xref: /linux/mm/vmscan.c (revision 26b433d0da062d6e19d75350c0171d3cf8ff560d)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/sched/mm.h>
18 #include <linux/module.h>
19 #include <linux/gfp.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/highmem.h>
25 #include <linux/vmpressure.h>
26 #include <linux/vmstat.h>
27 #include <linux/file.h>
28 #include <linux/writeback.h>
29 #include <linux/blkdev.h>
30 #include <linux/buffer_head.h>	/* for try_to_release_page(),
31 					buffer_heads_over_limit */
32 #include <linux/mm_inline.h>
33 #include <linux/backing-dev.h>
34 #include <linux/rmap.h>
35 #include <linux/topology.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/compaction.h>
39 #include <linux/notifier.h>
40 #include <linux/rwsem.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/freezer.h>
44 #include <linux/memcontrol.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
54 
55 #include <linux/swapops.h>
56 #include <linux/balloon_compaction.h>
57 
58 #include "internal.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/vmscan.h>
62 
63 struct scan_control {
64 	/* How many pages shrink_list() should reclaim */
65 	unsigned long nr_to_reclaim;
66 
67 	/* This context's GFP mask */
68 	gfp_t gfp_mask;
69 
70 	/* Allocation order */
71 	int order;
72 
73 	/*
74 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
75 	 * are scanned.
76 	 */
77 	nodemask_t	*nodemask;
78 
79 	/*
80 	 * The memory cgroup that hit its limit and as a result is the
81 	 * primary target of this reclaim invocation.
82 	 */
83 	struct mem_cgroup *target_mem_cgroup;
84 
85 	/* Scan (total_size >> priority) pages at once */
86 	int priority;
87 
88 	/* The highest zone to isolate pages for reclaim from */
89 	enum zone_type reclaim_idx;
90 
91 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
92 	unsigned int may_writepage:1;
93 
94 	/* Can mapped pages be reclaimed? */
95 	unsigned int may_unmap:1;
96 
97 	/* Can pages be swapped as part of reclaim? */
98 	unsigned int may_swap:1;
99 
100 	/*
101 	 * Cgroups are not reclaimed below their configured memory.low,
102 	 * unless we threaten to OOM. If any cgroups are skipped due to
103 	 * memory.low and nothing was reclaimed, go back for memory.low.
104 	 */
105 	unsigned int memcg_low_reclaim:1;
106 	unsigned int memcg_low_skipped:1;
107 
108 	unsigned int hibernation_mode:1;
109 
110 	/* One of the zones is ready for compaction */
111 	unsigned int compaction_ready:1;
112 
113 	/* Incremented by the number of inactive pages that were scanned */
114 	unsigned long nr_scanned;
115 
116 	/* Number of pages freed so far during a call to shrink_zones() */
117 	unsigned long nr_reclaimed;
118 };
119 
120 #ifdef ARCH_HAS_PREFETCH
121 #define prefetch_prev_lru_page(_page, _base, _field)			\
122 	do {								\
123 		if ((_page)->lru.prev != _base) {			\
124 			struct page *prev;				\
125 									\
126 			prev = lru_to_page(&(_page->lru));		\
127 			prefetch(&prev->_field);			\
128 		}							\
129 	} while (0)
130 #else
131 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132 #endif
133 
134 #ifdef ARCH_HAS_PREFETCHW
135 #define prefetchw_prev_lru_page(_page, _base, _field)			\
136 	do {								\
137 		if ((_page)->lru.prev != _base) {			\
138 			struct page *prev;				\
139 									\
140 			prev = lru_to_page(&(_page->lru));		\
141 			prefetchw(&prev->_field);			\
142 		}							\
143 	} while (0)
144 #else
145 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146 #endif
147 
148 /*
149  * From 0 .. 100.  Higher means more swappy.
150  */
151 int vm_swappiness = 60;
152 /*
153  * The total number of pages which are beyond the high watermark within all
154  * zones.
155  */
156 unsigned long vm_total_pages;
157 
158 static LIST_HEAD(shrinker_list);
159 static DECLARE_RWSEM(shrinker_rwsem);
160 
161 #ifdef CONFIG_MEMCG
162 static bool global_reclaim(struct scan_control *sc)
163 {
164 	return !sc->target_mem_cgroup;
165 }
166 
167 /**
168  * sane_reclaim - is the usual dirty throttling mechanism operational?
169  * @sc: scan_control in question
170  *
171  * The normal page dirty throttling mechanism in balance_dirty_pages() is
172  * completely broken with the legacy memcg and direct stalling in
173  * shrink_page_list() is used for throttling instead, which lacks all the
174  * niceties such as fairness, adaptive pausing, bandwidth proportional
175  * allocation and configurability.
176  *
177  * This function tests whether the vmscan currently in progress can assume
178  * that the normal dirty throttling mechanism is operational.
179  */
180 static bool sane_reclaim(struct scan_control *sc)
181 {
182 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
183 
184 	if (!memcg)
185 		return true;
186 #ifdef CONFIG_CGROUP_WRITEBACK
187 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
188 		return true;
189 #endif
190 	return false;
191 }
192 #else
193 static bool global_reclaim(struct scan_control *sc)
194 {
195 	return true;
196 }
197 
198 static bool sane_reclaim(struct scan_control *sc)
199 {
200 	return true;
201 }
202 #endif
203 
204 /*
205  * This misses isolated pages which are not accounted for to save counters.
206  * As the data only determines if reclaim or compaction continues, it is
207  * not expected that isolated pages will be a dominating factor.
208  */
209 unsigned long zone_reclaimable_pages(struct zone *zone)
210 {
211 	unsigned long nr;
212 
213 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
214 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
215 	if (get_nr_swap_pages() > 0)
216 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
217 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
218 
219 	return nr;
220 }
221 
222 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
223 {
224 	unsigned long nr;
225 
226 	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
227 	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
228 	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
229 
230 	if (get_nr_swap_pages() > 0)
231 		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
232 		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
233 		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
234 
235 	return nr;
236 }
237 
238 /**
239  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
240  * @lruvec: lru vector
241  * @lru: lru to use
242  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
243  */
244 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
245 {
246 	unsigned long lru_size;
247 	int zid;
248 
249 	if (!mem_cgroup_disabled())
250 		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
251 	else
252 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
253 
254 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
255 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
256 		unsigned long size;
257 
258 		if (!managed_zone(zone))
259 			continue;
260 
261 		if (!mem_cgroup_disabled())
262 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
263 		else
264 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
265 				       NR_ZONE_LRU_BASE + lru);
266 		lru_size -= min(size, lru_size);
267 	}
268 
269 	return lru_size;
270 
271 }
272 
273 /*
274  * Add a shrinker callback to be called from the vm.
275  */
276 int register_shrinker(struct shrinker *shrinker)
277 {
278 	size_t size = sizeof(*shrinker->nr_deferred);
279 
280 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
281 		size *= nr_node_ids;
282 
283 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
284 	if (!shrinker->nr_deferred)
285 		return -ENOMEM;
286 
287 	down_write(&shrinker_rwsem);
288 	list_add_tail(&shrinker->list, &shrinker_list);
289 	up_write(&shrinker_rwsem);
290 	return 0;
291 }
292 EXPORT_SYMBOL(register_shrinker);
293 
294 /*
295  * Remove one
296  */
297 void unregister_shrinker(struct shrinker *shrinker)
298 {
299 	down_write(&shrinker_rwsem);
300 	list_del(&shrinker->list);
301 	up_write(&shrinker_rwsem);
302 	kfree(shrinker->nr_deferred);
303 }
304 EXPORT_SYMBOL(unregister_shrinker);
305 
306 #define SHRINK_BATCH 128
307 
308 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
309 				    struct shrinker *shrinker,
310 				    unsigned long nr_scanned,
311 				    unsigned long nr_eligible)
312 {
313 	unsigned long freed = 0;
314 	unsigned long long delta;
315 	long total_scan;
316 	long freeable;
317 	long nr;
318 	long new_nr;
319 	int nid = shrinkctl->nid;
320 	long batch_size = shrinker->batch ? shrinker->batch
321 					  : SHRINK_BATCH;
322 	long scanned = 0, next_deferred;
323 
324 	freeable = shrinker->count_objects(shrinker, shrinkctl);
325 	if (freeable == 0)
326 		return 0;
327 
328 	/*
329 	 * copy the current shrinker scan count into a local variable
330 	 * and zero it so that other concurrent shrinker invocations
331 	 * don't also do this scanning work.
332 	 */
333 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
334 
335 	total_scan = nr;
336 	delta = (4 * nr_scanned) / shrinker->seeks;
337 	delta *= freeable;
338 	do_div(delta, nr_eligible + 1);
339 	total_scan += delta;
340 	if (total_scan < 0) {
341 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
342 		       shrinker->scan_objects, total_scan);
343 		total_scan = freeable;
344 		next_deferred = nr;
345 	} else
346 		next_deferred = total_scan;
347 
348 	/*
349 	 * We need to avoid excessive windup on filesystem shrinkers
350 	 * due to large numbers of GFP_NOFS allocations causing the
351 	 * shrinkers to return -1 all the time. This results in a large
352 	 * nr being built up so when a shrink that can do some work
353 	 * comes along it empties the entire cache due to nr >>>
354 	 * freeable. This is bad for sustaining a working set in
355 	 * memory.
356 	 *
357 	 * Hence only allow the shrinker to scan the entire cache when
358 	 * a large delta change is calculated directly.
359 	 */
360 	if (delta < freeable / 4)
361 		total_scan = min(total_scan, freeable / 2);
362 
363 	/*
364 	 * Avoid risking looping forever due to too large nr value:
365 	 * never try to free more than twice the estimate number of
366 	 * freeable entries.
367 	 */
368 	if (total_scan > freeable * 2)
369 		total_scan = freeable * 2;
370 
371 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
372 				   nr_scanned, nr_eligible,
373 				   freeable, delta, total_scan);
374 
375 	/*
376 	 * Normally, we should not scan less than batch_size objects in one
377 	 * pass to avoid too frequent shrinker calls, but if the slab has less
378 	 * than batch_size objects in total and we are really tight on memory,
379 	 * we will try to reclaim all available objects, otherwise we can end
380 	 * up failing allocations although there are plenty of reclaimable
381 	 * objects spread over several slabs with usage less than the
382 	 * batch_size.
383 	 *
384 	 * We detect the "tight on memory" situations by looking at the total
385 	 * number of objects we want to scan (total_scan). If it is greater
386 	 * than the total number of objects on slab (freeable), we must be
387 	 * scanning at high prio and therefore should try to reclaim as much as
388 	 * possible.
389 	 */
390 	while (total_scan >= batch_size ||
391 	       total_scan >= freeable) {
392 		unsigned long ret;
393 		unsigned long nr_to_scan = min(batch_size, total_scan);
394 
395 		shrinkctl->nr_to_scan = nr_to_scan;
396 		shrinkctl->nr_scanned = nr_to_scan;
397 		ret = shrinker->scan_objects(shrinker, shrinkctl);
398 		if (ret == SHRINK_STOP)
399 			break;
400 		freed += ret;
401 
402 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
403 		total_scan -= shrinkctl->nr_scanned;
404 		scanned += shrinkctl->nr_scanned;
405 
406 		cond_resched();
407 	}
408 
409 	if (next_deferred >= scanned)
410 		next_deferred -= scanned;
411 	else
412 		next_deferred = 0;
413 	/*
414 	 * move the unused scan count back into the shrinker in a
415 	 * manner that handles concurrent updates. If we exhausted the
416 	 * scan, there is no need to do an update.
417 	 */
418 	if (next_deferred > 0)
419 		new_nr = atomic_long_add_return(next_deferred,
420 						&shrinker->nr_deferred[nid]);
421 	else
422 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
423 
424 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
425 	return freed;
426 }
427 
428 /**
429  * shrink_slab - shrink slab caches
430  * @gfp_mask: allocation context
431  * @nid: node whose slab caches to target
432  * @memcg: memory cgroup whose slab caches to target
433  * @nr_scanned: pressure numerator
434  * @nr_eligible: pressure denominator
435  *
436  * Call the shrink functions to age shrinkable caches.
437  *
438  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
439  * unaware shrinkers will receive a node id of 0 instead.
440  *
441  * @memcg specifies the memory cgroup to target. If it is not NULL,
442  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
443  * objects from the memory cgroup specified. Otherwise, only unaware
444  * shrinkers are called.
445  *
446  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
447  * the available objects should be scanned.  Page reclaim for example
448  * passes the number of pages scanned and the number of pages on the
449  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
450  * when it encountered mapped pages.  The ratio is further biased by
451  * the ->seeks setting of the shrink function, which indicates the
452  * cost to recreate an object relative to that of an LRU page.
453  *
454  * Returns the number of reclaimed slab objects.
455  */
456 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
457 				 struct mem_cgroup *memcg,
458 				 unsigned long nr_scanned,
459 				 unsigned long nr_eligible)
460 {
461 	struct shrinker *shrinker;
462 	unsigned long freed = 0;
463 
464 	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
465 		return 0;
466 
467 	if (nr_scanned == 0)
468 		nr_scanned = SWAP_CLUSTER_MAX;
469 
470 	if (!down_read_trylock(&shrinker_rwsem)) {
471 		/*
472 		 * If we would return 0, our callers would understand that we
473 		 * have nothing else to shrink and give up trying. By returning
474 		 * 1 we keep it going and assume we'll be able to shrink next
475 		 * time.
476 		 */
477 		freed = 1;
478 		goto out;
479 	}
480 
481 	list_for_each_entry(shrinker, &shrinker_list, list) {
482 		struct shrink_control sc = {
483 			.gfp_mask = gfp_mask,
484 			.nid = nid,
485 			.memcg = memcg,
486 		};
487 
488 		/*
489 		 * If kernel memory accounting is disabled, we ignore
490 		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
491 		 * passing NULL for memcg.
492 		 */
493 		if (memcg_kmem_enabled() &&
494 		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
495 			continue;
496 
497 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
498 			sc.nid = 0;
499 
500 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
501 	}
502 
503 	up_read(&shrinker_rwsem);
504 out:
505 	cond_resched();
506 	return freed;
507 }
508 
509 void drop_slab_node(int nid)
510 {
511 	unsigned long freed;
512 
513 	do {
514 		struct mem_cgroup *memcg = NULL;
515 
516 		freed = 0;
517 		do {
518 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
519 					     1000, 1000);
520 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
521 	} while (freed > 10);
522 }
523 
524 void drop_slab(void)
525 {
526 	int nid;
527 
528 	for_each_online_node(nid)
529 		drop_slab_node(nid);
530 }
531 
532 static inline int is_page_cache_freeable(struct page *page)
533 {
534 	/*
535 	 * A freeable page cache page is referenced only by the caller
536 	 * that isolated the page, the page cache radix tree and
537 	 * optional buffer heads at page->private.
538 	 */
539 	return page_count(page) - page_has_private(page) == 2;
540 }
541 
542 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
543 {
544 	if (current->flags & PF_SWAPWRITE)
545 		return 1;
546 	if (!inode_write_congested(inode))
547 		return 1;
548 	if (inode_to_bdi(inode) == current->backing_dev_info)
549 		return 1;
550 	return 0;
551 }
552 
553 /*
554  * We detected a synchronous write error writing a page out.  Probably
555  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
556  * fsync(), msync() or close().
557  *
558  * The tricky part is that after writepage we cannot touch the mapping: nothing
559  * prevents it from being freed up.  But we have a ref on the page and once
560  * that page is locked, the mapping is pinned.
561  *
562  * We're allowed to run sleeping lock_page() here because we know the caller has
563  * __GFP_FS.
564  */
565 static void handle_write_error(struct address_space *mapping,
566 				struct page *page, int error)
567 {
568 	lock_page(page);
569 	if (page_mapping(page) == mapping)
570 		mapping_set_error(mapping, error);
571 	unlock_page(page);
572 }
573 
574 /* possible outcome of pageout() */
575 typedef enum {
576 	/* failed to write page out, page is locked */
577 	PAGE_KEEP,
578 	/* move page to the active list, page is locked */
579 	PAGE_ACTIVATE,
580 	/* page has been sent to the disk successfully, page is unlocked */
581 	PAGE_SUCCESS,
582 	/* page is clean and locked */
583 	PAGE_CLEAN,
584 } pageout_t;
585 
586 /*
587  * pageout is called by shrink_page_list() for each dirty page.
