1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/migrate.h> 43 #include <linux/delayacct.h> 44 #include <linux/sysctl.h> 45 #include <linux/memory-tiers.h> 46 #include <linux/oom.h> 47 #include <linux/pagevec.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 #include <linux/psi.h> 52 #include <linux/pagewalk.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/ctype.h> 55 #include <linux/debugfs.h> 56 #include <linux/khugepaged.h> 57 #include <linux/rculist_nulls.h> 58 #include <linux/random.h> 59 #include <linux/mmu_notifier.h> 60 61 #include <asm/tlbflush.h> 62 #include <asm/div64.h> 63 64 #include <linux/swapops.h> 65 #include <linux/balloon_compaction.h> 66 #include <linux/sched/sysctl.h> 67 68 #include "internal.h" 69 #include "swap.h" 70 71 #define CREATE_TRACE_POINTS 72 #include <trace/events/vmscan.h> 73 74 struct scan_control { 75 /* How many pages shrink_list() should reclaim */ 76 unsigned long nr_to_reclaim; 77 78 /* 79 * Nodemask of nodes allowed by the caller. If NULL, all nodes 80 * are scanned. 81 */ 82 nodemask_t *nodemask; 83 84 /* 85 * The memory cgroup that hit its limit and as a result is the 86 * primary target of this reclaim invocation. 87 */ 88 struct mem_cgroup *target_mem_cgroup; 89 90 /* 91 * Scan pressure balancing between anon and file LRUs 92 */ 93 unsigned long anon_cost; 94 unsigned long file_cost; 95 96 #ifdef CONFIG_MEMCG 97 /* Swappiness value for proactive reclaim. Always use sc_swappiness()! */ 98 int *proactive_swappiness; 99 #endif 100 101 /* Can active folios be deactivated as part of reclaim? */ 102 #define DEACTIVATE_ANON 1 103 #define DEACTIVATE_FILE 2 104 unsigned int may_deactivate:2; 105 unsigned int force_deactivate:1; 106 unsigned int skipped_deactivate:1; 107 108 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 109 unsigned int may_writepage:1; 110 111 /* Can mapped folios be reclaimed? */ 112 unsigned int may_unmap:1; 113 114 /* Can folios be swapped as part of reclaim? */ 115 unsigned int may_swap:1; 116 117 /* Not allow cache_trim_mode to be turned on as part of reclaim? */ 118 unsigned int no_cache_trim_mode:1; 119 120 /* Has cache_trim_mode failed at least once? */ 121 unsigned int cache_trim_mode_failed:1; 122 123 /* Proactive reclaim invoked by userspace through memory.reclaim */ 124 unsigned int proactive:1; 125 126 /* 127 * Cgroup memory below memory.low is protected as long as we 128 * don't threaten to OOM. If any cgroup is reclaimed at 129 * reduced force or passed over entirely due to its memory.low 130 * setting (memcg_low_skipped), and nothing is reclaimed as a 131 * result, then go back for one more cycle that reclaims the protected 132 * memory (memcg_low_reclaim) to avert OOM. 133 */ 134 unsigned int memcg_low_reclaim:1; 135 unsigned int memcg_low_skipped:1; 136 137 /* Shared cgroup tree walk failed, rescan the whole tree */ 138 unsigned int memcg_full_walk:1; 139 140 unsigned int hibernation_mode:1; 141 142 /* One of the zones is ready for compaction */ 143 unsigned int compaction_ready:1; 144 145 /* There is easily reclaimable cold cache in the current node */ 146 unsigned int cache_trim_mode:1; 147 148 /* The file folios on the current node are dangerously low */ 149 unsigned int file_is_tiny:1; 150 151 /* Always discard instead of demoting to lower tier memory */ 152 unsigned int no_demotion:1; 153 154 /* Allocation order */ 155 s8 order; 156 157 /* Scan (total_size >> priority) pages at once */ 158 s8 priority; 159 160 /* The highest zone to isolate folios for reclaim from */ 161 s8 reclaim_idx; 162 163 /* This context's GFP mask */ 164 gfp_t gfp_mask; 165 166 /* Incremented by the number of inactive pages that were scanned */ 167 unsigned long nr_scanned; 168 169 /* Number of pages freed so far during a call to shrink_zones() */ 170 unsigned long nr_reclaimed; 171 172 struct { 173 unsigned int dirty; 174 unsigned int unqueued_dirty; 175 unsigned int congested; 176 unsigned int writeback; 177 unsigned int immediate; 178 unsigned int file_taken; 179 unsigned int taken; 180 } nr; 181 182 /* for recording the reclaimed slab by now */ 183 struct reclaim_state reclaim_state; 184 }; 185 186 #ifdef ARCH_HAS_PREFETCHW 187 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 188 do { \ 189 if ((_folio)->lru.prev != _base) { \ 190 struct folio *prev; \ 191 \ 192 prev = lru_to_folio(&(_folio->lru)); \ 193 prefetchw(&prev->_field); \ 194 } \ 195 } while (0) 196 #else 197 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 198 #endif 199 200 /* 201 * From 0 .. MAX_SWAPPINESS. Higher means more swappy. 202 */ 203 int vm_swappiness = 60; 204 205 #ifdef CONFIG_MEMCG 206 207 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */ 208 static bool cgroup_reclaim(struct scan_control *sc) 209 { 210 return sc->target_mem_cgroup; 211 } 212 213 /* 214 * Returns true for reclaim on the root cgroup. This is true for direct 215 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup. 216 */ 217 static bool root_reclaim(struct scan_control *sc) 218 { 219 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 220 } 221 222 /** 223 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 224 * @sc: scan_control in question 225 * 226 * The normal page dirty throttling mechanism in balance_dirty_pages() is 227 * completely broken with the legacy memcg and direct stalling in 228 * shrink_folio_list() is used for throttling instead, which lacks all the 229 * niceties such as fairness, adaptive pausing, bandwidth proportional 230 * allocation and configurability. 231 * 232 * This function tests whether the vmscan currently in progress can assume 233 * that the normal dirty throttling mechanism is operational. 234 */ 235 static bool writeback_throttling_sane(struct scan_control *sc) 236 { 237 if (!cgroup_reclaim(sc)) 238 return true; 239 #ifdef CONFIG_CGROUP_WRITEBACK 240 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 241 return true; 242 #endif 243 return false; 244 } 245 246 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 247 { 248 if (sc->proactive && sc->proactive_swappiness) 249 return *sc->proactive_swappiness; 250 return mem_cgroup_swappiness(memcg); 251 } 252 #else 253 static bool cgroup_reclaim(struct scan_control *sc) 254 { 255 return false; 256 } 257 258 static bool root_reclaim(struct scan_control *sc) 259 { 260 return true; 261 } 262 263 static bool writeback_throttling_sane(struct scan_control *sc) 264 { 265 return true; 266 } 267 268 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 269 { 270 return READ_ONCE(vm_swappiness); 271 } 272 #endif 273 274 /* for_each_managed_zone_pgdat - helper macro to iterate over all managed zones in a pgdat up to 275 * and including the specified highidx 276 * @zone: The current zone in the iterator 277 * @pgdat: The pgdat which node_zones are being iterated 278 * @idx: The index variable 279 * @highidx: The index of the highest zone to return 280 * 281 * This macro iterates through all managed zones up to and including the specified highidx. 282 * The zone iterator enters an invalid state after macro call and must be reinitialized 283 * before it can be used again. 284 */ 285 #define for_each_managed_zone_pgdat(zone, pgdat, idx, highidx) \ 286 for ((idx) = 0, (zone) = (pgdat)->node_zones; \ 287 (idx) <= (highidx); \ 288 (idx)++, (zone)++) \ 289 if (!managed_zone(zone)) \ 290 continue; \ 291 else 292 293 static void set_task_reclaim_state(struct task_struct *task, 294 struct reclaim_state *rs) 295 { 296 /* Check for an overwrite */ 297 WARN_ON_ONCE(rs && task->reclaim_state); 298 299 /* Check for the nulling of an already-nulled member */ 300 WARN_ON_ONCE(!rs && !task->reclaim_state); 301 302 task->reclaim_state = rs; 303 } 304 305 /* 306 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to 307 * scan_control->nr_reclaimed. 308 */ 309 static void flush_reclaim_state(struct scan_control *sc) 310 { 311 /* 312 * Currently, reclaim_state->reclaimed includes three types of pages 313 * freed outside of vmscan: 314 * (1) Slab pages. 315 * (2) Clean file pages from pruned inodes (on highmem systems). 316 * (3) XFS freed buffer pages. 317 * 318 * For all of these cases, we cannot universally link the pages to a 319 * single memcg. For example, a memcg-aware shrinker can free one object 320 * charged to the target memcg, causing an entire page to be freed. 321 * If we count the entire page as reclaimed from the memcg, we end up 322 * overestimating the reclaimed amount (potentially under-reclaiming). 323 * 324 * Only count such pages for global reclaim to prevent under-reclaiming 325 * from the target memcg; preventing unnecessary retries during memcg 326 * charging and false positives from proactive reclaim. 327 * 328 * For uncommon cases where the freed pages were actually mostly 329 * charged to the target memcg, we end up underestimating the reclaimed 330 * amount. This should be fine. The freed pages will be uncharged 331 * anyway, even if they are not counted here properly, and we will be 332 * able to make forward progress in charging (which is usually in a 333 * retry loop). 334 * 335 * We can go one step further, and report the uncharged objcg pages in 336 * memcg reclaim, to make reporting more accurate and reduce 337 * underestimation, but it's probably not worth the complexity for now. 338 */ 339 if (current->reclaim_state && root_reclaim(sc)) { 340 sc->nr_reclaimed += current->reclaim_state->reclaimed; 341 current->reclaim_state->reclaimed = 0; 342 } 343 } 344 345 static bool can_demote(int nid, struct scan_control *sc, 346 struct mem_cgroup *memcg) 347 { 348 int demotion_nid; 349 350 if (!numa_demotion_enabled) 351 return false; 352 if (sc && sc->no_demotion) 353 return false; 354 355 demotion_nid = next_demotion_node(nid); 356 if (demotion_nid == NUMA_NO_NODE) 357 return false; 358 359 /* If demotion node isn't in the cgroup's mems_allowed, fall back */ 360 return mem_cgroup_node_allowed(memcg, demotion_nid); 361 } 362 363 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 364 int nid, 365 struct scan_control *sc) 366 { 367 if (memcg == NULL) { 368 /* 369 * For non-memcg reclaim, is there 370 * space in any swap device? 371 */ 372 if (get_nr_swap_pages() > 0) 373 return true; 374 } else { 375 /* Is the memcg below its swap limit? */ 376 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 377 return true; 378 } 379 380 /* 381 * The page can not be swapped. 382 * 383 * Can it be reclaimed from this node via demotion? 384 */ 385 return can_demote(nid, sc, memcg); 386 } 387 388 /* 389 * This misses isolated folios which are not accounted for to save counters. 390 * As the data only determines if reclaim or compaction continues, it is 391 * not expected that isolated folios will be a dominating factor. 392 */ 393 unsigned long zone_reclaimable_pages(struct zone *zone) 394 { 395 unsigned long nr; 396 397 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 398 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 399 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 400 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 401 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 402 /* 403 * If there are no reclaimable file-backed or anonymous pages, 404 * ensure zones with sufficient free pages are not skipped. 405 * This prevents zones like DMA32 from being ignored in reclaim 406 * scenarios where they can still help alleviate memory pressure. 407 */ 408 if (nr == 0) 409 nr = zone_page_state_snapshot(zone, NR_FREE_PAGES); 410 return nr; 411 } 412 413 /** 414 * lruvec_lru_size - Returns the number of pages on the given LRU list. 415 * @lruvec: lru vector 416 * @lru: lru to use 417 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 418 */ 419 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 420 int zone_idx) 421 { 422 unsigned long size = 0; 423 int zid; 424 struct zone *zone; 425 426 for_each_managed_zone_pgdat(zone, lruvec_pgdat(lruvec), zid, zone_idx) { 427 if (!mem_cgroup_disabled()) 428 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 429 else 430 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 431 } 432 return size; 433 } 434 435 static unsigned long drop_slab_node(int nid) 436 { 437 unsigned long freed = 0; 438 struct mem_cgroup *memcg = NULL; 439 440 memcg = mem_cgroup_iter(NULL, NULL, NULL); 441 do { 442 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 443 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 444 445 return freed; 446 } 447 448 void drop_slab(void) 449 { 450 int nid; 451 int shift = 0; 452 unsigned long freed; 453 454 do { 455 freed = 0; 456 for_each_online_node(nid) { 457 if (fatal_signal_pending(current)) 458 return; 459 460 freed += drop_slab_node(nid); 461 } 462 } while ((freed >> shift++) > 1); 463 } 464 465 #define CHECK_RECLAIMER_OFFSET(type) \ 466 do { \ 467 BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD != \ 468 PGDEMOTE_##type - PGDEMOTE_KSWAPD); \ 469 BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD != \ 470 PGSCAN_##type - PGSCAN_KSWAPD); \ 471 } while (0) 472 473 static int reclaimer_offset(struct scan_control *sc) 474 { 475 CHECK_RECLAIMER_OFFSET(DIRECT); 476 CHECK_RECLAIMER_OFFSET(KHUGEPAGED); 477 CHECK_RECLAIMER_OFFSET(PROACTIVE); 478 479 if (current_is_kswapd()) 480 return 0; 481 if (current_is_khugepaged()) 482 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 483 if (sc->proactive) 484 return PGSTEAL_PROACTIVE - PGSTEAL_KSWAPD; 485 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 486 } 487 488 static inline int is_page_cache_freeable(struct folio *folio) 489 { 490 /* 491 * A freeable page cache folio is referenced only by the caller 492 * that isolated the folio, the page cache and optional filesystem 493 * private data at folio->private. 494 */ 495 return folio_ref_count(folio) - folio_test_private(folio) == 496 1 + folio_nr_pages(folio); 497 } 498 499 /* 500 * We detected a synchronous write error writing a folio out. Probably 501 * -ENOSPC. We need to propagate that into the address_space for a subsequent 502 * fsync(), msync() or close(). 503 * 504 * The tricky part is that after writepage we cannot touch the mapping: nothing 505 * prevents it from being freed up. But we have a ref on the folio and once 506 * that folio is locked, the mapping is pinned. 507 * 508 * We're allowed to run sleeping folio_lock() here because we know the caller has 509 * __GFP_FS. 510 */ 511 static void handle_write_error(struct address_space *mapping, 512 struct folio *folio, int error) 513 { 514 folio_lock(folio); 515 if (folio_mapping(folio) == mapping) 516 mapping_set_error(mapping, error); 517 folio_unlock(folio); 518 } 519 520 static bool skip_throttle_noprogress(pg_data_t *pgdat) 521 { 522 int reclaimable = 0, write_pending = 0; 523 int i; 524 struct zone *zone; 525 /* 526 * If kswapd is disabled, reschedule if necessary but do not 527 * throttle as the system is likely near OOM. 528 */ 529 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 530 return true; 531 532 /* 533 * If there are a lot of dirty/writeback folios then do not 534 * throttle as throttling will occur when the folios cycle 535 * towards the end of the LRU if still under writeback. 536 */ 537 for_each_managed_zone_pgdat(zone, pgdat, i, MAX_NR_ZONES - 1) { 538 reclaimable += zone_reclaimable_pages(zone); 539 write_pending += zone_page_state_snapshot(zone, 540 NR_ZONE_WRITE_PENDING); 541 } 542 if (2 * write_pending <= reclaimable) 543 return true; 544 545 return false; 546 } 547 548 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 549 { 550 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 551 long timeout, ret; 552 DEFINE_WAIT(wait); 553 554 /* 555 * Do not throttle user workers, kthreads other than kswapd or 556 * workqueues. They may be required for reclaim to make 557 * forward progress (e.g. journalling workqueues or kthreads). 558 */ 559 if (!current_is_kswapd() && 560 current->flags & (PF_USER_WORKER|PF_KTHREAD)) { 561 cond_resched(); 562 return; 563 } 564 565 /* 566 * These figures are pulled out of thin air. 567 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 568 * parallel reclaimers which is a short-lived event so the timeout is 569 * short. Failing to make progress or waiting on writeback are 570 * potentially long-lived events so use a longer timeout. This is shaky 571 * logic as a failure to make progress could be due to anything from 572 * writeback to a slow device to excessive referenced folios at the tail 573 * of the inactive LRU. 574 */ 575 switch(reason) { 576 case VMSCAN_THROTTLE_WRITEBACK: 577 timeout = HZ/10; 578 579 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 580 WRITE_ONCE(pgdat->nr_reclaim_start, 581 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 582 } 583 584 break; 585 case VMSCAN_THROTTLE_CONGESTED: 586 fallthrough; 587 case VMSCAN_THROTTLE_NOPROGRESS: 588 if (skip_throttle_noprogress(pgdat)) { 589 cond_resched(); 590 return; 591 } 592 593 timeout = 1; 594 595 break; 596 case VMSCAN_THROTTLE_ISOLATED: 597 timeout = HZ/50; 598 break; 599 default: 600 WARN_ON_ONCE(1); 601 timeout = HZ; 602 break; 603 } 604 605 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 606 ret = schedule_timeout(timeout); 607 finish_wait(wqh, &wait); 608 609 if (reason == VMSCAN_THROTTLE_WRITEBACK) 610 atomic_dec(&pgdat->nr_writeback_throttled); 611 612 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 613 jiffies_to_usecs(timeout - ret), 614 reason); 615 } 616 617 /* 618 * Account for folios written if tasks are throttled waiting on dirty 619 * folios to clean. If enough folios have been cleaned since throttling 620 * started then wakeup the throttled tasks. 621 */ 622 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 623 int nr_throttled) 624 { 625 unsigned long nr_written; 626 627 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 628 629 /* 630 * This is an inaccurate read as the per-cpu deltas may not 631 * be synchronised. However, given that the system is 632 * writeback throttled, it is not worth taking the penalty 633 * of getting an accurate count. At worst, the throttle 634 * timeout guarantees forward progress. 635 */ 636 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 637 READ_ONCE(pgdat->nr_reclaim_start); 638 639 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 640 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 641 } 642 643 /* possible outcome of pageout() */ 644 typedef enum { 645 /* failed to write folio out, folio is locked */ 646 PAGE_KEEP, 647 /* move folio to the active list, folio is locked */ 648 PAGE_ACTIVATE, 649 /* folio has been sent to the disk successfully, folio is unlocked */ 650 PAGE_SUCCESS, 651 /* folio is clean and locked */ 652 PAGE_CLEAN, 653 } pageout_t; 654 655 static pageout_t writeout(struct folio *folio, struct address_space *mapping, 656 struct swap_iocb **plug, struct list_head *folio_list) 657 { 658 int res; 659 660 folio_set_reclaim(folio); 661 662 /* 663 * The large shmem folio can be split if CONFIG_THP_SWAP is not enabled 664 * or we failed to allocate contiguous swap entries, in which case 665 * the split out folios get added back to folio_list. 666 */ 667 if (shmem_mapping(mapping)) 668 res = shmem_writeout(folio, plug, folio_list); 669 else 670 res = swap_writeout(folio, plug); 671 672 if (res < 0) 673 handle_write_error(mapping, folio, res); 674 if (res == AOP_WRITEPAGE_ACTIVATE) { 675 folio_clear_reclaim(folio); 676 return PAGE_ACTIVATE; 677 } 678 679 /* synchronous write? */ 680 if (!folio_test_writeback(folio)) 681 folio_clear_reclaim(folio); 682 683 trace_mm_vmscan_write_folio(folio); 684 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 685 return PAGE_SUCCESS; 686 } 687 688 /* 689 * pageout is called by shrink_folio_list() for each dirty folio. 690 */ 691 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 692 struct swap_iocb **plug, struct list_head *folio_list) 693 { 694 /* 695 * We no longer attempt to writeback filesystem folios here, other 696 * than tmpfs/shmem. That's taken care of in page-writeback. 697 * If we find a dirty filesystem folio at the end of the LRU list, 698 * typically that means the filesystem is saturating the storage 699 * with contiguous writes and telling it to write a folio here 700 * would only make the situation worse by injecting an element 701 * of random access. 702 * 703 * If the folio is swapcache, write it back even if that would 704 * block, for some throttling. This happens by accident, because 705 * swap_backing_dev_info is bust: it doesn't reflect the 706 * congestion state of the swapdevs. Easy to fix, if needed. 707 */ 708 if (!is_page_cache_freeable(folio)) 709 return PAGE_KEEP; 710 if (!mapping) { 711 /* 712 * Some data journaling orphaned folios can have 713 * folio->mapping == NULL while being dirty with clean buffers. 714 */ 715 if (folio_test_private(folio)) { 716 if (try_to_free_buffers(folio)) { 717 folio_clear_dirty(folio); 718 pr_info("%s: orphaned folio\n", __func__); 719 return PAGE_CLEAN; 720 } 721 } 722 return PAGE_KEEP; 723 } 724 725 if (!shmem_mapping(mapping) && !folio_test_anon(folio)) 726 return PAGE_ACTIVATE; 727 if (!folio_clear_dirty_for_io(folio)) 728 return PAGE_CLEAN; 729 return writeout(folio, mapping, plug, folio_list); 730 } 731 732 /* 733 * Same as remove_mapping, but if the folio is removed from the mapping, it 734 * gets returned with a refcount of 0. 735 */ 736 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 737 bool reclaimed, struct mem_cgroup *target_memcg) 738 { 739 int refcount; 740 void *shadow = NULL; 741 742 BUG_ON(!folio_test_locked(folio)); 743 BUG_ON(mapping != folio_mapping(folio)); 744 745 if (!folio_test_swapcache(folio)) 746 spin_lock(&mapping->host->i_lock); 747 xa_lock_irq(&mapping->i_pages); 748 /* 749 * The non racy check for a busy folio. 750 * 751 * Must be careful with the order of the tests. When someone has 752 * a ref to the folio, it may be possible that they dirty it then 753 * drop the reference. So if the dirty flag is tested before the 754 * refcount here, then the following race may occur: 755 * 756 * get_user_pages(&page); 757 * [user mapping goes away] 758 * write_to(page); 759 * !folio_test_dirty(folio) [good] 760 * folio_set_dirty(folio); 761 * folio_put(folio); 762 * !refcount(folio) [good, discard it] 763 * 764 * [oops, our write_to data is lost] 765 * 766 * Reversing the order of the tests ensures such a situation cannot 767 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 768 * load is not satisfied before that of folio->_refcount. 769 * 770 * Note that if the dirty flag is always set via folio_mark_dirty, 771 * and thus under the i_pages lock, then this ordering is not required. 772 */ 773 refcount = 1 + folio_nr_pages(folio); 774 if (!folio_ref_freeze(folio, refcount)) 775 goto cannot_free; 776 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 777 if (unlikely(folio_test_dirty(folio))) { 778 folio_ref_unfreeze(folio, refcount); 779 goto cannot_free; 780 } 781 782 if (folio_test_swapcache(folio)) { 783 swp_entry_t swap = folio->swap; 784 785 if (reclaimed && !mapping_exiting(mapping)) 786 shadow = workingset_eviction(folio, target_memcg); 787 __delete_from_swap_cache(folio, swap, shadow); 788 memcg1_swapout(folio, swap); 789 xa_unlock_irq(&mapping->i_pages); 790 put_swap_folio(folio, swap); 791 } else { 792 void (*free_folio)(struct folio *); 793 794 free_folio = mapping->a_ops->free_folio; 795 /* 796 * Remember a shadow entry for reclaimed file cache in 797 * order to detect refaults, thus thrashing, later on. 798 * 799 * But don't store shadows in an address space that is 800 * already exiting. This is not just an optimization, 801 * inode reclaim needs to empty out the radix tree or 802 * the nodes are lost. Don't plant shadows behind its 803 * back. 804 * 805 * We also don't store shadows for DAX mappings because the 806 * only page cache folios found in these are zero pages 807 * covering holes, and because we don't want to mix DAX 808 * exceptional entries and shadow exceptional entries in the 809 * same address_space. 810 */ 811 if (reclaimed && folio_is_file_lru(folio) && 812 !mapping_exiting(mapping) && !dax_mapping(mapping)) 813 shadow = workingset_eviction(folio, target_memcg); 814 __filemap_remove_folio(folio, shadow); 815 xa_unlock_irq(&mapping->i_pages); 816 if (mapping_shrinkable(mapping)) 817 inode_add_lru(mapping->host); 818 spin_unlock(&mapping->host->i_lock); 819 820 if (free_folio) 821 free_folio(folio); 822 } 823 824 return 1; 825 826 cannot_free: 827 xa_unlock_irq(&mapping->i_pages); 828 if (!folio_test_swapcache(folio)) 829 spin_unlock(&mapping->host->i_lock); 830 return 0; 831 } 832 833 /** 834 * remove_mapping() - Attempt to remove a folio from its mapping. 835 * @mapping: The address space. 836 * @folio: The folio to remove. 837 * 838 * If the folio is dirty, under writeback or if someone else has a ref 839 * on it, removal will fail. 840 * Return: The number of pages removed from the mapping. 0 if the folio 841 * could not be removed. 842 * Context: The caller should have a single refcount on the folio and 843 * hold its lock. 844 */ 845 long remove_mapping(struct address_space *mapping, struct folio *folio) 846 { 847 if (__remove_mapping(mapping, folio, false, NULL)) { 848 /* 849 * Unfreezing the refcount with 1 effectively 850 * drops the pagecache ref for us without requiring another 851 * atomic operation. 852 */ 853 folio_ref_unfreeze(folio, 1); 854 return folio_nr_pages(folio); 855 } 856 return 0; 857 } 858 859 /** 860 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 861 * @folio: Folio to be returned to an LRU list. 862 * 863 * Add previously isolated @folio to appropriate LRU list. 864 * The folio may still be unevictable for other reasons. 865 * 866 * Context: lru_lock must not be held, interrupts must be enabled. 867 */ 868 void folio_putback_lru(struct folio *folio) 869 { 870 folio_add_lru(folio); 871 folio_put(folio); /* drop ref from isolate */ 872 } 873 874 enum folio_references { 875 FOLIOREF_RECLAIM, 876 FOLIOREF_RECLAIM_CLEAN, 877 FOLIOREF_KEEP, 878 FOLIOREF_ACTIVATE, 879 }; 880 881 #ifdef CONFIG_LRU_GEN 882 /* 883 * Only used on a mapped folio in the eviction (rmap walk) path, where promotion 884 * needs to be done by taking the folio off the LRU list and then adding it back 885 * with PG_active set. In contrast, the aging (page table walk) path uses 886 * folio_update_gen(). 887 */ 888 static bool lru_gen_set_refs(struct folio *folio) 889 { 890 /* see the comment on LRU_REFS_FLAGS */ 891 if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) { 892 set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced)); 893 return false; 894 } 895 896 set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_workingset)); 897 return true; 898 } 899 #else 900 static bool lru_gen_set_refs(struct folio *folio) 901 { 902 return false; 903 } 904 #endif /* CONFIG_LRU_GEN */ 905 906 static enum folio_references folio_check_references(struct folio *folio, 907 struct scan_control *sc) 908 { 909 int referenced_ptes, referenced_folio; 910 unsigned long vm_flags; 911 912 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 913 &vm_flags); 914 915 /* 916 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 917 * Let the folio, now marked Mlocked, be moved to the unevictable list. 918 */ 919 if (vm_flags & VM_LOCKED) 920 return FOLIOREF_ACTIVATE; 921 922 /* 923 * There are two cases to consider. 924 * 1) Rmap lock contention: rotate. 925 * 2) Skip the non-shared swapbacked folio mapped solely by 926 * the exiting or OOM-reaped process. 927 */ 928 if (referenced_ptes == -1) 929 return FOLIOREF_KEEP; 930 931 if (lru_gen_enabled()) { 932 if (!referenced_ptes) 933 return FOLIOREF_RECLAIM; 934 935 return lru_gen_set_refs(folio) ? FOLIOREF_ACTIVATE : FOLIOREF_KEEP; 936 } 937 938 referenced_folio = folio_test_clear_referenced(folio); 939 940 if (referenced_ptes) { 941 /* 942 * All mapped folios start out with page table 943 * references from the instantiating fault, so we need 944 * to look twice if a mapped file/anon folio is used more 945 * than once. 946 * 947 * Mark it and spare it for another trip around the 948 * inactive list. Another page table reference will 949 * lead to its activation. 950 * 951 * Note: the mark is set for activated folios as well 952 * so that recently deactivated but used folios are 953 * quickly recovered. 954 */ 955 folio_set_referenced(folio); 956 957 if (referenced_folio || referenced_ptes > 1) 958 return FOLIOREF_ACTIVATE; 959 960 /* 961 * Activate file-backed executable folios after first usage. 962 */ 963 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 964 return FOLIOREF_ACTIVATE; 965 966 return FOLIOREF_KEEP; 967 } 968 969 /* Reclaim if clean, defer dirty folios to writeback */ 970 if (referenced_folio && folio_is_file_lru(folio)) 971 return FOLIOREF_RECLAIM_CLEAN; 972 973 return FOLIOREF_RECLAIM; 974 } 975 976 /* Check if a folio is dirty or under writeback */ 977 static void folio_check_dirty_writeback(struct folio *folio, 978 bool *dirty, bool *writeback) 979 { 980 struct address_space *mapping; 981 982 /* 983 * Anonymous folios are not handled by flushers and must be written 984 * from reclaim context. Do not stall reclaim based on them. 985 * MADV_FREE anonymous folios are put into inactive file list too. 986 * They could be mistakenly treated as file lru. So further anon 987 * test is needed. 