xref: /linux/mm/vmscan.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59 
60 #include <asm/tlbflush.h>
61 #include <asm/div64.h>
62 
63 #include <linux/swapops.h>
64 #include <linux/balloon_compaction.h>
65 #include <linux/sched/sysctl.h>
66 
67 #include "internal.h"
68 #include "swap.h"
69 
70 #define CREATE_TRACE_POINTS
71 #include <trace/events/vmscan.h>
72 
73 struct scan_control {
74 	/* How many pages shrink_list() should reclaim */
75 	unsigned long nr_to_reclaim;
76 
77 	/*
78 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
79 	 * are scanned.
80 	 */
81 	nodemask_t	*nodemask;
82 
83 	/*
84 	 * The memory cgroup that hit its limit and as a result is the
85 	 * primary target of this reclaim invocation.
86 	 */
87 	struct mem_cgroup *target_mem_cgroup;
88 
89 	/*
90 	 * Scan pressure balancing between anon and file LRUs
91 	 */
92 	unsigned long	anon_cost;
93 	unsigned long	file_cost;
94 
95 	/* Can active folios be deactivated as part of reclaim? */
96 #define DEACTIVATE_ANON 1
97 #define DEACTIVATE_FILE 2
98 	unsigned int may_deactivate:2;
99 	unsigned int force_deactivate:1;
100 	unsigned int skipped_deactivate:1;
101 
102 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
103 	unsigned int may_writepage:1;
104 
105 	/* Can mapped folios be reclaimed? */
106 	unsigned int may_unmap:1;
107 
108 	/* Can folios be swapped as part of reclaim? */
109 	unsigned int may_swap:1;
110 
111 	/* Proactive reclaim invoked by userspace through memory.reclaim */
112 	unsigned int proactive:1;
113 
114 	/*
115 	 * Cgroup memory below memory.low is protected as long as we
116 	 * don't threaten to OOM. If any cgroup is reclaimed at
117 	 * reduced force or passed over entirely due to its memory.low
118 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
119 	 * result, then go back for one more cycle that reclaims the protected
120 	 * memory (memcg_low_reclaim) to avert OOM.
121 	 */
122 	unsigned int memcg_low_reclaim:1;
123 	unsigned int memcg_low_skipped:1;
124 
125 	unsigned int hibernation_mode:1;
126 
127 	/* One of the zones is ready for compaction */
128 	unsigned int compaction_ready:1;
129 
130 	/* There is easily reclaimable cold cache in the current node */
131 	unsigned int cache_trim_mode:1;
132 
133 	/* The file folios on the current node are dangerously low */
134 	unsigned int file_is_tiny:1;
135 
136 	/* Always discard instead of demoting to lower tier memory */
137 	unsigned int no_demotion:1;
138 
139 	/* Allocation order */
140 	s8 order;
141 
142 	/* Scan (total_size >> priority) pages at once */
143 	s8 priority;
144 
145 	/* The highest zone to isolate folios for reclaim from */
146 	s8 reclaim_idx;
147 
148 	/* This context's GFP mask */
149 	gfp_t gfp_mask;
150 
151 	/* Incremented by the number of inactive pages that were scanned */
152 	unsigned long nr_scanned;
153 
154 	/* Number of pages freed so far during a call to shrink_zones() */
155 	unsigned long nr_reclaimed;
156 
157 	struct {
158 		unsigned int dirty;
159 		unsigned int unqueued_dirty;
160 		unsigned int congested;
161 		unsigned int writeback;
162 		unsigned int immediate;
163 		unsigned int file_taken;
164 		unsigned int taken;
165 	} nr;
166 
167 	/* for recording the reclaimed slab by now */
168 	struct reclaim_state reclaim_state;
169 };
170 
171 #ifdef ARCH_HAS_PREFETCHW
172 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
173 	do {								\
174 		if ((_folio)->lru.prev != _base) {			\
175 			struct folio *prev;				\
176 									\
177 			prev = lru_to_folio(&(_folio->lru));		\
178 			prefetchw(&prev->_field);			\
179 		}							\
180 	} while (0)
181 #else
182 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
183 #endif
184 
185 /*
186  * From 0 .. 200.  Higher means more swappy.
187  */
188 int vm_swappiness = 60;
189 
190 #ifdef CONFIG_MEMCG
191 
192 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
193 static bool cgroup_reclaim(struct scan_control *sc)
194 {
195 	return sc->target_mem_cgroup;
196 }
197 
198 /*
199  * Returns true for reclaim on the root cgroup. This is true for direct
200  * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
201  */
202 static bool root_reclaim(struct scan_control *sc)
203 {
204 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
205 }
206 
207 /**
208  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
209  * @sc: scan_control in question
210  *
211  * The normal page dirty throttling mechanism in balance_dirty_pages() is
212  * completely broken with the legacy memcg and direct stalling in
213  * shrink_folio_list() is used for throttling instead, which lacks all the
214  * niceties such as fairness, adaptive pausing, bandwidth proportional
215  * allocation and configurability.