588  * Calls ->writepage().
589  */
590 static pageout_t pageout(struct page *page, struct address_space *mapping,
591 			 struct scan_control *sc)
592 {
593 	/*
594 	 * If the page is dirty, only perform writeback if that write
595 	 * will be non-blocking.  To prevent this allocation from being
596 	 * stalled by pagecache activity.  But note that there may be
597 	 * stalls if we need to run get_block().  We could test
598 	 * PagePrivate for that.
599 	 *
600 	 * If this process is currently in __generic_file_write_iter() against
601 	 * this page's queue, we can perform writeback even if that
602 	 * will block.
603 	 *
604 	 * If the page is swapcache, write it back even if that would
605 	 * block, for some throttling. This happens by accident, because
606 	 * swap_backing_dev_info is bust: it doesn't reflect the
607 	 * congestion state of the swapdevs.  Easy to fix, if needed.
608 	 */
609 	if (!is_page_cache_freeable(page))
610 		return PAGE_KEEP;
611 	if (!mapping) {
612 		/*
613 		 * Some data journaling orphaned pages can have
614 		 * page->mapping == NULL while being dirty with clean buffers.
615 		 */
616 		if (page_has_private(page)) {
617 			if (try_to_free_buffers(page)) {
618 				ClearPageDirty(page);
619 				pr_info("%s: orphaned page\n", __func__);
620 				return PAGE_CLEAN;
621 			}
622 		}
623 		return PAGE_KEEP;
624 	}
625 	if (mapping->a_ops->writepage == NULL)
626 		return PAGE_ACTIVATE;
627 	if (!may_write_to_inode(mapping->host, sc))
628 		return PAGE_KEEP;
629 
630 	if (clear_page_dirty_for_io(page)) {
631 		int res;
632 		struct writeback_control wbc = {
633 			.sync_mode = WB_SYNC_NONE,
634 			.nr_to_write = SWAP_CLUSTER_MAX,
635 			.range_start = 0,
636 			.range_end = LLONG_MAX,
637 			.for_reclaim = 1,
638 		};
639 
640 		SetPageReclaim(page);
641 		res = mapping->a_ops->writepage(page, &wbc);
642 		if (res < 0)
643 			handle_write_error(mapping, page, res);
644 		if (res == AOP_WRITEPAGE_ACTIVATE) {
645 			ClearPageReclaim(page);
646 			return PAGE_ACTIVATE;
647 		}
648 
649 		if (!PageWriteback(page)) {
650 			/* synchronous write or broken a_ops? */
651 			ClearPageReclaim(page);
652 		}
653 		trace_mm_vmscan_writepage(page);
654 		inc_node_page_state(page, NR_VMSCAN_WRITE);
655 		return PAGE_SUCCESS;
656 	}
657 
658 	return PAGE_CLEAN;
659 }
660 
661 /*
662  * Same as remove_mapping, but if the page is removed from the mapping, it
663  * gets returned with a refcount of 0.
664  */
665 static int __remove_mapping(struct address_space *mapping, struct page *page,
666 			    bool reclaimed)
667 {
668 	unsigned long flags;
669 
670 	BUG_ON(!PageLocked(page));
671 	BUG_ON(mapping != page_mapping(page));
672 
673 	spin_lock_irqsave(&mapping->tree_lock, flags);
674 	/*
675 	 * The non racy check for a busy page.
676 	 *
677 	 * Must be careful with the order of the tests. When someone has
678 	 * a ref to the page, it may be possible that they dirty it then
679 	 * drop the reference. So if PageDirty is tested before page_count
680 	 * here, then the following race may occur:
681 	 *
682 	 * get_user_pages(&page);
683 	 * [user mapping goes away]
684 	 * write_to(page);
685 	 *				!PageDirty(page)    [good]
686 	 * SetPageDirty(page);
687 	 * put_page(page);
688 	 *				!page_count(page)   [good, discard it]
689 	 *
690 	 * [oops, our write_to data is lost]
691 	 *
692 	 * Reversing the order of the tests ensures such a situation cannot
693 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
694 	 * load is not satisfied before that of page->_refcount.
695 	 *
696 	 * Note that if SetPageDirty is always performed via set_page_dirty,
697 	 * and thus under tree_lock, then this ordering is not required.
698 	 */
699 	if (!page_ref_freeze(page, 2))
700 		goto cannot_free;
701 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
702 	if (unlikely(PageDirty(page))) {
703 		page_ref_unfreeze(page, 2);
704 		goto cannot_free;
705 	}
706 
707 	if (PageSwapCache(page)) {
708 		swp_entry_t swap = { .val = page_private(page) };
709 		mem_cgroup_swapout(page, swap);
710 		__delete_from_swap_cache(page);
711 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
712 		put_swap_page(page, swap);
713 	} else {
714 		void (*freepage)(struct page *);
715 		void *shadow = NULL;
716 
717 		freepage = mapping->a_ops->freepage;
718 		/*
719 		 * Remember a shadow entry for reclaimed file cache in
720 		 * order to detect refaults, thus thrashing, later on.
721 		 *
722 		 * But don't store shadows in an address space that is
723 		 * already exiting.  This is not just an optizimation,
724 		 * inode reclaim needs to empty out the radix tree or
725 		 * the nodes are lost.  Don't plant shadows behind its
726 		 * back.
727 		 *
728 		 * We also don't store shadows for DAX mappings because the
729 		 * only page cache pages found in these are zero pages
730 		 * covering holes, and because we don't want to mix DAX
731 		 * exceptional entries and shadow exceptional entries in the
732 		 * same page_tree.
733 		 */
734 		if (reclaimed && page_is_file_cache(page) &&
735 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
736 			shadow = workingset_eviction(mapping, page);
737 		__delete_from_page_cache(page, shadow);
738 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
739 
740 		if (freepage != NULL)
741 			freepage(page);
742 	}
743 
744 	return 1;
745 
746 cannot_free:
747 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
748 	return 0;
749 }
750 
751 /*
752  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
753  * someone else has a ref on the page, abort and return 0.  If it was
754  * successfully detached, return 1.  Assumes the caller has a single ref on
755  * this page.
756  */
757 int remove_mapping(struct address_space *mapping, struct page *page)
758 {
759 	if (__remove_mapping(mapping, page, false)) {
760 		/*
761 		 * Unfreezing the refcount with 1 rather than 2 effectively
762 		 * drops the pagecache ref for us without requiring another
763 		 * atomic operation.
764 		 */
765 		page_ref_unfreeze(page, 1);
766 		return 1;
767 	}
768 	return 0;
769 }
770 
771 /**
772  * putback_lru_page - put previously isolated page onto appropriate LRU list
773  * @page: page to be put back to appropriate lru list
774  *
775  * Add previously isolated @page to appropriate LRU list.
776  * Page may still be unevictable for other reasons.
777  *
778  * lru_lock must not be held, interrupts must be enabled.
779  */
780 void putback_lru_page(struct page *page)
781 {
782 	bool is_unevictable;
783 	int was_unevictable = PageUnevictable(page);
784 
785 	VM_BUG_ON_PAGE(PageLRU(page), page);
786 
787 redo:
788 	ClearPageUnevictable(page);
789 
790 	if (page_evictable(page)) {
791 		/*
792 		 * For evictable pages, we can use the cache.
793 		 * In event of a race, worst case is we end up with an
794 		 * unevictable page on [in]active list.
795 		 * We know how to handle that.
796 		 */
797 		is_unevictable = false;
798 		lru_cache_add(page);
799 	} else {
800 		/*
801 		 * Put unevictable pages directly on zone's unevictable
802 		 * list.
803 		 */
804 		is_unevictable = true;
805 		add_page_to_unevictable_list(page);
806 		/*
807 		 * When racing with an mlock or AS_UNEVICTABLE clearing
808 		 * (page is unlocked) make sure that if the other thread
809 		 * does not observe our setting of PG_lru and fails
810 		 * isolation/check_move_unevictable_pages,
811 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
812 		 * the page back to the evictable list.
813 		 *
814 		 * The other side is TestClearPageMlocked() or shmem_lock().
815 		 */
816 		smp_mb();
817 	}
818 
819 	/*
820 	 * page's status can change while we move it among lru. If an evictable
821 	 * page is on unevictable list, it never be freed. To avoid that,
822 	 * check after we added it to the list, again.
823 	 */
824 	if (is_unevictable && page_evictable(page)) {
825 		if (!isolate_lru_page(page)) {
826 			put_page(page);
827 			goto redo;
828 		}
829 		/* This means someone else dropped this page from LRU
830 		 * So, it will be freed or putback to LRU again. There is
831 		 * nothing to do here.
832 		 */
833 	}
834 
835 	if (was_unevictable && !is_unevictable)
836 		count_vm_event(UNEVICTABLE_PGRESCUED);
837 	else if (!was_unevictable && is_unevictable)
838 		count_vm_event(UNEVICTABLE_PGCULLED);
839 
840 	put_page(page);		/* drop ref from isolate */
841 }
842 
843 enum page_references {
844 	PAGEREF_RECLAIM,
845 	PAGEREF_RECLAIM_CLEAN,
846 	PAGEREF_KEEP,
847 	PAGEREF_ACTIVATE,
848 };
849 
850 static enum page_references page_check_references(struct page *page,
851 						  struct scan_control *sc)
852 {
853 	int referenced_ptes, referenced_page;
854 	unsigned long vm_flags;
855 
856 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
857 					  &vm_flags);
858 	referenced_page = TestClearPageReferenced(page);
859 
860 	/*
861 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
862 	 * move the page to the unevictable list.
863 	 */
864 	if (vm_flags & VM_LOCKED)
865 		return PAGEREF_RECLAIM;
866 
867 	if (referenced_ptes) {
868 		if (PageSwapBacked(page))
869 			return PAGEREF_ACTIVATE;
870 		/*
871 		 * All mapped pages start out with page table
872 		 * references from the instantiating fault, so we need
873 		 * to look twice if a mapped file page is used more
874 		 * than once.
875 		 *
876 		 * Mark it and spare it for another trip around the
877 		 * inactive list.  Another page table reference will
878 		 * lead to its activation.
879 		 *
880 		 * Note: the mark is set for activated pages as well
881 		 * so that recently deactivated but used pages are
882 		 * quickly recovered.
883 		 */
884 		SetPageReferenced(page);
885 
886 		if (referenced_page || referenced_ptes > 1)
887 			return PAGEREF_ACTIVATE;
888 
889 		/*
890 		 * Activate file-backed executable pages after first usage.
891 		 */
892 		if (vm_flags & VM_EXEC)
893 			return PAGEREF_ACTIVATE;
894 
895 		return PAGEREF_KEEP;
896 	}
897 
898 	/* Reclaim if clean, defer dirty pages to writeback */
899 	if (referenced_page && !PageSwapBacked(page))
900 		return PAGEREF_RECLAIM_CLEAN;
901 
902 	return PAGEREF_RECLAIM;
903 }
904 
905 /* Check if a page is dirty or under writeback */
906 static void page_check_dirty_writeback(struct page *page,
907 				       bool *dirty, bool *writeback)
908 {
909 	struct address_space *mapping;
910 
911 	/*
912 	 * Anonymous pages are not handled by flushers and must be written
913 	 * from reclaim context. Do not stall reclaim based on them
914 	 */
915 	if (!page_is_file_cache(page) ||
916 	    (PageAnon(page) && !PageSwapBacked(page))) {
917 		*dirty = false;
918 		*writeback = false;
919 		return;
920 	}
921 
922 	/* By default assume that the page flags are accurate */
923 	*dirty = PageDirty(page);
924 	*writeback = PageWriteback(page);
925 
926 	/* Verify dirty/writeback state if the filesystem supports it */
927 	if (!page_has_private(page))
928 		return;
929 
930 	mapping = page_mapping(page);
931 	if (mapping && mapping->a_ops->is_dirty_writeback)
932 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
933 }
934 
935 struct reclaim_stat {
936 	unsigned nr_dirty;
937 	unsigned nr_unqueued_dirty;
938 	unsigned nr_congested;
939 	unsigned nr_writeback;
940 	unsigned nr_immediate;
941 	unsigned nr_activate;
942 	unsigned nr_ref_keep;
943 	unsigned nr_unmap_fail;
944 };
945 
946 /*
947  * shrink_page_list() returns the number of reclaimed pages
948  */
949 static unsigned long shrink_page_list(struct list_head *page_list,
950 				      struct pglist_data *pgdat,
951 				      struct scan_control *sc,
952 				      enum ttu_flags ttu_flags,
953 				      struct reclaim_stat *stat,
954 				      bool force_reclaim)
955 {
956 	LIST_HEAD(ret_pages);
957 	LIST_HEAD(free_pages);
958 	int pgactivate = 0;
959 	unsigned nr_unqueued_dirty = 0;
960 	unsigned nr_dirty = 0;
961 	unsigned nr_congested = 0;
962 	unsigned nr_reclaimed = 0;
963 	unsigned nr_writeback = 0;
964 	unsigned nr_immediate = 0;
965 	unsigned nr_ref_keep = 0;
966 	unsigned nr_unmap_fail = 0;
967 
968 	cond_resched();
969 
970 	while (!list_empty(page_list)) {
971 		struct address_space *mapping;
972 		struct page *page;
973 		int may_enter_fs;
974 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
975 		bool dirty, writeback;
976 
977 		cond_resched();
978 
979 		page = lru_to_page(page_list);
980 		list_del(&page->lru);
981 
982 		if (!trylock_page(page))
983 			goto keep;
984 
985 		VM_BUG_ON_PAGE(PageActive(page), page);
986 
987 		sc->nr_scanned++;
988 
989 		if (unlikely(!page_evictable(page)))
990 			goto activate_locked;
991 
992 		if (!sc->may_unmap && page_mapped(page))
993 			goto keep_locked;
994 
995 		/* Double the slab pressure for mapped and swapcache pages */
996 		if ((page_mapped(page) || PageSwapCache(page)) &&
997 		    !(PageAnon(page) && !PageSwapBacked(page)))
998 			sc->nr_scanned++;
999 
1000 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1001 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1002 
1003 		/*
1004 		 * The number of dirty pages determines if a zone is marked
1005 		 * reclaim_congested which affects wait_iff_congested. kswapd
1006 		 * will stall and start writing pages if the tail of the LRU
1007 		 * is all dirty unqueued pages.
1008 		 */
1009 		page_check_dirty_writeback(page, &dirty, &writeback);
1010 		if (dirty || writeback)
1011 			nr_dirty++;
1012 
1013 		if (dirty && !writeback)
1014 			nr_unqueued_dirty++;
1015 
1016 		/*
1017 		 * Treat this page as congested if the underlying BDI is or if
1018 		 * pages are cycling through the LRU so quickly that the
1019 		 * pages marked for immediate reclaim are making it to the
1020 		 * end of the LRU a second time.
1021 		 */
1022 		mapping = page_mapping(page);
1023 		if (((dirty || writeback) && mapping &&
1024 		     inode_write_congested(mapping->host)) ||
1025 		    (writeback && PageReclaim(page)))
1026 			nr_congested++;
1027 
1028 		/*
1029 		 * If a page at the tail of the LRU is under writeback, there
1030 		 * are three cases to consider.
1031 		 *
1032 		 * 1) If reclaim is encountering an excessive number of pages
1033 		 *    under writeback and this page is both under writeback and
1034 		 *    PageReclaim then it indicates that pages are being queued
1035 		 *    for IO but are being recycled through the LRU before the
1036 		 *    IO can complete. Waiting on the page itself risks an
1037 		 *    indefinite stall if it is impossible to writeback the
1038 		 *    page due to IO error or disconnected storage so instead
1039 		 *    note that the LRU is being scanned too quickly and the
1040 		 *    caller can stall after page list has been processed.
1041 		 *
1042 		 * 2) Global or new memcg reclaim encounters a page that is
1043 		 *    not marked for immediate reclaim, or the caller does not
1044 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1045 		 *    not to fs). In this case mark the page for immediate
1046 		 *    reclaim and continue scanning.