988 */ 989 if (!folio_is_file_lru(folio) || 990 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 991 *dirty = false; 992 *writeback = false; 993 return; 994 } 995 996 /* By default assume that the folio flags are accurate */ 997 *dirty = folio_test_dirty(folio); 998 *writeback = folio_test_writeback(folio); 999 1000 /* Verify dirty/writeback state if the filesystem supports it */ 1001 if (!folio_test_private(folio)) 1002 return; 1003 1004 mapping = folio_mapping(folio); 1005 if (mapping && mapping->a_ops->is_dirty_writeback) 1006 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 1007 } 1008 1009 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private) 1010 { 1011 struct folio *dst; 1012 nodemask_t *allowed_mask; 1013 struct migration_target_control *mtc; 1014 1015 mtc = (struct migration_target_control *)private; 1016 1017 allowed_mask = mtc->nmask; 1018 /* 1019 * make sure we allocate from the target node first also trying to 1020 * demote or reclaim pages from the target node via kswapd if we are 1021 * low on free memory on target node. If we don't do this and if 1022 * we have free memory on the slower(lower) memtier, we would start 1023 * allocating pages from slower(lower) memory tiers without even forcing 1024 * a demotion of cold pages from the target memtier. This can result 1025 * in the kernel placing hot pages in slower(lower) memory tiers. 1026 */ 1027 mtc->nmask = NULL; 1028 mtc->gfp_mask |= __GFP_THISNODE; 1029 dst = alloc_migration_target(src, (unsigned long)mtc); 1030 if (dst) 1031 return dst; 1032 1033 mtc->gfp_mask &= ~__GFP_THISNODE; 1034 mtc->nmask = allowed_mask; 1035 1036 return alloc_migration_target(src, (unsigned long)mtc); 1037 } 1038 1039 /* 1040 * Take folios on @demote_folios and attempt to demote them to another node. 1041 * Folios which are not demoted are left on @demote_folios. 1042 */ 1043 static unsigned int demote_folio_list(struct list_head *demote_folios, 1044 struct pglist_data *pgdat) 1045 { 1046 int target_nid = next_demotion_node(pgdat->node_id); 1047 unsigned int nr_succeeded; 1048 nodemask_t allowed_mask; 1049 1050 struct migration_target_control mtc = { 1051 /* 1052 * Allocate from 'node', or fail quickly and quietly. 1053 * When this happens, 'page' will likely just be discarded 1054 * instead of migrated. 1055 */ 1056 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 1057 __GFP_NOMEMALLOC | GFP_NOWAIT, 1058 .nid = target_nid, 1059 .nmask = &allowed_mask, 1060 .reason = MR_DEMOTION, 1061 }; 1062 1063 if (list_empty(demote_folios)) 1064 return 0; 1065 1066 if (target_nid == NUMA_NO_NODE) 1067 return 0; 1068 1069 node_get_allowed_targets(pgdat, &allowed_mask); 1070 1071 /* Demotion ignores all cpuset and mempolicy settings */ 1072 migrate_pages(demote_folios, alloc_migrate_folio, NULL, 1073 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1074 &nr_succeeded); 1075 1076 return nr_succeeded; 1077 } 1078 1079 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1080 { 1081 if (gfp_mask & __GFP_FS) 1082 return true; 1083 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1084 return false; 1085 /* 1086 * We can "enter_fs" for swap-cache with only __GFP_IO 1087 * providing this isn't SWP_FS_OPS. 1088 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1089 * but that will never affect SWP_FS_OPS, so the data_race 1090 * is safe. 1091 */ 1092 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1093 } 1094 1095 /* 1096 * shrink_folio_list() returns the number of reclaimed pages 1097 */ 1098 static unsigned int shrink_folio_list(struct list_head *folio_list, 1099 struct pglist_data *pgdat, struct scan_control *sc, 1100 struct reclaim_stat *stat, bool ignore_references, 1101 struct mem_cgroup *memcg) 1102 { 1103 struct folio_batch free_folios; 1104 LIST_HEAD(ret_folios); 1105 LIST_HEAD(demote_folios); 1106 unsigned int nr_reclaimed = 0, nr_demoted = 0; 1107 unsigned int pgactivate = 0; 1108 bool do_demote_pass; 1109 struct swap_iocb *plug = NULL; 1110 1111 folio_batch_init(&free_folios); 1112 memset(stat, 0, sizeof(*stat)); 1113 cond_resched(); 1114 do_demote_pass = can_demote(pgdat->node_id, sc, memcg); 1115 1116 retry: 1117 while (!list_empty(folio_list)) { 1118 struct address_space *mapping; 1119 struct folio *folio; 1120 enum folio_references references = FOLIOREF_RECLAIM; 1121 bool dirty, writeback; 1122 unsigned int nr_pages; 1123 1124 cond_resched(); 1125 1126 folio = lru_to_folio(folio_list); 1127 list_del(&folio->lru); 1128 1129 if (!folio_trylock(folio)) 1130 goto keep; 1131 1132 if (folio_contain_hwpoisoned_page(folio)) { 1133 unmap_poisoned_folio(folio, folio_pfn(folio), false); 1134 folio_unlock(folio); 1135 folio_put(folio); 1136 continue; 1137 } 1138 1139 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1140 1141 nr_pages = folio_nr_pages(folio); 1142 1143 /* Account the number of base pages */ 1144 sc->nr_scanned += nr_pages; 1145 1146 if (unlikely(!folio_evictable(folio))) 1147 goto activate_locked; 1148 1149 if (!sc->may_unmap && folio_mapped(folio)) 1150 goto keep_locked; 1151 1152 /* 1153 * The number of dirty pages determines if a node is marked 1154 * reclaim_congested. kswapd will stall and start writing 1155 * folios if the tail of the LRU is all dirty unqueued folios. 1156 */ 1157 folio_check_dirty_writeback(folio, &dirty, &writeback); 1158 if (dirty || writeback) 1159 stat->nr_dirty += nr_pages; 1160 1161 if (dirty && !writeback) 1162 stat->nr_unqueued_dirty += nr_pages; 1163 1164 /* 1165 * Treat this folio as congested if folios are cycling 1166 * through the LRU so quickly that the folios marked 1167 * for immediate reclaim are making it to the end of 1168 * the LRU a second time. 1169 */ 1170 if (writeback && folio_test_reclaim(folio)) 1171 stat->nr_congested += nr_pages; 1172 1173 /* 1174 * If a folio at the tail of the LRU is under writeback, there 1175 * are three cases to consider. 1176 * 1177 * 1) If reclaim is encountering an excessive number 1178 * of folios under writeback and this folio has both 1179 * the writeback and reclaim flags set, then it 1180 * indicates that folios are being queued for I/O but 1181 * are being recycled through the LRU before the I/O 1182 * can complete. Waiting on the folio itself risks an 1183 * indefinite stall if it is impossible to writeback 1184 * the folio due to I/O error or disconnected storage 1185 * so instead note that the LRU is being scanned too 1186 * quickly and the caller can stall after the folio 1187 * list has been processed. 1188 * 1189 * 2) Global or new memcg reclaim encounters a folio that is 1190 * not marked for immediate reclaim, or the caller does not 1191 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1192 * not to fs), or the folio belongs to a mapping where 1193 * waiting on writeback during reclaim may lead to a deadlock. 1194 * In this case mark the folio for immediate reclaim and 1195 * continue scanning. 1196 * 1197 * Require may_enter_fs() because we would wait on fs, which 1198 * may not have submitted I/O yet. And the loop driver might 1199 * enter reclaim, and deadlock if it waits on a folio for 1200 * which it is needed to do the write (loop masks off 1201 * __GFP_IO|__GFP_FS for this reason); but more thought 1202 * would probably show more reasons. 1203 * 1204 * 3) Legacy memcg encounters a folio that already has the 1205 * reclaim flag set. memcg does not have any dirty folio 1206 * throttling so we could easily OOM just because too many 1207 * folios are in writeback and there is nothing else to 1208 * reclaim. Wait for the writeback to complete. 1209 * 1210 * In cases 1) and 2) we activate the folios to get them out of 1211 * the way while we continue scanning for clean folios on the 1212 * inactive list and refilling from the active list. The 1213 * observation here is that waiting for disk writes is more 1214 * expensive than potentially causing reloads down the line. 1215 * Since they're marked for immediate reclaim, they won't put 1216 * memory pressure on the cache working set any longer than it 1217 * takes to write them to disk. 1218 */ 1219 if (folio_test_writeback(folio)) { 1220 mapping = folio_mapping(folio); 1221 1222 /* Case 1 above */ 1223 if (current_is_kswapd() && 1224 folio_test_reclaim(folio) && 1225 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1226 stat->nr_immediate += nr_pages; 1227 goto activate_locked; 1228 1229 /* Case 2 above */ 1230 } else if (writeback_throttling_sane(sc) || 1231 !folio_test_reclaim(folio) || 1232 !may_enter_fs(folio, sc->gfp_mask) || 1233 (mapping && 1234 mapping_writeback_may_deadlock_on_reclaim(mapping))) { 1235 /* 1236 * This is slightly racy - 1237 * folio_end_writeback() might have 1238 * just cleared the reclaim flag, then 1239 * setting the reclaim flag here ends up 1240 * interpreted as the readahead flag - but 1241 * that does not matter enough to care. 1242 * What we do want is for this folio to 1243 * have the reclaim flag set next time 1244 * memcg reclaim reaches the tests above, 1245 * so it will then wait for writeback to 1246 * avoid OOM; and it's also appropriate 1247 * in global reclaim. 1248 */ 1249 folio_set_reclaim(folio); 1250 stat->nr_writeback += nr_pages; 1251 goto activate_locked; 1252 1253 /* Case 3 above */ 1254 } else { 1255 folio_unlock(folio); 1256 folio_wait_writeback(folio); 1257 /* then go back and try same folio again */ 1258 list_add_tail(&folio->lru, folio_list); 1259 continue; 1260 } 1261 } 1262 1263 if (!ignore_references) 1264 references = folio_check_references(folio, sc); 1265 1266 switch (references) { 1267 case FOLIOREF_ACTIVATE: 1268 goto activate_locked; 1269 case FOLIOREF_KEEP: 1270 stat->nr_ref_keep += nr_pages; 1271 goto keep_locked; 1272 case FOLIOREF_RECLAIM: 1273 case FOLIOREF_RECLAIM_CLEAN: 1274 ; /* try to reclaim the folio below */ 1275 } 1276 1277 /* 1278 * Before reclaiming the folio, try to relocate 1279 * its contents to another node. 1280 */ 1281 if (do_demote_pass && 1282 (thp_migration_supported() || !folio_test_large(folio))) { 1283 list_add(&folio->lru, &demote_folios); 1284 folio_unlock(folio); 1285 continue; 1286 } 1287 1288 /* 1289 * Anonymous process memory has backing store? 1290 * Try to allocate it some swap space here. 1291 * Lazyfree folio could be freed directly 1292 */ 1293 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1294 if (!folio_test_swapcache(folio)) { 1295 if (!(sc->gfp_mask & __GFP_IO)) 1296 goto keep_locked; 1297 if (folio_maybe_dma_pinned(folio)) 1298 goto keep_locked; 1299 if (folio_test_large(folio)) { 1300 /* cannot split folio, skip it */ 1301 if (!can_split_folio(folio, 1, NULL)) 1302 goto activate_locked; 1303 /* 1304 * Split partially mapped folios right away. 1305 * We can free the unmapped pages without IO. 1306 */ 1307 if (data_race(!list_empty(&folio->_deferred_list) && 1308 folio_test_partially_mapped(folio)) && 1309 split_folio_to_list(folio, folio_list)) 1310 goto activate_locked; 1311 } 1312 if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN)) { 1313 int __maybe_unused order = folio_order(folio); 1314 1315 if (!folio_test_large(folio)) 1316 goto activate_locked_split; 1317 /* Fallback to swap normal pages */ 1318 if (split_folio_to_list(folio, folio_list)) 1319 goto activate_locked; 1320 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1321 if (nr_pages >= HPAGE_PMD_NR) { 1322 count_memcg_folio_events(folio, 1323 THP_SWPOUT_FALLBACK, 1); 1324 count_vm_event(THP_SWPOUT_FALLBACK); 1325 } 1326 #endif 1327 count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK); 1328 if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN)) 1329 goto activate_locked_split; 1330 } 1331 /* 1332 * Normally the folio will be dirtied in unmap because its 1333 * pte should be dirty. A special case is MADV_FREE page. The 1334 * page's pte could have dirty bit cleared but the folio's 1335 * SwapBacked flag is still set because clearing the dirty bit 1336 * and SwapBacked flag has no lock protected. For such folio, 1337 * unmap will not set dirty bit for it, so folio reclaim will 1338 * not write the folio out. This can cause data corruption when 1339 * the folio is swapped in later. Always setting the dirty flag 1340 * for the folio solves the problem. 1341 */ 1342 folio_mark_dirty(folio); 1343 } 1344 } 1345 1346 /* 1347 * If the folio was split above, the tail pages will make 1348 * their own pass through this function and be accounted 1349 * then. 1350 */ 1351 if ((nr_pages > 1) && !folio_test_large(folio)) { 1352 sc->nr_scanned -= (nr_pages - 1); 1353 nr_pages = 1; 1354 } 1355 1356 /* 1357 * The folio is mapped into the page tables of one or more 1358 * processes. Try to unmap it here. 1359 */ 1360 if (folio_mapped(folio)) { 1361 enum ttu_flags flags = TTU_BATCH_FLUSH; 1362 bool was_swapbacked = folio_test_swapbacked(folio); 1363 1364 if (folio_test_pmd_mappable(folio)) 1365 flags |= TTU_SPLIT_HUGE_PMD; 1366 /* 1367 * Without TTU_SYNC, try_to_unmap will only begin to 1368 * hold PTL from the first present PTE within a large 1369 * folio. Some initial PTEs might be skipped due to 1370 * races with parallel PTE writes in which PTEs can be 1371 * cleared temporarily before being written new present 1372 * values. This will lead to a large folio is still 1373 * mapped while some subpages have been partially 1374 * unmapped after try_to_unmap; TTU_SYNC helps 1375 * try_to_unmap acquire PTL from the first PTE, 1376 * eliminating the influence of temporary PTE values. 1377 */ 1378 if (folio_test_large(folio)) 1379 flags |= TTU_SYNC; 1380 1381 try_to_unmap(folio, flags); 1382 if (folio_mapped(folio)) { 1383 stat->nr_unmap_fail += nr_pages; 1384 if (!was_swapbacked && 1385 folio_test_swapbacked(folio)) 1386 stat->nr_lazyfree_fail += nr_pages; 1387 goto activate_locked; 1388 } 1389 } 1390 1391 /* 1392 * Folio is unmapped now so it cannot be newly pinned anymore. 1393 * No point in trying to reclaim folio if it is pinned. 1394 * Furthermore we don't want to reclaim underlying fs metadata 1395 * if the folio is pinned and thus potentially modified by the 1396 * pinning process as that may upset the filesystem. 1397 */ 1398 if (folio_maybe_dma_pinned(folio)) 1399 goto activate_locked; 1400 1401 mapping = folio_mapping(folio); 1402 if (folio_test_dirty(folio)) { 1403 /* 1404 * Only kswapd can writeback filesystem folios 1405 * to avoid risk of stack overflow. But avoid 1406 * injecting inefficient single-folio I/O into 1407 * flusher writeback as much as possible: only 1408 * write folios when we've encountered many 1409 * dirty folios, and when we've already scanned 1410 * the rest of the LRU for clean folios and see 1411 * the same dirty folios again (with the reclaim 1412 * flag set). 1413 */ 1414 if (folio_is_file_lru(folio) && 1415 (!current_is_kswapd() || 1416 !folio_test_reclaim(folio) || 1417 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1418 /* 1419 * Immediately reclaim when written back. 1420 * Similar in principle to folio_deactivate() 1421 * except we already have the folio isolated 1422 * and know it's dirty 1423 */ 1424 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1425 nr_pages); 1426 folio_set_reclaim(folio); 1427 1428 goto activate_locked; 1429 } 1430 1431 if (references == FOLIOREF_RECLAIM_CLEAN) 1432 goto keep_locked; 1433 if (!may_enter_fs(folio, sc->gfp_mask)) 1434 goto keep_locked; 1435 if (!sc->may_writepage) 1436 goto keep_locked; 1437 1438 /* 1439 * Folio is dirty. Flush the TLB if a writable entry 1440 * potentially exists to avoid CPU writes after I/O 1441 * starts and then write it out here. 1442 */ 1443 try_to_unmap_flush_dirty(); 1444 switch (pageout(folio, mapping, &plug, folio_list)) { 1445 case PAGE_KEEP: 1446 goto keep_locked; 1447 case PAGE_ACTIVATE: 1448 /* 1449 * If shmem folio is split when writeback to swap, 1450 * the tail pages will make their own pass through 1451 * this function and be accounted then. 1452 */ 1453 if (nr_pages > 1 && !folio_test_large(folio)) { 1454 sc->nr_scanned -= (nr_pages - 1); 1455 nr_pages = 1; 1456 } 1457 goto activate_locked; 1458 case PAGE_SUCCESS: 1459 if (nr_pages > 1 && !folio_test_large(folio)) { 1460 sc->nr_scanned -= (nr_pages - 1); 1461 nr_pages = 1; 1462 } 1463 stat->nr_pageout += nr_pages; 1464 1465 if (folio_test_writeback(folio)) 1466 goto keep; 1467 if (folio_test_dirty(folio)) 1468 goto keep; 1469 1470 /* 1471 * A synchronous write - probably a ramdisk. Go 1472 * ahead and try to reclaim the folio. 1473 */ 1474 if (!folio_trylock(folio)) 1475 goto keep; 1476 if (folio_test_dirty(folio) || 1477 folio_test_writeback(folio)) 1478 goto keep_locked; 1479 mapping = folio_mapping(folio); 1480 fallthrough; 1481 case PAGE_CLEAN: 1482 ; /* try to free the folio below */ 1483 } 1484 } 1485 1486 /* 1487 * If the folio has buffers, try to free the buffer 1488 * mappings associated with this folio. If we succeed 1489 * we try to free the folio as well. 1490 * 1491 * We do this even if the folio is dirty. 1492 * filemap_release_folio() does not perform I/O, but it 1493 * is possible for a folio to have the dirty flag set, 1494 * but it is actually clean (all its buffers are clean). 1495 * This happens if the buffers were written out directly, 1496 * with submit_bh(). ext3 will do this, as well as 1497 * the blockdev mapping. filemap_release_folio() will 1498 * discover that cleanness and will drop the buffers 1499 * and mark the folio clean - it can be freed. 1500 * 1501 * Rarely, folios can have buffers and no ->mapping. 1502 * These are the folios which were not successfully 1503 * invalidated in truncate_cleanup_folio(). We try to 1504 * drop those buffers here and if that worked, and the 1505 * folio is no longer mapped into process address space 1506 * (refcount == 1) it can be freed. Otherwise, leave 1507 * the folio on the LRU so it is swappable. 1508 */ 1509 if (folio_needs_release(folio)) { 1510 if (!filemap_release_folio(folio, sc->gfp_mask)) 1511 goto activate_locked; 1512 if (!mapping && folio_ref_count(folio) == 1) { 1513 folio_unlock(folio); 1514 if (folio_put_testzero(folio)) 1515 goto free_it; 1516 else { 1517 /* 1518 * rare race with speculative reference. 1519 * the speculative reference will free 1520 * this folio shortly, so we may 1521 * increment nr_reclaimed here (and 1522 * leave it off the LRU). 1523 */ 1524 nr_reclaimed += nr_pages; 1525 continue; 1526 } 1527 } 1528 } 1529 1530 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 1531 /* follow __remove_mapping for reference */ 1532 if (!folio_ref_freeze(folio, 1)) 1533 goto keep_locked; 1534 /* 1535 * The folio has only one reference left, which is 1536 * from the isolation. After the caller puts the 1537 * folio back on the lru and drops the reference, the 1538 * folio will be freed anyway. It doesn't matter 1539 * which lru it goes on. So we don't bother checking 1540 * the dirty flag here. 1541 */ 1542 count_vm_events(PGLAZYFREED, nr_pages); 1543 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 1544 } else if (!mapping || !__remove_mapping(mapping, folio, true, 1545 sc->target_mem_cgroup)) 1546 goto keep_locked; 1547 1548 folio_unlock(folio); 1549 free_it: 1550 /* 1551 * Folio may get swapped out as a whole, need to account 1552 * all pages in it. 1553 */ 1554 nr_reclaimed += nr_pages; 1555 1556 folio_unqueue_deferred_split(folio); 1557 if (folio_batch_add(&free_folios, folio) == 0) { 1558 mem_cgroup_uncharge_folios(&free_folios); 1559 try_to_unmap_flush(); 1560 free_unref_folios(&free_folios); 1561 } 1562 continue; 1563 1564 activate_locked_split: 1565 /* 1566 * The tail pages that are failed to add into swap cache 1567 * reach here. Fixup nr_scanned and nr_pages. 1568 */ 1569 if (nr_pages > 1) { 1570 sc->nr_scanned -= (nr_pages - 1); 1571 nr_pages = 1; 1572 } 1573 activate_locked: 1574 /* Not a candidate for swapping, so reclaim swap space. */ 1575 if (folio_test_swapcache(folio) && 1576 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 1577 folio_free_swap(folio); 1578 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1579 if (!folio_test_mlocked(folio)) { 1580 int type = folio_is_file_lru(folio); 1581 folio_set_active(folio); 1582 stat->nr_activate[type] += nr_pages; 1583 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 1584 } 1585 keep_locked: 1586 folio_unlock(folio); 1587 keep: 1588 list_add(&folio->lru, &ret_folios); 1589 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 1590 folio_test_unevictable(folio), folio); 1591 } 1592 /* 'folio_list' is always empty here */ 1593 1594 /* Migrate folios selected for demotion */ 1595 nr_demoted = demote_folio_list(&demote_folios, pgdat); 1596 nr_reclaimed += nr_demoted; 1597 stat->nr_demoted += nr_demoted; 1598 /* Folios that could not be demoted are still in @demote_folios */ 1599 if (!list_empty(&demote_folios)) { 1600 /* Folios which weren't demoted go back on @folio_list */ 1601 list_splice_init(&demote_folios, folio_list); 1602 1603 /* 1604 * goto retry to reclaim the undemoted folios in folio_list if 1605 * desired. 1606 * 1607 * Reclaiming directly from top tier nodes is not often desired 1608 * due to it breaking the LRU ordering: in general memory 1609 * should be reclaimed from lower tier nodes and demoted from 1610 * top tier nodes. 1611 * 1612 * However, disabling reclaim from top tier nodes entirely 1613 * would cause ooms in edge scenarios where lower tier memory 1614 * is unreclaimable for whatever reason, eg memory being 1615 * mlocked or too hot to reclaim. We can disable reclaim 1616 * from top tier nodes in proactive reclaim though as that is 1617 * not real memory pressure. 1618 */ 1619 if (!sc->proactive) { 1620 do_demote_pass = false; 1621 goto retry; 1622 } 1623 } 1624 1625 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1626 1627 mem_cgroup_uncharge_folios(&free_folios); 1628 try_to_unmap_flush(); 1629 free_unref_folios(&free_folios); 1630 1631 list_splice(&ret_folios, folio_list); 1632 count_vm_events(PGACTIVATE, pgactivate); 1633 1634 if (plug) 1635 swap_write_unplug(plug); 1636 return nr_reclaimed; 1637 } 1638 1639 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1640 struct list_head *folio_list) 1641 { 1642 struct scan_control sc = { 1643 .gfp_mask = GFP_KERNEL, 1644 .may_unmap = 1, 1645 }; 1646 struct reclaim_stat stat; 1647 unsigned int nr_reclaimed; 1648 struct folio *folio, *next; 1649 LIST_HEAD(clean_folios); 1650 unsigned int noreclaim_flag; 1651 1652 list_for_each_entry_safe(folio, next, folio_list, lru) { 1653 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 1654 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 1655 !folio_test_unevictable(folio)) { 1656 folio_clear_active(folio); 1657 list_move(&folio->lru, &clean_folios); 1658 } 1659 } 1660 1661 /* 1662 * We should be safe here since we are only dealing with file pages and 1663 * we are not kswapd and therefore cannot write dirty file pages. But 1664 * call memalloc_noreclaim_save() anyway, just in case these conditions 1665 * change in the future. 1666 */ 1667 noreclaim_flag = memalloc_noreclaim_save(); 1668 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 1669 &stat, true, NULL); 1670 memalloc_noreclaim_restore(noreclaim_flag); 1671 1672 list_splice(&clean_folios, folio_list); 1673 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1674 -(long)nr_reclaimed); 1675 /* 1676 * Since lazyfree pages are isolated from file LRU from the beginning, 1677 * they will rotate back to anonymous LRU in the end if it failed to 1678 * discard so isolated count will be mismatched. 1679 * Compensate the isolated count for both LRU lists. 1680 */ 1681 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1682 stat.nr_lazyfree_fail); 1683 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1684 -(long)stat.nr_lazyfree_fail); 1685 return nr_reclaimed; 1686 } 1687 1688 /* 1689 * Update LRU sizes after isolating pages. The LRU size updates must 1690 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1691 */ 1692 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1693 enum lru_list lru, unsigned long *nr_zone_taken) 1694 { 1695 int zid; 1696 1697 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1698 if (!nr_zone_taken[zid]) 1699 continue; 1700 1701 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1702 } 1703 1704 } 1705 1706 /* 1707 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1708 * 1709 * lruvec->lru_lock is heavily contended. Some of the functions that 1710 * shrink the lists perform better by taking out a batch of pages 1711 * and working on them outside the LRU lock. 1712 * 1713 * For pagecache intensive workloads, this function is the hottest 1714 * spot in the kernel (apart from copy_*_user functions). 1715 * 1716 * Lru_lock must be held before calling this function. 1717 * 1718 * @nr_to_scan: The number of eligible pages to look through on the list. 1719 * @lruvec: The LRU vector to pull pages from. 1720 * @dst: The temp list to put pages on to. 1721 * @nr_scanned: The number of pages that were scanned. 1722 * @sc: The scan_control struct for this reclaim session 1723 * @lru: LRU list id for isolating 1724 * 1725 * returns how many pages were moved onto *@dst. 1726 */ 1727 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 1728 struct lruvec *lruvec, struct list_head *dst, 1729 unsigned long *nr_scanned, struct scan_control *sc, 1730 enum lru_list lru) 1731 { 1732 struct list_head *src = &lruvec->lists[lru]; 1733 unsigned long nr_taken = 0; 1734 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1735 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1736 unsigned long skipped = 0, total_scan = 0, scan = 0; 1737 unsigned long nr_pages; 1738 unsigned long max_nr_skipped = 0; 1739 LIST_HEAD(folios_skipped); 1740 1741 while (scan < nr_to_scan && !list_empty(src)) { 1742 struct list_head *move_to = src; 1743 struct folio *folio; 1744 1745 folio = lru_to_folio(src); 1746 prefetchw_prev_lru_folio(folio, src, flags); 1747 1748 nr_pages = folio_nr_pages(folio); 1749 total_scan += nr_pages; 1750 1751 /* Using max_nr_skipped to prevent hard LOCKUP*/ 1752 if (max_nr_skipped < SWAP_CLUSTER_MAX_SKIPPED && 1753 (folio_zonenum(folio) > sc->reclaim_idx)) { 1754 nr_skipped[folio_zonenum(folio)] += nr_pages; 1755 move_to = &folios_skipped; 1756 max_nr_skipped++; 1757 goto move; 1758 } 1759 1760 /* 1761 * Do not count skipped folios because that makes the function 1762 * return with no isolated folios if the LRU mostly contains 1763 * ineligible folios. This causes the VM to not reclaim any 1764 * folios, triggering a premature OOM. 1765 * Account all pages in a folio. 1766 */ 1767 scan += nr_pages; 1768 1769 if (!folio_test_lru(folio)) 1770 goto move; 1771 if (!sc->may_unmap && folio_mapped(folio)) 1772 goto move; 1773 1774 /* 1775 * Be careful not to clear the lru flag until after we're 1776 * sure the folio is not being freed elsewhere -- the 1777 * folio release code relies on it. 1778 */ 1779 if (unlikely(!folio_try_get(folio))) 1780 goto move; 1781 1782 if (!folio_test_clear_lru(folio)) { 1783 /* Another thread is already isolating this folio */ 1784 folio_put(folio); 1785 goto move; 1786 } 1787 1788 nr_taken += nr_pages; 1789 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 1790 move_to = dst; 1791 move: 1792 list_move(&folio->lru, move_to); 1793 } 1794 1795 /* 1796 * Splice any skipped folios to the start of the LRU list. Note that 1797 * this disrupts the LRU order when reclaiming for lower zones but 1798 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1799 * scanning would soon rescan the same folios to skip and waste lots 1800 * of cpu cycles. 1801 */ 1802 if (!list_empty(&folios_skipped)) { 1803 int zid; 1804 1805 list_splice(&folios_skipped, src); 1806 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1807 if (!nr_skipped[zid]) 1808 continue; 1809 1810 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1811 skipped += nr_skipped[zid]; 1812 } 1813 } 1814 *nr_scanned = total_scan; 1815 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1816 total_scan, skipped, nr_taken, lru); 1817 update_lru_sizes(lruvec, lru, nr_zone_taken); 1818 return nr_taken; 1819 } 1820 1821 /** 1822 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 1823 * @folio: Folio to isolate from its LRU list. 1824 * 1825 * Isolate a @folio from an LRU list and adjust the vmstat statistic 1826 * corresponding to whatever LRU list the folio was on. 1827 * 1828 * The folio will have its LRU flag cleared. If it was found on the 1829 * active list, it will have the Active flag set. If it was found on the 1830 * unevictable list, it will have the Unevictable flag set. These flags 1831 * may need to be cleared by the caller before letting the page go. 1832 * 1833 * Context: 1834 * 1835 * (1) Must be called with an elevated refcount on the folio. This is a 1836 * fundamental difference from isolate_lru_folios() (which is called 1837 * without a stable reference). 1838 * (2) The lru_lock must not be held. 1839 * (3) Interrupts must be enabled. 1840 * 1841 * Return: true if the folio was removed from an LRU list. 1842 * false if the folio was not on an LRU list. 1843 */ 1844 bool folio_isolate_lru(struct folio *folio) 1845 { 1846 bool ret = false; 1847 1848 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 1849 1850 if (folio_test_clear_lru(folio)) { 1851 struct lruvec *lruvec; 1852 1853 folio_get(folio); 1854 lruvec = folio_lruvec_lock_irq(folio); 1855 lruvec_del_folio(lruvec, folio); 1856 unlock_page_lruvec_irq(lruvec); 1857 ret = true; 1858 } 1859 1860 return ret; 1861 } 1862 1863 /* 1864 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1865 * then get rescheduled. When there are massive number of tasks doing page 1866 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1867 * the LRU list will go small and be scanned faster than necessary, leading to 1868 * unnecessary swapping, thrashing and OOM. 1869 */ 1870 static bool too_many_isolated(struct pglist_data *pgdat, int file, 1871 struct scan_control *sc) 1872 { 1873 unsigned long inactive, isolated; 1874 bool too_many; 1875 1876 if (current_is_kswapd()) 1877 return false; 1878 1879 if (!writeback_throttling_sane(sc)) 1880 return false; 1881 1882 if (file) { 1883 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1884 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1885 } else { 1886 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1887 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1888 } 1889 1890 /* 1891 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1892 * won't get blocked by normal direct-reclaimers, forming a circular 1893 * deadlock. 