1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/sched/mm.h> 18 #include <linux/module.h> 19 #include <linux/gfp.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/swap.h> 22 #include <linux/pagemap.h> 23 #include <linux/init.h> 24 #include <linux/highmem.h> 25 #include <linux/vmpressure.h> 26 #include <linux/vmstat.h> 27 #include <linux/file.h> 28 #include <linux/writeback.h> 29 #include <linux/blkdev.h> 30 #include <linux/buffer_head.h> /* for try_to_release_page(), 31 buffer_heads_over_limit */ 32 #include <linux/mm_inline.h> 33 #include <linux/backing-dev.h> 34 #include <linux/rmap.h> 35 #include <linux/topology.h> 36 #include <linux/cpu.h> 37 #include <linux/cpuset.h> 38 #include <linux/compaction.h> 39 #include <linux/notifier.h> 40 #include <linux/rwsem.h> 41 #include <linux/delay.h> 42 #include <linux/kthread.h> 43 #include <linux/freezer.h> 44 #include <linux/memcontrol.h> 45 #include <linux/delayacct.h> 46 #include <linux/sysctl.h> 47 #include <linux/oom.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 52 #include <asm/tlbflush.h> 53 #include <asm/div64.h> 54 55 #include <linux/swapops.h> 56 #include <linux/balloon_compaction.h> 57 58 #include "internal.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/vmscan.h> 62 63 struct scan_control { 64 /* How many pages shrink_list() should reclaim */ 65 unsigned long nr_to_reclaim; 66 67 /* This context's GFP mask */ 68 gfp_t gfp_mask; 69 70 /* Allocation order */ 71 int order; 72 73 /* 74 * Nodemask of nodes allowed by the caller. If NULL, all nodes 75 * are scanned. 76 */ 77 nodemask_t *nodemask; 78 79 /* 80 * The memory cgroup that hit its limit and as a result is the 81 * primary target of this reclaim invocation. 82 */ 83 struct mem_cgroup *target_mem_cgroup; 84 85 /* Scan (total_size >> priority) pages at once */ 86 int priority; 87 88 /* The highest zone to isolate pages for reclaim from */ 89 enum zone_type reclaim_idx; 90 91 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 92 unsigned int may_writepage:1; 93 94 /* Can mapped pages be reclaimed? */ 95 unsigned int may_unmap:1; 96 97 /* Can pages be swapped as part of reclaim? */ 98 unsigned int may_swap:1; 99 100 /* 101 * Cgroups are not reclaimed below their configured memory.low, 102 * unless we threaten to OOM. If any cgroups are skipped due to 103 * memory.low and nothing was reclaimed, go back for memory.low. 104 */ 105 unsigned int memcg_low_reclaim:1; 106 unsigned int memcg_low_skipped:1; 107 108 unsigned int hibernation_mode:1; 109 110 /* One of the zones is ready for compaction */ 111 unsigned int compaction_ready:1; 112 113 /* Incremented by the number of inactive pages that were scanned */ 114 unsigned long nr_scanned; 115 116 /* Number of pages freed so far during a call to shrink_zones() */ 117 unsigned long nr_reclaimed; 118 }; 119 120 #ifdef ARCH_HAS_PREFETCH 121 #define prefetch_prev_lru_page(_page, _base, _field) \ 122 do { \ 123 if ((_page)->lru.prev != _base) { \ 124 struct page *prev; \ 125 \ 126 prev = lru_to_page(&(_page->lru)); \ 127 prefetch(&prev->_field); \ 128 } \ 129 } while (0) 130 #else 131 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 132 #endif 133 134 #ifdef ARCH_HAS_PREFETCHW 135 #define prefetchw_prev_lru_page(_page, _base, _field) \ 136 do { \ 137 if ((_page)->lru.prev != _base) { \ 138 struct page *prev; \ 139 \ 140 prev = lru_to_page(&(_page->lru)); \ 141 prefetchw(&prev->_field); \ 142 } \ 143 } while (0) 144 #else 145 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 146 #endif 147 148 /* 149 * From 0 .. 100. Higher means more swappy. 150 */ 151 int vm_swappiness = 60; 152 /* 153 * The total number of pages which are beyond the high watermark within all 154 * zones. 155 */ 156 unsigned long vm_total_pages; 157 158 static LIST_HEAD(shrinker_list); 159 static DECLARE_RWSEM(shrinker_rwsem); 160 161 #ifdef CONFIG_MEMCG 162 static bool global_reclaim(struct scan_control *sc) 163 { 164 return !sc->target_mem_cgroup; 165 } 166 167 /** 168 * sane_reclaim - is the usual dirty throttling mechanism operational? 169 * @sc: scan_control in question 170 * 171 * The normal page dirty throttling mechanism in balance_dirty_pages() is 172 * completely broken with the legacy memcg and direct stalling in 173 * shrink_page_list() is used for throttling instead, which lacks all the 174 * niceties such as fairness, adaptive pausing, bandwidth proportional 175 * allocation and configurability. 176 * 177 * This function tests whether the vmscan currently in progress can assume 178 * that the normal dirty throttling mechanism is operational. 179 */ 180 static bool sane_reclaim(struct scan_control *sc) 181 { 182 struct mem_cgroup *memcg = sc->target_mem_cgroup; 183 184 if (!memcg) 185 return true; 186 #ifdef CONFIG_CGROUP_WRITEBACK 187 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 188 return true; 189 #endif 190 return false; 191 } 192 #else 193 static bool global_reclaim(struct scan_control *sc) 194 { 195 return true; 196 } 197 198 static bool sane_reclaim(struct scan_control *sc) 199 { 200 return true; 201 } 202 #endif 203 204 /* 205 * This misses isolated pages which are not accounted for to save counters. 206 * As the data only determines if reclaim or compaction continues, it is 207 * not expected that isolated pages will be a dominating factor. 208 */ 209 unsigned long zone_reclaimable_pages(struct zone *zone) 210 { 211 unsigned long nr; 212 213 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 214 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 215 if (get_nr_swap_pages() > 0) 216 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 217 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 218 219 return nr; 220 } 221 222 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat) 223 { 224 unsigned long nr; 225 226 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) + 227 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) + 228 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE); 229 230 if (get_nr_swap_pages() > 0) 231 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) + 232 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) + 233 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON); 234 235 return nr; 236 } 237 238 /** 239 * lruvec_lru_size - Returns the number of pages on the given LRU list. 240 * @lruvec: lru vector 241 * @lru: lru to use 242 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 243 */ 244 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 245 { 246 unsigned long lru_size; 247 int zid; 248 249 if (!mem_cgroup_disabled()) 250 lru_size = mem_cgroup_get_lru_size(lruvec, lru); 251 else 252 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 253 254 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 255 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 256 unsigned long size; 257 258 if (!managed_zone(zone)) 259 continue; 260 261 if (!mem_cgroup_disabled()) 262 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 263 else 264 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 265 NR_ZONE_LRU_BASE + lru); 266 lru_size -= min(size, lru_size); 267 } 268 269 return lru_size; 270 271 } 272 273 /* 274 * Add a shrinker callback to be called from the vm. 275 */ 276 int register_shrinker(struct shrinker *shrinker) 277 { 278 size_t size = sizeof(*shrinker->nr_deferred); 279 280 if (shrinker->flags & SHRINKER_NUMA_AWARE) 281 size *= nr_node_ids; 282 283 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 284 if (!shrinker->nr_deferred) 285 return -ENOMEM; 286 287 down_write(&shrinker_rwsem); 288 list_add_tail(&shrinker->list, &shrinker_list); 289 up_write(&shrinker_rwsem); 290 return 0; 291 } 292 EXPORT_SYMBOL(register_shrinker); 293 294 /* 295 * Remove one 296 */ 297 void unregister_shrinker(struct shrinker *shrinker) 298 { 299 down_write(&shrinker_rwsem); 300 list_del(&shrinker->list); 301 up_write(&shrinker_rwsem); 302 kfree(shrinker->nr_deferred); 303 } 304 EXPORT_SYMBOL(unregister_shrinker); 305 306 #define SHRINK_BATCH 128 307 308 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 309 struct shrinker *shrinker, 310 unsigned long nr_scanned, 311 unsigned long nr_eligible) 312 { 313 unsigned long freed = 0; 314 unsigned long long delta; 315 long total_scan; 316 long freeable; 317 long nr; 318 long new_nr; 319 int nid = shrinkctl->nid; 320 long batch_size = shrinker->batch ? shrinker->batch 321 : SHRINK_BATCH; 322 long scanned = 0, next_deferred; 323 324 freeable = shrinker->count_objects(shrinker, shrinkctl); 325 if (freeable == 0) 326 return 0; 327 328 /* 329 * copy the current shrinker scan count into a local variable 330 * and zero it so that other concurrent shrinker invocations 331 * don't also do this scanning work. 332 */ 333 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 334 335 total_scan = nr; 336 delta = (4 * nr_scanned) / shrinker->seeks; 337 delta *= freeable; 338 do_div(delta, nr_eligible + 1); 339 total_scan += delta; 340 if (total_scan < 0) { 341 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 342 shrinker->scan_objects, total_scan); 343 total_scan = freeable; 344 next_deferred = nr; 345 } else 346 next_deferred = total_scan; 347 348 /* 349 * We need to avoid excessive windup on filesystem shrinkers 350 * due to large numbers of GFP_NOFS allocations causing the 351 * shrinkers to return -1 all the time. This results in a large 352 * nr being built up so when a shrink that can do some work 353 * comes along it empties the entire cache due to nr >>> 354 * freeable. This is bad for sustaining a working set in 355 * memory. 356 * 357 * Hence only allow the shrinker to scan the entire cache when 358 * a large delta change is calculated directly. 359 */ 360 if (delta < freeable / 4) 361 total_scan = min(total_scan, freeable / 2); 362 363 /* 364 * Avoid risking looping forever due to too large nr value: 365 * never try to free more than twice the estimate number of 366 * freeable entries. 367 */ 368 if (total_scan > freeable * 2) 369 total_scan = freeable * 2; 370 371 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 372 nr_scanned, nr_eligible, 373 freeable, delta, total_scan); 374 375 /* 376 * Normally, we should not scan less than batch_size objects in one 377 * pass to avoid too frequent shrinker calls, but if the slab has less 378 * than batch_size objects in total and we are really tight on memory, 379 * we will try to reclaim all available objects, otherwise we can end 380 * up failing allocations although there are plenty of reclaimable 381 * objects spread over several slabs with usage less than the 382 * batch_size. 383 * 384 * We detect the "tight on memory" situations by looking at the total 385 * number of objects we want to scan (total_scan). If it is greater 386 * than the total number of objects on slab (freeable), we must be 387 * scanning at high prio and therefore should try to reclaim as much as 388 * possible. 389 */ 390 while (total_scan >= batch_size || 391 total_scan >= freeable) { 392 unsigned long ret; 393 unsigned long nr_to_scan = min(batch_size, total_scan); 394 395 shrinkctl->nr_to_scan = nr_to_scan; 396 shrinkctl->nr_scanned = nr_to_scan; 397 ret = shrinker->scan_objects(shrinker, shrinkctl); 398 if (ret == SHRINK_STOP) 399 break; 400 freed += ret; 401 402 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 403 total_scan -= shrinkctl->nr_scanned; 404 scanned += shrinkctl->nr_scanned; 405 406 cond_resched(); 407 } 408 409 if (next_deferred >= scanned) 410 next_deferred -= scanned; 411 else 412 next_deferred = 0; 413 /* 414 * move the unused scan count back into the shrinker in a 415 * manner that handles concurrent updates. If we exhausted the 416 * scan, there is no need to do an update. 417 */ 418 if (next_deferred > 0) 419 new_nr = atomic_long_add_return(next_deferred, 420 &shrinker->nr_deferred[nid]); 421 else 422 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 423 424 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 425 return freed; 426 } 427 428 /** 429 * shrink_slab - shrink slab caches 430 * @gfp_mask: allocation context 431 * @nid: node whose slab caches to target 432 * @memcg: memory cgroup whose slab caches to target 433 * @nr_scanned: pressure numerator 434 * @nr_eligible: pressure denominator 435 * 436 * Call the shrink functions to age shrinkable caches. 437 * 438 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 439 * unaware shrinkers will receive a node id of 0 instead. 440 * 441 * @memcg specifies the memory cgroup to target. If it is not NULL, 442 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 443 * objects from the memory cgroup specified. Otherwise, only unaware 444 * shrinkers are called. 445 * 446 * @nr_scanned and @nr_eligible form a ratio that indicate how much of 447 * the available objects should be scanned. Page reclaim for example 448 * passes the number of pages scanned and the number of pages on the 449 * LRU lists that it considered on @nid, plus a bias in @nr_scanned 450 * when it encountered mapped pages. The ratio is further biased by 451 * the ->seeks setting of the shrink function, which indicates the 452 * cost to recreate an object relative to that of an LRU page. 453 * 454 * Returns the number of reclaimed slab objects. 455 */ 456 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 457 struct mem_cgroup *memcg, 458 unsigned long nr_scanned, 459 unsigned long nr_eligible) 460 { 461 struct shrinker *shrinker; 462 unsigned long freed = 0; 463 464 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))) 465 return 0; 466 467 if (nr_scanned == 0) 468 nr_scanned = SWAP_CLUSTER_MAX; 469 470 if (!down_read_trylock(&shrinker_rwsem)) { 471 /* 472 * If we would return 0, our callers would understand that we 473 * have nothing else to shrink and give up trying. By returning 474 * 1 we keep it going and assume we'll be able to shrink next 475 * time. 476 */ 477 freed = 1; 478 goto out; 479 } 480 481 list_for_each_entry(shrinker, &shrinker_list, list) { 482 struct shrink_control sc = { 483 .gfp_mask = gfp_mask, 484 .nid = nid, 485 .memcg = memcg, 486 }; 487 488 /* 489 * If kernel memory accounting is disabled, we ignore 490 * SHRINKER_MEMCG_AWARE flag and call all shrinkers 491 * passing NULL for memcg. 492 */ 493 if (memcg_kmem_enabled() && 494 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE)) 495 continue; 496 497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 498 sc.nid = 0; 499 500 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); 501 } 502 503 up_read(&shrinker_rwsem); 504 out: 505 cond_resched(); 506 return freed; 507 } 508 509 void drop_slab_node(int nid) 510 { 511 unsigned long freed; 512 513 do { 514 struct mem_cgroup *memcg = NULL; 515 516 freed = 0; 517 do { 518 freed += shrink_slab(GFP_KERNEL, nid, memcg, 519 1000, 1000); 520 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 521 } while (freed > 10); 522 } 523 524 void drop_slab(void) 525 { 526 int nid; 527 528 for_each_online_node(nid) 529 drop_slab_node(nid); 530 } 531 532 static inline int is_page_cache_freeable(struct page *page) 533 { 534 /* 535 * A freeable page cache page is referenced only by the caller 536 * that isolated the page, the page cache radix tree and 537 * optional buffer heads at page->private. 538 */ 539 return page_count(page) - page_has_private(page) == 2; 540 } 541 542 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 543 { 544 if (current->flags & PF_SWAPWRITE) 545 return 1; 546 if (!inode_write_congested(inode)) 547 return 1; 548 if (inode_to_bdi(inode) == current->backing_dev_info) 549 return 1; 550 return 0; 551 } 552 553 /* 554 * We detected a synchronous write error writing a page out. Probably 555 * -ENOSPC. We need to propagate that into the address_space for a subsequent 556 * fsync(), msync() or close(). 