1047 		 *
1048 		 *    Require may_enter_fs because we would wait on fs, which
1049 		 *    may not have submitted IO yet. And the loop driver might
1050 		 *    enter reclaim, and deadlock if it waits on a page for
1051 		 *    which it is needed to do the write (loop masks off
1052 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1053 		 *    would probably show more reasons.
1054 		 *
1055 		 * 3) Legacy memcg encounters a page that is already marked
1056 		 *    PageReclaim. memcg does not have any dirty pages
1057 		 *    throttling so we could easily OOM just because too many
1058 		 *    pages are in writeback and there is nothing else to
1059 		 *    reclaim. Wait for the writeback to complete.
1060 		 *
1061 		 * In cases 1) and 2) we activate the pages to get them out of
1062 		 * the way while we continue scanning for clean pages on the
1063 		 * inactive list and refilling from the active list. The
1064 		 * observation here is that waiting for disk writes is more
1065 		 * expensive than potentially causing reloads down the line.
1066 		 * Since they're marked for immediate reclaim, they won't put
1067 		 * memory pressure on the cache working set any longer than it
1068 		 * takes to write them to disk.
1069 		 */
1070 		if (PageWriteback(page)) {
1071 			/* Case 1 above */
1072 			if (current_is_kswapd() &&
1073 			    PageReclaim(page) &&
1074 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1075 				nr_immediate++;
1076 				goto activate_locked;
1077 
1078 			/* Case 2 above */
1079 			} else if (sane_reclaim(sc) ||
1080 			    !PageReclaim(page) || !may_enter_fs) {
1081 				/*
1082 				 * This is slightly racy - end_page_writeback()
1083 				 * might have just cleared PageReclaim, then
1084 				 * setting PageReclaim here end up interpreted
1085 				 * as PageReadahead - but that does not matter
1086 				 * enough to care.  What we do want is for this
1087 				 * page to have PageReclaim set next time memcg
1088 				 * reclaim reaches the tests above, so it will
1089 				 * then wait_on_page_writeback() to avoid OOM;
1090 				 * and it's also appropriate in global reclaim.
1091 				 */
1092 				SetPageReclaim(page);
1093 				nr_writeback++;
1094 				goto activate_locked;
1095 
1096 			/* Case 3 above */
1097 			} else {
1098 				unlock_page(page);
1099 				wait_on_page_writeback(page);
1100 				/* then go back and try same page again */
1101 				list_add_tail(&page->lru, page_list);
1102 				continue;
1103 			}
1104 		}
1105 
1106 		if (!force_reclaim)
1107 			references = page_check_references(page, sc);
1108 
1109 		switch (references) {
1110 		case PAGEREF_ACTIVATE:
1111 			goto activate_locked;
1112 		case PAGEREF_KEEP:
1113 			nr_ref_keep++;
1114 			goto keep_locked;
1115 		case PAGEREF_RECLAIM:
1116 		case PAGEREF_RECLAIM_CLEAN:
1117 			; /* try to reclaim the page below */
1118 		}
1119 
1120 		/*
1121 		 * Anonymous process memory has backing store?
1122 		 * Try to allocate it some swap space here.
1123 		 * Lazyfree page could be freed directly
1124 		 */
1125 		if (PageAnon(page) && PageSwapBacked(page) &&
1126 		    !PageSwapCache(page)) {
1127 			if (!(sc->gfp_mask & __GFP_IO))
1128 				goto keep_locked;
1129 			if (PageTransHuge(page)) {
1130 				/* cannot split THP, skip it */
1131 				if (!can_split_huge_page(page, NULL))
1132 					goto activate_locked;
1133 				/*
1134 				 * Split pages without a PMD map right
1135 				 * away. Chances are some or all of the
1136 				 * tail pages can be freed without IO.
1137 				 */
1138 				if (!compound_mapcount(page) &&
1139 				    split_huge_page_to_list(page, page_list))
1140 					goto activate_locked;
1141 			}
1142 			if (!add_to_swap(page)) {
1143 				if (!PageTransHuge(page))
1144 					goto activate_locked;
1145 				/* Split THP and swap individual base pages */
1146 				if (split_huge_page_to_list(page, page_list))
1147 					goto activate_locked;
1148 				if (!add_to_swap(page))
1149 					goto activate_locked;
1150 			}
1151 
1152 			/* XXX: We don't support THP writes */
1153 			if (PageTransHuge(page) &&
1154 				  split_huge_page_to_list(page, page_list)) {
1155 				delete_from_swap_cache(page);
1156 				goto activate_locked;
1157 			}
1158 
1159 			may_enter_fs = 1;
1160 
1161 			/* Adding to swap updated mapping */
1162 			mapping = page_mapping(page);
1163 		} else if (unlikely(PageTransHuge(page))) {
1164 			/* Split file THP */
1165 			if (split_huge_page_to_list(page, page_list))
1166 				goto keep_locked;
1167 		}
1168 
1169 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
1170 
1171 		/*
1172 		 * The page is mapped into the page tables of one or more
1173 		 * processes. Try to unmap it here.
1174 		 */
1175 		if (page_mapped(page)) {
1176 			if (!try_to_unmap(page, ttu_flags | TTU_BATCH_FLUSH)) {
1177 				nr_unmap_fail++;
1178 				goto activate_locked;
1179 			}
1180 		}
1181 
1182 		if (PageDirty(page)) {
1183 			/*
1184 			 * Only kswapd can writeback filesystem pages
1185 			 * to avoid risk of stack overflow. But avoid
1186 			 * injecting inefficient single-page IO into
1187 			 * flusher writeback as much as possible: only
1188 			 * write pages when we've encountered many
1189 			 * dirty pages, and when we've already scanned
1190 			 * the rest of the LRU for clean pages and see
1191 			 * the same dirty pages again (PageReclaim).
1192 			 */
1193 			if (page_is_file_cache(page) &&
1194 			    (!current_is_kswapd() || !PageReclaim(page) ||
1195 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1196 				/*
1197 				 * Immediately reclaim when written back.
1198 				 * Similar in principal to deactivate_page()
1199 				 * except we already have the page isolated
1200 				 * and know it's dirty
1201 				 */
1202 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1203 				SetPageReclaim(page);
1204 
1205 				goto activate_locked;
1206 			}
1207 
1208 			if (references == PAGEREF_RECLAIM_CLEAN)
1209 				goto keep_locked;
1210 			if (!may_enter_fs)
1211 				goto keep_locked;
1212 			if (!sc->may_writepage)
1213 				goto keep_locked;
1214 
1215 			/*
1216 			 * Page is dirty. Flush the TLB if a writable entry
1217 			 * potentially exists to avoid CPU writes after IO
1218 			 * starts and then write it out here.
1219 			 */
1220 			try_to_unmap_flush_dirty();
1221 			switch (pageout(page, mapping, sc)) {
1222 			case PAGE_KEEP:
1223 				goto keep_locked;
1224 			case PAGE_ACTIVATE:
1225 				goto activate_locked;
1226 			case PAGE_SUCCESS:
1227 				if (PageWriteback(page))
1228 					goto keep;
1229 				if (PageDirty(page))
1230 					goto keep;
1231 
1232 				/*
1233 				 * A synchronous write - probably a ramdisk.  Go
1234 				 * ahead and try to reclaim the page.
1235 				 */
1236 				if (!trylock_page(page))
1237 					goto keep;
1238 				if (PageDirty(page) || PageWriteback(page))
1239 					goto keep_locked;
1240 				mapping = page_mapping(page);
1241 			case PAGE_CLEAN:
1242 				; /* try to free the page below */
1243 			}
1244 		}
1245 
1246 		/*
1247 		 * If the page has buffers, try to free the buffer mappings
1248 		 * associated with this page. If we succeed we try to free
1249 		 * the page as well.
1250 		 *
1251 		 * We do this even if the page is PageDirty().
1252 		 * try_to_release_page() does not perform I/O, but it is
1253 		 * possible for a page to have PageDirty set, but it is actually
1254 		 * clean (all its buffers are clean).  This happens if the
1255 		 * buffers were written out directly, with submit_bh(). ext3
1256 		 * will do this, as well as the blockdev mapping.
1257 		 * try_to_release_page() will discover that cleanness and will
1258 		 * drop the buffers and mark the page clean - it can be freed.
1259 		 *
1260 		 * Rarely, pages can have buffers and no ->mapping.  These are
1261 		 * the pages which were not successfully invalidated in
1262 		 * truncate_complete_page().  We try to drop those buffers here
1263 		 * and if that worked, and the page is no longer mapped into
1264 		 * process address space (page_count == 1) it can be freed.
1265 		 * Otherwise, leave the page on the LRU so it is swappable.
1266 		 */
1267 		if (page_has_private(page)) {
1268 			if (!try_to_release_page(page, sc->gfp_mask))
1269 				goto activate_locked;
1270 			if (!mapping && page_count(page) == 1) {
1271 				unlock_page(page);
1272 				if (put_page_testzero(page))
1273 					goto free_it;
1274 				else {
1275 					/*
1276 					 * rare race with speculative reference.
1277 					 * the speculative reference will free
1278 					 * this page shortly, so we may
1279 					 * increment nr_reclaimed here (and
1280 					 * leave it off the LRU).
1281 					 */
1282 					nr_reclaimed++;
1283 					continue;
1284 				}
1285 			}
1286 		}
1287 
1288 		if (PageAnon(page) && !PageSwapBacked(page)) {
1289 			/* follow __remove_mapping for reference */
1290 			if (!page_ref_freeze(page, 1))
1291 				goto keep_locked;
1292 			if (PageDirty(page)) {
1293 				page_ref_unfreeze(page, 1);
1294 				goto keep_locked;
1295 			}
1296 
1297 			count_vm_event(PGLAZYFREED);
1298 			count_memcg_page_event(page, PGLAZYFREED);
1299 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1300 			goto keep_locked;
1301 		/*
1302 		 * At this point, we have no other references and there is
1303 		 * no way to pick any more up (removed from LRU, removed
1304 		 * from pagecache). Can use non-atomic bitops now (and
1305 		 * we obviously don't have to worry about waking up a process
1306 		 * waiting on the page lock, because there are no references.
1307 		 */
1308 		__ClearPageLocked(page);
1309 free_it:
1310 		nr_reclaimed++;
1311 
1312 		/*
1313 		 * Is there need to periodically free_page_list? It would
1314 		 * appear not as the counts should be low
1315 		 */
1316 		list_add(&page->lru, &free_pages);
1317 		continue;
1318 
1319 activate_locked:
1320 		/* Not a candidate for swapping, so reclaim swap space. */
1321 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1322 						PageMlocked(page)))
1323 			try_to_free_swap(page);
1324 		VM_BUG_ON_PAGE(PageActive(page), page);
1325 		if (!PageMlocked(page)) {
1326 			SetPageActive(page);
1327 			pgactivate++;
1328 			count_memcg_page_event(page, PGACTIVATE);
1329 		}
1330 keep_locked:
1331 		unlock_page(page);
1332 keep:
1333 		list_add(&page->lru, &ret_pages);
1334 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1335 	}
1336 
1337 	mem_cgroup_uncharge_list(&free_pages);
1338 	try_to_unmap_flush();
1339 	free_hot_cold_page_list(&free_pages, true);
1340 
1341 	list_splice(&ret_pages, page_list);
1342 	count_vm_events(PGACTIVATE, pgactivate);
1343 
1344 	if (stat) {
1345 		stat->nr_dirty = nr_dirty;
1346 		stat->nr_congested = nr_congested;
1347 		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1348 		stat->nr_writeback = nr_writeback;
1349 		stat->nr_immediate = nr_immediate;
1350 		stat->nr_activate = pgactivate;
1351 		stat->nr_ref_keep = nr_ref_keep;
1352 		stat->nr_unmap_fail = nr_unmap_fail;
1353 	}
1354 	return nr_reclaimed;
1355 }
1356 
1357 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1358 					    struct list_head *page_list)
1359 {
1360 	struct scan_control sc = {
1361 		.gfp_mask = GFP_KERNEL,
1362 		.priority = DEF_PRIORITY,
1363 		.may_unmap = 1,
1364 	};
1365 	unsigned long ret;
1366 	struct page *page, *next;
1367 	LIST_HEAD(clean_pages);
1368 
1369 	list_for_each_entry_safe(page, next, page_list, lru) {
1370 		if (page_is_file_cache(page) && !PageDirty(page) &&
1371 		    !__PageMovable(page)) {
1372 			ClearPageActive(page);
1373 			list_move(&page->lru, &clean_pages);
1374 		}
1375 	}
1376 
1377 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1378 			TTU_IGNORE_ACCESS, NULL, true);
1379 	list_splice(&clean_pages, page_list);
1380 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1381 	return ret;
1382 }
1383 
1384 /*
1385  * Attempt to remove the specified page from its LRU.  Only take this page
1386  * if it is of the appropriate PageActive status.  Pages which are being
1387  * freed elsewhere are also ignored.
1388  *
1389  * page:	page to consider
1390  * mode:	one of the LRU isolation modes defined above
1391  *
1392  * returns 0 on success, -ve errno on failure.
1393  */
1394 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1395 {
1396 	int ret = -EINVAL;
1397 
1398 	/* Only take pages on the LRU. */
1399 	if (!PageLRU(page))
1400 		return ret;
1401 
1402 	/* Compaction should not handle unevictable pages but CMA can do so */
1403 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1404 		return ret;
1405 
1406 	ret = -EBUSY;
1407 
1408 	/*
1409 	 * To minimise LRU disruption, the caller can indicate that it only
1410 	 * wants to isolate pages it will be able to operate on without
1411 	 * blocking - clean pages for the most part.
1412 	 *
1413 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1414 	 * that it is possible to migrate without blocking
1415 	 */
1416 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1417 		/* All the caller can do on PageWriteback is block */
1418 		if (PageWriteback(page))
1419 			return ret;
1420 
1421 		if (PageDirty(page)) {
1422 			struct address_space *mapping;
1423 
1424 			/*
1425 			 * Only pages without mappings or that have a
1426 			 * ->migratepage callback are possible to migrate
1427 			 * without blocking
1428 			 */
1429 			mapping = page_mapping(page);
1430 			if (mapping && !mapping->a_ops->migratepage)
1431 				return ret;
1432 		}
1433 	}
1434 
1435 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1436 		return ret;
1437 
1438 	if (likely(get_page_unless_zero(page))) {
1439 		/*
1440 		 * Be careful not to clear PageLRU until after we're
1441 		 * sure the page is not being freed elsewhere -- the
1442 		 * page release code relies on it.
1443 		 */
1444 		ClearPageLRU(page);
1445 		ret = 0;
1446 	}
1447 
1448 	return ret;
1449 }
1450 
1451 
1452 /*
1453  * Update LRU sizes after isolating pages. The LRU size updates must
1454  * be complete before mem_cgroup_update_lru_size due to a santity check.
1455  */
1456 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1457 			enum lru_list lru, unsigned long *nr_zone_taken)
1458 {
1459 	int zid;
1460 
1461 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1462 		if (!nr_zone_taken[zid])
1463 			continue;
1464 
1465 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1466 #ifdef CONFIG_MEMCG
1467 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1468 #endif
1469 	}
1470 
1471 }
1472 
1473 /*
1474  * zone_lru_lock is heavily contended.  Some of the functions that
1475  * shrink the lists perform better by taking out a batch of pages
1476  * and working on them outside the LRU lock.
1477  *
1478  * For pagecache intensive workloads, this function is the hottest
1479  * spot in the kernel (apart from copy_*_user functions).
1480  *
1481  * Appropriate locks must be held before calling this function.
1482  *
1483  * @nr_to_scan:	The number of eligible pages to look through on the list.
1484  * @lruvec:	The LRU vector to pull pages from.
1485  * @dst:	The temp list to put pages on to.
1486  * @nr_scanned:	The number of pages that were scanned.
1487  * @sc:		The scan_control struct for this reclaim session
1488  * @mode:	One of the LRU isolation modes
1489  * @lru:	LRU list id for isolating
1490  *
1491  * returns how many pages were moved onto *@dst.
