	unsigned long nr[NR_LRU_LISTS];
1583 	unsigned long nr_to_scan;
1584 	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1585 	enum lru_list l;
1586 	unsigned long nr_reclaimed = sc->nr_reclaimed;
1587 	unsigned long swap_cluster_max = sc->swap_cluster_max;
1588 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1589 	int noswap = 0;
1590 
1591 	/* If we have no swap space, do not bother scanning anon pages. */
1592 	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1593 		noswap = 1;
1594 		percent[0] = 0;
1595 		percent[1] = 100;
1596 	} else
1597 		get_scan_ratio(zone, sc, percent);
1598 
1599 	for_each_evictable_lru(l) {
1600 		int file = is_file_lru(l);
1601 		unsigned long scan;
1602 
1603 		scan = zone_nr_lru_pages(zone, sc, l);
1604 		if (priority || noswap) {
1605 			scan >>= priority;
1606 			scan = (scan * percent[file]) / 100;
1607 		}
1608 		nr[l] = nr_scan_try_batch(scan,
1609 					  &reclaim_stat->nr_saved_scan[l],
1610 					  swap_cluster_max);
1611 	}
1612 
1613 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1614 					nr[LRU_INACTIVE_FILE]) {
1615 		for_each_evictable_lru(l) {
1616 			if (nr[l]) {
1617 				nr_to_scan = min(nr[l], swap_cluster_max);
1618 				nr[l] -= nr_to_scan;
1619 
1620 				nr_reclaimed += shrink_list(l, nr_to_scan,
1621 							    zone, sc, priority);
1622 			}
1623 		}
1624 		/*
1625 		 * On large memory systems, scan >> priority can become
1626 		 * really large. This is fine for the starting priority;
1627 		 * we want to put equal scanning pressure on each zone.
1628 		 * However, if the VM has a harder time of freeing pages,
1629 		 * with multiple processes reclaiming pages, the total
1630 		 * freeing target can get unreasonably large.
1631 		 */
1632 		if (nr_reclaimed > swap_cluster_max &&
1633 			priority < DEF_PRIORITY && !current_is_kswapd())
1634 			break;
1635 	}
1636 
1637 	sc->nr_reclaimed = nr_reclaimed;
1638 
1639 	/*
1640 	 * Even if we did not try to evict anon pages at all, we want to
1641 	 * rebalance the anon lru active/inactive ratio.
1642 	 */
1643 	if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1644 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1645 
1646 	throttle_vm_writeout(sc->gfp_mask);
1647 }
1648 
1649 /*
1650  * This is the direct reclaim path, for page-allocating processes.  We only
1651  * try to reclaim pages from zones which will satisfy the caller's allocation
1652  * request.
1653  *
1654  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1655  * Because:
1656  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1657  *    allocation or
1658  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1659  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1660  *    zone defense algorithm.
1661  *
1662  * If a zone is deemed to be full of pinned pages then just give it a light
1663  * scan then give up on it.
1664  */
1665 static void shrink_zones(int priority, struct zonelist *zonelist,
1666 					struct scan_control *sc)
1667 {
1668 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1669 	struct zoneref *z;
1670 	struct zone *zone;
1671 
1672 	sc->all_unreclaimable = 1;
1673 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1674 					sc->nodemask) {
1675 		if (!populated_zone(zone))
1676 			continue;
1677 		/*
1678 		 * Take care memory controller reclaiming has small influence
1679 		 * to global LRU.
1680 		 */
1681 		if (scanning_global_lru(sc)) {
1682 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1683 				continue;
1684 			note_zone_scanning_priority(zone, priority);
1685 
1686 			if (zone_is_all_unreclaimable(zone) &&
1687 						priority != DEF_PRIORITY)
1688 				continue;	/* Let kswapd poll it */
1689 			sc->all_unreclaimable = 0;
1690 		} else {
1691 			/*
1692 			 * Ignore cpuset limitation here. We just want to reduce
1693 			 * # of used pages by us regardless of memory shortage.
1694 			 */
1695 			sc->all_unreclaimable = 0;
1696 			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1697 							priority);
1698 		}
1699 
1700 		shrink_zone(priority, zone, sc);
1701 	}
1702 }
1703 
1704 /*
1705  * This is the main entry point to direct page reclaim.
1706  *
1707  * If a full scan of the inactive list fails to free enough memory then we
1708  * are "out of memory" and something needs to be killed.
1709  *
1710  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1711  * high - the zone may be full of dirty or under-writeback pages, which this
1712  * caller can't do much about.  We kick pdflush and take explicit naps in the
1713  * hope that some of these pages can be written.  But if the allocating task
1714  * holds filesystem locks which prevent writeout this might not work, and the
1715  * allocation attempt will fail.
1716  *
1717  * returns:	0, if no pages reclaimed
1718  * 		else, the number of pages reclaimed
1719  */
1720 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1721 					struct scan_control *sc)
1722 {
1723 	int priority;
1724 	unsigned long ret = 0;
1725 	unsigned long total_scanned = 0;
1726 	struct reclaim_state *reclaim_state = current->reclaim_state;
1727 	unsigned long lru_pages = 0;
1728 	struct zoneref *z;
1729 	struct zone *zone;
1730 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1731 
1732 	delayacct_freepages_start();
1733 
1734 	if (scanning_global_lru(sc))
1735 		count_vm_event(ALLOCSTALL);
1736 	/*
1737 	 * mem_cgroup will not do shrink_slab.
