1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/gfp.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmstat.h> 23 #include <linux/file.h> 24 #include <linux/writeback.h> 25 #include <linux/blkdev.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page(), 27 buffer_heads_over_limit */ 28 #include <linux/mm_inline.h> 29 #include <linux/pagevec.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/notifier.h> 36 #include <linux/rwsem.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/freezer.h> 40 #include <linux/memcontrol.h> 41 #include <linux/delayacct.h> 42 #include <linux/sysctl.h> 43 44 #include <asm/tlbflush.h> 45 #include <asm/div64.h> 46 47 #include <linux/swapops.h> 48 49 #include "internal.h" 50 51 struct scan_control { 52 /* Incremented by the number of inactive pages that were scanned */ 53 unsigned long nr_scanned; 54 55 /* Number of pages freed so far during a call to shrink_zones() */ 56 unsigned long nr_reclaimed; 57 58 /* How many pages shrink_list() should reclaim */ 59 unsigned long nr_to_reclaim; 60 61 unsigned long hibernation_mode; 62 63 /* This context's GFP mask */ 64 gfp_t gfp_mask; 65 66 int may_writepage; 67 68 /* Can mapped pages be reclaimed? */ 69 int may_unmap; 70 71 /* Can pages be swapped as part of reclaim? */ 72 int may_swap; 73 74 int swappiness; 75 76 int all_unreclaimable; 77 78 int order; 79 80 /* Which cgroup do we reclaim from */ 81 struct mem_cgroup *mem_cgroup; 82 83 /* 84 * Nodemask of nodes allowed by the caller. If NULL, all nodes 85 * are scanned. 86 */ 87 nodemask_t *nodemask; 88 89 /* Pluggable isolate pages callback */ 90 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst, 91 unsigned long *scanned, int order, int mode, 92 struct zone *z, struct mem_cgroup *mem_cont, 93 int active, int file); 94 }; 95 96 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 97 98 #ifdef ARCH_HAS_PREFETCH 99 #define prefetch_prev_lru_page(_page, _base, _field) \ 100 do { \ 101 if ((_page)->lru.prev != _base) { \ 102 struct page *prev; \ 103 \ 104 prev = lru_to_page(&(_page->lru)); \ 105 prefetch(&prev->_field); \ 106 } \ 107 } while (0) 108 #else 109 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 110 #endif 111 112 #ifdef ARCH_HAS_PREFETCHW 113 #define prefetchw_prev_lru_page(_page, _base, _field) \ 114 do { \ 115 if ((_page)->lru.prev != _base) { \ 116 struct page *prev; \ 117 \ 118 prev = lru_to_page(&(_page->lru)); \ 119 prefetchw(&prev->_field); \ 120 } \ 121 } while (0) 122 #else 123 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 124 #endif 125 126 /* 127 * From 0 .. 100. Higher means more swappy. 128 */ 129 int vm_swappiness = 60; 130 long vm_total_pages; /* The total number of pages which the VM controls */ 131 132 static LIST_HEAD(shrinker_list); 133 static DECLARE_RWSEM(shrinker_rwsem); 134 135 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 136 #define scanning_global_lru(sc) (!(sc)->mem_cgroup) 137 #else 138 #define scanning_global_lru(sc) (1) 139 #endif 140 141 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone, 142 struct scan_control *sc) 143 { 144 if (!scanning_global_lru(sc)) 145 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone); 146 147 return &zone->reclaim_stat; 148 } 149 150 static unsigned long zone_nr_lru_pages(struct zone *zone, 151 struct scan_control *sc, enum lru_list lru) 152 { 153 if (!scanning_global_lru(sc)) 154 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru); 155 156 return zone_page_state(zone, NR_LRU_BASE + lru); 157 } 158 159 160 /* 161 * Add a shrinker callback to be called from the vm 162 */ 163 void register_shrinker(struct shrinker *shrinker) 164 { 165 shrinker->nr = 0; 166 down_write(&shrinker_rwsem); 167 list_add_tail(&shrinker->list, &shrinker_list); 168 up_write(&shrinker_rwsem); 169 } 170 EXPORT_SYMBOL(register_shrinker); 171 172 /* 173 * Remove one 174 */ 175 void unregister_shrinker(struct shrinker *shrinker) 176 { 177 down_write(&shrinker_rwsem); 178 list_del(&shrinker->list); 179 up_write(&shrinker_rwsem); 180 } 181 EXPORT_SYMBOL(unregister_shrinker); 182 183 #define SHRINK_BATCH 128 184 /* 185 * Call the shrink functions to age shrinkable caches 186 * 187 * Here we assume it costs one seek to replace a lru page and that it also 188 * takes a seek to recreate a cache object. With this in mind we age equal 189 * percentages of the lru and ageable caches. This should balance the seeks 190 * generated by these structures. 191 * 192 * If the vm encountered mapped pages on the LRU it increase the pressure on 193 * slab to avoid swapping. 194 * 195 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 196 * 197 * `lru_pages' represents the number of on-LRU pages in all the zones which 198 * are eligible for the caller's allocation attempt. It is used for balancing 199 * slab reclaim versus page reclaim. 200 * 201 * Returns the number of slab objects which we shrunk. 202 */ 203 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 204 unsigned long lru_pages) 205 { 206 struct shrinker *shrinker; 207 unsigned long ret = 0; 208 209 if (scanned == 0) 210 scanned = SWAP_CLUSTER_MAX; 211 212 if (!down_read_trylock(&shrinker_rwsem)) 213 return 1; /* Assume we'll be able to shrink next time */ 214 215 list_for_each_entry(shrinker, &shrinker_list, list) { 216 unsigned long long delta; 217 unsigned long total_scan; 218 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask); 219 220 delta = (4 * scanned) / shrinker->seeks; 221 delta *= max_pass; 222 do_div(delta, lru_pages + 1); 223 shrinker->nr += delta; 224 if (shrinker->nr < 0) { 225 printk(KERN_ERR "shrink_slab: %pF negative objects to " 226 "delete nr=%ld\n", 227 shrinker->shrink, shrinker->nr); 228 shrinker->nr = max_pass; 229 } 230 231 /* 232 * Avoid risking looping forever due to too large nr value: 233 * never try to free more than twice the estimate number of 234 * freeable entries. 235 */ 236 if (shrinker->nr > max_pass * 2) 237 shrinker->nr = max_pass * 2; 238 239 total_scan = shrinker->nr; 240 shrinker->nr = 0; 241 242 while (total_scan >= SHRINK_BATCH) { 243 long this_scan = SHRINK_BATCH; 244 int shrink_ret; 245 int nr_before; 246 247 nr_before = (*shrinker->shrink)(0, gfp_mask); 248 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask); 249 if (shrink_ret == -1) 250 break; 251 if (shrink_ret < nr_before) 252 ret += nr_before - shrink_ret; 253 count_vm_events(SLABS_SCANNED, this_scan); 254 total_scan -= this_scan; 255 256 cond_resched(); 257 } 258 259 shrinker->nr += total_scan; 260 } 261 up_read(&shrinker_rwsem); 262 return ret; 263 } 264 265 static inline int is_page_cache_freeable(struct page *page) 266 { 267 /* 268 * A freeable page cache page is referenced only by the caller 269 * that isolated the page, the page cache radix tree and 270 * optional buffer heads at page->private. 271 */ 272 return page_count(page) - page_has_private(page) == 2; 273 } 274 275 static int may_write_to_queue(struct backing_dev_info *bdi) 276 { 277 if (current->flags & PF_SWAPWRITE) 278 return 1; 279 if (!bdi_write_congested(bdi)) 280 return 1; 281 if (bdi == current->backing_dev_info) 282 return 1; 283 return 0; 284 } 285 286 /* 287 * We detected a synchronous write error writing a page out. Probably 288 * -ENOSPC. We need to propagate that into the address_space for a subsequent 289 * fsync(), msync() or close(). 290 * 291 * The tricky part is that after writepage we cannot touch the mapping: nothing 292 * prevents it from being freed up. But we have a ref on the page and once 293 * that page is locked, the mapping is pinned. 294 * 295 * We're allowed to run sleeping lock_page() here because we know the caller has 296 * __GFP_FS. 297 */ 298 static void handle_write_error(struct address_space *mapping, 299 struct page *page, int error) 300 { 301 lock_page(page); 302 if (page_mapping(page) == mapping) 303 mapping_set_error(mapping, error); 304 unlock_page(page); 305 } 306 307 /* Request for sync pageout. */ 308 enum pageout_io { 309 PAGEOUT_IO_ASYNC, 310 PAGEOUT_IO_SYNC, 311 }; 312 313 /* possible outcome of pageout() */ 314 typedef enum { 315 /* failed to write page out, page is locked */ 316 PAGE_KEEP, 317 /* move page to the active list, page is locked */ 318 PAGE_ACTIVATE, 319 /* page has been sent to the disk successfully, page is unlocked */ 320 PAGE_SUCCESS, 321 /* page is clean and locked */ 322 PAGE_CLEAN, 323 } pageout_t; 324 325 /* 326 * pageout is called by shrink_page_list() for each dirty page. 327 * Calls ->writepage(). 328 */ 329 static pageout_t pageout(struct page *page, struct address_space *mapping, 330 enum pageout_io sync_writeback) 331 { 332 /* 333 * If the page is dirty, only perform writeback if that write 334 * will be non-blocking. To prevent this allocation from being 335 * stalled by pagecache activity. But note that there may be 336 * stalls if we need to run get_block(). We could test 337 * PagePrivate for that. 338 * 339 * If this process is currently in __generic_file_aio_write() against 340 * this page's queue, we can perform writeback even if that 341 * will block. 342 * 343 * If the page is swapcache, write it back even if that would 344 * block, for some throttling. This happens by accident, because 345 * swap_backing_dev_info is bust: it doesn't reflect the 346 * congestion state of the swapdevs. Easy to fix, if needed. 347 */ 348 if (!is_page_cache_freeable(page)) 349 return PAGE_KEEP; 350 if (!mapping) { 351 /* 352 * Some data journaling orphaned pages can have 353 * page->mapping == NULL while being dirty with clean buffers. 354 */ 355 if (page_has_private(page)) { 356 if (try_to_free_buffers(page)) { 357 ClearPageDirty(page); 358 printk("%s: orphaned page\n", __func__); 359 return PAGE_CLEAN; 360 } 361 } 362 return PAGE_KEEP; 363 } 364 if (mapping->a_ops->writepage == NULL) 365 return PAGE_ACTIVATE; 366 if (!may_write_to_queue(mapping->backing_dev_info)) 367 return PAGE_KEEP; 368 369 if (clear_page_dirty_for_io(page)) { 370 int res; 371 struct writeback_control wbc = { 372 .sync_mode = WB_SYNC_NONE, 373 .nr_to_write = SWAP_CLUSTER_MAX, 374 .range_start = 0, 375 .range_end = LLONG_MAX, 376 .nonblocking = 1, 377 .for_reclaim = 1, 378 }; 379 380 SetPageReclaim(page); 381 res = mapping->a_ops->writepage(page, &wbc); 382 if (res < 0) 383 handle_write_error(mapping, page, res); 384 if (res == AOP_WRITEPAGE_ACTIVATE) { 385 ClearPageReclaim(page); 386 return PAGE_ACTIVATE; 387 } 388 389 /* 390 * Wait on writeback if requested to. This happens when 391 * direct reclaiming a large contiguous area and the 392 * first attempt to free a range of pages fails. 393 */ 394 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC) 395 wait_on_page_writeback(page); 396 397 if (!PageWriteback(page)) { 398 /* synchronous write or broken a_ops? */ 399 ClearPageReclaim(page); 400 } 401 inc_zone_page_state(page, NR_VMSCAN_WRITE); 402 return PAGE_SUCCESS; 403 } 404 405 return PAGE_CLEAN; 406 } 407 408 /* 409 * Same as remove_mapping, but if the page is removed from the mapping, it 410 * gets returned with a refcount of 0. 