xref: /linux/mm/vmscan.c (revision 1efddcc981c95e62c4e305fd462e3e98b6f9c5cd)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46 
47 #include <linux/swapops.h>
48 
49 #include "internal.h"
50 
51 struct scan_control {
52 	/* Incremented by the number of inactive pages that were scanned */
53 	unsigned long nr_scanned;
54 
55 	/* Number of pages freed so far during a call to shrink_zones() */
56 	unsigned long nr_reclaimed;
57 
58 	/* How many pages shrink_list() should reclaim */
59 	unsigned long nr_to_reclaim;
60 
61 	unsigned long hibernation_mode;
62 
63 	/* This context's GFP mask */
64 	gfp_t gfp_mask;
65 
66 	int may_writepage;
67 
68 	/* Can mapped pages be reclaimed? */
69 	int may_unmap;
70 
71 	/* Can pages be swapped as part of reclaim? */
72 	int may_swap;
73 
74 	int swappiness;
75 
76 	int all_unreclaimable;
77 
78 	int order;
79 
80 	/* Which cgroup do we reclaim from */
81 	struct mem_cgroup *mem_cgroup;
82 
83 	/*
84 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
85 	 * are scanned.
86 	 */
87 	nodemask_t	*nodemask;
88 
89 	/* Pluggable isolate pages callback */
90 	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
91 			unsigned long *scanned, int order, int mode,
92 			struct zone *z, struct mem_cgroup *mem_cont,
93 			int active, int file);
94 };
95 
96 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
97 
98 #ifdef ARCH_HAS_PREFETCH
99 #define prefetch_prev_lru_page(_page, _base, _field)			\
100 	do {								\
101 		if ((_page)->lru.prev != _base) {			\
102 			struct page *prev;				\
103 									\
104 			prev = lru_to_page(&(_page->lru));		\
105 			prefetch(&prev->_field);			\
106 		}							\
107 	} while (0)
108 #else
109 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
110 #endif
111 
112 #ifdef ARCH_HAS_PREFETCHW
113 #define prefetchw_prev_lru_page(_page, _base, _field)			\
114 	do {								\
115 		if ((_page)->lru.prev != _base) {			\
116 			struct page *prev;				\
117 									\
118 			prev = lru_to_page(&(_page->lru));		\
119 			prefetchw(&prev->_field);			\
120 		}							\
121 	} while (0)
122 #else
123 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
124 #endif
125 
126 /*
127  * From 0 .. 100.  Higher means more swappy.
128  */
129 int vm_swappiness = 60;
130 long vm_total_pages;	/* The total number of pages which the VM controls */
131 
132 static LIST_HEAD(shrinker_list);
133 static DECLARE_RWSEM(shrinker_rwsem);
134 
135 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
136 #define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
137 #else
138 #define scanning_global_lru(sc)	(1)
139 #endif
140 
141 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
142 						  struct scan_control *sc)
143 {
144 	if (!scanning_global_lru(sc))
145 		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
146 
147 	return &zone->reclaim_stat;
148 }
149 
150 static unsigned long zone_nr_lru_pages(struct zone *zone,
151 				struct scan_control *sc, enum lru_list lru)
152 {
153 	if (!scanning_global_lru(sc))
154 		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
155 
156 	return zone_page_state(zone, NR_LRU_BASE + lru);
157 }
158 
159 
160 /*
161  * Add a shrinker callback to be called from the vm
162  */
163 void register_shrinker(struct shrinker *shrinker)
164 {
165 	shrinker->nr = 0;
166 	down_write(&shrinker_rwsem);
167 	list_add_tail(&shrinker->list, &shrinker_list);
168 	up_write(&shrinker_rwsem);
169 }
170 EXPORT_SYMBOL(register_shrinker);
171 
172 /*
173  * Remove one
174  */
175 void unregister_shrinker(struct shrinker *shrinker)
176 {
177 	down_write(&shrinker_rwsem);
178 	list_del(&shrinker->list);
179 	up_write(&shrinker_rwsem);
180 }
181 EXPORT_SYMBOL(unregister_shrinker);
182 
183 #define SHRINK_BATCH 128
184 /*
185  * Call the shrink functions to age shrinkable caches
186  *
187  * Here we assume it costs one seek to replace a lru page and that it also
188  * takes a seek to recreate a cache object.  With this in mind we age equal
189  * percentages of the lru and ageable caches.  This should balance the seeks
190  * generated by these structures.
191  *
192  * If the vm encountered mapped pages on the LRU it increase the pressure on
193  * slab to avoid swapping.
194  *
195  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
196  *
197  * `lru_pages' represents the number of on-LRU pages in all the zones which
198  * are eligible for the caller's allocation attempt.  It is used for balancing
199  * slab reclaim versus page reclaim.
200  *
201  * Returns the number of slab objects which we shrunk.
202  */
203 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
204 			unsigned long lru_pages)
205 {
206 	struct shrinker *shrinker;
207 	unsigned long ret = 0;
208 
209 	if (scanned == 0)
210 		scanned = SWAP_CLUSTER_MAX;
211 
212 	if (!down_read_trylock(&shrinker_rwsem))
213 		return 1;	/* Assume we'll be able to shrink next time */
214 
215 	list_for_each_entry(shrinker, &shrinker_list, list) {
216 		unsigned long long delta;
217 		unsigned long total_scan;
218 		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
219 
220 		delta = (4 * scanned) / shrinker->seeks;
221 		delta *= max_pass;
222 		do_div(delta, lru_pages + 1);
223 		shrinker->nr += delta;
224 		if (shrinker->nr < 0) {
225 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
226 			       "delete nr=%ld\n",
227 			       shrinker->shrink, shrinker->nr);
228 			shrinker->nr = max_pass;
229 		}
230 
231 		/*
232 		 * Avoid risking looping forever due to too large nr value:
233 		 * never try to free more than twice the estimate number of
234 		 * freeable entries.
235 		 */
236 		if (shrinker->nr > max_pass * 2)
237 			shrinker->nr = max_pass * 2;
238 
239 		total_scan = shrinker->nr;
240 		shrinker->nr = 0;
241 
242 		while (total_scan >= SHRINK_BATCH) {
243 			long this_scan = SHRINK_BATCH;
244 			int shrink_ret;
245 			int nr_before;
246 
247 			nr_before = (*shrinker->shrink)(0, gfp_mask);
248 			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
249 			if (shrink_ret == -1)
250 				break;
251 			if (shrink_ret < nr_before)
252 				ret += nr_before - shrink_ret;
253 			count_vm_events(SLABS_SCANNED, this_scan);
254 			total_scan -= this_scan;
255 
256 			cond_resched();
257 		}
258 
259 		shrinker->nr += total_scan;
260 	}
261 	up_read(&shrinker_rwsem);
262 	return ret;
263 }
264 
265 static inline int is_page_cache_freeable(struct page *page)
266 {
267 	/*
268 	 * A freeable page cache page is referenced only by the caller
269 	 * that isolated the page, the page cache radix tree and
270 	 * optional buffer heads at page->private.
271 	 */
272 	return page_count(page) - page_has_private(page) == 2;
273 }
274 
275 static int may_write_to_queue(struct backing_dev_info *bdi)
276 {
277 	if (current->flags & PF_SWAPWRITE)
278 		return 1;
279 	if (!bdi_write_congested(bdi))
280 		return 1;
281 	if (bdi == current->backing_dev_info)
282 		return 1;
283 	return 0;
284 }
285 
286 /*
287  * We detected a synchronous write error writing a page out.  Probably
288  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
289  * fsync(), msync() or close().
290  *
291  * The tricky part is that after writepage we cannot touch the mapping: nothing
292  * prevents it from being freed up.  But we have a ref on the page and once
293  * that page is locked, the mapping is pinned.
294  *
295  * We're allowed to run sleeping lock_page() here because we know the caller has
296  * __GFP_FS.
297  */
298 static void handle_write_error(struct address_space *mapping,
299 				struct page *page, int error)
300 {
301 	lock_page(page);
302 	if (page_mapping(page) == mapping)
303 		mapping_set_error(mapping, error);
304 	unlock_page(page);
305 }
306 
307 /* Request for sync pageout. */
308 enum pageout_io {
309 	PAGEOUT_IO_ASYNC,
310 	PAGEOUT_IO_SYNC,
311 };
312 
313 /* possible outcome of pageout() */
314 typedef enum {
315 	/* failed to write page out, page is locked */
316 	PAGE_KEEP,
317 	/* move page to the active list, page is locked */
318 	PAGE_ACTIVATE,
319 	/* page has been sent to the disk successfully, page is unlocked */
320 	PAGE_SUCCESS,
321 	/* page is clean and locked */
322 	PAGE_CLEAN,
323 } pageout_t;
324 
325 /*
326  * pageout is called by shrink_page_list() for each dirty page.
327  * Calls ->writepage().
328  */
329 static pageout_t pageout(struct page *page, struct address_space *mapping,
330 						enum pageout_io sync_writeback)
331 {
332 	/*
333 	 * If the page is dirty, only perform writeback if that write
334 	 * will be non-blocking.  To prevent this allocation from being
335 	 * stalled by pagecache activity.  But note that there may be
336 	 * stalls if we need to run get_block().  We could test
337 	 * PagePrivate for that.
338 	 *
339 	 * If this process is currently in __generic_file_aio_write() against
340 	 * this page's queue, we can perform writeback even if that
341 	 * will block.
342 	 *
343 	 * If the page is swapcache, write it back even if that would
344 	 * block, for some throttling. This happens by accident, because
345 	 * swap_backing_dev_info is bust: it doesn't reflect the
346 	 * congestion state of the swapdevs.  Easy to fix, if needed.
347 	 */
348 	if (!is_page_cache_freeable(page))
349 		return PAGE_KEEP;
350 	if (!mapping) {
351 		/*
352 		 * Some data journaling orphaned pages can have
353 		 * page->mapping == NULL while being dirty with clean buffers.
354 		 */
355 		if (page_has_private(page)) {
356 			if (try_to_free_buffers(page)) {
357 				ClearPageDirty(page);
358 				printk("%s: orphaned page\n", __func__);
359 				return PAGE_CLEAN;
360 			}
361 		}
362 		return PAGE_KEEP;
363 	}
364 	if (mapping->a_ops->writepage == NULL)
365 		return PAGE_ACTIVATE;
366 	if (!may_write_to_queue(mapping->backing_dev_info))
367 		return PAGE_KEEP;
368 
369 	if (clear_page_dirty_for_io(page)) {
370 		int res;
371 		struct writeback_control wbc = {
372 			.sync_mode = WB_SYNC_NONE,
373 			.nr_to_write = SWAP_CLUSTER_MAX,
374 			.range_start = 0,
375 			.range_end = LLONG_MAX,
376 			.nonblocking = 1,
377 			.for_reclaim = 1,
378 		};
379 
380 		SetPageReclaim(page);
381 		res = mapping->a_ops->writepage(page, &wbc);
382 		if (res < 0)
383 			handle_write_error(mapping, page, res);
384 		if (res == AOP_WRITEPAGE_ACTIVATE) {
385 			ClearPageReclaim(page);
386 			return PAGE_ACTIVATE;
387 		}
388 
389 		/*
390 		 * Wait on writeback if requested to. This happens when
391 		 * direct reclaiming a large contiguous area and the
392 		 * first attempt to free a range of pages fails.
393 		 */
394 		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
395 			wait_on_page_writeback(page);
396 
397 		if (!PageWriteback(page)) {
398 			/* synchronous write or broken a_ops? */
399 			ClearPageReclaim(page);
400 		}
401 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
402 		return PAGE_SUCCESS;
403 	}
404 
405 	return PAGE_CLEAN;
406 }
407 
408 /*
409  * Same as remove_mapping, but if the page is removed from the mapping, it
410  * gets returned with a refcount of 0.