1738 	 */
1739 	if (scanning_global_lru(sc)) {
1740 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1741 
1742 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1743 				continue;
1744 
1745 			lru_pages += zone_reclaimable_pages(zone);
1746 		}
1747 	}
1748 
1749 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1750 		sc->nr_scanned = 0;
1751 		if (!priority)
1752 			disable_swap_token();
1753 		shrink_zones(priority, zonelist, sc);
1754 		/*
1755 		 * Don't shrink slabs when reclaiming memory from
1756 		 * over limit cgroups
1757 		 */
1758 		if (scanning_global_lru(sc)) {
1759 			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1760 			if (reclaim_state) {
1761 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1762 				reclaim_state->reclaimed_slab = 0;
1763 			}
1764 		}
1765 		total_scanned += sc->nr_scanned;
1766 		if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1767 			ret = sc->nr_reclaimed;
1768 			goto out;
1769 		}
1770 
1771 		/*
1772 		 * Try to write back as many pages as we just scanned.  This
1773 		 * tends to cause slow streaming writers to write data to the
1774 		 * disk smoothly, at the dirtying rate, which is nice.   But
1775 		 * that's undesirable in laptop mode, where we *want* lumpy
1776 		 * writeout.  So in laptop mode, write out the whole world.
1777 		 */
1778 		if (total_scanned > sc->swap_cluster_max +
1779 					sc->swap_cluster_max / 2) {
1780 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1781 			sc->may_writepage = 1;
1782 		}
1783 
1784 		/* Take a nap, wait for some writeback to complete */
1785 		if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1786 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1787 	}
1788 	/* top priority shrink_zones still had more to do? don't OOM, then */
1789 	if (!sc->all_unreclaimable && scanning_global_lru(sc))
1790 		ret = sc->nr_reclaimed;
1791 out:
1792 	/*
1793 	 * Now that we've scanned all the zones at this priority level, note
1794 	 * that level within the zone so that the next thread which performs
1795 	 * scanning of this zone will immediately start out at this priority
1796 	 * level.  This affects only the decision whether or not to bring
1797 	 * mapped pages onto the inactive list.
1798 	 */
1799 	if (priority < 0)
1800 		priority = 0;
1801 
1802 	if (scanning_global_lru(sc)) {
1803 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1804 
1805 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1806 				continue;
1807 
1808 			zone->prev_priority = priority;
1809 		}
1810 	} else
1811 		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1812 
1813 	delayacct_freepages_end();
1814 
1815 	return ret;
1816 }
1817 
1818 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1819 				gfp_t gfp_mask, nodemask_t *nodemask)
1820 {
1821 	struct scan_control sc = {
1822 		.gfp_mask = gfp_mask,
1823 		.may_writepage = !laptop_mode,
1824 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1825 		.may_unmap = 1,
1826 		.may_swap = 1,
1827 		.swappiness = vm_swappiness,
1828 		.order = order,
1829 		.mem_cgroup = NULL,
1830 		.isolate_pages = isolate_pages_global,
1831 		.nodemask = nodemask,
1832 	};
1833 
1834 	return do_try_to_free_pages(zonelist, &sc);
1835 }
1836 
1837 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1838 
1839 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1840 					   gfp_t gfp_mask,
1841 					   bool noswap,
1842 					   unsigned int swappiness)
1843 {
1844 	struct scan_control sc = {
1845 		.may_writepage = !laptop_mode,
1846 		.may_unmap = 1,
1847 		.may_swap = !noswap,
1848 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1849 		.swappiness = swappiness,
1850 		.order = 0,
1851 		.mem_cgroup = mem_cont,
1852 		.isolate_pages = mem_cgroup_isolate_pages,
1853 		.nodemask = NULL, /* we don't care the placement */
1854 	};
1855 	struct zonelist *zonelist;
1856 
1857 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1858 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1859 	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1860 	return do_try_to_free_pages(zonelist, &sc);
1861 }
1862 #endif
1863 
1864 /*
1865  * For kswapd, balance_pgdat() will work across all this node's zones until
1866  * they are all at high_wmark_pages(zone).
1867  *
1868  * Returns the number of pages which were actually freed.
1869  *
1870  * There is special handling here for zones which are full of pinned pages.
1871  * This can happen if the pages are all mlocked, or if they are all used by
1872  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1873  * What we do is to detect the case where all pages in the zone have been
1874  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1875  * dead and from now on, only perform a short scan.  Basically we're polling
1876  * the zone for when the problem goes away.
1877  *
1878  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1879  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1880  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1881  * lower zones regardless of the number of free pages in the lower zones. This
1882  * interoperates with the page allocator fallback scheme to ensure that aging
1883  * of pages is balanced across the zones.
1884  */
1885 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1886 {
1887 	int all_zones_ok;
1888 	int priority;
1889 	int i;
1890 	unsigned long total_scanned;
1891 	struct reclaim_state *reclaim_state = current->reclaim_state;
1892 	struct scan_control sc = {
1893 		.gfp_mask = GFP_KERNEL,
1894 		.may_unmap = 1,
1895 		.may_swap = 1,
1896 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1897 		.swappiness = vm_swappiness,
1898 		.order = order,
1899 		.mem_cgroup = NULL,
1900 		.isolate_pages = isolate_pages_global,
1901 	};
1902 	/*
1903 	 * temp_priority is used to remember the scanning priority at which
1904 	 * this zone was successfully refilled to
1905 	 * free_pages == high_wmark_pages(zone).