216  *
217  * This function tests whether the vmscan currently in progress can assume
218  * that the normal dirty throttling mechanism is operational.
219  */
220 static bool writeback_throttling_sane(struct scan_control *sc)
221 {
222 	if (!cgroup_reclaim(sc))
223 		return true;
224 #ifdef CONFIG_CGROUP_WRITEBACK
225 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
226 		return true;
227 #endif
228 	return false;
229 }
230 #else
231 static bool cgroup_reclaim(struct scan_control *sc)
232 {
233 	return false;
234 }
235 
236 static bool root_reclaim(struct scan_control *sc)
237 {
238 	return true;
239 }
240 
241 static bool writeback_throttling_sane(struct scan_control *sc)
242 {
243 	return true;
244 }
245 #endif
246 
247 static void set_task_reclaim_state(struct task_struct *task,
248 				   struct reclaim_state *rs)
249 {
250 	/* Check for an overwrite */
251 	WARN_ON_ONCE(rs && task->reclaim_state);
252 
253 	/* Check for the nulling of an already-nulled member */
254 	WARN_ON_ONCE(!rs && !task->reclaim_state);
255 
256 	task->reclaim_state = rs;
257 }
258 
259 /*
260  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
261  * scan_control->nr_reclaimed.
262  */
263 static void flush_reclaim_state(struct scan_control *sc)
264 {
265 	/*
266 	 * Currently, reclaim_state->reclaimed includes three types of pages
267 	 * freed outside of vmscan:
268 	 * (1) Slab pages.
269 	 * (2) Clean file pages from pruned inodes (on highmem systems).
270 	 * (3) XFS freed buffer pages.
271 	 *
272 	 * For all of these cases, we cannot universally link the pages to a
273 	 * single memcg. For example, a memcg-aware shrinker can free one object
274 	 * charged to the target memcg, causing an entire page to be freed.
275 	 * If we count the entire page as reclaimed from the memcg, we end up
276 	 * overestimating the reclaimed amount (potentially under-reclaiming).
277 	 *
278 	 * Only count such pages for global reclaim to prevent under-reclaiming
279 	 * from the target memcg; preventing unnecessary retries during memcg
280 	 * charging and false positives from proactive reclaim.
281 	 *
282 	 * For uncommon cases where the freed pages were actually mostly
283 	 * charged to the target memcg, we end up underestimating the reclaimed
284 	 * amount. This should be fine. The freed pages will be uncharged
285 	 * anyway, even if they are not counted here properly, and we will be
286 	 * able to make forward progress in charging (which is usually in a
287 	 * retry loop).
288 	 *
289 	 * We can go one step further, and report the uncharged objcg pages in
290 	 * memcg reclaim, to make reporting more accurate and reduce
291 	 * underestimation, but it's probably not worth the complexity for now.
292 	 */
293 	if (current->reclaim_state && root_reclaim(sc)) {
294 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
295 		current->reclaim_state->reclaimed = 0;
296 	}
297 }
298 
299 static bool can_demote(int nid, struct scan_control *sc)
300 {
301 	if (!numa_demotion_enabled)
302 		return false;
303 	if (sc && sc->no_demotion)
304 		return false;
305 	if (next_demotion_node(nid) == NUMA_NO_NODE)
306 		return false;
307 
308 	return true;
309 }
310 
311 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
312 					  int nid,
313 					  struct scan_control *sc)
314 {
315 	if (memcg == NULL) {
316 		/*
317 		 * For non-memcg reclaim, is there
318 		 * space in any swap device?
319 		 */
320 		if (get_nr_swap_pages() > 0)
321 			return true;
322 	} else {
323 		/* Is the memcg below its swap limit? */
324 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
325 			return true;
326 	}
327 
328 	/*
329 	 * The page can not be swapped.
330 	 *
331 	 * Can it be reclaimed from this node via demotion?
332 	 */
333 	return can_demote(nid, sc);
334 }
335 
336 /*
337  * This misses isolated folios which are not accounted for to save counters.
338  * As the data only determines if reclaim or compaction continues, it is
339  * not expected that isolated folios will be a dominating factor.
340  */
341 unsigned long zone_reclaimable_pages(struct zone *zone)
342 {
343 	unsigned long nr;
344 
345 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
346 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
347 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
348 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
349 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
350 
351 	return nr;
352 }
353 
354 /**
355  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
356  * @lruvec: lru vector
357  * @lru: lru to use
358  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
359  */
360 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
361 				     int zone_idx)
362 {
363 	unsigned long size = 0;
364 	int zid;
365 
366 	for (zid = 0; zid <= zone_idx; zid++) {
367 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
368 
369 		if (!managed_zone(zone))
370 			continue;
371 
372 		if (!mem_cgroup_disabled())
373 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
374 		else
375 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
376 	}
377 	return size;
378 }
379 
380 static unsigned long drop_slab_node(int nid)
381 {
382 	unsigned long freed = 0;
383 	struct mem_cgroup *memcg = NULL;
384 
385 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
386 	do {
387 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
388 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
389 
390 	return freed;
391 }
392 
393 void drop_slab(void)
394 {
395 	int nid;
396 	int shift = 0;
397 	unsigned long freed;
398 
399 	do {
400 		freed = 0;
401 		for_each_online_node(nid) {
402 			if (fatal_signal_pending(current))
403 				return;
404 
405 			freed += drop_slab_node(nid);
406 		}
407 	} while ((freed >> shift++) > 1);
408 }
409 
410 static int reclaimer_offset(void)
411 {
412 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
413 			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
414 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
415 			PGSCAN_DIRECT - PGSCAN_KSWAPD);
416 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
417 			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
418 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
419 			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
420 
421 	if (current_is_kswapd())
422 		return 0;
423 	if (current_is_khugepaged())
424 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
425 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
426 }
427 
428 static inline int is_page_cache_freeable(struct folio *folio)
429 {
430 	/*
431 	 * A freeable page cache folio is referenced only by the caller
432 	 * that isolated the folio, the page cache and optional filesystem
433 	 * private data at folio->private.