411  */
412 static int __remove_mapping(struct address_space *mapping, struct page *page)
413 {
414 	BUG_ON(!PageLocked(page));
415 	BUG_ON(mapping != page_mapping(page));
416 
417 	spin_lock_irq(&mapping->tree_lock);
418 	/*
419 	 * The non racy check for a busy page.
420 	 *
421 	 * Must be careful with the order of the tests. When someone has
422 	 * a ref to the page, it may be possible that they dirty it then
423 	 * drop the reference. So if PageDirty is tested before page_count
424 	 * here, then the following race may occur:
425 	 *
426 	 * get_user_pages(&page);
427 	 * [user mapping goes away]
428 	 * write_to(page);
429 	 *				!PageDirty(page)    [good]
430 	 * SetPageDirty(page);
431 	 * put_page(page);
432 	 *				!page_count(page)   [good, discard it]
433 	 *
434 	 * [oops, our write_to data is lost]
435 	 *
436 	 * Reversing the order of the tests ensures such a situation cannot
437 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
438 	 * load is not satisfied before that of page->_count.
439 	 *
440 	 * Note that if SetPageDirty is always performed via set_page_dirty,
441 	 * and thus under tree_lock, then this ordering is not required.
442 	 */
443 	if (!page_freeze_refs(page, 2))
444 		goto cannot_free;
445 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
446 	if (unlikely(PageDirty(page))) {
447 		page_unfreeze_refs(page, 2);
448 		goto cannot_free;
449 	}
450 
451 	if (PageSwapCache(page)) {
452 		swp_entry_t swap = { .val = page_private(page) };
453 		__delete_from_swap_cache(page);
454 		spin_unlock_irq(&mapping->tree_lock);
455 		swapcache_free(swap, page);
456 	} else {
457 		__remove_from_page_cache(page);
458 		spin_unlock_irq(&mapping->tree_lock);
459 		mem_cgroup_uncharge_cache_page(page);
460 	}
461 
462 	return 1;
463 
464 cannot_free:
465 	spin_unlock_irq(&mapping->tree_lock);
466 	return 0;
467 }
468 
469 /*
470  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
471  * someone else has a ref on the page, abort and return 0.  If it was
472  * successfully detached, return 1.  Assumes the caller has a single ref on
473  * this page.
474  */
475 int remove_mapping(struct address_space *mapping, struct page *page)
476 {
477 	if (__remove_mapping(mapping, page)) {
478 		/*
479 		 * Unfreezing the refcount with 1 rather than 2 effectively
480 		 * drops the pagecache ref for us without requiring another
481 		 * atomic operation.
482 		 */
483 		page_unfreeze_refs(page, 1);
484 		return 1;
485 	}
486 	return 0;
487 }
488 
489 /**
490  * putback_lru_page - put previously isolated page onto appropriate LRU list
491  * @page: page to be put back to appropriate lru list
492  *
493  * Add previously isolated @page to appropriate LRU list.
494  * Page may still be unevictable for other reasons.
495  *
496  * lru_lock must not be held, interrupts must be enabled.
497  */
498 void putback_lru_page(struct page *page)
499 {
500 	int lru;
501 	int active = !!TestClearPageActive(page);
502 	int was_unevictable = PageUnevictable(page);
503 
504 	VM_BUG_ON(PageLRU(page));
505 
506 redo:
507 	ClearPageUnevictable(page);
508 
509 	if (page_evictable(page, NULL)) {
510 		/*
511 		 * For evictable pages, we can use the cache.
512 		 * In event of a race, worst case is we end up with an
513 		 * unevictable page on [in]active list.
514 		 * We know how to handle that.
515 		 */
516 		lru = active + page_lru_base_type(page);
517 		lru_cache_add_lru(page, lru);
518 	} else {
519 		/*
520 		 * Put unevictable pages directly on zone's unevictable
521 		 * list.
522 		 */
523 		lru = LRU_UNEVICTABLE;
524 		add_page_to_unevictable_list(page);
525 		/*
526 		 * When racing with an mlock clearing (page is
527 		 * unlocked), make sure that if the other thread does
528 		 * not observe our setting of PG_lru and fails
529 		 * isolation, we see PG_mlocked cleared below and move
530 		 * the page back to the evictable list.
531 		 *
532 		 * The other side is TestClearPageMlocked().
533 		 */
534 		smp_mb();
535 	}
536 
537 	/*
538 	 * page's status can change while we move it among lru. If an evictable
539 	 * page is on unevictable list, it never be freed. To avoid that,
540 	 * check after we added it to the list, again.
541 	 */
542 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
543 		if (!isolate_lru_page(page)) {
544 			put_page(page);
545 			goto redo;
546 		}
547 		/* This means someone else dropped this page from LRU
548 		 * So, it will be freed or putback to LRU again. There is
549 		 * nothing to do here.
550 		 */
551 	}
552 
553 	if (was_unevictable && lru != LRU_UNEVICTABLE)
554 		count_vm_event(UNEVICTABLE_PGRESCUED);
555 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
556 		count_vm_event(UNEVICTABLE_PGCULLED);
557 
558 	put_page(page);		/* drop ref from isolate */
559 }
560 
561 enum page_references {
562 	PAGEREF_RECLAIM,
563 	PAGEREF_RECLAIM_CLEAN,
564 	PAGEREF_KEEP,
565 	PAGEREF_ACTIVATE,
566 };
567 
568 static enum page_references page_check_references(struct page *page,
569 						  struct scan_control *sc)
570 {
571 	int referenced_ptes, referenced_page;
572 	unsigned long vm_flags;
573 
574 	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
575 	referenced_page = TestClearPageReferenced(page);
576 
577 	/* Lumpy reclaim - ignore references */
578 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
579 		return PAGEREF_RECLAIM;
580 
581 	/*
582 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
583 	 * move the page to the unevictable list.
584 	 */
585 	if (vm_flags & VM_LOCKED)
586 		return PAGEREF_RECLAIM;
587 
588 	if (referenced_ptes) {
589 		if (PageAnon(page))
590 			return PAGEREF_ACTIVATE;
591 		/*
592 		 * All mapped pages start out with page table
593 		 * references from the instantiating fault, so we need
594 		 * to look twice if a mapped file page is used more
595 		 * than once.
596 		 *
597 		 * Mark it and spare it for another trip around the
598 		 * inactive list.  Another page table reference will
599 		 * lead to its activation.
600 		 *
601 		 * Note: the mark is set for activated pages as well
602 		 * so that recently deactivated but used pages are
603 		 * quickly recovered.
604 		 */
605 		SetPageReferenced(page);
606 
607 		if (referenced_page)
608 			return PAGEREF_ACTIVATE;
609 
610 		return PAGEREF_KEEP;
611 	}
612 
613 	/* Reclaim if clean, defer dirty pages to writeback */
614 	if (referenced_page)
615 		return PAGEREF_RECLAIM_CLEAN;
616 
617 	return PAGEREF_RECLAIM;
618 }
619 
620 /*
621  * shrink_page_list() returns the number of reclaimed pages
622  */
623 static unsigned long shrink_page_list(struct list_head *page_list,
624 					struct scan_control *sc,
625 					enum pageout_io sync_writeback)
626 {
627 	LIST_HEAD(ret_pages);
628 	struct pagevec freed_pvec;
629 	int pgactivate = 0;
630 	unsigned long nr_reclaimed = 0;
631 
632 	cond_resched();
633 
634 	pagevec_init(&freed_pvec, 1);
635 	while (!list_empty(page_list)) {
636 		enum page_references references;
637 		struct address_space *mapping;
638 		struct page *page;
639 		int may_enter_fs;
640 
641 		cond_resched();
642 
643 		page = lru_to_page(page_list);
644 		list_del(&page->lru);
645 
646 		if (!trylock_page(page))
647 			goto keep;
648 
649 		VM_BUG_ON(PageActive(page));
650 
651 		sc->nr_scanned++;
652 
653 		if (unlikely(!page_evictable(page, NULL)))
654 			goto cull_mlocked;
655 
656 		if (!sc->may_unmap && page_mapped(page))
657 			goto keep_locked;
658 
659 		/* Double the slab pressure for mapped and swapcache pages */
660 		if (page_mapped(page) || PageSwapCache(page))
661 			sc->nr_scanned++;
662 
663 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
664 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
665 
666 		if (PageWriteback(page)) {
667 			/*
668 			 * Synchronous reclaim is performed in two passes,
669 			 * first an asynchronous pass over the list to
670 			 * start parallel writeback, and a second synchronous
671 			 * pass to wait for the IO to complete.  Wait here
672 			 * for any page for which writeback has already
673 			 * started.
674 			 */
675 			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
676 				wait_on_page_writeback(page);
677 			else
678 				goto keep_locked;
679 		}
680 
681 		references = page_check_references(page, sc);
682 		switch (references) {
683 		case PAGEREF_ACTIVATE:
684 			goto activate_locked;
685 		case PAGEREF_KEEP:
686 			goto keep_locked;
687 		case PAGEREF_RECLAIM:
688 		case PAGEREF_RECLAIM_CLEAN:
689 			; /* try to reclaim the page below */
690 		}
691 
692 		/*
693 		 * Anonymous process memory has backing store?
694 		 * Try to allocate it some swap space here.
695 		 */
696 		if (PageAnon(page) && !PageSwapCache(page)) {
697 			if (!(sc->gfp_mask & __GFP_IO))
698 				goto keep_locked;
699 			if (!add_to_swap(page))
700 				goto activate_locked;
701 			may_enter_fs = 1;
702 		}
703 
704 		mapping = page_mapping(page);
705 
706 		/*
707 		 * The page is mapped into the page tables of one or more
708 		 * processes. Try to unmap it here.
709 		 */
710 		if (page_mapped(page) && mapping) {
711 			switch (try_to_unmap(page, TTU_UNMAP)) {
712 			case SWAP_FAIL:
713 				goto activate_locked;
714 			case SWAP_AGAIN:
715 				goto keep_locked;
716 			case SWAP_MLOCK:
717 				goto cull_mlocked;
718 			case SWAP_SUCCESS:
719 				; /* try to free the page below */
720 			}
721 		}
722 
723 		if (PageDirty(page)) {
724 			if (references == PAGEREF_RECLAIM_CLEAN)
725 				goto keep_locked;
726 			if (!may_enter_fs)
727 				goto keep_locked;
728 			if (!sc->may_writepage)
729 				goto keep_locked;
730 
731 			/* Page is dirty, try to write it out here */
732 			switch (pageout(page, mapping, sync_writeback)) {
733 			case PAGE_KEEP:
734 				goto keep_locked;
735 			case PAGE_ACTIVATE:
736 				goto activate_locked;
737 			case PAGE_SUCCESS:
738 				if (PageWriteback(page) || PageDirty(page))
739 					goto keep;
740 				/*
741 				 * A synchronous write - probably a ramdisk.  Go
742 				 * ahead and try to reclaim the page.
743 				 */
744 				if (!trylock_page(page))
745 					goto keep;
746 				if (PageDirty(page) || PageWriteback(page))
747 					goto keep_locked;
748 				mapping = page_mapping(page);
749 			case PAGE_CLEAN:
750 				; /* try to free the page below */
751 			}
752 		}
753 
754 		/*
755 		 * If the page has buffers, try to free the buffer mappings
756 		 * associated with this page. If we succeed we try to free
757 		 * the page as well.
758 		 *
759 		 * We do this even if the page is PageDirty().
760 		 * try_to_release_page() does not perform I/O, but it is
761 		 * possible for a page to have PageDirty set, but it is actually
762 		 * clean (all its buffers are clean).  This happens if the
763 		 * buffers were written out directly, with submit_bh(). ext3
764 		 * will do this, as well as the blockdev mapping.