1906 	 */
1907 	int temp_priority[MAX_NR_ZONES];
1908 
1909 loop_again:
1910 	total_scanned = 0;
1911 	sc.nr_reclaimed = 0;
1912 	sc.may_writepage = !laptop_mode;
1913 	count_vm_event(PAGEOUTRUN);
1914 
1915 	for (i = 0; i < pgdat->nr_zones; i++)
1916 		temp_priority[i] = DEF_PRIORITY;
1917 
1918 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1919 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1920 		unsigned long lru_pages = 0;
1921 
1922 		/* The swap token gets in the way of swapout... */
1923 		if (!priority)
1924 			disable_swap_token();
1925 
1926 		all_zones_ok = 1;
1927 
1928 		/*
1929 		 * Scan in the highmem->dma direction for the highest
1930 		 * zone which needs scanning
1931 		 */
1932 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1933 			struct zone *zone = pgdat->node_zones + i;
1934 
1935 			if (!populated_zone(zone))
1936 				continue;
1937 
1938 			if (zone_is_all_unreclaimable(zone) &&
1939 			    priority != DEF_PRIORITY)
1940 				continue;
1941 
1942 			/*
1943 			 * Do some background aging of the anon list, to give
1944 			 * pages a chance to be referenced before reclaiming.
1945 			 */
1946 			if (inactive_anon_is_low(zone, &sc))
1947 				shrink_active_list(SWAP_CLUSTER_MAX, zone,
1948 							&sc, priority, 0);
1949 
1950 			if (!zone_watermark_ok(zone, order,
1951 					high_wmark_pages(zone), 0, 0)) {
1952 				end_zone = i;
1953 				break;
1954 			}
1955 		}
1956 		if (i < 0)
1957 			goto out;
1958 
1959 		for (i = 0; i <= end_zone; i++) {
1960 			struct zone *zone = pgdat->node_zones + i;
1961 
1962 			lru_pages += zone_reclaimable_pages(zone);
1963 		}
1964 
1965 		/*
1966 		 * Now scan the zone in the dma->highmem direction, stopping
1967 		 * at the last zone which needs scanning.
1968 		 *
1969 		 * We do this because the page allocator works in the opposite
1970 		 * direction.  This prevents the page allocator from allocating
1971 		 * pages behind kswapd's direction of progress, which would
1972 		 * cause too much scanning of the lower zones.
1973 		 */
1974 		for (i = 0; i <= end_zone; i++) {
1975 			struct zone *zone = pgdat->node_zones + i;
1976 			int nr_slab;
1977 
1978 			if (!populated_zone(zone))
1979 				continue;
1980 
1981 			if (zone_is_all_unreclaimable(zone) &&
1982 					priority != DEF_PRIORITY)
1983 				continue;
1984 
1985 			if (!zone_watermark_ok(zone, order,
1986 					high_wmark_pages(zone), end_zone, 0))
1987 				all_zones_ok = 0;
1988 			temp_priority[i] = priority;
1989 			sc.nr_scanned = 0;
1990 			note_zone_scanning_priority(zone, priority);
1991 			/*
1992 			 * We put equal pressure on every zone, unless one
1993 			 * zone has way too many pages free already.
1994 			 */
1995 			if (!zone_watermark_ok(zone, order,
1996 					8*high_wmark_pages(zone), end_zone, 0))
1997 				shrink_zone(priority, zone, &sc);
1998 			reclaim_state->reclaimed_slab = 0;
1999 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2000 						lru_pages);
2001 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2002 			total_scanned += sc.nr_scanned;
2003 			if (zone_is_all_unreclaimable(zone))
2004 				continue;
2005 			if (nr_slab == 0 && zone->pages_scanned >=
2006 					(zone_reclaimable_pages(zone) * 6))
2007 					zone_set_flag(zone,
2008 						      ZONE_ALL_UNRECLAIMABLE);
2009 			/*
2010 			 * If we've done a decent amount of scanning and
2011 			 * the reclaim ratio is low, start doing writepage
2012 			 * even in laptop mode
2013 			 */
2014 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2015 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2016 				sc.may_writepage = 1;
2017 		}
2018 		if (all_zones_ok)
2019 			break;		/* kswapd: all done */
2020 		/*
2021 		 * OK, kswapd is getting into trouble.  Take a nap, then take
2022 		 * another pass across the zones.
2023 		 */
2024 		if (total_scanned && priority < DEF_PRIORITY - 2)
2025 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2026 
2027 		/*
2028 		 * We do this so kswapd doesn't build up large priorities for
2029 		 * example when it is freeing in parallel with allocators. It
2030 		 * matches the direct reclaim path behaviour in terms of impact
2031 		 * on zone->*_priority.
2032 		 */
2033 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2034 			break;
2035 	}
2036 out:
2037 	/*
2038 	 * Note within each zone the priority level at which this zone was
2039 	 * brought into a happy state.  So that the next thread which scans this
2040 	 * zone will start out at that priority level.
2041 	 */
2042 	for (i = 0; i < pgdat->nr_zones; i++) {
2043 		struct zone *zone = pgdat->node_zones + i;
2044 
2045 		zone->prev_priority = temp_priority[i];
2046 	}
2047 	if (!all_zones_ok) {
2048 		cond_resched();
2049 
2050 		try_to_freeze();
2051 
2052 		/*
2053 		 * Fragmentation may mean that the system cannot be
2054 		 * rebalanced for high-order allocations in all zones.