434 	 */
435 	return folio_ref_count(folio) - folio_test_private(folio) ==
436 		1 + folio_nr_pages(folio);
437 }
438 
439 /*
440  * We detected a synchronous write error writing a folio out.  Probably
441  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
442  * fsync(), msync() or close().
443  *
444  * The tricky part is that after writepage we cannot touch the mapping: nothing
445  * prevents it from being freed up.  But we have a ref on the folio and once
446  * that folio is locked, the mapping is pinned.
447  *
448  * We're allowed to run sleeping folio_lock() here because we know the caller has
449  * __GFP_FS.
450  */
451 static void handle_write_error(struct address_space *mapping,
452 				struct folio *folio, int error)
453 {
454 	folio_lock(folio);
455 	if (folio_mapping(folio) == mapping)
456 		mapping_set_error(mapping, error);
457 	folio_unlock(folio);
458 }
459 
460 static bool skip_throttle_noprogress(pg_data_t *pgdat)
461 {
462 	int reclaimable = 0, write_pending = 0;
463 	int i;
464 
465 	/*
466 	 * If kswapd is disabled, reschedule if necessary but do not
467 	 * throttle as the system is likely near OOM.
468 	 */
469 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
470 		return true;
471 
472 	/*
473 	 * If there are a lot of dirty/writeback folios then do not
474 	 * throttle as throttling will occur when the folios cycle
475 	 * towards the end of the LRU if still under writeback.
476 	 */
477 	for (i = 0; i < MAX_NR_ZONES; i++) {
478 		struct zone *zone = pgdat->node_zones + i;
479 
480 		if (!managed_zone(zone))
481 			continue;
482 
483 		reclaimable += zone_reclaimable_pages(zone);
484 		write_pending += zone_page_state_snapshot(zone,
485 						  NR_ZONE_WRITE_PENDING);
486 	}
487 	if (2 * write_pending <= reclaimable)
488 		return true;
489 
490 	return false;
491 }
492 
493 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
494 {
495 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
496 	long timeout, ret;
497 	DEFINE_WAIT(wait);
498 
499 	/*
500 	 * Do not throttle user workers, kthreads other than kswapd or
501 	 * workqueues. They may be required for reclaim to make
502 	 * forward progress (e.g. journalling workqueues or kthreads).
503 	 */
504 	if (!current_is_kswapd() &&
505 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
506 		cond_resched();
507 		return;
508 	}
509 
510 	/*
511 	 * These figures are pulled out of thin air.
512 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
513 	 * parallel reclaimers which is a short-lived event so the timeout is
514 	 * short. Failing to make progress or waiting on writeback are
515 	 * potentially long-lived events so use a longer timeout. This is shaky
516 	 * logic as a failure to make progress could be due to anything from
517 	 * writeback to a slow device to excessive referenced folios at the tail
518 	 * of the inactive LRU.
519 	 */
520 	switch(reason) {
521 	case VMSCAN_THROTTLE_WRITEBACK:
522 		timeout = HZ/10;
523 
524 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
525 			WRITE_ONCE(pgdat->nr_reclaim_start,
526 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
527 		}
528 
529 		break;
530 	case VMSCAN_THROTTLE_CONGESTED:
531 		fallthrough;
532 	case VMSCAN_THROTTLE_NOPROGRESS:
533 		if (skip_throttle_noprogress(pgdat)) {
534 			cond_resched();
535 			return;
536 		}
537 
538 		timeout = 1;
539 
540 		break;
541 	case VMSCAN_THROTTLE_ISOLATED:
542 		timeout = HZ/50;
543 		break;
544 	default:
545 		WARN_ON_ONCE(1);
546 		timeout = HZ;
547 		break;
548 	}
549 
550 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
551 	ret = schedule_timeout(timeout);
552 	finish_wait(wqh, &wait);
553 
554 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
555 		atomic_dec(&pgdat->nr_writeback_throttled);
556 
557 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
558 				jiffies_to_usecs(timeout - ret),
559 				reason);
560 }
561 
562 /*
563  * Account for folios written if tasks are throttled waiting on dirty
564  * folios to clean. If enough folios have been cleaned since throttling
565  * started then wakeup the throttled tasks.