557 * 558 * The tricky part is that after writepage we cannot touch the mapping: nothing 559 * prevents it from being freed up. But we have a ref on the page and once 560 * that page is locked, the mapping is pinned. 561 * 562 * We're allowed to run sleeping lock_page() here because we know the caller has 563 * __GFP_FS. 564 */ 565 static void handle_write_error(struct address_space *mapping, 566 struct page *page, int error) 567 { 568 lock_page(page); 569 if (page_mapping(page) == mapping) 570 mapping_set_error(mapping, error); 571 unlock_page(page); 572 } 573 574 /* possible outcome of pageout() */ 575 typedef enum { 576 /* failed to write page out, page is locked */ 577 PAGE_KEEP, 578 /* move page to the active list, page is locked */ 579 PAGE_ACTIVATE, 580 /* page has been sent to the disk successfully, page is unlocked */ 581 PAGE_SUCCESS, 582 /* page is clean and locked */ 583 PAGE_CLEAN, 584 } pageout_t; 585 586 /* 587 * pageout is called by shrink_page_list() for each dirty page. 588 * Calls ->writepage(). 589 */ 590 static pageout_t pageout(struct page *page, struct address_space *mapping, 591 struct scan_control *sc) 592 { 593 /* 594 * If the page is dirty, only perform writeback if that write 595 * will be non-blocking. To prevent this allocation from being 596 * stalled by pagecache activity. But note that there may be 597 * stalls if we need to run get_block(). We could test 598 * PagePrivate for that. 599 * 600 * If this process is currently in __generic_file_write_iter() against 601 * this page's queue, we can perform writeback even if that 602 * will block. 603 * 604 * If the page is swapcache, write it back even if that would 605 * block, for some throttling. This happens by accident, because 606 * swap_backing_dev_info is bust: it doesn't reflect the 607 * congestion state of the swapdevs. Easy to fix, if needed. 608 */ 609 if (!is_page_cache_freeable(page)) 610 return PAGE_KEEP; 611 if (!mapping) { 612 /* 613 * Some data journaling orphaned pages can have 614 * page->mapping == NULL while being dirty with clean buffers. 615 */ 616 if (page_has_private(page)) { 617 if (try_to_free_buffers(page)) { 618 ClearPageDirty(page); 619 pr_info("%s: orphaned page\n", __func__); 620 return PAGE_CLEAN; 621 } 622 } 623 return PAGE_KEEP; 624 } 625 if (mapping->a_ops->writepage == NULL) 626 return PAGE_ACTIVATE; 627 if (!may_write_to_inode(mapping->host, sc)) 628 return PAGE_KEEP; 629 630 if (clear_page_dirty_for_io(page)) { 631 int res; 632 struct writeback_control wbc = { 633 .sync_mode = WB_SYNC_NONE, 634 .nr_to_write = SWAP_CLUSTER_MAX, 635 .range_start = 0, 636 .range_end = LLONG_MAX, 637 .for_reclaim = 1, 638 }; 639 640 SetPageReclaim(page); 641 res = mapping->a_ops->writepage(page, &wbc); 642 if (res < 0) 643 handle_write_error(mapping, page, res); 644 if (res == AOP_WRITEPAGE_ACTIVATE) { 645 ClearPageReclaim(page); 646 return PAGE_ACTIVATE; 647 } 648 649 if (!PageWriteback(page)) { 650 /* synchronous write or broken a_ops? */ 651 ClearPageReclaim(page); 652 } 653 trace_mm_vmscan_writepage(page); 654 inc_node_page_state(page, NR_VMSCAN_WRITE); 655 return PAGE_SUCCESS; 656 } 657 658 return PAGE_CLEAN; 659 } 660 661 /* 662 * Same as remove_mapping, but if the page is removed from the mapping, it 663 * gets returned with a refcount of 0. 664 */ 665 static int __remove_mapping(struct address_space *mapping, struct page *page, 666 bool reclaimed) 667 { 668 unsigned long flags; 669 670 BUG_ON(!PageLocked(page)); 671 BUG_ON(mapping != page_mapping(page)); 672 673 spin_lock_irqsave(&mapping->tree_lock, flags); 674 /* 675 * The non racy check for a busy page. 676 * 677 * Must be careful with the order of the tests. When someone has 678 * a ref to the page, it may be possible that they dirty it then 679 * drop the reference. So if PageDirty is tested before page_count 680 * here, then the following race may occur: 681 * 682 * get_user_pages(&page); 683 * [user mapping goes away] 684 * write_to(page); 685 * !PageDirty(page) [good] 686 * SetPageDirty(page); 687 * put_page(page); 688 * !page_count(page) [good, discard it] 689 * 690 * [oops, our write_to data is lost] 691 * 692 * Reversing the order of the tests ensures such a situation cannot 693 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 694 * load is not satisfied before that of page->_refcount. 695 * 696 * Note that if SetPageDirty is always performed via set_page_dirty, 697 * and thus under tree_lock, then this ordering is not required. 698 */ 699 if (!page_ref_freeze(page, 2)) 700 goto cannot_free; 701 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 702 if (unlikely(PageDirty(page))) { 703 page_ref_unfreeze(page, 2); 704 goto cannot_free; 705 } 706 707 if (PageSwapCache(page)) { 708 swp_entry_t swap = { .val = page_private(page) }; 709 mem_cgroup_swapout(page, swap); 710 __delete_from_swap_cache(page); 711 spin_unlock_irqrestore(&mapping->tree_lock, flags); 712 put_swap_page(page, swap); 713 } else { 714 void (*freepage)(struct page *); 715 void *shadow = NULL; 716 717 freepage = mapping->a_ops->freepage; 718 /* 719 * Remember a shadow entry for reclaimed file cache in 720 * order to detect refaults, thus thrashing, later on. 721 * 722 * But don't store shadows in an address space that is 723 * already exiting. This is not just an optizimation, 724 * inode reclaim needs to empty out the radix tree or 725 * the nodes are lost. Don't plant shadows behind its 726 * back. 727 * 728 * We also don't store shadows for DAX mappings because the 729 * only page cache pages found in these are zero pages 730 * covering holes, and because we don't want to mix DAX 731 * exceptional entries and shadow exceptional entries in the 732 * same page_tree. 733 */ 734 if (reclaimed && page_is_file_cache(page) && 735 !mapping_exiting(mapping) && !dax_mapping(mapping)) 736 shadow = workingset_eviction(mapping, page); 737 __delete_from_page_cache(page, shadow); 738 spin_unlock_irqrestore(&mapping->tree_lock, flags); 739 740 if (freepage != NULL) 741 freepage(page); 742 } 743 744 return 1; 745 746 cannot_free: 747 spin_unlock_irqrestore(&mapping->tree_lock, flags); 748 return 0; 749 } 750 751 /* 752 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 753 * someone else has a ref on the page, abort and return 0. If it was 754 * successfully detached, return 1. Assumes the caller has a single ref on 755 * this page. 756 */ 757 int remove_mapping(struct address_space *mapping, struct page *page) 758 { 759 if (__remove_mapping(mapping, page, false)) { 760 /* 761 * Unfreezing the refcount with 1 rather than 2 effectively 762 * drops the pagecache ref for us without requiring another 763 * atomic operation. 764 */ 765 page_ref_unfreeze(page, 1); 766 return 1; 767 } 768 return 0; 769 } 770 771 /** 772 * putback_lru_page - put previously isolated page onto appropriate LRU list 773 * @page: page to be put back to appropriate lru list 774 * 775 * Add previously isolated @page to appropriate LRU list. 776 * Page may still be unevictable for other reasons. 777 * 778 * lru_lock must not be held, interrupts must be enabled. 779 */ 780 void putback_lru_page(struct page *page) 781 { 782 bool is_unevictable; 783 int was_unevictable = PageUnevictable(page); 784 785 VM_BUG_ON_PAGE(PageLRU(page), page); 786 787 redo: 788 ClearPageUnevictable(page); 789 790 if (page_evictable(page)) { 791 /* 792 * For evictable pages, we can use the cache. 793 * In event of a race, worst case is we end up with an 794 * unevictable page on [in]active list. 795 * We know how to handle that. 796 */ 797 is_unevictable = false; 798 lru_cache_add(page); 799 } else { 800 /* 801 * Put unevictable pages directly on zone's unevictable 802 * list. 803 */ 804 is_unevictable = true; 805 add_page_to_unevictable_list(page); 806 /* 807 * When racing with an mlock or AS_UNEVICTABLE clearing 808 * (page is unlocked) make sure that if the other thread 809 * does not observe our setting of PG_lru and fails 810 * isolation/check_move_unevictable_pages, 811 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 812 * the page back to the evictable list. 813 * 814 * The other side is TestClearPageMlocked() or shmem_lock(). 815 */ 816 smp_mb(); 817 } 818 819 /* 820 * page's status can change while we move it among lru. If an evictable 821 * page is on unevictable list, it never be freed. To avoid that, 822 * check after we added it to the list, again. 823 */ 824 if (is_unevictable && page_evictable(page)) { 825 if (!isolate_lru_page(page)) { 826 put_page(page); 827 goto redo; 828 } 829 /* This means someone else dropped this page from LRU 830 * So, it will be freed or putback to LRU again. There is 831 * nothing to do here. 832 */ 833 } 834 835 if (was_unevictable && !is_unevictable) 836 count_vm_event(UNEVICTABLE_PGRESCUED); 837 else if (!was_unevictable && is_unevictable) 838 count_vm_event(UNEVICTABLE_PGCULLED); 839 840 put_page(page); /* drop ref from isolate */ 841 } 842 843 enum page_references { 844 PAGEREF_RECLAIM, 845 PAGEREF_RECLAIM_CLEAN, 846 PAGEREF_KEEP, 847 PAGEREF_ACTIVATE, 848 }; 849 850 static enum page_references page_check_references(struct page *page, 851 struct scan_control *sc) 852 { 853 int referenced_ptes, referenced_page; 854 unsigned long vm_flags; 855 856 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 857 &vm_flags); 858 referenced_page = TestClearPageReferenced(page); 859 860 /* 861 * Mlock lost the isolation race with us. Let try_to_unmap() 862 * move the page to the unevictable list. 863 */ 864 if (vm_flags & VM_LOCKED) 865 return PAGEREF_RECLAIM; 866 867 if (referenced_ptes) { 868 if (PageSwapBacked(page)) 869 return PAGEREF_ACTIVATE; 870 /* 871 * All mapped pages start out with page table 872 * references from the instantiating fault, so we need 873 * to look twice if a mapped file page is used more 874 * than once. 875 * 876 * Mark it and spare it for another trip around the 877 * inactive list. Another page table reference will 878 * lead to its activation. 879 * 880 * Note: the mark is set for activated pages as well 881 * so that recently deactivated but used pages are 882 * quickly recovered. 883 */ 884 SetPageReferenced(page); 885 886 if (referenced_page || referenced_ptes > 1) 887 return PAGEREF_ACTIVATE; 888 889 /* 890 * Activate file-backed executable pages after first usage. 891 */ 892 if (vm_flags & VM_EXEC) 893 return PAGEREF_ACTIVATE; 894 895 return PAGEREF_KEEP; 896 } 897 898 /* Reclaim if clean, defer dirty pages to writeback */ 899 if (referenced_page && !PageSwapBacked(page)) 900 return PAGEREF_RECLAIM_CLEAN; 901 902 return PAGEREF_RECLAIM; 903 } 904 905 /* Check if a page is dirty or under writeback */ 906 static void page_check_dirty_writeback(struct page *page, 907 bool *dirty, bool *writeback) 908 { 909 struct address_space *mapping; 910 911 /* 912 * Anonymous pages are not handled by flushers and must be written 913 * from reclaim context. Do not stall reclaim based on them 914 */ 915 if (!page_is_file_cache(page) || 916 (PageAnon(page) && !PageSwapBacked(page))) { 917 *dirty = false; 918 *writeback = false; 919 return; 920 } 921 922 /* By default assume that the page flags are accurate */ 923 *dirty = PageDirty(page); 924 *writeback = PageWriteback(page); 925 926 /* Verify dirty/writeback state if the filesystem supports it */ 927 if (!page_has_private(page)) 928 return; 929 930 mapping = page_mapping(page); 931 if (mapping && mapping->a_ops->is_dirty_writeback) 932 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 933 } 934 935 struct reclaim_stat { 936 unsigned nr_dirty; 937 unsigned nr_unqueued_dirty; 938 unsigned nr_congested; 939 unsigned nr_writeback; 940 unsigned nr_immediate; 941 unsigned nr_activate; 942 unsigned nr_ref_keep; 943 unsigned nr_unmap_fail; 944 }; 945 946 /* 947 * shrink_page_list() returns the number of reclaimed pages 948 */ 949 static unsigned long shrink_page_list(struct list_head *page_list, 950 struct pglist_data *pgdat, 951 struct scan_control *sc, 952 enum ttu_flags ttu_flags, 953 struct reclaim_stat *stat, 954 bool force_reclaim) 955 { 956 LIST_HEAD(ret_pages); 957 LIST_HEAD(free_pages); 958 int pgactivate = 0; 959 unsigned nr_unqueued_dirty = 0; 960 unsigned nr_dirty = 0; 961 unsigned nr_congested = 0; 962 unsigned nr_reclaimed = 0; 963 unsigned nr_writeback = 0; 964 unsigned nr_immediate = 0; 965 unsigned nr_ref_keep = 0; 966 unsigned nr_unmap_fail = 0; 967 968 cond_resched(); 969 970 while (!list_empty(page_list)) { 971 struct address_space *mapping; 972 struct page *page; 973 int may_enter_fs; 974 enum page_references references = PAGEREF_RECLAIM_CLEAN; 975 bool dirty, writeback; 976 977 cond_resched(); 978 979 page = lru_to_page(page_list); 980 list_del(&page->lru); 981 982 if (!trylock_page(page)) 983 goto keep; 984 985 VM_BUG_ON_PAGE(PageActive(page), page); 986 987 sc->nr_scanned++; 988 989 if (unlikely(!page_evictable(page))) 990 goto activate_locked; 991 992 if (!sc->may_unmap && page_mapped(page)) 993 goto keep_locked; 994 995 /* Double the slab pressure for mapped and swapcache pages */ 996 if ((page_mapped(page) || PageSwapCache(page)) && 997 !(PageAnon(page) && !PageSwapBacked(page))) 998 sc->nr_scanned++; 999 1000 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1001 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1002 1003 /* 1004 * The number of dirty pages determines if a zone is marked 1005 * reclaim_congested which affects wait_iff_congested. kswapd 1006 * will stall and start writing pages if the tail of the LRU 1007 * is all dirty unqueued pages. 1008 */ 1009 page_check_dirty_writeback(page, &dirty, &writeback); 1010 if (dirty || writeback) 1011 nr_dirty++; 1012 1013 if (dirty && !writeback) 1014 nr_unqueued_dirty++; 1015 1016 /* 1017 * Treat this page as congested if the underlying BDI is or if 1018 * pages are cycling through the LRU so quickly that the 1019 * pages marked for immediate reclaim are making it to the 1020 * end of the LRU a second time. 1021 */ 1022 mapping = page_mapping(page); 1023 if (((dirty || writeback) && mapping && 1024 inode_write_congested(mapping->host)) || 1025 (writeback && PageReclaim(page))) 1026 nr_congested++; 1027 1028 /* 1029 * If a page at the tail of the LRU is under writeback, there 1030 * are three cases to consider. 1031 * 1032 * 1) If reclaim is encountering an excessive number of pages 1033 * under writeback and this page is both under writeback and 1034 * PageReclaim then it indicates that pages are being queued 1035 * for IO but are being recycled through the LRU before the 1036 * IO can complete. Waiting on the page itself risks an 1037 * indefinite stall if it is impossible to writeback the 1038 * page due to IO error or disconnected storage so instead 1039 * note that the LRU is being scanned too quickly and the 1040 * caller can stall after page list has been processed. 1041 * 1042 * 2) Global or new memcg reclaim encounters a page that is 1043 * not marked for immediate reclaim, or the caller does not 1044 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1045 * not to fs). In this case mark the page for immediate 1046 * reclaim and continue scanning. 1047 * 1048 * Require may_enter_fs because we would wait on fs, which 1049 * may not have submitted IO yet. And the loop driver might 1050 * enter reclaim, and deadlock if it waits on a page for 1051 * which it is needed to do the write (loop masks off 1052 * __GFP_IO|__GFP_FS for this reason); but more thought 1053 * would probably show more reasons. 1054 * 1055 * 3) Legacy memcg encounters a page that is already marked 1056 * PageReclaim. memcg does not have any dirty pages 1057 * throttling so we could easily OOM just because too many 1058 * pages are in writeback and there is nothing else to 1059 * reclaim. Wait for the writeback to complete. 