2055 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2056 		 * it means the zones have been fully scanned and are still
2057 		 * not balanced. For high-order allocations, there is
2058 		 * little point trying all over again as kswapd may
2059 		 * infinite loop.
2060 		 *
2061 		 * Instead, recheck all watermarks at order-0 as they
2062 		 * are the most important. If watermarks are ok, kswapd will go
2063 		 * back to sleep. High-order users can still perform direct
2064 		 * reclaim if they wish.
2065 		 */
2066 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2067 			order = sc.order = 0;
2068 
2069 		goto loop_again;
2070 	}
2071 
2072 	return sc.nr_reclaimed;
2073 }
2074 
2075 /*
2076  * The background pageout daemon, started as a kernel thread
2077  * from the init process.
2078  *
2079  * This basically trickles out pages so that we have _some_
2080  * free memory available even if there is no other activity
2081  * that frees anything up. This is needed for things like routing
2082  * etc, where we otherwise might have all activity going on in
2083  * asynchronous contexts that cannot page things out.
2084  *
2085  * If there are applications that are active memory-allocators
2086  * (most normal use), this basically shouldn't matter.
2087  */
2088 static int kswapd(void *p)
2089 {
2090 	unsigned long order;
2091 	pg_data_t *pgdat = (pg_data_t*)p;
2092 	struct task_struct *tsk = current;
2093 	DEFINE_WAIT(wait);
2094 	struct reclaim_state reclaim_state = {
2095 		.reclaimed_slab = 0,
2096 	};
2097 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2098 
2099 	lockdep_set_current_reclaim_state(GFP_KERNEL);
2100 
2101 	if (!cpumask_empty(cpumask))
2102 		set_cpus_allowed_ptr(tsk, cpumask);
2103 	current->reclaim_state = &reclaim_state;
2104 
2105 	/*
2106 	 * Tell the memory management that we're a "memory allocator",
2107 	 * and that if we need more memory we should get access to it
2108 	 * regardless (see "__alloc_pages()"). "kswapd" should
2109 	 * never get caught in the normal page freeing logic.
2110 	 *
2111 	 * (Kswapd normally doesn't need memory anyway, but sometimes
2112 	 * you need a small amount of memory in order to be able to
2113 	 * page out something else, and this flag essentially protects
2114 	 * us from recursively trying to free more memory as we're
2115 	 * trying to free the first piece of memory in the first place).
2116 	 */
2117 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2118 	set_freezable();
2119 
2120 	order = 0;
2121 	for ( ; ; ) {
2122 		unsigned long new_order;
2123 
2124 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2125 		new_order = pgdat->kswapd_max_order;
2126 		pgdat->kswapd_max_order = 0;
2127 		if (order < new_order) {
2128 			/*
2129 			 * Don't sleep if someone wants a larger 'order'
2130 			 * allocation
2131 			 */
2132 			order = new_order;
2133 		} else {
2134 			if (!freezing(current))
2135 				schedule();
2136 
2137 			order = pgdat->kswapd_max_order;
2138 		}
2139 		finish_wait(&pgdat->kswapd_wait, &wait);
2140 
2141 		if (!try_to_freeze()) {
2142 			/* We can speed up thawing tasks if we don't call
2143 			 * balance_pgdat after returning from the refrigerator
2144 			 */
2145 			balance_pgdat(pgdat, order);
2146 		}
2147 	}
2148 	return 0;
2149 }
2150 
2151 /*
2152  * A zone is low on free memory, so wake its kswapd task to service it.
2153  */
2154 void wakeup_kswapd(struct zone *zone, int order)
2155 {
2156 	pg_data_t *pgdat;
2157 
2158 	if (!populated_zone(zone))
2159 		return;
2160 
2161 	pgdat = zone->zone_pgdat;
2162 	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2163 		return;
2164 	if (pgdat->kswapd_max_order < order)
2165 		pgdat->kswapd_max_order = order;
2166 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2167 		return;
2168 	if (!waitqueue_active(&pgdat->kswapd_wait))
2169 		return;
2170 	wake_up_interruptible(&pgdat->kswapd_wait);
2171 }
2172 
2173 /*
2174  * The reclaimable count would be mostly accurate.
2175  * The less reclaimable pages may be
2176  * - mlocked pages, which will be moved to unevictable list when encountered
2177  * - mapped pages, which may require several travels to be reclaimed
2178  * - dirty pages, which is not "instantly" reclaimable
2179  */
2180 unsigned long global_reclaimable_pages(void)
2181 {
2182 	int nr;
2183 
2184 	nr = global_page_state(NR_ACTIVE_FILE) +
2185 	     global_page_state(NR_INACTIVE_FILE);
2186 
2187 	if (nr_swap_pages > 0)
2188 		nr += global_page_state(NR_ACTIVE_ANON) +
2189 		      global_page_state(NR_INACTIVE_ANON);
2190 
2191 	return nr;
2192 }
2193 
2194 unsigned long zone_reclaimable_pages(struct zone *zone)
2195 {
2196 	int nr;
2197 
2198 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2199 	     zone_page_state(zone, NR_INACTIVE_FILE);
2200 
2201 	if (nr_swap_pages > 0)
2202 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2203 		      zone_page_state(zone, NR_INACTIVE_ANON);
2204 
2205 	return nr;
2206 }
2207 
2208 #ifdef CONFIG_HIBERNATION
2209 /*
2210  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
2211  * from LRU lists system-wide, for given pass and priority.