1492  */
1493 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1494 		struct lruvec *lruvec, struct list_head *dst,
1495 		unsigned long *nr_scanned, struct scan_control *sc,
1496 		isolate_mode_t mode, enum lru_list lru)
1497 {
1498 	struct list_head *src = &lruvec->lists[lru];
1499 	unsigned long nr_taken = 0;
1500 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1501 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1502 	unsigned long skipped = 0;
1503 	unsigned long scan, total_scan, nr_pages;
1504 	LIST_HEAD(pages_skipped);
1505 
1506 	scan = 0;
1507 	for (total_scan = 0;
1508 	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1509 	     total_scan++) {
1510 		struct page *page;
1511 
1512 		page = lru_to_page(src);
1513 		prefetchw_prev_lru_page(page, src, flags);
1514 
1515 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1516 
1517 		if (page_zonenum(page) > sc->reclaim_idx) {
1518 			list_move(&page->lru, &pages_skipped);
1519 			nr_skipped[page_zonenum(page)]++;
1520 			continue;
1521 		}
1522 
1523 		/*
1524 		 * Do not count skipped pages because that makes the function
1525 		 * return with no isolated pages if the LRU mostly contains
1526 		 * ineligible pages.  This causes the VM to not reclaim any
1527 		 * pages, triggering a premature OOM.
1528 		 */
1529 		scan++;
1530 		switch (__isolate_lru_page(page, mode)) {
1531 		case 0:
1532 			nr_pages = hpage_nr_pages(page);
1533 			nr_taken += nr_pages;
1534 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1535 			list_move(&page->lru, dst);
1536 			break;
1537 
1538 		case -EBUSY:
1539 			/* else it is being freed elsewhere */
1540 			list_move(&page->lru, src);
1541 			continue;
1542 
1543 		default:
1544 			BUG();
1545 		}
1546 	}
1547 
1548 	/*
1549 	 * Splice any skipped pages to the start of the LRU list. Note that
1550 	 * this disrupts the LRU order when reclaiming for lower zones but
1551 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1552 	 * scanning would soon rescan the same pages to skip and put the
1553 	 * system at risk of premature OOM.
1554 	 */
1555 	if (!list_empty(&pages_skipped)) {
1556 		int zid;
1557 
1558 		list_splice(&pages_skipped, src);
1559 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1560 			if (!nr_skipped[zid])
1561 				continue;
1562 
1563 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1564 			skipped += nr_skipped[zid];
1565 		}
1566 	}
1567 	*nr_scanned = total_scan;
1568 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1569 				    total_scan, skipped, nr_taken, mode, lru);
1570 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1571 	return nr_taken;
1572 }
1573 
1574 /**
1575  * isolate_lru_page - tries to isolate a page from its LRU list
1576  * @page: page to isolate from its LRU list
1577  *
1578  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1579  * vmstat statistic corresponding to whatever LRU list the page was on.
1580  *
1581  * Returns 0 if the page was removed from an LRU list.
1582  * Returns -EBUSY if the page was not on an LRU list.
1583  *
1584  * The returned page will have PageLRU() cleared.  If it was found on
1585  * the active list, it will have PageActive set.  If it was found on
1586  * the unevictable list, it will have the PageUnevictable bit set. That flag
1587  * may need to be cleared by the caller before letting the page go.
1588  *
1589  * The vmstat statistic corresponding to the list on which the page was
1590  * found will be decremented.
1591  *
1592  * Restrictions:
1593  * (1) Must be called with an elevated refcount on the page. This is a
1594  *     fundamentnal difference from isolate_lru_pages (which is called
1595  *     without a stable reference).
1596  * (2) the lru_lock must not be held.
1597  * (3) interrupts must be enabled.
1598  */
1599 int isolate_lru_page(struct page *page)
1600 {
1601 	int ret = -EBUSY;
1602 
1603 	VM_BUG_ON_PAGE(!page_count(page), page);
1604 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1605 
1606 	if (PageLRU(page)) {
1607 		struct zone *zone = page_zone(page);
1608 		struct lruvec *lruvec;
1609 
1610 		spin_lock_irq(zone_lru_lock(zone));
1611 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1612 		if (PageLRU(page)) {
1613 			int lru = page_lru(page);
1614 			get_page(page);
1615 			ClearPageLRU(page);
1616 			del_page_from_lru_list(page, lruvec, lru);
1617 			ret = 0;
1618 		}
1619 		spin_unlock_irq(zone_lru_lock(zone));
1620 	}
1621 	return ret;
1622 }
1623 
1624 /*
1625  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1626  * then get resheduled. When there are massive number of tasks doing page
1627  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1628  * the LRU list will go small and be scanned faster than necessary, leading to
1629  * unnecessary swapping, thrashing and OOM.
1630  */
1631 static int too_many_isolated(struct pglist_data *pgdat, int file,
1632 		struct scan_control *sc)
1633 {
1634 	unsigned long inactive, isolated;
1635 
1636 	if (current_is_kswapd())
1637 		return 0;
1638 
1639 	if (!sane_reclaim(sc))
1640 		return 0;
1641 
1642 	if (file) {
1643 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1644 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1645 	} else {
1646 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1647 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1648 	}
1649 
1650 	/*
1651 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1652 	 * won't get blocked by normal direct-reclaimers, forming a circular
1653 	 * deadlock.
1654 	 */
1655 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1656 		inactive >>= 3;
1657 
1658 	return isolated > inactive;
1659 }
1660 
1661 static noinline_for_stack void
1662 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1663 {
1664 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1665 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1666 	LIST_HEAD(pages_to_free);
1667 
1668 	/*
1669 	 * Put back any unfreeable pages.
1670 	 */
1671 	while (!list_empty(page_list)) {
1672 		struct page *page = lru_to_page(page_list);
1673 		int lru;
1674 
1675 		VM_BUG_ON_PAGE(PageLRU(page), page);
1676 		list_del(&page->lru);
1677 		if (unlikely(!page_evictable(page))) {
1678 			spin_unlock_irq(&pgdat->lru_lock);
1679 			putback_lru_page(page);
1680 			spin_lock_irq(&pgdat->lru_lock);
1681 			continue;
1682 		}
1683 
1684 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1685 
1686 		SetPageLRU(page);
1687 		lru = page_lru(page);
1688 		add_page_to_lru_list(page, lruvec, lru);
1689 
1690 		if (is_active_lru(lru)) {
1691 			int file = is_file_lru(lru);
1692 			int numpages = hpage_nr_pages(page);
1693 			reclaim_stat->recent_rotated[file] += numpages;
1694 		}
1695 		if (put_page_testzero(page)) {
1696 			__ClearPageLRU(page);
1697 			__ClearPageActive(page);
1698 			del_page_from_lru_list(page, lruvec, lru);
1699 
1700 			if (unlikely(PageCompound(page))) {
1701 				spin_unlock_irq(&pgdat->lru_lock);
1702 				mem_cgroup_uncharge(page);
1703 				(*get_compound_page_dtor(page))(page);
1704 				spin_lock_irq(&pgdat->lru_lock);
1705 			} else
1706 				list_add(&page->lru, &pages_to_free);
1707 		}
1708 	}
1709 
1710 	/*
1711 	 * To save our caller's stack, now use input list for pages to free.
1712 	 */
1713 	list_splice(&pages_to_free, page_list);
1714 }
1715 
1716 /*
1717  * If a kernel thread (such as nfsd for loop-back mounts) services
1718  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1719  * In that case we should only throttle if the backing device it is
1720  * writing to is congested.  In other cases it is safe to throttle.
1721  */
1722 static int current_may_throttle(void)
1723 {
1724 	return !(current->flags & PF_LESS_THROTTLE) ||
1725 		current->backing_dev_info == NULL ||
1726 		bdi_write_congested(current->backing_dev_info);
1727 }
1728 
1729 /*
1730  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1731  * of reclaimed pages
1732  */
1733 static noinline_for_stack unsigned long
1734 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1735 		     struct scan_control *sc, enum lru_list lru)
1736 {
1737 	LIST_HEAD(page_list);
1738 	unsigned long nr_scanned;
1739 	unsigned long nr_reclaimed = 0;
1740 	unsigned long nr_taken;
1741 	struct reclaim_stat stat = {};
1742 	isolate_mode_t isolate_mode = 0;
1743 	int file = is_file_lru(lru);
1744 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1745 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1746 	bool stalled = false;
1747 
1748 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1749 		if (stalled)
1750 			return 0;
1751 
1752 		/* wait a bit for the reclaimer. */
1753 		msleep(100);
1754 		stalled = true;
1755 
1756 		/* We are about to die and free our memory. Return now. */
1757 		if (fatal_signal_pending(current))
1758 			return SWAP_CLUSTER_MAX;
1759 	}
1760 
1761 	lru_add_drain();
1762 
1763 	if (!sc->may_unmap)
1764 		isolate_mode |= ISOLATE_UNMAPPED;
1765 
1766 	spin_lock_irq(&pgdat->lru_lock);
1767 
1768 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1769 				     &nr_scanned, sc, isolate_mode, lru);
1770 
1771 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1772 	reclaim_stat->recent_scanned[file] += nr_taken;
1773 
1774 	if (current_is_kswapd()) {
1775 		if (global_reclaim(sc))
1776 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1777 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1778 				   nr_scanned);
1779 	} else {
1780 		if (global_reclaim(sc))
1781 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1782 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1783 				   nr_scanned);
1784 	}
1785 	spin_unlock_irq(&pgdat->lru_lock);
1786 
1787 	if (nr_taken == 0)
1788 		return 0;
1789 
1790 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1791 				&stat, false);
1792 
1793 	spin_lock_irq(&pgdat->lru_lock);
1794 
1795 	if (current_is_kswapd()) {
1796 		if (global_reclaim(sc))
1797 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1798 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1799 				   nr_reclaimed);
1800 	} else {
1801 		if (global_reclaim(sc))
1802 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1803 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1804 				   nr_reclaimed);
1805 	}
1806 
1807 	putback_inactive_pages(lruvec, &page_list);
1808 
1809 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1810 
1811 	spin_unlock_irq(&pgdat->lru_lock);
1812 
1813 	mem_cgroup_uncharge_list(&page_list);
1814 	free_hot_cold_page_list(&page_list, true);
1815 
1816 	/*
1817 	 * If reclaim is isolating dirty pages under writeback, it implies
1818 	 * that the long-lived page allocation rate is exceeding the page
1819 	 * laundering rate. Either the global limits are not being effective
1820 	 * at throttling processes due to the page distribution throughout
1821 	 * zones or there is heavy usage of a slow backing device. The
1822 	 * only option is to throttle from reclaim context which is not ideal
1823 	 * as there is no guarantee the dirtying process is throttled in the
1824 	 * same way balance_dirty_pages() manages.
1825 	 *
1826 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1827 	 * of pages under pages flagged for immediate reclaim and stall if any
1828 	 * are encountered in the nr_immediate check below.
1829 	 */
1830 	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1831 		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1832 
1833 	/*
1834 	 * Legacy memcg will stall in page writeback so avoid forcibly
1835 	 * stalling here.
1836 	 */
1837 	if (sane_reclaim(sc)) {
1838 		/*
1839 		 * Tag a zone as congested if all the dirty pages scanned were
1840 		 * backed by a congested BDI and wait_iff_congested will stall.
1841 		 */
1842 		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1843 			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1844 
1845 		/*
1846 		 * If dirty pages are scanned that are not queued for IO, it
1847 		 * implies that flushers are not doing their job. This can
1848 		 * happen when memory pressure pushes dirty pages to the end of
1849 		 * the LRU before the dirty limits are breached and the dirty
1850 		 * data has expired. It can also happen when the proportion of
1851 		 * dirty pages grows not through writes but through memory
1852 		 * pressure reclaiming all the clean cache. And in some cases,
1853 		 * the flushers simply cannot keep up with the allocation
1854 		 * rate. Nudge the flusher threads in case they are asleep, but
1855 		 * also allow kswapd to start writing pages during reclaim.
1856 		 */
1857 		if (stat.nr_unqueued_dirty == nr_taken) {
1858 			wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1859 			set_bit(PGDAT_DIRTY, &pgdat->flags);
1860 		}
1861 
1862 		/*
1863 		 * If kswapd scans pages marked marked for immediate
1864 		 * reclaim and under writeback (nr_immediate), it implies
1865 		 * that pages are cycling through the LRU faster than
1866 		 * they are written so also forcibly stall.
1867 		 */
1868 		if (stat.nr_immediate && current_may_throttle())
1869 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1870 	}
1871 
1872 	/*
1873 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1874 	 * is congested. Allow kswapd to continue until it starts encountering
1875 	 * unqueued dirty pages or cycling through the LRU too quickly.
1876 	 */
1877 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1878 	    current_may_throttle())
1879 		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1880 
1881 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1882 			nr_scanned, nr_reclaimed,
1883 			stat.nr_dirty,  stat.nr_writeback,
1884 			stat.nr_congested, stat.nr_immediate,
1885 			stat.nr_activate, stat.nr_ref_keep,
1886 			stat.nr_unmap_fail,
1887 			sc->priority, file);
1888 	return nr_reclaimed;
1889 }
1890 
1891 /*
1892  * This moves pages from the active list to the inactive list.
1893  *
1894  * We move them the other way if the page is referenced by one or more
1895  * processes, from rmap.
1896  *
1897  * If the pages are mostly unmapped, the processing is fast and it is
1898  * appropriate to hold zone_lru_lock across the whole operation.  But if
1899  * the pages are mapped, the processing is slow (page_referenced()) so we
1900  * should drop zone_lru_lock around each page.  It's impossible to balance
1901  * this, so instead we remove the pages from the LRU while processing them.
1902  * It is safe to rely on PG_active against the non-LRU pages in here because
1903  * nobody will play with that bit on a non-LRU page.
1904  *
1905  * The downside is that we have to touch page->_refcount against each page.
1906  * But we had to alter page->flags anyway.
1907  *
1908  * Returns the number of pages moved to the given lru.
1909  */
1910 
1911 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1912 				     struct list_head *list,
1913 				     struct list_head *pages_to_free,
1914 				     enum lru_list lru)
1915 {
1916 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1917 	struct page *page;
1918 	int nr_pages;
1919 	int nr_moved = 0;
1920 
1921 	while (!list_empty(list)) {
1922 		page = lru_to_page(list);
1923 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1924 
1925 		VM_BUG_ON_PAGE(PageLRU(page), page);
1926 		SetPageLRU(page);
1927 
1928 		nr_pages = hpage_nr_pages(page);
1929 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1930 		list_move(&page->lru, &lruvec->lists[lru]);
1931 
1932 		if (put_page_testzero(page)) {
1933 			__ClearPageLRU(page);
1934 			__ClearPageActive(page);
1935 			del_page_from_lru_list(page, lruvec, lru);
1936 
1937 			if (unlikely(PageCompound(page))) {
1938 				spin_unlock_irq(&pgdat->lru_lock);
1939 				mem_cgroup_uncharge(page);
1940 				(*get_compound_page_dtor(page))(page);
1941 				spin_lock_irq(&pgdat->lru_lock);
1942 			} else
1943 				list_add(&page->lru, pages_to_free);
1944 		} else {
1945 			nr_moved += nr_pages;
1946 		}
1947 	}
1948 
1949 	if (!is_active_lru(lru)) {
1950 		__count_vm_events(PGDEACTIVATE, nr_moved);
1951 		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1952 				   nr_moved);
1953 	}
1954 
1955 	return nr_moved;
1956 }
1957 
1958 static void shrink_active_list(unsigned long nr_to_scan,
1959 			       struct lruvec *lruvec,
1960 			       struct scan_control *sc,
1961 			       enum lru_list lru)
1962 {
1963 	unsigned long nr_taken;
1964 	unsigned long nr_scanned;
1965 	unsigned long vm_flags;
1966 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1967 	LIST_HEAD(l_active);
1968 	LIST_HEAD(l_inactive);
1969 	struct page *page;
1970 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1971 	unsigned nr_deactivate, nr_activate;
1972 	unsigned nr_rotated = 0;
1973 	isolate_mode_t isolate_mode = 0;
1974 	int file = is_file_lru(lru);
1975 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1976 
1977 	lru_add_drain();
1978 
1979 	if (!sc->may_unmap)
1980 		isolate_mode |= ISOLATE_UNMAPPED;
1981 
1982 	spin_lock_irq(&pgdat->lru_lock);
1983 
1984 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1985 				     &nr_scanned, sc, isolate_mode, lru);
1986 
1987 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1988 	reclaim_stat->recent_scanned[file] += nr_taken;
1989 
1990 	__count_vm_events(PGREFILL, nr_scanned);
1991 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
1992 
1993 	spin_unlock_irq(&pgdat->lru_lock);
1994 
1995 	while (!list_empty(&l_hold)) {
1996 		cond_resched();
1997 		page = lru_to_page(&l_hold);
1998 		list_del(&page->lru);
1999 
2000 		if (unlikely(!page_evictable(page))) {
2001 			putback_lru_page(page);
2002 			continue;
2003 		}
2004 
2005 		if (unlikely(buffer_heads_over_limit)) {
2006 			if (page_has_private(page) && trylock_page(page)) {
2007 				if (page_has_private(page))
2008 					try_to_release_page(page, 0);
2009 				unlock_page(page);
2010 			}
2011 		}
2012 
2013 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2014 				    &vm_flags)) {
2015 			nr_rotated += hpage_nr_pages(page);
2016 			/*
2017 			 * Identify referenced, file-backed active pages and
2018 			 * give them one more trip around the active list. So
2019 			 * that executable code get better chances to stay in
2020 			 * memory under moderate memory pressure.  Anon pages
2021 			 * are not likely to be evicted by use-once streaming
2022 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2023 			 * so we ignore them here.