1894 */ 1895 if (gfp_has_io_fs(sc->gfp_mask)) 1896 inactive >>= 3; 1897 1898 too_many = isolated > inactive; 1899 1900 /* Wake up tasks throttled due to too_many_isolated. */ 1901 if (!too_many) 1902 wake_throttle_isolated(pgdat); 1903 1904 return too_many; 1905 } 1906 1907 /* 1908 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 1909 * 1910 * Returns the number of pages moved to the given lruvec. 1911 */ 1912 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 1913 struct list_head *list) 1914 { 1915 int nr_pages, nr_moved = 0; 1916 struct folio_batch free_folios; 1917 1918 folio_batch_init(&free_folios); 1919 while (!list_empty(list)) { 1920 struct folio *folio = lru_to_folio(list); 1921 1922 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 1923 list_del(&folio->lru); 1924 if (unlikely(!folio_evictable(folio))) { 1925 spin_unlock_irq(&lruvec->lru_lock); 1926 folio_putback_lru(folio); 1927 spin_lock_irq(&lruvec->lru_lock); 1928 continue; 1929 } 1930 1931 /* 1932 * The folio_set_lru needs to be kept here for list integrity. 1933 * Otherwise: 1934 * #0 move_folios_to_lru #1 release_pages 1935 * if (!folio_put_testzero()) 1936 * if (folio_put_testzero()) 1937 * !lru //skip lru_lock 1938 * folio_set_lru() 1939 * list_add(&folio->lru,) 1940 * list_add(&folio->lru,) 1941 */ 1942 folio_set_lru(folio); 1943 1944 if (unlikely(folio_put_testzero(folio))) { 1945 __folio_clear_lru_flags(folio); 1946 1947 folio_unqueue_deferred_split(folio); 1948 if (folio_batch_add(&free_folios, folio) == 0) { 1949 spin_unlock_irq(&lruvec->lru_lock); 1950 mem_cgroup_uncharge_folios(&free_folios); 1951 free_unref_folios(&free_folios); 1952 spin_lock_irq(&lruvec->lru_lock); 1953 } 1954 1955 continue; 1956 } 1957 1958 /* 1959 * All pages were isolated from the same lruvec (and isolation 1960 * inhibits memcg migration). 1961 */ 1962 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 1963 lruvec_add_folio(lruvec, folio); 1964 nr_pages = folio_nr_pages(folio); 1965 nr_moved += nr_pages; 1966 if (folio_test_active(folio)) 1967 workingset_age_nonresident(lruvec, nr_pages); 1968 } 1969 1970 if (free_folios.nr) { 1971 spin_unlock_irq(&lruvec->lru_lock); 1972 mem_cgroup_uncharge_folios(&free_folios); 1973 free_unref_folios(&free_folios); 1974 spin_lock_irq(&lruvec->lru_lock); 1975 } 1976 1977 return nr_moved; 1978 } 1979 1980 /* 1981 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 1982 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 1983 * we should not throttle. Otherwise it is safe to do so. 1984 */ 1985 static int current_may_throttle(void) 1986 { 1987 return !(current->flags & PF_LOCAL_THROTTLE); 1988 } 1989 1990 /* 1991 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1992 * of reclaimed pages 1993 */ 1994 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 1995 struct lruvec *lruvec, struct scan_control *sc, 1996 enum lru_list lru) 1997 { 1998 LIST_HEAD(folio_list); 1999 unsigned long nr_scanned; 2000 unsigned int nr_reclaimed = 0; 2001 unsigned long nr_taken; 2002 struct reclaim_stat stat; 2003 bool file = is_file_lru(lru); 2004 enum vm_event_item item; 2005 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2006 bool stalled = false; 2007 2008 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2009 if (stalled) 2010 return 0; 2011 2012 /* wait a bit for the reclaimer. */ 2013 stalled = true; 2014 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 2015 2016 /* We are about to die and free our memory. Return now. */ 2017 if (fatal_signal_pending(current)) 2018 return SWAP_CLUSTER_MAX; 2019 } 2020 2021 lru_add_drain(); 2022 2023 spin_lock_irq(&lruvec->lru_lock); 2024 2025 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 2026 &nr_scanned, sc, lru); 2027 2028 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2029 item = PGSCAN_KSWAPD + reclaimer_offset(sc); 2030 if (!cgroup_reclaim(sc)) 2031 __count_vm_events(item, nr_scanned); 2032 count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2033 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2034 2035 spin_unlock_irq(&lruvec->lru_lock); 2036 2037 if (nr_taken == 0) 2038 return 0; 2039 2040 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false, 2041 lruvec_memcg(lruvec)); 2042 2043 spin_lock_irq(&lruvec->lru_lock); 2044 move_folios_to_lru(lruvec, &folio_list); 2045 2046 __mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc), 2047 stat.nr_demoted); 2048 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2049 item = PGSTEAL_KSWAPD + reclaimer_offset(sc); 2050 if (!cgroup_reclaim(sc)) 2051 __count_vm_events(item, nr_reclaimed); 2052 count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2053 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2054 spin_unlock_irq(&lruvec->lru_lock); 2055 2056 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); 2057 2058 /* 2059 * If dirty folios are scanned that are not queued for IO, it 2060 * implies that flushers are not doing their job. This can 2061 * happen when memory pressure pushes dirty folios to the end of 2062 * the LRU before the dirty limits are breached and the dirty 2063 * data has expired. It can also happen when the proportion of 2064 * dirty folios grows not through writes but through memory 2065 * pressure reclaiming all the clean cache. And in some cases, 2066 * the flushers simply cannot keep up with the allocation 2067 * rate. Nudge the flusher threads in case they are asleep. 2068 */ 2069 if (stat.nr_unqueued_dirty == nr_taken) { 2070 wakeup_flusher_threads(WB_REASON_VMSCAN); 2071 /* 2072 * For cgroupv1 dirty throttling is achieved by waking up 2073 * the kernel flusher here and later waiting on folios 2074 * which are in writeback to finish (see shrink_folio_list()). 2075 * 2076 * Flusher may not be able to issue writeback quickly 2077 * enough for cgroupv1 writeback throttling to work 2078 * on a large system. 2079 */ 2080 if (!writeback_throttling_sane(sc)) 2081 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 2082 } 2083 2084 sc->nr.dirty += stat.nr_dirty; 2085 sc->nr.congested += stat.nr_congested; 2086 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2087 sc->nr.writeback += stat.nr_writeback; 2088 sc->nr.immediate += stat.nr_immediate; 2089 sc->nr.taken += nr_taken; 2090 if (file) 2091 sc->nr.file_taken += nr_taken; 2092 2093 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2094 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2095 return nr_reclaimed; 2096 } 2097 2098 /* 2099 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2100 * 2101 * We move them the other way if the folio is referenced by one or more 2102 * processes. 2103 * 2104 * If the folios are mostly unmapped, the processing is fast and it is 2105 * appropriate to hold lru_lock across the whole operation. But if 2106 * the folios are mapped, the processing is slow (folio_referenced()), so 2107 * we should drop lru_lock around each folio. It's impossible to balance 2108 * this, so instead we remove the folios from the LRU while processing them. 2109 * It is safe to rely on the active flag against the non-LRU folios in here 2110 * because nobody will play with that bit on a non-LRU folio. 2111 * 2112 * The downside is that we have to touch folio->_refcount against each folio. 2113 * But we had to alter folio->flags anyway. 2114 */ 2115 static void shrink_active_list(unsigned long nr_to_scan, 2116 struct lruvec *lruvec, 2117 struct scan_control *sc, 2118 enum lru_list lru) 2119 { 2120 unsigned long nr_taken; 2121 unsigned long nr_scanned; 2122 unsigned long vm_flags; 2123 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2124 LIST_HEAD(l_active); 2125 LIST_HEAD(l_inactive); 2126 unsigned nr_deactivate, nr_activate; 2127 unsigned nr_rotated = 0; 2128 bool file = is_file_lru(lru); 2129 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2130 2131 lru_add_drain(); 2132 2133 spin_lock_irq(&lruvec->lru_lock); 2134 2135 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2136 &nr_scanned, sc, lru); 2137 2138 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2139 2140 if (!cgroup_reclaim(sc)) 2141 __count_vm_events(PGREFILL, nr_scanned); 2142 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2143 2144 spin_unlock_irq(&lruvec->lru_lock); 2145 2146 while (!list_empty(&l_hold)) { 2147 struct folio *folio; 2148 2149 cond_resched(); 2150 folio = lru_to_folio(&l_hold); 2151 list_del(&folio->lru); 2152 2153 if (unlikely(!folio_evictable(folio))) { 2154 folio_putback_lru(folio); 2155 continue; 2156 } 2157 2158 if (unlikely(buffer_heads_over_limit)) { 2159 if (folio_needs_release(folio) && 2160 folio_trylock(folio)) { 2161 filemap_release_folio(folio, 0); 2162 folio_unlock(folio); 2163 } 2164 } 2165 2166 /* Referenced or rmap lock contention: rotate */ 2167 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2168 &vm_flags) != 0) { 2169 /* 2170 * Identify referenced, file-backed active folios and 2171 * give them one more trip around the active list. So 2172 * that executable code get better chances to stay in 2173 * memory under moderate memory pressure. Anon folios 2174 * are not likely to be evicted by use-once streaming 2175 * IO, plus JVM can create lots of anon VM_EXEC folios, 2176 * so we ignore them here. 2177 */ 2178 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2179 nr_rotated += folio_nr_pages(folio); 2180 list_add(&folio->lru, &l_active); 2181 continue; 2182 } 2183 } 2184 2185 folio_clear_active(folio); /* we are de-activating */ 2186 folio_set_workingset(folio); 2187 list_add(&folio->lru, &l_inactive); 2188 } 2189 2190 /* 2191 * Move folios back to the lru list. 2192 */ 2193 spin_lock_irq(&lruvec->lru_lock); 2194 2195 nr_activate = move_folios_to_lru(lruvec, &l_active); 2196 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2197 2198 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2199 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2200 2201 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2202 spin_unlock_irq(&lruvec->lru_lock); 2203 2204 if (nr_rotated) 2205 lru_note_cost(lruvec, file, 0, nr_rotated); 2206 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2207 nr_deactivate, nr_rotated, sc->priority, file); 2208 } 2209 2210 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2211 struct pglist_data *pgdat) 2212 { 2213 struct reclaim_stat stat; 2214 unsigned int nr_reclaimed; 2215 struct folio *folio; 2216 struct scan_control sc = { 2217 .gfp_mask = GFP_KERNEL, 2218 .may_writepage = 1, 2219 .may_unmap = 1, 2220 .may_swap = 1, 2221 .no_demotion = 1, 2222 }; 2223 2224 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true, NULL); 2225 while (!list_empty(folio_list)) { 2226 folio = lru_to_folio(folio_list); 2227 list_del(&folio->lru); 2228 folio_putback_lru(folio); 2229 } 2230 trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat); 2231 2232 return nr_reclaimed; 2233 } 2234 2235 unsigned long reclaim_pages(struct list_head *folio_list) 2236 { 2237 int nid; 2238 unsigned int nr_reclaimed = 0; 2239 LIST_HEAD(node_folio_list); 2240 unsigned int noreclaim_flag; 2241 2242 if (list_empty(folio_list)) 2243 return nr_reclaimed; 2244 2245 noreclaim_flag = memalloc_noreclaim_save(); 2246 2247 nid = folio_nid(lru_to_folio(folio_list)); 2248 do { 2249 struct folio *folio = lru_to_folio(folio_list); 2250 2251 if (nid == folio_nid(folio)) { 2252 folio_clear_active(folio); 2253 list_move(&folio->lru, &node_folio_list); 2254 continue; 2255 } 2256 2257 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2258 nid = folio_nid(lru_to_folio(folio_list)); 2259 } while (!list_empty(folio_list)); 2260 2261 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2262 2263 memalloc_noreclaim_restore(noreclaim_flag); 2264 2265 return nr_reclaimed; 2266 } 2267 2268 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2269 struct lruvec *lruvec, struct scan_control *sc) 2270 { 2271 if (is_active_lru(lru)) { 2272 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2273 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2274 else 2275 sc->skipped_deactivate = 1; 2276 return 0; 2277 } 2278 2279 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2280 } 2281 2282 /* 2283 * The inactive anon list should be small enough that the VM never has 2284 * to do too much work. 2285 * 2286 * The inactive file list should be small enough to leave most memory 2287 * to the established workingset on the scan-resistant active list, 2288 * but large enough to avoid thrashing the aggregate readahead window. 2289 * 2290 * Both inactive lists should also be large enough that each inactive 2291 * folio has a chance to be referenced again before it is reclaimed. 2292 * 2293 * If that fails and refaulting is observed, the inactive list grows. 2294 * 2295 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2296 * on this LRU, maintained by the pageout code. An inactive_ratio 2297 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2298 * 2299 * total target max 2300 * memory ratio inactive 2301 * ------------------------------------- 2302 * 10MB 1 5MB 2303 * 100MB 1 50MB 2304 * 1GB 3 250MB 2305 * 10GB 10 0.9GB 2306 * 100GB 31 3GB 2307 * 1TB 101 10GB 2308 * 10TB 320 32GB 2309 */ 2310 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2311 { 2312 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2313 unsigned long inactive, active; 2314 unsigned long inactive_ratio; 2315 unsigned long gb; 2316 2317 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2318 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2319 2320 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2321 if (gb) 2322 inactive_ratio = int_sqrt(10 * gb); 2323 else 2324 inactive_ratio = 1; 2325 2326 return inactive * inactive_ratio < active; 2327 } 2328 2329 enum scan_balance { 2330 SCAN_EQUAL, 2331 SCAN_FRACT, 2332 SCAN_ANON, 2333 SCAN_FILE, 2334 }; 2335 2336 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc) 2337 { 2338 unsigned long file; 2339 struct lruvec *target_lruvec; 2340 2341 if (lru_gen_enabled()) 2342 return; 2343 2344 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2345 2346 /* 2347 * Flush the memory cgroup stats in rate-limited way as we don't need 2348 * most accurate stats here. We may switch to regular stats flushing 2349 * in the future once it is cheap enough. 2350 */ 2351 mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup); 2352 2353 /* 2354 * Determine the scan balance between anon and file LRUs. 2355 */ 2356 spin_lock_irq(&target_lruvec->lru_lock); 2357 sc->anon_cost = target_lruvec->anon_cost; 2358 sc->file_cost = target_lruvec->file_cost; 2359 spin_unlock_irq(&target_lruvec->lru_lock); 2360 2361 /* 2362 * Target desirable inactive:active list ratios for the anon 2363 * and file LRU lists. 2364 */ 2365 if (!sc->force_deactivate) { 2366 unsigned long refaults; 2367 2368 /* 2369 * When refaults are being observed, it means a new 2370 * workingset is being established. Deactivate to get 2371 * rid of any stale active pages quickly. 2372 */ 2373 refaults = lruvec_page_state(target_lruvec, 2374 WORKINGSET_ACTIVATE_ANON); 2375 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2376 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2377 sc->may_deactivate |= DEACTIVATE_ANON; 2378 else 2379 sc->may_deactivate &= ~DEACTIVATE_ANON; 2380 2381 refaults = lruvec_page_state(target_lruvec, 2382 WORKINGSET_ACTIVATE_FILE); 2383 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2384 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2385 sc->may_deactivate |= DEACTIVATE_FILE; 2386 else 2387 sc->may_deactivate &= ~DEACTIVATE_FILE; 2388 } else 2389 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2390 2391 /* 2392 * If we have plenty of inactive file pages that aren't 2393 * thrashing, try to reclaim those first before touching 2394 * anonymous pages. 2395 */ 2396 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2397 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) && 2398 !sc->no_cache_trim_mode) 2399 sc->cache_trim_mode = 1; 2400 else 2401 sc->cache_trim_mode = 0; 2402 2403 /* 2404 * Prevent the reclaimer from falling into the cache trap: as 2405 * cache pages start out inactive, every cache fault will tip 2406 * the scan balance towards the file LRU. And as the file LRU 2407 * shrinks, so does the window for rotation from references. 2408 * This means we have a runaway feedback loop where a tiny 2409 * thrashing file LRU becomes infinitely more attractive than 2410 * anon pages. Try to detect this based on file LRU size. 2411 */ 2412 if (!cgroup_reclaim(sc)) { 2413 unsigned long total_high_wmark = 0; 2414 unsigned long free, anon; 2415 int z; 2416 struct zone *zone; 2417 2418 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2419 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2420 node_page_state(pgdat, NR_INACTIVE_FILE); 2421 2422 for_each_managed_zone_pgdat(zone, pgdat, z, MAX_NR_ZONES - 1) { 2423 total_high_wmark += high_wmark_pages(zone); 2424 } 2425 2426 /* 2427 * Consider anon: if that's low too, this isn't a 2428 * runaway file reclaim problem, but rather just 2429 * extreme pressure. Reclaim as per usual then. 2430 */ 2431 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2432 2433 sc->file_is_tiny = 2434 file + free <= total_high_wmark && 2435 !(sc->may_deactivate & DEACTIVATE_ANON) && 2436 anon >> sc->priority; 2437 } 2438 } 2439 2440 static inline void calculate_pressure_balance(struct scan_control *sc, 2441 int swappiness, u64 *fraction, u64 *denominator) 2442 { 2443 unsigned long anon_cost, file_cost, total_cost; 2444 unsigned long ap, fp; 2445 2446 /* 2447 * Calculate the pressure balance between anon and file pages. 2448 * 2449 * The amount of pressure we put on each LRU is inversely 2450 * proportional to the cost of reclaiming each list, as 2451 * determined by the share of pages that are refaulting, times 2452 * the relative IO cost of bringing back a swapped out 2453 * anonymous page vs reloading a filesystem page (swappiness). 2454 * 2455 * Although we limit that influence to ensure no list gets 2456 * left behind completely: at least a third of the pressure is 2457 * applied, before swappiness. 2458 * 2459 * With swappiness at 100, anon and file have equal IO cost. 2460 */ 2461 total_cost = sc->anon_cost + sc->file_cost; 2462 anon_cost = total_cost + sc->anon_cost; 2463 file_cost = total_cost + sc->file_cost; 2464 total_cost = anon_cost + file_cost; 2465 2466 ap = swappiness * (total_cost + 1); 2467 ap /= anon_cost + 1; 2468 2469 fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1); 2470 fp /= file_cost + 1; 2471 2472 fraction[WORKINGSET_ANON] = ap; 2473 fraction[WORKINGSET_FILE] = fp; 2474 *denominator = ap + fp; 2475 } 2476 2477 static unsigned long apply_proportional_protection(struct mem_cgroup *memcg, 2478 struct scan_control *sc, unsigned long scan) 2479 { 2480 unsigned long min, low; 2481 2482 mem_cgroup_protection(sc->target_mem_cgroup, memcg, &min, &low); 2483 2484 if (min || low) { 2485 /* 2486 * Scale a cgroup's reclaim pressure by proportioning 2487 * its current usage to its memory.low or memory.min 2488 * setting. 2489 * 2490 * This is important, as otherwise scanning aggression 2491 * becomes extremely binary -- from nothing as we 2492 * approach the memory protection threshold, to totally 2493 * nominal as we exceed it. This results in requiring 2494 * setting extremely liberal protection thresholds. It 2495 * also means we simply get no protection at all if we 2496 * set it too low, which is not ideal. 2497 * 2498 * If there is any protection in place, we reduce scan 2499 * pressure by how much of the total memory used is 2500 * within protection thresholds. 2501 * 2502 * There is one special case: in the first reclaim pass, 2503 * we skip over all groups that are within their low 2504 * protection. If that fails to reclaim enough pages to 2505 * satisfy the reclaim goal, we come back and override 2506 * the best-effort low protection. However, we still 2507 * ideally want to honor how well-behaved groups are in 2508 * that case instead of simply punishing them all 2509 * equally. As such, we reclaim them based on how much 2510 * memory they are using, reducing the scan pressure 2511 * again by how much of the total memory used is under 2512 * hard protection. 2513 */ 2514 unsigned long cgroup_size = mem_cgroup_size(memcg); 2515 unsigned long protection; 2516 2517 /* memory.low scaling, make sure we retry before OOM */ 2518 if (!sc->memcg_low_reclaim && low > min) { 2519 protection = low; 2520 sc->memcg_low_skipped = 1; 2521 } else { 2522 protection = min; 2523 } 2524 2525 /* Avoid TOCTOU with earlier protection check */ 2526 cgroup_size = max(cgroup_size, protection); 2527 2528 scan -= scan * protection / (cgroup_size + 1); 2529 2530 /* 2531 * Minimally target SWAP_CLUSTER_MAX pages to keep 2532 * reclaim moving forwards, avoiding decrementing 2533 * sc->priority further than desirable. 2534 */ 2535 scan = max(scan, SWAP_CLUSTER_MAX); 2536 } 2537 return scan; 2538 } 2539 2540 /* 2541 * Determine how aggressively the anon and file LRU lists should be 2542 * scanned. 2543 * 2544 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 2545 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 2546 */ 2547 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2548 unsigned long *nr) 2549 { 2550 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2551 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2552 int swappiness = sc_swappiness(sc, memcg); 2553 u64 fraction[ANON_AND_FILE]; 2554 u64 denominator = 0; /* gcc */ 2555 enum scan_balance scan_balance; 2556 enum lru_list lru; 2557 2558 /* If we have no swap space, do not bother scanning anon folios. */ 2559 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2560 scan_balance = SCAN_FILE; 2561 goto out; 2562 } 2563 2564 /* 2565 * Global reclaim will swap to prevent OOM even with no 2566 * swappiness, but memcg users want to use this knob to 2567 * disable swapping for individual groups completely when 2568 * using the memory controller's swap limit feature would be 2569 * too expensive. 2570 */ 2571 if (cgroup_reclaim(sc) && !swappiness) { 2572 scan_balance = SCAN_FILE; 2573 goto out; 2574 } 2575 2576 /* Proactive reclaim initiated by userspace for anonymous memory only */ 2577 if (swappiness == SWAPPINESS_ANON_ONLY) { 2578 WARN_ON_ONCE(!sc->proactive); 2579 scan_balance = SCAN_ANON; 2580 goto out; 2581 } 2582 2583 /* 2584 * Do not apply any pressure balancing cleverness when the 2585 * system is close to OOM, scan both anon and file equally 2586 * (unless the swappiness setting disagrees with swapping). 2587 */ 2588 if (!sc->priority && swappiness) { 2589 scan_balance = SCAN_EQUAL; 2590 goto out; 2591 } 2592 2593 /* 2594 * If the system is almost out of file pages, force-scan anon. 2595 */ 2596 if (sc->file_is_tiny) { 2597 scan_balance = SCAN_ANON; 2598 goto out; 2599 } 2600 2601 /* 2602 * If there is enough inactive page cache, we do not reclaim 2603 * anything from the anonymous working right now to make sure 2604 * a streaming file access pattern doesn't cause swapping. 2605 */ 2606 if (sc->cache_trim_mode) { 2607 scan_balance = SCAN_FILE; 2608 goto out; 2609 } 2610 2611 scan_balance = SCAN_FRACT; 2612 calculate_pressure_balance(sc, swappiness, fraction, &denominator); 2613 2614 out: 2615 for_each_evictable_lru(lru) { 2616 bool file = is_file_lru(lru); 2617 unsigned long lruvec_size; 2618 unsigned long scan; 2619 2620 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2621 scan = apply_proportional_protection(memcg, sc, lruvec_size); 2622 scan >>= sc->priority; 2623 2624 /* 2625 * If the cgroup's already been deleted, make sure to 2626 * scrape out the remaining cache. 2627 */ 2628 if (!scan && !mem_cgroup_online(memcg)) 2629 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2630 2631 switch (scan_balance) { 2632 case SCAN_EQUAL: 2633 /* Scan lists relative to size */ 2634 break; 2635 case SCAN_FRACT: 2636 /* 2637 * Scan types proportional to swappiness and 2638 * their relative recent reclaim efficiency. 2639 * Make sure we don't miss the last page on 2640 * the offlined memory cgroups because of a 2641 * round-off error. 2642 */ 2643 scan = mem_cgroup_online(memcg) ? 2644 div64_u64(scan * fraction[file], denominator) : 2645 DIV64_U64_ROUND_UP(scan * fraction[file], 2646 denominator); 2647 break; 2648 case SCAN_FILE: 2649 case SCAN_ANON: 2650 /* Scan one type exclusively */ 2651 if ((scan_balance == SCAN_FILE) != file) 2652 scan = 0; 2653 break; 2654 default: 2655 /* Look ma, no brain */ 2656 BUG(); 2657 } 2658 2659 nr[lru] = scan; 2660 } 2661 } 2662 2663 /* 2664 * Anonymous LRU management is a waste if there is 2665 * ultimately no way to reclaim the memory. 2666 */ 2667 static bool can_age_anon_pages(struct lruvec *lruvec, 2668 struct scan_control *sc) 2669 { 2670 /* Aging the anon LRU is valuable if swap is present: */ 2671 if (total_swap_pages > 0) 2672 return true; 2673 2674 /* Also valuable if anon pages can be demoted: */ 2675 return can_demote(lruvec_pgdat(lruvec)->node_id, sc, 2676 lruvec_memcg(lruvec)); 2677 } 2678 2679 #ifdef CONFIG_LRU_GEN 2680 2681 #ifdef CONFIG_LRU_GEN_ENABLED 2682 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 2683 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 2684 #else 2685 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 2686 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 2687 #endif 2688 2689 static bool should_walk_mmu(void) 2690 { 2691 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK); 2692 } 2693 2694 static bool should_clear_pmd_young(void) 2695 { 2696 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG); 2697 } 2698 2699 /****************************************************************************** 2700 * shorthand helpers 2701 ******************************************************************************/ 2702 2703 #define DEFINE_MAX_SEQ(lruvec) \ 2704 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 2705 2706 #define DEFINE_MIN_SEQ(lruvec) \ 2707 unsigned long min_seq[ANON_AND_FILE] = { \ 2708 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 2709 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 2710 } 2711 2712 /* Get the min/max evictable type based on swappiness */ 2713 #define min_type(swappiness) (!(swappiness)) 2714 #define max_type(swappiness) ((swappiness) < SWAPPINESS_ANON_ONLY) 2715 2716 #define evictable_min_seq(min_seq, swappiness) \ 2717 min((min_seq)[min_type(swappiness)], (min_seq)[max_type(swappiness)]) 2718 2719 #define for_each_gen_type_zone(gen, type, zone) \ 2720 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 2721 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 2722 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 2723 2724 #define for_each_evictable_type(type, swappiness) \ 2725 for ((type) = min_type(swappiness); (type) <= max_type(swappiness); (type)++) 2726 2727 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 2728 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 2729 2730 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 2731 { 2732 struct pglist_data *pgdat = NODE_DATA(nid); 2733 2734 #ifdef CONFIG_MEMCG 2735 if (memcg) { 2736 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 2737 2738 /* see the comment in mem_cgroup_lruvec() */ 2739 if (!lruvec->pgdat) 2740 lruvec->pgdat = pgdat; 2741 2742 return lruvec; 2743 } 2744 #endif 2745 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2746 2747 return &pgdat->__lruvec; 2748 } 2749 2750 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 2751 { 2752 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2753 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2754 2755 if (!sc->may_swap) 2756 return 0; 2757 2758 if (!can_demote(pgdat->node_id, sc, memcg) && 2759 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 2760 return 0; 2761 2762 return sc_swappiness(sc, memcg); 2763 } 2764 2765 static int get_nr_gens(struct lruvec *lruvec, int type) 2766 { 2767 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 2768 } 2769 2770 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 2771 { 2772 int type; 2773 2774 for (type = 0; type < ANON_AND_FILE; type++) { 2775 int n = get_nr_gens(lruvec, type); 2776 2777 if (n < MIN_NR_GENS || n > MAX_NR_GENS) 2778 return false; 2779 } 2780 2781 return true; 2782 } 2783 2784 /****************************************************************************** 2785 * Bloom filters 2786 ******************************************************************************/ 2787 2788 /* 2789 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 2790 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 2791 * bits in a bitmap, k is the number of hash functions and n is the number of 2792 * inserted items. 2793 * 2794 * Page table walkers use one of the two filters to reduce their search space. 2795 * To get rid of non-leaf entries that no longer have enough leaf entries, the 2796 * aging uses the double-buffering technique to flip to the other filter each 2797 * time it produces a new generation. For non-leaf entries that have enough 2798 * leaf entries, the aging carries them over to the next generation in 2799 * walk_pmd_range(); the eviction also report them when walking the rmap 2800 * in lru_gen_look_around(). 2801 * 2802 * For future optimizations: 2803 * 1. It's not necessary to keep both filters all the time. The spare one can be 2804 * freed after the RCU grace period and reallocated if needed again. 