2212  *
2213  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2214  */
2215 static void shrink_all_zones(unsigned long nr_pages, int prio,
2216 				      int pass, struct scan_control *sc)
2217 {
2218 	struct zone *zone;
2219 	unsigned long nr_reclaimed = 0;
2220 	struct zone_reclaim_stat *reclaim_stat;
2221 
2222 	for_each_populated_zone(zone) {
2223 		enum lru_list l;
2224 
2225 		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2226 			continue;
2227 
2228 		for_each_evictable_lru(l) {
2229 			enum zone_stat_item ls = NR_LRU_BASE + l;
2230 			unsigned long lru_pages = zone_page_state(zone, ls);
2231 
2232 			/* For pass = 0, we don't shrink the active list */
2233 			if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2234 						l == LRU_ACTIVE_FILE))
2235 				continue;
2236 
2237 			reclaim_stat = get_reclaim_stat(zone, sc);
2238 			reclaim_stat->nr_saved_scan[l] +=
2239 						(lru_pages >> prio) + 1;
2240 			if (reclaim_stat->nr_saved_scan[l]
2241 						>= nr_pages || pass > 3) {
2242 				unsigned long nr_to_scan;
2243 
2244 				reclaim_stat->nr_saved_scan[l] = 0;
2245 				nr_to_scan = min(nr_pages, lru_pages);
2246 				nr_reclaimed += shrink_list(l, nr_to_scan, zone,
2247 								sc, prio);
2248 				if (nr_reclaimed >= nr_pages) {
2249 					sc->nr_reclaimed += nr_reclaimed;
2250 					return;
2251 				}
2252 			}
2253 		}
2254 	}
2255 	sc->nr_reclaimed += nr_reclaimed;
2256 }
2257 
2258 /*
2259  * Try to free `nr_pages' of memory, system-wide, and return the number of
2260  * freed pages.
2261  *
2262  * Rather than trying to age LRUs the aim is to preserve the overall
2263  * LRU order by reclaiming preferentially
2264  * inactive > active > active referenced > active mapped
2265  */
2266 unsigned long shrink_all_memory(unsigned long nr_pages)
2267 {
2268 	unsigned long lru_pages, nr_slab;
2269 	int pass;
2270 	struct reclaim_state reclaim_state;
2271 	struct scan_control sc = {
2272 		.gfp_mask = GFP_KERNEL,
2273 		.may_unmap = 0,
2274 		.may_writepage = 1,
2275 		.isolate_pages = isolate_pages_global,
2276 		.nr_reclaimed = 0,
2277 	};
2278 
2279 	current->reclaim_state = &reclaim_state;
2280 
2281 	lru_pages = global_reclaimable_pages();
2282 	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2283 	/* If slab caches are huge, it's better to hit them first */
2284 	while (nr_slab >= lru_pages) {
2285 		reclaim_state.reclaimed_slab = 0;
2286 		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2287 		if (!reclaim_state.reclaimed_slab)
2288 			break;
2289 
2290 		sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2291 		if (sc.nr_reclaimed >= nr_pages)
2292 			goto out;
2293 
2294 		nr_slab -= reclaim_state.reclaimed_slab;
2295 	}
2296 
2297 	/*
2298 	 * We try to shrink LRUs in 5 passes:
2299 	 * 0 = Reclaim from inactive_list only
2300 	 * 1 = Reclaim from active list but don't reclaim mapped
2301 	 * 2 = 2nd pass of type 1
2302 	 * 3 = Reclaim mapped (normal reclaim)
2303 	 * 4 = 2nd pass of type 3
2304 	 */
2305 	for (pass = 0; pass < 5; pass++) {
2306 		int prio;
2307 
2308 		/* Force reclaiming mapped pages in the passes #3 and #4 */
2309 		if (pass > 2)
2310 			sc.may_unmap = 1;
2311 
2312 		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2313 			unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
2314 
2315 			sc.nr_scanned = 0;
2316 			sc.swap_cluster_max = nr_to_scan;
2317 			shrink_all_zones(nr_to_scan, prio, pass, &sc);
2318 			if (sc.nr_reclaimed >= nr_pages)
2319 				goto out;
2320 
2321 			reclaim_state.reclaimed_slab = 0;
2322 			shrink_slab(sc.nr_scanned, sc.gfp_mask,
2323 				    global_reclaimable_pages());
2324 			sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2325 			if (sc.nr_reclaimed >= nr_pages)
2326 				goto out;
2327 
2328 			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2329 				congestion_wait(BLK_RW_ASYNC, HZ / 10);
2330 		}
2331 	}
2332 
2333 	/*
2334 	 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2335 	 * something in slab caches
2336 	 */
2337 	if (!sc.nr_reclaimed) {
2338 		do {
2339 			reclaim_state.reclaimed_slab = 0;
2340 			shrink_slab(nr_pages, sc.gfp_mask,
2341 				    global_reclaimable_pages());
2342 			sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2343 		} while (sc.nr_reclaimed < nr_pages &&
2344 				reclaim_state.reclaimed_slab > 0);
2345 	}
2346 
2347 
2348 out:
2349 	current->reclaim_state = NULL;
2350 
2351 	return sc.nr_reclaimed;
2352 }
2353 #endif /* CONFIG_HIBERNATION */
2354 
2355 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2356    not required for correctness.  So if the last cpu in a node goes
2357    away, we get changed to run anywhere: as the first one comes back,
2358    restore their cpu bindings. */
2359 static int __devinit cpu_callback(struct notifier_block *nfb,
2360 				  unsigned long action, void *hcpu)
2361 {
2362 	int nid;
2363 
2364 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2365 		for_each_node_state(nid, N_HIGH_MEMORY) {
2366 			pg_data_t *pgdat = NODE_DATA(nid);
2367 			const struct cpumask *mask;
2368 
2369 			mask = cpumask_of_node(pgdat->node_id);
2370 
2371 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2372 				/* One of our CPUs online: restore mask */
2373 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2374 		}
2375 	}
2376 	return NOTIFY_OK;
2377 }
2378 
2379 /*
2380  * This kswapd start function will be called by init and node-hot-add.