1060 * 1061 * In cases 1) and 2) we activate the pages to get them out of 1062 * the way while we continue scanning for clean pages on the 1063 * inactive list and refilling from the active list. The 1064 * observation here is that waiting for disk writes is more 1065 * expensive than potentially causing reloads down the line. 1066 * Since they're marked for immediate reclaim, they won't put 1067 * memory pressure on the cache working set any longer than it 1068 * takes to write them to disk. 1069 */ 1070 if (PageWriteback(page)) { 1071 /* Case 1 above */ 1072 if (current_is_kswapd() && 1073 PageReclaim(page) && 1074 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1075 nr_immediate++; 1076 goto activate_locked; 1077 1078 /* Case 2 above */ 1079 } else if (sane_reclaim(sc) || 1080 !PageReclaim(page) || !may_enter_fs) { 1081 /* 1082 * This is slightly racy - end_page_writeback() 1083 * might have just cleared PageReclaim, then 1084 * setting PageReclaim here end up interpreted 1085 * as PageReadahead - but that does not matter 1086 * enough to care. What we do want is for this 1087 * page to have PageReclaim set next time memcg 1088 * reclaim reaches the tests above, so it will 1089 * then wait_on_page_writeback() to avoid OOM; 1090 * and it's also appropriate in global reclaim. 1091 */ 1092 SetPageReclaim(page); 1093 nr_writeback++; 1094 goto activate_locked; 1095 1096 /* Case 3 above */ 1097 } else { 1098 unlock_page(page); 1099 wait_on_page_writeback(page); 1100 /* then go back and try same page again */ 1101 list_add_tail(&page->lru, page_list); 1102 continue; 1103 } 1104 } 1105 1106 if (!force_reclaim) 1107 references = page_check_references(page, sc); 1108 1109 switch (references) { 1110 case PAGEREF_ACTIVATE: 1111 goto activate_locked; 1112 case PAGEREF_KEEP: 1113 nr_ref_keep++; 1114 goto keep_locked; 1115 case PAGEREF_RECLAIM: 1116 case PAGEREF_RECLAIM_CLEAN: 1117 ; /* try to reclaim the page below */ 1118 } 1119 1120 /* 1121 * Anonymous process memory has backing store? 1122 * Try to allocate it some swap space here. 1123 * Lazyfree page could be freed directly 1124 */ 1125 if (PageAnon(page) && PageSwapBacked(page) && 1126 !PageSwapCache(page)) { 1127 if (!(sc->gfp_mask & __GFP_IO)) 1128 goto keep_locked; 1129 if (PageTransHuge(page)) { 1130 /* cannot split THP, skip it */ 1131 if (!can_split_huge_page(page, NULL)) 1132 goto activate_locked; 1133 /* 1134 * Split pages without a PMD map right 1135 * away. Chances are some or all of the 1136 * tail pages can be freed without IO. 1137 */ 1138 if (!compound_mapcount(page) && 1139 split_huge_page_to_list(page, page_list)) 1140 goto activate_locked; 1141 } 1142 if (!add_to_swap(page)) { 1143 if (!PageTransHuge(page)) 1144 goto activate_locked; 1145 /* Split THP and swap individual base pages */ 1146 if (split_huge_page_to_list(page, page_list)) 1147 goto activate_locked; 1148 if (!add_to_swap(page)) 1149 goto activate_locked; 1150 } 1151 1152 /* XXX: We don't support THP writes */ 1153 if (PageTransHuge(page) && 1154 split_huge_page_to_list(page, page_list)) { 1155 delete_from_swap_cache(page); 1156 goto activate_locked; 1157 } 1158 1159 may_enter_fs = 1; 1160 1161 /* Adding to swap updated mapping */ 1162 mapping = page_mapping(page); 1163 } else if (unlikely(PageTransHuge(page))) { 1164 /* Split file THP */ 1165 if (split_huge_page_to_list(page, page_list)) 1166 goto keep_locked; 1167 } 1168 1169 VM_BUG_ON_PAGE(PageTransHuge(page), page); 1170 1171 /* 1172 * The page is mapped into the page tables of one or more 1173 * processes. Try to unmap it here. 1174 */ 1175 if (page_mapped(page)) { 1176 if (!try_to_unmap(page, ttu_flags | TTU_BATCH_FLUSH)) { 1177 nr_unmap_fail++; 1178 goto activate_locked; 1179 } 1180 } 1181 1182 if (PageDirty(page)) { 1183 /* 1184 * Only kswapd can writeback filesystem pages 1185 * to avoid risk of stack overflow. But avoid 1186 * injecting inefficient single-page IO into 1187 * flusher writeback as much as possible: only 1188 * write pages when we've encountered many 1189 * dirty pages, and when we've already scanned 1190 * the rest of the LRU for clean pages and see 1191 * the same dirty pages again (PageReclaim). 1192 */ 1193 if (page_is_file_cache(page) && 1194 (!current_is_kswapd() || !PageReclaim(page) || 1195 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1196 /* 1197 * Immediately reclaim when written back. 1198 * Similar in principal to deactivate_page() 1199 * except we already have the page isolated 1200 * and know it's dirty 1201 */ 1202 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1203 SetPageReclaim(page); 1204 1205 goto activate_locked; 1206 } 1207 1208 if (references == PAGEREF_RECLAIM_CLEAN) 1209 goto keep_locked; 1210 if (!may_enter_fs) 1211 goto keep_locked; 1212 if (!sc->may_writepage) 1213 goto keep_locked; 1214 1215 /* 1216 * Page is dirty. Flush the TLB if a writable entry 1217 * potentially exists to avoid CPU writes after IO 1218 * starts and then write it out here. 1219 */ 1220 try_to_unmap_flush_dirty(); 1221 switch (pageout(page, mapping, sc)) { 1222 case PAGE_KEEP: 1223 goto keep_locked; 1224 case PAGE_ACTIVATE: 1225 goto activate_locked; 1226 case PAGE_SUCCESS: 1227 if (PageWriteback(page)) 1228 goto keep; 1229 if (PageDirty(page)) 1230 goto keep; 1231 1232 /* 1233 * A synchronous write - probably a ramdisk. Go 1234 * ahead and try to reclaim the page. 1235 */ 1236 if (!trylock_page(page)) 1237 goto keep; 1238 if (PageDirty(page) || PageWriteback(page)) 1239 goto keep_locked; 1240 mapping = page_mapping(page); 1241 case PAGE_CLEAN: 1242 ; /* try to free the page below */ 1243 } 1244 } 1245 1246 /* 1247 * If the page has buffers, try to free the buffer mappings 1248 * associated with this page. If we succeed we try to free 1249 * the page as well. 1250 * 1251 * We do this even if the page is PageDirty(). 1252 * try_to_release_page() does not perform I/O, but it is 1253 * possible for a page to have PageDirty set, but it is actually 1254 * clean (all its buffers are clean). This happens if the 1255 * buffers were written out directly, with submit_bh(). ext3 1256 * will do this, as well as the blockdev mapping. 1257 * try_to_release_page() will discover that cleanness and will 1258 * drop the buffers and mark the page clean - it can be freed. 1259 * 1260 * Rarely, pages can have buffers and no ->mapping. These are 1261 * the pages which were not successfully invalidated in 1262 * truncate_complete_page(). We try to drop those buffers here 1263 * and if that worked, and the page is no longer mapped into 1264 * process address space (page_count == 1) it can be freed. 1265 * Otherwise, leave the page on the LRU so it is swappable. 1266 */ 1267 if (page_has_private(page)) { 1268 if (!try_to_release_page(page, sc->gfp_mask)) 1269 goto activate_locked; 1270 if (!mapping && page_count(page) == 1) { 1271 unlock_page(page); 1272 if (put_page_testzero(page)) 1273 goto free_it; 1274 else { 1275 /* 1276 * rare race with speculative reference. 1277 * the speculative reference will free 1278 * this page shortly, so we may 1279 * increment nr_reclaimed here (and 1280 * leave it off the LRU). 1281 */ 1282 nr_reclaimed++; 1283 continue; 1284 } 1285 } 1286 } 1287 1288 if (PageAnon(page) && !PageSwapBacked(page)) { 1289 /* follow __remove_mapping for reference */ 1290 if (!page_ref_freeze(page, 1)) 1291 goto keep_locked; 1292 if (PageDirty(page)) { 1293 page_ref_unfreeze(page, 1); 1294 goto keep_locked; 1295 } 1296 1297 count_vm_event(PGLAZYFREED); 1298 count_memcg_page_event(page, PGLAZYFREED); 1299 } else if (!mapping || !__remove_mapping(mapping, page, true)) 1300 goto keep_locked; 1301 /* 1302 * At this point, we have no other references and there is 1303 * no way to pick any more up (removed from LRU, removed 1304 * from pagecache). Can use non-atomic bitops now (and 1305 * we obviously don't have to worry about waking up a process 1306 * waiting on the page lock, because there are no references. 1307 */ 1308 __ClearPageLocked(page); 1309 free_it: 1310 nr_reclaimed++; 1311 1312 /* 1313 * Is there need to periodically free_page_list? It would 1314 * appear not as the counts should be low 1315 */ 1316 list_add(&page->lru, &free_pages); 1317 continue; 1318 1319 activate_locked: 1320 /* Not a candidate for swapping, so reclaim swap space. */ 1321 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1322 PageMlocked(page))) 1323 try_to_free_swap(page); 1324 VM_BUG_ON_PAGE(PageActive(page), page); 1325 if (!PageMlocked(page)) { 1326 SetPageActive(page); 1327 pgactivate++; 1328 count_memcg_page_event(page, PGACTIVATE); 1329 } 1330 keep_locked: 1331 unlock_page(page); 1332 keep: 1333 list_add(&page->lru, &ret_pages); 1334 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1335 } 1336 1337 mem_cgroup_uncharge_list(&free_pages); 1338 try_to_unmap_flush(); 1339 free_hot_cold_page_list(&free_pages, true); 1340 1341 list_splice(&ret_pages, page_list); 1342 count_vm_events(PGACTIVATE, pgactivate); 1343 1344 if (stat) { 1345 stat->nr_dirty = nr_dirty; 1346 stat->nr_congested = nr_congested; 1347 stat->nr_unqueued_dirty = nr_unqueued_dirty; 1348 stat->nr_writeback = nr_writeback; 1349 stat->nr_immediate = nr_immediate; 1350 stat->nr_activate = pgactivate; 1351 stat->nr_ref_keep = nr_ref_keep; 1352 stat->nr_unmap_fail = nr_unmap_fail; 1353 } 1354 return nr_reclaimed; 1355 } 1356 1357 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1358 struct list_head *page_list) 1359 { 1360 struct scan_control sc = { 1361 .gfp_mask = GFP_KERNEL, 1362 .priority = DEF_PRIORITY, 1363 .may_unmap = 1, 1364 }; 1365 unsigned long ret; 1366 struct page *page, *next; 1367 LIST_HEAD(clean_pages); 1368 1369 list_for_each_entry_safe(page, next, page_list, lru) { 1370 if (page_is_file_cache(page) && !PageDirty(page) && 1371 !__PageMovable(page)) { 1372 ClearPageActive(page); 1373 list_move(&page->lru, &clean_pages); 1374 } 1375 } 1376 1377 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1378 TTU_IGNORE_ACCESS, NULL, true); 1379 list_splice(&clean_pages, page_list); 1380 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1381 return ret; 1382 } 1383 1384 /* 1385 * Attempt to remove the specified page from its LRU. Only take this page 1386 * if it is of the appropriate PageActive status. Pages which are being 1387 * freed elsewhere are also ignored. 1388 * 1389 * page: page to consider 1390 * mode: one of the LRU isolation modes defined above 1391 * 1392 * returns 0 on success, -ve errno on failure. 1393 */ 1394 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1395 { 1396 int ret = -EINVAL; 1397 1398 /* Only take pages on the LRU. */ 1399 if (!PageLRU(page)) 1400 return ret; 1401 1402 /* Compaction should not handle unevictable pages but CMA can do so */ 1403 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1404 return ret; 1405 1406 ret = -EBUSY; 1407 1408 /* 1409 * To minimise LRU disruption, the caller can indicate that it only 1410 * wants to isolate pages it will be able to operate on without 1411 * blocking - clean pages for the most part. 1412 * 1413 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1414 * that it is possible to migrate without blocking 1415 */ 1416 if (mode & ISOLATE_ASYNC_MIGRATE) { 1417 /* All the caller can do on PageWriteback is block */ 1418 if (PageWriteback(page)) 1419 return ret; 1420 1421 if (PageDirty(page)) { 1422 struct address_space *mapping; 1423 1424 /* 1425 * Only pages without mappings or that have a 1426 * ->migratepage callback are possible to migrate 1427 * without blocking 1428 */ 1429 mapping = page_mapping(page); 1430 if (mapping && !mapping->a_ops->migratepage) 1431 return ret; 1432 } 1433 } 1434 1435 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1436 return ret; 1437 1438 if (likely(get_page_unless_zero(page))) { 1439 /* 1440 * Be careful not to clear PageLRU until after we're 1441 * sure the page is not being freed elsewhere -- the 1442 * page release code relies on it. 1443 */ 1444 ClearPageLRU(page); 1445 ret = 0; 1446 } 1447 1448 return ret; 1449 } 1450 1451 1452 /* 1453 * Update LRU sizes after isolating pages. The LRU size updates must 1454 * be complete before mem_cgroup_update_lru_size due to a santity check. 1455 */ 1456 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1457 enum lru_list lru, unsigned long *nr_zone_taken) 1458 { 1459 int zid; 1460 1461 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1462 if (!nr_zone_taken[zid]) 1463 continue; 1464 1465 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1466 #ifdef CONFIG_MEMCG 1467 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1468 #endif 1469 } 1470 1471 } 1472 1473 /* 1474 * zone_lru_lock is heavily contended. Some of the functions that 1475 * shrink the lists perform better by taking out a batch of pages 1476 * and working on them outside the LRU lock. 1477 * 1478 * For pagecache intensive workloads, this function is the hottest 1479 * spot in the kernel (apart from copy_*_user functions). 1480 * 1481 * Appropriate locks must be held before calling this function. 1482 * 1483 * @nr_to_scan: The number of eligible pages to look through on the list. 1484 * @lruvec: The LRU vector to pull pages from. 1485 * @dst: The temp list to put pages on to. 1486 * @nr_scanned: The number of pages that were scanned. 1487 * @sc: The scan_control struct for this reclaim session 1488 * @mode: One of the LRU isolation modes 1489 * @lru: LRU list id for isolating 1490 * 1491 * returns how many pages were moved onto *@dst. 1492 */ 1493 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1494 struct lruvec *lruvec, struct list_head *dst, 1495 unsigned long *nr_scanned, struct scan_control *sc, 1496 isolate_mode_t mode, enum lru_list lru) 1497 { 1498 struct list_head *src = &lruvec->lists[lru]; 1499 unsigned long nr_taken = 0; 1500 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1501 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1502 unsigned long skipped = 0; 1503 unsigned long scan, total_scan, nr_pages; 1504 LIST_HEAD(pages_skipped); 1505 1506 scan = 0; 1507 for (total_scan = 0; 1508 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src); 1509 total_scan++) { 1510 struct page *page; 1511 1512 page = lru_to_page(src); 1513 prefetchw_prev_lru_page(page, src, flags); 1514 1515 VM_BUG_ON_PAGE(!PageLRU(page), page); 1516 1517 if (page_zonenum(page) > sc->reclaim_idx) { 1518 list_move(&page->lru, &pages_skipped); 1519 nr_skipped[page_zonenum(page)]++; 1520 continue; 1521 } 1522 1523 /* 1524 * Do not count skipped pages because that makes the function 1525 * return with no isolated pages if the LRU mostly contains 1526 * ineligible pages. This causes the VM to not reclaim any 1527 * pages, triggering a premature OOM. 1528 */ 1529 scan++; 1530 switch (__isolate_lru_page(page, mode)) { 1531 case 0: 1532 nr_pages = hpage_nr_pages(page); 1533 nr_taken += nr_pages; 1534 nr_zone_taken[page_zonenum(page)] += nr_pages; 1535 list_move(&page->lru, dst); 1536 break; 1537 1538 case -EBUSY: 1539 /* else it is being freed elsewhere */ 1540 list_move(&page->lru, src); 1541 continue; 1542 1543 default: 1544 BUG(); 1545 } 1546 } 1547 1548 /* 1549 * Splice any skipped pages to the start of the LRU list. Note that 1550 * this disrupts the LRU order when reclaiming for lower zones but 1551 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1552 * scanning would soon rescan the same pages to skip and put the 1553 * system at risk of premature OOM. 1554 */ 1555 if (!list_empty(&pages_skipped)) { 1556 int zid; 1557 1558 list_splice(&pages_skipped, src); 1559 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1560 if (!nr_skipped[zid]) 1561 continue; 1562 1563 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1564 skipped += nr_skipped[zid]; 1565 } 1566 } 1567 *nr_scanned = total_scan; 1568 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1569 total_scan, skipped, nr_taken, mode, lru); 1570 update_lru_sizes(lruvec, lru, nr_zone_taken); 1571 return nr_taken; 1572 } 1573 1574 /** 1575 * isolate_lru_page - tries to isolate a page from its LRU list 1576 * @page: page to isolate from its LRU list 1577 * 1578 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1579 * vmstat statistic corresponding to whatever LRU list the page was on. 1580 * 1581 * Returns 0 if the page was removed from an LRU list. 1582 * Returns -EBUSY if the page was not on an LRU list. 1583 * 1584 * The returned page will have PageLRU() cleared. If it was found on 1585 * the active list, it will have PageActive set. If it was found on 1586 * the unevictable list, it will have the PageUnevictable bit set. That flag 1587 * may need to be cleared by the caller before letting the page go. 1588 * 1589 * The vmstat statistic corresponding to the list on which the page was 1590 * found will be decremented. 