2024 			 */
2025 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2026 				list_add(&page->lru, &l_active);
2027 				continue;
2028 			}
2029 		}
2030 
2031 		ClearPageActive(page);	/* we are de-activating */
2032 		list_add(&page->lru, &l_inactive);
2033 	}
2034 
2035 	/*
2036 	 * Move pages back to the lru list.
2037 	 */
2038 	spin_lock_irq(&pgdat->lru_lock);
2039 	/*
2040 	 * Count referenced pages from currently used mappings as rotated,
2041 	 * even though only some of them are actually re-activated.  This
2042 	 * helps balance scan pressure between file and anonymous pages in
2043 	 * get_scan_count.
2044 	 */
2045 	reclaim_stat->recent_rotated[file] += nr_rotated;
2046 
2047 	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2048 	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2049 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2050 	spin_unlock_irq(&pgdat->lru_lock);
2051 
2052 	mem_cgroup_uncharge_list(&l_hold);
2053 	free_hot_cold_page_list(&l_hold, true);
2054 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2055 			nr_deactivate, nr_rotated, sc->priority, file);
2056 }
2057 
2058 /*
2059  * The inactive anon list should be small enough that the VM never has
2060  * to do too much work.
2061  *
2062  * The inactive file list should be small enough to leave most memory
2063  * to the established workingset on the scan-resistant active list,
2064  * but large enough to avoid thrashing the aggregate readahead window.
2065  *
2066  * Both inactive lists should also be large enough that each inactive
2067  * page has a chance to be referenced again before it is reclaimed.
2068  *
2069  * If that fails and refaulting is observed, the inactive list grows.
2070  *
2071  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2072  * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2073  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2074  *
2075  * total     target    max
2076  * memory    ratio     inactive
2077  * -------------------------------------
2078  *   10MB       1         5MB
2079  *  100MB       1        50MB
2080  *    1GB       3       250MB
2081  *   10GB      10       0.9GB
2082  *  100GB      31         3GB
2083  *    1TB     101        10GB
2084  *   10TB     320        32GB
2085  */
2086 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2087 				 struct mem_cgroup *memcg,
2088 				 struct scan_control *sc, bool actual_reclaim)
2089 {
2090 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2091 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2092 	enum lru_list inactive_lru = file * LRU_FILE;
2093 	unsigned long inactive, active;
2094 	unsigned long inactive_ratio;
2095 	unsigned long refaults;
2096 	unsigned long gb;
2097 
2098 	/*
2099 	 * If we don't have swap space, anonymous page deactivation
2100 	 * is pointless.
2101 	 */
2102 	if (!file && !total_swap_pages)
2103 		return false;
2104 
2105 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2106 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2107 
2108 	if (memcg)
2109 		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2110 	else
2111 		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2112 
2113 	/*
2114 	 * When refaults are being observed, it means a new workingset
2115 	 * is being established. Disable active list protection to get
2116 	 * rid of the stale workingset quickly.
2117 	 */
2118 	if (file && actual_reclaim && lruvec->refaults != refaults) {
2119 		inactive_ratio = 0;
2120 	} else {
2121 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2122 		if (gb)
2123 			inactive_ratio = int_sqrt(10 * gb);
2124 		else
2125 			inactive_ratio = 1;
2126 	}
2127 
2128 	if (actual_reclaim)
2129 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2130 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2131 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2132 			inactive_ratio, file);
2133 
2134 	return inactive * inactive_ratio < active;
2135 }
2136 
2137 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2138 				 struct lruvec *lruvec, struct mem_cgroup *memcg,
2139 				 struct scan_control *sc)
2140 {
2141 	if (is_active_lru(lru)) {
2142 		if (inactive_list_is_low(lruvec, is_file_lru(lru),
2143 					 memcg, sc, true))
2144 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2145 		return 0;
2146 	}
2147 
2148 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2149 }
2150 
2151 enum scan_balance {
2152 	SCAN_EQUAL,
2153 	SCAN_FRACT,
2154 	SCAN_ANON,
2155 	SCAN_FILE,
2156 };
2157 
2158 /*
2159  * Determine how aggressively the anon and file LRU lists should be
2160  * scanned.  The relative value of each set of LRU lists is determined
2161  * by looking at the fraction of the pages scanned we did rotate back
2162  * onto the active list instead of evict.
2163  *
2164  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2165  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2166  */
2167 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2168 			   struct scan_control *sc, unsigned long *nr,
2169 			   unsigned long *lru_pages)
2170 {
2171 	int swappiness = mem_cgroup_swappiness(memcg);
2172 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2173 	u64 fraction[2];
2174 	u64 denominator = 0;	/* gcc */
2175 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2176 	unsigned long anon_prio, file_prio;
2177 	enum scan_balance scan_balance;
2178 	unsigned long anon, file;
2179 	unsigned long ap, fp;
2180 	enum lru_list lru;
2181 
2182 	/* If we have no swap space, do not bother scanning anon pages. */
2183 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2184 		scan_balance = SCAN_FILE;
2185 		goto out;
2186 	}
2187 
2188 	/*
2189 	 * Global reclaim will swap to prevent OOM even with no
2190 	 * swappiness, but memcg users want to use this knob to
2191 	 * disable swapping for individual groups completely when
2192 	 * using the memory controller's swap limit feature would be
2193 	 * too expensive.
2194 	 */
2195 	if (!global_reclaim(sc) && !swappiness) {
2196 		scan_balance = SCAN_FILE;
2197 		goto out;
2198 	}
2199 
2200 	/*
2201 	 * Do not apply any pressure balancing cleverness when the
2202 	 * system is close to OOM, scan both anon and file equally
2203 	 * (unless the swappiness setting disagrees with swapping).
2204 	 */
2205 	if (!sc->priority && swappiness) {
2206 		scan_balance = SCAN_EQUAL;
2207 		goto out;
2208 	}
2209 
2210 	/*
2211 	 * Prevent the reclaimer from falling into the cache trap: as
2212 	 * cache pages start out inactive, every cache fault will tip
2213 	 * the scan balance towards the file LRU.  And as the file LRU
2214 	 * shrinks, so does the window for rotation from references.
2215 	 * This means we have a runaway feedback loop where a tiny
2216 	 * thrashing file LRU becomes infinitely more attractive than
2217 	 * anon pages.  Try to detect this based on file LRU size.
2218 	 */
2219 	if (global_reclaim(sc)) {
2220 		unsigned long pgdatfile;
2221 		unsigned long pgdatfree;
2222 		int z;
2223 		unsigned long total_high_wmark = 0;
2224 
2225 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2226 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2227 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2228 
2229 		for (z = 0; z < MAX_NR_ZONES; z++) {
2230 			struct zone *zone = &pgdat->node_zones[z];
2231 			if (!managed_zone(zone))
2232 				continue;
2233 
2234 			total_high_wmark += high_wmark_pages(zone);
2235 		}
2236 
2237 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2238 			/*
2239 			 * Force SCAN_ANON if there are enough inactive
2240 			 * anonymous pages on the LRU in eligible zones.
2241 			 * Otherwise, the small LRU gets thrashed.
2242 			 */
2243 			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2244 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2245 					>> sc->priority) {
2246 				scan_balance = SCAN_ANON;
2247 				goto out;
2248 			}
2249 		}
2250 	}
2251 
2252 	/*
2253 	 * If there is enough inactive page cache, i.e. if the size of the
2254 	 * inactive list is greater than that of the active list *and* the
2255 	 * inactive list actually has some pages to scan on this priority, we
2256 	 * do not reclaim anything from the anonymous working set right now.
2257 	 * Without the second condition we could end up never scanning an
2258 	 * lruvec even if it has plenty of old anonymous pages unless the
2259 	 * system is under heavy pressure.
2260 	 */
2261 	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2262 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2263 		scan_balance = SCAN_FILE;
2264 		goto out;
2265 	}
2266 
2267 	scan_balance = SCAN_FRACT;
2268 
2269 	/*
2270 	 * With swappiness at 100, anonymous and file have the same priority.
2271 	 * This scanning priority is essentially the inverse of IO cost.
2272 	 */
2273 	anon_prio = swappiness;
2274 	file_prio = 200 - anon_prio;
2275 
2276 	/*
2277 	 * OK, so we have swap space and a fair amount of page cache
2278 	 * pages.  We use the recently rotated / recently scanned
2279 	 * ratios to determine how valuable each cache is.
2280 	 *
2281 	 * Because workloads change over time (and to avoid overflow)
2282 	 * we keep these statistics as a floating average, which ends
2283 	 * up weighing recent references more than old ones.
2284 	 *
2285 	 * anon in [0], file in [1]
2286 	 */
2287 
2288 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2289 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2290 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2291 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2292 
2293 	spin_lock_irq(&pgdat->lru_lock);
2294 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2295 		reclaim_stat->recent_scanned[0] /= 2;
2296 		reclaim_stat->recent_rotated[0] /= 2;
2297 	}
2298 
2299 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2300 		reclaim_stat->recent_scanned[1] /= 2;
2301 		reclaim_stat->recent_rotated[1] /= 2;
2302 	}
2303 
2304 	/*
2305 	 * The amount of pressure on anon vs file pages is inversely
2306 	 * proportional to the fraction of recently scanned pages on
2307 	 * each list that were recently referenced and in active use.
2308 	 */
2309 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2310 	ap /= reclaim_stat->recent_rotated[0] + 1;
2311 
2312 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2313 	fp /= reclaim_stat->recent_rotated[1] + 1;
2314 	spin_unlock_irq(&pgdat->lru_lock);
2315 
2316 	fraction[0] = ap;
2317 	fraction[1] = fp;
2318 	denominator = ap + fp + 1;
2319 out:
2320 	*lru_pages = 0;
2321 	for_each_evictable_lru(lru) {
2322 		int file = is_file_lru(lru);
2323 		unsigned long size;
2324 		unsigned long scan;
2325 
2326 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2327 		scan = size >> sc->priority;
2328 		/*
2329 		 * If the cgroup's already been deleted, make sure to
2330 		 * scrape out the remaining cache.
2331 		 */
2332 		if (!scan && !mem_cgroup_online(memcg))
2333 			scan = min(size, SWAP_CLUSTER_MAX);
2334 
2335 		switch (scan_balance) {
2336 		case SCAN_EQUAL:
2337 			/* Scan lists relative to size */
2338 			break;
2339 		case SCAN_FRACT:
2340 			/*
2341 			 * Scan types proportional to swappiness and
2342 			 * their relative recent reclaim efficiency.
2343 			 */
2344 			scan = div64_u64(scan * fraction[file],
2345 					 denominator);
2346 			break;
2347 		case SCAN_FILE:
2348 		case SCAN_ANON:
2349 			/* Scan one type exclusively */
2350 			if ((scan_balance == SCAN_FILE) != file) {
2351 				size = 0;
2352 				scan = 0;
2353 			}
2354 			break;
2355 		default:
2356 			/* Look ma, no brain */
2357 			BUG();
2358 		}
2359 
2360 		*lru_pages += size;
2361 		nr[lru] = scan;
2362 	}
2363 }
2364 
2365 /*
2366  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2367  */
2368 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2369 			      struct scan_control *sc, unsigned long *lru_pages)
2370 {
2371 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2372 	unsigned long nr[NR_LRU_LISTS];
2373 	unsigned long targets[NR_LRU_LISTS];
2374 	unsigned long nr_to_scan;
2375 	enum lru_list lru;
2376 	unsigned long nr_reclaimed = 0;
2377 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2378 	struct blk_plug plug;
2379 	bool scan_adjusted;
2380 
2381 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2382 
2383 	/* Record the original scan target for proportional adjustments later */
2384 	memcpy(targets, nr, sizeof(nr));
2385 
2386 	/*
2387 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2388 	 * event that can occur when there is little memory pressure e.g.
2389 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2390 	 * when the requested number of pages are reclaimed when scanning at
2391 	 * DEF_PRIORITY on the assumption that the fact we are direct
2392 	 * reclaiming implies that kswapd is not keeping up and it is best to
2393 	 * do a batch of work at once. For memcg reclaim one check is made to
2394 	 * abort proportional reclaim if either the file or anon lru has already
2395 	 * dropped to zero at the first pass.
2396 	 */
2397 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2398 			 sc->priority == DEF_PRIORITY);
2399 
2400 	blk_start_plug(&plug);
2401 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2402 					nr[LRU_INACTIVE_FILE]) {
2403 		unsigned long nr_anon, nr_file, percentage;
2404 		unsigned long nr_scanned;
2405 
2406 		for_each_evictable_lru(lru) {
2407 			if (nr[lru]) {
2408 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2409 				nr[lru] -= nr_to_scan;
2410 
2411 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2412 							    lruvec, memcg, sc);
2413 			}
2414 		}
2415 
2416 		cond_resched();
2417 
2418 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2419 			continue;
2420 
2421 		/*
2422 		 * For kswapd and memcg, reclaim at least the number of pages
2423 		 * requested. Ensure that the anon and file LRUs are scanned
2424 		 * proportionally what was requested by get_scan_count(). We
2425 		 * stop reclaiming one LRU and reduce the amount scanning
2426 		 * proportional to the original scan target.
2427 		 */
2428 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2429 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2430 
2431 		/*
2432 		 * It's just vindictive to attack the larger once the smaller
2433 		 * has gone to zero.  And given the way we stop scanning the
2434 		 * smaller below, this makes sure that we only make one nudge
2435 		 * towards proportionality once we've got nr_to_reclaim.
2436 		 */
2437 		if (!nr_file || !nr_anon)
2438 			break;
2439 
2440 		if (nr_file > nr_anon) {
2441 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2442 						targets[LRU_ACTIVE_ANON] + 1;
2443 			lru = LRU_BASE;
2444 			percentage = nr_anon * 100 / scan_target;
2445 		} else {
2446 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2447 						targets[LRU_ACTIVE_FILE] + 1;
2448 			lru = LRU_FILE;
2449 			percentage = nr_file * 100 / scan_target;
2450 		}
2451 
2452 		/* Stop scanning the smaller of the LRU */
2453 		nr[lru] = 0;
2454 		nr[lru + LRU_ACTIVE] = 0;
2455 
2456 		/*
2457 		 * Recalculate the other LRU scan count based on its original
2458 		 * scan target and the percentage scanning already complete
2459 		 */
2460 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2461 		nr_scanned = targets[lru] - nr[lru];
2462 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2463 		nr[lru] -= min(nr[lru], nr_scanned);
2464 
2465 		lru += LRU_ACTIVE;
2466 		nr_scanned = targets[lru] - nr[lru];
2467 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2468 		nr[lru] -= min(nr[lru], nr_scanned);
2469 
2470 		scan_adjusted = true;
2471 	}
2472 	blk_finish_plug(&plug);
2473 	sc->nr_reclaimed += nr_reclaimed;
2474 
2475 	/*
2476 	 * Even if we did not try to evict anon pages at all, we want to
2477 	 * rebalance the anon lru active/inactive ratio.