2805 * 2. And when reallocating, it's worth scaling its size according to the number 2806 * of inserted entries in the other filter, to reduce the memory overhead on 2807 * small systems and false positives on large systems. 2808 * 3. Jenkins' hash function is an alternative to Knuth's. 2809 */ 2810 #define BLOOM_FILTER_SHIFT 15 2811 2812 static inline int filter_gen_from_seq(unsigned long seq) 2813 { 2814 return seq % NR_BLOOM_FILTERS; 2815 } 2816 2817 static void get_item_key(void *item, int *key) 2818 { 2819 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 2820 2821 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 2822 2823 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 2824 key[1] = hash >> BLOOM_FILTER_SHIFT; 2825 } 2826 2827 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2828 void *item) 2829 { 2830 int key[2]; 2831 unsigned long *filter; 2832 int gen = filter_gen_from_seq(seq); 2833 2834 filter = READ_ONCE(mm_state->filters[gen]); 2835 if (!filter) 2836 return true; 2837 2838 get_item_key(item, key); 2839 2840 return test_bit(key[0], filter) && test_bit(key[1], filter); 2841 } 2842 2843 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2844 void *item) 2845 { 2846 int key[2]; 2847 unsigned long *filter; 2848 int gen = filter_gen_from_seq(seq); 2849 2850 filter = READ_ONCE(mm_state->filters[gen]); 2851 if (!filter) 2852 return; 2853 2854 get_item_key(item, key); 2855 2856 if (!test_bit(key[0], filter)) 2857 set_bit(key[0], filter); 2858 if (!test_bit(key[1], filter)) 2859 set_bit(key[1], filter); 2860 } 2861 2862 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq) 2863 { 2864 unsigned long *filter; 2865 int gen = filter_gen_from_seq(seq); 2866 2867 filter = mm_state->filters[gen]; 2868 if (filter) { 2869 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 2870 return; 2871 } 2872 2873 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 2874 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 2875 WRITE_ONCE(mm_state->filters[gen], filter); 2876 } 2877 2878 /****************************************************************************** 2879 * mm_struct list 2880 ******************************************************************************/ 2881 2882 #ifdef CONFIG_LRU_GEN_WALKS_MMU 2883 2884 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2885 { 2886 static struct lru_gen_mm_list mm_list = { 2887 .fifo = LIST_HEAD_INIT(mm_list.fifo), 2888 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 2889 }; 2890 2891 #ifdef CONFIG_MEMCG 2892 if (memcg) 2893 return &memcg->mm_list; 2894 #endif 2895 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2896 2897 return &mm_list; 2898 } 2899 2900 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2901 { 2902 return &lruvec->mm_state; 2903 } 2904 2905 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2906 { 2907 int key; 2908 struct mm_struct *mm; 2909 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 2910 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 2911 2912 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 2913 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 2914 2915 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 2916 return NULL; 2917 2918 clear_bit(key, &mm->lru_gen.bitmap); 2919 2920 return mmget_not_zero(mm) ? mm : NULL; 2921 } 2922 2923 void lru_gen_add_mm(struct mm_struct *mm) 2924 { 2925 int nid; 2926 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 2927 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2928 2929 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 2930 #ifdef CONFIG_MEMCG 2931 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 2932 mm->lru_gen.memcg = memcg; 2933 #endif 2934 spin_lock(&mm_list->lock); 2935 2936 for_each_node_state(nid, N_MEMORY) { 2937 struct lruvec *lruvec = get_lruvec(memcg, nid); 2938 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2939 2940 /* the first addition since the last iteration */ 2941 if (mm_state->tail == &mm_list->fifo) 2942 mm_state->tail = &mm->lru_gen.list; 2943 } 2944 2945 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 2946 2947 spin_unlock(&mm_list->lock); 2948 } 2949 2950 void lru_gen_del_mm(struct mm_struct *mm) 2951 { 2952 int nid; 2953 struct lru_gen_mm_list *mm_list; 2954 struct mem_cgroup *memcg = NULL; 2955 2956 if (list_empty(&mm->lru_gen.list)) 2957 return; 2958 2959 #ifdef CONFIG_MEMCG 2960 memcg = mm->lru_gen.memcg; 2961 #endif 2962 mm_list = get_mm_list(memcg); 2963 2964 spin_lock(&mm_list->lock); 2965 2966 for_each_node(nid) { 2967 struct lruvec *lruvec = get_lruvec(memcg, nid); 2968 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2969 2970 /* where the current iteration continues after */ 2971 if (mm_state->head == &mm->lru_gen.list) 2972 mm_state->head = mm_state->head->prev; 2973 2974 /* where the last iteration ended before */ 2975 if (mm_state->tail == &mm->lru_gen.list) 2976 mm_state->tail = mm_state->tail->next; 2977 } 2978 2979 list_del_init(&mm->lru_gen.list); 2980 2981 spin_unlock(&mm_list->lock); 2982 2983 #ifdef CONFIG_MEMCG 2984 mem_cgroup_put(mm->lru_gen.memcg); 2985 mm->lru_gen.memcg = NULL; 2986 #endif 2987 } 2988 2989 #ifdef CONFIG_MEMCG 2990 void lru_gen_migrate_mm(struct mm_struct *mm) 2991 { 2992 struct mem_cgroup *memcg; 2993 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 2994 2995 VM_WARN_ON_ONCE(task->mm != mm); 2996 lockdep_assert_held(&task->alloc_lock); 2997 2998 /* for mm_update_next_owner() */ 2999 if (mem_cgroup_disabled()) 3000 return; 3001 3002 /* migration can happen before addition */ 3003 if (!mm->lru_gen.memcg) 3004 return; 3005 3006 rcu_read_lock(); 3007 memcg = mem_cgroup_from_task(task); 3008 rcu_read_unlock(); 3009 if (memcg == mm->lru_gen.memcg) 3010 return; 3011 3012 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 3013 3014 lru_gen_del_mm(mm); 3015 lru_gen_add_mm(mm); 3016 } 3017 #endif 3018 3019 #else /* !CONFIG_LRU_GEN_WALKS_MMU */ 3020 3021 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 3022 { 3023 return NULL; 3024 } 3025 3026 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 3027 { 3028 return NULL; 3029 } 3030 3031 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 3032 { 3033 return NULL; 3034 } 3035 3036 #endif 3037 3038 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last) 3039 { 3040 int i; 3041 int hist; 3042 struct lruvec *lruvec = walk->lruvec; 3043 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3044 3045 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 3046 3047 hist = lru_hist_from_seq(walk->seq); 3048 3049 for (i = 0; i < NR_MM_STATS; i++) { 3050 WRITE_ONCE(mm_state->stats[hist][i], 3051 mm_state->stats[hist][i] + walk->mm_stats[i]); 3052 walk->mm_stats[i] = 0; 3053 } 3054 3055 if (NR_HIST_GENS > 1 && last) { 3056 hist = lru_hist_from_seq(walk->seq + 1); 3057 3058 for (i = 0; i < NR_MM_STATS; i++) 3059 WRITE_ONCE(mm_state->stats[hist][i], 0); 3060 } 3061 } 3062 3063 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter) 3064 { 3065 bool first = false; 3066 bool last = false; 3067 struct mm_struct *mm = NULL; 3068 struct lruvec *lruvec = walk->lruvec; 3069 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3070 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3071 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3072 3073 /* 3074 * mm_state->seq is incremented after each iteration of mm_list. There 3075 * are three interesting cases for this page table walker: 3076 * 1. It tries to start a new iteration with a stale max_seq: there is 3077 * nothing left to do. 3078 * 2. It started the next iteration: it needs to reset the Bloom filter 3079 * so that a fresh set of PTE tables can be recorded. 3080 * 3. It ended the current iteration: it needs to reset the mm stats 3081 * counters and tell its caller to increment max_seq. 3082 */ 3083 spin_lock(&mm_list->lock); 3084 3085 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq); 3086 3087 if (walk->seq <= mm_state->seq) 3088 goto done; 3089 3090 if (!mm_state->head) 3091 mm_state->head = &mm_list->fifo; 3092 3093 if (mm_state->head == &mm_list->fifo) 3094 first = true; 3095 3096 do { 3097 mm_state->head = mm_state->head->next; 3098 if (mm_state->head == &mm_list->fifo) { 3099 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3100 last = true; 3101 break; 3102 } 3103 3104 /* force scan for those added after the last iteration */ 3105 if (!mm_state->tail || mm_state->tail == mm_state->head) { 3106 mm_state->tail = mm_state->head->next; 3107 walk->force_scan = true; 3108 } 3109 } while (!(mm = get_next_mm(walk))); 3110 done: 3111 if (*iter || last) 3112 reset_mm_stats(walk, last); 3113 3114 spin_unlock(&mm_list->lock); 3115 3116 if (mm && first) 3117 reset_bloom_filter(mm_state, walk->seq + 1); 3118 3119 if (*iter) 3120 mmput_async(*iter); 3121 3122 *iter = mm; 3123 3124 return last; 3125 } 3126 3127 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq) 3128 { 3129 bool success = false; 3130 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3131 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3132 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3133 3134 spin_lock(&mm_list->lock); 3135 3136 VM_WARN_ON_ONCE(mm_state->seq + 1 < seq); 3137 3138 if (seq > mm_state->seq) { 3139 mm_state->head = NULL; 3140 mm_state->tail = NULL; 3141 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3142 success = true; 3143 } 3144 3145 spin_unlock(&mm_list->lock); 3146 3147 return success; 3148 } 3149 3150 /****************************************************************************** 3151 * PID controller 3152 ******************************************************************************/ 3153 3154 /* 3155 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3156 * 3157 * The P term is refaulted/(evicted+protected) from a tier in the generation 3158 * currently being evicted; the I term is the exponential moving average of the 3159 * P term over the generations previously evicted, using the smoothing factor 3160 * 1/2; the D term isn't supported. 3161 * 3162 * The setpoint (SP) is always the first tier of one type; the process variable 3163 * (PV) is either any tier of the other type or any other tier of the same 3164 * type. 3165 * 3166 * The error is the difference between the SP and the PV; the correction is to 3167 * turn off protection when SP>PV or turn on protection when SP<PV. 3168 * 3169 * For future optimizations: 3170 * 1. The D term may discount the other two terms over time so that long-lived 3171 * generations can resist stale information. 3172 */ 3173 struct ctrl_pos { 3174 unsigned long refaulted; 3175 unsigned long total; 3176 int gain; 3177 }; 3178 3179 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3180 struct ctrl_pos *pos) 3181 { 3182 int i; 3183 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3184 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3185 3186 pos->gain = gain; 3187 pos->refaulted = pos->total = 0; 3188 3189 for (i = tier % MAX_NR_TIERS; i <= min(tier, MAX_NR_TIERS - 1); i++) { 3190 pos->refaulted += lrugen->avg_refaulted[type][i] + 3191 atomic_long_read(&lrugen->refaulted[hist][type][i]); 3192 pos->total += lrugen->avg_total[type][i] + 3193 lrugen->protected[hist][type][i] + 3194 atomic_long_read(&lrugen->evicted[hist][type][i]); 3195 } 3196 } 3197 3198 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3199 { 3200 int hist, tier; 3201 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3202 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3203 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3204 3205 lockdep_assert_held(&lruvec->lru_lock); 3206 3207 if (!carryover && !clear) 3208 return; 3209 3210 hist = lru_hist_from_seq(seq); 3211 3212 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3213 if (carryover) { 3214 unsigned long sum; 3215 3216 sum = lrugen->avg_refaulted[type][tier] + 3217 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3218 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3219 3220 sum = lrugen->avg_total[type][tier] + 3221 lrugen->protected[hist][type][tier] + 3222 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3223 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3224 } 3225 3226 if (clear) { 3227 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3228 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3229 WRITE_ONCE(lrugen->protected[hist][type][tier], 0); 3230 } 3231 } 3232 } 3233 3234 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3235 { 3236 /* 3237 * Return true if the PV has a limited number of refaults or a lower 3238 * refaulted/total than the SP. 3239 */ 3240 return pv->refaulted < MIN_LRU_BATCH || 3241 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3242 (sp->refaulted + 1) * pv->total * pv->gain; 3243 } 3244 3245 /****************************************************************************** 3246 * the aging 3247 ******************************************************************************/ 3248 3249 /* promote pages accessed through page tables */ 3250 static int folio_update_gen(struct folio *folio, int gen) 3251 { 3252 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3253 3254 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3255 3256 /* see the comment on LRU_REFS_FLAGS */ 3257 if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) { 3258 set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced)); 3259 return -1; 3260 } 3261 3262 do { 3263 /* lru_gen_del_folio() has isolated this page? */ 3264 if (!(old_flags & LRU_GEN_MASK)) 3265 return -1; 3266 3267 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS); 3268 new_flags |= ((gen + 1UL) << LRU_GEN_PGOFF) | BIT(PG_workingset); 3269 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3270 3271 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3272 } 3273 3274 /* protect pages accessed multiple times through file descriptors */ 3275 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3276 { 3277 int type = folio_is_file_lru(folio); 3278 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3279 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3280 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3281 3282 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3283 3284 do { 3285 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3286 /* folio_update_gen() has promoted this page? */ 3287 if (new_gen >= 0 && new_gen != old_gen) 3288 return new_gen; 3289 3290 new_gen = (old_gen + 1) % MAX_NR_GENS; 3291 3292 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS); 3293 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3294 /* for folio_end_writeback() */ 3295 if (reclaiming) 3296 new_flags |= BIT(PG_reclaim); 3297 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3298 3299 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3300 3301 return new_gen; 3302 } 3303 3304 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3305 int old_gen, int new_gen) 3306 { 3307 int type = folio_is_file_lru(folio); 3308 int zone = folio_zonenum(folio); 3309 int delta = folio_nr_pages(folio); 3310 3311 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3312 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3313 3314 walk->batched++; 3315 3316 walk->nr_pages[old_gen][type][zone] -= delta; 3317 walk->nr_pages[new_gen][type][zone] += delta; 3318 } 3319 3320 static void reset_batch_size(struct lru_gen_mm_walk *walk) 3321 { 3322 int gen, type, zone; 3323 struct lruvec *lruvec = walk->lruvec; 3324 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3325 3326 walk->batched = 0; 3327 3328 for_each_gen_type_zone(gen, type, zone) { 3329 enum lru_list lru = type * LRU_INACTIVE_FILE; 3330 int delta = walk->nr_pages[gen][type][zone]; 3331 3332 if (!delta) 3333 continue; 3334 3335 walk->nr_pages[gen][type][zone] = 0; 3336 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3337 lrugen->nr_pages[gen][type][zone] + delta); 3338 3339 if (lru_gen_is_active(lruvec, gen)) 3340 lru += LRU_ACTIVE; 3341 __update_lru_size(lruvec, lru, zone, delta); 3342 } 3343 } 3344 3345 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3346 { 3347 struct address_space *mapping; 3348 struct vm_area_struct *vma = args->vma; 3349 struct lru_gen_mm_walk *walk = args->private; 3350 3351 if (!vma_is_accessible(vma)) 3352 return true; 3353 3354 if (is_vm_hugetlb_page(vma)) 3355 return true; 3356 3357 if (!vma_has_recency(vma)) 3358 return true; 3359 3360 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) 3361 return true; 3362 3363 if (vma == get_gate_vma(vma->vm_mm)) 3364 return true; 3365 3366 if (vma_is_anonymous(vma)) 3367 return !walk->swappiness; 3368 3369 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3370 return true; 3371 3372 mapping = vma->vm_file->f_mapping; 3373 if (mapping_unevictable(mapping)) 3374 return true; 3375 3376 if (shmem_mapping(mapping)) 3377 return !walk->swappiness; 3378 3379 if (walk->swappiness > MAX_SWAPPINESS) 3380 return true; 3381 3382 /* to exclude special mappings like dax, etc. */ 3383 return !mapping->a_ops->read_folio; 3384 } 3385 3386 /* 3387 * Some userspace memory allocators map many single-page VMAs. Instead of 3388 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3389 * table to reduce zigzags and improve cache performance. 3390 */ 3391 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3392 unsigned long *vm_start, unsigned long *vm_end) 3393 { 3394 unsigned long start = round_up(*vm_end, size); 3395 unsigned long end = (start | ~mask) + 1; 3396 VMA_ITERATOR(vmi, args->mm, start); 3397 3398 VM_WARN_ON_ONCE(mask & size); 3399 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3400 3401 for_each_vma(vmi, args->vma) { 3402 if (end && end <= args->vma->vm_start) 3403 return false; 3404 3405 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3406 continue; 3407 3408 *vm_start = max(start, args->vma->vm_start); 3409 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3410 3411 return true; 3412 } 3413 3414 return false; 3415 } 3416 3417 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr, 3418 struct pglist_data *pgdat) 3419 { 3420 unsigned long pfn = pte_pfn(pte); 3421 3422 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3423 3424 if (!pte_present(pte) || is_zero_pfn(pfn)) 3425 return -1; 3426 3427 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3428 return -1; 3429 3430 if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm)) 3431 return -1; 3432 3433 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3434 return -1; 3435 3436 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3437 return -1; 3438 3439 return pfn; 3440 } 3441 3442 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr, 3443 struct pglist_data *pgdat) 3444 { 3445 unsigned long pfn = pmd_pfn(pmd); 3446 3447 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3448 3449 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3450 return -1; 3451 3452 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3453 return -1; 3454 3455 if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm)) 3456 return -1; 3457 3458 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3459 return -1; 3460 3461 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3462 return -1; 3463 3464 return pfn; 3465 } 3466 3467 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3468 struct pglist_data *pgdat) 3469 { 3470 struct folio *folio = pfn_folio(pfn); 3471 3472 if (folio_lru_gen(folio) < 0) 3473 return NULL; 3474 3475 if (folio_nid(folio) != pgdat->node_id) 3476 return NULL; 3477 3478 if (folio_memcg(folio) != memcg) 3479 return NULL; 3480 3481 return folio; 3482 } 3483 3484 static bool suitable_to_scan(int total, int young) 3485 { 3486 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3487 3488 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3489 return young * n >= total; 3490 } 3491 3492 static void walk_update_folio(struct lru_gen_mm_walk *walk, struct folio *folio, 3493 int new_gen, bool dirty) 3494 { 3495 int old_gen; 3496 3497 if (!folio) 3498 return; 3499 3500 if (dirty && !folio_test_dirty(folio) && 3501 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3502 !folio_test_swapcache(folio))) 3503 folio_mark_dirty(folio); 3504 3505 if (walk) { 3506 old_gen = folio_update_gen(folio, new_gen); 3507 if (old_gen >= 0 && old_gen != new_gen) 3508 update_batch_size(walk, folio, old_gen, new_gen); 3509 } else if (lru_gen_set_refs(folio)) { 3510 old_gen = folio_lru_gen(folio); 3511 if (old_gen >= 0 && old_gen != new_gen) 3512 folio_activate(folio); 3513 } 3514 } 3515 3516 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3517 struct mm_walk *args) 3518 { 3519 int i; 3520 bool dirty; 3521 pte_t *pte; 3522 spinlock_t *ptl; 3523 unsigned long addr; 3524 int total = 0; 3525 int young = 0; 3526 struct folio *last = NULL; 3527 struct lru_gen_mm_walk *walk = args->private; 3528 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3529 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3530 DEFINE_MAX_SEQ(walk->lruvec); 3531 int gen = lru_gen_from_seq(max_seq); 3532 pmd_t pmdval; 3533 3534 pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval, &ptl); 3535 if (!pte) 3536 return false; 3537 3538 if (!spin_trylock(ptl)) { 3539 pte_unmap(pte); 3540 return true; 3541 } 3542 3543 if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) { 3544 pte_unmap_unlock(pte, ptl); 3545 return false; 3546 } 3547 3548 arch_enter_lazy_mmu_mode(); 3549 restart: 3550 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3551 unsigned long pfn; 3552 struct folio *folio; 3553 pte_t ptent = ptep_get(pte + i); 3554 3555 total++; 3556 walk->mm_stats[MM_LEAF_TOTAL]++; 3557 3558 pfn = get_pte_pfn(ptent, args->vma, addr, pgdat); 3559 if (pfn == -1) 3560 continue; 3561 3562 folio = get_pfn_folio(pfn, memcg, pgdat); 3563 if (!folio) 3564 continue; 3565 3566 if (!ptep_clear_young_notify(args->vma, addr, pte + i)) 3567 continue; 3568 3569 if (last != folio) { 3570 walk_update_folio(walk, last, gen, dirty); 3571 3572 last = folio; 3573 dirty = false; 3574 } 3575 3576 if (pte_dirty(ptent)) 3577 dirty = true; 3578 3579 young++; 3580 walk->mm_stats[MM_LEAF_YOUNG]++; 3581 } 3582 3583 walk_update_folio(walk, last, gen, dirty); 3584 last = NULL; 3585 3586 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 3587 goto restart; 3588 3589 arch_leave_lazy_mmu_mode(); 3590 pte_unmap_unlock(pte, ptl); 3591 3592 return suitable_to_scan(total, young); 3593 } 3594 3595 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 3596 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 3597 { 3598 int i; 3599 bool dirty; 3600 pmd_t *pmd; 3601 spinlock_t *ptl; 3602 struct folio *last = NULL; 3603 struct lru_gen_mm_walk *walk = args->private; 3604 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3605 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3606 DEFINE_MAX_SEQ(walk->lruvec); 3607 int gen = lru_gen_from_seq(max_seq); 3608 3609 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3610 3611 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 3612 if (*first == -1) { 3613 *first = addr; 3614 bitmap_zero(bitmap, MIN_LRU_BATCH); 3615 return; 3616 } 3617 3618 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); 3619 if (i && i <= MIN_LRU_BATCH) { 3620 __set_bit(i - 1, bitmap); 3621 return; 3622 } 3623 3624 pmd = pmd_offset(pud, *first); 3625 3626 ptl = pmd_lockptr(args->mm, pmd); 3627 if (!spin_trylock(ptl)) 3628 goto done; 3629 3630 arch_enter_lazy_mmu_mode(); 3631 3632 do { 3633 unsigned long pfn; 3634 struct folio *folio; 3635 3636 /* don't round down the first address */ 3637 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; 3638 3639 if (!pmd_present(pmd[i])) 3640 goto next; 3641 3642 if (!pmd_trans_huge(pmd[i])) { 3643 if (!walk->force_scan && should_clear_pmd_young() && 3644 !mm_has_notifiers(args->mm)) 3645 pmdp_test_and_clear_young(vma, addr, pmd + i); 3646 goto next; 3647 } 3648 3649 pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat); 3650 if (pfn == -1) 3651 goto next; 3652 3653 folio = get_pfn_folio(pfn, memcg, pgdat); 3654 if (!folio) 3655 goto next; 3656 3657 if (!pmdp_clear_young_notify(vma, addr, pmd + i)) 3658 goto next; 3659 3660 if (last != folio) { 3661 walk_update_folio(walk, last, gen, dirty); 3662 3663 last = folio; 3664 dirty = false; 3665 } 3666 3667 if (pmd_dirty(pmd[i])) 3668 dirty = true; 3669 3670 walk->mm_stats[MM_LEAF_YOUNG]++; 3671 next: 3672 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 3673 } while (i <= MIN_LRU_BATCH); 3674 3675 walk_update_folio(walk, last, gen, dirty); 3676 3677 arch_leave_lazy_mmu_mode(); 3678 spin_unlock(ptl); 3679 done: 3680 *first = -1; 3681 } 3682 3683 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 3684 struct mm_walk *args) 3685 { 3686 int i; 3687 pmd_t *pmd; 3688 unsigned long next; 3689 unsigned long addr; 3690 struct vm_area_struct *vma; 3691 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH); 3692 unsigned long first = -1; 3693 struct lru_gen_mm_walk *walk = args->private; 3694 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 3695 3696 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3697 3698 /* 3699 * Finish an entire PMD in two passes: the first only reaches to PTE 3700 * tables to avoid taking the PMD lock; the second, if necessary, takes 3701 * the PMD lock to clear the accessed bit in PMD entries. 3702 */ 3703 pmd = pmd_offset(pud, start & PUD_MASK); 3704 restart: 3705 /* walk_pte_range() may call get_next_vma() */ 3706 vma = args->vma; 3707 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 3708 pmd_t val = pmdp_get_lockless(pmd + i); 3709 3710 next = pmd_addr_end(addr, end); 3711 3712 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 3713 walk->mm_stats[MM_LEAF_TOTAL]++; 3714 continue; 3715 } 3716 3717 if (pmd_trans_huge(val)) { 3718 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3719 unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat); 3720 3721 walk->mm_stats[MM_LEAF_TOTAL]++; 3722 3723 if (pfn != -1) 3724 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3725 continue; 3726 } 3727 3728 if (!walk->force_scan && should_clear_pmd_young() && 3729 !mm_has_notifiers(args->mm)) { 3730 if (!pmd_young(val)) 3731 continue; 3732 3733 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3734 } 3735 3736 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i)) 3737 continue; 3738 3739 walk->mm_stats[MM_NONLEAF_FOUND]++; 3740 3741 if (!walk_pte_range(&val, addr, next, args)) 3742 continue; 3743 3744 walk->mm_stats[MM_NONLEAF_ADDED]++; 3745 3746 /* carry over to the next generation */ 3747 update_bloom_filter(mm_state, walk->seq + 1, pmd + i); 3748 } 3749 3750 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); 3751 3752 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 3753 goto restart; 3754 } 3755 3756 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 3757 struct mm_walk *args) 3758 { 3759 int i; 3760 pud_t *pud; 3761 unsigned long addr; 3762 unsigned long next; 3763 struct lru_gen_mm_walk *walk = args->private; 3764 3765 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 3766 3767 pud = pud_offset(p4d, start & P4D_MASK); 3768 restart: 3769 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 3770 pud_t val = READ_ONCE(pud[i]); 3771 3772 next = pud_addr_end(addr, end); 3773 3774 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 3775 continue; 3776 3777 walk_pmd_range(&val, addr, next, args); 3778 3779 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 3780 end = (addr | ~PUD_MASK) + 1; 3781 goto done; 3782 } 3783 } 3784 3785 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 3786 goto restart; 3787 3788 end = round_up(end, P4D_SIZE); 3789 done: 3790 if (!end || !args->vma) 3791 return 1; 3792 3793 walk->next_addr = max(end, args->vma->vm_start); 3794 3795 return -EAGAIN; 3796 } 3797 3798 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3799 { 3800 static const struct mm_walk_ops mm_walk_ops = { 3801 .test_walk = should_skip_vma, 3802 .p4d_entry = walk_pud_range, 3803 .walk_lock = PGWALK_RDLOCK, 3804 }; 3805 int err; 3806 struct lruvec *lruvec = walk->lruvec; 3807 3808 walk->next_addr = FIRST_USER_ADDRESS; 3809 3810 do { 3811 DEFINE_MAX_SEQ(lruvec); 3812 3813 err = -EBUSY; 3814 3815 /* another thread might have called inc_max_seq() */ 3816 if (walk->seq != max_seq) 3817 break; 3818 3819 /* the caller might be holding the lock for write */ 3820 if (mmap_read_trylock(mm)) { 3821 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 3822 3823 mmap_read_unlock(mm); 3824 } 3825 3826 if (walk->batched) { 3827 spin_lock_irq(&lruvec->lru_lock); 3828 reset_batch_size(walk); 3829 spin_unlock_irq(&lruvec->lru_lock); 3830 } 3831 3832 cond_resched(); 3833 } while (err == -EAGAIN); 3834 } 3835 3836 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 3837 { 3838 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3839 3840 if (pgdat && current_is_kswapd()) { 3841 VM_WARN_ON_ONCE(walk); 3842 3843 walk = &pgdat->mm_walk; 3844 } else if (!walk && force_alloc) { 3845 VM_WARN_ON_ONCE(current_is_kswapd()); 3846 3847 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3848 } 3849 3850 current->reclaim_state->mm_walk = walk; 3851 3852 return walk; 3853 } 3854 3855 static void clear_mm_walk(void) 3856 { 3857 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3858 3859 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 3860 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 3861 3862 current->reclaim_state->mm_walk = NULL; 3863 3864 if (!current_is_kswapd()) 3865 kfree(walk); 3866 } 3867 3868 static bool inc_min_seq(struct lruvec *lruvec, int type, int swappiness) 3869 { 3870 int zone; 3871 int remaining = MAX_LRU_BATCH; 3872 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3873 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3874 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3875 3876 /* For file type, skip the check if swappiness is anon only */ 3877 if (type && (swappiness == SWAPPINESS_ANON_ONLY)) 3878 goto done; 3879 3880 /* For anon type, skip the check if swappiness is zero (file only) */ 3881 if (!type && !swappiness) 3882 goto done; 3883 3884 /* prevent cold/hot inversion if the type is evictable */ 3885 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3886 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 3887 3888 while (!list_empty(head)) { 3889 struct folio *folio = lru_to_folio(head); 3890 int refs = folio_lru_refs(folio); 3891 bool workingset = folio_test_workingset(folio); 3892 3893 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 3894 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 3895 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 3896 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 3897 3898 new_gen = folio_inc_gen(lruvec, folio, false); 3899 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 3900 3901 /* don't count the workingset being lazily promoted */ 3902 if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) { 3903 int tier = lru_tier_from_refs(refs, workingset); 3904 int delta = folio_nr_pages(folio); 3905 3906 WRITE_ONCE(lrugen->protected[hist][type][tier], 3907 lrugen->protected[hist][type][tier] + delta); 3908 } 3909 3910 if (!