1591 * 1592 * Restrictions: 1593 * (1) Must be called with an elevated refcount on the page. This is a 1594 * fundamentnal difference from isolate_lru_pages (which is called 1595 * without a stable reference). 1596 * (2) the lru_lock must not be held. 1597 * (3) interrupts must be enabled. 1598 */ 1599 int isolate_lru_page(struct page *page) 1600 { 1601 int ret = -EBUSY; 1602 1603 VM_BUG_ON_PAGE(!page_count(page), page); 1604 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1605 1606 if (PageLRU(page)) { 1607 struct zone *zone = page_zone(page); 1608 struct lruvec *lruvec; 1609 1610 spin_lock_irq(zone_lru_lock(zone)); 1611 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 1612 if (PageLRU(page)) { 1613 int lru = page_lru(page); 1614 get_page(page); 1615 ClearPageLRU(page); 1616 del_page_from_lru_list(page, lruvec, lru); 1617 ret = 0; 1618 } 1619 spin_unlock_irq(zone_lru_lock(zone)); 1620 } 1621 return ret; 1622 } 1623 1624 /* 1625 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1626 * then get resheduled. When there are massive number of tasks doing page 1627 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1628 * the LRU list will go small and be scanned faster than necessary, leading to 1629 * unnecessary swapping, thrashing and OOM. 1630 */ 1631 static int too_many_isolated(struct pglist_data *pgdat, int file, 1632 struct scan_control *sc) 1633 { 1634 unsigned long inactive, isolated; 1635 1636 if (current_is_kswapd()) 1637 return 0; 1638 1639 if (!sane_reclaim(sc)) 1640 return 0; 1641 1642 if (file) { 1643 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1644 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1645 } else { 1646 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1647 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1648 } 1649 1650 /* 1651 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1652 * won't get blocked by normal direct-reclaimers, forming a circular 1653 * deadlock. 1654 */ 1655 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1656 inactive >>= 3; 1657 1658 return isolated > inactive; 1659 } 1660 1661 static noinline_for_stack void 1662 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1663 { 1664 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1665 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1666 LIST_HEAD(pages_to_free); 1667 1668 /* 1669 * Put back any unfreeable pages. 1670 */ 1671 while (!list_empty(page_list)) { 1672 struct page *page = lru_to_page(page_list); 1673 int lru; 1674 1675 VM_BUG_ON_PAGE(PageLRU(page), page); 1676 list_del(&page->lru); 1677 if (unlikely(!page_evictable(page))) { 1678 spin_unlock_irq(&pgdat->lru_lock); 1679 putback_lru_page(page); 1680 spin_lock_irq(&pgdat->lru_lock); 1681 continue; 1682 } 1683 1684 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1685 1686 SetPageLRU(page); 1687 lru = page_lru(page); 1688 add_page_to_lru_list(page, lruvec, lru); 1689 1690 if (is_active_lru(lru)) { 1691 int file = is_file_lru(lru); 1692 int numpages = hpage_nr_pages(page); 1693 reclaim_stat->recent_rotated[file] += numpages; 1694 } 1695 if (put_page_testzero(page)) { 1696 __ClearPageLRU(page); 1697 __ClearPageActive(page); 1698 del_page_from_lru_list(page, lruvec, lru); 1699 1700 if (unlikely(PageCompound(page))) { 1701 spin_unlock_irq(&pgdat->lru_lock); 1702 mem_cgroup_uncharge(page); 1703 (*get_compound_page_dtor(page))(page); 1704 spin_lock_irq(&pgdat->lru_lock); 1705 } else 1706 list_add(&page->lru, &pages_to_free); 1707 } 1708 } 1709 1710 /* 1711 * To save our caller's stack, now use input list for pages to free. 1712 */ 1713 list_splice(&pages_to_free, page_list); 1714 } 1715 1716 /* 1717 * If a kernel thread (such as nfsd for loop-back mounts) services 1718 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1719 * In that case we should only throttle if the backing device it is 1720 * writing to is congested. In other cases it is safe to throttle. 1721 */ 1722 static int current_may_throttle(void) 1723 { 1724 return !(current->flags & PF_LESS_THROTTLE) || 1725 current->backing_dev_info == NULL || 1726 bdi_write_congested(current->backing_dev_info); 1727 } 1728 1729 /* 1730 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1731 * of reclaimed pages 1732 */ 1733 static noinline_for_stack unsigned long 1734 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1735 struct scan_control *sc, enum lru_list lru) 1736 { 1737 LIST_HEAD(page_list); 1738 unsigned long nr_scanned; 1739 unsigned long nr_reclaimed = 0; 1740 unsigned long nr_taken; 1741 struct reclaim_stat stat = {}; 1742 isolate_mode_t isolate_mode = 0; 1743 int file = is_file_lru(lru); 1744 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1745 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1746 bool stalled = false; 1747 1748 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1749 if (stalled) 1750 return 0; 1751 1752 /* wait a bit for the reclaimer. */ 1753 msleep(100); 1754 stalled = true; 1755 1756 /* We are about to die and free our memory. Return now. */ 1757 if (fatal_signal_pending(current)) 1758 return SWAP_CLUSTER_MAX; 1759 } 1760 1761 lru_add_drain(); 1762 1763 if (!sc->may_unmap) 1764 isolate_mode |= ISOLATE_UNMAPPED; 1765 1766 spin_lock_irq(&pgdat->lru_lock); 1767 1768 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1769 &nr_scanned, sc, isolate_mode, lru); 1770 1771 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1772 reclaim_stat->recent_scanned[file] += nr_taken; 1773 1774 if (current_is_kswapd()) { 1775 if (global_reclaim(sc)) 1776 __count_vm_events(PGSCAN_KSWAPD, nr_scanned); 1777 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD, 1778 nr_scanned); 1779 } else { 1780 if (global_reclaim(sc)) 1781 __count_vm_events(PGSCAN_DIRECT, nr_scanned); 1782 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT, 1783 nr_scanned); 1784 } 1785 spin_unlock_irq(&pgdat->lru_lock); 1786 1787 if (nr_taken == 0) 1788 return 0; 1789 1790 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1791 &stat, false); 1792 1793 spin_lock_irq(&pgdat->lru_lock); 1794 1795 if (current_is_kswapd()) { 1796 if (global_reclaim(sc)) 1797 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); 1798 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD, 1799 nr_reclaimed); 1800 } else { 1801 if (global_reclaim(sc)) 1802 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); 1803 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT, 1804 nr_reclaimed); 1805 } 1806 1807 putback_inactive_pages(lruvec, &page_list); 1808 1809 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1810 1811 spin_unlock_irq(&pgdat->lru_lock); 1812 1813 mem_cgroup_uncharge_list(&page_list); 1814 free_hot_cold_page_list(&page_list, true); 1815 1816 /* 1817 * If reclaim is isolating dirty pages under writeback, it implies 1818 * that the long-lived page allocation rate is exceeding the page 1819 * laundering rate. Either the global limits are not being effective 1820 * at throttling processes due to the page distribution throughout 1821 * zones or there is heavy usage of a slow backing device. The 1822 * only option is to throttle from reclaim context which is not ideal 1823 * as there is no guarantee the dirtying process is throttled in the 1824 * same way balance_dirty_pages() manages. 1825 * 1826 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1827 * of pages under pages flagged for immediate reclaim and stall if any 1828 * are encountered in the nr_immediate check below. 1829 */ 1830 if (stat.nr_writeback && stat.nr_writeback == nr_taken) 1831 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 1832 1833 /* 1834 * Legacy memcg will stall in page writeback so avoid forcibly 1835 * stalling here. 1836 */ 1837 if (sane_reclaim(sc)) { 1838 /* 1839 * Tag a zone as congested if all the dirty pages scanned were 1840 * backed by a congested BDI and wait_iff_congested will stall. 1841 */ 1842 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested) 1843 set_bit(PGDAT_CONGESTED, &pgdat->flags); 1844 1845 /* 1846 * If dirty pages are scanned that are not queued for IO, it 1847 * implies that flushers are not doing their job. This can 1848 * happen when memory pressure pushes dirty pages to the end of 1849 * the LRU before the dirty limits are breached and the dirty 1850 * data has expired. It can also happen when the proportion of 1851 * dirty pages grows not through writes but through memory 1852 * pressure reclaiming all the clean cache. And in some cases, 1853 * the flushers simply cannot keep up with the allocation 1854 * rate. Nudge the flusher threads in case they are asleep, but 1855 * also allow kswapd to start writing pages during reclaim. 1856 */ 1857 if (stat.nr_unqueued_dirty == nr_taken) { 1858 wakeup_flusher_threads(0, WB_REASON_VMSCAN); 1859 set_bit(PGDAT_DIRTY, &pgdat->flags); 1860 } 1861 1862 /* 1863 * If kswapd scans pages marked marked for immediate 1864 * reclaim and under writeback (nr_immediate), it implies 1865 * that pages are cycling through the LRU faster than 1866 * they are written so also forcibly stall. 1867 */ 1868 if (stat.nr_immediate && current_may_throttle()) 1869 congestion_wait(BLK_RW_ASYNC, HZ/10); 1870 } 1871 1872 /* 1873 * Stall direct reclaim for IO completions if underlying BDIs or zone 1874 * is congested. Allow kswapd to continue until it starts encountering 1875 * unqueued dirty pages or cycling through the LRU too quickly. 1876 */ 1877 if (!sc->hibernation_mode && !current_is_kswapd() && 1878 current_may_throttle()) 1879 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10); 1880 1881 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1882 nr_scanned, nr_reclaimed, 1883 stat.nr_dirty, stat.nr_writeback, 1884 stat.nr_congested, stat.nr_immediate, 1885 stat.nr_activate, stat.nr_ref_keep, 1886 stat.nr_unmap_fail, 1887 sc->priority, file); 1888 return nr_reclaimed; 1889 } 1890 1891 /* 1892 * This moves pages from the active list to the inactive list. 1893 * 1894 * We move them the other way if the page is referenced by one or more 1895 * processes, from rmap. 1896 * 1897 * If the pages are mostly unmapped, the processing is fast and it is 1898 * appropriate to hold zone_lru_lock across the whole operation. But if 1899 * the pages are mapped, the processing is slow (page_referenced()) so we 1900 * should drop zone_lru_lock around each page. It's impossible to balance 1901 * this, so instead we remove the pages from the LRU while processing them. 1902 * It is safe to rely on PG_active against the non-LRU pages in here because 1903 * nobody will play with that bit on a non-LRU page. 1904 * 1905 * The downside is that we have to touch page->_refcount against each page. 1906 * But we had to alter page->flags anyway. 1907 * 1908 * Returns the number of pages moved to the given lru. 1909 */ 1910 1911 static unsigned move_active_pages_to_lru(struct lruvec *lruvec, 1912 struct list_head *list, 1913 struct list_head *pages_to_free, 1914 enum lru_list lru) 1915 { 1916 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1917 struct page *page; 1918 int nr_pages; 1919 int nr_moved = 0; 1920 1921 while (!list_empty(list)) { 1922 page = lru_to_page(list); 1923 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1924 1925 VM_BUG_ON_PAGE(PageLRU(page), page); 1926 SetPageLRU(page); 1927 1928 nr_pages = hpage_nr_pages(page); 1929 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1930 list_move(&page->lru, &lruvec->lists[lru]); 1931 1932 if (put_page_testzero(page)) { 1933 __ClearPageLRU(page); 1934 __ClearPageActive(page); 1935 del_page_from_lru_list(page, lruvec, lru); 1936 1937 if (unlikely(PageCompound(page))) { 1938 spin_unlock_irq(&pgdat->lru_lock); 1939 mem_cgroup_uncharge(page); 1940 (*get_compound_page_dtor(page))(page); 1941 spin_lock_irq(&pgdat->lru_lock); 1942 } else 1943 list_add(&page->lru, pages_to_free); 1944 } else { 1945 nr_moved += nr_pages; 1946 } 1947 } 1948 1949 if (!is_active_lru(lru)) { 1950 __count_vm_events(PGDEACTIVATE, nr_moved); 1951 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 1952 nr_moved); 1953 } 1954 1955 return nr_moved; 1956 } 1957 1958 static void shrink_active_list(unsigned long nr_to_scan, 1959 struct lruvec *lruvec, 1960 struct scan_control *sc, 1961 enum lru_list lru) 1962 { 1963 unsigned long nr_taken; 1964 unsigned long nr_scanned; 1965 unsigned long vm_flags; 1966 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1967 LIST_HEAD(l_active); 1968 LIST_HEAD(l_inactive); 1969 struct page *page; 1970 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1971 unsigned nr_deactivate, nr_activate; 1972 unsigned nr_rotated = 0; 1973 isolate_mode_t isolate_mode = 0; 1974 int file = is_file_lru(lru); 1975 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1976 1977 lru_add_drain(); 1978 1979 if (!sc->may_unmap) 1980 isolate_mode |= ISOLATE_UNMAPPED; 1981 1982 spin_lock_irq(&pgdat->lru_lock); 1983 1984 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1985 &nr_scanned, sc, isolate_mode, lru); 1986 1987 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1988 reclaim_stat->recent_scanned[file] += nr_taken; 1989 1990 __count_vm_events(PGREFILL, nr_scanned); 1991 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 1992 1993 spin_unlock_irq(&pgdat->lru_lock); 1994 1995 while (!list_empty(&l_hold)) { 1996 cond_resched(); 1997 page = lru_to_page(&l_hold); 1998 list_del(&page->lru); 1999 2000 if (unlikely(!page_evictable(page))) { 2001 putback_lru_page(page); 2002 continue; 2003 } 2004 2005 if (unlikely(buffer_heads_over_limit)) { 2006 if (page_has_private(page) && trylock_page(page)) { 2007 if (page_has_private(page)) 2008 try_to_release_page(page, 0); 2009 unlock_page(page); 2010 } 2011 } 2012 2013 if (page_referenced(page, 0, sc->target_mem_cgroup, 2014 &vm_flags)) { 2015 nr_rotated += hpage_nr_pages(page); 2016 /* 2017 * Identify referenced, file-backed active pages and 2018 * give them one more trip around the active list. So 2019 * that executable code get better chances to stay in 2020 * memory under moderate memory pressure. Anon pages 2021 * are not likely to be evicted by use-once streaming 2022 * IO, plus JVM can create lots of anon VM_EXEC pages, 2023 * so we ignore them here. 2024 */ 2025 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 2026 list_add(&page->lru, &l_active); 2027 continue; 2028 } 2029 } 2030 2031 ClearPageActive(page); /* we are de-activating */ 2032 list_add(&page->lru, &l_inactive); 2033 } 2034 2035 /* 2036 * Move pages back to the lru list. 2037 */ 2038 spin_lock_irq(&pgdat->lru_lock); 2039 /* 2040 * Count referenced pages from currently used mappings as rotated, 2041 * even though only some of them are actually re-activated. This 2042 * helps balance scan pressure between file and anonymous pages in 2043 * get_scan_count. 