566  */
567 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
568 							int nr_throttled)
569 {
570 	unsigned long nr_written;
571 
572 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
573 
574 	/*
575 	 * This is an inaccurate read as the per-cpu deltas may not
576 	 * be synchronised. However, given that the system is
577 	 * writeback throttled, it is not worth taking the penalty
578 	 * of getting an accurate count. At worst, the throttle
579 	 * timeout guarantees forward progress.
580 	 */
581 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
582 		READ_ONCE(pgdat->nr_reclaim_start);
583 
584 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
585 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
586 }
587 
588 /* possible outcome of pageout() */
589 typedef enum {
590 	/* failed to write folio out, folio is locked */
591 	PAGE_KEEP,
592 	/* move folio to the active list, folio is locked */
593 	PAGE_ACTIVATE,
594 	/* folio has been sent to the disk successfully, folio is unlocked */
595 	PAGE_SUCCESS,
596 	/* folio is clean and locked */
597 	PAGE_CLEAN,
598 } pageout_t;
599 
600 /*
601  * pageout is called by shrink_folio_list() for each dirty folio.
602  * Calls ->writepage().
603  */
604 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
605 			 struct swap_iocb **plug)
606 {
607 	/*
608 	 * If the folio is dirty, only perform writeback if that write
609 	 * will be non-blocking.  To prevent this allocation from being
610 	 * stalled by pagecache activity.  But note that there may be
611 	 * stalls if we need to run get_block().  We could test
612 	 * PagePrivate for that.
613 	 *
614 	 * If this process is currently in __generic_file_write_iter() against
615 	 * this folio's queue, we can perform writeback even if that
616 	 * will block.
617 	 *
618 	 * If the folio is swapcache, write it back even if that would
619 	 * block, for some throttling. This happens by accident, because
620 	 * swap_backing_dev_info is bust: it doesn't reflect the
621 	 * congestion state of the swapdevs.  Easy to fix, if needed.
622 	 */
623 	if (!is_page_cache_freeable(folio))
624 		return PAGE_KEEP;
625 	if (!mapping) {
626 		/*
627 		 * Some data journaling orphaned folios can have
628 		 * folio->mapping == NULL while being dirty with clean buffers.
629 		 */
630 		if (folio_test_private(folio)) {
631 			if (try_to_free_buffers(folio)) {
632 				folio_clear_dirty(folio);
633 				pr_info("%s: orphaned folio\n", __func__);
634 				return PAGE_CLEAN;
635 			}
636 		}
637 		return PAGE_KEEP;
638 	}
639 	if (mapping->a_ops->writepage == NULL)
640 		return PAGE_ACTIVATE;
641 
642 	if (folio_clear_dirty_for_io(folio)) {
643 		int res;
644 		struct writeback_control wbc = {
645 			.sync_mode = WB_SYNC_NONE,
646 			.nr_to_write = SWAP_CLUSTER_MAX,
647 			.range_start = 0,
648 			.range_end = LLONG_MAX,
649 			.for_reclaim = 1,
650 			.swap_plug = plug,
651 		};
652 
653 		folio_set_reclaim(folio);
654 		res = mapping->a_ops->writepage(&folio->page, &wbc);
655 		if (res < 0)
656 			handle_write_error(mapping, folio, res);
657 		if (res == AOP_WRITEPAGE_ACTIVATE) {
658 			folio_clear_reclaim(folio);
659 			return PAGE_ACTIVATE;
660 		}
661 
662 		if (!folio_test_writeback(folio)) {
663 			/* synchronous write or broken a_ops? */
664 			folio_clear_reclaim(folio);
665 		}
666 		trace_mm_vmscan_write_folio(folio);
667 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
668 		return PAGE_SUCCESS;
669 	}
670 
671 	return PAGE_CLEAN;
672 }
673 
674 /*
675  * Same as remove_mapping, but if the folio is removed from the mapping, it
676  * gets returned with a refcount of 0.
677  */
678 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
679 			    bool reclaimed, struct mem_cgroup *target_memcg)
680 {
681 	int refcount;
682 	void *shadow = NULL;
683 
684 	BUG_ON(!folio_test_locked(folio));
685 	BUG_ON(mapping != folio_mapping(folio));
686 
687 	if (!folio_test_swapcache(folio))
688 		spin_lock(&mapping->host->i_lock);
689 	xa_lock_irq(&mapping->i_pages);
690 	/*
691 	 * The non racy check for a busy folio.
692 	 *
693 	 * Must be careful with the order of the tests. When someone has
694 	 * a ref to the folio, it may be possible that they dirty it then
695 	 * drop the reference. So if the dirty flag is tested before the
696 	 * refcount here, then the following race may occur:
697 	 *
698 	 * get_user_pages(&page);
699 	 * [user mapping goes away]
700 	 * write_to(page);
701 	 *				!folio_test_dirty(folio)    [good]
702 	 * folio_set_dirty(folio);
703 	 * folio_put(folio);
704 	 *				!refcount(folio)   [good, discard it]
705 	 *
706 	 * [oops, our write_to data is lost]
707 	 *
708 	 * Reversing the order of the tests ensures such a situation cannot
709 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
710 	 * load is not satisfied before that of folio->_refcount.