--remaining) 3911 return false; 3912 } 3913 } 3914 done: 3915 reset_ctrl_pos(lruvec, type, true); 3916 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 3917 3918 return true; 3919 } 3920 3921 static bool try_to_inc_min_seq(struct lruvec *lruvec, int swappiness) 3922 { 3923 int gen, type, zone; 3924 bool success = false; 3925 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3926 DEFINE_MIN_SEQ(lruvec); 3927 3928 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3929 3930 /* find the oldest populated generation */ 3931 for_each_evictable_type(type, swappiness) { 3932 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 3933 gen = lru_gen_from_seq(min_seq[type]); 3934 3935 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3936 if (!list_empty(&lrugen->folios[gen][type][zone])) 3937 goto next; 3938 } 3939 3940 min_seq[type]++; 3941 } 3942 next: 3943 ; 3944 } 3945 3946 /* see the comment on lru_gen_folio */ 3947 if (swappiness && swappiness <= MAX_SWAPPINESS) { 3948 unsigned long seq = lrugen->max_seq - MIN_NR_GENS; 3949 3950 if (min_seq[LRU_GEN_ANON] > seq && min_seq[LRU_GEN_FILE] < seq) 3951 min_seq[LRU_GEN_ANON] = seq; 3952 else if (min_seq[LRU_GEN_FILE] > seq && min_seq[LRU_GEN_ANON] < seq) 3953 min_seq[LRU_GEN_FILE] = seq; 3954 } 3955 3956 for_each_evictable_type(type, swappiness) { 3957 if (min_seq[type] <= lrugen->min_seq[type]) 3958 continue; 3959 3960 reset_ctrl_pos(lruvec, type, true); 3961 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 3962 success = true; 3963 } 3964 3965 return success; 3966 } 3967 3968 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness) 3969 { 3970 bool success; 3971 int prev, next; 3972 int type, zone; 3973 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3974 restart: 3975 if (seq < READ_ONCE(lrugen->max_seq)) 3976 return false; 3977 3978 spin_lock_irq(&lruvec->lru_lock); 3979 3980 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3981 3982 success = seq == lrugen->max_seq; 3983 if (!success) 3984 goto unlock; 3985 3986 for (type = 0; type < ANON_AND_FILE; type++) { 3987 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 3988 continue; 3989 3990 if (inc_min_seq(lruvec, type, swappiness)) 3991 continue; 3992 3993 spin_unlock_irq(&lruvec->lru_lock); 3994 cond_resched(); 3995 goto restart; 3996 } 3997 3998 /* 3999 * Update the active/inactive LRU sizes for compatibility. Both sides of 4000 * the current max_seq need to be covered, since max_seq+1 can overlap 4001 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 4002 * overlap, cold/hot inversion happens. 4003 */ 4004 prev = lru_gen_from_seq(lrugen->max_seq - 1); 4005 next = lru_gen_from_seq(lrugen->max_seq + 1); 4006 4007 for (type = 0; type < ANON_AND_FILE; type++) { 4008 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4009 enum lru_list lru = type * LRU_INACTIVE_FILE; 4010 long delta = lrugen->nr_pages[prev][type][zone] - 4011 lrugen->nr_pages[next][type][zone]; 4012 4013 if (!delta) 4014 continue; 4015 4016 __update_lru_size(lruvec, lru, zone, delta); 4017 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 4018 } 4019 } 4020 4021 for (type = 0; type < ANON_AND_FILE; type++) 4022 reset_ctrl_pos(lruvec, type, false); 4023 4024 WRITE_ONCE(lrugen->timestamps[next], jiffies); 4025 /* make sure preceding modifications appear */ 4026 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 4027 unlock: 4028 spin_unlock_irq(&lruvec->lru_lock); 4029 4030 return success; 4031 } 4032 4033 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq, 4034 int swappiness, bool force_scan) 4035 { 4036 bool success; 4037 struct lru_gen_mm_walk *walk; 4038 struct mm_struct *mm = NULL; 4039 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4040 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 4041 4042 VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq)); 4043 4044 if (!mm_state) 4045 return inc_max_seq(lruvec, seq, swappiness); 4046 4047 /* see the comment in iterate_mm_list() */ 4048 if (seq <= READ_ONCE(mm_state->seq)) 4049 return false; 4050 4051 /* 4052 * If the hardware doesn't automatically set the accessed bit, fallback 4053 * to lru_gen_look_around(), which only clears the accessed bit in a 4054 * handful of PTEs. Spreading the work out over a period of time usually 4055 * is less efficient, but it avoids bursty page faults. 4056 */ 4057 if (!should_walk_mmu()) { 4058 success = iterate_mm_list_nowalk(lruvec, seq); 4059 goto done; 4060 } 4061 4062 walk = set_mm_walk(NULL, true); 4063 if (!walk) { 4064 success = iterate_mm_list_nowalk(lruvec, seq); 4065 goto done; 4066 } 4067 4068 walk->lruvec = lruvec; 4069 walk->seq = seq; 4070 walk->swappiness = swappiness; 4071 walk->force_scan = force_scan; 4072 4073 do { 4074 success = iterate_mm_list(walk, &mm); 4075 if (mm) 4076 walk_mm(mm, walk); 4077 } while (mm); 4078 done: 4079 if (success) { 4080 success = inc_max_seq(lruvec, seq, swappiness); 4081 WARN_ON_ONCE(!success); 4082 } 4083 4084 return success; 4085 } 4086 4087 /****************************************************************************** 4088 * working set protection 4089 ******************************************************************************/ 4090 4091 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 4092 { 4093 int priority; 4094 unsigned long reclaimable; 4095 4096 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 4097 return; 4098 /* 4099 * Determine the initial priority based on 4100 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, 4101 * where reclaimed_to_scanned_ratio = inactive / total. 4102 */ 4103 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 4104 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 4105 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 4106 4107 /* round down reclaimable and round up sc->nr_to_reclaim */ 4108 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 4109 4110 /* 4111 * The estimation is based on LRU pages only, so cap it to prevent 4112 * overshoots of shrinker objects by large margins. 4113 */ 4114 sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY); 4115 } 4116 4117 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 4118 { 4119 int gen, type, zone; 4120 unsigned long total = 0; 4121 int swappiness = get_swappiness(lruvec, sc); 4122 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4123 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4124 DEFINE_MAX_SEQ(lruvec); 4125 DEFINE_MIN_SEQ(lruvec); 4126 4127 for_each_evictable_type(type, swappiness) { 4128 unsigned long seq; 4129 4130 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4131 gen = lru_gen_from_seq(seq); 4132 4133 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4134 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4135 } 4136 } 4137 4138 /* whether the size is big enough to be helpful */ 4139 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 4140 } 4141 4142 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 4143 unsigned long min_ttl) 4144 { 4145 int gen; 4146 unsigned long birth; 4147 int swappiness = get_swappiness(lruvec, sc); 4148 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4149 DEFINE_MIN_SEQ(lruvec); 4150 4151 if (mem_cgroup_below_min(NULL, memcg)) 4152 return false; 4153 4154 if (!lruvec_is_sizable(lruvec, sc)) 4155 return false; 4156 4157 gen = lru_gen_from_seq(evictable_min_seq(min_seq, swappiness)); 4158 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 4159 4160 return time_is_before_jiffies(birth + min_ttl); 4161 } 4162 4163 /* to protect the working set of the last N jiffies */ 4164 static unsigned long lru_gen_min_ttl __read_mostly; 4165 4166 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 4167 { 4168 struct mem_cgroup *memcg; 4169 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 4170 bool reclaimable = !min_ttl; 4171 4172 VM_WARN_ON_ONCE(!current_is_kswapd()); 4173 4174 set_initial_priority(pgdat, sc); 4175 4176 memcg = mem_cgroup_iter(NULL, NULL, NULL); 4177 do { 4178 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4179 4180 mem_cgroup_calculate_protection(NULL, memcg); 4181 4182 if (!reclaimable) 4183 reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl); 4184 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 4185 4186 /* 4187 * The main goal is to OOM kill if every generation from all memcgs is 4188 * younger than min_ttl. However, another possibility is all memcgs are 4189 * either too small or below min. 4190 */ 4191 if (!reclaimable && mutex_trylock(&oom_lock)) { 4192 struct oom_control oc = { 4193 .gfp_mask = sc->gfp_mask, 4194 }; 4195 4196 out_of_memory(&oc); 4197 4198 mutex_unlock(&oom_lock); 4199 } 4200 } 4201 4202 /****************************************************************************** 4203 * rmap/PT walk feedback 4204 ******************************************************************************/ 4205 4206 /* 4207 * This function exploits spatial locality when shrink_folio_list() walks the 4208 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4209 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4210 * the PTE table to the Bloom filter. This forms a feedback loop between the 4211 * eviction and the aging. 4212 */ 4213 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4214 { 4215 int i; 4216 bool dirty; 4217 unsigned long start; 4218 unsigned long end; 4219 struct lru_gen_mm_walk *walk; 4220 struct folio *last = NULL; 4221 int young = 1; 4222 pte_t *pte = pvmw->pte; 4223 unsigned long addr = pvmw->address; 4224 struct vm_area_struct *vma = pvmw->vma; 4225 struct folio *folio = pfn_folio(pvmw->pfn); 4226 struct mem_cgroup *memcg = folio_memcg(folio); 4227 struct pglist_data *pgdat = folio_pgdat(folio); 4228 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4229 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 4230 DEFINE_MAX_SEQ(lruvec); 4231 int gen = lru_gen_from_seq(max_seq); 4232 4233 lockdep_assert_held(pvmw->ptl); 4234 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4235 4236 if (!ptep_clear_young_notify(vma, addr, pte)) 4237 return false; 4238 4239 if (spin_is_contended(pvmw->ptl)) 4240 return true; 4241 4242 /* exclude special VMAs containing anon pages from COW */ 4243 if (vma->vm_flags & VM_SPECIAL) 4244 return true; 4245 4246 /* avoid taking the LRU lock under the PTL when possible */ 4247 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4248 4249 start = max(addr & PMD_MASK, vma->vm_start); 4250 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1; 4251 4252 if (end - start == PAGE_SIZE) 4253 return true; 4254 4255 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4256 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4257 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4258 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) 4259 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4260 else { 4261 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; 4262 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; 4263 } 4264 } 4265 4266 arch_enter_lazy_mmu_mode(); 4267 4268 pte -= (addr - start) / PAGE_SIZE; 4269 4270 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4271 unsigned long pfn; 4272 pte_t ptent = ptep_get(pte + i); 4273 4274 pfn = get_pte_pfn(ptent, vma, addr, pgdat); 4275 if (pfn == -1) 4276 continue; 4277 4278 folio = get_pfn_folio(pfn, memcg, pgdat); 4279 if (!folio) 4280 continue; 4281 4282 if (!ptep_clear_young_notify(vma, addr, pte + i)) 4283 continue; 4284 4285 if (last != folio) { 4286 walk_update_folio(walk, last, gen, dirty); 4287 4288 last = folio; 4289 dirty = false; 4290 } 4291 4292 if (pte_dirty(ptent)) 4293 dirty = true; 4294 4295 young++; 4296 } 4297 4298 walk_update_folio(walk, last, gen, dirty); 4299 4300 arch_leave_lazy_mmu_mode(); 4301 4302 /* feedback from rmap walkers to page table walkers */ 4303 if (mm_state && suitable_to_scan(i, young)) 4304 update_bloom_filter(mm_state, max_seq, pvmw->pmd); 4305 4306 return true; 4307 } 4308 4309 /****************************************************************************** 4310 * memcg LRU 4311 ******************************************************************************/ 4312 4313 /* see the comment on MEMCG_NR_GENS */ 4314 enum { 4315 MEMCG_LRU_NOP, 4316 MEMCG_LRU_HEAD, 4317 MEMCG_LRU_TAIL, 4318 MEMCG_LRU_OLD, 4319 MEMCG_LRU_YOUNG, 4320 }; 4321 4322 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 4323 { 4324 int seg; 4325 int old, new; 4326 unsigned long flags; 4327 int bin = get_random_u32_below(MEMCG_NR_BINS); 4328 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4329 4330 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags); 4331 4332 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4333 4334 seg = 0; 4335 new = old = lruvec->lrugen.gen; 4336 4337 /* see the comment on MEMCG_NR_GENS */ 4338 if (op == MEMCG_LRU_HEAD) 4339 seg = MEMCG_LRU_HEAD; 4340 else if (op == MEMCG_LRU_TAIL) 4341 seg = MEMCG_LRU_TAIL; 4342 else if (op == MEMCG_LRU_OLD) 4343 new = get_memcg_gen(pgdat->memcg_lru.seq); 4344 else if (op == MEMCG_LRU_YOUNG) 4345 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 4346 else 4347 VM_WARN_ON_ONCE(true); 4348 4349 WRITE_ONCE(lruvec->lrugen.seg, seg); 4350 WRITE_ONCE(lruvec->lrugen.gen, new); 4351 4352 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4353 4354 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 4355 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4356 else 4357 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4358 4359 pgdat->memcg_lru.nr_memcgs[old]--; 4360 pgdat->memcg_lru.nr_memcgs[new]++; 4361 4362 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 4363 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4364 4365 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags); 4366 } 4367 4368 #ifdef CONFIG_MEMCG 4369 4370 void lru_gen_online_memcg(struct mem_cgroup *memcg) 4371 { 4372 int gen; 4373 int nid; 4374 int bin = get_random_u32_below(MEMCG_NR_BINS); 4375 4376 for_each_node(nid) { 4377 struct pglist_data *pgdat = NODE_DATA(nid); 4378 struct lruvec *lruvec = get_lruvec(memcg, nid); 4379 4380 spin_lock_irq(&pgdat->memcg_lru.lock); 4381 4382 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 4383 4384 gen = get_memcg_gen(pgdat->memcg_lru.seq); 4385 4386 lruvec->lrugen.gen = gen; 4387 4388 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 4389 pgdat->memcg_lru.nr_memcgs[gen]++; 4390 4391 spin_unlock_irq(&pgdat->memcg_lru.lock); 4392 } 4393 } 4394 4395 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 4396 { 4397 int nid; 4398 4399 for_each_node(nid) { 4400 struct lruvec *lruvec = get_lruvec(memcg, nid); 4401 4402 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 4403 } 4404 } 4405 4406 void lru_gen_release_memcg(struct mem_cgroup *memcg) 4407 { 4408 int gen; 4409 int nid; 4410 4411 for_each_node(nid) { 4412 struct pglist_data *pgdat = NODE_DATA(nid); 4413 struct lruvec *lruvec = get_lruvec(memcg, nid); 4414 4415 spin_lock_irq(&pgdat->memcg_lru.lock); 4416 4417 if (hlist_nulls_unhashed(&lruvec->lrugen.list)) 4418 goto unlock; 4419 4420 gen = lruvec->lrugen.gen; 4421 4422 hlist_nulls_del_init_rcu(&lruvec->lrugen.list); 4423 pgdat->memcg_lru.nr_memcgs[gen]--; 4424 4425 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 4426 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4427 unlock: 4428 spin_unlock_irq(&pgdat->memcg_lru.lock); 4429 } 4430 } 4431 4432 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 4433 { 4434 struct lruvec *lruvec = get_lruvec(memcg, nid); 4435 4436 /* see the comment on MEMCG_NR_GENS */ 4437 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD) 4438 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 4439 } 4440 4441 #endif /* CONFIG_MEMCG */ 4442 4443 /****************************************************************************** 4444 * the eviction 4445 ******************************************************************************/ 4446 4447 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc, 4448 int tier_idx) 4449 { 4450 bool success; 4451 bool dirty, writeback; 4452 int gen = folio_lru_gen(folio); 4453 int type = folio_is_file_lru(folio); 4454 int zone = folio_zonenum(folio); 4455 int delta = folio_nr_pages(folio); 4456 int refs = folio_lru_refs(folio); 4457 bool workingset = folio_test_workingset(folio); 4458 int tier = lru_tier_from_refs(refs, workingset); 4459 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4460 4461 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4462 4463 /* unevictable */ 4464 if (!folio_evictable(folio)) { 4465 success = lru_gen_del_folio(lruvec, folio, true); 4466 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4467 folio_set_unevictable(folio); 4468 lruvec_add_folio(lruvec, folio); 4469 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4470 return true; 4471 } 4472 4473 /* promoted */ 4474 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4475 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4476 return true; 4477 } 4478 4479 /* protected */ 4480 if (tier > tier_idx || refs + workingset == BIT(LRU_REFS_WIDTH) + 1) { 4481 gen = folio_inc_gen(lruvec, folio, false); 4482 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4483 4484 /* don't count the workingset being lazily promoted */ 4485 if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) { 4486 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4487 4488 WRITE_ONCE(lrugen->protected[hist][type][tier], 4489 lrugen->protected[hist][type][tier] + delta); 4490 } 4491 return true; 4492 } 4493 4494 /* ineligible */ 4495 if (!folio_test_lru(folio) || zone > sc->reclaim_idx) { 4496 gen = folio_inc_gen(lruvec, folio, false); 4497 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4498 return true; 4499 } 4500 4501 dirty = folio_test_dirty(folio); 4502 writeback = folio_test_writeback(folio); 4503 if (type == LRU_GEN_FILE && dirty) { 4504 sc->nr.file_taken += delta; 4505 if (!writeback) 4506 sc->nr.unqueued_dirty += delta; 4507 } 4508 4509 /* waiting for writeback */ 4510 if (writeback || (type == LRU_GEN_FILE && dirty)) { 4511 gen = folio_inc_gen(lruvec, folio, true); 4512 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4513 return true; 4514 } 4515 4516 return false; 4517 } 4518 4519 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4520 { 4521 bool success; 4522 4523 /* swap constrained */ 4524 if (!(sc->gfp_mask & __GFP_IO) && 4525 (folio_test_dirty(folio) || 4526 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4527 return false; 4528 4529 /* raced with release_pages() */ 4530 if (!folio_try_get(folio)) 4531 return false; 4532 4533 /* raced with another isolation */ 4534 if (!folio_test_clear_lru(folio)) { 4535 folio_put(folio); 4536 return false; 4537 } 4538 4539 /* see the comment on LRU_REFS_FLAGS */ 4540 if (!folio_test_referenced(folio)) 4541 set_mask_bits(&folio->flags, LRU_REFS_MASK, 0); 4542 4543 /* for shrink_folio_list() */ 4544 folio_clear_reclaim(folio); 4545 4546 success = lru_gen_del_folio(lruvec, folio, true); 4547 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4548 4549 return true; 4550 } 4551 4552 static int scan_folios(unsigned long nr_to_scan, struct lruvec *lruvec, 4553 struct scan_control *sc, int type, int tier, 4554 struct list_head *list) 4555 { 4556 int i; 4557 int gen; 4558 enum vm_event_item item; 4559 int sorted = 0; 4560 int scanned = 0; 4561 int isolated = 0; 4562 int skipped = 0; 4563 int remaining = min(nr_to_scan, MAX_LRU_BATCH); 4564 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4565 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4566 4567 VM_WARN_ON_ONCE(!list_empty(list)); 4568 4569 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4570 return 0; 4571 4572 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4573 4574 for (i = MAX_NR_ZONES; i > 0; i--) { 4575 LIST_HEAD(moved); 4576 int skipped_zone = 0; 4577 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES; 4578 struct list_head *head = &lrugen->folios[gen][type][zone]; 4579 4580 while (!list_empty(head)) { 4581 struct folio *folio = lru_to_folio(head); 4582 int delta = folio_nr_pages(folio); 4583 4584 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4585 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4586 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4587 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4588 4589 scanned += delta; 4590 4591 if (sort_folio(lruvec, folio, sc, tier)) 4592 sorted += delta; 4593 else if (isolate_folio(lruvec, folio, sc)) { 4594 list_add(&folio->lru, list); 4595 isolated += delta; 4596 } else { 4597 list_move(&folio->lru, &moved); 4598 skipped_zone += delta; 4599 } 4600 4601 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH) 4602 break; 4603 } 4604 4605 if (skipped_zone) { 4606 list_splice(&moved, head); 4607 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone); 4608 skipped += skipped_zone; 4609 } 4610 4611 if (!remaining || isolated >= MIN_LRU_BATCH) 4612 break; 4613 } 4614 4615 item = PGSCAN_KSWAPD + reclaimer_offset(sc); 4616 if (!cgroup_reclaim(sc)) { 4617 __count_vm_events(item, isolated); 4618 __count_vm_events(PGREFILL, sorted); 4619 } 4620 count_memcg_events(memcg, item, isolated); 4621 count_memcg_events(memcg, PGREFILL, sorted); 4622 __count_vm_events(PGSCAN_ANON + type, isolated); 4623 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH, 4624 scanned, skipped, isolated, 4625 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4626 if (type == LRU_GEN_FILE) 4627 sc->nr.file_taken += isolated; 4628 /* 4629 * There might not be eligible folios due to reclaim_idx. Check the 4630 * remaining to prevent livelock if it's not making progress. 4631 */ 4632 return isolated || !remaining ? scanned : 0; 4633 } 4634 4635 static int get_tier_idx(struct lruvec *lruvec, int type) 4636 { 4637 int tier; 4638 struct ctrl_pos sp, pv; 4639 4640 /* 4641 * To leave a margin for fluctuations, use a larger gain factor (2:3). 4642 * This value is chosen because any other tier would have at least twice 4643 * as many refaults as the first tier. 4644 */ 4645 read_ctrl_pos(lruvec, type, 0, 2, &sp); 4646 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4647 read_ctrl_pos(lruvec, type, tier, 3, &pv); 4648 if (!positive_ctrl_err(&sp, &pv)) 4649 break; 4650 } 4651 4652 return tier - 1; 4653 } 4654 4655 static int get_type_to_scan(struct lruvec *lruvec, int swappiness) 4656 { 4657 struct ctrl_pos sp, pv; 4658 4659 if (swappiness <= MIN_SWAPPINESS + 1) 4660 return LRU_GEN_FILE; 4661 4662 if (swappiness >= MAX_SWAPPINESS) 4663 return LRU_GEN_ANON; 4664 /* 4665 * Compare the sum of all tiers of anon with that of file to determine 4666 * which type to scan. 4667 */ 4668 read_ctrl_pos(lruvec, LRU_GEN_ANON, MAX_NR_TIERS, swappiness, &sp); 4669 read_ctrl_pos(lruvec, LRU_GEN_FILE, MAX_NR_TIERS, MAX_SWAPPINESS - swappiness, &pv); 4670 4671 return positive_ctrl_err(&sp, &pv); 4672 } 4673 4674 static int isolate_folios(unsigned long nr_to_scan, struct lruvec *lruvec, 4675 struct scan_control *sc, int swappiness, 4676 int *type_scanned, struct list_head *list) 4677 { 4678 int i; 4679 int type = get_type_to_scan(lruvec, swappiness); 4680 4681 for_each_evictable_type(i, swappiness) { 4682 int scanned; 4683 int tier = get_tier_idx(lruvec, type); 4684 4685 *type_scanned = type; 4686 4687 scanned = scan_folios(nr_to_scan, lruvec, sc, type, tier, list); 4688 if (scanned) 4689 return scanned; 4690 4691 type = !type; 4692 } 4693 4694 return 0; 4695 } 4696 4697 static int evict_folios(unsigned long nr_to_scan, struct lruvec *lruvec, 4698 struct scan_control *sc, int swappiness) 4699 { 4700 int type; 4701 int scanned; 4702 int reclaimed; 4703 LIST_HEAD(list); 4704 LIST_HEAD(clean); 4705 struct folio *folio; 4706 struct folio *next; 4707 enum vm_event_item item; 4708 struct reclaim_stat stat; 4709 struct lru_gen_mm_walk *walk; 4710 bool skip_retry = false; 4711 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4712 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4713 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4714 4715 spin_lock_irq(&lruvec->lru_lock); 4716 4717 scanned = isolate_folios(nr_to_scan, lruvec, sc, swappiness, &type, &list); 4718 4719 scanned += try_to_inc_min_seq(lruvec, swappiness); 4720 4721 if (evictable_min_seq(lrugen->min_seq, swappiness) + MIN_NR_GENS > lrugen->max_seq) 4722 scanned = 0; 4723 4724 spin_unlock_irq(&lruvec->lru_lock); 4725 4726 if (list_empty(&list)) 4727 return scanned; 4728 retry: 4729 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false, memcg); 4730 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 4731 sc->nr_reclaimed += reclaimed; 4732 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 4733 scanned, reclaimed, &stat, sc->priority, 4734 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4735 4736 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 4737 DEFINE_MIN_SEQ(lruvec); 4738 4739 if (!folio_evictable(folio)) { 4740 list_del(&folio->lru); 4741 folio_putback_lru(folio); 4742 continue; 4743 } 4744 4745 /* retry folios that may have missed folio_rotate_reclaimable() */ 4746 if (!skip_retry && !folio_test_active(folio) && !folio_mapped(folio) && 4747 !folio_test_dirty(folio) && !folio_test_writeback(folio)) { 4748 list_move(&folio->lru, &clean); 4749 continue; 4750 } 4751 4752 /* don't add rejected folios to the oldest generation */ 4753 if (lru_gen_folio_seq(lruvec, folio, false) == min_seq[type]) 4754 set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_active)); 4755 } 4756 4757 spin_lock_irq(&lruvec->lru_lock); 4758 4759 move_folios_to_lru(lruvec, &list); 4760 4761 walk = current->reclaim_state->mm_walk; 4762 if (walk && walk->batched) { 4763 walk->lruvec = lruvec; 4764 reset_batch_size(walk); 4765 } 4766 4767 __mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc), 4768 stat.nr_demoted); 4769 4770 item = PGSTEAL_KSWAPD + reclaimer_offset(sc); 4771 if (!cgroup_reclaim(sc)) 4772 __count_vm_events(item, reclaimed); 4773 count_memcg_events(memcg, item, reclaimed); 4774 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 4775 4776 spin_unlock_irq(&lruvec->lru_lock); 4777 4778 list_splice_init(&clean, &list); 4779 4780 if (!list_empty(&list)) { 4781 skip_retry = true; 4782 goto retry; 4783 } 4784 4785 return scanned; 4786 } 4787 4788 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 4789 int swappiness, unsigned long *nr_to_scan) 4790 { 4791 int gen, type, zone; 4792 unsigned long size = 0; 4793 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4794 DEFINE_MIN_SEQ(lruvec); 4795 4796 *nr_to_scan = 0; 4797 /* have to run aging, since eviction is not possible anymore */ 4798 if (evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS > max_seq) 4799 return true; 4800 4801 for_each_evictable_type(type, swappiness) { 4802 unsigned long seq; 4803 4804 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4805 gen = lru_gen_from_seq(seq); 4806 4807 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4808 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4809 } 4810 } 4811 4812 *nr_to_scan = size; 4813 /* better to run aging even though eviction is still possible */ 4814 return evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS == max_seq; 4815 } 4816 4817 /* 4818 * For future optimizations: 4819 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 4820 * reclaim. 4821 */ 4822 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 4823 { 4824 bool success; 4825 unsigned long nr_to_scan; 4826 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4827 DEFINE_MAX_SEQ(lruvec); 4828 4829 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 4830 return -1; 4831 4832 success = should_run_aging(lruvec, max_seq, swappiness, &nr_to_scan); 4833 4834 /* try to scrape all its memory if this memcg was deleted */ 4835 if (nr_to_scan && !mem_cgroup_online(memcg)) 4836 return nr_to_scan; 4837 4838 nr_to_scan = apply_proportional_protection(memcg, sc, nr_to_scan); 4839 4840 /* try to get away with not aging at the default priority */ 4841 if (!success || sc->priority == DEF_PRIORITY) 4842 return nr_to_scan >> sc->priority; 4843 4844 /* stop scanning this lruvec as it's low on cold folios */ 4845 return try_to_inc_max_seq(lruvec, max_seq, swappiness, false) ? -1 : 0; 4846 } 4847 4848 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc) 4849 { 4850 int i; 4851 enum zone_watermarks mark; 4852 4853 /* don't abort memcg reclaim to ensure fairness */ 4854 if (!root_reclaim(sc)) 4855 return false; 4856 4857 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order))) 4858 return true; 4859 4860 /* check the order to exclude compaction-induced reclaim */ 4861 if (!current_is_kswapd() || sc->order) 4862 return false; 4863 4864 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ? 