765 		 * try_to_release_page() will discover that cleanness and will
766 		 * drop the buffers and mark the page clean - it can be freed.
767 		 *
768 		 * Rarely, pages can have buffers and no ->mapping.  These are
769 		 * the pages which were not successfully invalidated in
770 		 * truncate_complete_page().  We try to drop those buffers here
771 		 * and if that worked, and the page is no longer mapped into
772 		 * process address space (page_count == 1) it can be freed.
773 		 * Otherwise, leave the page on the LRU so it is swappable.
774 		 */
775 		if (page_has_private(page)) {
776 			if (!try_to_release_page(page, sc->gfp_mask))
777 				goto activate_locked;
778 			if (!mapping && page_count(page) == 1) {
779 				unlock_page(page);
780 				if (put_page_testzero(page))
781 					goto free_it;
782 				else {
783 					/*
784 					 * rare race with speculative reference.
785 					 * the speculative reference will free
786 					 * this page shortly, so we may
787 					 * increment nr_reclaimed here (and
788 					 * leave it off the LRU).
789 					 */
790 					nr_reclaimed++;
791 					continue;
792 				}
793 			}
794 		}
795 
796 		if (!mapping || !__remove_mapping(mapping, page))
797 			goto keep_locked;
798 
799 		/*
800 		 * At this point, we have no other references and there is
801 		 * no way to pick any more up (removed from LRU, removed
802 		 * from pagecache). Can use non-atomic bitops now (and
803 		 * we obviously don't have to worry about waking up a process
804 		 * waiting on the page lock, because there are no references.
805 		 */
806 		__clear_page_locked(page);
807 free_it:
808 		nr_reclaimed++;
809 		if (!pagevec_add(&freed_pvec, page)) {
810 			__pagevec_free(&freed_pvec);
811 			pagevec_reinit(&freed_pvec);
812 		}
813 		continue;
814 
815 cull_mlocked:
816 		if (PageSwapCache(page))
817 			try_to_free_swap(page);
818 		unlock_page(page);
819 		putback_lru_page(page);
820 		continue;
821 
822 activate_locked:
823 		/* Not a candidate for swapping, so reclaim swap space. */
824 		if (PageSwapCache(page) && vm_swap_full())
825 			try_to_free_swap(page);
826 		VM_BUG_ON(PageActive(page));
827 		SetPageActive(page);
828 		pgactivate++;
829 keep_locked:
830 		unlock_page(page);
831 keep:
832 		list_add(&page->lru, &ret_pages);
833 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
834 	}
835 	list_splice(&ret_pages, page_list);
836 	if (pagevec_count(&freed_pvec))
837 		__pagevec_free(&freed_pvec);
838 	count_vm_events(PGACTIVATE, pgactivate);
839 	return nr_reclaimed;
840 }
841 
842 /* LRU Isolation modes. */
843 #define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
844 #define ISOLATE_ACTIVE 1	/* Isolate active pages. */
845 #define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
846 
847 /*
848  * Attempt to remove the specified page from its LRU.  Only take this page
849  * if it is of the appropriate PageActive status.  Pages which are being
850  * freed elsewhere are also ignored.
851  *
852  * page:	page to consider
853  * mode:	one of the LRU isolation modes defined above
854  *
855  * returns 0 on success, -ve errno on failure.
856  */
857 int __isolate_lru_page(struct page *page, int mode, int file)
858 {
859 	int ret = -EINVAL;
860 
861 	/* Only take pages on the LRU. */
862 	if (!PageLRU(page))
863 		return ret;
864 
865 	/*
866 	 * When checking the active state, we need to be sure we are
867 	 * dealing with comparible boolean values.  Take the logical not
868 	 * of each.
869 	 */
870 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
871 		return ret;
872 
873 	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
874 		return ret;
875 
876 	/*
877 	 * When this function is being called for lumpy reclaim, we
878 	 * initially look into all LRU pages, active, inactive and
879 	 * unevictable; only give shrink_page_list evictable pages.
880 	 */
881 	if (PageUnevictable(page))
882 		return ret;
883 
884 	ret = -EBUSY;
885 
886 	if (likely(get_page_unless_zero(page))) {
887 		/*
888 		 * Be careful not to clear PageLRU until after we're
889 		 * sure the page is not being freed elsewhere -- the
890 		 * page release code relies on it.
891 		 */
892 		ClearPageLRU(page);
893 		ret = 0;
894 	}
895 
896 	return ret;
897 }
898 
899 /*
900  * zone->lru_lock is heavily contended.  Some of the functions that
901  * shrink the lists perform better by taking out a batch of pages
902  * and working on them outside the LRU lock.
903  *
904  * For pagecache intensive workloads, this function is the hottest
905  * spot in the kernel (apart from copy_*_user functions).
906  *
907  * Appropriate locks must be held before calling this function.
908  *
909  * @nr_to_scan:	The number of pages to look through on the list.
910  * @src:	The LRU list to pull pages off.
911  * @dst:	The temp list to put pages on to.
912  * @scanned:	The number of pages that were scanned.
913  * @order:	The caller's attempted allocation order
914  * @mode:	One of the LRU isolation modes
915  * @file:	True [1] if isolating file [!anon] pages
916  *
917  * returns how many pages were moved onto *@dst.
918  */
919 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
920 		struct list_head *src, struct list_head *dst,
921 		unsigned long *scanned, int order, int mode, int file)
922 {
923 	unsigned long nr_taken = 0;
924 	unsigned long scan;
925 
926 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
927 		struct page *page;
928 		unsigned long pfn;
929 		unsigned long end_pfn;
930 		unsigned long page_pfn;
931 		int zone_id;
932 
933 		page = lru_to_page(src);
934 		prefetchw_prev_lru_page(page, src, flags);
935 
936 		VM_BUG_ON(!PageLRU(page));
937 
938 		switch (__isolate_lru_page(page, mode, file)) {
939 		case 0:
940 			list_move(&page->lru, dst);
941 			mem_cgroup_del_lru(page);
942 			nr_taken++;
943 			break;
944 
945 		case -EBUSY:
946 			/* else it is being freed elsewhere */
947 			list_move(&page->lru, src);
948 			mem_cgroup_rotate_lru_list(page, page_lru(page));
949 			continue;
950 
951 		default:
952 			BUG();
953 		}
954 
955 		if (!order)
956 			continue;
957 
958 		/*
959 		 * Attempt to take all pages in the order aligned region
960 		 * surrounding the tag page.  Only take those pages of
961 		 * the same active state as that tag page.  We may safely
962 		 * round the target page pfn down to the requested order
963 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
964 		 * where that page is in a different zone we will detect
965 		 * it from its zone id and abort this block scan.
966 		 */
967 		zone_id = page_zone_id(page);
968 		page_pfn = page_to_pfn(page);
969 		pfn = page_pfn & ~((1 << order) - 1);
970 		end_pfn = pfn + (1 << order);
971 		for (; pfn < end_pfn; pfn++) {
972 			struct page *cursor_page;
973 
974 			/* The target page is in the block, ignore it. */
975 			if (unlikely(pfn == page_pfn))
976 				continue;
977 
978 			/* Avoid holes within the zone. */
979 			if (unlikely(!pfn_valid_within(pfn)))
980 				break;
981 
982 			cursor_page = pfn_to_page(pfn);
983 
984 			/* Check that we have not crossed a zone boundary. */
985 			if (unlikely(page_zone_id(cursor_page) != zone_id))
986 				continue;
987 
988 			/*
989 			 * If we don't have enough swap space, reclaiming of
990 			 * anon page which don't already have a swap slot is
991 			 * pointless.
992 			 */
993 			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
994 					!PageSwapCache(cursor_page))
995 				continue;
996 
997 			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
998 				list_move(&cursor_page->lru, dst);
999 				mem_cgroup_del_lru(cursor_page);
1000 				nr_taken++;
1001 				scan++;
1002 			}
1003 		}
1004 	}
1005 
1006 	*scanned = scan;
1007 	return nr_taken;
1008 }
1009 
1010 static unsigned long isolate_pages_global(unsigned long nr,
1011 					struct list_head *dst,
1012 					unsigned long *scanned, int order,
1013 					int mode, struct zone *z,
1014 					struct mem_cgroup *mem_cont,
1015 					int active, int file)
1016 {
1017 	int lru = LRU_BASE;
1018 	if (active)
1019 		lru += LRU_ACTIVE;
1020 	if (file)
1021 		lru += LRU_FILE;
1022 	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1023 								mode, file);
1024 }
1025 
1026 /*
1027  * clear_active_flags() is a helper for shrink_active_list(), clearing
1028  * any active bits from the pages in the list.
1029  */
1030 static unsigned long clear_active_flags(struct list_head *page_list,
1031 					unsigned int *count)
1032 {
1033 	int nr_active = 0;
1034 	int lru;
1035 	struct page *page;
1036 
1037 	list_for_each_entry(page, page_list, lru) {
1038 		lru = page_lru_base_type(page);
1039 		if (PageActive(page)) {
1040 			lru += LRU_ACTIVE;
1041 			ClearPageActive(page);
1042 			nr_active++;
1043 		}
1044 		count[lru]++;
1045 	}
1046 
1047 	return nr_active;
1048 }
1049 
1050 /**
1051  * isolate_lru_page - tries to isolate a page from its LRU list
1052  * @page: page to isolate from its LRU list
1053  *
1054  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1055  * vmstat statistic corresponding to whatever LRU list the page was on.
1056  *
1057  * Returns 0 if the page was removed from an LRU list.
1058  * Returns -EBUSY if the page was not on an LRU list.
1059  *
1060  * The returned page will have PageLRU() cleared.  If it was found on
1061  * the active list, it will have PageActive set.  If it was found on
1062  * the unevictable list, it will have the PageUnevictable bit set. That flag
1063  * may need to be cleared by the caller before letting the page go.
1064  *
1065  * The vmstat statistic corresponding to the list on which the page was
1066  * found will be decremented.
1067  *
1068  * Restrictions:
1069  * (1) Must be called with an elevated refcount on the page. This is a
1070  *     fundamentnal difference from isolate_lru_pages (which is called
1071  *     without a stable reference).
1072  * (2) the lru_lock must not be held.
1073  * (3) interrupts must be enabled.
1074  */
1075 int isolate_lru_page(struct page *page)
1076 {
1077 	int ret = -EBUSY;
1078 
1079 	if (PageLRU(page)) {
1080 		struct zone *zone = page_zone(page);
1081 
1082 		spin_lock_irq(&zone->lru_lock);
1083 		if (PageLRU(page) && get_page_unless_zero(page)) {
1084 			int lru = page_lru(page);
1085 			ret = 0;
1086 			ClearPageLRU(page);
1087 
1088 			del_page_from_lru_list(zone, page, lru);
1089 		}
1090 		spin_unlock_irq(&zone->lru_lock);
1091 	}
1092 	return ret;
1093 }
1094 
1095 /*
1096  * Are there way too many processes in the direct reclaim path already?
1097  */
1098 static int too_many_isolated(struct zone *zone, int file,
1099 		struct scan_control *sc)
1100 {
1101 	unsigned long inactive, isolated;
1102 
1103 	if (current_is_kswapd())
1104 		return 0;
1105 
1106 	if (!scanning_global_lru(sc))
1107 		return 0;
1108 
1109 	if (file) {
1110 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1111 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1112 	} else {
1113 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1114 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1115 	}
1116 
1117 	return isolated > inactive;
1118 }
1119 
1120 /*
1121  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1122  * of reclaimed pages
1123  */
1124 static unsigned long shrink_inactive_list(unsigned long max_scan,
1125 			struct zone *zone, struct scan_control *sc,
1126 			int priority, int file)
1127 {
1128 	LIST_HEAD(page_list);
1129 	struct pagevec pvec;
1130 	unsigned long nr_scanned = 0;
1131 	unsigned long nr_reclaimed = 0;
1132 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1133 	int lumpy_reclaim = 0;
1134 
1135 	while (unlikely(too_many_isolated(zone, file, sc))) {
1136 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1137 
1138 		/* We are about to die and free our memory. Return now. */
1139 		if (fatal_signal_pending(current))
1140 			return SWAP_CLUSTER_MAX;
1141 	}
1142 
1143 	/*
1144 	 * If we need a large contiguous chunk of memory, or have
1145 	 * trouble getting a small set of contiguous pages, we
1146 	 * will reclaim both active and inactive pages.