2044 */ 2045 reclaim_stat->recent_rotated[file] += nr_rotated; 2046 2047 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 2048 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 2049 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2050 spin_unlock_irq(&pgdat->lru_lock); 2051 2052 mem_cgroup_uncharge_list(&l_hold); 2053 free_hot_cold_page_list(&l_hold, true); 2054 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2055 nr_deactivate, nr_rotated, sc->priority, file); 2056 } 2057 2058 /* 2059 * The inactive anon list should be small enough that the VM never has 2060 * to do too much work. 2061 * 2062 * The inactive file list should be small enough to leave most memory 2063 * to the established workingset on the scan-resistant active list, 2064 * but large enough to avoid thrashing the aggregate readahead window. 2065 * 2066 * Both inactive lists should also be large enough that each inactive 2067 * page has a chance to be referenced again before it is reclaimed. 2068 * 2069 * If that fails and refaulting is observed, the inactive list grows. 2070 * 2071 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2072 * on this LRU, maintained by the pageout code. A zone->inactive_ratio 2073 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2074 * 2075 * total target max 2076 * memory ratio inactive 2077 * ------------------------------------- 2078 * 10MB 1 5MB 2079 * 100MB 1 50MB 2080 * 1GB 3 250MB 2081 * 10GB 10 0.9GB 2082 * 100GB 31 3GB 2083 * 1TB 101 10GB 2084 * 10TB 320 32GB 2085 */ 2086 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2087 struct mem_cgroup *memcg, 2088 struct scan_control *sc, bool actual_reclaim) 2089 { 2090 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2091 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2092 enum lru_list inactive_lru = file * LRU_FILE; 2093 unsigned long inactive, active; 2094 unsigned long inactive_ratio; 2095 unsigned long refaults; 2096 unsigned long gb; 2097 2098 /* 2099 * If we don't have swap space, anonymous page deactivation 2100 * is pointless. 2101 */ 2102 if (!file && !total_swap_pages) 2103 return false; 2104 2105 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2106 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2107 2108 if (memcg) 2109 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2110 else 2111 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2112 2113 /* 2114 * When refaults are being observed, it means a new workingset 2115 * is being established. Disable active list protection to get 2116 * rid of the stale workingset quickly. 2117 */ 2118 if (file && actual_reclaim && lruvec->refaults != refaults) { 2119 inactive_ratio = 0; 2120 } else { 2121 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2122 if (gb) 2123 inactive_ratio = int_sqrt(10 * gb); 2124 else 2125 inactive_ratio = 1; 2126 } 2127 2128 if (actual_reclaim) 2129 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, 2130 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2131 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2132 inactive_ratio, file); 2133 2134 return inactive * inactive_ratio < active; 2135 } 2136 2137 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2138 struct lruvec *lruvec, struct mem_cgroup *memcg, 2139 struct scan_control *sc) 2140 { 2141 if (is_active_lru(lru)) { 2142 if (inactive_list_is_low(lruvec, is_file_lru(lru), 2143 memcg, sc, true)) 2144 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2145 return 0; 2146 } 2147 2148 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2149 } 2150 2151 enum scan_balance { 2152 SCAN_EQUAL, 2153 SCAN_FRACT, 2154 SCAN_ANON, 2155 SCAN_FILE, 2156 }; 2157 2158 /* 2159 * Determine how aggressively the anon and file LRU lists should be 2160 * scanned. The relative value of each set of LRU lists is determined 2161 * by looking at the fraction of the pages scanned we did rotate back 2162 * onto the active list instead of evict. 2163 * 2164 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2165 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2166 */ 2167 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2168 struct scan_control *sc, unsigned long *nr, 2169 unsigned long *lru_pages) 2170 { 2171 int swappiness = mem_cgroup_swappiness(memcg); 2172 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2173 u64 fraction[2]; 2174 u64 denominator = 0; /* gcc */ 2175 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2176 unsigned long anon_prio, file_prio; 2177 enum scan_balance scan_balance; 2178 unsigned long anon, file; 2179 unsigned long ap, fp; 2180 enum lru_list lru; 2181 2182 /* If we have no swap space, do not bother scanning anon pages. */ 2183 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2184 scan_balance = SCAN_FILE; 2185 goto out; 2186 } 2187 2188 /* 2189 * Global reclaim will swap to prevent OOM even with no 2190 * swappiness, but memcg users want to use this knob to 2191 * disable swapping for individual groups completely when 2192 * using the memory controller's swap limit feature would be 2193 * too expensive. 2194 */ 2195 if (!global_reclaim(sc) && !swappiness) { 2196 scan_balance = SCAN_FILE; 2197 goto out; 2198 } 2199 2200 /* 2201 * Do not apply any pressure balancing cleverness when the 2202 * system is close to OOM, scan both anon and file equally 2203 * (unless the swappiness setting disagrees with swapping). 2204 */ 2205 if (!sc->priority && swappiness) { 2206 scan_balance = SCAN_EQUAL; 2207 goto out; 2208 } 2209 2210 /* 2211 * Prevent the reclaimer from falling into the cache trap: as 2212 * cache pages start out inactive, every cache fault will tip 2213 * the scan balance towards the file LRU. And as the file LRU 2214 * shrinks, so does the window for rotation from references. 2215 * This means we have a runaway feedback loop where a tiny 2216 * thrashing file LRU becomes infinitely more attractive than 2217 * anon pages. Try to detect this based on file LRU size. 2218 */ 2219 if (global_reclaim(sc)) { 2220 unsigned long pgdatfile; 2221 unsigned long pgdatfree; 2222 int z; 2223 unsigned long total_high_wmark = 0; 2224 2225 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2226 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2227 node_page_state(pgdat, NR_INACTIVE_FILE); 2228 2229 for (z = 0; z < MAX_NR_ZONES; z++) { 2230 struct zone *zone = &pgdat->node_zones[z]; 2231 if (!managed_zone(zone)) 2232 continue; 2233 2234 total_high_wmark += high_wmark_pages(zone); 2235 } 2236 2237 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2238 /* 2239 * Force SCAN_ANON if there are enough inactive 2240 * anonymous pages on the LRU in eligible zones. 2241 * Otherwise, the small LRU gets thrashed. 2242 */ 2243 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) && 2244 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) 2245 >> sc->priority) { 2246 scan_balance = SCAN_ANON; 2247 goto out; 2248 } 2249 } 2250 } 2251 2252 /* 2253 * If there is enough inactive page cache, i.e. if the size of the 2254 * inactive list is greater than that of the active list *and* the 2255 * inactive list actually has some pages to scan on this priority, we 2256 * do not reclaim anything from the anonymous working set right now. 2257 * Without the second condition we could end up never scanning an 2258 * lruvec even if it has plenty of old anonymous pages unless the 2259 * system is under heavy pressure. 2260 */ 2261 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) && 2262 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2263 scan_balance = SCAN_FILE; 2264 goto out; 2265 } 2266 2267 scan_balance = SCAN_FRACT; 2268 2269 /* 2270 * With swappiness at 100, anonymous and file have the same priority. 2271 * This scanning priority is essentially the inverse of IO cost. 2272 */ 2273 anon_prio = swappiness; 2274 file_prio = 200 - anon_prio; 2275 2276 /* 2277 * OK, so we have swap space and a fair amount of page cache 2278 * pages. We use the recently rotated / recently scanned 2279 * ratios to determine how valuable each cache is. 2280 * 2281 * Because workloads change over time (and to avoid overflow) 2282 * we keep these statistics as a floating average, which ends 2283 * up weighing recent references more than old ones. 2284 * 2285 * anon in [0], file in [1] 2286 */ 2287 2288 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2289 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2290 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2291 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2292 2293 spin_lock_irq(&pgdat->lru_lock); 2294 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2295 reclaim_stat->recent_scanned[0] /= 2; 2296 reclaim_stat->recent_rotated[0] /= 2; 2297 } 2298 2299 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2300 reclaim_stat->recent_scanned[1] /= 2; 2301 reclaim_stat->recent_rotated[1] /= 2; 2302 } 2303 2304 /* 2305 * The amount of pressure on anon vs file pages is inversely 2306 * proportional to the fraction of recently scanned pages on 2307 * each list that were recently referenced and in active use. 2308 */ 2309 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2310 ap /= reclaim_stat->recent_rotated[0] + 1; 2311 2312 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2313 fp /= reclaim_stat->recent_rotated[1] + 1; 2314 spin_unlock_irq(&pgdat->lru_lock); 2315 2316 fraction[0] = ap; 2317 fraction[1] = fp; 2318 denominator = ap + fp + 1; 2319 out: 2320 *lru_pages = 0; 2321 for_each_evictable_lru(lru) { 2322 int file = is_file_lru(lru); 2323 unsigned long size; 2324 unsigned long scan; 2325 2326 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2327 scan = size >> sc->priority; 2328 /* 2329 * If the cgroup's already been deleted, make sure to 2330 * scrape out the remaining cache. 2331 */ 2332 if (!scan && !mem_cgroup_online(memcg)) 2333 scan = min(size, SWAP_CLUSTER_MAX); 2334 2335 switch (scan_balance) { 2336 case SCAN_EQUAL: 2337 /* Scan lists relative to size */ 2338 break; 2339 case SCAN_FRACT: 2340 /* 2341 * Scan types proportional to swappiness and 2342 * their relative recent reclaim efficiency. 2343 */ 2344 scan = div64_u64(scan * fraction[file], 2345 denominator); 2346 break; 2347 case SCAN_FILE: 2348 case SCAN_ANON: 2349 /* Scan one type exclusively */ 2350 if ((scan_balance == SCAN_FILE) != file) { 2351 size = 0; 2352 scan = 0; 2353 } 2354 break; 2355 default: 2356 /* Look ma, no brain */ 2357 BUG(); 2358 } 2359 2360 *lru_pages += size; 2361 nr[lru] = scan; 2362 } 2363 } 2364 2365 /* 2366 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2367 */ 2368 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2369 struct scan_control *sc, unsigned long *lru_pages) 2370 { 2371 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2372 unsigned long nr[NR_LRU_LISTS]; 2373 unsigned long targets[NR_LRU_LISTS]; 2374 unsigned long nr_to_scan; 2375 enum lru_list lru; 2376 unsigned long nr_reclaimed = 0; 2377 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2378 struct blk_plug plug; 2379 bool scan_adjusted; 2380 2381 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2382 2383 /* Record the original scan target for proportional adjustments later */ 2384 memcpy(targets, nr, sizeof(nr)); 2385 2386 /* 2387 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2388 * event that can occur when there is little memory pressure e.g. 2389 * multiple streaming readers/writers. Hence, we do not abort scanning 2390 * when the requested number of pages are reclaimed when scanning at 2391 * DEF_PRIORITY on the assumption that the fact we are direct 2392 * reclaiming implies that kswapd is not keeping up and it is best to 2393 * do a batch of work at once. For memcg reclaim one check is made to 2394 * abort proportional reclaim if either the file or anon lru has already 2395 * dropped to zero at the first pass. 2396 */ 2397 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2398 sc->priority == DEF_PRIORITY); 2399 2400 blk_start_plug(&plug); 2401 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2402 nr[LRU_INACTIVE_FILE]) { 2403 unsigned long nr_anon, nr_file, percentage; 2404 unsigned long nr_scanned; 2405 2406 for_each_evictable_lru(lru) { 2407 if (nr[lru]) { 2408 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2409 nr[lru] -= nr_to_scan; 2410 2411 nr_reclaimed += shrink_list(lru, nr_to_scan, 2412 lruvec, memcg, sc); 2413 } 2414 } 2415 2416 cond_resched(); 2417 2418 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2419 continue; 2420 2421 /* 2422 * For kswapd and memcg, reclaim at least the number of pages 2423 * requested. Ensure that the anon and file LRUs are scanned 2424 * proportionally what was requested by get_scan_count(). We 2425 * stop reclaiming one LRU and reduce the amount scanning 2426 * proportional to the original scan target. 2427 */ 2428 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2429 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2430 2431 /* 2432 * It's just vindictive to attack the larger once the smaller 2433 * has gone to zero. And given the way we stop scanning the 2434 * smaller below, this makes sure that we only make one nudge 2435 * towards proportionality once we've got nr_to_reclaim. 2436 */ 2437 if (!nr_file || !nr_anon) 2438 break; 2439 2440 if (nr_file > nr_anon) { 2441 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2442 targets[LRU_ACTIVE_ANON] + 1; 2443 lru = LRU_BASE; 2444 percentage = nr_anon * 100 / scan_target; 2445 } else { 2446 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2447 targets[LRU_ACTIVE_FILE] + 1; 2448 lru = LRU_FILE; 2449 percentage = nr_file * 100 / scan_target; 2450 } 2451 2452 /* Stop scanning the smaller of the LRU */ 2453 nr[lru] = 0; 2454 nr[lru + LRU_ACTIVE] = 0; 2455 2456 /* 2457 * Recalculate the other LRU scan count based on its original 2458 * scan target and the percentage scanning already complete 2459 */ 2460 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2461 nr_scanned = targets[lru] - nr[lru]; 2462 nr[lru] = targets[lru] * (100 - percentage) / 100; 2463 nr[lru] -= min(nr[lru], nr_scanned); 2464 2465 lru += LRU_ACTIVE; 2466 nr_scanned = targets[lru] - nr[lru]; 2467 nr[lru] = targets[lru] * (100 - percentage) / 100; 2468 nr[lru] -= min(nr[lru], nr_scanned); 2469 2470 scan_adjusted = true; 2471 } 2472 blk_finish_plug(&plug); 2473 sc->nr_reclaimed += nr_reclaimed; 2474 2475 /* 2476 * Even if we did not try to evict anon pages at all, we want to 2477 * rebalance the anon lru active/inactive ratio. 2478 */ 2479 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 2480 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2481 sc, LRU_ACTIVE_ANON); 2482 } 2483 2484 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2485 static bool in_reclaim_compaction(struct scan_control *sc) 2486 { 2487 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2488 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2489 sc->priority < DEF_PRIORITY - 2)) 2490 return true; 2491 2492 return false; 2493 } 2494 2495 /* 2496 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2497 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2498 * true if more pages should be reclaimed such that when the page allocator 2499 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2500 * It will give up earlier than that if there is difficulty reclaiming pages. 