4865 WMARK_PROMO : WMARK_HIGH; 4866 4867 for (i = 0; i <= sc->reclaim_idx; i++) { 4868 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i; 4869 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH; 4870 4871 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0)) 4872 return false; 4873 } 4874 4875 /* kswapd should abort if all eligible zones are safe */ 4876 return true; 4877 } 4878 4879 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4880 { 4881 long nr_to_scan; 4882 unsigned long scanned = 0; 4883 int swappiness = get_swappiness(lruvec, sc); 4884 4885 while (true) { 4886 int delta; 4887 4888 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 4889 if (nr_to_scan <= 0) 4890 break; 4891 4892 delta = evict_folios(nr_to_scan, lruvec, sc, swappiness); 4893 if (!delta) 4894 break; 4895 4896 scanned += delta; 4897 if (scanned >= nr_to_scan) 4898 break; 4899 4900 if (should_abort_scan(lruvec, sc)) 4901 break; 4902 4903 cond_resched(); 4904 } 4905 4906 /* 4907 * If too many file cache in the coldest generation can't be evicted 4908 * due to being dirty, wake up the flusher. 4909 */ 4910 if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken) 4911 wakeup_flusher_threads(WB_REASON_VMSCAN); 4912 4913 /* whether this lruvec should be rotated */ 4914 return nr_to_scan < 0; 4915 } 4916 4917 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 4918 { 4919 bool success; 4920 unsigned long scanned = sc->nr_scanned; 4921 unsigned long reclaimed = sc->nr_reclaimed; 4922 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4923 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4924 4925 /* lru_gen_age_node() called mem_cgroup_calculate_protection() */ 4926 if (mem_cgroup_below_min(NULL, memcg)) 4927 return MEMCG_LRU_YOUNG; 4928 4929 if (mem_cgroup_below_low(NULL, memcg)) { 4930 /* see the comment on MEMCG_NR_GENS */ 4931 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL) 4932 return MEMCG_LRU_TAIL; 4933 4934 memcg_memory_event(memcg, MEMCG_LOW); 4935 } 4936 4937 success = try_to_shrink_lruvec(lruvec, sc); 4938 4939 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 4940 4941 if (!sc->proactive) 4942 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 4943 sc->nr_reclaimed - reclaimed); 4944 4945 flush_reclaim_state(sc); 4946 4947 if (success && mem_cgroup_online(memcg)) 4948 return MEMCG_LRU_YOUNG; 4949 4950 if (!success && lruvec_is_sizable(lruvec, sc)) 4951 return 0; 4952 4953 /* one retry if offlined or too small */ 4954 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ? 4955 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 4956 } 4957 4958 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 4959 { 4960 int op; 4961 int gen; 4962 int bin; 4963 int first_bin; 4964 struct lruvec *lruvec; 4965 struct lru_gen_folio *lrugen; 4966 struct mem_cgroup *memcg; 4967 struct hlist_nulls_node *pos; 4968 4969 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 4970 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 4971 restart: 4972 op = 0; 4973 memcg = NULL; 4974 4975 rcu_read_lock(); 4976 4977 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 4978 if (op) { 4979 lru_gen_rotate_memcg(lruvec, op); 4980 op = 0; 4981 } 4982 4983 mem_cgroup_put(memcg); 4984 memcg = NULL; 4985 4986 if (gen != READ_ONCE(lrugen->gen)) 4987 continue; 4988 4989 lruvec = container_of(lrugen, struct lruvec, lrugen); 4990 memcg = lruvec_memcg(lruvec); 4991 4992 if (!mem_cgroup_tryget(memcg)) { 4993 lru_gen_release_memcg(memcg); 4994 memcg = NULL; 4995 continue; 4996 } 4997 4998 rcu_read_unlock(); 4999 5000 op = shrink_one(lruvec, sc); 5001 5002 rcu_read_lock(); 5003 5004 if (should_abort_scan(lruvec, sc)) 5005 break; 5006 } 5007 5008 rcu_read_unlock(); 5009 5010 if (op) 5011 lru_gen_rotate_memcg(lruvec, op); 5012 5013 mem_cgroup_put(memcg); 5014 5015 if (!is_a_nulls(pos)) 5016 return; 5017 5018 /* restart if raced with lru_gen_rotate_memcg() */ 5019 if (gen != get_nulls_value(pos)) 5020 goto restart; 5021 5022 /* try the rest of the bins of the current generation */ 5023 bin = get_memcg_bin(bin + 1); 5024 if (bin != first_bin) 5025 goto restart; 5026 } 5027 5028 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5029 { 5030 struct blk_plug plug; 5031 5032 VM_WARN_ON_ONCE(root_reclaim(sc)); 5033 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 5034 5035 lru_add_drain(); 5036 5037 blk_start_plug(&plug); 5038 5039 set_mm_walk(NULL, sc->proactive); 5040 5041 if (try_to_shrink_lruvec(lruvec, sc)) 5042 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 5043 5044 clear_mm_walk(); 5045 5046 blk_finish_plug(&plug); 5047 } 5048 5049 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5050 { 5051 struct blk_plug plug; 5052 unsigned long reclaimed = sc->nr_reclaimed; 5053 5054 VM_WARN_ON_ONCE(!root_reclaim(sc)); 5055 5056 /* 5057 * Unmapped clean folios are already prioritized. Scanning for more of 5058 * them is likely futile and can cause high reclaim latency when there 5059 * is a large number of memcgs. 5060 */ 5061 if (!sc->may_writepage || !sc->may_unmap) 5062 goto done; 5063 5064 lru_add_drain(); 5065 5066 blk_start_plug(&plug); 5067 5068 set_mm_walk(pgdat, sc->proactive); 5069 5070 set_initial_priority(pgdat, sc); 5071 5072 if (current_is_kswapd()) 5073 sc->nr_reclaimed = 0; 5074 5075 if (mem_cgroup_disabled()) 5076 shrink_one(&pgdat->__lruvec, sc); 5077 else 5078 shrink_many(pgdat, sc); 5079 5080 if (current_is_kswapd()) 5081 sc->nr_reclaimed += reclaimed; 5082 5083 clear_mm_walk(); 5084 5085 blk_finish_plug(&plug); 5086 done: 5087 if (sc->nr_reclaimed > reclaimed) 5088 pgdat->kswapd_failures = 0; 5089 } 5090 5091 /****************************************************************************** 5092 * state change 5093 ******************************************************************************/ 5094 5095 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 5096 { 5097 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5098 5099 if (lrugen->enabled) { 5100 enum lru_list lru; 5101 5102 for_each_evictable_lru(lru) { 5103 if (!list_empty(&lruvec->lists[lru])) 5104 return false; 5105 } 5106 } else { 5107 int gen, type, zone; 5108 5109 for_each_gen_type_zone(gen, type, zone) { 5110 if (!list_empty(&lrugen->folios[gen][type][zone])) 5111 return false; 5112 } 5113 } 5114 5115 return true; 5116 } 5117 5118 static bool fill_evictable(struct lruvec *lruvec) 5119 { 5120 enum lru_list lru; 5121 int remaining = MAX_LRU_BATCH; 5122 5123 for_each_evictable_lru(lru) { 5124 int type = is_file_lru(lru); 5125 bool active = is_active_lru(lru); 5126 struct list_head *head = &lruvec->lists[lru]; 5127 5128 while (!list_empty(head)) { 5129 bool success; 5130 struct folio *folio = lru_to_folio(head); 5131 5132 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5133 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5134 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5135 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5136 5137 lruvec_del_folio(lruvec, folio); 5138 success = lru_gen_add_folio(lruvec, folio, false); 5139 VM_WARN_ON_ONCE(!success); 5140 5141 if (!--remaining) 5142 return false; 5143 } 5144 } 5145 5146 return true; 5147 } 5148 5149 static bool drain_evictable(struct lruvec *lruvec) 5150 { 5151 int gen, type, zone; 5152 int remaining = MAX_LRU_BATCH; 5153 5154 for_each_gen_type_zone(gen, type, zone) { 5155 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5156 5157 while (!list_empty(head)) { 5158 bool success; 5159 struct folio *folio = lru_to_folio(head); 5160 5161 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5162 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5163 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5164 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5165 5166 success = lru_gen_del_folio(lruvec, folio, false); 5167 VM_WARN_ON_ONCE(!success); 5168 lruvec_add_folio(lruvec, folio); 5169 5170 if (!--remaining) 5171 return false; 5172 } 5173 } 5174 5175 return true; 5176 } 5177 5178 static void lru_gen_change_state(bool enabled) 5179 { 5180 static DEFINE_MUTEX(state_mutex); 5181 5182 struct mem_cgroup *memcg; 5183 5184 cgroup_lock(); 5185 cpus_read_lock(); 5186 get_online_mems(); 5187 mutex_lock(&state_mutex); 5188 5189 if (enabled == lru_gen_enabled()) 5190 goto unlock; 5191 5192 if (enabled) 5193 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5194 else 5195 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5196 5197 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5198 do { 5199 int nid; 5200 5201 for_each_node(nid) { 5202 struct lruvec *lruvec = get_lruvec(memcg, nid); 5203 5204 spin_lock_irq(&lruvec->lru_lock); 5205 5206 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5207 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5208 5209 lruvec->lrugen.enabled = enabled; 5210 5211 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5212 spin_unlock_irq(&lruvec->lru_lock); 5213 cond_resched(); 5214 spin_lock_irq(&lruvec->lru_lock); 5215 } 5216 5217 spin_unlock_irq(&lruvec->lru_lock); 5218 } 5219 5220 cond_resched(); 5221 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5222 unlock: 5223 mutex_unlock(&state_mutex); 5224 put_online_mems(); 5225 cpus_read_unlock(); 5226 cgroup_unlock(); 5227 } 5228 5229 /****************************************************************************** 5230 * sysfs interface 5231 ******************************************************************************/ 5232 5233 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5234 { 5235 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5236 } 5237 5238 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5239 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, 5240 const char *buf, size_t len) 5241 { 5242 unsigned int msecs; 5243 5244 if (kstrtouint(buf, 0, &msecs)) 5245 return -EINVAL; 5246 5247 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5248 5249 return len; 5250 } 5251 5252 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); 5253 5254 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5255 { 5256 unsigned int caps = 0; 5257 5258 if (get_cap(LRU_GEN_CORE)) 5259 caps |= BIT(LRU_GEN_CORE); 5260 5261 if (should_walk_mmu()) 5262 caps |= BIT(LRU_GEN_MM_WALK); 5263 5264 if (should_clear_pmd_young()) 5265 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5266 5267 return sysfs_emit(buf, "0x%04x\n", caps); 5268 } 5269 5270 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5271 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 5272 const char *buf, size_t len) 5273 { 5274 int i; 5275 unsigned int caps; 5276 5277 if (tolower(*buf) == 'n') 5278 caps = 0; 5279 else if (tolower(*buf) == 'y') 5280 caps = -1; 5281 else if (kstrtouint(buf, 0, &caps)) 5282 return -EINVAL; 5283 5284 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5285 bool enabled = caps & BIT(i); 5286 5287 if (i == LRU_GEN_CORE) 5288 lru_gen_change_state(enabled); 5289 else if (enabled) 5290 static_branch_enable(&lru_gen_caps[i]); 5291 else 5292 static_branch_disable(&lru_gen_caps[i]); 5293 } 5294 5295 return len; 5296 } 5297 5298 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); 5299 5300 static struct attribute *lru_gen_attrs[] = { 5301 &lru_gen_min_ttl_attr.attr, 5302 &lru_gen_enabled_attr.attr, 5303 NULL 5304 }; 5305 5306 static const struct attribute_group lru_gen_attr_group = { 5307 .name = "lru_gen", 5308 .attrs = lru_gen_attrs, 5309 }; 5310 5311 /****************************************************************************** 5312 * debugfs interface 5313 ******************************************************************************/ 5314 5315 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5316 { 5317 struct mem_cgroup *memcg; 5318 loff_t nr_to_skip = *pos; 5319 5320 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5321 if (!m->private) 5322 return ERR_PTR(-ENOMEM); 5323 5324 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5325 do { 5326 int nid; 5327 5328 for_each_node_state(nid, N_MEMORY) { 5329 if (!nr_to_skip--) 5330 return get_lruvec(memcg, nid); 5331 } 5332 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5333 5334 return NULL; 5335 } 5336 5337 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5338 { 5339 if (!IS_ERR_OR_NULL(v)) 5340 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5341 5342 kvfree(m->private); 5343 m->private = NULL; 5344 } 5345 5346 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5347 { 5348 int nid = lruvec_pgdat(v)->node_id; 5349 struct mem_cgroup *memcg = lruvec_memcg(v); 5350 5351 ++*pos; 5352 5353 nid = next_memory_node(nid); 5354 if (nid == MAX_NUMNODES) { 5355 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5356 if (!memcg) 5357 return NULL; 5358 5359 nid = first_memory_node; 5360 } 5361 5362 return get_lruvec(memcg, nid); 5363 } 5364 5365 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5366 unsigned long max_seq, unsigned long *min_seq, 5367 unsigned long seq) 5368 { 5369 int i; 5370 int type, tier; 5371 int hist = lru_hist_from_seq(seq); 5372 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5373 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5374 5375 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5376 seq_printf(m, " %10d", tier); 5377 for (type = 0; type < ANON_AND_FILE; type++) { 5378 const char *s = "xxx"; 5379 unsigned long n[3] = {}; 5380 5381 if (seq == max_seq) { 5382 s = "RTx"; 5383 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5384 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5385 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5386 s = "rep"; 5387 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5388 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5389 n[2] = READ_ONCE(lrugen->protected[hist][type][tier]); 5390 } 5391 5392 for (i = 0; i < 3; i++) 5393 seq_printf(m, " %10lu%c", n[i], s[i]); 5394 } 5395 seq_putc(m, '\n'); 5396 } 5397 5398 if (!mm_state) 5399 return; 5400 5401 seq_puts(m, " "); 5402 for (i = 0; i < NR_MM_STATS; i++) { 5403 const char *s = "xxxx"; 5404 unsigned long n = 0; 5405 5406 if (seq == max_seq && NR_HIST_GENS == 1) { 5407 s = "TYFA"; 5408 n = READ_ONCE(mm_state->stats[hist][i]); 5409 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5410 s = "tyfa"; 5411 n = READ_ONCE(mm_state->stats[hist][i]); 5412 } 5413 5414 seq_printf(m, " %10lu%c", n, s[i]); 5415 } 5416 seq_putc(m, '\n'); 5417 } 5418 5419 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5420 static int lru_gen_seq_show(struct seq_file *m, void *v) 5421 { 5422 unsigned long seq; 5423 bool full = !debugfs_real_fops(m->file)->write; 5424 struct lruvec *lruvec = v; 5425 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5426 int nid = lruvec_pgdat(lruvec)->node_id; 5427 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5428 DEFINE_MAX_SEQ(lruvec); 5429 DEFINE_MIN_SEQ(lruvec); 5430 5431 if (nid == first_memory_node) { 5432 const char *path = memcg ? m->private : ""; 5433 5434 #ifdef CONFIG_MEMCG 5435 if (memcg) 5436 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5437 #endif 5438 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5439 } 5440 5441 seq_printf(m, " node %5d\n", nid); 5442 5443 if (!full) 5444 seq = evictable_min_seq(min_seq, MAX_SWAPPINESS / 2); 5445 else if (max_seq >= MAX_NR_GENS) 5446 seq = max_seq - MAX_NR_GENS + 1; 5447 else 5448 seq = 0; 5449 5450 for (; seq <= max_seq; seq++) { 5451 int type, zone; 5452 int gen = lru_gen_from_seq(seq); 5453 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5454 5455 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5456 5457 for (type = 0; type < ANON_AND_FILE; type++) { 5458 unsigned long size = 0; 5459 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5460 5461 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5462 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5463 5464 seq_printf(m, " %10lu%c", size, mark); 5465 } 5466 5467 seq_putc(m, '\n'); 5468 5469 if (full) 5470 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5471 } 5472 5473 return 0; 5474 } 5475 5476 static const struct seq_operations lru_gen_seq_ops = { 5477 .start = lru_gen_seq_start, 5478 .stop = lru_gen_seq_stop, 5479 .next = lru_gen_seq_next, 5480 .show = lru_gen_seq_show, 5481 }; 5482 5483 static int run_aging(struct lruvec *lruvec, unsigned long seq, 5484 int swappiness, bool force_scan) 5485 { 5486 DEFINE_MAX_SEQ(lruvec); 5487 5488 if (seq > max_seq) 5489 return -EINVAL; 5490 5491 return try_to_inc_max_seq(lruvec, max_seq, swappiness, force_scan) ? 0 : -EEXIST; 5492 } 5493 5494 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5495 int swappiness, unsigned long nr_to_reclaim) 5496 { 5497 DEFINE_MAX_SEQ(lruvec); 5498 5499 if (seq + MIN_NR_GENS > max_seq) 5500 return -EINVAL; 5501 5502 sc->nr_reclaimed = 0; 5503 5504 while (!signal_pending(current)) { 5505 DEFINE_MIN_SEQ(lruvec); 5506 5507 if (seq < evictable_min_seq(min_seq, swappiness)) 5508 return 0; 5509 5510 if (sc->nr_reclaimed >= nr_to_reclaim) 5511 return 0; 5512 5513 if (!evict_folios(nr_to_reclaim - sc->nr_reclaimed, lruvec, sc, 5514 swappiness)) 5515 return 0; 5516 5517 cond_resched(); 5518 } 5519 5520 return -EINTR; 5521 } 5522 5523 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5524 struct scan_control *sc, int swappiness, unsigned long opt) 5525 { 5526 struct lruvec *lruvec; 5527 int err = -EINVAL; 5528 struct mem_cgroup *memcg = NULL; 5529 5530 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5531 return -EINVAL; 5532 5533 if (!mem_cgroup_disabled()) { 5534 rcu_read_lock(); 5535 5536 memcg = mem_cgroup_from_id(memcg_id); 5537 if (!mem_cgroup_tryget(memcg)) 5538 memcg = NULL; 5539 5540 rcu_read_unlock(); 5541 5542 if (!memcg) 5543 return -EINVAL; 5544 } 5545 5546 if (memcg_id != mem_cgroup_id(memcg)) 5547 goto done; 5548 5549 lruvec = get_lruvec(memcg, nid); 5550 5551 if (swappiness < MIN_SWAPPINESS) 5552 swappiness = get_swappiness(lruvec, sc); 5553 else if (swappiness > SWAPPINESS_ANON_ONLY) 5554 goto done; 5555 5556 switch (cmd) { 5557 case '+': 5558 err = run_aging(lruvec, seq, swappiness, opt); 5559 break; 5560 case '-': 5561 err = run_eviction(lruvec, seq, sc, swappiness, opt); 5562 break; 5563 } 5564 done: 5565 mem_cgroup_put(memcg); 5566 5567 return err; 5568 } 5569 5570 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5571 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 5572 size_t len, loff_t *pos) 5573 { 5574 void *buf; 5575 char *cur, *next; 5576 unsigned int flags; 5577 struct blk_plug plug; 5578 int err = -EINVAL; 5579 struct scan_control sc = { 5580 .may_writepage = true, 5581 .may_unmap = true, 5582 .may_swap = true, 5583 .reclaim_idx = MAX_NR_ZONES - 1, 5584 .gfp_mask = GFP_KERNEL, 5585 }; 5586 5587 buf = kvmalloc(len + 1, GFP_KERNEL); 5588 if (!buf) 5589 return -ENOMEM; 5590 5591 if (copy_from_user(buf, src, len)) { 5592 kvfree(buf); 5593 return -EFAULT; 5594 } 5595 5596 set_task_reclaim_state(current, &sc.reclaim_state); 5597 flags = memalloc_noreclaim_save(); 5598 blk_start_plug(&plug); 5599 if (!set_mm_walk(NULL, true)) { 5600 err = -ENOMEM; 5601 goto done; 5602 } 5603 5604 next = buf; 5605 next[len] = '\0'; 5606 5607 while ((cur = strsep(&next, ",;\n"))) { 5608 int n; 5609 int end; 5610 char cmd, swap_string[5]; 5611 unsigned int memcg_id; 5612 unsigned int nid; 5613 unsigned long seq; 5614 unsigned int swappiness; 5615 unsigned long opt = -1; 5616 5617 cur = skip_spaces(cur); 5618 if (!*cur) 5619 continue; 5620 5621 n = sscanf(cur, "%c %u %u %lu %n %4s %n %lu %n", &cmd, &memcg_id, &nid, 5622 &seq, &end, swap_string, &end, &opt, &end); 5623 if (n < 4 || cur[end]) { 5624 err = -EINVAL; 5625 break; 5626 } 5627 5628 if (n == 4) { 5629 swappiness = -1; 5630 } else if (!strcmp("max", swap_string)) { 5631 /* set by userspace for anonymous memory only */ 5632 swappiness = SWAPPINESS_ANON_ONLY; 5633 } else { 5634 err = kstrtouint(swap_string, 0, &swappiness); 5635 if (err) 5636 break; 5637 } 5638 5639 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 5640 if (err) 5641 break; 5642 } 5643 done: 5644 clear_mm_walk(); 5645 blk_finish_plug(&plug); 5646 memalloc_noreclaim_restore(flags); 5647 set_task_reclaim_state(current, NULL); 5648 5649 kvfree(buf); 5650 5651 return err ? : len; 5652 } 5653 5654 static int lru_gen_seq_open(struct inode *inode, struct file *file) 5655 { 5656 return seq_open(file, &lru_gen_seq_ops); 5657 } 5658 5659 static const struct file_operations lru_gen_rw_fops = { 5660 .open = lru_gen_seq_open, 5661 .read = seq_read, 5662 .write = lru_gen_seq_write, 5663 .llseek = seq_lseek, 5664 .release = seq_release, 5665 }; 5666 5667 static const struct file_operations lru_gen_ro_fops = { 5668 .open = lru_gen_seq_open, 5669 .read = seq_read, 5670 .llseek = seq_lseek, 5671 .release = seq_release, 5672 }; 5673 5674 /****************************************************************************** 5675 * initialization 5676 ******************************************************************************/ 5677 5678 void lru_gen_init_pgdat(struct pglist_data *pgdat) 5679 { 5680 int i, j; 5681 5682 spin_lock_init(&pgdat->memcg_lru.lock); 5683 5684 for (i = 0; i < MEMCG_NR_GENS; i++) { 5685 for (j = 0; j < MEMCG_NR_BINS; j++) 5686 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 5687 } 5688 } 5689 5690 void lru_gen_init_lruvec(struct lruvec *lruvec) 5691 { 5692 int i; 5693 int gen, type, zone; 5694 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5695 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5696 5697 lrugen->max_seq = MIN_NR_GENS + 1; 5698 lrugen->enabled = lru_gen_enabled(); 5699 5700 for (i = 0; i <= MIN_NR_GENS + 1; i++) 5701 lrugen->timestamps[i] = jiffies; 5702 5703 for_each_gen_type_zone(gen, type, zone) 5704 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 5705 5706 if (mm_state) 5707 mm_state->seq = MIN_NR_GENS; 5708 } 5709 5710 #ifdef CONFIG_MEMCG 5711 5712 void lru_gen_init_memcg(struct mem_cgroup *memcg) 5713 { 5714 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5715 5716 if (!mm_list) 5717 return; 5718 5719 INIT_LIST_HEAD(&mm_list->fifo); 5720 spin_lock_init(&mm_list->lock); 5721 } 5722 5723 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 5724 { 5725 int i; 5726 int nid; 5727 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5728 5729 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo)); 5730 5731 for_each_node(nid) { 5732 struct lruvec *lruvec = get_lruvec(memcg, nid); 5733 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5734 5735 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 5736 sizeof(lruvec->lrugen.nr_pages))); 5737 5738 lruvec->lrugen.list.next = LIST_POISON1; 5739 5740 if (!mm_state) 5741 continue; 5742 5743 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 5744 bitmap_free(mm_state->filters[i]); 5745 mm_state->filters[i] = NULL; 5746 } 5747 } 5748 } 5749 5750 #endif /* CONFIG_MEMCG */ 5751 5752 static int __init init_lru_gen(void) 5753 { 5754 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 5755 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 5756 5757 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 5758 pr_err("lru_gen: failed to create sysfs group\n"); 5759 5760 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 5761 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 5762 5763 return 0; 5764 }; 5765 late_initcall(init_lru_gen); 5766 5767 #else /* !CONFIG_LRU_GEN */ 5768 5769 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 5770 { 5771 BUILD_BUG(); 5772 } 5773 5774 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5775 { 5776 BUILD_BUG(); 5777 } 5778 5779 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5780 { 5781 BUILD_BUG(); 5782 } 5783 5784 #endif /* CONFIG_LRU_GEN */ 5785 5786 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5787 { 5788 unsigned long nr[NR_LRU_LISTS]; 5789 unsigned long targets[NR_LRU_LISTS]; 5790 unsigned long nr_to_scan; 5791 enum lru_list lru; 5792 unsigned long nr_reclaimed = 0; 5793 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 5794 bool proportional_reclaim; 5795 struct blk_plug plug; 5796 5797 if (lru_gen_enabled() && !root_reclaim(sc)) { 5798 lru_gen_shrink_lruvec(lruvec, sc); 5799 return; 5800 } 5801 5802 get_scan_count(lruvec, sc, nr); 5803 5804 /* Record the original scan target for proportional adjustments later */ 5805 memcpy(targets, nr, sizeof(nr)); 5806 5807 /* 5808 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 5809 * event that can occur when there is little memory pressure e.g. 5810 * multiple streaming readers/writers. Hence, we do not abort scanning 5811 * when the requested number of pages are reclaimed when scanning at 5812 * DEF_PRIORITY on the assumption that the fact we are direct 5813 * reclaiming implies that kswapd is not keeping up and it is best to 5814 * do a batch of work at once. For memcg reclaim one check is made to 5815 * abort proportional reclaim if either the file or anon lru has already 5816 * dropped to zero at the first pass. 5817 */ 5818 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 5819 sc->priority == DEF_PRIORITY); 5820 5821 blk_start_plug(&plug); 5822 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 5823 nr[LRU_INACTIVE_FILE]) { 5824 unsigned long nr_anon, nr_file, percentage; 5825 unsigned long nr_scanned; 5826 5827 for_each_evictable_lru(lru) { 5828 if (nr[lru]) { 5829 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 5830 nr[lru] -= nr_to_scan; 5831 5832 nr_reclaimed += shrink_list(lru, nr_to_scan, 5833 lruvec, sc); 5834 } 5835 } 5836 5837 cond_resched(); 5838 5839 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 5840 continue; 5841 5842 /* 5843 * For kswapd and memcg, reclaim at least the number of pages 5844 * requested. Ensure that the anon and file LRUs are scanned 5845 * proportionally what was requested by get_scan_count(). We 5846 * stop reclaiming one LRU and reduce the amount scanning 5847 * proportional to the original scan target. 5848 */ 5849 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 5850 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 5851 5852 /* 5853 * It's just vindictive to attack the larger once the smaller 5854 * has gone to zero. And given the way we stop scanning the 5855 * smaller below, this makes sure that we only make one nudge 5856 * towards proportionality once we've got nr_to_reclaim. 5857 */ 5858 if (!nr_file || !nr_anon) 5859 break; 5860 5861 if (nr_file > nr_anon) { 5862 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 5863 targets[LRU_ACTIVE_ANON] + 1; 5864 lru = LRU_BASE; 5865 percentage = nr_anon * 100 / scan_target; 5866 } else { 5867 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 5868 targets[LRU_ACTIVE_FILE] + 1; 5869 lru = LRU_FILE; 5870 percentage = nr_file * 100 / scan_target; 5871 } 5872 5873 /* Stop scanning the smaller of the LRU */ 5874 nr[lru] = 0; 5875 nr[lru + LRU_ACTIVE] = 0; 5876 5877 /* 5878 * Recalculate the other LRU scan count based on its original 5879 * scan target and the percentage scanning already complete 5880 */ 5881 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 5882 nr_scanned = targets[lru] - nr[lru]; 5883 nr[lru] = targets[lru] * (100 - percentage) / 100; 5884 nr[lru] -= min(nr[lru], nr_scanned); 5885 5886 lru += LRU_ACTIVE; 5887 nr_scanned = targets[lru] - nr[lru]; 5888 nr[lru] = targets[lru] * (100 - percentage) / 100; 5889 nr[lru] -= min(nr[lru], nr_scanned); 5890 } 5891 blk_finish_plug(&plug); 5892 sc->nr_reclaimed += nr_reclaimed; 5893 5894 /* 5895 * Even if we did not try to evict anon pages at all, we want to 5896 * rebalance the anon lru active/inactive ratio. 5897 */ 5898 if (can_age_anon_pages(lruvec, sc) && 5899 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 5900 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 5901 sc, LRU_ACTIVE_ANON); 5902 } 5903 5904 /* Use reclaim/compaction for costly allocs or under memory pressure */ 5905 static bool in_reclaim_compaction(struct scan_control *sc) 5906 { 5907 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order && 5908 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 5909 sc->priority < DEF_PRIORITY - 2)) 5910 return true; 5911 5912 return false; 5913 } 5914 5915 /* 5916 * Reclaim/compaction is used for high-order allocation requests. It reclaims 5917 * order-0 pages before compacting the zone. should_continue_reclaim() returns 5918 * true if more pages should be reclaimed such that when the page allocator 5919 * calls try_to_compact_pages() that it will have enough free pages to succeed. 5920 * It will give up earlier than that if there is difficulty reclaiming pages. 5921 */ 5922 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 5923 unsigned long nr_reclaimed, 5924 struct scan_control *sc) 5925 { 5926 unsigned long pages_for_compaction; 5927 unsigned long inactive_lru_pages; 5928 int z; 5929 struct zone *zone; 5930 5931 /* If not in reclaim/compaction mode, stop */ 5932 if (!in_reclaim_compaction(sc)) 5933 return false; 5934 5935 /* 5936 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 5937 * number of pages that were scanned. This will return to the caller 5938 * with the risk reclaim/compaction and the resulting allocation attempt 5939 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 5940 * allocations through requiring that the full LRU list has been scanned 5941 * first, by assuming that zero delta of sc->nr_scanned means full LRU 5942 * scan, but that approximation was wrong, and there were corner cases 5943 * where always a non-zero amount of pages were scanned. 