1147 	 *
1148 	 * We use the same threshold as pageout congestion_wait below.
1149 	 */
1150 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1151 		lumpy_reclaim = 1;
1152 	else if (sc->order && priority < DEF_PRIORITY - 2)
1153 		lumpy_reclaim = 1;
1154 
1155 	pagevec_init(&pvec, 1);
1156 
1157 	lru_add_drain();
1158 	spin_lock_irq(&zone->lru_lock);
1159 	do {
1160 		struct page *page;
1161 		unsigned long nr_taken;
1162 		unsigned long nr_scan;
1163 		unsigned long nr_freed;
1164 		unsigned long nr_active;
1165 		unsigned int count[NR_LRU_LISTS] = { 0, };
1166 		int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1167 		unsigned long nr_anon;
1168 		unsigned long nr_file;
1169 
1170 		nr_taken = sc->isolate_pages(SWAP_CLUSTER_MAX,
1171 			     &page_list, &nr_scan, sc->order, mode,
1172 				zone, sc->mem_cgroup, 0, file);
1173 
1174 		if (scanning_global_lru(sc)) {
1175 			zone->pages_scanned += nr_scan;
1176 			if (current_is_kswapd())
1177 				__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1178 						       nr_scan);
1179 			else
1180 				__count_zone_vm_events(PGSCAN_DIRECT, zone,
1181 						       nr_scan);
1182 		}
1183 
1184 		if (nr_taken == 0)
1185 			goto done;
1186 
1187 		nr_active = clear_active_flags(&page_list, count);
1188 		__count_vm_events(PGDEACTIVATE, nr_active);
1189 
1190 		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1191 						-count[LRU_ACTIVE_FILE]);
1192 		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1193 						-count[LRU_INACTIVE_FILE]);
1194 		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1195 						-count[LRU_ACTIVE_ANON]);
1196 		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1197 						-count[LRU_INACTIVE_ANON]);
1198 
1199 		nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1200 		nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1201 		__mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1202 		__mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1203 
1204 		reclaim_stat->recent_scanned[0] += nr_anon;
1205 		reclaim_stat->recent_scanned[1] += nr_file;
1206 
1207 		spin_unlock_irq(&zone->lru_lock);
1208 
1209 		nr_scanned += nr_scan;
1210 		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1211 
1212 		/*
1213 		 * If we are direct reclaiming for contiguous pages and we do
1214 		 * not reclaim everything in the list, try again and wait
1215 		 * for IO to complete. This will stall high-order allocations
1216 		 * but that should be acceptable to the caller
1217 		 */
1218 		if (nr_freed < nr_taken && !current_is_kswapd() &&
1219 		    lumpy_reclaim) {
1220 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1221 
1222 			/*
1223 			 * The attempt at page out may have made some
1224 			 * of the pages active, mark them inactive again.
1225 			 */
1226 			nr_active = clear_active_flags(&page_list, count);
1227 			count_vm_events(PGDEACTIVATE, nr_active);
1228 
1229 			nr_freed += shrink_page_list(&page_list, sc,
1230 							PAGEOUT_IO_SYNC);
1231 		}
1232 
1233 		nr_reclaimed += nr_freed;
1234 
1235 		local_irq_disable();
1236 		if (current_is_kswapd())
1237 			__count_vm_events(KSWAPD_STEAL, nr_freed);
1238 		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
1239 
1240 		spin_lock(&zone->lru_lock);
1241 		/*
1242 		 * Put back any unfreeable pages.
1243 		 */
1244 		while (!list_empty(&page_list)) {
1245 			int lru;
1246 			page = lru_to_page(&page_list);
1247 			VM_BUG_ON(PageLRU(page));
1248 			list_del(&page->lru);
1249 			if (unlikely(!page_evictable(page, NULL))) {
1250 				spin_unlock_irq(&zone->lru_lock);
1251 				putback_lru_page(page);
1252 				spin_lock_irq(&zone->lru_lock);
1253 				continue;
1254 			}
1255 			SetPageLRU(page);
1256 			lru = page_lru(page);
1257 			add_page_to_lru_list(zone, page, lru);
1258 			if (is_active_lru(lru)) {
1259 				int file = is_file_lru(lru);
1260 				reclaim_stat->recent_rotated[file]++;
1261 			}
1262 			if (!pagevec_add(&pvec, page)) {
1263 				spin_unlock_irq(&zone->lru_lock);
1264 				__pagevec_release(&pvec);
1265 				spin_lock_irq(&zone->lru_lock);
1266 			}
1267 		}
1268 		__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1269 		__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1270 
1271   	} while (nr_scanned < max_scan);
1272 
1273 done:
1274 	spin_unlock_irq(&zone->lru_lock);
1275 	pagevec_release(&pvec);
1276 	return nr_reclaimed;
1277 }
1278 
1279 /*
1280  * We are about to scan this zone at a certain priority level.  If that priority
1281  * level is smaller (ie: more urgent) than the previous priority, then note
1282  * that priority level within the zone.  This is done so that when the next
1283  * process comes in to scan this zone, it will immediately start out at this
1284  * priority level rather than having to build up its own scanning priority.
1285  * Here, this priority affects only the reclaim-mapped threshold.
1286  */
1287 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1288 {
1289 	if (priority < zone->prev_priority)
1290 		zone->prev_priority = priority;
1291 }
1292 
1293 /*
1294  * This moves pages from the active list to the inactive list.
1295  *
1296  * We move them the other way if the page is referenced by one or more
1297  * processes, from rmap.
1298  *
1299  * If the pages are mostly unmapped, the processing is fast and it is
1300  * appropriate to hold zone->lru_lock across the whole operation.  But if
1301  * the pages are mapped, the processing is slow (page_referenced()) so we
1302  * should drop zone->lru_lock around each page.  It's impossible to balance
1303  * this, so instead we remove the pages from the LRU while processing them.
1304  * It is safe to rely on PG_active against the non-LRU pages in here because
1305  * nobody will play with that bit on a non-LRU page.
1306  *
1307  * The downside is that we have to touch page->_count against each page.
1308  * But we had to alter page->flags anyway.
1309  */
1310 
1311 static void move_active_pages_to_lru(struct zone *zone,
1312 				     struct list_head *list,
1313 				     enum lru_list lru)
1314 {
1315 	unsigned long pgmoved = 0;
1316 	struct pagevec pvec;
1317 	struct page *page;
1318 
1319 	pagevec_init(&pvec, 1);
1320 
1321 	while (!list_empty(list)) {
1322 		page = lru_to_page(list);
1323 
1324 		VM_BUG_ON(PageLRU(page));
1325 		SetPageLRU(page);
1326 
1327 		list_move(&page->lru, &zone->lru[lru].list);
1328 		mem_cgroup_add_lru_list(page, lru);
1329 		pgmoved++;
1330 
1331 		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1332 			spin_unlock_irq(&zone->lru_lock);
1333 			if (buffer_heads_over_limit)
1334 				pagevec_strip(&pvec);
1335 			__pagevec_release(&pvec);
1336 			spin_lock_irq(&zone->lru_lock);
1337 		}
1338 	}
1339 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1340 	if (!is_active_lru(lru))
1341 		__count_vm_events(PGDEACTIVATE, pgmoved);
1342 }
1343 
1344 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1345 			struct scan_control *sc, int priority, int file)
1346 {
1347 	unsigned long nr_taken;
1348 	unsigned long pgscanned;
1349 	unsigned long vm_flags;
1350 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1351 	LIST_HEAD(l_active);
1352 	LIST_HEAD(l_inactive);
1353 	struct page *page;
1354 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1355 	unsigned long nr_rotated = 0;
1356 
1357 	lru_add_drain();
1358 	spin_lock_irq(&zone->lru_lock);
1359 	nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1360 					ISOLATE_ACTIVE, zone,
1361 					sc->mem_cgroup, 1, file);
1362 	/*
1363 	 * zone->pages_scanned is used for detect zone's oom
1364 	 * mem_cgroup remembers nr_scan by itself.
1365 	 */
1366 	if (scanning_global_lru(sc)) {
1367 		zone->pages_scanned += pgscanned;
1368 	}
1369 	reclaim_stat->recent_scanned[file] += nr_taken;
1370 
1371 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1372 	if (file)
1373 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1374 	else
1375 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1376 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1377 	spin_unlock_irq(&zone->lru_lock);
1378 
1379 	while (!list_empty(&l_hold)) {
1380 		cond_resched();
1381 		page = lru_to_page(&l_hold);
1382 		list_del(&page->lru);
1383 
1384 		if (unlikely(!page_evictable(page, NULL))) {
1385 			putback_lru_page(page);
1386 			continue;
1387 		}
1388 
1389 		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1390 			nr_rotated++;
1391 			/*
1392 			 * Identify referenced, file-backed active pages and
1393 			 * give them one more trip around the active list. So
1394 			 * that executable code get better chances to stay in
1395 			 * memory under moderate memory pressure.  Anon pages
1396 			 * are not likely to be evicted by use-once streaming
1397 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1398 			 * so we ignore them here.
1399 			 */
1400 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1401 				list_add(&page->lru, &l_active);
1402 				continue;
1403 			}
1404 		}
1405 
1406 		ClearPageActive(page);	/* we are de-activating */
1407 		list_add(&page->lru, &l_inactive);
1408 	}
1409 
1410 	/*
1411 	 * Move pages back to the lru list.
1412 	 */
1413 	spin_lock_irq(&zone->lru_lock);
1414 	/*
1415 	 * Count referenced pages from currently used mappings as rotated,
1416 	 * even though only some of them are actually re-activated.  This
1417 	 * helps balance scan pressure between file and anonymous pages in
1418 	 * get_scan_ratio.
1419 	 */
1420 	reclaim_stat->recent_rotated[file] += nr_rotated;
1421 
1422 	move_active_pages_to_lru(zone, &l_active,
1423 						LRU_ACTIVE + file * LRU_FILE);
1424 	move_active_pages_to_lru(zone, &l_inactive,
1425 						LRU_BASE   + file * LRU_FILE);
1426 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1427 	spin_unlock_irq(&zone->lru_lock);
1428 }
1429 
1430 static int inactive_anon_is_low_global(struct zone *zone)
1431 {
1432 	unsigned long active, inactive;
1433 
1434 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1435 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1436 
1437 	if (inactive * zone->inactive_ratio < active)
1438 		return 1;
1439 
1440 	return 0;
1441 }
1442 
1443 /**
1444  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1445  * @zone: zone to check
1446  * @sc:   scan control of this context
1447  *
1448  * Returns true if the zone does not have enough inactive anon pages,
1449  * meaning some active anon pages need to be deactivated.
1450  */
1451 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1452 {
1453 	int low;
1454 
1455 	if (scanning_global_lru(sc))
1456 		low = inactive_anon_is_low_global(zone);
1457 	else
1458 		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1459 	return low;
1460 }
1461 
1462 static int inactive_file_is_low_global(struct zone *zone)
1463 {
1464 	unsigned long active, inactive;
1465 
1466 	active = zone_page_state(zone, NR_ACTIVE_FILE);
1467 	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1468 
1469 	return (active > inactive);
1470 }
1471 
1472 /**
1473  * inactive_file_is_low - check if file pages need to be deactivated
1474  * @zone: zone to check
1475  * @sc:   scan control of this context
1476  *
1477  * When the system is doing streaming IO, memory pressure here
1478  * ensures that active file pages get deactivated, until more
1479  * than half of the file pages are on the inactive list.