411 */ 412 static int __remove_mapping(struct address_space *mapping, struct page *page) 413 { 414 BUG_ON(!PageLocked(page)); 415 BUG_ON(mapping != page_mapping(page)); 416 417 spin_lock_irq(&mapping->tree_lock); 418 /* 419 * The non racy check for a busy page. 420 * 421 * Must be careful with the order of the tests. When someone has 422 * a ref to the page, it may be possible that they dirty it then 423 * drop the reference. So if PageDirty is tested before page_count 424 * here, then the following race may occur: 425 * 426 * get_user_pages(&page); 427 * [user mapping goes away] 428 * write_to(page); 429 * !PageDirty(page) [good] 430 * SetPageDirty(page); 431 * put_page(page); 432 * !page_count(page) [good, discard it] 433 * 434 * [oops, our write_to data is lost] 435 * 436 * Reversing the order of the tests ensures such a situation cannot 437 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 438 * load is not satisfied before that of page->_count. 439 * 440 * Note that if SetPageDirty is always performed via set_page_dirty, 441 * and thus under tree_lock, then this ordering is not required. 442 */ 443 if (!page_freeze_refs(page, 2)) 444 goto cannot_free; 445 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 446 if (unlikely(PageDirty(page))) { 447 page_unfreeze_refs(page, 2); 448 goto cannot_free; 449 } 450 451 if (PageSwapCache(page)) { 452 swp_entry_t swap = { .val = page_private(page) }; 453 __delete_from_swap_cache(page); 454 spin_unlock_irq(&mapping->tree_lock); 455 swapcache_free(swap, page); 456 } else { 457 __remove_from_page_cache(page); 458 spin_unlock_irq(&mapping->tree_lock); 459 mem_cgroup_uncharge_cache_page(page); 460 } 461 462 return 1; 463 464 cannot_free: 465 spin_unlock_irq(&mapping->tree_lock); 466 return 0; 467 } 468 469 /* 470 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 471 * someone else has a ref on the page, abort and return 0. If it was 472 * successfully detached, return 1. Assumes the caller has a single ref on 473 * this page. 474 */ 475 int remove_mapping(struct address_space *mapping, struct page *page) 476 { 477 if (__remove_mapping(mapping, page)) { 478 /* 479 * Unfreezing the refcount with 1 rather than 2 effectively 480 * drops the pagecache ref for us without requiring another 481 * atomic operation. 482 */ 483 page_unfreeze_refs(page, 1); 484 return 1; 485 } 486 return 0; 487 } 488 489 /** 490 * putback_lru_page - put previously isolated page onto appropriate LRU list 491 * @page: page to be put back to appropriate lru list 492 * 493 * Add previously isolated @page to appropriate LRU list. 494 * Page may still be unevictable for other reasons. 495 * 496 * lru_lock must not be held, interrupts must be enabled. 497 */ 498 void putback_lru_page(struct page *page) 499 { 500 int lru; 501 int active = !!TestClearPageActive(page); 502 int was_unevictable = PageUnevictable(page); 503 504 VM_BUG_ON(PageLRU(page)); 505 506 redo: 507 ClearPageUnevictable(page); 508 509 if (page_evictable(page, NULL)) { 510 /* 511 * For evictable pages, we can use the cache. 512 * In event of a race, worst case is we end up with an 513 * unevictable page on [in]active list. 514 * We know how to handle that. 515 */ 516 lru = active + page_lru_base_type(page); 517 lru_cache_add_lru(page, lru); 518 } else { 519 /* 520 * Put unevictable pages directly on zone's unevictable 521 * list. 522 */ 523 lru = LRU_UNEVICTABLE; 524 add_page_to_unevictable_list(page); 525 /* 526 * When racing with an mlock clearing (page is 527 * unlocked), make sure that if the other thread does 528 * not observe our setting of PG_lru and fails 529 * isolation, we see PG_mlocked cleared below and move 530 * the page back to the evictable list. 531 * 532 * The other side is TestClearPageMlocked(). 533 */ 534 smp_mb(); 535 } 536 537 /* 538 * page's status can change while we move it among lru. If an evictable 539 * page is on unevictable list, it never be freed. To avoid that, 540 * check after we added it to the list, again. 541 */ 542 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) { 543 if (!isolate_lru_page(page)) { 544 put_page(page); 545 goto redo; 546 } 547 /* This means someone else dropped this page from LRU 548 * So, it will be freed or putback to LRU again. There is 549 * nothing to do here. 550 */ 551 } 552 553 if (was_unevictable && lru != LRU_UNEVICTABLE) 554 count_vm_event(UNEVICTABLE_PGRESCUED); 555 else if (!was_unevictable && lru == LRU_UNEVICTABLE) 556 count_vm_event(UNEVICTABLE_PGCULLED); 557 558 put_page(page); /* drop ref from isolate */ 559 } 560 561 enum page_references { 562 PAGEREF_RECLAIM, 563 PAGEREF_RECLAIM_CLEAN, 564 PAGEREF_KEEP, 565 PAGEREF_ACTIVATE, 566 }; 567 568 static enum page_references page_check_references(struct page *page, 569 struct scan_control *sc) 570 { 571 int referenced_ptes, referenced_page; 572 unsigned long vm_flags; 573 574 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags); 575 referenced_page = TestClearPageReferenced(page); 576 577 /* Lumpy reclaim - ignore references */ 578 if (sc->order > PAGE_ALLOC_COSTLY_ORDER) 579 return PAGEREF_RECLAIM; 580 581 /* 582 * Mlock lost the isolation race with us. Let try_to_unmap() 583 * move the page to the unevictable list. 584 */ 585 if (vm_flags & VM_LOCKED) 586 return PAGEREF_RECLAIM; 587 588 if (referenced_ptes) { 589 if (PageAnon(page)) 590 return PAGEREF_ACTIVATE; 591 /* 592 * All mapped pages start out with page table 593 * references from the instantiating fault, so we need 594 * to look twice if a mapped file page is used more 595 * than once. 596 * 597 * Mark it and spare it for another trip around the 598 * inactive list. Another page table reference will 599 * lead to its activation. 600 * 601 * Note: the mark is set for activated pages as well 602 * so that recently deactivated but used pages are 603 * quickly recovered. 604 */ 605 SetPageReferenced(page); 606 607 if (referenced_page) 608 return PAGEREF_ACTIVATE; 609 610 return PAGEREF_KEEP; 611 } 612 613 /* Reclaim if clean, defer dirty pages to writeback */ 614 if (referenced_page) 615 return PAGEREF_RECLAIM_CLEAN; 616 617 return PAGEREF_RECLAIM; 618 } 619 620 /* 621 * shrink_page_list() returns the number of reclaimed pages 622 */ 623 static unsigned long shrink_page_list(struct list_head *page_list, 624 struct scan_control *sc, 625 enum pageout_io sync_writeback) 626 { 627 LIST_HEAD(ret_pages); 628 struct pagevec freed_pvec; 629 int pgactivate = 0; 630 unsigned long nr_reclaimed = 0; 631 632 cond_resched(); 633 634 pagevec_init(&freed_pvec, 1); 635 while (!list_empty(page_list)) { 636 enum page_references references; 637 struct address_space *mapping; 638 struct page *page; 639 int may_enter_fs; 640 641 cond_resched(); 642 643 page = lru_to_page(page_list); 644 list_del(&page->lru); 645 646 if (!trylock_page(page)) 647 goto keep; 648 649 VM_BUG_ON(PageActive(page)); 650 651 sc->nr_scanned++; 652 653 if (unlikely(!page_evictable(page, NULL))) 654 goto cull_mlocked; 655 656 if (!sc->may_unmap && page_mapped(page)) 657 goto keep_locked; 658 659 /* Double the slab pressure for mapped and swapcache pages */ 660 if (page_mapped(page) || PageSwapCache(page)) 661 sc->nr_scanned++; 662 663 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 664 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 665 666 if (PageWriteback(page)) { 667 /* 668 * Synchronous reclaim is performed in two passes, 669 * first an asynchronous pass over the list to 670 * start parallel writeback, and a second synchronous 671 * pass to wait for the IO to complete. Wait here 672 * for any page for which writeback has already 673 * started. 674 */ 675 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs) 676 wait_on_page_writeback(page); 677 else 678 goto keep_locked; 679 } 680 681 references = page_check_references(page, sc); 682 switch (references) { 683 case PAGEREF_ACTIVATE: 684 goto activate_locked; 685 case PAGEREF_KEEP: 686 goto keep_locked; 687 case PAGEREF_RECLAIM: 688 case PAGEREF_RECLAIM_CLEAN: 689 ; /* try to reclaim the page below */ 690 } 691 692 /* 693 * Anonymous process memory has backing store? 694 * Try to allocate it some swap space here. 695 */ 696 if (PageAnon(page) && !PageSwapCache(page)) { 697 if (!(sc->gfp_mask & __GFP_IO)) 698 goto keep_locked; 699 if (!add_to_swap(page)) 700 goto activate_locked; 701 may_enter_fs = 1; 702 } 703 704 mapping = page_mapping(page); 705 706 /* 707 * The page is mapped into the page tables of one or more 708 * processes. Try to unmap it here. 709 */ 710 if (page_mapped(page) && mapping) { 711 switch (try_to_unmap(page, TTU_UNMAP)) { 712 case SWAP_FAIL: 713 goto activate_locked; 714 case SWAP_AGAIN: 715 goto keep_locked; 716 case SWAP_MLOCK: 717 goto cull_mlocked; 718 case SWAP_SUCCESS: 719 ; /* try to free the page below */ 720 } 721 } 722 723 if (PageDirty(page)) { 724 if (references == PAGEREF_RECLAIM_CLEAN) 725 goto keep_locked; 726 if (!may_enter_fs) 727 goto keep_locked; 728 if (!sc->may_writepage) 729 goto keep_locked; 730 731 /* Page is dirty, try to write it out here */ 732 switch (pageout(page, mapping, sync_writeback)) { 733 case PAGE_KEEP: 734 goto keep_locked; 735 case PAGE_ACTIVATE: 736 goto activate_locked; 737 case PAGE_SUCCESS: 738 if (PageWriteback(page) || PageDirty(page)) 739 goto keep; 740 /* 741 * A synchronous write - probably a ramdisk. Go 742 * ahead and try to reclaim the page. 743 */ 744 if (!trylock_page(page)) 745 goto keep; 746 if (PageDirty(page) || PageWriteback(page)) 747 goto keep_locked; 748 mapping = page_mapping(page); 749 case PAGE_CLEAN: 750 ; /* try to free the page below */ 751 } 752 } 753 754 /* 755 * If the page has buffers, try to free the buffer mappings 756 * associated with this page. If we succeed we try to free 757 * the page as well. 758 * 759 * We do this even if the page is PageDirty(). 760 * try_to_release_page() does not perform I/O, but it is 761 * possible for a page to have PageDirty set, but it is actually 762 * clean (all its buffers are clean). This happens if the 763 * buffers were written out directly, with submit_bh(). ext3 764 * will do this, as well as the blockdev mapping. 765 * try_to_release_page() will discover that cleanness and will 766 * drop the buffers and mark the page clean - it can be freed. 767 * 768 * Rarely, pages can have buffers and no ->mapping. These are 769 * the pages which were not successfully invalidated in 770 * truncate_complete_page(). We try to drop those buffers here 771 * and if that worked, and the page is no longer mapped into 772 * process address space (page_count == 1) it can be freed. 773 * Otherwise, leave the page on the LRU so it is swappable. 774 */ 775 if (page_has_private(page)) { 776 if (!try_to_release_page(page, sc->gfp_mask)) 777 goto activate_locked; 778 if (!mapping && page_count(page) == 1) { 779 unlock_page(page); 780 if (put_page_testzero(page)) 781 goto free_it; 782 else { 783 /* 784 * rare race with speculative reference. 785 * the speculative reference will free 786 * this page shortly, so we may 787 * increment nr_reclaimed here (and 788 * leave it off the LRU). 789 */ 790 nr_reclaimed++; 791 continue; 792 } 793 } 794 } 795 796 if (!mapping || !