2501 */ 2502 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2503 unsigned long nr_reclaimed, 2504 unsigned long nr_scanned, 2505 struct scan_control *sc) 2506 { 2507 unsigned long pages_for_compaction; 2508 unsigned long inactive_lru_pages; 2509 int z; 2510 2511 /* If not in reclaim/compaction mode, stop */ 2512 if (!in_reclaim_compaction(sc)) 2513 return false; 2514 2515 /* Consider stopping depending on scan and reclaim activity */ 2516 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) { 2517 /* 2518 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the 2519 * full LRU list has been scanned and we are still failing 2520 * to reclaim pages. This full LRU scan is potentially 2521 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed 2522 */ 2523 if (!nr_reclaimed && !nr_scanned) 2524 return false; 2525 } else { 2526 /* 2527 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably 2528 * fail without consequence, stop if we failed to reclaim 2529 * any pages from the last SWAP_CLUSTER_MAX number of 2530 * pages that were scanned. This will return to the 2531 * caller faster at the risk reclaim/compaction and 2532 * the resulting allocation attempt fails 2533 */ 2534 if (!nr_reclaimed) 2535 return false; 2536 } 2537 2538 /* 2539 * If we have not reclaimed enough pages for compaction and the 2540 * inactive lists are large enough, continue reclaiming 2541 */ 2542 pages_for_compaction = compact_gap(sc->order); 2543 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2544 if (get_nr_swap_pages() > 0) 2545 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2546 if (sc->nr_reclaimed < pages_for_compaction && 2547 inactive_lru_pages > pages_for_compaction) 2548 return true; 2549 2550 /* If compaction would go ahead or the allocation would succeed, stop */ 2551 for (z = 0; z <= sc->reclaim_idx; z++) { 2552 struct zone *zone = &pgdat->node_zones[z]; 2553 if (!managed_zone(zone)) 2554 continue; 2555 2556 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2557 case COMPACT_SUCCESS: 2558 case COMPACT_CONTINUE: 2559 return false; 2560 default: 2561 /* check next zone */ 2562 ; 2563 } 2564 } 2565 return true; 2566 } 2567 2568 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2569 { 2570 struct reclaim_state *reclaim_state = current->reclaim_state; 2571 unsigned long nr_reclaimed, nr_scanned; 2572 bool reclaimable = false; 2573 2574 do { 2575 struct mem_cgroup *root = sc->target_mem_cgroup; 2576 struct mem_cgroup_reclaim_cookie reclaim = { 2577 .pgdat = pgdat, 2578 .priority = sc->priority, 2579 }; 2580 unsigned long node_lru_pages = 0; 2581 struct mem_cgroup *memcg; 2582 2583 nr_reclaimed = sc->nr_reclaimed; 2584 nr_scanned = sc->nr_scanned; 2585 2586 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2587 do { 2588 unsigned long lru_pages; 2589 unsigned long reclaimed; 2590 unsigned long scanned; 2591 2592 if (mem_cgroup_low(root, memcg)) { 2593 if (!sc->memcg_low_reclaim) { 2594 sc->memcg_low_skipped = 1; 2595 continue; 2596 } 2597 mem_cgroup_event(memcg, MEMCG_LOW); 2598 } 2599 2600 reclaimed = sc->nr_reclaimed; 2601 scanned = sc->nr_scanned; 2602 2603 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2604 node_lru_pages += lru_pages; 2605 2606 if (memcg) 2607 shrink_slab(sc->gfp_mask, pgdat->node_id, 2608 memcg, sc->nr_scanned - scanned, 2609 lru_pages); 2610 2611 /* Record the group's reclaim efficiency */ 2612 vmpressure(sc->gfp_mask, memcg, false, 2613 sc->nr_scanned - scanned, 2614 sc->nr_reclaimed - reclaimed); 2615 2616 /* 2617 * Direct reclaim and kswapd have to scan all memory 2618 * cgroups to fulfill the overall scan target for the 2619 * node. 2620 * 2621 * Limit reclaim, on the other hand, only cares about 2622 * nr_to_reclaim pages to be reclaimed and it will 2623 * retry with decreasing priority if one round over the 2624 * whole hierarchy is not sufficient. 2625 */ 2626 if (!global_reclaim(sc) && 2627 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2628 mem_cgroup_iter_break(root, memcg); 2629 break; 2630 } 2631 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2632 2633 /* 2634 * Shrink the slab caches in the same proportion that 2635 * the eligible LRU pages were scanned. 2636 */ 2637 if (global_reclaim(sc)) 2638 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL, 2639 sc->nr_scanned - nr_scanned, 2640 node_lru_pages); 2641 2642 if (reclaim_state) { 2643 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2644 reclaim_state->reclaimed_slab = 0; 2645 } 2646 2647 /* Record the subtree's reclaim efficiency */ 2648 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2649 sc->nr_scanned - nr_scanned, 2650 sc->nr_reclaimed - nr_reclaimed); 2651 2652 if (sc->nr_reclaimed - nr_reclaimed) 2653 reclaimable = true; 2654 2655 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2656 sc->nr_scanned - nr_scanned, sc)); 2657 2658 /* 2659 * Kswapd gives up on balancing particular nodes after too 2660 * many failures to reclaim anything from them and goes to 2661 * sleep. On reclaim progress, reset the failure counter. A 2662 * successful direct reclaim run will revive a dormant kswapd. 2663 */ 2664 if (reclaimable) 2665 pgdat->kswapd_failures = 0; 2666 2667 return reclaimable; 2668 } 2669 2670 /* 2671 * Returns true if compaction should go ahead for a costly-order request, or 2672 * the allocation would already succeed without compaction. Return false if we 2673 * should reclaim first. 2674 */ 2675 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2676 { 2677 unsigned long watermark; 2678 enum compact_result suitable; 2679 2680 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2681 if (suitable == COMPACT_SUCCESS) 2682 /* Allocation should succeed already. Don't reclaim. */ 2683 return true; 2684 if (suitable == COMPACT_SKIPPED) 2685 /* Compaction cannot yet proceed. Do reclaim. */ 2686 return false; 2687 2688 /* 2689 * Compaction is already possible, but it takes time to run and there 2690 * are potentially other callers using the pages just freed. So proceed 2691 * with reclaim to make a buffer of free pages available to give 2692 * compaction a reasonable chance of completing and allocating the page. 2693 * Note that we won't actually reclaim the whole buffer in one attempt 2694 * as the target watermark in should_continue_reclaim() is lower. But if 2695 * we are already above the high+gap watermark, don't reclaim at all. 2696 */ 2697 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2698 2699 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2700 } 2701 2702 /* 2703 * This is the direct reclaim path, for page-allocating processes. We only 2704 * try to reclaim pages from zones which will satisfy the caller's allocation 2705 * request. 2706 * 2707 * If a zone is deemed to be full of pinned pages then just give it a light 2708 * scan then give up on it. 2709 */ 2710 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2711 { 2712 struct zoneref *z; 2713 struct zone *zone; 2714 unsigned long nr_soft_reclaimed; 2715 unsigned long nr_soft_scanned; 2716 gfp_t orig_mask; 2717 pg_data_t *last_pgdat = NULL; 2718 2719 /* 2720 * If the number of buffer_heads in the machine exceeds the maximum 2721 * allowed level, force direct reclaim to scan the highmem zone as 2722 * highmem pages could be pinning lowmem pages storing buffer_heads 2723 */ 2724 orig_mask = sc->gfp_mask; 2725 if (buffer_heads_over_limit) { 2726 sc->gfp_mask |= __GFP_HIGHMEM; 2727 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2728 } 2729 2730 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2731 sc->reclaim_idx, sc->nodemask) { 2732 /* 2733 * Take care memory controller reclaiming has small influence 2734 * to global LRU. 2735 */ 2736 if (global_reclaim(sc)) { 2737 if (!cpuset_zone_allowed(zone, 2738 GFP_KERNEL | __GFP_HARDWALL)) 2739 continue; 2740 2741 /* 2742 * If we already have plenty of memory free for 2743 * compaction in this zone, don't free any more. 2744 * Even though compaction is invoked for any 2745 * non-zero order, only frequent costly order 2746 * reclamation is disruptive enough to become a 2747 * noticeable problem, like transparent huge 2748 * page allocations. 2749 */ 2750 if (IS_ENABLED(CONFIG_COMPACTION) && 2751 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2752 compaction_ready(zone, sc)) { 2753 sc->compaction_ready = true; 2754 continue; 2755 } 2756 2757 /* 2758 * Shrink each node in the zonelist once. If the 2759 * zonelist is ordered by zone (not the default) then a 2760 * node may be shrunk multiple times but in that case 2761 * the user prefers lower zones being preserved. 2762 */ 2763 if (zone->zone_pgdat == last_pgdat) 2764 continue; 2765 2766 /* 2767 * This steals pages from memory cgroups over softlimit 2768 * and returns the number of reclaimed pages and 2769 * scanned pages. This works for global memory pressure 2770 * and balancing, not for a memcg's limit. 2771 */ 2772 nr_soft_scanned = 0; 2773 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2774 sc->order, sc->gfp_mask, 2775 &nr_soft_scanned); 2776 sc->nr_reclaimed += nr_soft_reclaimed; 2777 sc->nr_scanned += nr_soft_scanned; 2778 /* need some check for avoid more shrink_zone() */ 2779 } 2780 2781 /* See comment about same check for global reclaim above */ 2782 if (zone->zone_pgdat == last_pgdat) 2783 continue; 2784 last_pgdat = zone->zone_pgdat; 2785 shrink_node(zone->zone_pgdat, sc); 2786 } 2787 2788 /* 2789 * Restore to original mask to avoid the impact on the caller if we 2790 * promoted it to __GFP_HIGHMEM. 2791 */ 2792 sc->gfp_mask = orig_mask; 2793 } 2794 2795 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) 2796 { 2797 struct mem_cgroup *memcg; 2798 2799 memcg = mem_cgroup_iter(root_memcg, NULL, NULL); 2800 do { 2801 unsigned long refaults; 2802 struct lruvec *lruvec; 2803 2804 if (memcg) 2805 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2806 else 2807 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2808 2809 lruvec = mem_cgroup_lruvec(pgdat, memcg); 2810 lruvec->refaults = refaults; 2811 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); 2812 } 2813 2814 /* 2815 * This is the main entry point to direct page reclaim. 2816 * 2817 * If a full scan of the inactive list fails to free enough memory then we 2818 * are "out of memory" and something needs to be killed. 2819 * 2820 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2821 * high - the zone may be full of dirty or under-writeback pages, which this 2822 * caller can't do much about. We kick the writeback threads and take explicit 2823 * naps in the hope that some of these pages can be written. But if the 2824 * allocating task holds filesystem locks which prevent writeout this might not 2825 * work, and the allocation attempt will fail. 2826 * 2827 * returns: 0, if no pages reclaimed 2828 * else, the number of pages reclaimed 2829 */ 2830 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2831 struct scan_control *sc) 2832 { 2833 int initial_priority = sc->priority; 2834 pg_data_t *last_pgdat; 2835 struct zoneref *z; 2836 struct zone *zone; 2837 retry: 2838 delayacct_freepages_start(); 2839 2840 if (global_reclaim(sc)) 2841 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 2842 2843 do { 2844 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2845 sc->priority); 2846 sc->nr_scanned = 0; 2847 shrink_zones(zonelist, sc); 2848 2849 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2850 break; 2851 2852 if (sc->compaction_ready) 2853 break; 2854 2855 /* 2856 * If we're getting trouble reclaiming, start doing 2857 * writepage even in laptop mode. 2858 */ 2859 if (sc->priority < DEF_PRIORITY - 2) 2860 sc->may_writepage = 1; 2861 } while (--sc->priority >= 0); 2862 2863 last_pgdat = NULL; 2864 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 2865 sc->nodemask) { 2866 if (zone->zone_pgdat == last_pgdat) 2867 continue; 2868 last_pgdat = zone->zone_pgdat; 2869 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 2870 } 2871 2872 delayacct_freepages_end(); 2873 2874 if (sc->nr_reclaimed) 2875 return sc->nr_reclaimed; 2876 2877 /* Aborted reclaim to try compaction? don't OOM, then */ 2878 if (sc->compaction_ready) 2879 return 1; 2880 2881 /* Untapped cgroup reserves? Don't OOM, retry. */ 2882 if (sc->memcg_low_skipped) { 2883 sc->priority = initial_priority; 2884 sc->memcg_low_reclaim = 1; 2885 sc->memcg_low_skipped = 0; 2886 goto retry; 2887 } 2888 2889 return 0; 2890 } 2891 2892 static bool allow_direct_reclaim(pg_data_t *pgdat) 2893 { 2894 struct zone *zone; 2895 unsigned long pfmemalloc_reserve = 0; 2896 unsigned long free_pages = 0; 2897 int i; 2898 bool wmark_ok; 2899 2900 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 2901 return true; 2902 2903 for (i = 0; i <= ZONE_NORMAL; i++) { 2904 zone = &pgdat->node_zones[i]; 2905 if (!managed_zone(zone)) 2906 continue; 2907 2908 if (!zone_reclaimable_pages(zone)) 2909 continue; 2910 2911 pfmemalloc_reserve += min_wmark_pages(zone); 2912 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2913 } 2914 2915 /* If there are no reserves (unexpected config) then do not throttle */ 2916 if (!pfmemalloc_reserve) 2917 return true; 2918 2919 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2920 2921 /* kswapd must be awake if processes are being throttled */ 2922 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2923 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 2924 (enum zone_type)ZONE_NORMAL); 2925 wake_up_interruptible(&pgdat->kswapd_wait); 2926 } 2927 2928 return wmark_ok; 2929 } 2930 2931 /* 2932 * Throttle direct reclaimers if backing storage is backed by the network 2933 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2934 * depleted. kswapd will continue to make progress and wake the processes 2935 * when the low watermark is reached. 2936 * 2937 * Returns true if a fatal signal was delivered during throttling. If this 2938 * happens, the page allocator should not consider triggering the OOM killer. 2939 */ 2940 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2941 nodemask_t *nodemask) 2942 { 2943 struct zoneref *z; 2944 struct zone *zone; 2945 pg_data_t *pgdat = NULL; 2946 2947 /* 2948 * Kernel threads should not be throttled as they may be indirectly 2949 * responsible for cleaning pages necessary for reclaim to make forward 2950 * progress. kjournald for example may enter direct reclaim while 2951 * committing a transaction where throttling it could forcing other 2952 * processes to block on log_wait_commit(). 2953 */ 2954 if (current->flags & PF_KTHREAD) 2955 goto out; 2956 2957 /* 2958 * If a fatal signal is pending, this process should not throttle. 2959 * It should return quickly so it can exit and free its memory 2960 */ 2961 if (fatal_signal_pending(current)) 2962 goto out; 2963 2964 /* 2965 * Check if the pfmemalloc reserves are ok by finding the first node 2966 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2967 * GFP_KERNEL will be required for allocating network buffers when 2968 * swapping over the network so ZONE_HIGHMEM is unusable. 2969 * 2970 * Throttling is based on the first usable node and throttled processes 2971 * wait on a queue until kswapd makes progress and wakes them. There 2972 * is an affinity then between processes waking up and where reclaim 2973 * progress has been made assuming the process wakes on the same node. 2974 * More importantly, processes running on remote nodes will not compete 2975 * for remote pfmemalloc reserves and processes on different nodes 2976 * should make reasonable progress. 2977 */ 2978 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2979 gfp_zone(gfp_mask), nodemask) { 2980 if (zone_idx(zone) > ZONE_NORMAL) 2981 continue; 2982 2983 /* Throttle based on the first usable node */ 2984 pgdat = zone->zone_pgdat; 2985 if (allow_direct_reclaim(pgdat)) 2986 goto out; 2987 break; 2988 } 2989 2990 /* If no zone was usable by the allocation flags then do not throttle */ 2991 if (!pgdat) 2992 goto out; 2993 2994 /* Account for the throttling */ 2995 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2996 2997 /* 2998 * If the caller cannot enter the filesystem, it's possible that it 2999 * is due to the caller holding an FS lock or performing a journal 3000 * transaction in the case of a filesystem like ext[3|4]. In this case, 3001 * it is not safe to block on pfmemalloc_wait as kswapd could be 3002 * blocked waiting on the same lock. Instead, throttle for up to a 3003 * second before continuing. 