711 	 *
712 	 * Note that if the dirty flag is always set via folio_mark_dirty,
713 	 * and thus under the i_pages lock, then this ordering is not required.
714 	 */
715 	refcount = 1 + folio_nr_pages(folio);
716 	if (!folio_ref_freeze(folio, refcount))
717 		goto cannot_free;
718 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
719 	if (unlikely(folio_test_dirty(folio))) {
720 		folio_ref_unfreeze(folio, refcount);
721 		goto cannot_free;
722 	}
723 
724 	if (folio_test_swapcache(folio)) {
725 		swp_entry_t swap = folio->swap;
726 
727 		if (reclaimed && !mapping_exiting(mapping))
728 			shadow = workingset_eviction(folio, target_memcg);
729 		__delete_from_swap_cache(folio, swap, shadow);
730 		mem_cgroup_swapout(folio, swap);
731 		xa_unlock_irq(&mapping->i_pages);
732 		put_swap_folio(folio, swap);
733 	} else {
734 		void (*free_folio)(struct folio *);
735 
736 		free_folio = mapping->a_ops->free_folio;
737 		/*
738 		 * Remember a shadow entry for reclaimed file cache in
739 		 * order to detect refaults, thus thrashing, later on.
740 		 *
741 		 * But don't store shadows in an address space that is
742 		 * already exiting.  This is not just an optimization,
743 		 * inode reclaim needs to empty out the radix tree or
744 		 * the nodes are lost.  Don't plant shadows behind its
745 		 * back.
746 		 *
747 		 * We also don't store shadows for DAX mappings because the
748 		 * only page cache folios found in these are zero pages
749 		 * covering holes, and because we don't want to mix DAX
750 		 * exceptional entries and shadow exceptional entries in the
751 		 * same address_space.
752 		 */
753 		if (reclaimed && folio_is_file_lru(folio) &&
754 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
755 			shadow = workingset_eviction(folio, target_memcg);
756 		__filemap_remove_folio(folio, shadow);
757 		xa_unlock_irq(&mapping->i_pages);
758 		if (mapping_shrinkable(mapping))
759 			inode_add_lru(mapping->host);
760 		spin_unlock(&mapping->host->i_lock);
761 
762 		if (free_folio)
763 			free_folio(folio);
764 	}
765 
766 	return 1;
767 
768 cannot_free:
769 	xa_unlock_irq(&mapping->i_pages);
770 	if (!folio_test_swapcache(folio))
771 		spin_unlock(&mapping->host->i_lock);
772 	return 0;
773 }
774 
775 /**
776  * remove_mapping() - Attempt to remove a folio from its mapping.
777  * @mapping: The address space.
778  * @folio: The folio to remove.
779  *
780  * If the folio is dirty, under writeback or if someone else has a ref
781  * on it, removal will fail.
782  * Return: The number of pages removed from the mapping.  0 if the folio
783  * could not be removed.
784  * Context: The caller should have a single refcount on the folio and
785  * hold its lock.
786  */
787 long remove_mapping(struct address_space *mapping, struct folio *folio)
788 {
789 	if (__remove_mapping(mapping, folio, false, NULL)) {
790 		/*
791 		 * Unfreezing the refcount with 1 effectively
792 		 * drops the pagecache ref for us without requiring another
793 		 * atomic operation.
794 		 */
795 		folio_ref_unfreeze(folio, 1);
796 		return folio_nr_pages(folio);
797 	}
798 	return 0;
799 }
800 
801 /**
802  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
803  * @folio: Folio to be returned to an LRU list.
804  *
805  * Add previously isolated @folio to appropriate LRU list.
806  * The folio may still be unevictable for other reasons.
807  *
808  * Context: lru_lock must not be held, interrupts must be enabled.
809  */
810 void folio_putback_lru(struct folio *folio)
811 {
812 	folio_add_lru(folio);
813 	folio_put(folio);		/* drop ref from isolate */
814 }
815 
816 enum folio_references {
817 	FOLIOREF_RECLAIM,
818 	FOLIOREF_RECLAIM_CLEAN,
819 	FOLIOREF_KEEP,
820 	FOLIOREF_ACTIVATE,
821 };
822 
823 static enum folio_references folio_check_references(struct folio *folio,
824 						  struct scan_control *sc)
825 {
826 	int referenced_ptes, referenced_folio;
827 	unsigned long vm_flags;
828 
829 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
830 					   &vm_flags);
831 	referenced_folio = folio_test_clear_referenced(folio);
832 
833 	/*
834 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
835 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
836 	 */
837 	if (vm_flags & VM_LOCKED)
838 		return FOLIOREF_ACTIVATE;
839 
840 	/* rmap lock contention: rotate */
841 	if (referenced_ptes == -1)
842 		return FOLIOREF_KEEP;
843 
844 	if (referenced_ptes) {
845 		/*
846 		 * All mapped folios start out with page table
847 		 * references from the instantiating fault, so we need
848 		 * to look twice if a mapped file/anon folio is used more
849 		 * than once.