__remove_mapping(mapping, page)) 797 goto keep_locked; 798 799 /* 800 * At this point, we have no other references and there is 801 * no way to pick any more up (removed from LRU, removed 802 * from pagecache). Can use non-atomic bitops now (and 803 * we obviously don't have to worry about waking up a process 804 * waiting on the page lock, because there are no references. 805 */ 806 __clear_page_locked(page); 807 free_it: 808 nr_reclaimed++; 809 if (!pagevec_add(&freed_pvec, page)) { 810 __pagevec_free(&freed_pvec); 811 pagevec_reinit(&freed_pvec); 812 } 813 continue; 814 815 cull_mlocked: 816 if (PageSwapCache(page)) 817 try_to_free_swap(page); 818 unlock_page(page); 819 putback_lru_page(page); 820 continue; 821 822 activate_locked: 823 /* Not a candidate for swapping, so reclaim swap space. */ 824 if (PageSwapCache(page) && vm_swap_full()) 825 try_to_free_swap(page); 826 VM_BUG_ON(PageActive(page)); 827 SetPageActive(page); 828 pgactivate++; 829 keep_locked: 830 unlock_page(page); 831 keep: 832 list_add(&page->lru, &ret_pages); 833 VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); 834 } 835 list_splice(&ret_pages, page_list); 836 if (pagevec_count(&freed_pvec)) 837 __pagevec_free(&freed_pvec); 838 count_vm_events(PGACTIVATE, pgactivate); 839 return nr_reclaimed; 840 } 841 842 /* LRU Isolation modes. */ 843 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */ 844 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */ 845 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */ 846 847 /* 848 * Attempt to remove the specified page from its LRU. Only take this page 849 * if it is of the appropriate PageActive status. Pages which are being 850 * freed elsewhere are also ignored. 851 * 852 * page: page to consider 853 * mode: one of the LRU isolation modes defined above 854 * 855 * returns 0 on success, -ve errno on failure. 856 */ 857 int __isolate_lru_page(struct page *page, int mode, int file) 858 { 859 int ret = -EINVAL; 860 861 /* Only take pages on the LRU. */ 862 if (!PageLRU(page)) 863 return ret; 864 865 /* 866 * When checking the active state, we need to be sure we are 867 * dealing with comparible boolean values. Take the logical not 868 * of each. 869 */ 870 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) 871 return ret; 872 873 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file) 874 return ret; 875 876 /* 877 * When this function is being called for lumpy reclaim, we 878 * initially look into all LRU pages, active, inactive and 879 * unevictable; only give shrink_page_list evictable pages. 880 */ 881 if (PageUnevictable(page)) 882 return ret; 883 884 ret = -EBUSY; 885 886 if (likely(get_page_unless_zero(page))) { 887 /* 888 * Be careful not to clear PageLRU until after we're 889 * sure the page is not being freed elsewhere -- the 890 * page release code relies on it. 891 */ 892 ClearPageLRU(page); 893 ret = 0; 894 } 895 896 return ret; 897 } 898 899 /* 900 * zone->lru_lock is heavily contended. Some of the functions that 901 * shrink the lists perform better by taking out a batch of pages 902 * and working on them outside the LRU lock. 903 * 904 * For pagecache intensive workloads, this function is the hottest 905 * spot in the kernel (apart from copy_*_user functions). 906 * 907 * Appropriate locks must be held before calling this function. 908 * 909 * @nr_to_scan: The number of pages to look through on the list. 910 * @src: The LRU list to pull pages off. 911 * @dst: The temp list to put pages on to. 912 * @scanned: The number of pages that were scanned. 913 * @order: The caller's attempted allocation order 914 * @mode: One of the LRU isolation modes 915 * @file: True [1] if isolating file [!anon] pages 916 * 917 * returns how many pages were moved onto *@dst. 918 */ 919 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 920 struct list_head *src, struct list_head *dst, 921 unsigned long *scanned, int order, int mode, int file) 922 { 923 unsigned long nr_taken = 0; 924 unsigned long scan; 925 926 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 927 struct page *page; 928 unsigned long pfn; 929 unsigned long end_pfn; 930 unsigned long page_pfn; 931 int zone_id; 932 933 page = lru_to_page(src); 934 prefetchw_prev_lru_page(page, src, flags); 935 936 VM_BUG_ON(!PageLRU(page)); 937 938 switch (__isolate_lru_page(page, mode, file)) { 939 case 0: 940 list_move(&page->lru, dst); 941 mem_cgroup_del_lru(page); 942 nr_taken++; 943 break; 944 945 case -EBUSY: 946 /* else it is being freed elsewhere */ 947 list_move(&page->lru, src); 948 mem_cgroup_rotate_lru_list(page, page_lru(page)); 949 continue; 950 951 default: 952 BUG(); 953 } 954 955 if (!order) 956 continue; 957 958 /* 959 * Attempt to take all pages in the order aligned region 960 * surrounding the tag page. Only take those pages of 961 * the same active state as that tag page. We may safely 962 * round the target page pfn down to the requested order 963 * as the mem_map is guarenteed valid out to MAX_ORDER, 964 * where that page is in a different zone we will detect 965 * it from its zone id and abort this block scan. 966 */ 967 zone_id = page_zone_id(page); 968 page_pfn = page_to_pfn(page); 969 pfn = page_pfn & ~((1 << order) - 1); 970 end_pfn = pfn + (1 << order); 971 for (; pfn < end_pfn; pfn++) { 972 struct page *cursor_page; 973 974 /* The target page is in the block, ignore it. */ 975 if (unlikely(pfn == page_pfn)) 976 continue; 977 978 /* Avoid holes within the zone. */ 979 if (unlikely(!pfn_valid_within(pfn))) 980 break; 981 982 cursor_page = pfn_to_page(pfn); 983 984 /* Check that we have not crossed a zone boundary. */ 985 if (unlikely(page_zone_id(cursor_page) != zone_id)) 986 continue; 987 988 /* 989 * If we don't have enough swap space, reclaiming of 990 * anon page which don't already have a swap slot is 991 * pointless. 992 */ 993 if (nr_swap_pages <= 0 && PageAnon(cursor_page) && 994 !PageSwapCache(cursor_page)) 995 continue; 996 997 if (__isolate_lru_page(cursor_page, mode, file) == 0) { 998 list_move(&cursor_page->lru, dst); 999 mem_cgroup_del_lru(cursor_page); 1000 nr_taken++; 1001 scan++; 1002 } 1003 } 1004 } 1005 1006 *scanned = scan; 1007 return nr_taken; 1008 } 1009 1010 static unsigned long isolate_pages_global(unsigned long nr, 1011 struct list_head *dst, 1012 unsigned long *scanned, int order, 1013 int mode, struct zone *z, 1014 struct mem_cgroup *mem_cont, 1015 int active, int file) 1016 { 1017 int lru = LRU_BASE; 1018 if (active) 1019 lru += LRU_ACTIVE; 1020 if (file) 1021 lru += LRU_FILE; 1022 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order, 1023 mode, file); 1024 } 1025 1026 /* 1027 * clear_active_flags() is a helper for shrink_active_list(), clearing 1028 * any active bits from the pages in the list. 1029 */ 1030 static unsigned long clear_active_flags(struct list_head *page_list, 1031 unsigned int *count) 1032 { 1033 int nr_active = 0; 1034 int lru; 1035 struct page *page; 1036 1037 list_for_each_entry(page, page_list, lru) { 1038 lru = page_lru_base_type(page); 1039 if (PageActive(page)) { 1040 lru += LRU_ACTIVE; 1041 ClearPageActive(page); 1042 nr_active++; 1043 } 1044 count[lru]++; 1045 } 1046 1047 return nr_active; 1048 } 1049 1050 /** 1051 * isolate_lru_page - tries to isolate a page from its LRU list 1052 * @page: page to isolate from its LRU list 1053 * 1054 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1055 * vmstat statistic corresponding to whatever LRU list the page was on. 1056 * 1057 * Returns 0 if the page was removed from an LRU list. 1058 * Returns -EBUSY if the page was not on an LRU list. 1059 * 1060 * The returned page will have PageLRU() cleared. If it was found on 1061 * the active list, it will have PageActive set. If it was found on 1062 * the unevictable list, it will have the PageUnevictable bit set. That flag 1063 * may need to be cleared by the caller before letting the page go. 1064 * 1065 * The vmstat statistic corresponding to the list on which the page was 1066 * found will be decremented. 1067 * 1068 * Restrictions: 1069 * (1) Must be called with an elevated refcount on the page. This is a 1070 * fundamentnal difference from isolate_lru_pages (which is called 1071 * without a stable reference). 1072 * (2) the lru_lock must not be held. 1073 * (3) interrupts must be enabled. 1074 */ 1075 int isolate_lru_page(struct page *page) 1076 { 1077 int ret = -EBUSY; 1078 1079 if (PageLRU(page)) { 1080 struct zone *zone = page_zone(page); 1081 1082 spin_lock_irq(&zone->lru_lock); 1083 if (PageLRU(page) && get_page_unless_zero(page)) { 1084 int lru = page_lru(page); 1085 ret = 0; 1086 ClearPageLRU(page); 1087 1088 del_page_from_lru_list(zone, page, lru); 1089 } 1090 spin_unlock_irq(&zone->lru_lock); 1091 } 1092 return ret; 1093 } 1094 1095 /* 1096 * Are there way too many processes in the direct reclaim path already? 1097 */ 1098 static int too_many_isolated(struct zone *zone, int file, 1099 struct scan_control *sc) 1100 { 1101 unsigned long inactive, isolated; 1102 1103 if (current_is_kswapd()) 1104 return 0; 1105 1106 if (!scanning_global_lru(sc)) 1107 return 0; 1108 1109 if (file) { 1110 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1111 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1112 } else { 1113 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1114 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1115 } 1116 1117 return isolated > inactive; 1118 } 1119 1120 /* 1121 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1122 * of reclaimed pages 1123 */ 1124 static unsigned long shrink_inactive_list(unsigned long max_scan, 1125 struct zone *zone, struct scan_control *sc, 1126 int priority, int file) 1127 { 1128 LIST_HEAD(page_list); 1129 struct pagevec pvec; 1130 unsigned long nr_scanned = 0; 1131 unsigned long nr_reclaimed = 0; 1132 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1133 int lumpy_reclaim = 0; 1134 1135 while (unlikely(too_many_isolated(zone, file, sc))) { 1136 congestion_wait(BLK_RW_ASYNC, HZ/10); 1137 1138 /* We are about to die and free our memory. Return now. */ 1139 if (fatal_signal_pending(current)) 1140 return SWAP_CLUSTER_MAX; 1141 } 1142 1143 /* 1144 * If we need a large contiguous chunk of memory, or have 1145 * trouble getting a small set of contiguous pages, we 1146 * will reclaim both active and inactive pages. 1147 * 1148 * We use the same threshold as pageout congestion_wait below. 