1480  *
1481  * Once we get to that situation, protect the system's working
1482  * set from being evicted by disabling active file page aging.
1483  *
1484  * This uses a different ratio than the anonymous pages, because
1485  * the page cache uses a use-once replacement algorithm.
1486  */
1487 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1488 {
1489 	int low;
1490 
1491 	if (scanning_global_lru(sc))
1492 		low = inactive_file_is_low_global(zone);
1493 	else
1494 		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1495 	return low;
1496 }
1497 
1498 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1499 				int file)
1500 {
1501 	if (file)
1502 		return inactive_file_is_low(zone, sc);
1503 	else
1504 		return inactive_anon_is_low(zone, sc);
1505 }
1506 
1507 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1508 	struct zone *zone, struct scan_control *sc, int priority)
1509 {
1510 	int file = is_file_lru(lru);
1511 
1512 	if (is_active_lru(lru)) {
1513 		if (inactive_list_is_low(zone, sc, file))
1514 		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1515 		return 0;
1516 	}
1517 
1518 	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1519 }
1520 
1521 /*
1522  * Determine how aggressively the anon and file LRU lists should be
1523  * scanned.  The relative value of each set of LRU lists is determined
1524  * by looking at the fraction of the pages scanned we did rotate back
1525  * onto the active list instead of evict.
1526  *
1527  * percent[0] specifies how much pressure to put on ram/swap backed
1528  * memory, while percent[1] determines pressure on the file LRUs.
1529  */
1530 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1531 					unsigned long *percent)
1532 {
1533 	unsigned long anon, file, free;
1534 	unsigned long anon_prio, file_prio;
1535 	unsigned long ap, fp;
1536 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1537 
1538 	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1539 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1540 	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1541 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1542 
1543 	if (scanning_global_lru(sc)) {
1544 		free  = zone_page_state(zone, NR_FREE_PAGES);
1545 		/* If we have very few page cache pages,
1546 		   force-scan anon pages. */
1547 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1548 			percent[0] = 100;
1549 			percent[1] = 0;
1550 			return;
1551 		}
1552 	}
1553 
1554 	/*
1555 	 * OK, so we have swap space and a fair amount of page cache
1556 	 * pages.  We use the recently rotated / recently scanned
1557 	 * ratios to determine how valuable each cache is.
1558 	 *
1559 	 * Because workloads change over time (and to avoid overflow)
1560 	 * we keep these statistics as a floating average, which ends
1561 	 * up weighing recent references more than old ones.
1562 	 *
1563 	 * anon in [0], file in [1]
1564 	 */
1565 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1566 		spin_lock_irq(&zone->lru_lock);
1567 		reclaim_stat->recent_scanned[0] /= 2;
1568 		reclaim_stat->recent_rotated[0] /= 2;
1569 		spin_unlock_irq(&zone->lru_lock);
1570 	}
1571 
1572 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1573 		spin_lock_irq(&zone->lru_lock);
1574 		reclaim_stat->recent_scanned[1] /= 2;
1575 		reclaim_stat->recent_rotated[1] /= 2;
1576 		spin_unlock_irq(&zone->lru_lock);
1577 	}
1578 
1579 	/*
1580 	 * With swappiness at 100, anonymous and file have the same priority.
1581 	 * This scanning priority is essentially the inverse of IO cost.
1582 	 */
1583 	anon_prio = sc->swappiness;
1584 	file_prio = 200 - sc->swappiness;
1585 
1586 	/*
1587 	 * The amount of pressure on anon vs file pages is inversely
1588 	 * proportional to the fraction of recently scanned pages on
1589 	 * each list that were recently referenced and in active use.
1590 	 */
1591 	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1592 	ap /= reclaim_stat->recent_rotated[0] + 1;
1593 
1594 	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1595 	fp /= reclaim_stat->recent_rotated[1] + 1;
1596 
1597 	/* Normalize to percentages */
1598 	percent[0] = 100 * ap / (ap + fp + 1);
1599 	percent[1] = 100 - percent[0];
1600 }
1601 
1602 /*
1603  * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1604  * until we collected @swap_cluster_max pages to scan.
1605  */
1606 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1607 				       unsigned long *nr_saved_scan)
1608 {
1609 	unsigned long nr;
1610 
1611 	*nr_saved_scan += nr_to_scan;
1612 	nr = *nr_saved_scan;
1613 
1614 	if (nr >= SWAP_CLUSTER_MAX)
1615 		*nr_saved_scan = 0;
1616 	else
1617 		nr = 0;
1618 
1619 	return nr;
1620 }
1621 
1622 /*
1623  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1624  */
1625 static void shrink_zone(int priority, struct zone *zone,
1626 				struct scan_control *sc)
1627 {
1628 	unsigned long nr[NR_LRU_LISTS];
1629 	unsigned long nr_to_scan;
1630 	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1631 	enum lru_list l;
1632 	unsigned long nr_reclaimed = sc->nr_reclaimed;
1633 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1634 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1635 	int noswap = 0;
1636 
1637 	/* If we have no swap space, do not bother scanning anon pages. */
1638 	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1639 		noswap = 1;
1640 		percent[0] = 0;
1641 		percent[1] = 100;
1642 	} else
1643 		get_scan_ratio(zone, sc, percent);
1644 
1645 	for_each_evictable_lru(l) {
1646 		int file = is_file_lru(l);
1647 		unsigned long scan;
1648 
1649 		scan = zone_nr_lru_pages(zone, sc, l);
1650 		if (priority || noswap) {
1651 			scan >>= priority;
1652 			scan = (scan * percent[file]) / 100;
1653 		}
1654 		nr[l] = nr_scan_try_batch(scan,
1655 					  &reclaim_stat->nr_saved_scan[l]);
1656 	}
1657 
1658 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1659 					nr[LRU_INACTIVE_FILE]) {
1660 		for_each_evictable_lru(l) {
1661 			if (nr[l]) {
1662 				nr_to_scan = min_t(unsigned long,
1663 						   nr[l], SWAP_CLUSTER_MAX);
1664 				nr[l] -= nr_to_scan;
1665 
1666 				nr_reclaimed += shrink_list(l, nr_to_scan,
1667 							    zone, sc, priority);
1668 			}
1669 		}
1670 		/*
1671 		 * On large memory systems, scan >> priority can become
1672 		 * really large. This is fine for the starting priority;
1673 		 * we want to put equal scanning pressure on each zone.
1674 		 * However, if the VM has a harder time of freeing pages,
1675 		 * with multiple processes reclaiming pages, the total
1676 		 * freeing target can get unreasonably large.
1677 		 */
1678 		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1679 			break;
1680 	}
1681 
1682 	sc->nr_reclaimed = nr_reclaimed;
1683 
1684 	/*
1685 	 * Even if we did not try to evict anon pages at all, we want to
1686 	 * rebalance the anon lru active/inactive ratio.
1687 	 */
1688 	if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1689 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1690 
1691 	throttle_vm_writeout(sc->gfp_mask);
1692 }
1693 
1694 /*
1695  * This is the direct reclaim path, for page-allocating processes.  We only
1696  * try to reclaim pages from zones which will satisfy the caller's allocation
1697  * request.
1698  *
1699  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1700  * Because:
1701  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1702  *    allocation or
1703  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1704  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1705  *    zone defense algorithm.
1706  *
1707  * If a zone is deemed to be full of pinned pages then just give it a light
1708  * scan then give up on it.
1709  */
1710 static void shrink_zones(int priority, struct zonelist *zonelist,
1711 					struct scan_control *sc)
1712 {
1713 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1714 	struct zoneref *z;
1715 	struct zone *zone;
1716 
1717 	sc->all_unreclaimable = 1;
1718 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1719 					sc->nodemask) {
1720 		if (!populated_zone(zone))
1721 			continue;
1722 		/*
1723 		 * Take care memory controller reclaiming has small influence
1724 		 * to global LRU.
1725 		 */
1726 		if (scanning_global_lru(sc)) {
1727 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1728 				continue;
1729 			note_zone_scanning_priority(zone, priority);
1730 
1731 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1732 				continue;	/* Let kswapd poll it */
1733 			sc->all_unreclaimable = 0;
1734 		} else {
1735 			/*
1736 			 * Ignore cpuset limitation here. We just want to reduce
1737 			 * # of used pages by us regardless of memory shortage.
1738 			 */
1739 			sc->all_unreclaimable = 0;
1740 			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1741 							priority);
1742 		}
1743 
1744 		shrink_zone(priority, zone, sc);
1745 	}
1746 }
1747 
1748 /*
1749  * This is the main entry point to direct page reclaim.
1750  *
1751  * If a full scan of the inactive list fails to free enough memory then we
1752  * are "out of memory" and something needs to be killed.
1753  *
1754  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1755  * high - the zone may be full of dirty or under-writeback pages, which this
1756  * caller can't do much about.  We kick the writeback threads and take explicit
1757  * naps in the hope that some of these pages can be written.  But if the
1758  * allocating task holds filesystem locks which prevent writeout this might not
1759  * work, and the allocation attempt will fail.
1760  *
1761  * returns:	0, if no pages reclaimed
1762  * 		else, the number of pages reclaimed
1763  */
1764 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1765 					struct scan_control *sc)
1766 {
1767 	int priority;
1768 	unsigned long ret = 0;
1769 	unsigned long total_scanned = 0;
1770 	struct reclaim_state *reclaim_state = current->reclaim_state;
1771 	unsigned long lru_pages = 0;
1772 	struct zoneref *z;
1773 	struct zone *zone;
1774 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1775 	unsigned long writeback_threshold;
1776 
1777 	delayacct_freepages_start();
1778 
1779 	if (scanning_global_lru(sc))
1780 		count_vm_event(ALLOCSTALL);
1781 	/*
1782 	 * mem_cgroup will not do shrink_slab.
1783 	 */
1784 	if (scanning_global_lru(sc)) {
1785 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1786 
1787 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1788 				continue;
1789 
1790 			lru_pages += zone_reclaimable_pages(zone);
1791 		}
1792 	}
1793 
1794 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1795 		sc->nr_scanned = 0;
1796 		if (!priority)
1797 			disable_swap_token();
1798 		shrink_zones(priority, zonelist, sc);
1799 		/*
1800 		 * Don't shrink slabs when reclaiming memory from
1801 		 * over limit cgroups
1802 		 */
1803 		if (scanning_global_lru(sc)) {
1804 			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1805 			if (reclaim_state) {
1806 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1807 				reclaim_state->reclaimed_slab = 0;
1808 			}
1809 		}
1810 		total_scanned += sc->nr_scanned;
1811 		if (sc->nr_reclaimed >= sc->nr_to_reclaim) {
1812 			ret = sc->nr_reclaimed;
1813 			goto out;
1814 		}
1815 
1816 		/*
1817 		 * Try to write back as many pages as we just scanned.  This
1818 		 * tends to cause slow streaming writers to write data to the
1819 		 * disk smoothly, at the dirtying rate, which is nice.   But
1820 		 * that's undesirable in laptop mode, where we *want* lumpy
1821 		 * writeout.  So in laptop mode, write out the whole world.