3004 */ 3005 if (!(gfp_mask & __GFP_FS)) { 3006 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3007 allow_direct_reclaim(pgdat), HZ); 3008 3009 goto check_pending; 3010 } 3011 3012 /* Throttle until kswapd wakes the process */ 3013 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3014 allow_direct_reclaim(pgdat)); 3015 3016 check_pending: 3017 if (fatal_signal_pending(current)) 3018 return true; 3019 3020 out: 3021 return false; 3022 } 3023 3024 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3025 gfp_t gfp_mask, nodemask_t *nodemask) 3026 { 3027 unsigned long nr_reclaimed; 3028 struct scan_control sc = { 3029 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3030 .gfp_mask = current_gfp_context(gfp_mask), 3031 .reclaim_idx = gfp_zone(gfp_mask), 3032 .order = order, 3033 .nodemask = nodemask, 3034 .priority = DEF_PRIORITY, 3035 .may_writepage = !laptop_mode, 3036 .may_unmap = 1, 3037 .may_swap = 1, 3038 }; 3039 3040 /* 3041 * Do not enter reclaim if fatal signal was delivered while throttled. 3042 * 1 is returned so that the page allocator does not OOM kill at this 3043 * point. 3044 */ 3045 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3046 return 1; 3047 3048 trace_mm_vmscan_direct_reclaim_begin(order, 3049 sc.may_writepage, 3050 sc.gfp_mask, 3051 sc.reclaim_idx); 3052 3053 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3054 3055 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3056 3057 return nr_reclaimed; 3058 } 3059 3060 #ifdef CONFIG_MEMCG 3061 3062 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3063 gfp_t gfp_mask, bool noswap, 3064 pg_data_t *pgdat, 3065 unsigned long *nr_scanned) 3066 { 3067 struct scan_control sc = { 3068 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3069 .target_mem_cgroup = memcg, 3070 .may_writepage = !laptop_mode, 3071 .may_unmap = 1, 3072 .reclaim_idx = MAX_NR_ZONES - 1, 3073 .may_swap = !noswap, 3074 }; 3075 unsigned long lru_pages; 3076 3077 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3078 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3079 3080 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3081 sc.may_writepage, 3082 sc.gfp_mask, 3083 sc.reclaim_idx); 3084 3085 /* 3086 * NOTE: Although we can get the priority field, using it 3087 * here is not a good idea, since it limits the pages we can scan. 3088 * if we don't reclaim here, the shrink_node from balance_pgdat 3089 * will pick up pages from other mem cgroup's as well. We hack 3090 * the priority and make it zero. 3091 */ 3092 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3093 3094 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3095 3096 *nr_scanned = sc.nr_scanned; 3097 return sc.nr_reclaimed; 3098 } 3099 3100 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3101 unsigned long nr_pages, 3102 gfp_t gfp_mask, 3103 bool may_swap) 3104 { 3105 struct zonelist *zonelist; 3106 unsigned long nr_reclaimed; 3107 int nid; 3108 unsigned int noreclaim_flag; 3109 struct scan_control sc = { 3110 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3111 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3112 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3113 .reclaim_idx = MAX_NR_ZONES - 1, 3114 .target_mem_cgroup = memcg, 3115 .priority = DEF_PRIORITY, 3116 .may_writepage = !laptop_mode, 3117 .may_unmap = 1, 3118 .may_swap = may_swap, 3119 }; 3120 3121 /* 3122 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3123 * take care of from where we get pages. So the node where we start the 3124 * scan does not need to be the current node. 3125 */ 3126 nid = mem_cgroup_select_victim_node(memcg); 3127 3128 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3129 3130 trace_mm_vmscan_memcg_reclaim_begin(0, 3131 sc.may_writepage, 3132 sc.gfp_mask, 3133 sc.reclaim_idx); 3134 3135 noreclaim_flag = memalloc_noreclaim_save(); 3136 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3137 memalloc_noreclaim_restore(noreclaim_flag); 3138 3139 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3140 3141 return nr_reclaimed; 3142 } 3143 #endif 3144 3145 static void age_active_anon(struct pglist_data *pgdat, 3146 struct scan_control *sc) 3147 { 3148 struct mem_cgroup *memcg; 3149 3150 if (!total_swap_pages) 3151 return; 3152 3153 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3154 do { 3155 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3156 3157 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 3158 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3159 sc, LRU_ACTIVE_ANON); 3160 3161 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3162 } while (memcg); 3163 } 3164 3165 /* 3166 * Returns true if there is an eligible zone balanced for the request order 3167 * and classzone_idx 3168 */ 3169 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3170 { 3171 int i; 3172 unsigned long mark = -1; 3173 struct zone *zone; 3174 3175 for (i = 0; i <= classzone_idx; i++) { 3176 zone = pgdat->node_zones + i; 3177 3178 if (!managed_zone(zone)) 3179 continue; 3180 3181 mark = high_wmark_pages(zone); 3182 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3183 return true; 3184 } 3185 3186 /* 3187 * If a node has no populated zone within classzone_idx, it does not 3188 * need balancing by definition. This can happen if a zone-restricted 3189 * allocation tries to wake a remote kswapd. 3190 */ 3191 if (mark == -1) 3192 return true; 3193 3194 return false; 3195 } 3196 3197 /* Clear pgdat state for congested, dirty or under writeback. */ 3198 static void clear_pgdat_congested(pg_data_t *pgdat) 3199 { 3200 clear_bit(PGDAT_CONGESTED, &pgdat->flags); 3201 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3202 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3203 } 3204 3205 /* 3206 * Prepare kswapd for sleeping. This verifies that there are no processes 3207 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3208 * 3209 * Returns true if kswapd is ready to sleep 3210 */ 3211 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3212 { 3213 /* 3214 * The throttled processes are normally woken up in balance_pgdat() as 3215 * soon as allow_direct_reclaim() is true. But there is a potential 3216 * race between when kswapd checks the watermarks and a process gets 3217 * throttled. There is also a potential race if processes get 3218 * throttled, kswapd wakes, a large process exits thereby balancing the 3219 * zones, which causes kswapd to exit balance_pgdat() before reaching 3220 * the wake up checks. If kswapd is going to sleep, no process should 3221 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3222 * the wake up is premature, processes will wake kswapd and get 3223 * throttled again. The difference from wake ups in balance_pgdat() is 3224 * that here we are under prepare_to_wait(). 3225 */ 3226 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3227 wake_up_all(&pgdat->pfmemalloc_wait); 3228 3229 /* Hopeless node, leave it to direct reclaim */ 3230 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3231 return true; 3232 3233 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3234 clear_pgdat_congested(pgdat); 3235 return true; 3236 } 3237 3238 return false; 3239 } 3240 3241 /* 3242 * kswapd shrinks a node of pages that are at or below the highest usable 3243 * zone that is currently unbalanced. 3244 * 3245 * Returns true if kswapd scanned at least the requested number of pages to 3246 * reclaim or if the lack of progress was due to pages under writeback. 3247 * This is used to determine if the scanning priority needs to be raised. 3248 */ 3249 static bool kswapd_shrink_node(pg_data_t *pgdat, 3250 struct scan_control *sc) 3251 { 3252 struct zone *zone; 3253 int z; 3254 3255 /* Reclaim a number of pages proportional to the number of zones */ 3256 sc->nr_to_reclaim = 0; 3257 for (z = 0; z <= sc->reclaim_idx; z++) { 3258 zone = pgdat->node_zones + z; 3259 if (!managed_zone(zone)) 3260 continue; 3261 3262 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3263 } 3264 3265 /* 3266 * Historically care was taken to put equal pressure on all zones but 3267 * now pressure is applied based on node LRU order. 3268 */ 3269 shrink_node(pgdat, sc); 3270 3271 /* 3272 * Fragmentation may mean that the system cannot be rebalanced for 3273 * high-order allocations. If twice the allocation size has been 3274 * reclaimed then recheck watermarks only at order-0 to prevent 3275 * excessive reclaim. Assume that a process requested a high-order 3276 * can direct reclaim/compact. 3277 */ 3278 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3279 sc->order = 0; 3280 3281 return sc->nr_scanned >= sc->nr_to_reclaim; 3282 } 3283 3284 /* 3285 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3286 * that are eligible for use by the caller until at least one zone is 3287 * balanced. 3288 * 3289 * Returns the order kswapd finished reclaiming at. 3290 * 3291 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3292 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3293 * found to have free_pages <= high_wmark_pages(zone), any page is that zone 3294 * or lower is eligible for reclaim until at least one usable zone is 3295 * balanced. 3296 */ 3297 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3298 { 3299 int i; 3300 unsigned long nr_soft_reclaimed; 3301 unsigned long nr_soft_scanned; 3302 struct zone *zone; 3303 struct scan_control sc = { 3304 .gfp_mask = GFP_KERNEL, 3305 .order = order, 3306 .priority = DEF_PRIORITY, 3307 .may_writepage = !laptop_mode, 3308 .may_unmap = 1, 3309 .may_swap = 1, 3310 }; 3311 count_vm_event(PAGEOUTRUN); 3312 3313 do { 3314 unsigned long nr_reclaimed = sc.nr_reclaimed; 3315 bool raise_priority = true; 3316 3317 sc.reclaim_idx = classzone_idx; 3318 3319 /* 3320 * If the number of buffer_heads exceeds the maximum allowed 3321 * then consider reclaiming from all zones. This has a dual 3322 * purpose -- on 64-bit systems it is expected that 3323 * buffer_heads are stripped during active rotation. On 32-bit 3324 * systems, highmem pages can pin lowmem memory and shrinking 3325 * buffers can relieve lowmem pressure. Reclaim may still not 3326 * go ahead if all eligible zones for the original allocation 3327 * request are balanced to avoid excessive reclaim from kswapd. 3328 */ 3329 if (buffer_heads_over_limit) { 3330 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3331 zone = pgdat->node_zones + i; 3332 if (!managed_zone(zone)) 3333 continue; 3334 3335 sc.reclaim_idx = i; 3336 break; 3337 } 3338 } 3339 3340 /* 3341 * Only reclaim if there are no eligible zones. Note that 3342 * sc.reclaim_idx is not used as buffer_heads_over_limit may 3343 * have adjusted it. 3344 */ 3345 if (pgdat_balanced(pgdat, sc.order, classzone_idx)) 3346 goto out; 3347 3348 /* 3349 * Do some background aging of the anon list, to give 3350 * pages a chance to be referenced before reclaiming. All 3351 * pages are rotated regardless of classzone as this is 3352 * about consistent aging. 3353 */ 3354 age_active_anon(pgdat, &sc); 3355 3356 /* 3357 * If we're getting trouble reclaiming, start doing writepage 3358 * even in laptop mode. 3359 */ 3360 if (sc.priority < DEF_PRIORITY - 2) 3361 sc.may_writepage = 1; 3362 3363 /* Call soft limit reclaim before calling shrink_node. */ 3364 sc.nr_scanned = 0; 3365 nr_soft_scanned = 0; 3366 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3367 sc.gfp_mask, &nr_soft_scanned); 3368 sc.nr_reclaimed += nr_soft_reclaimed; 3369 3370 /* 3371 * There should be no need to raise the scanning priority if 3372 * enough pages are already being scanned that that high 3373 * watermark would be met at 100% efficiency. 3374 */ 3375 if (kswapd_shrink_node(pgdat, &sc)) 3376 raise_priority = false; 3377 3378 /* 3379 * If the low watermark is met there is no need for processes 3380 * to be throttled on pfmemalloc_wait as they should not be 3381 * able to safely make forward progress. Wake them 3382 */ 3383 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3384 allow_direct_reclaim(pgdat)) 3385 wake_up_all(&pgdat->pfmemalloc_wait); 3386 3387 /* Check if kswapd should be suspending */ 3388 if (try_to_freeze() || kthread_should_stop()) 3389 break; 3390 3391 /* 3392 * Raise priority if scanning rate is too low or there was no 3393 * progress in reclaiming pages 3394 */ 3395 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3396 if (raise_priority || !nr_reclaimed) 3397 sc.priority--; 3398 } while (sc.priority >= 1); 3399 3400 if (!sc.nr_reclaimed) 3401 pgdat->kswapd_failures++; 3402 3403 out: 3404 snapshot_refaults(NULL, pgdat); 3405 /* 3406 * Return the order kswapd stopped reclaiming at as 3407 * prepare_kswapd_sleep() takes it into account. If another caller 3408 * entered the allocator slow path while kswapd was awake, order will 3409 * remain at the higher level. 3410 */ 3411 return sc.order; 3412 } 3413 3414 /* 3415 * pgdat->kswapd_classzone_idx is the highest zone index that a recent 3416 * allocation request woke kswapd for. When kswapd has not woken recently, 3417 * the value is MAX_NR_ZONES which is not a valid index. This compares a 3418 * given classzone and returns it or the highest classzone index kswapd 3419 * was recently woke for. 3420 */ 3421 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3422 enum zone_type classzone_idx) 3423 { 3424 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3425 return classzone_idx; 3426 3427 return max(pgdat->kswapd_classzone_idx, classzone_idx); 3428 } 3429 3430 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3431 unsigned int classzone_idx) 3432 { 3433 long remaining = 0; 3434 DEFINE_WAIT(wait); 3435 3436 if (freezing(current) || kthread_should_stop()) 3437 return; 3438 3439 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3440 3441 /* 3442 * Try to sleep for a short interval. Note that kcompactd will only be 3443 * woken if it is possible to sleep for a short interval. This is 3444 * deliberate on the assumption that if reclaim cannot keep an 3445 * eligible zone balanced that it's also unlikely that compaction will 3446 * succeed. 3447 */ 3448 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3449 /* 3450 * Compaction records what page blocks it recently failed to 3451 * isolate pages from and skips them in the future scanning. 3452 * When kswapd is going to sleep, it is reasonable to assume 3453 * that pages and compaction may succeed so reset the cache. 3454 */ 3455 reset_isolation_suitable(pgdat); 3456 3457 /* 3458 * We have freed the memory, now we should compact it to make 3459 * allocation of the requested order possible. 3460 */ 3461 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3462 3463 remaining = schedule_timeout(HZ/10); 3464 3465 /* 3466 * If woken prematurely then reset kswapd_classzone_idx and 3467 * order. The values will either be from a wakeup request or 3468 * the previous request that slept prematurely. 3469 */ 3470 if (remaining) { 3471 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3472 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3473 } 3474 3475 finish_wait(&pgdat->kswapd_wait, &wait); 3476 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3477 } 3478 3479 /* 3480 * After a short sleep, check if it was a premature sleep. If not, then 3481 * go fully to sleep until explicitly woken up. 3482 */ 3483 if (!remaining && 3484 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3485 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3486 3487 /* 3488 * vmstat counters are not perfectly accurate and the estimated 3489 * value for counters such as NR_FREE_PAGES can deviate from the 3490 * true value by nr_online_cpus * threshold. To avoid the zone 3491 * watermarks being breached while under pressure, we reduce the 3492 * per-cpu vmstat threshold while kswapd is awake and restore 3493 * them before going back to sleep. 