2381  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2382  */
2383 int kswapd_run(int nid)
2384 {
2385 	pg_data_t *pgdat = NODE_DATA(nid);
2386 	int ret = 0;
2387 
2388 	if (pgdat->kswapd)
2389 		return 0;
2390 
2391 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2392 	if (IS_ERR(pgdat->kswapd)) {
2393 		/* failure at boot is fatal */
2394 		BUG_ON(system_state == SYSTEM_BOOTING);
2395 		printk("Failed to start kswapd on node %d\n",nid);
2396 		ret = -1;
2397 	}
2398 	return ret;
2399 }
2400 
2401 static int __init kswapd_init(void)
2402 {
2403 	int nid;
2404 
2405 	swap_setup();
2406 	for_each_node_state(nid, N_HIGH_MEMORY)
2407  		kswapd_run(nid);
2408 	hotcpu_notifier(cpu_callback, 0);
2409 	return 0;
2410 }
2411 
2412 module_init(kswapd_init)
2413 
2414 #ifdef CONFIG_NUMA
2415 /*
2416  * Zone reclaim mode
2417  *
2418  * If non-zero call zone_reclaim when the number of free pages falls below
2419  * the watermarks.
2420  */
2421 int zone_reclaim_mode __read_mostly;
2422 
2423 #define RECLAIM_OFF 0
2424 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2425 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2426 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2427 
2428 /*
2429  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2430  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2431  * a zone.
2432  */
2433 #define ZONE_RECLAIM_PRIORITY 4
2434 
2435 /*
2436  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2437  * occur.
2438  */
2439 int sysctl_min_unmapped_ratio = 1;
2440 
2441 /*
2442  * If the number of slab pages in a zone grows beyond this percentage then
2443  * slab reclaim needs to occur.
2444  */
2445 int sysctl_min_slab_ratio = 5;
2446 
2447 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2448 {
2449 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2450 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2451 		zone_page_state(zone, NR_ACTIVE_FILE);
2452 
2453 	/*
2454 	 * It's possible for there to be more file mapped pages than
2455 	 * accounted for by the pages on the file LRU lists because
2456 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2457 	 */
2458 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2459 }
2460 
2461 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2462 static long zone_pagecache_reclaimable(struct zone *zone)
2463 {
2464 	long nr_pagecache_reclaimable;
2465 	long delta = 0;
2466 
2467 	/*
2468 	 * If RECLAIM_SWAP is set, then all file pages are considered
2469 	 * potentially reclaimable. Otherwise, we have to worry about
2470 	 * pages like swapcache and zone_unmapped_file_pages() provides
2471 	 * a better estimate
2472 	 */
2473 	if (zone_reclaim_mode & RECLAIM_SWAP)
2474 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2475 	else
2476 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2477 
2478 	/* If we can't clean pages, remove dirty pages from consideration */
2479 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
2480 		delta += zone_page_state(zone, NR_FILE_DIRTY);
2481 
2482 	/* Watch for any possible underflows due to delta */
2483 	if (unlikely(delta > nr_pagecache_reclaimable))
2484 		delta = nr_pagecache_reclaimable;
2485 
2486 	return nr_pagecache_reclaimable - delta;
2487 }
2488 
2489 /*
2490  * Try to free up some pages from this zone through reclaim.
2491  */
2492 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2493 {
2494 	/* Minimum pages needed in order to stay on node */
2495 	const unsigned long nr_pages = 1 << order;
2496 	struct task_struct *p = current;
2497 	struct reclaim_state reclaim_state;
2498 	int priority;
2499 	struct scan_control sc = {
2500 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2501 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2502 		.may_swap = 1,
2503 		.swap_cluster_max = max_t(unsigned long, nr_pages,
2504 					SWAP_CLUSTER_MAX),
2505 		.gfp_mask = gfp_mask,
2506 		.swappiness = vm_swappiness,
2507 		.order = order,
2508 		.isolate_pages = isolate_pages_global,
2509 	};
2510 	unsigned long slab_reclaimable;
2511 
2512 	disable_swap_token();
2513 	cond_resched();
2514 	/*
2515 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2516 	 * and we also need to be able to write out pages for RECLAIM_WRITE
2517 	 * and RECLAIM_SWAP.