1822 		 */
1823 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1824 		if (total_scanned > writeback_threshold) {
1825 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1826 			sc->may_writepage = 1;
1827 		}
1828 
1829 		/* Take a nap, wait for some writeback to complete */
1830 		if (!sc->hibernation_mode && sc->nr_scanned &&
1831 		    priority < DEF_PRIORITY - 2)
1832 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1833 	}
1834 	/* top priority shrink_zones still had more to do? don't OOM, then */
1835 	if (!sc->all_unreclaimable && scanning_global_lru(sc))
1836 		ret = sc->nr_reclaimed;
1837 out:
1838 	/*
1839 	 * Now that we've scanned all the zones at this priority level, note
1840 	 * that level within the zone so that the next thread which performs
1841 	 * scanning of this zone will immediately start out at this priority
1842 	 * level.  This affects only the decision whether or not to bring
1843 	 * mapped pages onto the inactive list.
1844 	 */
1845 	if (priority < 0)
1846 		priority = 0;
1847 
1848 	if (scanning_global_lru(sc)) {
1849 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1850 
1851 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1852 				continue;
1853 
1854 			zone->prev_priority = priority;
1855 		}
1856 	} else
1857 		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1858 
1859 	delayacct_freepages_end();
1860 
1861 	return ret;
1862 }
1863 
1864 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1865 				gfp_t gfp_mask, nodemask_t *nodemask)
1866 {
1867 	struct scan_control sc = {
1868 		.gfp_mask = gfp_mask,
1869 		.may_writepage = !laptop_mode,
1870 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
1871 		.may_unmap = 1,
1872 		.may_swap = 1,
1873 		.swappiness = vm_swappiness,
1874 		.order = order,
1875 		.mem_cgroup = NULL,
1876 		.isolate_pages = isolate_pages_global,
1877 		.nodemask = nodemask,
1878 	};
1879 
1880 	return do_try_to_free_pages(zonelist, &sc);
1881 }
1882 
1883 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1884 
1885 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1886 						gfp_t gfp_mask, bool noswap,
1887 						unsigned int swappiness,
1888 						struct zone *zone, int nid)
1889 {
1890 	struct scan_control sc = {
1891 		.may_writepage = !laptop_mode,
1892 		.may_unmap = 1,
1893 		.may_swap = !noswap,
1894 		.swappiness = swappiness,
1895 		.order = 0,
1896 		.mem_cgroup = mem,
1897 		.isolate_pages = mem_cgroup_isolate_pages,
1898 	};
1899 	nodemask_t nm  = nodemask_of_node(nid);
1900 
1901 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1902 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1903 	sc.nodemask = &nm;
1904 	sc.nr_reclaimed = 0;
1905 	sc.nr_scanned = 0;
1906 	/*
1907 	 * NOTE: Although we can get the priority field, using it
1908 	 * here is not a good idea, since it limits the pages we can scan.
1909 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
1910 	 * will pick up pages from other mem cgroup's as well. We hack
1911 	 * the priority and make it zero.
1912 	 */
1913 	shrink_zone(0, zone, &sc);
1914 	return sc.nr_reclaimed;
1915 }
1916 
1917 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1918 					   gfp_t gfp_mask,
1919 					   bool noswap,
1920 					   unsigned int swappiness)
1921 {
1922 	struct zonelist *zonelist;
1923 	struct scan_control sc = {
1924 		.may_writepage = !laptop_mode,
1925 		.may_unmap = 1,
1926 		.may_swap = !noswap,
1927 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
1928 		.swappiness = swappiness,
1929 		.order = 0,
1930 		.mem_cgroup = mem_cont,
1931 		.isolate_pages = mem_cgroup_isolate_pages,
1932 		.nodemask = NULL, /* we don't care the placement */
1933 	};
1934 
1935 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1936 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1937 	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1938 	return do_try_to_free_pages(zonelist, &sc);
1939 }
1940 #endif
1941 
1942 /* is kswapd sleeping prematurely? */
1943 static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
1944 {
1945 	int i;
1946 
1947 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
1948 	if (remaining)
1949 		return 1;
1950 
1951 	/* If after HZ/10, a zone is below the high mark, it's premature */
1952 	for (i = 0; i < pgdat->nr_zones; i++) {
1953 		struct zone *zone = pgdat->node_zones + i;
1954 
1955 		if (!populated_zone(zone))
1956 			continue;
1957 
1958 		if (zone->all_unreclaimable)
1959 			continue;
1960 
1961 		if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
1962 								0, 0))
1963 			return 1;
1964 	}
1965 
1966 	return 0;
1967 }
1968 
1969 /*
1970  * For kswapd, balance_pgdat() will work across all this node's zones until
1971  * they are all at high_wmark_pages(zone).
1972  *
1973  * Returns the number of pages which were actually freed.
1974  *
1975  * There is special handling here for zones which are full of pinned pages.
1976  * This can happen if the pages are all mlocked, or if they are all used by
1977  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1978  * What we do is to detect the case where all pages in the zone have been
1979  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1980  * dead and from now on, only perform a short scan.  Basically we're polling
1981  * the zone for when the problem goes away.
1982  *
1983  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1984  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1985  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1986  * lower zones regardless of the number of free pages in the lower zones. This
1987  * interoperates with the page allocator fallback scheme to ensure that aging
1988  * of pages is balanced across the zones.
1989  */
1990 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1991 {
1992 	int all_zones_ok;
1993 	int priority;
1994 	int i;
1995 	unsigned long total_scanned;
1996 	struct reclaim_state *reclaim_state = current->reclaim_state;
1997 	struct scan_control sc = {
1998 		.gfp_mask = GFP_KERNEL,
1999 		.may_unmap = 1,
2000 		.may_swap = 1,
2001 		/*
2002 		 * kswapd doesn't want to be bailed out while reclaim. because
2003 		 * we want to put equal scanning pressure on each zone.
2004 		 */
2005 		.nr_to_reclaim = ULONG_MAX,
2006 		.swappiness = vm_swappiness,
2007 		.order = order,
2008 		.mem_cgroup = NULL,
2009 		.isolate_pages = isolate_pages_global,
2010 	};
2011 	/*
2012 	 * temp_priority is used to remember the scanning priority at which
2013 	 * this zone was successfully refilled to
2014 	 * free_pages == high_wmark_pages(zone).
2015 	 */
2016 	int temp_priority[MAX_NR_ZONES];
2017 
2018 loop_again:
2019 	total_scanned = 0;
2020 	sc.nr_reclaimed = 0;
2021 	sc.may_writepage = !laptop_mode;
2022 	count_vm_event(PAGEOUTRUN);
2023 
2024 	for (i = 0; i < pgdat->nr_zones; i++)
2025 		temp_priority[i] = DEF_PRIORITY;
2026 
2027 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2028 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2029 		unsigned long lru_pages = 0;
2030 		int has_under_min_watermark_zone = 0;
2031 
2032 		/* The swap token gets in the way of swapout... */
2033 		if (!priority)
2034 			disable_swap_token();
2035 
2036 		all_zones_ok = 1;
2037 
2038 		/*
2039 		 * Scan in the highmem->dma direction for the highest
2040 		 * zone which needs scanning
2041 		 */
2042 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2043 			struct zone *zone = pgdat->node_zones + i;
2044 
2045 			if (!populated_zone(zone))
2046 				continue;
2047 
2048 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2049 				continue;
2050 
2051 			/*
2052 			 * Do some background aging of the anon list, to give
2053 			 * pages a chance to be referenced before reclaiming.
2054 			 */
2055 			if (inactive_anon_is_low(zone, &sc))
2056 				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2057 							&sc, priority, 0);
2058 
2059 			if (!zone_watermark_ok(zone, order,
2060 					high_wmark_pages(zone), 0, 0)) {
2061 				end_zone = i;
2062 				break;
2063 			}
2064 		}
2065 		if (i < 0)
2066 			goto out;
2067 
2068 		for (i = 0; i <= end_zone; i++) {
2069 			struct zone *zone = pgdat->node_zones + i;
2070 
2071 			lru_pages += zone_reclaimable_pages(zone);
2072 		}
2073 
2074 		/*
2075 		 * Now scan the zone in the dma->highmem direction, stopping
2076 		 * at the last zone which needs scanning.
2077 		 *
2078 		 * We do this because the page allocator works in the opposite
2079 		 * direction.  This prevents the page allocator from allocating
2080 		 * pages behind kswapd's direction of progress, which would
2081 		 * cause too much scanning of the lower zones.
2082 		 */
2083 		for (i = 0; i <= end_zone; i++) {
2084 			struct zone *zone = pgdat->node_zones + i;
2085 			int nr_slab;
2086 			int nid, zid;
2087 
2088 			if (!populated_zone(zone))
2089 				continue;
2090 
2091 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2092 				continue;
2093 
2094 			temp_priority[i] = priority;
2095 			sc.nr_scanned = 0;
2096 			note_zone_scanning_priority(zone, priority);
2097 
2098 			nid = pgdat->node_id;
2099 			zid = zone_idx(zone);
2100 			/*
2101 			 * Call soft limit reclaim before calling shrink_zone.
2102 			 * For now we ignore the return value
2103 			 */
2104 			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
2105 							nid, zid);
2106 			/*
2107 			 * We put equal pressure on every zone, unless one
2108 			 * zone has way too many pages free already.
2109 			 */
2110 			if (!zone_watermark_ok(zone, order,
2111 					8*high_wmark_pages(zone), end_zone, 0))
2112 				shrink_zone(priority, zone, &sc);
2113 			reclaim_state->reclaimed_slab = 0;
2114 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2115 						lru_pages);
2116 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2117 			total_scanned += sc.nr_scanned;
2118 			if (zone->all_unreclaimable)
2119 				continue;
2120 			if (nr_slab == 0 &&
2121 			    zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
2122 				zone->all_unreclaimable = 1;
2123 			/*
2124 			 * If we've done a decent amount of scanning and
2125 			 * the reclaim ratio is low, start doing writepage
2126 			 * even in laptop mode
2127 			 */
2128 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2129 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2130 				sc.may_writepage = 1;
2131 
2132 			if (!zone_watermark_ok(zone, order,
2133 					high_wmark_pages(zone), end_zone, 0)) {
2134 				all_zones_ok = 0;
2135 				/*
2136 				 * We are still under min water mark.  This
2137 				 * means that we have a GFP_ATOMIC allocation
2138 				 * failure risk. Hurry up!
2139 				 */
2140 				if (!zone_watermark_ok(zone, order,
2141 					    min_wmark_pages(zone), end_zone, 0))
2142 					has_under_min_watermark_zone = 1;
2143 			}
2144 
2145 		}
2146 		if (all_zones_ok)
2147 			break;		/* kswapd: all done */
2148 		/*
2149 		 * OK, kswapd is getting into trouble.  Take a nap, then take
2150 		 * another pass across the zones.
2151 		 */
2152 		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2153 			if (has_under_min_watermark_zone)
2154 				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2155 			else
2156 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2157 		}
2158 
2159 		/*
2160 		 * We do this so kswapd doesn't build up large priorities for
2161 		 * example when it is freeing in parallel with allocators. It
2162 		 * matches the direct reclaim path behaviour in terms of impact
2163 		 * on zone->*_priority.
2164 		 */
2165 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2166 			break;
2167 	}
2168 out:
2169 	/*
2170 	 * Note within each zone the priority level at which this zone was
2171 	 * brought into a happy state.  So that the next thread which scans this
2172 	 * zone will start out at that priority level.
2173 	 */
2174 	for (i = 0; i < pgdat->nr_zones; i++) {
2175 		struct zone *zone = pgdat->node_zones + i;
2176 
2177 		zone->prev_priority = temp_priority[i];
2178 	}
2179 	if (!all_zones_ok) {
2180 		cond_resched();
2181 
2182 		try_to_freeze();
2183 
2184 		/*
2185 		 * Fragmentation may mean that the system cannot be
2186 		 * rebalanced for high-order allocations in all zones.