3494 */ 3495 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3496 3497 if (!kthread_should_stop()) 3498 schedule(); 3499 3500 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3501 } else { 3502 if (remaining) 3503 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3504 else 3505 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3506 } 3507 finish_wait(&pgdat->kswapd_wait, &wait); 3508 } 3509 3510 /* 3511 * The background pageout daemon, started as a kernel thread 3512 * from the init process. 3513 * 3514 * This basically trickles out pages so that we have _some_ 3515 * free memory available even if there is no other activity 3516 * that frees anything up. This is needed for things like routing 3517 * etc, where we otherwise might have all activity going on in 3518 * asynchronous contexts that cannot page things out. 3519 * 3520 * If there are applications that are active memory-allocators 3521 * (most normal use), this basically shouldn't matter. 3522 */ 3523 static int kswapd(void *p) 3524 { 3525 unsigned int alloc_order, reclaim_order; 3526 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3527 pg_data_t *pgdat = (pg_data_t*)p; 3528 struct task_struct *tsk = current; 3529 3530 struct reclaim_state reclaim_state = { 3531 .reclaimed_slab = 0, 3532 }; 3533 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3534 3535 if (!cpumask_empty(cpumask)) 3536 set_cpus_allowed_ptr(tsk, cpumask); 3537 current->reclaim_state = &reclaim_state; 3538 3539 /* 3540 * Tell the memory management that we're a "memory allocator", 3541 * and that if we need more memory we should get access to it 3542 * regardless (see "__alloc_pages()"). "kswapd" should 3543 * never get caught in the normal page freeing logic. 3544 * 3545 * (Kswapd normally doesn't need memory anyway, but sometimes 3546 * you need a small amount of memory in order to be able to 3547 * page out something else, and this flag essentially protects 3548 * us from recursively trying to free more memory as we're 3549 * trying to free the first piece of memory in the first place). 3550 */ 3551 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3552 set_freezable(); 3553 3554 pgdat->kswapd_order = 0; 3555 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3556 for ( ; ; ) { 3557 bool ret; 3558 3559 alloc_order = reclaim_order = pgdat->kswapd_order; 3560 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3561 3562 kswapd_try_sleep: 3563 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3564 classzone_idx); 3565 3566 /* Read the new order and classzone_idx */ 3567 alloc_order = reclaim_order = pgdat->kswapd_order; 3568 classzone_idx = kswapd_classzone_idx(pgdat, 0); 3569 pgdat->kswapd_order = 0; 3570 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3571 3572 ret = try_to_freeze(); 3573 if (kthread_should_stop()) 3574 break; 3575 3576 /* 3577 * We can speed up thawing tasks if we don't call balance_pgdat 3578 * after returning from the refrigerator 3579 */ 3580 if (ret) 3581 continue; 3582 3583 /* 3584 * Reclaim begins at the requested order but if a high-order 3585 * reclaim fails then kswapd falls back to reclaiming for 3586 * order-0. If that happens, kswapd will consider sleeping 3587 * for the order it finished reclaiming at (reclaim_order) 3588 * but kcompactd is woken to compact for the original 3589 * request (alloc_order). 3590 */ 3591 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3592 alloc_order); 3593 fs_reclaim_acquire(GFP_KERNEL); 3594 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3595 fs_reclaim_release(GFP_KERNEL); 3596 if (reclaim_order < alloc_order) 3597 goto kswapd_try_sleep; 3598 } 3599 3600 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3601 current->reclaim_state = NULL; 3602 3603 return 0; 3604 } 3605 3606 /* 3607 * A zone is low on free memory, so wake its kswapd task to service it. 3608 */ 3609 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3610 { 3611 pg_data_t *pgdat; 3612 3613 if (!managed_zone(zone)) 3614 return; 3615 3616 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3617 return; 3618 pgdat = zone->zone_pgdat; 3619 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, 3620 classzone_idx); 3621 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3622 if (!waitqueue_active(&pgdat->kswapd_wait)) 3623 return; 3624 3625 /* Hopeless node, leave it to direct reclaim */ 3626 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3627 return; 3628 3629 if (pgdat_balanced(pgdat, order, classzone_idx)) 3630 return; 3631 3632 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order); 3633 wake_up_interruptible(&pgdat->kswapd_wait); 3634 } 3635 3636 #ifdef CONFIG_HIBERNATION 3637 /* 3638 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3639 * freed pages. 3640 * 3641 * Rather than trying to age LRUs the aim is to preserve the overall 3642 * LRU order by reclaiming preferentially 3643 * inactive > active > active referenced > active mapped 3644 */ 3645 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3646 { 3647 struct reclaim_state reclaim_state; 3648 struct scan_control sc = { 3649 .nr_to_reclaim = nr_to_reclaim, 3650 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3651 .reclaim_idx = MAX_NR_ZONES - 1, 3652 .priority = DEF_PRIORITY, 3653 .may_writepage = 1, 3654 .may_unmap = 1, 3655 .may_swap = 1, 3656 .hibernation_mode = 1, 3657 }; 3658 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3659 struct task_struct *p = current; 3660 unsigned long nr_reclaimed; 3661 unsigned int noreclaim_flag; 3662 3663 noreclaim_flag = memalloc_noreclaim_save(); 3664 fs_reclaim_acquire(sc.gfp_mask); 3665 reclaim_state.reclaimed_slab = 0; 3666 p->reclaim_state = &reclaim_state; 3667 3668 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3669 3670 p->reclaim_state = NULL; 3671 fs_reclaim_release(sc.gfp_mask); 3672 memalloc_noreclaim_restore(noreclaim_flag); 3673 3674 return nr_reclaimed; 3675 } 3676 #endif /* CONFIG_HIBERNATION */ 3677 3678 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3679 not required for correctness. So if the last cpu in a node goes 3680 away, we get changed to run anywhere: as the first one comes back, 3681 restore their cpu bindings. */ 3682 static int kswapd_cpu_online(unsigned int cpu) 3683 { 3684 int nid; 3685 3686 for_each_node_state(nid, N_MEMORY) { 3687 pg_data_t *pgdat = NODE_DATA(nid); 3688 const struct cpumask *mask; 3689 3690 mask = cpumask_of_node(pgdat->node_id); 3691 3692 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3693 /* One of our CPUs online: restore mask */ 3694 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3695 } 3696 return 0; 3697 } 3698 3699 /* 3700 * This kswapd start function will be called by init and node-hot-add. 3701 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3702 */ 3703 int kswapd_run(int nid) 3704 { 3705 pg_data_t *pgdat = NODE_DATA(nid); 3706 int ret = 0; 3707 3708 if (pgdat->kswapd) 3709 return 0; 3710 3711 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3712 if (IS_ERR(pgdat->kswapd)) { 3713 /* failure at boot is fatal */ 3714 BUG_ON(system_state < SYSTEM_RUNNING); 3715 pr_err("Failed to start kswapd on node %d\n", nid); 3716 ret = PTR_ERR(pgdat->kswapd); 3717 pgdat->kswapd = NULL; 3718 } 3719 return ret; 3720 } 3721 3722 /* 3723 * Called by memory hotplug when all memory in a node is offlined. Caller must 3724 * hold mem_hotplug_begin/end(). 3725 */ 3726 void kswapd_stop(int nid) 3727 { 3728 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3729 3730 if (kswapd) { 3731 kthread_stop(kswapd); 3732 NODE_DATA(nid)->kswapd = NULL; 3733 } 3734 } 3735 3736 static int __init kswapd_init(void) 3737 { 3738 int nid, ret; 3739 3740 swap_setup(); 3741 for_each_node_state(nid, N_MEMORY) 3742 kswapd_run(nid); 3743 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3744 "mm/vmscan:online", kswapd_cpu_online, 3745 NULL); 3746 WARN_ON(ret < 0); 3747 return 0; 3748 } 3749 3750 module_init(kswapd_init) 3751 3752 #ifdef CONFIG_NUMA 3753 /* 3754 * Node reclaim mode 3755 * 3756 * If non-zero call node_reclaim when the number of free pages falls below 3757 * the watermarks. 3758 */ 3759 int node_reclaim_mode __read_mostly; 3760 3761 #define RECLAIM_OFF 0 3762 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3763 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3764 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3765 3766 /* 3767 * Priority for NODE_RECLAIM. This determines the fraction of pages 3768 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3769 * a zone. 3770 */ 3771 #define NODE_RECLAIM_PRIORITY 4 3772 3773 /* 3774 * Percentage of pages in a zone that must be unmapped for node_reclaim to 3775 * occur. 3776 */ 3777 int sysctl_min_unmapped_ratio = 1; 3778 3779 /* 3780 * If the number of slab pages in a zone grows beyond this percentage then 3781 * slab reclaim needs to occur. 3782 */ 3783 int sysctl_min_slab_ratio = 5; 3784 3785 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 3786 { 3787 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 3788 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 3789 node_page_state(pgdat, NR_ACTIVE_FILE); 3790 3791 /* 3792 * It's possible for there to be more file mapped pages than 3793 * accounted for by the pages on the file LRU lists because 3794 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3795 */ 3796 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3797 } 3798 3799 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3800 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 3801 { 3802 unsigned long nr_pagecache_reclaimable; 3803 unsigned long delta = 0; 3804 3805 /* 3806 * If RECLAIM_UNMAP is set, then all file pages are considered 3807 * potentially reclaimable. Otherwise, we have to worry about 3808 * pages like swapcache and node_unmapped_file_pages() provides 3809 * a better estimate 3810 */ 3811 if (node_reclaim_mode & RECLAIM_UNMAP) 3812 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 3813 else 3814 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 3815 3816 /* If we can't clean pages, remove dirty pages from consideration */ 3817 if (!(node_reclaim_mode & RECLAIM_WRITE)) 3818 delta += node_page_state(pgdat, NR_FILE_DIRTY); 3819 3820 /* Watch for any possible underflows due to delta */ 3821 if (unlikely(delta > nr_pagecache_reclaimable)) 3822 delta = nr_pagecache_reclaimable; 3823 3824 return nr_pagecache_reclaimable - delta; 3825 } 3826 3827 /* 3828 * Try to free up some pages from this node through reclaim. 3829 */ 3830 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3831 { 3832 /* Minimum pages needed in order to stay on node */ 3833 const unsigned long nr_pages = 1 << order; 3834 struct task_struct *p = current; 3835 struct reclaim_state reclaim_state; 3836 unsigned int noreclaim_flag; 3837 struct scan_control sc = { 3838 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3839 .gfp_mask = current_gfp_context(gfp_mask), 3840 .order = order, 3841 .priority = NODE_RECLAIM_PRIORITY, 3842 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 3843 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 3844 .may_swap = 1, 3845 .reclaim_idx = gfp_zone(gfp_mask), 3846 }; 3847 3848 cond_resched(); 3849 /* 3850 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3851 * and we also need to be able to write out pages for RECLAIM_WRITE 3852 * and RECLAIM_UNMAP. 3853 */ 3854 noreclaim_flag = memalloc_noreclaim_save(); 3855 p->flags |= PF_SWAPWRITE; 3856 fs_reclaim_acquire(sc.gfp_mask); 3857 reclaim_state.reclaimed_slab = 0; 3858 p->reclaim_state = &reclaim_state; 3859 3860 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 3861 /* 3862 * Free memory by calling shrink zone with increasing 3863 * priorities until we have enough memory freed. 3864 */ 3865 do { 3866 shrink_node(pgdat, &sc); 3867 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3868 } 3869 3870 p->reclaim_state = NULL; 3871 fs_reclaim_release(gfp_mask); 3872 current->flags &= ~PF_SWAPWRITE; 3873 memalloc_noreclaim_restore(noreclaim_flag); 3874 return sc.nr_reclaimed >= nr_pages; 3875 } 3876 3877 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3878 { 3879 int ret; 3880 3881 /* 3882 * Node reclaim reclaims unmapped file backed pages and 3883 * slab pages if we are over the defined limits. 3884 * 3885 * A small portion of unmapped file backed pages is needed for 3886 * file I/O otherwise pages read by file I/O will be immediately 3887 * thrown out if the node is overallocated. So we do not reclaim 3888 * if less than a specified percentage of the node is used by 3889 * unmapped file backed pages. 3890 */ 3891 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 3892 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 3893 return NODE_RECLAIM_FULL; 3894 3895 /* 3896 * Do not scan if the allocation should not be delayed. 3897 */ 3898 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 3899 return NODE_RECLAIM_NOSCAN; 3900 3901 /* 3902 * Only run node reclaim on the local node or on nodes that do not 3903 * have associated processors. This will favor the local processor 3904 * over remote processors and spread off node memory allocations 3905 * as wide as possible. 3906 */ 3907 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 3908 return NODE_RECLAIM_NOSCAN; 3909 3910 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 3911 return NODE_RECLAIM_NOSCAN; 3912 3913 ret = __node_reclaim(pgdat, gfp_mask, order); 3914 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 3915 3916 if (!ret) 3917 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3918 3919 return ret; 3920 } 3921 #endif 3922 3923 /* 3924 * page_evictable - test whether a page is evictable 3925 * @page: the page to test 3926 * 3927 * Test whether page is evictable--i.e., should be placed on active/inactive 3928 * lists vs unevictable list. 3929 * 3930 * Reasons page might not be evictable: 3931 * (1) page's mapping marked unevictable 3932 * (2) page is part of an mlocked VMA 3933 * 3934 */ 3935 int page_evictable(struct page *page) 3936 { 3937 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3938 } 3939 3940 #ifdef CONFIG_SHMEM 3941 /** 3942 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3943 * @pages: array of pages to check 3944 * @nr_pages: number of pages to check 3945 * 3946 * Checks pages for evictability and moves them to the appropriate lru list. 3947 * 3948 * This function is only used for SysV IPC SHM_UNLOCK. 3949 */ 3950 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3951 { 3952 struct lruvec *lruvec; 3953 struct pglist_data *pgdat = NULL; 3954 int pgscanned = 0; 3955 int pgrescued = 0; 3956 int i; 3957 3958 for (i = 0; i < nr_pages; i++) { 3959 struct page *page = pages[i]; 3960 struct pglist_data *pagepgdat = page_pgdat(page); 3961 3962 pgscanned++; 3963 if (pagepgdat != pgdat) { 3964 if (pgdat) 3965 spin_unlock_irq(&pgdat->lru_lock); 3966 pgdat = pagepgdat; 3967 spin_lock_irq(&pgdat->lru_lock); 3968 } 3969 lruvec = mem_cgroup_page_lruvec(page, pgdat); 3970 3971 if (!PageLRU(page) || !PageUnevictable(page)) 3972 continue; 3973 3974 if (page_evictable(page)) { 3975 enum lru_list lru = page_lru_base_type(page); 3976 3977 VM_BUG_ON_PAGE(PageActive(page), page); 3978 ClearPageUnevictable(page); 3979 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3980 add_page_to_lru_list(page, lruvec, lru); 3981 pgrescued++; 3982 } 3983 } 3984 3985 if (pgdat) { 3986 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3987 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3988 spin_unlock_irq(&pgdat->lru_lock); 3989 } 3990 } 3991 #endif /* CONFIG_SHMEM */ 3992