1149 */ 1150 if (sc->order > PAGE_ALLOC_COSTLY_ORDER) 1151 lumpy_reclaim = 1; 1152 else if (sc->order && priority < DEF_PRIORITY - 2) 1153 lumpy_reclaim = 1; 1154 1155 pagevec_init(&pvec, 1); 1156 1157 lru_add_drain(); 1158 spin_lock_irq(&zone->lru_lock); 1159 do { 1160 struct page *page; 1161 unsigned long nr_taken; 1162 unsigned long nr_scan; 1163 unsigned long nr_freed; 1164 unsigned long nr_active; 1165 unsigned int count[NR_LRU_LISTS] = { 0, }; 1166 int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE; 1167 unsigned long nr_anon; 1168 unsigned long nr_file; 1169 1170 nr_taken = sc->isolate_pages(SWAP_CLUSTER_MAX, 1171 &page_list, &nr_scan, sc->order, mode, 1172 zone, sc->mem_cgroup, 0, file); 1173 1174 if (scanning_global_lru(sc)) { 1175 zone->pages_scanned += nr_scan; 1176 if (current_is_kswapd()) 1177 __count_zone_vm_events(PGSCAN_KSWAPD, zone, 1178 nr_scan); 1179 else 1180 __count_zone_vm_events(PGSCAN_DIRECT, zone, 1181 nr_scan); 1182 } 1183 1184 if (nr_taken == 0) 1185 goto done; 1186 1187 nr_active = clear_active_flags(&page_list, count); 1188 __count_vm_events(PGDEACTIVATE, nr_active); 1189 1190 __mod_zone_page_state(zone, NR_ACTIVE_FILE, 1191 -count[LRU_ACTIVE_FILE]); 1192 __mod_zone_page_state(zone, NR_INACTIVE_FILE, 1193 -count[LRU_INACTIVE_FILE]); 1194 __mod_zone_page_state(zone, NR_ACTIVE_ANON, 1195 -count[LRU_ACTIVE_ANON]); 1196 __mod_zone_page_state(zone, NR_INACTIVE_ANON, 1197 -count[LRU_INACTIVE_ANON]); 1198 1199 nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON]; 1200 nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE]; 1201 __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon); 1202 __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file); 1203 1204 reclaim_stat->recent_scanned[0] += nr_anon; 1205 reclaim_stat->recent_scanned[1] += nr_file; 1206 1207 spin_unlock_irq(&zone->lru_lock); 1208 1209 nr_scanned += nr_scan; 1210 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC); 1211 1212 /* 1213 * If we are direct reclaiming for contiguous pages and we do 1214 * not reclaim everything in the list, try again and wait 1215 * for IO to complete. This will stall high-order allocations 1216 * but that should be acceptable to the caller 1217 */ 1218 if (nr_freed < nr_taken && !current_is_kswapd() && 1219 lumpy_reclaim) { 1220 congestion_wait(BLK_RW_ASYNC, HZ/10); 1221 1222 /* 1223 * The attempt at page out may have made some 1224 * of the pages active, mark them inactive again. 1225 */ 1226 nr_active = clear_active_flags(&page_list, count); 1227 count_vm_events(PGDEACTIVATE, nr_active); 1228 1229 nr_freed += shrink_page_list(&page_list, sc, 1230 PAGEOUT_IO_SYNC); 1231 } 1232 1233 nr_reclaimed += nr_freed; 1234 1235 local_irq_disable(); 1236 if (current_is_kswapd()) 1237 __count_vm_events(KSWAPD_STEAL, nr_freed); 1238 __count_zone_vm_events(PGSTEAL, zone, nr_freed); 1239 1240 spin_lock(&zone->lru_lock); 1241 /* 1242 * Put back any unfreeable pages. 1243 */ 1244 while (!list_empty(&page_list)) { 1245 int lru; 1246 page = lru_to_page(&page_list); 1247 VM_BUG_ON(PageLRU(page)); 1248 list_del(&page->lru); 1249 if (unlikely(!page_evictable(page, NULL))) { 1250 spin_unlock_irq(&zone->lru_lock); 1251 putback_lru_page(page); 1252 spin_lock_irq(&zone->lru_lock); 1253 continue; 1254 } 1255 SetPageLRU(page); 1256 lru = page_lru(page); 1257 add_page_to_lru_list(zone, page, lru); 1258 if (is_active_lru(lru)) { 1259 int file = is_file_lru(lru); 1260 reclaim_stat->recent_rotated[file]++; 1261 } 1262 if (!pagevec_add(&pvec, page)) { 1263 spin_unlock_irq(&zone->lru_lock); 1264 __pagevec_release(&pvec); 1265 spin_lock_irq(&zone->lru_lock); 1266 } 1267 } 1268 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon); 1269 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file); 1270 1271 } while (nr_scanned < max_scan); 1272 1273 done: 1274 spin_unlock_irq(&zone->lru_lock); 1275 pagevec_release(&pvec); 1276 return nr_reclaimed; 1277 } 1278 1279 /* 1280 * We are about to scan this zone at a certain priority level. If that priority 1281 * level is smaller (ie: more urgent) than the previous priority, then note 1282 * that priority level within the zone. This is done so that when the next 1283 * process comes in to scan this zone, it will immediately start out at this 1284 * priority level rather than having to build up its own scanning priority. 1285 * Here, this priority affects only the reclaim-mapped threshold. 1286 */ 1287 static inline void note_zone_scanning_priority(struct zone *zone, int priority) 1288 { 1289 if (priority < zone->prev_priority) 1290 zone->prev_priority = priority; 1291 } 1292 1293 /* 1294 * This moves pages from the active list to the inactive list. 1295 * 1296 * We move them the other way if the page is referenced by one or more 1297 * processes, from rmap. 1298 * 1299 * If the pages are mostly unmapped, the processing is fast and it is 1300 * appropriate to hold zone->lru_lock across the whole operation. But if 1301 * the pages are mapped, the processing is slow (page_referenced()) so we 1302 * should drop zone->lru_lock around each page. It's impossible to balance 1303 * this, so instead we remove the pages from the LRU while processing them. 1304 * It is safe to rely on PG_active against the non-LRU pages in here because 1305 * nobody will play with that bit on a non-LRU page. 1306 * 1307 * The downside is that we have to touch page->_count against each page. 1308 * But we had to alter page->flags anyway. 1309 */ 1310 1311 static void move_active_pages_to_lru(struct zone *zone, 1312 struct list_head *list, 1313 enum lru_list lru) 1314 { 1315 unsigned long pgmoved = 0; 1316 struct pagevec pvec; 1317 struct page *page; 1318 1319 pagevec_init(&pvec, 1); 1320 1321 while (!list_empty(list)) { 1322 page = lru_to_page(list); 1323 1324 VM_BUG_ON(PageLRU(page)); 1325 SetPageLRU(page); 1326 1327 list_move(&page->lru, &zone->lru[lru].list); 1328 mem_cgroup_add_lru_list(page, lru); 1329 pgmoved++; 1330 1331 if (!pagevec_add(&pvec, page) || list_empty(list)) { 1332 spin_unlock_irq(&zone->lru_lock); 1333 if (buffer_heads_over_limit) 1334 pagevec_strip(&pvec); 1335 __pagevec_release(&pvec); 1336 spin_lock_irq(&zone->lru_lock); 1337 } 1338 } 1339 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1340 if (!is_active_lru(lru)) 1341 __count_vm_events(PGDEACTIVATE, pgmoved); 1342 } 1343 1344 static void shrink_active_list(unsigned long nr_pages, struct zone *zone, 1345 struct scan_control *sc, int priority, int file) 1346 { 1347 unsigned long nr_taken; 1348 unsigned long pgscanned; 1349 unsigned long vm_flags; 1350 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1351 LIST_HEAD(l_active); 1352 LIST_HEAD(l_inactive); 1353 struct page *page; 1354 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1355 unsigned long nr_rotated = 0; 1356 1357 lru_add_drain(); 1358 spin_lock_irq(&zone->lru_lock); 1359 nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order, 1360 ISOLATE_ACTIVE, zone, 1361 sc->mem_cgroup, 1, file); 1362 /* 1363 * zone->pages_scanned is used for detect zone's oom 1364 * mem_cgroup remembers nr_scan by itself. 1365 */ 1366 if (scanning_global_lru(sc)) { 1367 zone->pages_scanned += pgscanned; 1368 } 1369 reclaim_stat->recent_scanned[file] += nr_taken; 1370 1371 __count_zone_vm_events(PGREFILL, zone, pgscanned); 1372 if (file) 1373 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken); 1374 else 1375 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken); 1376 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1377 spin_unlock_irq(&zone->lru_lock); 1378 1379 while (!list_empty(&l_hold)) { 1380 cond_resched(); 1381 page = lru_to_page(&l_hold); 1382 list_del(&page->lru); 1383 1384 if (unlikely(!page_evictable(page, NULL))) { 1385 putback_lru_page(page); 1386 continue; 1387 } 1388 1389 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) { 1390 nr_rotated++; 1391 /* 1392 * Identify referenced, file-backed active pages and 1393 * give them one more trip around the active list. So 1394 * that executable code get better chances to stay in 1395 * memory under moderate memory pressure. Anon pages 1396 * are not likely to be evicted by use-once streaming 1397 * IO, plus JVM can create lots of anon VM_EXEC pages, 1398 * so we ignore them here. 1399 */ 1400 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1401 list_add(&page->lru, &l_active); 1402 continue; 1403 } 1404 } 1405 1406 ClearPageActive(page); /* we are de-activating */ 1407 list_add(&page->lru, &l_inactive); 1408 } 1409 1410 /* 1411 * Move pages back to the lru list. 1412 */ 1413 spin_lock_irq(&zone->lru_lock); 1414 /* 1415 * Count referenced pages from currently used mappings as rotated, 1416 * even though only some of them are actually re-activated. This 1417 * helps balance scan pressure between file and anonymous pages in 1418 * get_scan_ratio. 1419 */ 1420 reclaim_stat->recent_rotated[file] += nr_rotated; 1421 1422 move_active_pages_to_lru(zone, &l_active, 1423 LRU_ACTIVE + file * LRU_FILE); 1424 move_active_pages_to_lru(zone, &l_inactive, 1425 LRU_BASE + file * LRU_FILE); 1426 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1427 spin_unlock_irq(&zone->lru_lock); 1428 } 1429 1430 static int inactive_anon_is_low_global(struct zone *zone) 1431 { 1432 unsigned long active, inactive; 1433 1434 active = zone_page_state(zone, NR_ACTIVE_ANON); 1435 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1436 1437 if (inactive * zone->inactive_ratio < active) 1438 return 1; 1439 1440 return 0; 1441 } 1442 1443 /** 1444 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1445 * @zone: zone to check 1446 * @sc: scan control of this context 1447 * 1448 * Returns true if the zone does not have enough inactive anon pages, 1449 * meaning some active anon pages need to be deactivated. 1450 */ 1451 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc) 1452 { 1453 int low; 1454 1455 if (scanning_global_lru(sc)) 1456 low = inactive_anon_is_low_global(zone); 1457 else 1458 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup); 1459 return low; 1460 } 1461 1462 static int inactive_file_is_low_global(struct zone *zone) 1463 { 1464 unsigned long active, inactive; 1465 1466 active = zone_page_state(zone, NR_ACTIVE_FILE); 1467 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1468 1469 return (active > inactive); 1470 } 1471 1472 /** 1473 * inactive_file_is_low - check if file pages need to be deactivated 1474 * @zone: zone to check 1475 * @sc: scan control of this context 1476 * 1477 * When the system is doing streaming IO, memory pressure here 1478 * ensures that active file pages get deactivated, until more 1479 * than half of the file pages are on the inactive list. 1480 * 1481 * Once we get to that situation, protect the system's working 1482 * set from being evicted by disabling active file page aging. 1483 * 1484 * This uses a different ratio than the anonymous pages, because 1485 * the page cache uses a use-once replacement algorithm. 1486 */ 1487 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc) 1488 { 1489 int low; 1490 1491 if (scanning_global_lru(sc)) 1492 low = inactive_file_is_low_global(zone); 1493 else 1494 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup); 1495 return low; 1496 } 1497 1498 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc, 1499 int file) 1500 { 1501 if (file) 1502 return inactive_file_is_low(zone, sc); 1503 else 1504 return inactive_anon_is_low(zone, sc); 1505 } 1506 1507 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1508 struct zone *zone, struct scan_control *sc, int priority) 1509 { 1510 int file = is_file_lru(lru); 1511 1512 if (is_active_lru(lru)) { 1513 if (inactive_list_is_low(zone, sc, file)) 1514 shrink_active_list(nr_to_scan, zone, sc, priority, file); 1515 return 0; 1516 } 1517 1518 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file); 1519 } 1520 1521 /* 1522 * Determine how aggressively the anon and file LRU lists should be 1523 * scanned. The relative value of each set of LRU lists is determined 1524 * by looking at the fraction of the pages scanned we did rotate back 1525 * onto the active list instead of evict. 