2478 	 */
2479 	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2480 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2481 				   sc, LRU_ACTIVE_ANON);
2482 }
2483 
2484 /* Use reclaim/compaction for costly allocs or under memory pressure */
2485 static bool in_reclaim_compaction(struct scan_control *sc)
2486 {
2487 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2488 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2489 			 sc->priority < DEF_PRIORITY - 2))
2490 		return true;
2491 
2492 	return false;
2493 }
2494 
2495 /*
2496  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2497  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2498  * true if more pages should be reclaimed such that when the page allocator
2499  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2500  * It will give up earlier than that if there is difficulty reclaiming pages.
2501  */
2502 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2503 					unsigned long nr_reclaimed,
2504 					unsigned long nr_scanned,
2505 					struct scan_control *sc)
2506 {
2507 	unsigned long pages_for_compaction;
2508 	unsigned long inactive_lru_pages;
2509 	int z;
2510 
2511 	/* If not in reclaim/compaction mode, stop */
2512 	if (!in_reclaim_compaction(sc))
2513 		return false;
2514 
2515 	/* Consider stopping depending on scan and reclaim activity */
2516 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2517 		/*
2518 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2519 		 * full LRU list has been scanned and we are still failing
2520 		 * to reclaim pages. This full LRU scan is potentially
2521 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2522 		 */
2523 		if (!nr_reclaimed && !nr_scanned)
2524 			return false;
2525 	} else {
2526 		/*
2527 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2528 		 * fail without consequence, stop if we failed to reclaim
2529 		 * any pages from the last SWAP_CLUSTER_MAX number of
2530 		 * pages that were scanned. This will return to the
2531 		 * caller faster at the risk reclaim/compaction and
2532 		 * the resulting allocation attempt fails
2533 		 */
2534 		if (!nr_reclaimed)
2535 			return false;
2536 	}
2537 
2538 	/*
2539 	 * If we have not reclaimed enough pages for compaction and the
2540 	 * inactive lists are large enough, continue reclaiming
2541 	 */
2542 	pages_for_compaction = compact_gap(sc->order);
2543 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2544 	if (get_nr_swap_pages() > 0)
2545 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2546 	if (sc->nr_reclaimed < pages_for_compaction &&
2547 			inactive_lru_pages > pages_for_compaction)
2548 		return true;
2549 
2550 	/* If compaction would go ahead or the allocation would succeed, stop */
2551 	for (z = 0; z <= sc->reclaim_idx; z++) {
2552 		struct zone *zone = &pgdat->node_zones[z];
2553 		if (!managed_zone(zone))
2554 			continue;
2555 
2556 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2557 		case COMPACT_SUCCESS:
2558 		case COMPACT_CONTINUE:
2559 			return false;
2560 		default:
2561 			/* check next zone */
2562 			;
2563 		}
2564 	}
2565 	return true;
2566 }
2567 
2568 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2569 {
2570 	struct reclaim_state *reclaim_state = current->reclaim_state;
2571 	unsigned long nr_reclaimed, nr_scanned;
2572 	bool reclaimable = false;
2573 
2574 	do {
2575 		struct mem_cgroup *root = sc->target_mem_cgroup;
2576 		struct mem_cgroup_reclaim_cookie reclaim = {
2577 			.pgdat = pgdat,
2578 			.priority = sc->priority,
2579 		};
2580 		unsigned long node_lru_pages = 0;
2581 		struct mem_cgroup *memcg;
2582 
2583 		nr_reclaimed = sc->nr_reclaimed;
2584 		nr_scanned = sc->nr_scanned;
2585 
2586 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2587 		do {
2588 			unsigned long lru_pages;
2589 			unsigned long reclaimed;
2590 			unsigned long scanned;
2591 
2592 			if (mem_cgroup_low(root, memcg)) {
2593 				if (!sc->memcg_low_reclaim) {
2594 					sc->memcg_low_skipped = 1;
2595 					continue;
2596 				}
2597 				mem_cgroup_event(memcg, MEMCG_LOW);
2598 			}
2599 
2600 			reclaimed = sc->nr_reclaimed;
2601 			scanned = sc->nr_scanned;
2602 
2603 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2604 			node_lru_pages += lru_pages;
2605 
2606 			if (memcg)
2607 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2608 					    memcg, sc->nr_scanned - scanned,
2609 					    lru_pages);
2610 
2611 			/* Record the group's reclaim efficiency */
2612 			vmpressure(sc->gfp_mask, memcg, false,
2613 				   sc->nr_scanned - scanned,
2614 				   sc->nr_reclaimed - reclaimed);
2615 
2616 			/*
2617 			 * Direct reclaim and kswapd have to scan all memory
2618 			 * cgroups to fulfill the overall scan target for the
2619 			 * node.
2620 			 *
2621 			 * Limit reclaim, on the other hand, only cares about
2622 			 * nr_to_reclaim pages to be reclaimed and it will
2623 			 * retry with decreasing priority if one round over the
2624 			 * whole hierarchy is not sufficient.
2625 			 */
2626 			if (!global_reclaim(sc) &&
2627 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2628 				mem_cgroup_iter_break(root, memcg);
2629 				break;
2630 			}
2631 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2632 
2633 		/*
2634 		 * Shrink the slab caches in the same proportion that
2635 		 * the eligible LRU pages were scanned.
2636 		 */
2637 		if (global_reclaim(sc))
2638 			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2639 				    sc->nr_scanned - nr_scanned,
2640 				    node_lru_pages);
2641 
2642 		if (reclaim_state) {
2643 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2644 			reclaim_state->reclaimed_slab = 0;
2645 		}
2646 
2647 		/* Record the subtree's reclaim efficiency */
2648 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2649 			   sc->nr_scanned - nr_scanned,
2650 			   sc->nr_reclaimed - nr_reclaimed);
2651 
2652 		if (sc->nr_reclaimed - nr_reclaimed)
2653 			reclaimable = true;
2654 
2655 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2656 					 sc->nr_scanned - nr_scanned, sc));
2657 
2658 	/*
2659 	 * Kswapd gives up on balancing particular nodes after too
2660 	 * many failures to reclaim anything from them and goes to
2661 	 * sleep. On reclaim progress, reset the failure counter. A
2662 	 * successful direct reclaim run will revive a dormant kswapd.
2663 	 */
2664 	if (reclaimable)
2665 		pgdat->kswapd_failures = 0;
2666 
2667 	return reclaimable;
2668 }
2669 
2670 /*
2671  * Returns true if compaction should go ahead for a costly-order request, or
2672  * the allocation would already succeed without compaction. Return false if we
2673  * should reclaim first.
2674  */
2675 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2676 {
2677 	unsigned long watermark;
2678 	enum compact_result suitable;
2679 
2680 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2681 	if (suitable == COMPACT_SUCCESS)
2682 		/* Allocation should succeed already. Don't reclaim. */
2683 		return true;
2684 	if (suitable == COMPACT_SKIPPED)
2685 		/* Compaction cannot yet proceed. Do reclaim. */
2686 		return false;
2687 
2688 	/*
2689 	 * Compaction is already possible, but it takes time to run and there
2690 	 * are potentially other callers using the pages just freed. So proceed
2691 	 * with reclaim to make a buffer of free pages available to give
2692 	 * compaction a reasonable chance of completing and allocating the page.
2693 	 * Note that we won't actually reclaim the whole buffer in one attempt
2694 	 * as the target watermark in should_continue_reclaim() is lower. But if
2695 	 * we are already above the high+gap watermark, don't reclaim at all.
2696 	 */
2697 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2698 
2699 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2700 }
2701 
2702 /*
2703  * This is the direct reclaim path, for page-allocating processes.  We only
2704  * try to reclaim pages from zones which will satisfy the caller's allocation
2705  * request.
2706  *
2707  * If a zone is deemed to be full of pinned pages then just give it a light
2708  * scan then give up on it.
2709  */
2710 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2711 {
2712 	struct zoneref *z;
2713 	struct zone *zone;
2714 	unsigned long nr_soft_reclaimed;
2715 	unsigned long nr_soft_scanned;
2716 	gfp_t orig_mask;
2717 	pg_data_t *last_pgdat = NULL;
2718 
2719 	/*
2720 	 * If the number of buffer_heads in the machine exceeds the maximum
2721 	 * allowed level, force direct reclaim to scan the highmem zone as
2722 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2723 	 */
2724 	orig_mask = sc->gfp_mask;
2725 	if (buffer_heads_over_limit) {
2726 		sc->gfp_mask |= __GFP_HIGHMEM;
2727 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2728 	}
2729 
2730 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2731 					sc->reclaim_idx, sc->nodemask) {
2732 		/*
2733 		 * Take care memory controller reclaiming has small influence
2734 		 * to global LRU.
2735 		 */
2736 		if (global_reclaim(sc)) {
2737 			if (!cpuset_zone_allowed(zone,
2738 						 GFP_KERNEL | __GFP_HARDWALL))
2739 				continue;
2740 
2741 			/*
2742 			 * If we already have plenty of memory free for
2743 			 * compaction in this zone, don't free any more.
2744 			 * Even though compaction is invoked for any
2745 			 * non-zero order, only frequent costly order
2746 			 * reclamation is disruptive enough to become a
2747 			 * noticeable problem, like transparent huge
2748 			 * page allocations.
2749 			 */
2750 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2751 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2752 			    compaction_ready(zone, sc)) {
2753 				sc->compaction_ready = true;
2754 				continue;
2755 			}
2756 
2757 			/*
2758 			 * Shrink each node in the zonelist once. If the
2759 			 * zonelist is ordered by zone (not the default) then a
2760 			 * node may be shrunk multiple times but in that case
2761 			 * the user prefers lower zones being preserved.
2762 			 */
2763 			if (zone->zone_pgdat == last_pgdat)
2764 				continue;
2765 
2766 			/*
2767 			 * This steals pages from memory cgroups over softlimit
2768 			 * and returns the number of reclaimed pages and
2769 			 * scanned pages. This works for global memory pressure
2770 			 * and balancing, not for a memcg's limit.
2771 			 */
2772 			nr_soft_scanned = 0;
2773 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2774 						sc->order, sc->gfp_mask,
2775 						&nr_soft_scanned);
2776 			sc->nr_reclaimed += nr_soft_reclaimed;
2777 			sc->nr_scanned += nr_soft_scanned;
2778 			/* need some check for avoid more shrink_zone() */
2779 		}
2780 
2781 		/* See comment about same check for global reclaim above */
2782 		if (zone->zone_pgdat == last_pgdat)
2783 			continue;
2784 		last_pgdat = zone->zone_pgdat;
2785 		shrink_node(zone->zone_pgdat, sc);
2786 	}
2787 
2788 	/*
2789 	 * Restore to original mask to avoid the impact on the caller if we
2790 	 * promoted it to __GFP_HIGHMEM.
2791 	 */
2792 	sc->gfp_mask = orig_mask;
2793 }
2794 
2795 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2796 {
2797 	struct mem_cgroup *memcg;
2798 
2799 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2800 	do {
2801 		unsigned long refaults;
2802 		struct lruvec *lruvec;
2803 
2804 		if (memcg)
2805 			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2806 		else
2807 			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2808 
2809 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2810 		lruvec->refaults = refaults;
2811 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2812 }
2813 
2814 /*
2815  * This is the main entry point to direct page reclaim.
2816  *
2817  * If a full scan of the inactive list fails to free enough memory then we
2818  * are "out of memory" and something needs to be killed.
2819  *
2820  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2821  * high - the zone may be full of dirty or under-writeback pages, which this
2822  * caller can't do much about.  We kick the writeback threads and take explicit
2823  * naps in the hope that some of these pages can be written.  But if the
2824  * allocating task holds filesystem locks which prevent writeout this might not
2825  * work, and the allocation attempt will fail.
2826  *
2827  * returns:	0, if no pages reclaimed
2828  * 		else, the number of pages reclaimed
2829  */
2830 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2831 					  struct scan_control *sc)
2832 {
2833 	int initial_priority = sc->priority;
2834 	pg_data_t *last_pgdat;
2835 	struct zoneref *z;
2836 	struct zone *zone;
2837 retry:
2838 	delayacct_freepages_start();
2839 
2840 	if (global_reclaim(sc))
2841 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2842 
2843 	do {
2844 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2845 				sc->priority);
2846 		sc->nr_scanned = 0;
2847 		shrink_zones(zonelist, sc);
2848 
2849 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2850 			break;
2851 
2852 		if (sc->compaction_ready)
2853 			break;
2854 
2855 		/*
2856 		 * If we're getting trouble reclaiming, start doing
2857 		 * writepage even in laptop mode.
2858 		 */
2859 		if (sc->priority < DEF_PRIORITY - 2)
2860 			sc->may_writepage = 1;
2861 	} while (--sc->priority >= 0);
2862 
2863 	last_pgdat = NULL;
2864 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2865 					sc->nodemask) {
2866 		if (zone->zone_pgdat == last_pgdat)
2867 			continue;
2868 		last_pgdat = zone->zone_pgdat;
2869 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2870 	}
2871 
2872 	delayacct_freepages_end();
2873 
2874 	if (sc->nr_reclaimed)
2875 		return sc->nr_reclaimed;
2876 
2877 	/* Aborted reclaim to try compaction? don't OOM, then */
2878 	if (sc->compaction_ready)
2879 		return 1;
2880 
2881 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2882 	if (sc->memcg_low_skipped) {
2883 		sc->priority = initial_priority;
2884 		sc->memcg_low_reclaim = 1;
2885 		sc->memcg_low_skipped = 0;
2886 		goto retry;
2887 	}
2888 
2889 	return 0;
2890 }
2891 
2892 static bool allow_direct_reclaim(pg_data_t *pgdat)
2893 {
2894 	struct zone *zone;
2895 	unsigned long pfmemalloc_reserve = 0;
2896 	unsigned long free_pages = 0;
2897 	int i;
2898 	bool wmark_ok;
2899 
2900 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2901 		return true;
2902 
2903 	for (i = 0; i <= ZONE_NORMAL; i++) {
2904 		zone = &pgdat->node_zones[i];
2905 		if (!managed_zone(zone))
2906 			continue;
2907 
2908 		if (!zone_reclaimable_pages(zone))
2909 			continue;
2910 
2911 		pfmemalloc_reserve += min_wmark_pages(zone);
2912 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2913 	}
2914 
2915 	/* If there are no reserves (unexpected config) then do not throttle */
2916 	if (!pfmemalloc_reserve)
2917 		return true;
2918 
2919 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2920 
2921 	/* kswapd must be awake if processes are being throttled */
2922 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2923 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2924 						(enum zone_type)ZONE_NORMAL);
2925 		wake_up_interruptible(&pgdat->kswapd_wait);
2926 	}
2927 
2928 	return wmark_ok;
2929 }
2930 
2931 /*
2932  * Throttle direct reclaimers if backing storage is backed by the network
2933  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2934  * depleted. kswapd will continue to make progress and wake the processes
2935  * when the low watermark is reached.
2936  *
2937  * Returns true if a fatal signal was delivered during throttling. If this
2938  * happens, the page allocator should not consider triggering the OOM killer.
2939  */
2940 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2941 					nodemask_t *nodemask)
2942 {
2943 	struct zoneref *z;
2944 	struct zone *zone;
2945 	pg_data_t *pgdat = NULL;
2946 
2947 	/*
2948 	 * Kernel threads should not be throttled as they may be indirectly
2949 	 * responsible for cleaning pages necessary for reclaim to make forward
2950 	 * progress. kjournald for example may enter direct reclaim while
2951 	 * committing a transaction where throttling it could forcing other
2952 	 * processes to block on log_wait_commit().
2953 	 */
2954 	if (current->flags & PF_KTHREAD)
2955 		goto out;
2956 
2957 	/*
2958 	 * If a fatal signal is pending, this process should not throttle.