2187 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2188 		 * it means the zones have been fully scanned and are still
2189 		 * not balanced. For high-order allocations, there is
2190 		 * little point trying all over again as kswapd may
2191 		 * infinite loop.
2192 		 *
2193 		 * Instead, recheck all watermarks at order-0 as they
2194 		 * are the most important. If watermarks are ok, kswapd will go
2195 		 * back to sleep. High-order users can still perform direct
2196 		 * reclaim if they wish.
2197 		 */
2198 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2199 			order = sc.order = 0;
2200 
2201 		goto loop_again;
2202 	}
2203 
2204 	return sc.nr_reclaimed;
2205 }
2206 
2207 /*
2208  * The background pageout daemon, started as a kernel thread
2209  * from the init process.
2210  *
2211  * This basically trickles out pages so that we have _some_
2212  * free memory available even if there is no other activity
2213  * that frees anything up. This is needed for things like routing
2214  * etc, where we otherwise might have all activity going on in
2215  * asynchronous contexts that cannot page things out.
2216  *
2217  * If there are applications that are active memory-allocators
2218  * (most normal use), this basically shouldn't matter.
2219  */
2220 static int kswapd(void *p)
2221 {
2222 	unsigned long order;
2223 	pg_data_t *pgdat = (pg_data_t*)p;
2224 	struct task_struct *tsk = current;
2225 	DEFINE_WAIT(wait);
2226 	struct reclaim_state reclaim_state = {
2227 		.reclaimed_slab = 0,
2228 	};
2229 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2230 
2231 	lockdep_set_current_reclaim_state(GFP_KERNEL);
2232 
2233 	if (!cpumask_empty(cpumask))
2234 		set_cpus_allowed_ptr(tsk, cpumask);
2235 	current->reclaim_state = &reclaim_state;
2236 
2237 	/*
2238 	 * Tell the memory management that we're a "memory allocator",
2239 	 * and that if we need more memory we should get access to it
2240 	 * regardless (see "__alloc_pages()"). "kswapd" should
2241 	 * never get caught in the normal page freeing logic.
2242 	 *
2243 	 * (Kswapd normally doesn't need memory anyway, but sometimes
2244 	 * you need a small amount of memory in order to be able to
2245 	 * page out something else, and this flag essentially protects
2246 	 * us from recursively trying to free more memory as we're
2247 	 * trying to free the first piece of memory in the first place).
2248 	 */
2249 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2250 	set_freezable();
2251 
2252 	order = 0;
2253 	for ( ; ; ) {
2254 		unsigned long new_order;
2255 		int ret;
2256 
2257 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2258 		new_order = pgdat->kswapd_max_order;
2259 		pgdat->kswapd_max_order = 0;
2260 		if (order < new_order) {
2261 			/*
2262 			 * Don't sleep if someone wants a larger 'order'
2263 			 * allocation
2264 			 */
2265 			order = new_order;
2266 		} else {
2267 			if (!freezing(current) && !kthread_should_stop()) {
2268 				long remaining = 0;
2269 
2270 				/* Try to sleep for a short interval */
2271 				if (!sleeping_prematurely(pgdat, order, remaining)) {
2272 					remaining = schedule_timeout(HZ/10);
2273 					finish_wait(&pgdat->kswapd_wait, &wait);
2274 					prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2275 				}
2276 
2277 				/*
2278 				 * After a short sleep, check if it was a
2279 				 * premature sleep. If not, then go fully
2280 				 * to sleep until explicitly woken up
2281 				 */
2282 				if (!sleeping_prematurely(pgdat, order, remaining))
2283 					schedule();
2284 				else {
2285 					if (remaining)
2286 						count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2287 					else
2288 						count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2289 				}
2290 			}
2291 
2292 			order = pgdat->kswapd_max_order;
2293 		}
2294 		finish_wait(&pgdat->kswapd_wait, &wait);
2295 
2296 		ret = try_to_freeze();
2297 		if (kthread_should_stop())
2298 			break;
2299 
2300 		/*
2301 		 * We can speed up thawing tasks if we don't call balance_pgdat
2302 		 * after returning from the refrigerator
2303 		 */
2304 		if (!ret)
2305 			balance_pgdat(pgdat, order);
2306 	}
2307 	return 0;
2308 }
2309 
2310 /*
2311  * A zone is low on free memory, so wake its kswapd task to service it.
2312  */
2313 void wakeup_kswapd(struct zone *zone, int order)
2314 {
2315 	pg_data_t *pgdat;
2316 
2317 	if (!populated_zone(zone))
2318 		return;
2319 
2320 	pgdat = zone->zone_pgdat;
2321 	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2322 		return;
2323 	if (pgdat->kswapd_max_order < order)
2324 		pgdat->kswapd_max_order = order;
2325 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2326 		return;
2327 	if (!waitqueue_active(&pgdat->kswapd_wait))
2328 		return;
2329 	wake_up_interruptible(&pgdat->kswapd_wait);
2330 }
2331 
2332 /*
2333  * The reclaimable count would be mostly accurate.
2334  * The less reclaimable pages may be
2335  * - mlocked pages, which will be moved to unevictable list when encountered
2336  * - mapped pages, which may require several travels to be reclaimed
2337  * - dirty pages, which is not "instantly" reclaimable
2338  */
2339 unsigned long global_reclaimable_pages(void)
2340 {
2341 	int nr;
2342 
2343 	nr = global_page_state(NR_ACTIVE_FILE) +
2344 	     global_page_state(NR_INACTIVE_FILE);
2345 
2346 	if (nr_swap_pages > 0)
2347 		nr += global_page_state(NR_ACTIVE_ANON) +
2348 		      global_page_state(NR_INACTIVE_ANON);
2349 
2350 	return nr;
2351 }
2352 
2353 unsigned long zone_reclaimable_pages(struct zone *zone)
2354 {
2355 	int nr;
2356 
2357 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2358 	     zone_page_state(zone, NR_INACTIVE_FILE);
2359 
2360 	if (nr_swap_pages > 0)
2361 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2362 		      zone_page_state(zone, NR_INACTIVE_ANON);
2363 
2364 	return nr;
2365 }
2366 
2367 #ifdef CONFIG_HIBERNATION
2368 /*
2369  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2370  * freed pages.
2371  *
2372  * Rather than trying to age LRUs the aim is to preserve the overall
2373  * LRU order by reclaiming preferentially
2374  * inactive > active > active referenced > active mapped
2375  */
2376 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2377 {
2378 	struct reclaim_state reclaim_state;
2379 	struct scan_control sc = {
2380 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2381 		.may_swap = 1,
2382 		.may_unmap = 1,
2383 		.may_writepage = 1,
2384 		.nr_to_reclaim = nr_to_reclaim,
2385 		.hibernation_mode = 1,
2386 		.swappiness = vm_swappiness,
2387 		.order = 0,
2388 		.isolate_pages = isolate_pages_global,
2389 	};
2390 	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2391 	struct task_struct *p = current;
2392 	unsigned long nr_reclaimed;
2393 
2394 	p->flags |= PF_MEMALLOC;
2395 	lockdep_set_current_reclaim_state(sc.gfp_mask);
2396 	reclaim_state.reclaimed_slab = 0;
2397 	p->reclaim_state = &reclaim_state;
2398 
2399 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2400 
2401 	p->reclaim_state = NULL;
2402 	lockdep_clear_current_reclaim_state();
2403 	p->flags &= ~PF_MEMALLOC;
2404 
2405 	return nr_reclaimed;
2406 }
2407 #endif /* CONFIG_HIBERNATION */
2408 
2409 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2410    not required for correctness.  So if the last cpu in a node goes
2411    away, we get changed to run anywhere: as the first one comes back,
2412    restore their cpu bindings. */
2413 static int __devinit cpu_callback(struct notifier_block *nfb,
2414 				  unsigned long action, void *hcpu)
2415 {
2416 	int nid;
2417 
2418 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2419 		for_each_node_state(nid, N_HIGH_MEMORY) {
2420 			pg_data_t *pgdat = NODE_DATA(nid);
2421 			const struct cpumask *mask;
2422 
2423 			mask = cpumask_of_node(pgdat->node_id);
2424 
2425 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2426 				/* One of our CPUs online: restore mask */
2427 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2428 		}
2429 	}
2430 	return NOTIFY_OK;
2431 }
2432 
2433 /*
2434  * This kswapd start function will be called by init and node-hot-add.
2435  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2436  */
2437 int kswapd_run(int nid)
2438 {
2439 	pg_data_t *pgdat = NODE_DATA(nid);
2440 	int ret = 0;
2441 
2442 	if (pgdat->kswapd)
2443 		return 0;
2444 
2445 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2446 	if (IS_ERR(pgdat->kswapd)) {
2447 		/* failure at boot is fatal */
2448 		BUG_ON(system_state == SYSTEM_BOOTING);
2449 		printk("Failed to start kswapd on node %d\n",nid);
2450 		ret = -1;
2451 	}
2452 	return ret;
2453 }
2454 
2455 /*
2456  * Called by memory hotplug when all memory in a node is offlined.
2457  */
2458 void kswapd_stop(int nid)
2459 {
2460 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2461 
2462 	if (kswapd)
2463 		kthread_stop(kswapd);
2464 }
2465 
2466 static int __init kswapd_init(void)
2467 {
2468 	int nid;
2469 
2470 	swap_setup();
2471 	for_each_node_state(nid, N_HIGH_MEMORY)
2472  		kswapd_run(nid);
2473 	hotcpu_notifier(cpu_callback, 0);
2474 	return 0;
2475 }
2476 
2477 module_init(kswapd_init)
2478 
2479 #ifdef CONFIG_NUMA
2480 /*
2481  * Zone reclaim mode
2482  *
2483  * If non-zero call zone_reclaim when the number of free pages falls below
2484  * the watermarks.
2485  */
2486 int zone_reclaim_mode __read_mostly;
2487 
2488 #define RECLAIM_OFF 0
2489 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2490 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2491 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2492 
2493 /*
2494  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2495  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2496  * a zone.
2497  */
2498 #define ZONE_RECLAIM_PRIORITY 4
2499 
2500 /*
2501  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2502  * occur.
2503  */
2504 int sysctl_min_unmapped_ratio = 1;
2505 
2506 /*
2507  * If the number of slab pages in a zone grows beyond this percentage then
2508  * slab reclaim needs to occur.
2509  */
2510 int sysctl_min_slab_ratio = 5;
2511 
2512 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2513 {
2514 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2515 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2516 		zone_page_state(zone, NR_ACTIVE_FILE);
2517 
2518 	/*
2519 	 * It's possible for there to be more file mapped pages than
2520 	 * accounted for by the pages on the file LRU lists because
2521 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2522 	 */
2523 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2524 }
2525 
2526 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2527 static long zone_pagecache_reclaimable(struct zone *zone)
2528 {
2529 	long nr_pagecache_reclaimable;
2530 	long delta = 0;
2531 
2532 	/*
2533 	 * If RECLAIM_SWAP is set, then all file pages are considered
2534 	 * potentially reclaimable. Otherwise, we have to worry about
2535 	 * pages like swapcache and zone_unmapped_file_pages() provides
2536 	 * a better estimate
2537 	 */
2538 	if (zone_reclaim_mode & RECLAIM_SWAP)
2539 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2540 	else
2541 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2542 
2543 	/* If we can't clean pages, remove dirty pages from consideration */
2544 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
2545 		delta += zone_page_state(zone, NR_FILE_DIRTY);
2546 
2547 	/* Watch for any possible underflows due to delta */
2548 	if (unlikely(delta > nr_pagecache_reclaimable))
2549 		delta = nr_pagecache_reclaimable;
2550 
2551 	return nr_pagecache_reclaimable - delta;
2552 }
2553 
2554 /*
2555  * Try to free up some pages from this zone through reclaim.