1526 * 1527 * percent[0] specifies how much pressure to put on ram/swap backed 1528 * memory, while percent[1] determines pressure on the file LRUs. 1529 */ 1530 static void get_scan_ratio(struct zone *zone, struct scan_control *sc, 1531 unsigned long *percent) 1532 { 1533 unsigned long anon, file, free; 1534 unsigned long anon_prio, file_prio; 1535 unsigned long ap, fp; 1536 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1537 1538 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) + 1539 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON); 1540 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) + 1541 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE); 1542 1543 if (scanning_global_lru(sc)) { 1544 free = zone_page_state(zone, NR_FREE_PAGES); 1545 /* If we have very few page cache pages, 1546 force-scan anon pages. */ 1547 if (unlikely(file + free <= high_wmark_pages(zone))) { 1548 percent[0] = 100; 1549 percent[1] = 0; 1550 return; 1551 } 1552 } 1553 1554 /* 1555 * OK, so we have swap space and a fair amount of page cache 1556 * pages. We use the recently rotated / recently scanned 1557 * ratios to determine how valuable each cache is. 1558 * 1559 * Because workloads change over time (and to avoid overflow) 1560 * we keep these statistics as a floating average, which ends 1561 * up weighing recent references more than old ones. 1562 * 1563 * anon in [0], file in [1] 1564 */ 1565 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1566 spin_lock_irq(&zone->lru_lock); 1567 reclaim_stat->recent_scanned[0] /= 2; 1568 reclaim_stat->recent_rotated[0] /= 2; 1569 spin_unlock_irq(&zone->lru_lock); 1570 } 1571 1572 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 1573 spin_lock_irq(&zone->lru_lock); 1574 reclaim_stat->recent_scanned[1] /= 2; 1575 reclaim_stat->recent_rotated[1] /= 2; 1576 spin_unlock_irq(&zone->lru_lock); 1577 } 1578 1579 /* 1580 * With swappiness at 100, anonymous and file have the same priority. 1581 * This scanning priority is essentially the inverse of IO cost. 1582 */ 1583 anon_prio = sc->swappiness; 1584 file_prio = 200 - sc->swappiness; 1585 1586 /* 1587 * The amount of pressure on anon vs file pages is inversely 1588 * proportional to the fraction of recently scanned pages on 1589 * each list that were recently referenced and in active use. 1590 */ 1591 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1); 1592 ap /= reclaim_stat->recent_rotated[0] + 1; 1593 1594 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1); 1595 fp /= reclaim_stat->recent_rotated[1] + 1; 1596 1597 /* Normalize to percentages */ 1598 percent[0] = 100 * ap / (ap + fp + 1); 1599 percent[1] = 100 - percent[0]; 1600 } 1601 1602 /* 1603 * Smallish @nr_to_scan's are deposited in @nr_saved_scan, 1604 * until we collected @swap_cluster_max pages to scan. 1605 */ 1606 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan, 1607 unsigned long *nr_saved_scan) 1608 { 1609 unsigned long nr; 1610 1611 *nr_saved_scan += nr_to_scan; 1612 nr = *nr_saved_scan; 1613 1614 if (nr >= SWAP_CLUSTER_MAX) 1615 *nr_saved_scan = 0; 1616 else 1617 nr = 0; 1618 1619 return nr; 1620 } 1621 1622 /* 1623 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1624 */ 1625 static void shrink_zone(int priority, struct zone *zone, 1626 struct scan_control *sc) 1627 { 1628 unsigned long nr[NR_LRU_LISTS]; 1629 unsigned long nr_to_scan; 1630 unsigned long percent[2]; /* anon @ 0; file @ 1 */ 1631 enum lru_list l; 1632 unsigned long nr_reclaimed = sc->nr_reclaimed; 1633 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 1634 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1635 int noswap = 0; 1636 1637 /* If we have no swap space, do not bother scanning anon pages. */ 1638 if (!sc->may_swap || (nr_swap_pages <= 0)) { 1639 noswap = 1; 1640 percent[0] = 0; 1641 percent[1] = 100; 1642 } else 1643 get_scan_ratio(zone, sc, percent); 1644 1645 for_each_evictable_lru(l) { 1646 int file = is_file_lru(l); 1647 unsigned long scan; 1648 1649 scan = zone_nr_lru_pages(zone, sc, l); 1650 if (priority || noswap) { 1651 scan >>= priority; 1652 scan = (scan * percent[file]) / 100; 1653 } 1654 nr[l] = nr_scan_try_batch(scan, 1655 &reclaim_stat->nr_saved_scan[l]); 1656 } 1657 1658 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 1659 nr[LRU_INACTIVE_FILE]) { 1660 for_each_evictable_lru(l) { 1661 if (nr[l]) { 1662 nr_to_scan = min_t(unsigned long, 1663 nr[l], SWAP_CLUSTER_MAX); 1664 nr[l] -= nr_to_scan; 1665 1666 nr_reclaimed += shrink_list(l, nr_to_scan, 1667 zone, sc, priority); 1668 } 1669 } 1670 /* 1671 * On large memory systems, scan >> priority can become 1672 * really large. This is fine for the starting priority; 1673 * we want to put equal scanning pressure on each zone. 1674 * However, if the VM has a harder time of freeing pages, 1675 * with multiple processes reclaiming pages, the total 1676 * freeing target can get unreasonably large. 1677 */ 1678 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY) 1679 break; 1680 } 1681 1682 sc->nr_reclaimed = nr_reclaimed; 1683 1684 /* 1685 * Even if we did not try to evict anon pages at all, we want to 1686 * rebalance the anon lru active/inactive ratio. 1687 */ 1688 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0) 1689 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0); 1690 1691 throttle_vm_writeout(sc->gfp_mask); 1692 } 1693 1694 /* 1695 * This is the direct reclaim path, for page-allocating processes. We only 1696 * try to reclaim pages from zones which will satisfy the caller's allocation 1697 * request. 1698 * 1699 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 1700 * Because: 1701 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 1702 * allocation or 1703 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 1704 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 1705 * zone defense algorithm. 1706 * 1707 * If a zone is deemed to be full of pinned pages then just give it a light 1708 * scan then give up on it. 1709 */ 1710 static void shrink_zones(int priority, struct zonelist *zonelist, 1711 struct scan_control *sc) 1712 { 1713 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); 1714 struct zoneref *z; 1715 struct zone *zone; 1716 1717 sc->all_unreclaimable = 1; 1718 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 1719 sc->nodemask) { 1720 if (!populated_zone(zone)) 1721 continue; 1722 /* 1723 * Take care memory controller reclaiming has small influence 1724 * to global LRU. 1725 */ 1726 if (scanning_global_lru(sc)) { 1727 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1728 continue; 1729 note_zone_scanning_priority(zone, priority); 1730 1731 if (zone->all_unreclaimable && priority != DEF_PRIORITY) 1732 continue; /* Let kswapd poll it */ 1733 sc->all_unreclaimable = 0; 1734 } else { 1735 /* 1736 * Ignore cpuset limitation here. We just want to reduce 1737 * # of used pages by us regardless of memory shortage. 1738 */ 1739 sc->all_unreclaimable = 0; 1740 mem_cgroup_note_reclaim_priority(sc->mem_cgroup, 1741 priority); 1742 } 1743 1744 shrink_zone(priority, zone, sc); 1745 } 1746 } 1747 1748 /* 1749 * This is the main entry point to direct page reclaim. 1750 * 1751 * If a full scan of the inactive list fails to free enough memory then we 1752 * are "out of memory" and something needs to be killed. 1753 * 1754 * If the caller is !__GFP_FS then the probability of a failure is reasonably 1755 * high - the zone may be full of dirty or under-writeback pages, which this 1756 * caller can't do much about. We kick the writeback threads and take explicit 1757 * naps in the hope that some of these pages can be written. But if the 1758 * allocating task holds filesystem locks which prevent writeout this might not 1759 * work, and the allocation attempt will fail. 1760 * 1761 * returns: 0, if no pages reclaimed 1762 * else, the number of pages reclaimed 1763 */ 1764 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 1765 struct scan_control *sc) 1766 { 1767 int priority; 1768 unsigned long ret = 0; 1769 unsigned long total_scanned = 0; 1770 struct reclaim_state *reclaim_state = current->reclaim_state; 1771 unsigned long lru_pages = 0; 1772 struct zoneref *z; 1773 struct zone *zone; 1774 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); 1775 unsigned long writeback_threshold; 1776 1777 delayacct_freepages_start(); 1778 1779 if (scanning_global_lru(sc)) 1780 count_vm_event(ALLOCSTALL); 1781 /* 1782 * mem_cgroup will not do shrink_slab. 1783 */ 1784 if (scanning_global_lru(sc)) { 1785 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1786 1787 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1788 continue; 1789 1790 lru_pages += zone_reclaimable_pages(zone); 1791 } 1792 } 1793 1794 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1795 sc->nr_scanned = 0; 1796 if (!priority) 1797 disable_swap_token(); 1798 shrink_zones(priority, zonelist, sc); 1799 /* 1800 * Don't shrink slabs when reclaiming memory from 1801 * over limit cgroups 1802 */ 1803 if (scanning_global_lru(sc)) { 1804 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages); 1805 if (reclaim_state) { 1806 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 1807 reclaim_state->reclaimed_slab = 0; 1808 } 1809 } 1810 total_scanned += sc->nr_scanned; 1811 if (sc->nr_reclaimed >= sc->nr_to_reclaim) { 1812 ret = sc->nr_reclaimed; 1813 goto out; 1814 } 1815 1816 /* 1817 * Try to write back as many pages as we just scanned. This 1818 * tends to cause slow streaming writers to write data to the 1819 * disk smoothly, at the dirtying rate, which is nice. But 1820 * that's undesirable in laptop mode, where we *want* lumpy 1821 * writeout. So in laptop mode, write out the whole world. 