850 		 *
851 		 * Mark it and spare it for another trip around the
852 		 * inactive list.  Another page table reference will
853 		 * lead to its activation.
854 		 *
855 		 * Note: the mark is set for activated folios as well
856 		 * so that recently deactivated but used folios are
857 		 * quickly recovered.
858 		 */
859 		folio_set_referenced(folio);
860 
861 		if (referenced_folio || referenced_ptes > 1)
862 			return FOLIOREF_ACTIVATE;
863 
864 		/*
865 		 * Activate file-backed executable folios after first usage.
866 		 */
867 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
868 			return FOLIOREF_ACTIVATE;
869 
870 		return FOLIOREF_KEEP;
871 	}
872 
873 	/* Reclaim if clean, defer dirty folios to writeback */
874 	if (referenced_folio && folio_is_file_lru(folio))
875 		return FOLIOREF_RECLAIM_CLEAN;
876 
877 	return FOLIOREF_RECLAIM;
878 }
879 
880 /* Check if a folio is dirty or under writeback */
881 static void folio_check_dirty_writeback(struct folio *folio,
882 				       bool *dirty, bool *writeback)
883 {
884 	struct address_space *mapping;
885 
886 	/*
887 	 * Anonymous folios are not handled by flushers and must be written
888 	 * from reclaim context. Do not stall reclaim based on them.
889 	 * MADV_FREE anonymous folios are put into inactive file list too.
890 	 * They could be mistakenly treated as file lru. So further anon
891 	 * test is needed.
892 	 */
893 	if (!folio_is_file_lru(folio) ||
894 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
895 		*dirty = false;
896 		*writeback = false;
897 		return;
898 	}
899 
900 	/* By default assume that the folio flags are accurate */
901 	*dirty = folio_test_dirty(folio);
902 	*writeback = folio_test_writeback(folio);
903 
904 	/* Verify dirty/writeback state if the filesystem supports it */
905 	if (!folio_test_private(folio))
906 		return;
907 
908 	mapping = folio_mapping(folio);
909 	if (mapping && mapping->a_ops->is_dirty_writeback)
910 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
911 }
912 
913 static struct folio *alloc_demote_folio(struct folio *src,
914 		unsigned long private)
915 {
916 	struct folio *dst;
917 	nodemask_t *allowed_mask;
918 	struct migration_target_control *mtc;
919 
920 	mtc = (struct migration_target_control *)private;
921 
922 	allowed_mask = mtc->nmask;
923 	/*
924 	 * make sure we allocate from the target node first also trying to
925 	 * demote or reclaim pages from the target node via kswapd if we are
926 	 * low on free memory on target node. If we don't do this and if
927 	 * we have free memory on the slower(lower) memtier, we would start
928 	 * allocating pages from slower(lower) memory tiers without even forcing
929 	 * a demotion of cold pages from the target memtier. This can result
930 	 * in the kernel placing hot pages in slower(lower) memory tiers.
931 	 */
932 	mtc->nmask = NULL;
933 	mtc->gfp_mask |= __GFP_THISNODE;
934 	dst = alloc_migration_target(src, (unsigned long)mtc);
935 	if (dst)
936 		return dst;
937 
938 	mtc->gfp_mask &= ~__GFP_THISNODE;
939 	mtc->nmask = allowed_mask;
940 
941 	return alloc_migration_target(src, (unsigned long)mtc);
942 }
943 
944 /*
945  * Take folios on @demote_folios and attempt to demote them to another node.
946  * Folios which are not demoted are left on @demote_folios.
947  */
948 static unsigned int demote_folio_list(struct list_head *demote_folios,
949 				     struct pglist_data *pgdat)
950 {
951 	int target_nid = next_demotion_node(pgdat->node_id);
952 	unsigned int nr_succeeded;
953 	nodemask_t allowed_mask;
954 
955 	struct migration_target_control mtc = {
956 		/*
957 		 * Allocate from 'node', or fail quickly and quietly.
958 		 * When this happens, 'page' will likely just be discarded
959 		 * instead of migrated.
960 		 */
961 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
962 			__GFP_NOMEMALLOC | GFP_NOWAIT,
963 		.nid = target_nid,
964 		.nmask = &allowed_mask
965 	};
966 
967 	if (list_empty(demote_folios))
968 		return 0;
969 
970 	if (target_nid == NUMA_NO_NODE)
971 		return 0;
972 
973 	node_get_allowed_targets(pgdat, &allowed_mask);
974 
975 	/* Demotion ignores all cpuset and mempolicy settings */
976 	migrate_pages(demote_folios, alloc_demote_folio, NULL,
977 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
978 		      &nr_succeeded);
979 
980 	__count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
981 
982 	return nr_succeeded;
983 }
984 
985 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
986 {
987 	if (gfp_mask & __GFP_FS)
988 		return true;
989 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
990 		return false;
991 	/*
992 	 * We can "enter_fs" for swap-cache with only __GFP_IO
993 	 * providing this isn't SWP_FS_OPS.