5944 */ 5945 if (!nr_reclaimed) 5946 return false; 5947 5948 /* If compaction would go ahead or the allocation would succeed, stop */ 5949 for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) { 5950 unsigned long watermark = min_wmark_pages(zone); 5951 5952 /* Allocation can already succeed, nothing to do */ 5953 if (zone_watermark_ok(zone, sc->order, watermark, 5954 sc->reclaim_idx, 0)) 5955 return false; 5956 5957 if (compaction_suitable(zone, sc->order, watermark, 5958 sc->reclaim_idx)) 5959 return false; 5960 } 5961 5962 /* 5963 * If we have not reclaimed enough pages for compaction and the 5964 * inactive lists are large enough, continue reclaiming 5965 */ 5966 pages_for_compaction = compact_gap(sc->order); 5967 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 5968 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 5969 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 5970 5971 return inactive_lru_pages > pages_for_compaction; 5972 } 5973 5974 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 5975 { 5976 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 5977 struct mem_cgroup_reclaim_cookie reclaim = { 5978 .pgdat = pgdat, 5979 }; 5980 struct mem_cgroup_reclaim_cookie *partial = &reclaim; 5981 struct mem_cgroup *memcg; 5982 5983 /* 5984 * In most cases, direct reclaimers can do partial walks 5985 * through the cgroup tree, using an iterator state that 5986 * persists across invocations. This strikes a balance between 5987 * fairness and allocation latency. 5988 * 5989 * For kswapd, reliable forward progress is more important 5990 * than a quick return to idle. Always do full walks. 5991 */ 5992 if (current_is_kswapd() || sc->memcg_full_walk) 5993 partial = NULL; 5994 5995 memcg = mem_cgroup_iter(target_memcg, NULL, partial); 5996 do { 5997 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 5998 unsigned long reclaimed; 5999 unsigned long scanned; 6000 6001 /* 6002 * This loop can become CPU-bound when target memcgs 6003 * aren't eligible for reclaim - either because they 6004 * don't have any reclaimable pages, or because their 6005 * memory is explicitly protected. Avoid soft lockups. 6006 */ 6007 cond_resched(); 6008 6009 mem_cgroup_calculate_protection(target_memcg, memcg); 6010 6011 if (mem_cgroup_below_min(target_memcg, memcg)) { 6012 /* 6013 * Hard protection. 6014 * If there is no reclaimable memory, OOM. 6015 */ 6016 continue; 6017 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 6018 /* 6019 * Soft protection. 6020 * Respect the protection only as long as 6021 * there is an unprotected supply 6022 * of reclaimable memory from other cgroups. 6023 */ 6024 if (!sc->memcg_low_reclaim) { 6025 sc->memcg_low_skipped = 1; 6026 continue; 6027 } 6028 memcg_memory_event(memcg, MEMCG_LOW); 6029 } 6030 6031 reclaimed = sc->nr_reclaimed; 6032 scanned = sc->nr_scanned; 6033 6034 shrink_lruvec(lruvec, sc); 6035 6036 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 6037 sc->priority); 6038 6039 /* Record the group's reclaim efficiency */ 6040 if (!sc->proactive) 6041 vmpressure(sc->gfp_mask, memcg, false, 6042 sc->nr_scanned - scanned, 6043 sc->nr_reclaimed - reclaimed); 6044 6045 /* If partial walks are allowed, bail once goal is reached */ 6046 if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) { 6047 mem_cgroup_iter_break(target_memcg, memcg); 6048 break; 6049 } 6050 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial))); 6051 } 6052 6053 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 6054 { 6055 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; 6056 struct lruvec *target_lruvec; 6057 bool reclaimable = false; 6058 6059 if (lru_gen_enabled() && root_reclaim(sc)) { 6060 memset(&sc->nr, 0, sizeof(sc->nr)); 6061 lru_gen_shrink_node(pgdat, sc); 6062 return; 6063 } 6064 6065 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 6066 6067 again: 6068 memset(&sc->nr, 0, sizeof(sc->nr)); 6069 6070 nr_reclaimed = sc->nr_reclaimed; 6071 nr_scanned = sc->nr_scanned; 6072 6073 prepare_scan_control(pgdat, sc); 6074 6075 shrink_node_memcgs(pgdat, sc); 6076 6077 flush_reclaim_state(sc); 6078 6079 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; 6080 6081 /* Record the subtree's reclaim efficiency */ 6082 if (!sc->proactive) 6083 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 6084 sc->nr_scanned - nr_scanned, nr_node_reclaimed); 6085 6086 if (nr_node_reclaimed) 6087 reclaimable = true; 6088 6089 if (current_is_kswapd()) { 6090 /* 6091 * If reclaim is isolating dirty pages under writeback, 6092 * it implies that the long-lived page allocation rate 6093 * is exceeding the page laundering rate. Either the 6094 * global limits are not being effective at throttling 6095 * processes due to the page distribution throughout 6096 * zones or there is heavy usage of a slow backing 6097 * device. The only option is to throttle from reclaim 6098 * context which is not ideal as there is no guarantee 6099 * the dirtying process is throttled in the same way 6100 * balance_dirty_pages() manages. 6101 * 6102 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 6103 * count the number of pages under pages flagged for 6104 * immediate reclaim and stall if any are encountered 6105 * in the nr_immediate check below. 6106 */ 6107 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 6108 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 6109 6110 /* Allow kswapd to start writing pages during reclaim.*/ 6111 if (sc->nr.unqueued_dirty && 6112 sc->nr.unqueued_dirty == sc->nr.file_taken) 6113 set_bit(PGDAT_DIRTY, &pgdat->flags); 6114 6115 /* 6116 * If kswapd scans pages marked for immediate 6117 * reclaim and under writeback (nr_immediate), it 6118 * implies that pages are cycling through the LRU 6119 * faster than they are written so forcibly stall 6120 * until some pages complete writeback. 6121 */ 6122 if (sc->nr.immediate) 6123 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 6124 } 6125 6126 /* 6127 * Tag a node/memcg as congested if all the dirty pages were marked 6128 * for writeback and immediate reclaim (counted in nr.congested). 6129 * 6130 * Legacy memcg will stall in page writeback so avoid forcibly 6131 * stalling in reclaim_throttle(). 6132 */ 6133 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) { 6134 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc)) 6135 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags); 6136 6137 if (current_is_kswapd()) 6138 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags); 6139 } 6140 6141 /* 6142 * Stall direct reclaim for IO completions if the lruvec is 6143 * node is congested. Allow kswapd to continue until it 6144 * starts encountering unqueued dirty pages or cycling through 6145 * the LRU too quickly. 6146 */ 6147 if (!current_is_kswapd() && current_may_throttle() && 6148 !sc->hibernation_mode && 6149 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) || 6150 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags))) 6151 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6152 6153 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) 6154 goto again; 6155 6156 /* 6157 * Kswapd gives up on balancing particular nodes after too 6158 * many failures to reclaim anything from them and goes to 6159 * sleep. On reclaim progress, reset the failure counter. A 6160 * successful direct reclaim run will revive a dormant kswapd. 6161 */ 6162 if (reclaimable) 6163 pgdat->kswapd_failures = 0; 6164 else if (sc->cache_trim_mode) 6165 sc->cache_trim_mode_failed = 1; 6166 } 6167 6168 /* 6169 * Returns true if compaction should go ahead for a costly-order request, or 6170 * the allocation would already succeed without compaction. Return false if we 6171 * should reclaim first. 6172 */ 6173 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6174 { 6175 unsigned long watermark; 6176 6177 if (!gfp_compaction_allowed(sc->gfp_mask)) 6178 return false; 6179 6180 /* Allocation can already succeed, nothing to do */ 6181 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 6182 sc->reclaim_idx, 0)) 6183 return true; 6184 6185 /* 6186 * Direct reclaim usually targets the min watermark, but compaction 6187 * takes time to run and there are potentially other callers using the 6188 * pages just freed. So target a higher buffer to give compaction a 6189 * reasonable chance of completing and allocating the pages. 6190 * 6191 * Note that we won't actually reclaim the whole buffer in one attempt 6192 * as the target watermark in should_continue_reclaim() is lower. But if 6193 * we are already above the high+gap watermark, don't reclaim at all. 6194 */ 6195 watermark = high_wmark_pages(zone); 6196 if (compaction_suitable(zone, sc->order, watermark, sc->reclaim_idx)) 6197 return true; 6198 6199 return false; 6200 } 6201 6202 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6203 { 6204 /* 6205 * If reclaim is making progress greater than 12% efficiency then 6206 * wake all the NOPROGRESS throttled tasks. 6207 */ 6208 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6209 wait_queue_head_t *wqh; 6210 6211 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6212 if (waitqueue_active(wqh)) 6213 wake_up(wqh); 6214 6215 return; 6216 } 6217 6218 /* 6219 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6220 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6221 * under writeback and marked for immediate reclaim at the tail of the 6222 * LRU. 6223 */ 6224 if (current_is_kswapd() || cgroup_reclaim(sc)) 6225 return; 6226 6227 /* Throttle if making no progress at high prioities. */ 6228 if (sc->priority == 1 && !sc->nr_reclaimed) 6229 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6230 } 6231 6232 /* 6233 * This is the direct reclaim path, for page-allocating processes. We only 6234 * try to reclaim pages from zones which will satisfy the caller's allocation 6235 * request. 6236 * 6237 * If a zone is deemed to be full of pinned pages then just give it a light 6238 * scan then give up on it. 6239 */ 6240 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6241 { 6242 struct zoneref *z; 6243 struct zone *zone; 6244 unsigned long nr_soft_reclaimed; 6245 unsigned long nr_soft_scanned; 6246 gfp_t orig_mask; 6247 pg_data_t *last_pgdat = NULL; 6248 pg_data_t *first_pgdat = NULL; 6249 6250 /* 6251 * If the number of buffer_heads in the machine exceeds the maximum 6252 * allowed level, force direct reclaim to scan the highmem zone as 6253 * highmem pages could be pinning lowmem pages storing buffer_heads 6254 */ 6255 orig_mask = sc->gfp_mask; 6256 if (buffer_heads_over_limit) { 6257 sc->gfp_mask |= __GFP_HIGHMEM; 6258 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6259 } 6260 6261 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6262 sc->reclaim_idx, sc->nodemask) { 6263 /* 6264 * Take care memory controller reclaiming has small influence 6265 * to global LRU. 6266 */ 6267 if (!cgroup_reclaim(sc)) { 6268 if (!cpuset_zone_allowed(zone, 6269 GFP_KERNEL | __GFP_HARDWALL)) 6270 continue; 6271 6272 /* 6273 * If we already have plenty of memory free for 6274 * compaction in this zone, don't free any more. 6275 * Even though compaction is invoked for any 6276 * non-zero order, only frequent costly order 6277 * reclamation is disruptive enough to become a 6278 * noticeable problem, like transparent huge 6279 * page allocations. 6280 */ 6281 if (IS_ENABLED(CONFIG_COMPACTION) && 6282 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6283 compaction_ready(zone, sc)) { 6284 sc->compaction_ready = true; 6285 continue; 6286 } 6287 6288 /* 6289 * Shrink each node in the zonelist once. If the 6290 * zonelist is ordered by zone (not the default) then a 6291 * node may be shrunk multiple times but in that case 6292 * the user prefers lower zones being preserved. 6293 */ 6294 if (zone->zone_pgdat == last_pgdat) 6295 continue; 6296 6297 /* 6298 * This steals pages from memory cgroups over softlimit 6299 * and returns the number of reclaimed pages and 6300 * scanned pages. This works for global memory pressure 6301 * and balancing, not for a memcg's limit. 6302 */ 6303 nr_soft_scanned = 0; 6304 nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat, 6305 sc->order, sc->gfp_mask, 6306 &nr_soft_scanned); 6307 sc->nr_reclaimed += nr_soft_reclaimed; 6308 sc->nr_scanned += nr_soft_scanned; 6309 /* need some check for avoid more shrink_zone() */ 6310 } 6311 6312 if (!first_pgdat) 6313 first_pgdat = zone->zone_pgdat; 6314 6315 /* See comment about same check for global reclaim above */ 6316 if (zone->zone_pgdat == last_pgdat) 6317 continue; 6318 last_pgdat = zone->zone_pgdat; 6319 shrink_node(zone->zone_pgdat, sc); 6320 } 6321 6322 if (first_pgdat) 6323 consider_reclaim_throttle(first_pgdat, sc); 6324 6325 /* 6326 * Restore to original mask to avoid the impact on the caller if we 6327 * promoted it to __GFP_HIGHMEM. 6328 */ 6329 sc->gfp_mask = orig_mask; 6330 } 6331 6332 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6333 { 6334 struct lruvec *target_lruvec; 6335 unsigned long refaults; 6336 6337 if (lru_gen_enabled()) 6338 return; 6339 6340 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6341 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6342 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6343 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6344 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6345 } 6346 6347 /* 6348 * This is the main entry point to direct page reclaim. 6349 * 6350 * If a full scan of the inactive list fails to free enough memory then we 6351 * are "out of memory" and something needs to be killed. 6352 * 6353 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6354 * high - the zone may be full of dirty or under-writeback pages, which this 6355 * caller can't do much about. We kick the writeback threads and take explicit 6356 * naps in the hope that some of these pages can be written. But if the 6357 * allocating task holds filesystem locks which prevent writeout this might not 6358 * work, and the allocation attempt will fail. 6359 * 6360 * returns: 0, if no pages reclaimed 6361 * else, the number of pages reclaimed 6362 */ 6363 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6364 struct scan_control *sc) 6365 { 6366 int initial_priority = sc->priority; 6367 pg_data_t *last_pgdat; 6368 struct zoneref *z; 6369 struct zone *zone; 6370 retry: 6371 delayacct_freepages_start(); 6372 6373 if (!cgroup_reclaim(sc)) 6374 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6375 6376 do { 6377 if (!sc->proactive) 6378 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6379 sc->priority); 6380 sc->nr_scanned = 0; 6381 shrink_zones(zonelist, sc); 6382 6383 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6384 break; 6385 6386 if (sc->compaction_ready) 6387 break; 6388 6389 /* 6390 * If we're getting trouble reclaiming, start doing 6391 * writepage even in laptop mode. 6392 */ 6393 if (sc->priority < DEF_PRIORITY - 2) 6394 sc->may_writepage = 1; 6395 } while (--sc->priority >= 0); 6396 6397 last_pgdat = NULL; 6398 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6399 sc->nodemask) { 6400 if (zone->zone_pgdat == last_pgdat) 6401 continue; 6402 last_pgdat = zone->zone_pgdat; 6403 6404 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6405 6406 if (cgroup_reclaim(sc)) { 6407 struct lruvec *lruvec; 6408 6409 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6410 zone->zone_pgdat); 6411 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6412 } 6413 } 6414 6415 delayacct_freepages_end(); 6416 6417 if (sc->nr_reclaimed) 6418 return sc->nr_reclaimed; 6419 6420 /* Aborted reclaim to try compaction? don't OOM, then */ 6421 if (sc->compaction_ready) 6422 return 1; 6423 6424 /* 6425 * In most cases, direct reclaimers can do partial walks 6426 * through the cgroup tree to meet the reclaim goal while 6427 * keeping latency low. Since the iterator state is shared 6428 * among all direct reclaim invocations (to retain fairness 6429 * among cgroups), though, high concurrency can result in 6430 * individual threads not seeing enough cgroups to make 6431 * meaningful forward progress. Avoid false OOMs in this case. 6432 */ 6433 if (!sc->memcg_full_walk) { 6434 sc->priority = initial_priority; 6435 sc->memcg_full_walk = 1; 6436 goto retry; 6437 } 6438 6439 /* 6440 * We make inactive:active ratio decisions based on the node's 6441 * composition of memory, but a restrictive reclaim_idx or a 6442 * memory.low cgroup setting can exempt large amounts of 6443 * memory from reclaim. Neither of which are very common, so 6444 * instead of doing costly eligibility calculations of the 6445 * entire cgroup subtree up front, we assume the estimates are 6446 * good, and retry with forcible deactivation if that fails. 6447 */ 6448 if (sc->skipped_deactivate) { 6449 sc->priority = initial_priority; 6450 sc->force_deactivate = 1; 6451 sc->skipped_deactivate = 0; 6452 goto retry; 6453 } 6454 6455 /* Untapped cgroup reserves? Don't OOM, retry. */ 6456 if (sc->memcg_low_skipped) { 6457 sc->priority = initial_priority; 6458 sc->force_deactivate = 0; 6459 sc->memcg_low_reclaim = 1; 6460 sc->memcg_low_skipped = 0; 6461 goto retry; 6462 } 6463 6464 return 0; 6465 } 6466 6467 static bool allow_direct_reclaim(pg_data_t *pgdat) 6468 { 6469 struct zone *zone; 6470 unsigned long pfmemalloc_reserve = 0; 6471 unsigned long free_pages = 0; 6472 int i; 6473 bool wmark_ok; 6474 6475 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6476 return true; 6477 6478 for_each_managed_zone_pgdat(zone, pgdat, i, ZONE_NORMAL) { 6479 if (!zone_reclaimable_pages(zone)) 6480 continue; 6481 6482 pfmemalloc_reserve += min_wmark_pages(zone); 6483 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES); 6484 } 6485 6486 /* If there are no reserves (unexpected config) then do not throttle */ 6487 if (!pfmemalloc_reserve) 6488 return true; 6489 6490 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6491 6492 /* kswapd must be awake if processes are being throttled */ 6493 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6494 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6495 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6496 6497 wake_up_interruptible(&pgdat->kswapd_wait); 6498 } 6499 6500 return wmark_ok; 6501 } 6502 6503 /* 6504 * Throttle direct reclaimers if backing storage is backed by the network 6505 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6506 * depleted. kswapd will continue to make progress and wake the processes 6507 * when the low watermark is reached. 6508 * 6509 * Returns true if a fatal signal was delivered during throttling. If this 6510 * happens, the page allocator should not consider triggering the OOM killer. 6511 */ 6512 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6513 nodemask_t *nodemask) 6514 { 6515 struct zoneref *z; 6516 struct zone *zone; 6517 pg_data_t *pgdat = NULL; 6518 6519 /* 6520 * Kernel threads should not be throttled as they may be indirectly 6521 * responsible for cleaning pages necessary for reclaim to make forward 6522 * progress. kjournald for example may enter direct reclaim while 6523 * committing a transaction where throttling it could forcing other 6524 * processes to block on log_wait_commit(). 6525 */ 6526 if (current->flags & PF_KTHREAD) 6527 goto out; 6528 6529 /* 6530 * If a fatal signal is pending, this process should not throttle. 6531 * It should return quickly so it can exit and free its memory 6532 */ 6533 if (fatal_signal_pending(current)) 6534 goto out; 6535 6536 /* 6537 * Check if the pfmemalloc reserves are ok by finding the first node 6538 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6539 * GFP_KERNEL will be required for allocating network buffers when 6540 * swapping over the network so ZONE_HIGHMEM is unusable. 6541 * 6542 * Throttling is based on the first usable node and throttled processes 6543 * wait on a queue until kswapd makes progress and wakes them. There 6544 * is an affinity then between processes waking up and where reclaim 6545 * progress has been made assuming the process wakes on the same node. 6546 * More importantly, processes running on remote nodes will not compete 6547 * for remote pfmemalloc reserves and processes on different nodes 6548 * should make reasonable progress. 6549 */ 6550 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6551 gfp_zone(gfp_mask), nodemask) { 6552 if (zone_idx(zone) > ZONE_NORMAL) 6553 continue; 6554 6555 /* Throttle based on the first usable node */ 6556 pgdat = zone->zone_pgdat; 6557 if (allow_direct_reclaim(pgdat)) 6558 goto out; 6559 break; 6560 } 6561 6562 /* If no zone was usable by the allocation flags then do not throttle */ 6563 if (!pgdat) 6564 goto out; 6565 6566 /* Account for the throttling */ 6567 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6568 6569 /* 6570 * If the caller cannot enter the filesystem, it's possible that it 6571 * is due to the caller holding an FS lock or performing a journal 6572 * transaction in the case of a filesystem like ext[3|4]. In this case, 6573 * it is not safe to block on pfmemalloc_wait as kswapd could be 6574 * blocked waiting on the same lock. Instead, throttle for up to a 6575 * second before continuing. 6576 */ 6577 if (!(gfp_mask & __GFP_FS)) 6578 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6579 allow_direct_reclaim(pgdat), HZ); 6580 else 6581 /* Throttle until kswapd wakes the process */ 6582 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6583 allow_direct_reclaim(pgdat)); 6584 6585 if (fatal_signal_pending(current)) 6586 return true; 6587 6588 out: 6589 return false; 6590 } 6591 6592 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6593 gfp_t gfp_mask, nodemask_t *nodemask) 6594 { 6595 unsigned long nr_reclaimed; 6596 struct scan_control sc = { 6597 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6598 .gfp_mask = current_gfp_context(gfp_mask), 6599 .reclaim_idx = gfp_zone(gfp_mask), 6600 .order = order, 6601 .nodemask = nodemask, 6602 .priority = DEF_PRIORITY, 6603 .may_writepage = !laptop_mode, 6604 .may_unmap = 1, 6605 .may_swap = 1, 6606 }; 6607 6608 /* 6609 * scan_control uses s8 fields for order, priority, and reclaim_idx. 6610 * Confirm they are large enough for max values. 6611 */ 6612 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX); 6613 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 6614 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 6615 6616 /* 6617 * Do not enter reclaim if fatal signal was delivered while throttled. 6618 * 1 is returned so that the page allocator does not OOM kill at this 6619 * point. 6620 */ 6621 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 6622 return 1; 6623 6624 set_task_reclaim_state(current, &sc.reclaim_state); 6625 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 6626 6627 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6628 6629 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 6630 set_task_reclaim_state(current, NULL); 6631 6632 return nr_reclaimed; 6633 } 6634 6635 #ifdef CONFIG_MEMCG 6636 6637 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 6638 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 6639 gfp_t gfp_mask, bool noswap, 6640 pg_data_t *pgdat, 6641 unsigned long *nr_scanned) 6642 { 6643 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6644 struct scan_control sc = { 6645 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6646 .target_mem_cgroup = memcg, 6647 .may_writepage = !laptop_mode, 6648 .may_unmap = 1, 6649 .reclaim_idx = MAX_NR_ZONES - 1, 6650 .may_swap = !noswap, 6651 }; 6652 6653 WARN_ON_ONCE(!current->reclaim_state); 6654 6655 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 6656 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 6657 6658 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 6659 sc.gfp_mask); 6660 6661 /* 6662 * NOTE: Although we can get the priority field, using it 6663 * here is not a good idea, since it limits the pages we can scan. 6664 * if we don't reclaim here, the shrink_node from balance_pgdat 6665 * will pick up pages from other mem cgroup's as well. We hack 6666 * the priority and make it zero. 6667 */ 6668 shrink_lruvec(lruvec, &sc); 6669 6670 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 6671 6672 *nr_scanned = sc.nr_scanned; 6673 6674 return sc.nr_reclaimed; 6675 } 6676 6677 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 6678 unsigned long nr_pages, 6679 gfp_t gfp_mask, 6680 unsigned int reclaim_options, 6681 int *swappiness) 6682 { 6683 unsigned long nr_reclaimed; 6684 unsigned int noreclaim_flag; 6685 struct scan_control sc = { 6686 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 6687 .proactive_swappiness = swappiness, 6688 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 6689 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 6690 .reclaim_idx = MAX_NR_ZONES - 1, 6691 .target_mem_cgroup = memcg, 6692 .priority = DEF_PRIORITY, 6693 .may_writepage = !laptop_mode, 6694 .may_unmap = 1, 6695 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 6696 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 6697 }; 6698 /* 6699 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 6700 * equal pressure on all the nodes. This is based on the assumption that 6701 * the reclaim does not bail out early. 6702 */ 6703 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 6704 6705 set_task_reclaim_state(current, &sc.reclaim_state); 6706 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 6707 noreclaim_flag = memalloc_noreclaim_save(); 6708 6709 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6710 6711 memalloc_noreclaim_restore(noreclaim_flag); 6712 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 6713 set_task_reclaim_state(current, NULL); 6714 6715 return nr_reclaimed; 6716 } 6717 #endif 6718 6719 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6720 { 6721 struct mem_cgroup *memcg; 6722 struct lruvec *lruvec; 6723 6724 if (lru_gen_enabled()) { 6725 lru_gen_age_node(pgdat, sc); 6726 return; 6727 } 6728 6729 lruvec = mem_cgroup_lruvec(NULL, pgdat); 6730 if (!can_age_anon_pages(lruvec, sc)) 6731 return; 6732 6733 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6734 return; 6735 6736 memcg = mem_cgroup_iter(NULL, NULL, NULL); 6737 do { 6738 lruvec = mem_cgroup_lruvec(memcg, pgdat); 6739 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6740 sc, LRU_ACTIVE_ANON); 6741 memcg = mem_cgroup_iter(NULL, memcg, NULL); 6742 } while (memcg); 6743 } 6744 6745 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 6746 { 6747 int i; 6748 struct zone *zone; 6749 6750 /* 6751 * Check for watermark boosts top-down as the higher zones 6752 * are more likely to be boosted. Both watermarks and boosts 6753 * should not be checked at the same time as reclaim would 6754 * start prematurely when there is no boosting and a lower 6755 * zone is balanced. 6756 */ 6757 for (i = highest_zoneidx; i >= 0; i--) { 6758 zone = pgdat->node_zones + i; 6759 if (!managed_zone(zone)) 6760 continue; 6761 6762 if (zone->watermark_boost) 6763 return true; 6764 } 6765 6766 return false; 6767 } 6768 6769 /* 6770 * Returns true if there is an eligible zone balanced for the request order 6771 * and highest_zoneidx 6772 */ 6773 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 6774 { 6775 int i; 6776 unsigned long mark = -1; 6777 struct zone *zone; 6778 6779 /* 6780 * Check watermarks bottom-up as lower zones are more likely to 6781 * meet watermarks. 6782 */ 6783 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) { 6784 enum zone_stat_item item; 6785 unsigned long free_pages; 6786 6787 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 6788 mark = promo_wmark_pages(zone); 6789 else 6790 mark = high_wmark_pages(zone); 6791 6792 /* 6793 * In defrag_mode, watermarks must be met in whole 6794 * blocks to avoid polluting allocator fallbacks. 6795 * 6796 * However, kswapd usually cannot accomplish this on 6797 * its own and needs kcompactd support. Once it's 6798 * reclaimed a compaction gap, and kswapd_shrink_node 6799 * has dropped order, simply ensure there are enough 6800 * base pages for compaction, wake kcompactd & sleep. 6801 */ 6802 if (defrag_mode && order) 6803 item = NR_FREE_PAGES_BLOCKS; 6804 else 6805 item = NR_FREE_PAGES; 6806 6807 /* 6808 * When there is a high number of CPUs in the system, 6809 * the cumulative error from the vmstat per-cpu cache 6810 * can blur the line between the watermarks. In that 6811 * case, be safe and get an accurate snapshot. 6812 * 6813 * TODO: NR_FREE_PAGES_BLOCKS moves in steps of 6814 * pageblock_nr_pages, while the vmstat pcp threshold 6815 * is limited to 125. On many configurations that 6816 * counter won't actually be per-cpu cached. But keep 6817 * things simple for now; revisit when somebody cares. 6818 */ 6819 free_pages = zone_page_state(zone, item); 6820 if (zone->percpu_drift_mark && free_pages < zone->percpu_drift_mark) 6821 free_pages = zone_page_state_snapshot(zone, item); 6822 6823 if (__zone_watermark_ok(zone, order, mark, highest_zoneidx, 6824 0, free_pages)) 6825 return true; 6826 } 6827 6828 /* 6829 * If a node has no managed zone within highest_zoneidx, it does not 6830 * need balancing by definition. This can happen if a zone-restricted 6831 * allocation tries to wake a remote kswapd. 