2518 	 */
2519 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2520 	reclaim_state.reclaimed_slab = 0;
2521 	p->reclaim_state = &reclaim_state;
2522 
2523 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2524 		/*
2525 		 * Free memory by calling shrink zone with increasing
2526 		 * priorities until we have enough memory freed.
2527 		 */
2528 		priority = ZONE_RECLAIM_PRIORITY;
2529 		do {
2530 			note_zone_scanning_priority(zone, priority);
2531 			shrink_zone(priority, zone, &sc);
2532 			priority--;
2533 		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2534 	}
2535 
2536 	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2537 	if (slab_reclaimable > zone->min_slab_pages) {
2538 		/*
2539 		 * shrink_slab() does not currently allow us to determine how
2540 		 * many pages were freed in this zone. So we take the current
2541 		 * number of slab pages and shake the slab until it is reduced
2542 		 * by the same nr_pages that we used for reclaiming unmapped
2543 		 * pages.
2544 		 *
2545 		 * Note that shrink_slab will free memory on all zones and may
2546 		 * take a long time.
2547 		 */
2548 		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2549 			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2550 				slab_reclaimable - nr_pages)
2551 			;
2552 
2553 		/*
2554 		 * Update nr_reclaimed by the number of slab pages we
2555 		 * reclaimed from this zone.
2556 		 */
2557 		sc.nr_reclaimed += slab_reclaimable -
2558 			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2559 	}
2560 
2561 	p->reclaim_state = NULL;
2562 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2563 	return sc.nr_reclaimed >= nr_pages;
2564 }
2565 
2566 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2567 {
2568 	int node_id;
2569 	int ret;
2570 
2571 	/*
2572 	 * Zone reclaim reclaims unmapped file backed pages and
2573 	 * slab pages if we are over the defined limits.
2574 	 *
2575 	 * A small portion of unmapped file backed pages is needed for
2576 	 * file I/O otherwise pages read by file I/O will be immediately
2577 	 * thrown out if the zone is overallocated. So we do not reclaim
2578 	 * if less than a specified percentage of the zone is used by
2579 	 * unmapped file backed pages.
2580 	 */
2581 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2582 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2583 		return ZONE_RECLAIM_FULL;
2584 
2585 	if (zone_is_all_unreclaimable(zone))
2586 		return ZONE_RECLAIM_FULL;
2587 
2588 	/*
2589 	 * Do not scan if the allocation should not be delayed.
2590 	 */
2591 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2592 		return ZONE_RECLAIM_NOSCAN;
2593 
2594 	/*
2595 	 * Only run zone reclaim on the local zone or on zones that do not
2596 	 * have associated processors. This will favor the local processor
2597 	 * over remote processors and spread off node memory allocations
2598 	 * as wide as possible.
2599 	 */
2600 	node_id = zone_to_nid(zone);
2601 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2602 		return ZONE_RECLAIM_NOSCAN;
2603 
2604 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2605 		return ZONE_RECLAIM_NOSCAN;
2606 
2607 	ret = __zone_reclaim(zone, gfp_mask, order);
2608 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2609 
2610 	if (!ret)
2611 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2612 
2613 	return ret;
2614 }
2615 #endif
2616 
2617 /*
2618  * page_evictable - test whether a page is evictable
2619  * @page: the page to test
2620  * @vma: the VMA in which the page is or will be mapped, may be NULL
2621  *
2622  * Test whether page is evictable--i.e., should be placed on active/inactive
2623  * lists vs unevictable list.  The vma argument is !NULL when called from the
2624  * fault path to determine how to instantate a new page.
2625  *
2626  * Reasons page might not be evictable:
2627  * (1) page's mapping marked unevictable
2628  * (2) page is part of an mlocked VMA
2629  *
2630  */
2631 int page_evictable(struct page *page, struct vm_area_struct *vma)
2632 {
2633 
2634 	if (mapping_unevictable(page_mapping(page)))
2635 		return 0;
2636 
2637 	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2638 		return 0;
2639 
2640 	return 1;
2641 }
2642 
2643 /**
2644  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2645  * @page: page to check evictability and move to appropriate lru list
2646  * @zone: zone page is in
2647  *
2648  * Checks a page for evictability and moves the page to the appropriate
2649  * zone lru list.
2650  *
2651  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2652  * have PageUnevictable set.
2653  */
2654 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2655 {
2656 	VM_BUG_ON(PageActive(page));
2657 
2658 retry:
2659 	ClearPageUnevictable(page);
2660 	if (page_evictable(page, NULL)) {
2661 		enum lru_list l = page_lru_base_type(page);
2662 
2663 		__dec_zone_state(zone, NR_UNEVICTABLE);
2664 		list_move(&page->lru, &zone->lru[l].list);
2665 		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2666 		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2667 		__count_vm_event(UNEVICTABLE_PGRESCUED);
2668 	} else {
2669 		/*
2670 		 * rotate unevictable list
2671 		 */
2672 		SetPageUnevictable(page);
2673 		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2674 		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2675 		if (page_evictable(page, NULL))
2676 			goto retry;
2677 	}
2678 }
2679 
2680 /**
2681  * scan_mapping_unevictable_pages - scan an address space for evictable pages
2682  * @mapping: struct address_space to scan for evictable pages
2683  *
2684  * Scan all pages in mapping.  Check unevictable pages for
2685  * evictability and move them to the appropriate zone lru list.