2959 	 * It should return quickly so it can exit and free its memory
2960 	 */
2961 	if (fatal_signal_pending(current))
2962 		goto out;
2963 
2964 	/*
2965 	 * Check if the pfmemalloc reserves are ok by finding the first node
2966 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2967 	 * GFP_KERNEL will be required for allocating network buffers when
2968 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2969 	 *
2970 	 * Throttling is based on the first usable node and throttled processes
2971 	 * wait on a queue until kswapd makes progress and wakes them. There
2972 	 * is an affinity then between processes waking up and where reclaim
2973 	 * progress has been made assuming the process wakes on the same node.
2974 	 * More importantly, processes running on remote nodes will not compete
2975 	 * for remote pfmemalloc reserves and processes on different nodes
2976 	 * should make reasonable progress.
2977 	 */
2978 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2979 					gfp_zone(gfp_mask), nodemask) {
2980 		if (zone_idx(zone) > ZONE_NORMAL)
2981 			continue;
2982 
2983 		/* Throttle based on the first usable node */
2984 		pgdat = zone->zone_pgdat;
2985 		if (allow_direct_reclaim(pgdat))
2986 			goto out;
2987 		break;
2988 	}
2989 
2990 	/* If no zone was usable by the allocation flags then do not throttle */
2991 	if (!pgdat)
2992 		goto out;
2993 
2994 	/* Account for the throttling */
2995 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2996 
2997 	/*
2998 	 * If the caller cannot enter the filesystem, it's possible that it
2999 	 * is due to the caller holding an FS lock or performing a journal
3000 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3001 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3002 	 * blocked waiting on the same lock. Instead, throttle for up to a
3003 	 * second before continuing.
3004 	 */
3005 	if (!(gfp_mask & __GFP_FS)) {
3006 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3007 			allow_direct_reclaim(pgdat), HZ);
3008 
3009 		goto check_pending;
3010 	}
3011 
3012 	/* Throttle until kswapd wakes the process */
3013 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3014 		allow_direct_reclaim(pgdat));
3015 
3016 check_pending:
3017 	if (fatal_signal_pending(current))
3018 		return true;
3019 
3020 out:
3021 	return false;
3022 }
3023 
3024 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3025 				gfp_t gfp_mask, nodemask_t *nodemask)
3026 {
3027 	unsigned long nr_reclaimed;
3028 	struct scan_control sc = {
3029 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3030 		.gfp_mask = current_gfp_context(gfp_mask),
3031 		.reclaim_idx = gfp_zone(gfp_mask),
3032 		.order = order,
3033 		.nodemask = nodemask,
3034 		.priority = DEF_PRIORITY,
3035 		.may_writepage = !laptop_mode,
3036 		.may_unmap = 1,
3037 		.may_swap = 1,
3038 	};
3039 
3040 	/*
3041 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3042 	 * 1 is returned so that the page allocator does not OOM kill at this
3043 	 * point.
3044 	 */
3045 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3046 		return 1;
3047 
3048 	trace_mm_vmscan_direct_reclaim_begin(order,
3049 				sc.may_writepage,
3050 				sc.gfp_mask,
3051 				sc.reclaim_idx);
3052 
3053 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3054 
3055 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3056 
3057 	return nr_reclaimed;
3058 }
3059 
3060 #ifdef CONFIG_MEMCG
3061 
3062 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3063 						gfp_t gfp_mask, bool noswap,
3064 						pg_data_t *pgdat,
3065 						unsigned long *nr_scanned)
3066 {
3067 	struct scan_control sc = {
3068 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3069 		.target_mem_cgroup = memcg,
3070 		.may_writepage = !laptop_mode,
3071 		.may_unmap = 1,
3072 		.reclaim_idx = MAX_NR_ZONES - 1,
3073 		.may_swap = !noswap,
3074 	};
3075 	unsigned long lru_pages;
3076 
3077 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3078 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3079 
3080 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3081 						      sc.may_writepage,
3082 						      sc.gfp_mask,
3083 						      sc.reclaim_idx);
3084 
3085 	/*
3086 	 * NOTE: Although we can get the priority field, using it
3087 	 * here is not a good idea, since it limits the pages we can scan.
3088 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3089 	 * will pick up pages from other mem cgroup's as well. We hack
3090 	 * the priority and make it zero.
3091 	 */
3092 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3093 
3094 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3095 
3096 	*nr_scanned = sc.nr_scanned;
3097 	return sc.nr_reclaimed;
3098 }
3099 
3100 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3101 					   unsigned long nr_pages,
3102 					   gfp_t gfp_mask,
3103 					   bool may_swap)
3104 {
3105 	struct zonelist *zonelist;
3106 	unsigned long nr_reclaimed;
3107 	int nid;
3108 	unsigned int noreclaim_flag;
3109 	struct scan_control sc = {
3110 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3111 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3112 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3113 		.reclaim_idx = MAX_NR_ZONES - 1,
3114 		.target_mem_cgroup = memcg,
3115 		.priority = DEF_PRIORITY,
3116 		.may_writepage = !laptop_mode,
3117 		.may_unmap = 1,
3118 		.may_swap = may_swap,
3119 	};
3120 
3121 	/*
3122 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3123 	 * take care of from where we get pages. So the node where we start the
3124 	 * scan does not need to be the current node.
3125 	 */
3126 	nid = mem_cgroup_select_victim_node(memcg);
3127 
3128 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3129 
3130 	trace_mm_vmscan_memcg_reclaim_begin(0,
3131 					    sc.may_writepage,
3132 					    sc.gfp_mask,
3133 					    sc.reclaim_idx);
3134 
3135 	noreclaim_flag = memalloc_noreclaim_save();
3136 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3137 	memalloc_noreclaim_restore(noreclaim_flag);
3138 
3139 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3140 
3141 	return nr_reclaimed;
3142 }
3143 #endif
3144 
3145 static void age_active_anon(struct pglist_data *pgdat,
3146 				struct scan_control *sc)
3147 {
3148 	struct mem_cgroup *memcg;
3149 
3150 	if (!total_swap_pages)
3151 		return;
3152 
3153 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3154 	do {
3155 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3156 
3157 		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3158 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3159 					   sc, LRU_ACTIVE_ANON);
3160 
3161 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3162 	} while (memcg);
3163 }
3164 
3165 /*
3166  * Returns true if there is an eligible zone balanced for the request order
3167  * and classzone_idx
3168  */
3169 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3170 {
3171 	int i;
3172 	unsigned long mark = -1;
3173 	struct zone *zone;
3174 
3175 	for (i = 0; i <= classzone_idx; i++) {
3176 		zone = pgdat->node_zones + i;
3177 
3178 		if (!managed_zone(zone))
3179 			continue;
3180 
3181 		mark = high_wmark_pages(zone);
3182 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3183 			return true;
3184 	}
3185 
3186 	/*
3187 	 * If a node has no populated zone within classzone_idx, it does not
3188 	 * need balancing by definition. This can happen if a zone-restricted
3189 	 * allocation tries to wake a remote kswapd.
3190 	 */
3191 	if (mark == -1)
3192 		return true;
3193 
3194 	return false;
3195 }
3196 
3197 /* Clear pgdat state for congested, dirty or under writeback. */
3198 static void clear_pgdat_congested(pg_data_t *pgdat)
3199 {
3200 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3201 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3202 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3203 }
3204 
3205 /*
3206  * Prepare kswapd for sleeping. This verifies that there are no processes
3207  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3208  *
3209  * Returns true if kswapd is ready to sleep
3210  */
3211 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3212 {
3213 	/*
3214 	 * The throttled processes are normally woken up in balance_pgdat() as
3215 	 * soon as allow_direct_reclaim() is true. But there is a potential
3216 	 * race between when kswapd checks the watermarks and a process gets
3217 	 * throttled. There is also a potential race if processes get
3218 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3219 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3220 	 * the wake up checks. If kswapd is going to sleep, no process should
3221 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3222 	 * the wake up is premature, processes will wake kswapd and get
3223 	 * throttled again. The difference from wake ups in balance_pgdat() is
3224 	 * that here we are under prepare_to_wait().
3225 	 */
3226 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3227 		wake_up_all(&pgdat->pfmemalloc_wait);
3228 
3229 	/* Hopeless node, leave it to direct reclaim */
3230 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3231 		return true;
3232 
3233 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3234 		clear_pgdat_congested(pgdat);
3235 		return true;
3236 	}
3237 
3238 	return false;
3239 }
3240 
3241 /*
3242  * kswapd shrinks a node of pages that are at or below the highest usable
3243  * zone that is currently unbalanced.
3244  *
3245  * Returns true if kswapd scanned at least the requested number of pages to
3246  * reclaim or if the lack of progress was due to pages under writeback.
3247  * This is used to determine if the scanning priority needs to be raised.
3248  */
3249 static bool kswapd_shrink_node(pg_data_t *pgdat,
3250 			       struct scan_control *sc)
3251 {
3252 	struct zone *zone;
3253 	int z;
3254 
3255 	/* Reclaim a number of pages proportional to the number of zones */
3256 	sc->nr_to_reclaim = 0;
3257 	for (z = 0; z <= sc->reclaim_idx; z++) {
3258 		zone = pgdat->node_zones + z;
3259 		if (!managed_zone(zone))
3260 			continue;
3261 
3262 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3263 	}
3264 
3265 	/*
3266 	 * Historically care was taken to put equal pressure on all zones but
3267 	 * now pressure is applied based on node LRU order.
3268 	 */
3269 	shrink_node(pgdat, sc);
3270 
3271 	/*
3272 	 * Fragmentation may mean that the system cannot be rebalanced for
3273 	 * high-order allocations. If twice the allocation size has been
3274 	 * reclaimed then recheck watermarks only at order-0 to prevent
3275 	 * excessive reclaim. Assume that a process requested a high-order
3276 	 * can direct reclaim/compact.
3277 	 */
3278 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3279 		sc->order = 0;
3280 
3281 	return sc->nr_scanned >= sc->nr_to_reclaim;
3282 }
3283 
3284 /*
3285  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3286  * that are eligible for use by the caller until at least one zone is
3287  * balanced.
3288  *
3289  * Returns the order kswapd finished reclaiming at.
3290  *
3291  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3292  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3293  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3294  * or lower is eligible for reclaim until at least one usable zone is
3295  * balanced.
3296  */
3297 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3298 {
3299 	int i;
3300 	unsigned long nr_soft_reclaimed;
3301 	unsigned long nr_soft_scanned;
3302 	struct zone *zone;
3303 	struct scan_control sc = {
3304 		.gfp_mask = GFP_KERNEL,
3305 		.order = order,
3306 		.priority = DEF_PRIORITY,
3307 		.may_writepage = !laptop_mode,
3308 		.may_unmap = 1,
3309 		.may_swap = 1,
3310 	};
3311 	count_vm_event(PAGEOUTRUN);
3312 
3313 	do {
3314 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3315 		bool raise_priority = true;
3316 
3317 		sc.reclaim_idx = classzone_idx;
3318 
3319 		/*
3320 		 * If the number of buffer_heads exceeds the maximum allowed
3321 		 * then consider reclaiming from all zones. This has a dual
3322 		 * purpose -- on 64-bit systems it is expected that
3323 		 * buffer_heads are stripped during active rotation. On 32-bit
3324 		 * systems, highmem pages can pin lowmem memory and shrinking
3325 		 * buffers can relieve lowmem pressure. Reclaim may still not
3326 		 * go ahead if all eligible zones for the original allocation
3327 		 * request are balanced to avoid excessive reclaim from kswapd.
3328 		 */
3329 		if (buffer_heads_over_limit) {
3330 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3331 				zone = pgdat->node_zones + i;
3332 				if (!managed_zone(zone))
3333 					continue;
3334 
3335 				sc.reclaim_idx = i;
3336 				break;
3337 			}
3338 		}
3339 
3340 		/*
3341 		 * Only reclaim if there are no eligible zones. Note that
3342 		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3343 		 * have adjusted it.
3344 		 */
3345 		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3346 			goto out;
3347 
3348 		/*
3349 		 * Do some background aging of the anon list, to give
3350 		 * pages a chance to be referenced before reclaiming. All
3351 		 * pages are rotated regardless of classzone as this is
3352 		 * about consistent aging.
3353 		 */
3354 		age_active_anon(pgdat, &sc);
3355 
3356 		/*
3357 		 * If we're getting trouble reclaiming, start doing writepage
3358 		 * even in laptop mode.
3359 		 */
3360 		if (sc.priority < DEF_PRIORITY - 2)
3361 			sc.may_writepage = 1;
3362 
3363 		/* Call soft limit reclaim before calling shrink_node. */
3364 		sc.nr_scanned = 0;
3365 		nr_soft_scanned = 0;
3366 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3367 						sc.gfp_mask, &nr_soft_scanned);
3368 		sc.nr_reclaimed += nr_soft_reclaimed;
3369 
3370 		/*
3371 		 * There should be no need to raise the scanning priority if
3372 		 * enough pages are already being scanned that that high
3373 		 * watermark would be met at 100% efficiency.
3374 		 */
3375 		if (kswapd_shrink_node(pgdat, &sc))
3376 			raise_priority = false;
3377 
3378 		/*
3379 		 * If the low watermark is met there is no need for processes
3380 		 * to be throttled on pfmemalloc_wait as they should not be
3381 		 * able to safely make forward progress. Wake them
3382 		 */
3383 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3384 				allow_direct_reclaim(pgdat))
3385 			wake_up_all(&pgdat->pfmemalloc_wait);
3386 
3387 		/* Check if kswapd should be suspending */
3388 		if (try_to_freeze() || kthread_should_stop())
3389 			break;
3390 
3391 		/*
3392 		 * Raise priority if scanning rate is too low or there was no
3393 		 * progress in reclaiming pages
3394 		 */
3395 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3396 		if (raise_priority || !nr_reclaimed)
3397 			sc.priority--;
3398 	} while (sc.priority >= 1);
3399 
3400 	if (!sc.nr_reclaimed)
3401 		pgdat->kswapd_failures++;
3402 
3403 out:
3404 	snapshot_refaults(NULL, pgdat);
3405 	/*
3406 	 * Return the order kswapd stopped reclaiming at as
3407 	 * prepare_kswapd_sleep() takes it into account. If another caller
3408 	 * entered the allocator slow path while kswapd was awake, order will
3409 	 * remain at the higher level.
3410 	 */
3411 	return sc.order;
3412 }
3413 
3414 /*
3415  * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3416  * allocation request woke kswapd for. When kswapd has not woken recently,
3417  * the value is MAX_NR_ZONES which is not a valid index. This compares a
3418  * given classzone and returns it or the highest classzone index kswapd
3419  * was recently woke for.
3420  */
3421 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3422 					   enum zone_type classzone_idx)
3423 {
3424 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3425 		return classzone_idx;
3426 
3427 	return max(pgdat->kswapd_classzone_idx, classzone_idx);
3428 }
3429 
3430 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3431 				unsigned int classzone_idx)
3432 {
3433 	long remaining = 0;
3434 	DEFINE_WAIT(wait);
3435 
3436 	if (freezing(current) || kthread_should_stop())
3437 		return;
3438 
3439 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3440 
3441 	/*
3442 	 * Try to sleep for a short interval. Note that kcompactd will only be
3443 	 * woken if it is possible to sleep for a short interval. This is
3444 	 * deliberate on the assumption that if reclaim cannot keep an
3445 	 * eligible zone balanced that it's also unlikely that compaction will
3446 	 * succeed.
3447 	 */
3448 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3449 		/*
3450 		 * Compaction records what page blocks it recently failed to
3451 		 * isolate pages from and skips them in the future scanning.
3452 		 * When kswapd is going to sleep, it is reasonable to assume
3453 		 * that pages and compaction may succeed so reset the cache.
3454 		 */
3455 		reset_isolation_suitable(pgdat);
3456 
3457 		/*
3458 		 * We have freed the memory, now we should compact it to make
3459 		 * allocation of the requested order possible.
3460 		 */
3461 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3462 
3463 		remaining = schedule_timeout(HZ/10);
3464 
3465 		/*
3466 		 * If woken prematurely then reset kswapd_classzone_idx and
3467 		 * order. The values will either be from a wakeup request or
3468 		 * the previous request that slept prematurely.