6832 */ 6833 if (mark == -1) 6834 return true; 6835 6836 return false; 6837 } 6838 6839 /* Clear pgdat state for congested, dirty or under writeback. */ 6840 static void clear_pgdat_congested(pg_data_t *pgdat) 6841 { 6842 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 6843 6844 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags); 6845 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6846 clear_bit(PGDAT_DIRTY, &pgdat->flags); 6847 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 6848 } 6849 6850 /* 6851 * Prepare kswapd for sleeping. This verifies that there are no processes 6852 * waiting in throttle_direct_reclaim() and that watermarks have been met. 6853 * 6854 * Returns true if kswapd is ready to sleep 6855 */ 6856 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 6857 int highest_zoneidx) 6858 { 6859 /* 6860 * The throttled processes are normally woken up in balance_pgdat() as 6861 * soon as allow_direct_reclaim() is true. But there is a potential 6862 * race between when kswapd checks the watermarks and a process gets 6863 * throttled. There is also a potential race if processes get 6864 * throttled, kswapd wakes, a large process exits thereby balancing the 6865 * zones, which causes kswapd to exit balance_pgdat() before reaching 6866 * the wake up checks. If kswapd is going to sleep, no process should 6867 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 6868 * the wake up is premature, processes will wake kswapd and get 6869 * throttled again. The difference from wake ups in balance_pgdat() is 6870 * that here we are under prepare_to_wait(). 6871 */ 6872 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 6873 wake_up_all(&pgdat->pfmemalloc_wait); 6874 6875 /* Hopeless node, leave it to direct reclaim */ 6876 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6877 return true; 6878 6879 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 6880 clear_pgdat_congested(pgdat); 6881 return true; 6882 } 6883 6884 return false; 6885 } 6886 6887 /* 6888 * kswapd shrinks a node of pages that are at or below the highest usable 6889 * zone that is currently unbalanced. 6890 * 6891 * Returns true if kswapd scanned at least the requested number of pages to 6892 * reclaim or if the lack of progress was due to pages under writeback. 6893 * This is used to determine if the scanning priority needs to be raised. 6894 */ 6895 static bool kswapd_shrink_node(pg_data_t *pgdat, 6896 struct scan_control *sc) 6897 { 6898 struct zone *zone; 6899 int z; 6900 unsigned long nr_reclaimed = sc->nr_reclaimed; 6901 6902 /* Reclaim a number of pages proportional to the number of zones */ 6903 sc->nr_to_reclaim = 0; 6904 for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) { 6905 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 6906 } 6907 6908 /* 6909 * Historically care was taken to put equal pressure on all zones but 6910 * now pressure is applied based on node LRU order. 6911 */ 6912 shrink_node(pgdat, sc); 6913 6914 /* 6915 * Fragmentation may mean that the system cannot be rebalanced for 6916 * high-order allocations. If twice the allocation size has been 6917 * reclaimed then recheck watermarks only at order-0 to prevent 6918 * excessive reclaim. Assume that a process requested a high-order 6919 * can direct reclaim/compact. 6920 */ 6921 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 6922 sc->order = 0; 6923 6924 /* account for progress from mm_account_reclaimed_pages() */ 6925 return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim; 6926 } 6927 6928 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 6929 static inline void 6930 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 6931 { 6932 int i; 6933 struct zone *zone; 6934 6935 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) { 6936 if (active) 6937 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6938 else 6939 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6940 } 6941 } 6942 6943 static inline void 6944 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6945 { 6946 update_reclaim_active(pgdat, highest_zoneidx, true); 6947 } 6948 6949 static inline void 6950 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6951 { 6952 update_reclaim_active(pgdat, highest_zoneidx, false); 6953 } 6954 6955 /* 6956 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 6957 * that are eligible for use by the caller until at least one zone is 6958 * balanced. 6959 * 6960 * Returns the order kswapd finished reclaiming at. 6961 * 6962 * kswapd scans the zones in the highmem->normal->dma direction. It skips 6963 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 6964 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 6965 * or lower is eligible for reclaim until at least one usable zone is 6966 * balanced. 6967 */ 6968 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 6969 { 6970 int i; 6971 unsigned long nr_soft_reclaimed; 6972 unsigned long nr_soft_scanned; 6973 unsigned long pflags; 6974 unsigned long nr_boost_reclaim; 6975 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 6976 bool boosted; 6977 struct zone *zone; 6978 struct scan_control sc = { 6979 .gfp_mask = GFP_KERNEL, 6980 .order = order, 6981 .may_unmap = 1, 6982 }; 6983 6984 set_task_reclaim_state(current, &sc.reclaim_state); 6985 psi_memstall_enter(&pflags); 6986 __fs_reclaim_acquire(_THIS_IP_); 6987 6988 count_vm_event(PAGEOUTRUN); 6989 6990 /* 6991 * Account for the reclaim boost. Note that the zone boost is left in 6992 * place so that parallel allocations that are near the watermark will 6993 * stall or direct reclaim until kswapd is finished. 6994 */ 6995 nr_boost_reclaim = 0; 6996 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) { 6997 nr_boost_reclaim += zone->watermark_boost; 6998 zone_boosts[i] = zone->watermark_boost; 6999 } 7000 boosted = nr_boost_reclaim; 7001 7002 restart: 7003 set_reclaim_active(pgdat, highest_zoneidx); 7004 sc.priority = DEF_PRIORITY; 7005 do { 7006 unsigned long nr_reclaimed = sc.nr_reclaimed; 7007 bool raise_priority = true; 7008 bool balanced; 7009 bool ret; 7010 bool was_frozen; 7011 7012 sc.reclaim_idx = highest_zoneidx; 7013 7014 /* 7015 * If the number of buffer_heads exceeds the maximum allowed 7016 * then consider reclaiming from all zones. This has a dual 7017 * purpose -- on 64-bit systems it is expected that 7018 * buffer_heads are stripped during active rotation. On 32-bit 7019 * systems, highmem pages can pin lowmem memory and shrinking 7020 * buffers can relieve lowmem pressure. Reclaim may still not 7021 * go ahead if all eligible zones for the original allocation 7022 * request are balanced to avoid excessive reclaim from kswapd. 7023 */ 7024 if (buffer_heads_over_limit) { 7025 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 7026 zone = pgdat->node_zones + i; 7027 if (!managed_zone(zone)) 7028 continue; 7029 7030 sc.reclaim_idx = i; 7031 break; 7032 } 7033 } 7034 7035 /* 7036 * If the pgdat is imbalanced then ignore boosting and preserve 7037 * the watermarks for a later time and restart. Note that the 7038 * zone watermarks will be still reset at the end of balancing 7039 * on the grounds that the normal reclaim should be enough to 7040 * re-evaluate if boosting is required when kswapd next wakes. 7041 */ 7042 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 7043 if (!balanced && nr_boost_reclaim) { 7044 nr_boost_reclaim = 0; 7045 goto restart; 7046 } 7047 7048 /* 7049 * If boosting is not active then only reclaim if there are no 7050 * eligible zones. Note that sc.reclaim_idx is not used as 7051 * buffer_heads_over_limit may have adjusted it. 7052 */ 7053 if (!nr_boost_reclaim && balanced) 7054 goto out; 7055 7056 /* Limit the priority of boosting to avoid reclaim writeback */ 7057 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 7058 raise_priority = false; 7059 7060 /* 7061 * Do not writeback or swap pages for boosted reclaim. The 7062 * intent is to relieve pressure not issue sub-optimal IO 7063 * from reclaim context. If no pages are reclaimed, the 7064 * reclaim will be aborted. 7065 */ 7066 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 7067 sc.may_swap = !nr_boost_reclaim; 7068 7069 /* 7070 * Do some background aging, to give pages a chance to be 7071 * referenced before reclaiming. All pages are rotated 7072 * regardless of classzone as this is about consistent aging. 7073 */ 7074 kswapd_age_node(pgdat, &sc); 7075 7076 /* 7077 * If we're getting trouble reclaiming, start doing writepage 7078 * even in laptop mode. 7079 */ 7080 if (sc.priority < DEF_PRIORITY - 2) 7081 sc.may_writepage = 1; 7082 7083 /* Call soft limit reclaim before calling shrink_node. */ 7084 sc.nr_scanned = 0; 7085 nr_soft_scanned = 0; 7086 nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order, 7087 sc.gfp_mask, &nr_soft_scanned); 7088 sc.nr_reclaimed += nr_soft_reclaimed; 7089 7090 /* 7091 * There should be no need to raise the scanning priority if 7092 * enough pages are already being scanned that that high 7093 * watermark would be met at 100% efficiency. 7094 */ 7095 if (kswapd_shrink_node(pgdat, &sc)) 7096 raise_priority = false; 7097 7098 /* 7099 * If the low watermark is met there is no need for processes 7100 * to be throttled on pfmemalloc_wait as they should not be 7101 * able to safely make forward progress. Wake them 7102 */ 7103 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 7104 allow_direct_reclaim(pgdat)) 7105 wake_up_all(&pgdat->pfmemalloc_wait); 7106 7107 /* Check if kswapd should be suspending */ 7108 __fs_reclaim_release(_THIS_IP_); 7109 ret = kthread_freezable_should_stop(&was_frozen); 7110 __fs_reclaim_acquire(_THIS_IP_); 7111 if (was_frozen || ret) 7112 break; 7113 7114 /* 7115 * Raise priority if scanning rate is too low or there was no 7116 * progress in reclaiming pages 7117 */ 7118 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 7119 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 7120 7121 /* 7122 * If reclaim made no progress for a boost, stop reclaim as 7123 * IO cannot be queued and it could be an infinite loop in 7124 * extreme circumstances. 7125 */ 7126 if (nr_boost_reclaim && !nr_reclaimed) 7127 break; 7128 7129 if (raise_priority || !nr_reclaimed) 7130 sc.priority--; 7131 } while (sc.priority >= 1); 7132 7133 /* 7134 * Restart only if it went through the priority loop all the way, 7135 * but cache_trim_mode didn't work. 7136 */ 7137 if (!sc.nr_reclaimed && sc.priority < 1 && 7138 !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) { 7139 sc.no_cache_trim_mode = 1; 7140 goto restart; 7141 } 7142 7143 if (!sc.nr_reclaimed) 7144 pgdat->kswapd_failures++; 7145 7146 out: 7147 clear_reclaim_active(pgdat, highest_zoneidx); 7148 7149 /* If reclaim was boosted, account for the reclaim done in this pass */ 7150 if (boosted) { 7151 unsigned long flags; 7152 7153 for (i = 0; i <= highest_zoneidx; i++) { 7154 if (!zone_boosts[i]) 7155 continue; 7156 7157 /* Increments are under the zone lock */ 7158 zone = pgdat->node_zones + i; 7159 spin_lock_irqsave(&zone->lock, flags); 7160 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7161 spin_unlock_irqrestore(&zone->lock, flags); 7162 } 7163 7164 /* 7165 * As there is now likely space, wakeup kcompact to defragment 7166 * pageblocks. 7167 */ 7168 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7169 } 7170 7171 snapshot_refaults(NULL, pgdat); 7172 __fs_reclaim_release(_THIS_IP_); 7173 psi_memstall_leave(&pflags); 7174 set_task_reclaim_state(current, NULL); 7175 7176 /* 7177 * Return the order kswapd stopped reclaiming at as 7178 * prepare_kswapd_sleep() takes it into account. If another caller 7179 * entered the allocator slow path while kswapd was awake, order will 7180 * remain at the higher level. 7181 */ 7182 return sc.order; 7183 } 7184 7185 /* 7186 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7187 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7188 * not a valid index then either kswapd runs for first time or kswapd couldn't 7189 * sleep after previous reclaim attempt (node is still unbalanced). In that 7190 * case return the zone index of the previous kswapd reclaim cycle. 7191 */ 7192 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7193 enum zone_type prev_highest_zoneidx) 7194 { 7195 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7196 7197 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7198 } 7199 7200 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7201 unsigned int highest_zoneidx) 7202 { 7203 long remaining = 0; 7204 DEFINE_WAIT(wait); 7205 7206 if (freezing(current) || kthread_should_stop()) 7207 return; 7208 7209 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7210 7211 /* 7212 * Try to sleep for a short interval. Note that kcompactd will only be 7213 * woken if it is possible to sleep for a short interval. This is 7214 * deliberate on the assumption that if reclaim cannot keep an 7215 * eligible zone balanced that it's also unlikely that compaction will 7216 * succeed. 7217 */ 7218 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7219 /* 7220 * Compaction records what page blocks it recently failed to 7221 * isolate pages from and skips them in the future scanning. 7222 * When kswapd is going to sleep, it is reasonable to assume 7223 * that pages and compaction may succeed so reset the cache. 7224 */ 7225 reset_isolation_suitable(pgdat); 7226 7227 /* 7228 * We have freed the memory, now we should compact it to make 7229 * allocation of the requested order possible. 7230 */ 7231 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7232 7233 remaining = schedule_timeout(HZ/10); 7234 7235 /* 7236 * If woken prematurely then reset kswapd_highest_zoneidx and 7237 * order. The values will either be from a wakeup request or 7238 * the previous request that slept prematurely. 7239 */ 7240 if (remaining) { 7241 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7242 kswapd_highest_zoneidx(pgdat, 7243 highest_zoneidx)); 7244 7245 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7246 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7247 } 7248 7249 finish_wait(&pgdat->kswapd_wait, &wait); 7250 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7251 } 7252 7253 /* 7254 * After a short sleep, check if it was a premature sleep. If not, then 7255 * go fully to sleep until explicitly woken up. 7256 */ 7257 if (!remaining && 7258 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7259 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7260 7261 /* 7262 * vmstat counters are not perfectly accurate and the estimated 7263 * value for counters such as NR_FREE_PAGES can deviate from the 7264 * true value by nr_online_cpus * threshold. To avoid the zone 7265 * watermarks being breached while under pressure, we reduce the 7266 * per-cpu vmstat threshold while kswapd is awake and restore 7267 * them before going back to sleep. 7268 */ 7269 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7270 7271 if (!kthread_should_stop()) 7272 schedule(); 7273 7274 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7275 } else { 7276 if (remaining) 7277 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7278 else 7279 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7280 } 7281 finish_wait(&pgdat->kswapd_wait, &wait); 7282 } 7283 7284 /* 7285 * The background pageout daemon, started as a kernel thread 7286 * from the init process. 7287 * 7288 * This basically trickles out pages so that we have _some_ 7289 * free memory available even if there is no other activity 7290 * that frees anything up. This is needed for things like routing 7291 * etc, where we otherwise might have all activity going on in 7292 * asynchronous contexts that cannot page things out. 7293 * 7294 * If there are applications that are active memory-allocators 7295 * (most normal use), this basically shouldn't matter. 7296 */ 7297 static int kswapd(void *p) 7298 { 7299 unsigned int alloc_order, reclaim_order; 7300 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7301 pg_data_t *pgdat = (pg_data_t *)p; 7302 struct task_struct *tsk = current; 7303 7304 /* 7305 * Tell the memory management that we're a "memory allocator", 7306 * and that if we need more memory we should get access to it 7307 * regardless (see "__alloc_pages()"). "kswapd" should 7308 * never get caught in the normal page freeing logic. 7309 * 7310 * (Kswapd normally doesn't need memory anyway, but sometimes 7311 * you need a small amount of memory in order to be able to 7312 * page out something else, and this flag essentially protects 7313 * us from recursively trying to free more memory as we're 7314 * trying to free the first piece of memory in the first place). 7315 */ 7316 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7317 set_freezable(); 7318 7319 WRITE_ONCE(pgdat->kswapd_order, 0); 7320 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7321 atomic_set(&pgdat->nr_writeback_throttled, 0); 7322 for ( ; ; ) { 7323 bool was_frozen; 7324 7325 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7326 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7327 highest_zoneidx); 7328 7329 kswapd_try_sleep: 7330 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7331 highest_zoneidx); 7332 7333 /* Read the new order and highest_zoneidx */ 7334 alloc_order = READ_ONCE(pgdat->kswapd_order); 7335 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7336 highest_zoneidx); 7337 WRITE_ONCE(pgdat->kswapd_order, 0); 7338 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7339 7340 if (kthread_freezable_should_stop(&was_frozen)) 7341 break; 7342 7343 /* 7344 * We can speed up thawing tasks if we don't call balance_pgdat 7345 * after returning from the refrigerator 7346 */ 7347 if (was_frozen) 7348 continue; 7349 7350 /* 7351 * Reclaim begins at the requested order but if a high-order 7352 * reclaim fails then kswapd falls back to reclaiming for 7353 * order-0. If that happens, kswapd will consider sleeping 7354 * for the order it finished reclaiming at (reclaim_order) 7355 * but kcompactd is woken to compact for the original 7356 * request (alloc_order). 7357 */ 7358 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7359 alloc_order); 7360 reclaim_order = balance_pgdat(pgdat, alloc_order, 7361 highest_zoneidx); 7362 if (reclaim_order < alloc_order) 7363 goto kswapd_try_sleep; 7364 } 7365 7366 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7367 7368 return 0; 7369 } 7370 7371 /* 7372 * A zone is low on free memory or too fragmented for high-order memory. If 7373 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7374 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7375 * has failed or is not needed, still wake up kcompactd if only compaction is 7376 * needed. 7377 */ 7378 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7379 enum zone_type highest_zoneidx) 7380 { 7381 pg_data_t *pgdat; 7382 enum zone_type curr_idx; 7383 7384 if (!managed_zone(zone)) 7385 return; 7386 7387 if (!cpuset_zone_allowed(zone, gfp_flags)) 7388 return; 7389 7390 pgdat = zone->zone_pgdat; 7391 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7392 7393 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7394 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7395 7396 if (READ_ONCE(pgdat->kswapd_order) < order) 7397 WRITE_ONCE(pgdat->kswapd_order, order); 7398 7399 if (!waitqueue_active(&pgdat->kswapd_wait)) 7400 return; 7401 7402 /* Hopeless node, leave it to direct reclaim if possible */ 7403 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7404 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7405 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7406 /* 7407 * There may be plenty of free memory available, but it's too 7408 * fragmented for high-order allocations. Wake up kcompactd 7409 * and rely on compaction_suitable() to determine if it's 7410 * needed. If it fails, it will defer subsequent attempts to 7411 * ratelimit its work. 7412 */ 7413 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7414 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7415 return; 7416 } 7417 7418 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7419 gfp_flags); 7420 wake_up_interruptible(&pgdat->kswapd_wait); 7421 } 7422 7423 #ifdef CONFIG_HIBERNATION 7424 /* 7425 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7426 * freed pages. 7427 * 7428 * Rather than trying to age LRUs the aim is to preserve the overall 7429 * LRU order by reclaiming preferentially 7430 * inactive > active > active referenced > active mapped 7431 */ 7432 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7433 { 7434 struct scan_control sc = { 7435 .nr_to_reclaim = nr_to_reclaim, 7436 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7437 .reclaim_idx = MAX_NR_ZONES - 1, 7438 .priority = DEF_PRIORITY, 7439 .may_writepage = 1, 7440 .may_unmap = 1, 7441 .may_swap = 1, 7442 .hibernation_mode = 1, 7443 }; 7444 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7445 unsigned long nr_reclaimed; 7446 unsigned int noreclaim_flag; 7447 7448 fs_reclaim_acquire(sc.gfp_mask); 7449 noreclaim_flag = memalloc_noreclaim_save(); 7450 set_task_reclaim_state(current, &sc.reclaim_state); 7451 7452 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7453 7454 set_task_reclaim_state(current, NULL); 7455 memalloc_noreclaim_restore(noreclaim_flag); 7456 fs_reclaim_release(sc.gfp_mask); 7457 7458 return nr_reclaimed; 7459 } 7460 #endif /* CONFIG_HIBERNATION */ 7461 7462 /* 7463 * This kswapd start function will be called by init and node-hot-add. 7464 */ 7465 void __meminit kswapd_run(int nid) 7466 { 7467 pg_data_t *pgdat = NODE_DATA(nid); 7468 7469 pgdat_kswapd_lock(pgdat); 7470 if (!pgdat->kswapd) { 7471 pgdat->kswapd = kthread_create_on_node(kswapd, pgdat, nid, "kswapd%d", nid); 7472 if (IS_ERR(pgdat->kswapd)) { 7473 /* failure at boot is fatal */ 7474 pr_err("Failed to start kswapd on node %d,ret=%ld\n", 7475 nid, PTR_ERR(pgdat->kswapd)); 7476 BUG_ON(system_state < SYSTEM_RUNNING); 7477 pgdat->kswapd = NULL; 7478 } else { 7479 wake_up_process(pgdat->kswapd); 7480 } 7481 } 7482 pgdat_kswapd_unlock(pgdat); 7483 } 7484 7485 /* 7486 * Called by memory hotplug when all memory in a node is offlined. Caller must 7487 * be holding mem_hotplug_begin/done(). 7488 */ 7489 void __meminit kswapd_stop(int nid) 7490 { 7491 pg_data_t *pgdat = NODE_DATA(nid); 7492 struct task_struct *kswapd; 7493 7494 pgdat_kswapd_lock(pgdat); 7495 kswapd = pgdat->kswapd; 7496 if (kswapd) { 7497 kthread_stop(kswapd); 7498 pgdat->kswapd = NULL; 7499 } 7500 pgdat_kswapd_unlock(pgdat); 7501 } 7502 7503 static const struct ctl_table vmscan_sysctl_table[] = { 7504 { 7505 .procname = "swappiness", 7506 .data = &vm_swappiness, 7507 .maxlen = sizeof(vm_swappiness), 7508 .mode = 0644, 7509 .proc_handler = proc_dointvec_minmax, 7510 .extra1 = SYSCTL_ZERO, 7511 .extra2 = SYSCTL_TWO_HUNDRED, 7512 }, 7513 #ifdef CONFIG_NUMA 7514 { 7515 .procname = "zone_reclaim_mode", 7516 .data = &node_reclaim_mode, 7517 .maxlen = sizeof(node_reclaim_mode), 7518 .mode = 0644, 7519 .proc_handler = proc_dointvec_minmax, 7520 .extra1 = SYSCTL_ZERO, 7521 } 7522 #endif 7523 }; 7524 7525 static int __init kswapd_init(void) 7526 { 7527 int nid; 7528 7529 swap_setup(); 7530 for_each_node_state(nid, N_MEMORY) 7531 kswapd_run(nid); 7532 register_sysctl_init("vm", vmscan_sysctl_table); 7533 return 0; 7534 } 7535 7536 module_init(kswapd_init) 7537 7538 #ifdef CONFIG_NUMA 7539 /* 7540 * Node reclaim mode 7541 * 7542 * If non-zero call node_reclaim when the number of free pages falls below 7543 * the watermarks. 7544 */ 7545 int node_reclaim_mode __read_mostly; 7546 7547 /* 7548 * Priority for NODE_RECLAIM. This determines the fraction of pages 7549 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7550 * a zone. 7551 */ 7552 #define NODE_RECLAIM_PRIORITY 4 7553 7554 /* 7555 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7556 * occur. 7557 */ 7558 int sysctl_min_unmapped_ratio = 1; 7559 7560 /* 7561 * If the number of slab pages in a zone grows beyond this percentage then 7562 * slab reclaim needs to occur. 7563 */ 7564 int sysctl_min_slab_ratio = 5; 7565 7566 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7567 { 7568 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7569 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7570 node_page_state(pgdat, NR_ACTIVE_FILE); 7571 7572 /* 7573 * It's possible for there to be more file mapped pages than 7574 * accounted for by the pages on the file LRU lists because 7575 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7576 */ 7577 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7578 } 7579 7580 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7581 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7582 { 7583 unsigned long nr_pagecache_reclaimable; 7584 unsigned long delta = 0; 7585 7586 /* 7587 * If RECLAIM_UNMAP is set, then all file pages are considered 7588 * potentially reclaimable. Otherwise, we have to worry about 7589 * pages like swapcache and node_unmapped_file_pages() provides 7590 * a better estimate 7591 */ 7592 if (node_reclaim_mode & RECLAIM_UNMAP) 7593 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7594 else 7595 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7596 7597 /* If we can't clean pages, remove dirty pages from consideration */ 7598 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7599 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7600 7601 /* Watch for any possible underflows due to delta */ 7602 if (unlikely(delta > nr_pagecache_reclaimable)) 7603 delta = nr_pagecache_reclaimable; 7604 7605 return nr_pagecache_reclaimable - delta; 7606 } 7607 7608 /* 7609 * Try to free up some pages from this node through reclaim. 7610 */ 7611 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7612 { 7613 /* Minimum pages needed in order to stay on node */ 7614 const unsigned long nr_pages = 1 << order; 7615 struct task_struct *p = current; 7616 unsigned int noreclaim_flag; 7617 struct scan_control sc = { 7618 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7619 .gfp_mask = current_gfp_context(gfp_mask), 7620 .order = order, 7621 .priority = NODE_RECLAIM_PRIORITY, 7622 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7623 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7624 .may_swap = 1, 7625 .reclaim_idx = gfp_zone(gfp_mask), 7626 }; 7627 unsigned long pflags; 7628 7629 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 7630 sc.gfp_mask); 7631 7632 cond_resched(); 7633 psi_memstall_enter(&pflags); 7634 delayacct_freepages_start(); 7635 fs_reclaim_acquire(sc.gfp_mask); 7636 /* 7637 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7638 */ 7639 noreclaim_flag = memalloc_noreclaim_save(); 7640 set_task_reclaim_state(p, &sc.reclaim_state); 7641 7642 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7643 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7644 /* 7645 * Free memory by calling shrink node with increasing 7646 * priorities until we have enough memory freed. 7647 */ 7648 do { 7649 shrink_node(pgdat, &sc); 7650 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 7651 } 7652 7653 set_task_reclaim_state(p, NULL); 7654 memalloc_noreclaim_restore(noreclaim_flag); 7655 fs_reclaim_release(sc.gfp_mask); 7656 psi_memstall_leave(&pflags); 7657 delayacct_freepages_end(); 7658 7659 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 7660 7661 return sc.nr_reclaimed >= nr_pages; 7662 } 7663 7664 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7665 { 7666 int ret; 7667 7668 /* 7669 * Node reclaim reclaims unmapped file backed pages and 7670 * slab pages if we are over the defined limits. 7671 * 7672 * A small portion of unmapped file backed pages is needed for 7673 * file I/O otherwise pages read by file I/O will be immediately 7674 * thrown out if the node is overallocated. So we do not reclaim 7675 * if less than a specified percentage of the node is used by 7676 * unmapped file backed pages. 7677 */ 7678 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 7679 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 7680 pgdat->min_slab_pages) 7681 return NODE_RECLAIM_FULL; 7682 7683 /* 7684 * Do not scan if the allocation should not be delayed. 7685 */ 7686 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 7687 return NODE_RECLAIM_NOSCAN; 7688 7689 /* 7690 * Only run node reclaim on the local node or on nodes that do not 7691 * have associated processors. This will favor the local processor 7692 * over remote processors and spread off node memory allocations 7693 * as wide as possible. 7694 */ 7695 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 7696 return NODE_RECLAIM_NOSCAN; 7697 7698 if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 7699 return NODE_RECLAIM_NOSCAN; 7700 7701 ret = __node_reclaim(pgdat, gfp_mask, order); 7702 clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7703 7704 if (ret) 7705 count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS); 7706 else 7707 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 7708 7709 return ret; 7710 } 7711 #endif 7712 7713 /** 7714 * check_move_unevictable_folios - Move evictable folios to appropriate zone 7715 * lru list 7716 * @fbatch: Batch of lru folios to check. 7717 * 7718 * Checks folios for evictability, if an evictable folio is in the unevictable 7719 * lru list, moves it to the appropriate evictable lru list. This function 7720 * should be only used for lru folios. 7721 */ 7722 void check_move_unevictable_folios(struct folio_batch *fbatch) 7723 { 7724 struct lruvec *lruvec = NULL; 7725 int pgscanned = 0; 7726 int pgrescued = 0; 7727 int i; 7728 7729 for (i = 0; i < fbatch->nr; i++) { 7730 struct folio *folio = fbatch->folios[i]; 7731 int nr_pages = folio_nr_pages(folio); 7732 7733 pgscanned += nr_pages; 7734 7735 /* block memcg migration while the folio moves between lrus */ 7736 if (!folio_test_clear_lru(folio)) 7737 continue; 7738 7739 lruvec = folio_lruvec_relock_irq(folio, lruvec); 7740 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 7741 lruvec_del_folio(lruvec, folio); 7742 folio_clear_unevictable(folio); 7743 lruvec_add_folio(lruvec, folio); 7744 pgrescued += nr_pages; 7745 } 7746 folio_set_lru(folio); 7747 } 7748 7749 if (lruvec) { 7750 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 7751 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7752 unlock_page_lruvec_irq(lruvec); 7753 } else if (pgscanned) { 7754 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7755 } 7756 } 7757 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 7758