2686  */
2687 void scan_mapping_unevictable_pages(struct address_space *mapping)
2688 {
2689 	pgoff_t next = 0;
2690 	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2691 			 PAGE_CACHE_SHIFT;
2692 	struct zone *zone;
2693 	struct pagevec pvec;
2694 
2695 	if (mapping->nrpages == 0)
2696 		return;
2697 
2698 	pagevec_init(&pvec, 0);
2699 	while (next < end &&
2700 		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2701 		int i;
2702 		int pg_scanned = 0;
2703 
2704 		zone = NULL;
2705 
2706 		for (i = 0; i < pagevec_count(&pvec); i++) {
2707 			struct page *page = pvec.pages[i];
2708 			pgoff_t page_index = page->index;
2709 			struct zone *pagezone = page_zone(page);
2710 
2711 			pg_scanned++;
2712 			if (page_index > next)
2713 				next = page_index;
2714 			next++;
2715 
2716 			if (pagezone != zone) {
2717 				if (zone)
2718 					spin_unlock_irq(&zone->lru_lock);
2719 				zone = pagezone;
2720 				spin_lock_irq(&zone->lru_lock);
2721 			}
2722 
2723 			if (PageLRU(page) && PageUnevictable(page))
2724 				check_move_unevictable_page(page, zone);
2725 		}
2726 		if (zone)
2727 			spin_unlock_irq(&zone->lru_lock);
2728 		pagevec_release(&pvec);
2729 
2730 		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2731 	}
2732 
2733 }
2734 
2735 /**
2736  * scan_zone_unevictable_pages - check unevictable list for evictable pages
2737  * @zone - zone of which to scan the unevictable list
2738  *
2739  * Scan @zone's unevictable LRU lists to check for pages that have become
2740  * evictable.  Move those that have to @zone's inactive list where they
2741  * become candidates for reclaim, unless shrink_inactive_zone() decides
2742  * to reactivate them.  Pages that are still unevictable are rotated
2743  * back onto @zone's unevictable list.
2744  */
2745 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2746 static void scan_zone_unevictable_pages(struct zone *zone)
2747 {
2748 	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2749 	unsigned long scan;
2750 	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2751 
2752 	while (nr_to_scan > 0) {
2753 		unsigned long batch_size = min(nr_to_scan,
2754 						SCAN_UNEVICTABLE_BATCH_SIZE);
2755 
2756 		spin_lock_irq(&zone->lru_lock);
2757 		for (scan = 0;  scan < batch_size; scan++) {
2758 			struct page *page = lru_to_page(l_unevictable);
2759 
2760 			if (!trylock_page(page))
2761 				continue;
2762 
2763 			prefetchw_prev_lru_page(page, l_unevictable, flags);
2764 
2765 			if (likely(PageLRU(page) && PageUnevictable(page)))
2766 				check_move_unevictable_page(page, zone);
2767 
2768 			unlock_page(page);
2769 		}
2770 		spin_unlock_irq(&zone->lru_lock);
2771 
2772 		nr_to_scan -= batch_size;
2773 	}
2774 }
2775 
2776 
2777 /**
2778  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2779  *
2780  * A really big hammer:  scan all zones' unevictable LRU lists to check for
2781  * pages that have become evictable.  Move those back to the zones'
2782  * inactive list where they become candidates for reclaim.
2783  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2784  * and we add swap to the system.  As such, it runs in the context of a task
2785  * that has possibly/probably made some previously unevictable pages
2786  * evictable.
2787  */
2788 static void scan_all_zones_unevictable_pages(void)
2789 {
2790 	struct zone *zone;
2791 
2792 	for_each_zone(zone) {
2793 		scan_zone_unevictable_pages(zone);
2794 	}
2795 }
2796 
2797 /*
2798  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2799  * all nodes' unevictable lists for evictable pages
2800  */
2801 unsigned long scan_unevictable_pages;
2802 
2803 int scan_unevictable_handler(struct ctl_table *table, int write,
2804 			   struct file *file, void __user *buffer,
2805 			   size_t *length, loff_t *ppos)
2806 {
2807 	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2808 
2809 	if (write && *(unsigned long *)table->data)
2810 		scan_all_zones_unevictable_pages();
2811 
2812 	scan_unevictable_pages = 0;
2813 	return 0;
2814 }
2815 
2816 /*
2817  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2818  * a specified node's per zone unevictable lists for evictable pages.
2819  */
2820 
2821 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2822 					  struct sysdev_attribute *attr,
2823 					  char *buf)
2824 {
2825 	return sprintf(buf, "0\n");	/* always zero; should fit... */
2826 }
2827 
2828 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2829 					   struct sysdev_attribute *attr,
2830 					const char *buf, size_t count)
2831 {
2832 	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2833 	struct zone *zone;
2834 	unsigned long res;
2835 	unsigned long req = strict_strtoul(buf, 10, &res);
2836 
2837 	if (!req)
2838 		return 1;	/* zero is no-op */
2839 
2840 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2841 		if (!populated_zone(zone))
2842 			continue;
2843 		scan_zone_unevictable_pages(zone);
2844 	}
2845 	return 1;
2846 }
2847 
2848 
2849 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2850 			read_scan_unevictable_node,
2851 			write_scan_unevictable_node);
2852 
2853 int scan_unevictable_register_node(struct node *node)
2854 {
2855 	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2856 }
2857 
2858 void scan_unevictable_unregister_node(struct node *node)
2859 {
2860 	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2861 }
2862 
2863