1822 */ 1823 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 1824 if (total_scanned > writeback_threshold) { 1825 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned); 1826 sc->may_writepage = 1; 1827 } 1828 1829 /* Take a nap, wait for some writeback to complete */ 1830 if (!sc->hibernation_mode && sc->nr_scanned && 1831 priority < DEF_PRIORITY - 2) 1832 congestion_wait(BLK_RW_ASYNC, HZ/10); 1833 } 1834 /* top priority shrink_zones still had more to do? don't OOM, then */ 1835 if (!sc->all_unreclaimable && scanning_global_lru(sc)) 1836 ret = sc->nr_reclaimed; 1837 out: 1838 /* 1839 * Now that we've scanned all the zones at this priority level, note 1840 * that level within the zone so that the next thread which performs 1841 * scanning of this zone will immediately start out at this priority 1842 * level. This affects only the decision whether or not to bring 1843 * mapped pages onto the inactive list. 1844 */ 1845 if (priority < 0) 1846 priority = 0; 1847 1848 if (scanning_global_lru(sc)) { 1849 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1850 1851 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1852 continue; 1853 1854 zone->prev_priority = priority; 1855 } 1856 } else 1857 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority); 1858 1859 delayacct_freepages_end(); 1860 1861 return ret; 1862 } 1863 1864 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 1865 gfp_t gfp_mask, nodemask_t *nodemask) 1866 { 1867 struct scan_control sc = { 1868 .gfp_mask = gfp_mask, 1869 .may_writepage = !laptop_mode, 1870 .nr_to_reclaim = SWAP_CLUSTER_MAX, 1871 .may_unmap = 1, 1872 .may_swap = 1, 1873 .swappiness = vm_swappiness, 1874 .order = order, 1875 .mem_cgroup = NULL, 1876 .isolate_pages = isolate_pages_global, 1877 .nodemask = nodemask, 1878 }; 1879 1880 return do_try_to_free_pages(zonelist, &sc); 1881 } 1882 1883 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 1884 1885 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem, 1886 gfp_t gfp_mask, bool noswap, 1887 unsigned int swappiness, 1888 struct zone *zone, int nid) 1889 { 1890 struct scan_control sc = { 1891 .may_writepage = !laptop_mode, 1892 .may_unmap = 1, 1893 .may_swap = !noswap, 1894 .swappiness = swappiness, 1895 .order = 0, 1896 .mem_cgroup = mem, 1897 .isolate_pages = mem_cgroup_isolate_pages, 1898 }; 1899 nodemask_t nm = nodemask_of_node(nid); 1900 1901 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 1902 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 1903 sc.nodemask = &nm; 1904 sc.nr_reclaimed = 0; 1905 sc.nr_scanned = 0; 1906 /* 1907 * NOTE: Although we can get the priority field, using it 1908 * here is not a good idea, since it limits the pages we can scan. 1909 * if we don't reclaim here, the shrink_zone from balance_pgdat 1910 * will pick up pages from other mem cgroup's as well. We hack 1911 * the priority and make it zero. 1912 */ 1913 shrink_zone(0, zone, &sc); 1914 return sc.nr_reclaimed; 1915 } 1916 1917 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, 1918 gfp_t gfp_mask, 1919 bool noswap, 1920 unsigned int swappiness) 1921 { 1922 struct zonelist *zonelist; 1923 struct scan_control sc = { 1924 .may_writepage = !laptop_mode, 1925 .may_unmap = 1, 1926 .may_swap = !noswap, 1927 .nr_to_reclaim = SWAP_CLUSTER_MAX, 1928 .swappiness = swappiness, 1929 .order = 0, 1930 .mem_cgroup = mem_cont, 1931 .isolate_pages = mem_cgroup_isolate_pages, 1932 .nodemask = NULL, /* we don't care the placement */ 1933 }; 1934 1935 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 1936 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 1937 zonelist = NODE_DATA(numa_node_id())->node_zonelists; 1938 return do_try_to_free_pages(zonelist, &sc); 1939 } 1940 #endif 1941 1942 /* is kswapd sleeping prematurely? */ 1943 static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining) 1944 { 1945 int i; 1946 1947 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 1948 if (remaining) 1949 return 1; 1950 1951 /* If after HZ/10, a zone is below the high mark, it's premature */ 1952 for (i = 0; i < pgdat->nr_zones; i++) { 1953 struct zone *zone = pgdat->node_zones + i; 1954 1955 if (!populated_zone(zone)) 1956 continue; 1957 1958 if (zone->all_unreclaimable) 1959 continue; 1960 1961 if (!zone_watermark_ok(zone, order, high_wmark_pages(zone), 1962 0, 0)) 1963 return 1; 1964 } 1965 1966 return 0; 1967 } 1968 1969 /* 1970 * For kswapd, balance_pgdat() will work across all this node's zones until 1971 * they are all at high_wmark_pages(zone). 1972 * 1973 * Returns the number of pages which were actually freed. 1974 * 1975 * There is special handling here for zones which are full of pinned pages. 1976 * This can happen if the pages are all mlocked, or if they are all used by 1977 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 1978 * What we do is to detect the case where all pages in the zone have been 1979 * scanned twice and there has been zero successful reclaim. Mark the zone as 1980 * dead and from now on, only perform a short scan. Basically we're polling 1981 * the zone for when the problem goes away. 1982 * 1983 * kswapd scans the zones in the highmem->normal->dma direction. It skips 1984 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 1985 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 1986 * lower zones regardless of the number of free pages in the lower zones. This 1987 * interoperates with the page allocator fallback scheme to ensure that aging 1988 * of pages is balanced across the zones. 1989 */ 1990 static unsigned long balance_pgdat(pg_data_t *pgdat, int order) 1991 { 1992 int all_zones_ok; 1993 int priority; 1994 int i; 1995 unsigned long total_scanned; 1996 struct reclaim_state *reclaim_state = current->reclaim_state; 1997 struct scan_control sc = { 1998 .gfp_mask = GFP_KERNEL, 1999 .may_unmap = 1, 2000 .may_swap = 1, 2001 /* 2002 * kswapd doesn't want to be bailed out while reclaim. because 2003 * we want to put equal scanning pressure on each zone. 2004 */ 2005 .nr_to_reclaim = ULONG_MAX, 2006 .swappiness = vm_swappiness, 2007 .order = order, 2008 .mem_cgroup = NULL, 2009 .isolate_pages = isolate_pages_global, 2010 }; 2011 /* 2012 * temp_priority is used to remember the scanning priority at which 2013 * this zone was successfully refilled to 2014 * free_pages == high_wmark_pages(zone). 2015 */ 2016 int temp_priority[MAX_NR_ZONES]; 2017 2018 loop_again: 2019 total_scanned = 0; 2020 sc.nr_reclaimed = 0; 2021 sc.may_writepage = !laptop_mode; 2022 count_vm_event(PAGEOUTRUN); 2023 2024 for (i = 0; i < pgdat->nr_zones; i++) 2025 temp_priority[i] = DEF_PRIORITY; 2026 2027 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 2028 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 2029 unsigned long lru_pages = 0; 2030 int has_under_min_watermark_zone = 0; 2031 2032 /* The swap token gets in the way of swapout... */ 2033 if (!priority) 2034 disable_swap_token(); 2035 2036 all_zones_ok = 1; 2037 2038 /* 2039 * Scan in the highmem->dma direction for the highest 2040 * zone which needs scanning 2041 */ 2042 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 2043 struct zone *zone = pgdat->node_zones + i; 2044 2045 if (!populated_zone(zone)) 2046 continue; 2047 2048 if (zone->all_unreclaimable && priority != DEF_PRIORITY) 2049 continue; 2050 2051 /* 2052 * Do some background aging of the anon list, to give 2053 * pages a chance to be referenced before reclaiming. 2054 */ 2055 if (inactive_anon_is_low(zone, &sc)) 2056 shrink_active_list(SWAP_CLUSTER_MAX, zone, 2057 &sc, priority, 0); 2058 2059 if (!zone_watermark_ok(zone, order, 2060 high_wmark_pages(zone), 0, 0)) { 2061 end_zone = i; 2062 break; 2063 } 2064 } 2065 if (i < 0) 2066 goto out; 2067 2068 for (i = 0; i <= end_zone; i++) { 2069 struct zone *zone = pgdat->node_zones + i; 2070 2071 lru_pages += zone_reclaimable_pages(zone); 2072 } 2073 2074 /* 2075 * Now scan the zone in the dma->highmem direction, stopping 2076 * at the last zone which needs scanning. 2077 * 2078 * We do this because the page allocator works in the opposite 2079 * direction. This prevents the page allocator from allocating 2080 * pages behind kswapd's direction of progress, which would 2081 * cause too much scanning of the lower zones. 2082 */ 2083 for (i = 0; i <= end_zone; i++) { 2084 struct zone *zone = pgdat->node_zones + i; 2085 int nr_slab; 2086 int nid, zid; 2087 2088 if (!populated_zone(zone)) 2089 continue; 2090 2091 if (zone->all_unreclaimable && priority != DEF_PRIORITY) 2092 continue; 2093 2094 temp_priority[i] = priority; 2095 sc.nr_scanned = 0; 2096 note_zone_scanning_priority(zone, priority); 2097 2098 nid = pgdat->node_id; 2099 zid = zone_idx(zone); 2100 /* 2101 * Call soft limit reclaim before calling shrink_zone. 2102 * For now we ignore the return value 2103 */ 2104 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask, 2105 nid, zid); 2106 /* 2107 * We put equal pressure on every zone, unless one 2108 * zone has way too many pages free already. 2109 */ 2110 if (!zone_watermark_ok(zone, order, 2111 8*high_wmark_pages(zone), end_zone, 0)) 2112 shrink_zone(priority, zone, &sc); 2113 reclaim_state->reclaimed_slab = 0; 2114 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, 2115 lru_pages); 2116 sc.nr_reclaimed += reclaim_state->reclaimed_slab; 2117 total_scanned += sc.nr_scanned; 2118 if (zone->all_unreclaimable) 2119 continue; 2120 if (nr_slab == 0 && 2121 zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6)) 2122 zone->all_unreclaimable = 1; 2123 /* 2124 * If we've done a decent amount of scanning and 2125 * the reclaim ratio is low, start doing writepage 2126 * even in laptop mode 2127 */ 2128 if (total_scanned > SWAP_CLUSTER_MAX * 2 && 2129 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2) 2130 sc.may_writepage = 1; 2131 2132 if (!zone_watermark_ok(zone, order, 2133 high_wmark_pages(zone), end_zone, 0)) { 2134 all_zones_ok = 0; 2135 /* 2136 * We are still under min water mark. This 2137 * means that we have a GFP_ATOMIC allocation 2138 * failure risk. Hurry up! 2139 */ 2140 if (!zone_watermark_ok(zone, order, 2141 min_wmark_pages(zone), end_zone, 0)) 2142 has_under_min_watermark_zone = 1; 2143 } 2144 2145 } 2146 if (all_zones_ok) 2147 break; /* kswapd: all done */ 2148 /* 2149 * OK, kswapd is getting into trouble. Take a nap, then take 2150 * another pass across the zones. 2151 */ 2152 if (total_scanned && (priority < DEF_PRIORITY - 2)) { 2153 if (has_under_min_watermark_zone) 2154 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT); 2155 else 2156 congestion_wait(BLK_RW_ASYNC, HZ/10); 2157 } 2158 2159 /* 2160 * We do this so kswapd doesn't build up large priorities for 2161 * example when it is freeing in parallel with allocators. It 2162 * matches the direct reclaim path behaviour in terms of impact 2163 * on zone->*_priority. 2164 */ 2165 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) 2166 break; 2167 } 2168 out: 2169 /* 2170 * Note within each zone the priority level at which this zone was 2171 * brought into a happy state. So that the next thread which scans this 2172 * zone will start out at that priority level. 2173 */ 2174 for (i = 0; i < pgdat->nr_zones; i++) { 2175 struct zone *zone = pgdat->node_zones + i; 2176 2177 zone->prev_priority = temp_priority[i]; 2178 } 2179 if (!all_zones_ok) { 2180 cond_resched(); 2181 2182 try_to_freeze(); 2183 2184 /* 2185 * Fragmentation may mean that the system cannot be 2186 * rebalanced for high-order allocations in all zones. 2187 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX, 2188 * it means the zones have been fully scanned and are still 2189 * not balanced. For high-order allocations, there is 2190 * little point trying all over again as kswapd may 2191 * infinite loop. 2192 * 2193 * Instead, recheck all watermarks at order-0 as they 2194 * are the most important. If watermarks are ok, kswapd will go 2195 * back to sleep. High-order users can still perform direct 2196 * reclaim if they wish. 2197 */ 2198 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX) 2199 order = sc.order = 0; 2200 2201 goto loop_again; 2202 } 2203 2204 return sc.nr_reclaimed; 2205 } 2206 2207 /* 2208 * The background pageout daemon, started as a kernel thread 2209 * from the init process. 