994 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
995 	 * but that will never affect SWP_FS_OPS, so the data_race
996 	 * is safe.
997 	 */
998 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
999 }
1000 
1001 /*
1002  * shrink_folio_list() returns the number of reclaimed pages
1003  */
1004 static unsigned int shrink_folio_list(struct list_head *folio_list,
1005 		struct pglist_data *pgdat, struct scan_control *sc,
1006 		struct reclaim_stat *stat, bool ignore_references)
1007 {
1008 	LIST_HEAD(ret_folios);
1009 	LIST_HEAD(free_folios);
1010 	LIST_HEAD(demote_folios);
1011 	unsigned int nr_reclaimed = 0;
1012 	unsigned int pgactivate = 0;
1013 	bool do_demote_pass;
1014 	struct swap_iocb *plug = NULL;
1015 
1016 	memset(stat, 0, sizeof(*stat));
1017 	cond_resched();
1018 	do_demote_pass = can_demote(pgdat->node_id, sc);
1019 
1020 retry:
1021 	while (!list_empty(folio_list)) {
1022 		struct address_space *mapping;
1023 		struct folio *folio;
1024 		enum folio_references references = FOLIOREF_RECLAIM;
1025 		bool dirty, writeback;
1026 		unsigned int nr_pages;
1027 
1028 		cond_resched();
1029 
1030 		folio = lru_to_folio(folio_list);
1031 		list_del(&folio->lru);
1032 
1033 		if (!folio_trylock(folio))
1034 			goto keep;
1035 
1036 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1037 
1038 		nr_pages = folio_nr_pages(folio);
1039 
1040 		/* Account the number of base pages */
1041 		sc->nr_scanned += nr_pages;
1042 
1043 		if (unlikely(!folio_evictable(folio)))
1044 			goto activate_locked;
1045 
1046 		if (!sc->may_unmap && folio_mapped(folio))
1047 			goto keep_locked;
1048 
1049 		/* folio_update_gen() tried to promote this page? */
1050 		if (lru_gen_enabled() && !ignore_references &&
1051 		    folio_mapped(folio) && folio_test_referenced(folio))
1052 			goto keep_locked;
1053 
1054 		/*
1055 		 * The number of dirty pages determines if a node is marked
1056 		 * reclaim_congested. kswapd will stall and start writing
1057 		 * folios if the tail of the LRU is all dirty unqueued folios.
1058 		 */
1059 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1060 		if (dirty || writeback)
1061 			stat->nr_dirty += nr_pages;
1062 
1063 		if (dirty && !writeback)
1064 			stat->nr_unqueued_dirty += nr_pages;
1065 
1066 		/*
1067 		 * Treat this folio as congested if folios are cycling
1068 		 * through the LRU so quickly that the folios marked
1069 		 * for immediate reclaim are making it to the end of
1070 		 * the LRU a second time.
1071 		 */
1072 		if (writeback && folio_test_reclaim(folio))
1073 			stat->nr_congested += nr_pages;
1074 
1075 		/*
1076 		 * If a folio at the tail of the LRU is under writeback, there
1077 		 * are three cases to consider.
1078 		 *
1079 		 * 1) If reclaim is encountering an excessive number
1080 		 *    of folios under writeback and this folio has both
1081 		 *    the writeback and reclaim flags set, then it
1082 		 *    indicates that folios are being queued for I/O but
1083 		 *    are being recycled through the LRU before the I/O
1084 		 *    can complete. Waiting on the folio itself risks an
1085 		 *    indefinite stall if it is impossible to writeback
1086 		 *    the folio due to I/O error or disconnected storage
1087 		 *    so instead note that the LRU is being scanned too
1088 		 *    quickly and the caller can stall after the folio
1089 		 *    list has been processed.
1090 		 *
1091 		 * 2) Global or new memcg reclaim encounters a folio that is
1092 		 *    not marked for immediate reclaim, or the caller does not
1093 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1094 		 *    not to fs). In this case mark the folio for immediate
1095 		 *    reclaim and continue scanning.
1096 		 *
1097 		 *    Require may_enter_fs() because we would wait on fs, which
1098 		 *    may not have submitted I/O yet. And the loop driver might
1099 		 *    enter reclaim, and deadlock if it waits on a folio for
1100 		 *    which it is needed to do the write (loop masks off
1101 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1102 		 *    would probably show more reasons.
1103 		 *
1104 		 * 3) Legacy memcg encounters a folio that already has the
1105 		 *    reclaim flag set. memcg does not have any dirty folio
1106 		 *    throttling so we could easily OOM just because too many
1107 		 *    folios are in writeback and there is nothing else to
1108 		 *    reclaim. Wait for the writeback to complete.
1109 		 *
1110 		 * In cases 1) and 2) we activate the folios to get them out of
1111 		 * the way while we continue scanning for clean folios on the
1112 		 * inactive list and refilling from the active list. The
1113 		 * observation here is that waiting for disk writes is more
1114 		 * expensive than potentially causing reloads down the line.