3469 		 */
3470 		if (remaining) {
3471 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3472 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3473 		}
3474 
3475 		finish_wait(&pgdat->kswapd_wait, &wait);
3476 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3477 	}
3478 
3479 	/*
3480 	 * After a short sleep, check if it was a premature sleep. If not, then
3481 	 * go fully to sleep until explicitly woken up.
3482 	 */
3483 	if (!remaining &&
3484 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3485 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3486 
3487 		/*
3488 		 * vmstat counters are not perfectly accurate and the estimated
3489 		 * value for counters such as NR_FREE_PAGES can deviate from the
3490 		 * true value by nr_online_cpus * threshold. To avoid the zone
3491 		 * watermarks being breached while under pressure, we reduce the
3492 		 * per-cpu vmstat threshold while kswapd is awake and restore
3493 		 * them before going back to sleep.
3494 		 */
3495 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3496 
3497 		if (!kthread_should_stop())
3498 			schedule();
3499 
3500 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3501 	} else {
3502 		if (remaining)
3503 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3504 		else
3505 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3506 	}
3507 	finish_wait(&pgdat->kswapd_wait, &wait);
3508 }
3509 
3510 /*
3511  * The background pageout daemon, started as a kernel thread
3512  * from the init process.
3513  *
3514  * This basically trickles out pages so that we have _some_
3515  * free memory available even if there is no other activity
3516  * that frees anything up. This is needed for things like routing
3517  * etc, where we otherwise might have all activity going on in
3518  * asynchronous contexts that cannot page things out.
3519  *
3520  * If there are applications that are active memory-allocators
3521  * (most normal use), this basically shouldn't matter.
3522  */
3523 static int kswapd(void *p)
3524 {
3525 	unsigned int alloc_order, reclaim_order;
3526 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3527 	pg_data_t *pgdat = (pg_data_t*)p;
3528 	struct task_struct *tsk = current;
3529 
3530 	struct reclaim_state reclaim_state = {
3531 		.reclaimed_slab = 0,
3532 	};
3533 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3534 
3535 	if (!cpumask_empty(cpumask))
3536 		set_cpus_allowed_ptr(tsk, cpumask);
3537 	current->reclaim_state = &reclaim_state;
3538 
3539 	/*
3540 	 * Tell the memory management that we're a "memory allocator",
3541 	 * and that if we need more memory we should get access to it
3542 	 * regardless (see "__alloc_pages()"). "kswapd" should
3543 	 * never get caught in the normal page freeing logic.
3544 	 *
3545 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3546 	 * you need a small amount of memory in order to be able to
3547 	 * page out something else, and this flag essentially protects
3548 	 * us from recursively trying to free more memory as we're
3549 	 * trying to free the first piece of memory in the first place).
3550 	 */
3551 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3552 	set_freezable();
3553 
3554 	pgdat->kswapd_order = 0;
3555 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3556 	for ( ; ; ) {
3557 		bool ret;
3558 
3559 		alloc_order = reclaim_order = pgdat->kswapd_order;
3560 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3561 
3562 kswapd_try_sleep:
3563 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3564 					classzone_idx);
3565 
3566 		/* Read the new order and classzone_idx */
3567 		alloc_order = reclaim_order = pgdat->kswapd_order;
3568 		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3569 		pgdat->kswapd_order = 0;
3570 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3571 
3572 		ret = try_to_freeze();
3573 		if (kthread_should_stop())
3574 			break;
3575 
3576 		/*
3577 		 * We can speed up thawing tasks if we don't call balance_pgdat
3578 		 * after returning from the refrigerator
3579 		 */
3580 		if (ret)
3581 			continue;
3582 
3583 		/*
3584 		 * Reclaim begins at the requested order but if a high-order
3585 		 * reclaim fails then kswapd falls back to reclaiming for
3586 		 * order-0. If that happens, kswapd will consider sleeping
3587 		 * for the order it finished reclaiming at (reclaim_order)
3588 		 * but kcompactd is woken to compact for the original
3589 		 * request (alloc_order).
3590 		 */
3591 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3592 						alloc_order);
3593 		fs_reclaim_acquire(GFP_KERNEL);
3594 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3595 		fs_reclaim_release(GFP_KERNEL);
3596 		if (reclaim_order < alloc_order)
3597 			goto kswapd_try_sleep;
3598 	}
3599 
3600 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3601 	current->reclaim_state = NULL;
3602 
3603 	return 0;
3604 }
3605 
3606 /*
3607  * A zone is low on free memory, so wake its kswapd task to service it.
3608  */
3609 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3610 {
3611 	pg_data_t *pgdat;
3612 
3613 	if (!managed_zone(zone))
3614 		return;
3615 
3616 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3617 		return;
3618 	pgdat = zone->zone_pgdat;
3619 	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3620 							   classzone_idx);
3621 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3622 	if (!waitqueue_active(&pgdat->kswapd_wait))
3623 		return;
3624 
3625 	/* Hopeless node, leave it to direct reclaim */
3626 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3627 		return;
3628 
3629 	if (pgdat_balanced(pgdat, order, classzone_idx))
3630 		return;
3631 
3632 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3633 	wake_up_interruptible(&pgdat->kswapd_wait);
3634 }
3635 
3636 #ifdef CONFIG_HIBERNATION
3637 /*
3638  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3639  * freed pages.
3640  *
3641  * Rather than trying to age LRUs the aim is to preserve the overall
3642  * LRU order by reclaiming preferentially
3643  * inactive > active > active referenced > active mapped
3644  */
3645 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3646 {
3647 	struct reclaim_state reclaim_state;
3648 	struct scan_control sc = {
3649 		.nr_to_reclaim = nr_to_reclaim,
3650 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3651 		.reclaim_idx = MAX_NR_ZONES - 1,
3652 		.priority = DEF_PRIORITY,
3653 		.may_writepage = 1,
3654 		.may_unmap = 1,
3655 		.may_swap = 1,
3656 		.hibernation_mode = 1,
3657 	};
3658 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3659 	struct task_struct *p = current;
3660 	unsigned long nr_reclaimed;
3661 	unsigned int noreclaim_flag;
3662 
3663 	noreclaim_flag = memalloc_noreclaim_save();
3664 	fs_reclaim_acquire(sc.gfp_mask);
3665 	reclaim_state.reclaimed_slab = 0;
3666 	p->reclaim_state = &reclaim_state;
3667 
3668 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3669 
3670 	p->reclaim_state = NULL;
3671 	fs_reclaim_release(sc.gfp_mask);
3672 	memalloc_noreclaim_restore(noreclaim_flag);
3673 
3674 	return nr_reclaimed;
3675 }
3676 #endif /* CONFIG_HIBERNATION */
3677 
3678 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3679    not required for correctness.  So if the last cpu in a node goes
3680    away, we get changed to run anywhere: as the first one comes back,
3681    restore their cpu bindings. */
3682 static int kswapd_cpu_online(unsigned int cpu)
3683 {
3684 	int nid;
3685 
3686 	for_each_node_state(nid, N_MEMORY) {
3687 		pg_data_t *pgdat = NODE_DATA(nid);
3688 		const struct cpumask *mask;
3689 
3690 		mask = cpumask_of_node(pgdat->node_id);
3691 
3692 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3693 			/* One of our CPUs online: restore mask */
3694 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3695 	}
3696 	return 0;
3697 }
3698 
3699 /*
3700  * This kswapd start function will be called by init and node-hot-add.
3701  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3702  */
3703 int kswapd_run(int nid)
3704 {
3705 	pg_data_t *pgdat = NODE_DATA(nid);
3706 	int ret = 0;
3707 
3708 	if (pgdat->kswapd)
3709 		return 0;
3710 
3711 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3712 	if (IS_ERR(pgdat->kswapd)) {
3713 		/* failure at boot is fatal */
3714 		BUG_ON(system_state < SYSTEM_RUNNING);
3715 		pr_err("Failed to start kswapd on node %d\n", nid);
3716 		ret = PTR_ERR(pgdat->kswapd);
3717 		pgdat->kswapd = NULL;
3718 	}
3719 	return ret;
3720 }
3721 
3722 /*
3723  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3724  * hold mem_hotplug_begin/end().
3725  */
3726 void kswapd_stop(int nid)
3727 {
3728 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3729 
3730 	if (kswapd) {
3731 		kthread_stop(kswapd);
3732 		NODE_DATA(nid)->kswapd = NULL;
3733 	}
3734 }
3735 
3736 static int __init kswapd_init(void)
3737 {
3738 	int nid, ret;
3739 
3740 	swap_setup();
3741 	for_each_node_state(nid, N_MEMORY)
3742  		kswapd_run(nid);
3743 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3744 					"mm/vmscan:online", kswapd_cpu_online,
3745 					NULL);
3746 	WARN_ON(ret < 0);
3747 	return 0;
3748 }
3749 
3750 module_init(kswapd_init)
3751 
3752 #ifdef CONFIG_NUMA
3753 /*
3754  * Node reclaim mode
3755  *
3756  * If non-zero call node_reclaim when the number of free pages falls below
3757  * the watermarks.
3758  */
3759 int node_reclaim_mode __read_mostly;
3760 
3761 #define RECLAIM_OFF 0
3762 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3763 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3764 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3765 
3766 /*
3767  * Priority for NODE_RECLAIM. This determines the fraction of pages
3768  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3769  * a zone.
3770  */
3771 #define NODE_RECLAIM_PRIORITY 4
3772 
3773 /*
3774  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3775  * occur.
3776  */
3777 int sysctl_min_unmapped_ratio = 1;
3778 
3779 /*
3780  * If the number of slab pages in a zone grows beyond this percentage then
3781  * slab reclaim needs to occur.
3782  */
3783 int sysctl_min_slab_ratio = 5;
3784 
3785 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3786 {
3787 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3788 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3789 		node_page_state(pgdat, NR_ACTIVE_FILE);
3790 
3791 	/*
3792 	 * It's possible for there to be more file mapped pages than
3793 	 * accounted for by the pages on the file LRU lists because
3794 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3795 	 */
3796 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3797 }
3798 
3799 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3800 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3801 {
3802 	unsigned long nr_pagecache_reclaimable;
3803 	unsigned long delta = 0;
3804 
3805 	/*
3806 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3807 	 * potentially reclaimable. Otherwise, we have to worry about
3808 	 * pages like swapcache and node_unmapped_file_pages() provides
3809 	 * a better estimate
3810 	 */
3811 	if (node_reclaim_mode & RECLAIM_UNMAP)
3812 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3813 	else
3814 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3815 
3816 	/* If we can't clean pages, remove dirty pages from consideration */
3817 	if (!(node_reclaim_mode & RECLAIM_WRITE))
3818 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3819 
3820 	/* Watch for any possible underflows due to delta */
3821 	if (unlikely(delta > nr_pagecache_reclaimable))
3822 		delta = nr_pagecache_reclaimable;
3823 
3824 	return nr_pagecache_reclaimable - delta;
3825 }
3826 
3827 /*
3828  * Try to free up some pages from this node through reclaim.
3829  */
3830 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3831 {
3832 	/* Minimum pages needed in order to stay on node */
3833 	const unsigned long nr_pages = 1 << order;
3834 	struct task_struct *p = current;
3835 	struct reclaim_state reclaim_state;
3836 	unsigned int noreclaim_flag;
3837 	struct scan_control sc = {
3838 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3839 		.gfp_mask = current_gfp_context(gfp_mask),
3840 		.order = order,
3841 		.priority = NODE_RECLAIM_PRIORITY,
3842 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3843 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3844 		.may_swap = 1,
3845 		.reclaim_idx = gfp_zone(gfp_mask),
3846 	};
3847 
3848 	cond_resched();
3849 	/*
3850 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3851 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3852 	 * and RECLAIM_UNMAP.
3853 	 */
3854 	noreclaim_flag = memalloc_noreclaim_save();
3855 	p->flags |= PF_SWAPWRITE;
3856 	fs_reclaim_acquire(sc.gfp_mask);
3857 	reclaim_state.reclaimed_slab = 0;
3858 	p->reclaim_state = &reclaim_state;
3859 
3860 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3861 		/*
3862 		 * Free memory by calling shrink zone with increasing
3863 		 * priorities until we have enough memory freed.
3864 		 */
3865 		do {
3866 			shrink_node(pgdat, &sc);
3867 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3868 	}
3869 
3870 	p->reclaim_state = NULL;
3871 	fs_reclaim_release(gfp_mask);
3872 	current->flags &= ~PF_SWAPWRITE;
3873 	memalloc_noreclaim_restore(noreclaim_flag);
3874 	return sc.nr_reclaimed >= nr_pages;
3875 }
3876 
3877 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3878 {
3879 	int ret;
3880 
3881 	/*
3882 	 * Node reclaim reclaims unmapped file backed pages and
3883 	 * slab pages if we are over the defined limits.
3884 	 *
3885 	 * A small portion of unmapped file backed pages is needed for
3886 	 * file I/O otherwise pages read by file I/O will be immediately
3887 	 * thrown out if the node is overallocated. So we do not reclaim
3888 	 * if less than a specified percentage of the node is used by
3889 	 * unmapped file backed pages.
3890 	 */
3891 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3892 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3893 		return NODE_RECLAIM_FULL;
3894 
3895 	/*
3896 	 * Do not scan if the allocation should not be delayed.
3897 	 */
3898 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3899 		return NODE_RECLAIM_NOSCAN;
3900 
3901 	/*
3902 	 * Only run node reclaim on the local node or on nodes that do not
3903 	 * have associated processors. This will favor the local processor
3904 	 * over remote processors and spread off node memory allocations
3905 	 * as wide as possible.
3906 	 */
3907 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3908 		return NODE_RECLAIM_NOSCAN;
3909 
3910 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3911 		return NODE_RECLAIM_NOSCAN;
3912 
3913 	ret = __node_reclaim(pgdat, gfp_mask, order);
3914 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3915 
3916 	if (!ret)
3917 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3918 
3919 	return ret;
3920 }
3921 #endif
3922 
3923 /*
3924  * page_evictable - test whether a page is evictable
3925  * @page: the page to test
3926  *
3927  * Test whether page is evictable--i.e., should be placed on active/inactive
3928  * lists vs unevictable list.
3929  *
3930  * Reasons page might not be evictable:
3931  * (1) page's mapping marked unevictable
3932  * (2) page is part of an mlocked VMA
3933  *
3934  */
3935 int page_evictable(struct page *page)
3936 {
3937 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3938 }
3939 
3940 #ifdef CONFIG_SHMEM
3941 /**
3942  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3943  * @pages:	array of pages to check
3944  * @nr_pages:	number of pages to check
3945  *
3946  * Checks pages for evictability and moves them to the appropriate lru list.
3947  *
3948  * This function is only used for SysV IPC SHM_UNLOCK.
3949  */
3950 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3951 {
3952 	struct lruvec *lruvec;
3953 	struct pglist_data *pgdat = NULL;
3954 	int pgscanned = 0;
3955 	int pgrescued = 0;
3956 	int i;
3957 
3958 	for (i = 0; i < nr_pages; i++) {
3959 		struct page *page = pages[i];
3960 		struct pglist_data *pagepgdat = page_pgdat(page);
3961 
3962 		pgscanned++;
3963 		if (pagepgdat != pgdat) {
3964 			if (pgdat)
3965 				spin_unlock_irq(&pgdat->lru_lock);
3966 			pgdat = pagepgdat;
3967 			spin_lock_irq(&pgdat->lru_lock);
3968 		}
3969 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3970 
3971 		if (!PageLRU(page) || !PageUnevictable(page))
3972 			continue;
3973 
3974 		if (page_evictable(page)) {
3975 			enum lru_list lru = page_lru_base_type(page);
3976 
3977 			VM_BUG_ON_PAGE(PageActive(page), page);
3978 			ClearPageUnevictable(page);
3979 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3980 			add_page_to_lru_list(page, lruvec, lru);
3981 			pgrescued++;
3982 		}
3983 	}
3984 
3985 	if (pgdat) {
3986 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3987 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3988 		spin_unlock_irq(&pgdat->lru_lock);
3989 	}
3990 }
3991 #endif /* CONFIG_SHMEM */
3992