2210 * 2211 * This basically trickles out pages so that we have _some_ 2212 * free memory available even if there is no other activity 2213 * that frees anything up. This is needed for things like routing 2214 * etc, where we otherwise might have all activity going on in 2215 * asynchronous contexts that cannot page things out. 2216 * 2217 * If there are applications that are active memory-allocators 2218 * (most normal use), this basically shouldn't matter. 2219 */ 2220 static int kswapd(void *p) 2221 { 2222 unsigned long order; 2223 pg_data_t *pgdat = (pg_data_t*)p; 2224 struct task_struct *tsk = current; 2225 DEFINE_WAIT(wait); 2226 struct reclaim_state reclaim_state = { 2227 .reclaimed_slab = 0, 2228 }; 2229 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2230 2231 lockdep_set_current_reclaim_state(GFP_KERNEL); 2232 2233 if (!cpumask_empty(cpumask)) 2234 set_cpus_allowed_ptr(tsk, cpumask); 2235 current->reclaim_state = &reclaim_state; 2236 2237 /* 2238 * Tell the memory management that we're a "memory allocator", 2239 * and that if we need more memory we should get access to it 2240 * regardless (see "__alloc_pages()"). "kswapd" should 2241 * never get caught in the normal page freeing logic. 2242 * 2243 * (Kswapd normally doesn't need memory anyway, but sometimes 2244 * you need a small amount of memory in order to be able to 2245 * page out something else, and this flag essentially protects 2246 * us from recursively trying to free more memory as we're 2247 * trying to free the first piece of memory in the first place). 2248 */ 2249 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 2250 set_freezable(); 2251 2252 order = 0; 2253 for ( ; ; ) { 2254 unsigned long new_order; 2255 int ret; 2256 2257 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 2258 new_order = pgdat->kswapd_max_order; 2259 pgdat->kswapd_max_order = 0; 2260 if (order < new_order) { 2261 /* 2262 * Don't sleep if someone wants a larger 'order' 2263 * allocation 2264 */ 2265 order = new_order; 2266 } else { 2267 if (!freezing(current) && !kthread_should_stop()) { 2268 long remaining = 0; 2269 2270 /* Try to sleep for a short interval */ 2271 if (!sleeping_prematurely(pgdat, order, remaining)) { 2272 remaining = schedule_timeout(HZ/10); 2273 finish_wait(&pgdat->kswapd_wait, &wait); 2274 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 2275 } 2276 2277 /* 2278 * After a short sleep, check if it was a 2279 * premature sleep. If not, then go fully 2280 * to sleep until explicitly woken up 2281 */ 2282 if (!sleeping_prematurely(pgdat, order, remaining)) 2283 schedule(); 2284 else { 2285 if (remaining) 2286 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 2287 else 2288 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 2289 } 2290 } 2291 2292 order = pgdat->kswapd_max_order; 2293 } 2294 finish_wait(&pgdat->kswapd_wait, &wait); 2295 2296 ret = try_to_freeze(); 2297 if (kthread_should_stop()) 2298 break; 2299 2300 /* 2301 * We can speed up thawing tasks if we don't call balance_pgdat 2302 * after returning from the refrigerator 2303 */ 2304 if (!ret) 2305 balance_pgdat(pgdat, order); 2306 } 2307 return 0; 2308 } 2309 2310 /* 2311 * A zone is low on free memory, so wake its kswapd task to service it. 2312 */ 2313 void wakeup_kswapd(struct zone *zone, int order) 2314 { 2315 pg_data_t *pgdat; 2316 2317 if (!populated_zone(zone)) 2318 return; 2319 2320 pgdat = zone->zone_pgdat; 2321 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0)) 2322 return; 2323 if (pgdat->kswapd_max_order < order) 2324 pgdat->kswapd_max_order = order; 2325 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2326 return; 2327 if (!waitqueue_active(&pgdat->kswapd_wait)) 2328 return; 2329 wake_up_interruptible(&pgdat->kswapd_wait); 2330 } 2331 2332 /* 2333 * The reclaimable count would be mostly accurate. 2334 * The less reclaimable pages may be 2335 * - mlocked pages, which will be moved to unevictable list when encountered 2336 * - mapped pages, which may require several travels to be reclaimed 2337 * - dirty pages, which is not "instantly" reclaimable 2338 */ 2339 unsigned long global_reclaimable_pages(void) 2340 { 2341 int nr; 2342 2343 nr = global_page_state(NR_ACTIVE_FILE) + 2344 global_page_state(NR_INACTIVE_FILE); 2345 2346 if (nr_swap_pages > 0) 2347 nr += global_page_state(NR_ACTIVE_ANON) + 2348 global_page_state(NR_INACTIVE_ANON); 2349 2350 return nr; 2351 } 2352 2353 unsigned long zone_reclaimable_pages(struct zone *zone) 2354 { 2355 int nr; 2356 2357 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 2358 zone_page_state(zone, NR_INACTIVE_FILE); 2359 2360 if (nr_swap_pages > 0) 2361 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 2362 zone_page_state(zone, NR_INACTIVE_ANON); 2363 2364 return nr; 2365 } 2366 2367 #ifdef CONFIG_HIBERNATION 2368 /* 2369 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 2370 * freed pages. 2371 * 2372 * Rather than trying to age LRUs the aim is to preserve the overall 2373 * LRU order by reclaiming preferentially 2374 * inactive > active > active referenced > active mapped 2375 */ 2376 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 2377 { 2378 struct reclaim_state reclaim_state; 2379 struct scan_control sc = { 2380 .gfp_mask = GFP_HIGHUSER_MOVABLE, 2381 .may_swap = 1, 2382 .may_unmap = 1, 2383 .may_writepage = 1, 2384 .nr_to_reclaim = nr_to_reclaim, 2385 .hibernation_mode = 1, 2386 .swappiness = vm_swappiness, 2387 .order = 0, 2388 .isolate_pages = isolate_pages_global, 2389 }; 2390 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 2391 struct task_struct *p = current; 2392 unsigned long nr_reclaimed; 2393 2394 p->flags |= PF_MEMALLOC; 2395 lockdep_set_current_reclaim_state(sc.gfp_mask); 2396 reclaim_state.reclaimed_slab = 0; 2397 p->reclaim_state = &reclaim_state; 2398 2399 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2400 2401 p->reclaim_state = NULL; 2402 lockdep_clear_current_reclaim_state(); 2403 p->flags &= ~PF_MEMALLOC; 2404 2405 return nr_reclaimed; 2406 } 2407 #endif /* CONFIG_HIBERNATION */ 2408 2409 /* It's optimal to keep kswapds on the same CPUs as their memory, but 2410 not required for correctness. So if the last cpu in a node goes 2411 away, we get changed to run anywhere: as the first one comes back, 2412 restore their cpu bindings. */ 2413 static int __devinit cpu_callback(struct notifier_block *nfb, 2414 unsigned long action, void *hcpu) 2415 { 2416 int nid; 2417 2418 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 2419 for_each_node_state(nid, N_HIGH_MEMORY) { 2420 pg_data_t *pgdat = NODE_DATA(nid); 2421 const struct cpumask *mask; 2422 2423 mask = cpumask_of_node(pgdat->node_id); 2424 2425 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2426 /* One of our CPUs online: restore mask */ 2427 set_cpus_allowed_ptr(pgdat->kswapd, mask); 2428 } 2429 } 2430 return NOTIFY_OK; 2431 } 2432 2433 /* 2434 * This kswapd start function will be called by init and node-hot-add. 2435 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 2436 */ 2437 int kswapd_run(int nid) 2438 { 2439 pg_data_t *pgdat = NODE_DATA(nid); 2440 int ret = 0; 2441 2442 if (pgdat->kswapd) 2443 return 0; 2444 2445 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 2446 if (IS_ERR(pgdat->kswapd)) { 2447 /* failure at boot is fatal */ 2448 BUG_ON(system_state == SYSTEM_BOOTING); 2449 printk("Failed to start kswapd on node %d\n",nid); 2450 ret = -1; 2451 } 2452 return ret; 2453 } 2454 2455 /* 2456 * Called by memory hotplug when all memory in a node is offlined. 2457 */ 2458 void kswapd_stop(int nid) 2459 { 2460 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 2461 2462 if (kswapd) 2463 kthread_stop(kswapd); 2464 } 2465 2466 static int __init kswapd_init(void) 2467 { 2468 int nid; 2469 2470 swap_setup(); 2471 for_each_node_state(nid, N_HIGH_MEMORY) 2472 kswapd_run(nid); 2473 hotcpu_notifier(cpu_callback, 0); 2474 return 0; 2475 } 2476 2477 module_init(kswapd_init) 2478 2479 #ifdef CONFIG_NUMA 2480 /* 2481 * Zone reclaim mode 2482 * 2483 * If non-zero call zone_reclaim when the number of free pages falls below 2484 * the watermarks. 2485 */ 2486 int zone_reclaim_mode __read_mostly; 2487 2488 #define RECLAIM_OFF 0 2489 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 2490 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 2491 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 2492 2493 /* 2494 * Priority for ZONE_RECLAIM. This determines the fraction of pages 2495 * of a node considered for each zone_reclaim. 4 scans 1/16th of 2496 * a zone. 2497 */ 2498 #define ZONE_RECLAIM_PRIORITY 4 2499 2500 /* 2501 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 2502 * occur. 2503 */ 2504 int sysctl_min_unmapped_ratio = 1; 2505 2506 /* 2507 * If the number of slab pages in a zone grows beyond this percentage then 2508 * slab reclaim needs to occur. 2509 */ 2510 int sysctl_min_slab_ratio = 5; 2511 2512 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 2513 { 2514 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 2515 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 2516 zone_page_state(zone, NR_ACTIVE_FILE); 2517 2518 /* 2519 * It's possible for there to be more file mapped pages than 2520 * accounted for by the pages on the file LRU lists because 2521 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 2522 */ 2523 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 2524 } 2525 2526 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 2527 static long zone_pagecache_reclaimable(struct zone *zone) 2528 { 2529 long nr_pagecache_reclaimable; 2530 long delta = 0; 2531 2532 /* 2533 * If RECLAIM_SWAP is set, then all file pages are considered 2534 * potentially reclaimable. Otherwise, we have to worry about 2535 * pages like swapcache and zone_unmapped_file_pages() provides 2536 * a better estimate 2537 */ 2538 if (zone_reclaim_mode & RECLAIM_SWAP) 2539 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 2540 else 2541 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 2542 2543 /* If we can't clean pages, remove dirty pages from consideration */ 2544 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 2545 delta += zone_page_state(zone, NR_FILE_DIRTY); 2546 2547 /* Watch for any possible underflows due to delta */ 2548 if (unlikely(delta > nr_pagecache_reclaimable)) 2549 delta = nr_pagecache_reclaimable; 2550 2551 return nr_pagecache_reclaimable - delta; 2552 } 2553 2554 /* 2555 * Try to free up some pages from this zone through reclaim. 2556 */ 2557 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2558 { 2559 /* Minimum pages needed in order to stay on node */ 2560 const unsigned long nr_pages = 1 << order; 2561 struct task_struct *p = current; 2562 struct reclaim_state reclaim_state; 2563 int priority; 2564 struct scan_control sc = { 2565 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 2566 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 2567 .may_swap = 1, 2568 .nr_to_reclaim = max_t(unsigned long, nr_pages, 2569 SWAP_CLUSTER_MAX), 2570 .gfp_mask = gfp_mask, 2571 .swappiness = vm_swappiness, 2572 .order = order, 2573 .isolate_pages = isolate_pages_global, 2574 }; 2575 unsigned long slab_reclaimable; 2576 2577 disable_swap_token(); 2578 cond_resched(); 2579 /* 2580 * We need to be able to allocate from the reserves for RECLAIM_SWAP 2581 * and we also need to be able to write out pages for RECLAIM_WRITE 2582 * and RECLAIM_SWAP. 2583 */ 2584 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 2585 lockdep_set_current_reclaim_state(gfp_mask); 2586 reclaim_state.reclaimed_slab = 0; 2587 p->reclaim_state = &reclaim_state; 2588 2589 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 2590 /* 2591 * Free memory by calling shrink zone with increasing 2592 * priorities until we have enough memory freed. 