2556  */
2557 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2558 {
2559 	/* Minimum pages needed in order to stay on node */
2560 	const unsigned long nr_pages = 1 << order;
2561 	struct task_struct *p = current;
2562 	struct reclaim_state reclaim_state;
2563 	int priority;
2564 	struct scan_control sc = {
2565 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2566 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2567 		.may_swap = 1,
2568 		.nr_to_reclaim = max_t(unsigned long, nr_pages,
2569 				       SWAP_CLUSTER_MAX),
2570 		.gfp_mask = gfp_mask,
2571 		.swappiness = vm_swappiness,
2572 		.order = order,
2573 		.isolate_pages = isolate_pages_global,
2574 	};
2575 	unsigned long slab_reclaimable;
2576 
2577 	disable_swap_token();
2578 	cond_resched();
2579 	/*
2580 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2581 	 * and we also need to be able to write out pages for RECLAIM_WRITE
2582 	 * and RECLAIM_SWAP.
2583 	 */
2584 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2585 	lockdep_set_current_reclaim_state(gfp_mask);
2586 	reclaim_state.reclaimed_slab = 0;
2587 	p->reclaim_state = &reclaim_state;
2588 
2589 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2590 		/*
2591 		 * Free memory by calling shrink zone with increasing
2592 		 * priorities until we have enough memory freed.
2593 		 */
2594 		priority = ZONE_RECLAIM_PRIORITY;
2595 		do {
2596 			note_zone_scanning_priority(zone, priority);
2597 			shrink_zone(priority, zone, &sc);
2598 			priority--;
2599 		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2600 	}
2601 
2602 	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2603 	if (slab_reclaimable > zone->min_slab_pages) {
2604 		/*
2605 		 * shrink_slab() does not currently allow us to determine how
2606 		 * many pages were freed in this zone. So we take the current
2607 		 * number of slab pages and shake the slab until it is reduced
2608 		 * by the same nr_pages that we used for reclaiming unmapped
2609 		 * pages.
2610 		 *
2611 		 * Note that shrink_slab will free memory on all zones and may
2612 		 * take a long time.
2613 		 */
2614 		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2615 			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2616 				slab_reclaimable - nr_pages)
2617 			;
2618 
2619 		/*
2620 		 * Update nr_reclaimed by the number of slab pages we
2621 		 * reclaimed from this zone.
2622 		 */
2623 		sc.nr_reclaimed += slab_reclaimable -
2624 			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2625 	}
2626 
2627 	p->reclaim_state = NULL;
2628 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2629 	lockdep_clear_current_reclaim_state();
2630 	return sc.nr_reclaimed >= nr_pages;
2631 }
2632 
2633 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2634 {
2635 	int node_id;
2636 	int ret;
2637 
2638 	/*
2639 	 * Zone reclaim reclaims unmapped file backed pages and
2640 	 * slab pages if we are over the defined limits.
2641 	 *
2642 	 * A small portion of unmapped file backed pages is needed for
2643 	 * file I/O otherwise pages read by file I/O will be immediately
2644 	 * thrown out if the zone is overallocated. So we do not reclaim
2645 	 * if less than a specified percentage of the zone is used by
2646 	 * unmapped file backed pages.
2647 	 */
2648 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2649 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2650 		return ZONE_RECLAIM_FULL;
2651 
2652 	if (zone->all_unreclaimable)
2653 		return ZONE_RECLAIM_FULL;
2654 
2655 	/*
2656 	 * Do not scan if the allocation should not be delayed.
2657 	 */
2658 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2659 		return ZONE_RECLAIM_NOSCAN;
2660 
2661 	/*
2662 	 * Only run zone reclaim on the local zone or on zones that do not
2663 	 * have associated processors. This will favor the local processor
2664 	 * over remote processors and spread off node memory allocations
2665 	 * as wide as possible.
2666 	 */
2667 	node_id = zone_to_nid(zone);
2668 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2669 		return ZONE_RECLAIM_NOSCAN;
2670 
2671 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2672 		return ZONE_RECLAIM_NOSCAN;
2673 
2674 	ret = __zone_reclaim(zone, gfp_mask, order);
2675 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2676 
2677 	if (!ret)
2678 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2679 
2680 	return ret;
2681 }
2682 #endif
2683 
2684 /*
2685  * page_evictable - test whether a page is evictable
2686  * @page: the page to test
2687  * @vma: the VMA in which the page is or will be mapped, may be NULL
2688  *
2689  * Test whether page is evictable--i.e., should be placed on active/inactive
2690  * lists vs unevictable list.  The vma argument is !NULL when called from the
2691  * fault path to determine how to instantate a new page.
2692  *
2693  * Reasons page might not be evictable:
2694  * (1) page's mapping marked unevictable
2695  * (2) page is part of an mlocked VMA
2696  *
2697  */
2698 int page_evictable(struct page *page, struct vm_area_struct *vma)
2699 {
2700 
2701 	if (mapping_unevictable(page_mapping(page)))
2702 		return 0;
2703 
2704 	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2705 		return 0;
2706 
2707 	return 1;
2708 }
2709 
2710 /**
2711  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2712  * @page: page to check evictability and move to appropriate lru list
2713  * @zone: zone page is in
2714  *
2715  * Checks a page for evictability and moves the page to the appropriate
2716  * zone lru list.
2717  *
2718  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2719  * have PageUnevictable set.
2720  */
2721 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2722 {
2723 	VM_BUG_ON(PageActive(page));
2724 
2725 retry:
2726 	ClearPageUnevictable(page);
2727 	if (page_evictable(page, NULL)) {
2728 		enum lru_list l = page_lru_base_type(page);
2729 
2730 		__dec_zone_state(zone, NR_UNEVICTABLE);
2731 		list_move(&page->lru, &zone->lru[l].list);
2732 		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2733 		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2734 		__count_vm_event(UNEVICTABLE_PGRESCUED);
2735 	} else {
2736 		/*
2737 		 * rotate unevictable list
2738 		 */
2739 		SetPageUnevictable(page);
2740 		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2741 		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2742 		if (page_evictable(page, NULL))
2743 			goto retry;
2744 	}
2745 }
2746 
2747 /**
2748  * scan_mapping_unevictable_pages - scan an address space for evictable pages
2749  * @mapping: struct address_space to scan for evictable pages
2750  *
2751  * Scan all pages in mapping.  Check unevictable pages for
2752  * evictability and move them to the appropriate zone lru list.
2753  */
2754 void scan_mapping_unevictable_pages(struct address_space *mapping)
2755 {
2756 	pgoff_t next = 0;
2757 	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2758 			 PAGE_CACHE_SHIFT;
2759 	struct zone *zone;
2760 	struct pagevec pvec;
2761 
2762 	if (mapping->nrpages == 0)
2763 		return;
2764 
2765 	pagevec_init(&pvec, 0);
2766 	while (next < end &&
2767 		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2768 		int i;
2769 		int pg_scanned = 0;
2770 
2771 		zone = NULL;
2772 
2773 		for (i = 0; i < pagevec_count(&pvec); i++) {
2774 			struct page *page = pvec.pages[i];
2775 			pgoff_t page_index = page->index;
2776 			struct zone *pagezone = page_zone(page);
2777 
2778 			pg_scanned++;
2779 			if (page_index > next)
2780 				next = page_index;
2781 			next++;
2782 
2783 			if (pagezone != zone) {
2784 				if (zone)
2785 					spin_unlock_irq(&zone->lru_lock);
2786 				zone = pagezone;
2787 				spin_lock_irq(&zone->lru_lock);
2788 			}
2789 
2790 			if (PageLRU(page) && PageUnevictable(page))
2791 				check_move_unevictable_page(page, zone);
2792 		}
2793 		if (zone)
2794 			spin_unlock_irq(&zone->lru_lock);
2795 		pagevec_release(&pvec);
2796 
2797 		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2798 	}
2799 
2800 }
2801 
2802 /**
2803  * scan_zone_unevictable_pages - check unevictable list for evictable pages
2804  * @zone - zone of which to scan the unevictable list
2805  *
2806  * Scan @zone's unevictable LRU lists to check for pages that have become
2807  * evictable.  Move those that have to @zone's inactive list where they
2808  * become candidates for reclaim, unless shrink_inactive_zone() decides
2809  * to reactivate them.  Pages that are still unevictable are rotated
2810  * back onto @zone's unevictable list.
2811  */
2812 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2813 static void scan_zone_unevictable_pages(struct zone *zone)
2814 {
2815 	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2816 	unsigned long scan;
2817 	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2818 
2819 	while (nr_to_scan > 0) {
2820 		unsigned long batch_size = min(nr_to_scan,
2821 						SCAN_UNEVICTABLE_BATCH_SIZE);
2822 
2823 		spin_lock_irq(&zone->lru_lock);
2824 		for (scan = 0;  scan < batch_size; scan++) {
2825 			struct page *page = lru_to_page(l_unevictable);
2826 
2827 			if (!trylock_page(page))
2828 				continue;
2829 
2830 			prefetchw_prev_lru_page(page, l_unevictable, flags);
2831 
2832 			if (likely(PageLRU(page) && PageUnevictable(page)))
2833 				check_move_unevictable_page(page, zone);
2834 
2835 			unlock_page(page);
2836 		}
2837 		spin_unlock_irq(&zone->lru_lock);
2838 
2839 		nr_to_scan -= batch_size;
2840 	}
2841 }
2842 
2843 
2844 /**
2845  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2846  *
2847  * A really big hammer:  scan all zones' unevictable LRU lists to check for
2848  * pages that have become evictable.  Move those back to the zones'
2849  * inactive list where they become candidates for reclaim.
2850  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2851  * and we add swap to the system.  As such, it runs in the context of a task
2852  * that has possibly/probably made some previously unevictable pages
2853  * evictable.
2854  */
2855 static void scan_all_zones_unevictable_pages(void)
2856 {
2857 	struct zone *zone;
2858 
2859 	for_each_zone(zone) {
2860 		scan_zone_unevictable_pages(zone);
2861 	}
2862 }
2863 
2864 /*
2865  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2866  * all nodes' unevictable lists for evictable pages
2867  */
2868 unsigned long scan_unevictable_pages;
2869 
2870 int scan_unevictable_handler(struct ctl_table *table, int write,
2871 			   void __user *buffer,
2872 			   size_t *length, loff_t *ppos)
2873 {
2874 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
2875 
2876 	if (write && *(unsigned long *)table->data)
2877 		scan_all_zones_unevictable_pages();
2878 
2879 	scan_unevictable_pages = 0;
2880 	return 0;
2881 }
2882 
2883 /*
2884  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2885  * a specified node's per zone unevictable lists for evictable pages.
2886  */
2887 
2888 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2889 					  struct sysdev_attribute *attr,
2890 					  char *buf)
2891 {
2892 	return sprintf(buf, "0\n");	/* always zero; should fit... */
2893 }
2894 
2895 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2896 					   struct sysdev_attribute *attr,
2897 					const char *buf, size_t count)
2898 {
2899 	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2900 	struct zone *zone;
2901 	unsigned long res;
2902 	unsigned long req = strict_strtoul(buf, 10, &res);
2903 
2904 	if (!req)
2905 		return 1;	/* zero is no-op */
2906 
2907 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2908 		if (!populated_zone(zone))
2909 			continue;
2910 		scan_zone_unevictable_pages(zone);
2911 	}
2912 	return 1;
2913 }
2914 
2915 
2916 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2917 			read_scan_unevictable_node,
2918 			write_scan_unevictable_node);
2919 
2920 int scan_unevictable_register_node(struct node *node)
2921 {
2922 	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2923 }
2924 
2925 void scan_unevictable_unregister_node(struct node *node)
2926 {
2927 	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2928 }
2929 
2930