2593 */ 2594 priority = ZONE_RECLAIM_PRIORITY; 2595 do { 2596 note_zone_scanning_priority(zone, priority); 2597 shrink_zone(priority, zone, &sc); 2598 priority--; 2599 } while (priority >= 0 && sc.nr_reclaimed < nr_pages); 2600 } 2601 2602 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2603 if (slab_reclaimable > zone->min_slab_pages) { 2604 /* 2605 * shrink_slab() does not currently allow us to determine how 2606 * many pages were freed in this zone. So we take the current 2607 * number of slab pages and shake the slab until it is reduced 2608 * by the same nr_pages that we used for reclaiming unmapped 2609 * pages. 2610 * 2611 * Note that shrink_slab will free memory on all zones and may 2612 * take a long time. 2613 */ 2614 while (shrink_slab(sc.nr_scanned, gfp_mask, order) && 2615 zone_page_state(zone, NR_SLAB_RECLAIMABLE) > 2616 slab_reclaimable - nr_pages) 2617 ; 2618 2619 /* 2620 * Update nr_reclaimed by the number of slab pages we 2621 * reclaimed from this zone. 2622 */ 2623 sc.nr_reclaimed += slab_reclaimable - 2624 zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2625 } 2626 2627 p->reclaim_state = NULL; 2628 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 2629 lockdep_clear_current_reclaim_state(); 2630 return sc.nr_reclaimed >= nr_pages; 2631 } 2632 2633 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2634 { 2635 int node_id; 2636 int ret; 2637 2638 /* 2639 * Zone reclaim reclaims unmapped file backed pages and 2640 * slab pages if we are over the defined limits. 2641 * 2642 * A small portion of unmapped file backed pages is needed for 2643 * file I/O otherwise pages read by file I/O will be immediately 2644 * thrown out if the zone is overallocated. So we do not reclaim 2645 * if less than a specified percentage of the zone is used by 2646 * unmapped file backed pages. 2647 */ 2648 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 2649 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 2650 return ZONE_RECLAIM_FULL; 2651 2652 if (zone->all_unreclaimable) 2653 return ZONE_RECLAIM_FULL; 2654 2655 /* 2656 * Do not scan if the allocation should not be delayed. 2657 */ 2658 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 2659 return ZONE_RECLAIM_NOSCAN; 2660 2661 /* 2662 * Only run zone reclaim on the local zone or on zones that do not 2663 * have associated processors. This will favor the local processor 2664 * over remote processors and spread off node memory allocations 2665 * as wide as possible. 2666 */ 2667 node_id = zone_to_nid(zone); 2668 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 2669 return ZONE_RECLAIM_NOSCAN; 2670 2671 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 2672 return ZONE_RECLAIM_NOSCAN; 2673 2674 ret = __zone_reclaim(zone, gfp_mask, order); 2675 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 2676 2677 if (!ret) 2678 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 2679 2680 return ret; 2681 } 2682 #endif 2683 2684 /* 2685 * page_evictable - test whether a page is evictable 2686 * @page: the page to test 2687 * @vma: the VMA in which the page is or will be mapped, may be NULL 2688 * 2689 * Test whether page is evictable--i.e., should be placed on active/inactive 2690 * lists vs unevictable list. The vma argument is !NULL when called from the 2691 * fault path to determine how to instantate a new page. 2692 * 2693 * Reasons page might not be evictable: 2694 * (1) page's mapping marked unevictable 2695 * (2) page is part of an mlocked VMA 2696 * 2697 */ 2698 int page_evictable(struct page *page, struct vm_area_struct *vma) 2699 { 2700 2701 if (mapping_unevictable(page_mapping(page))) 2702 return 0; 2703 2704 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page))) 2705 return 0; 2706 2707 return 1; 2708 } 2709 2710 /** 2711 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list 2712 * @page: page to check evictability and move to appropriate lru list 2713 * @zone: zone page is in 2714 * 2715 * Checks a page for evictability and moves the page to the appropriate 2716 * zone lru list. 2717 * 2718 * Restrictions: zone->lru_lock must be held, page must be on LRU and must 2719 * have PageUnevictable set. 2720 */ 2721 static void check_move_unevictable_page(struct page *page, struct zone *zone) 2722 { 2723 VM_BUG_ON(PageActive(page)); 2724 2725 retry: 2726 ClearPageUnevictable(page); 2727 if (page_evictable(page, NULL)) { 2728 enum lru_list l = page_lru_base_type(page); 2729 2730 __dec_zone_state(zone, NR_UNEVICTABLE); 2731 list_move(&page->lru, &zone->lru[l].list); 2732 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l); 2733 __inc_zone_state(zone, NR_INACTIVE_ANON + l); 2734 __count_vm_event(UNEVICTABLE_PGRESCUED); 2735 } else { 2736 /* 2737 * rotate unevictable list 2738 */ 2739 SetPageUnevictable(page); 2740 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list); 2741 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE); 2742 if (page_evictable(page, NULL)) 2743 goto retry; 2744 } 2745 } 2746 2747 /** 2748 * scan_mapping_unevictable_pages - scan an address space for evictable pages 2749 * @mapping: struct address_space to scan for evictable pages 2750 * 2751 * Scan all pages in mapping. Check unevictable pages for 2752 * evictability and move them to the appropriate zone lru list. 2753 */ 2754 void scan_mapping_unevictable_pages(struct address_space *mapping) 2755 { 2756 pgoff_t next = 0; 2757 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >> 2758 PAGE_CACHE_SHIFT; 2759 struct zone *zone; 2760 struct pagevec pvec; 2761 2762 if (mapping->nrpages == 0) 2763 return; 2764 2765 pagevec_init(&pvec, 0); 2766 while (next < end && 2767 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 2768 int i; 2769 int pg_scanned = 0; 2770 2771 zone = NULL; 2772 2773 for (i = 0; i < pagevec_count(&pvec); i++) { 2774 struct page *page = pvec.pages[i]; 2775 pgoff_t page_index = page->index; 2776 struct zone *pagezone = page_zone(page); 2777 2778 pg_scanned++; 2779 if (page_index > next) 2780 next = page_index; 2781 next++; 2782 2783 if (pagezone != zone) { 2784 if (zone) 2785 spin_unlock_irq(&zone->lru_lock); 2786 zone = pagezone; 2787 spin_lock_irq(&zone->lru_lock); 2788 } 2789 2790 if (PageLRU(page) && PageUnevictable(page)) 2791 check_move_unevictable_page(page, zone); 2792 } 2793 if (zone) 2794 spin_unlock_irq(&zone->lru_lock); 2795 pagevec_release(&pvec); 2796 2797 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned); 2798 } 2799 2800 } 2801 2802 /** 2803 * scan_zone_unevictable_pages - check unevictable list for evictable pages 2804 * @zone - zone of which to scan the unevictable list 2805 * 2806 * Scan @zone's unevictable LRU lists to check for pages that have become 2807 * evictable. Move those that have to @zone's inactive list where they 2808 * become candidates for reclaim, unless shrink_inactive_zone() decides 2809 * to reactivate them. Pages that are still unevictable are rotated 2810 * back onto @zone's unevictable list. 2811 */ 2812 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */ 2813 static void scan_zone_unevictable_pages(struct zone *zone) 2814 { 2815 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list; 2816 unsigned long scan; 2817 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE); 2818 2819 while (nr_to_scan > 0) { 2820 unsigned long batch_size = min(nr_to_scan, 2821 SCAN_UNEVICTABLE_BATCH_SIZE); 2822 2823 spin_lock_irq(&zone->lru_lock); 2824 for (scan = 0; scan < batch_size; scan++) { 2825 struct page *page = lru_to_page(l_unevictable); 2826 2827 if (!trylock_page(page)) 2828 continue; 2829 2830 prefetchw_prev_lru_page(page, l_unevictable, flags); 2831 2832 if (likely(PageLRU(page) && PageUnevictable(page))) 2833 check_move_unevictable_page(page, zone); 2834 2835 unlock_page(page); 2836 } 2837 spin_unlock_irq(&zone->lru_lock); 2838 2839 nr_to_scan -= batch_size; 2840 } 2841 } 2842 2843 2844 /** 2845 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages 2846 * 2847 * A really big hammer: scan all zones' unevictable LRU lists to check for 2848 * pages that have become evictable. Move those back to the zones' 2849 * inactive list where they become candidates for reclaim. 2850 * This occurs when, e.g., we have unswappable pages on the unevictable lists, 2851 * and we add swap to the system. As such, it runs in the context of a task 2852 * that has possibly/probably made some previously unevictable pages 2853 * evictable. 2854 */ 2855 static void scan_all_zones_unevictable_pages(void) 2856 { 2857 struct zone *zone; 2858 2859 for_each_zone(zone) { 2860 scan_zone_unevictable_pages(zone); 2861 } 2862 } 2863 2864 /* 2865 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 2866 * all nodes' unevictable lists for evictable pages 2867 */ 2868 unsigned long scan_unevictable_pages; 2869 2870 int scan_unevictable_handler(struct ctl_table *table, int write, 2871 void __user *buffer, 2872 size_t *length, loff_t *ppos) 2873 { 2874 proc_doulongvec_minmax(table, write, buffer, length, ppos); 2875 2876 if (write && *(unsigned long *)table->data) 2877 scan_all_zones_unevictable_pages(); 2878 2879 scan_unevictable_pages = 0; 2880 return 0; 2881 } 2882 2883 /* 2884 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 2885 * a specified node's per zone unevictable lists for evictable pages. 2886 */ 2887 2888 static ssize_t read_scan_unevictable_node(struct sys_device *dev, 2889 struct sysdev_attribute *attr, 2890 char *buf) 2891 { 2892 return sprintf(buf, "0\n"); /* always zero; should fit... */ 2893 } 2894 2895 static ssize_t write_scan_unevictable_node(struct sys_device *dev, 2896 struct sysdev_attribute *attr, 2897 const char *buf, size_t count) 2898 { 2899 struct zone *node_zones = NODE_DATA(dev->id)->node_zones; 2900 struct zone *zone; 2901 unsigned long res; 2902 unsigned long req = strict_strtoul(buf, 10, &res); 2903 2904 if (!req) 2905 return 1; /* zero is no-op */ 2906 2907 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 2908 if (!populated_zone(zone)) 2909 continue; 2910 scan_zone_unevictable_pages(zone); 2911 } 2912 return 1; 2913 } 2914 2915 2916 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 2917 read_scan_unevictable_node, 2918 write_scan_unevictable_node); 2919 2920 int scan_unevictable_register_node(struct node *node) 2921 { 2922 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages); 2923 } 2924 2925 void scan_unevictable_unregister_node(struct node *node) 2926 { 2927 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages); 2928 } 2929 2930