1115 		 * Since they're marked for immediate reclaim, they won't put
1116 		 * memory pressure on the cache working set any longer than it
1117 		 * takes to write them to disk.
1118 		 */
1119 		if (folio_test_writeback(folio)) {
1120 			/* Case 1 above */
1121 			if (current_is_kswapd() &&
1122 			    folio_test_reclaim(folio) &&
1123 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1124 				stat->nr_immediate += nr_pages;
1125 				goto activate_locked;
1126 
1127 			/* Case 2 above */
1128 			} else if (writeback_throttling_sane(sc) ||
1129 			    !folio_test_reclaim(folio) ||
1130 			    !may_enter_fs(folio, sc->gfp_mask)) {
1131 				/*
1132 				 * This is slightly racy -
1133 				 * folio_end_writeback() might have
1134 				 * just cleared the reclaim flag, then
1135 				 * setting the reclaim flag here ends up
1136 				 * interpreted as the readahead flag - but
1137 				 * that does not matter enough to care.
1138 				 * What we do want is for this folio to
1139 				 * have the reclaim flag set next time
1140 				 * memcg reclaim reaches the tests above,
1141 				 * so it will then wait for writeback to
1142 				 * avoid OOM; and it's also appropriate
1143 				 * in global reclaim.
1144 				 */
1145 				folio_set_reclaim(folio);
1146 				stat->nr_writeback += nr_pages;
1147 				goto activate_locked;
1148 
1149 			/* Case 3 above */
1150 			} else {
1151 				folio_unlock(folio);
1152 				folio_wait_writeback(folio);
1153 				/* then go back and try same folio again */
1154 				list_add_tail(&folio->lru, folio_list);
1155 				continue;
1156 			}
1157 		}
1158 
1159 		if (!ignore_references)
1160 			references = folio_check_references(folio, sc);
1161 
1162 		switch (references) {
1163 		case FOLIOREF_ACTIVATE:
1164 			goto activate_locked;
1165 		case FOLIOREF_KEEP:
1166 			stat->nr_ref_keep += nr_pages;
1167 			goto keep_locked;
1168 		case FOLIOREF_RECLAIM:
1169 		case FOLIOREF_RECLAIM_CLEAN:
1170 			; /* try to reclaim the folio below */
1171 		}
1172 
1173 		/*
1174 		 * Before reclaiming the folio, try to relocate
1175 		 * its contents to another node.
1176 		 */
1177 		if (do_demote_pass &&
1178 		    (thp_migration_supported() || !folio_test_large(folio))) {
1179 			list_add(&folio->lru, &demote_folios);
1180 			folio_unlock(folio);
1181 			continue;
1182 		}
1183 
1184 		/*
1185 		 * Anonymous process memory has backing store?
1186 		 * Try to allocate it some swap space here.
1187 		 * Lazyfree folio could be freed directly
1188 		 */
1189 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1190 			if (!folio_test_swapcache(folio)) {
1191 				if (!(sc->gfp_mask & __GFP_IO))
1192 					goto keep_locked;
1193 				if (folio_maybe_dma_pinned(folio))
1194 					goto keep_locked;
1195 				if (folio_test_large(folio)) {
1196 					/* cannot split folio, skip it */
1197 					if (!can_split_folio(folio, NULL))
1198 						goto activate_locked;
1199 					/*
1200 					 * Split folios without a PMD map right
1201 					 * away. Chances are some or all of the
1202 					 * tail pages can be freed without IO.
1203 					 */
1204 					if (!folio_entire_mapcount(folio) &&
1205 					    split_folio_to_list(folio,
1206 								folio_list))
1207 						goto activate_locked;
1208 				}
1209 				if (!add_to_swap(folio)) {
1210 					if (!folio_test_large(folio))
1211 						goto activate_locked_split;
1212 					/* Fallback to swap normal pages */
1213 					if (split_folio_to_list(folio,
1214 								folio_list))
1215 						goto activate_locked;
1216 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1217 					count_memcg_folio_events(folio, THP_SWPOUT_FALLBACK, 1);
1218 					count_vm_event(THP_SWPOUT_FALLBACK);
1219 #endif
1220 					if (!add_to_swap(folio))
1221 						goto activate_locked_split;
1222 				}
1223 			}
1224 		} else if (folio_test_swapbacked(folio) &&
1225 			   folio_test_large(folio)) {
1226 			/* Split shmem folio */
1227 			if (split_folio_to_list(folio, folio_list))
1228 				goto keep_locked;
1229 		}
1230 
1231 		/*
1232 		 * If the folio was split above, the tail pages will make
1233 		 * their own pass through this function and be accounted
1234 		 * then.
1235 		 */
1236 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1237 			sc->nr_scanned -= (nr_pages - 1);
1238 			nr_pages = 1;
1239 		}
1240 
1241 		/*
1242 		 * The folio is mapped into the page tables of one or more
1243 		 * processes. Try to unmap it here.
1244 		 */
1245 		if (folio_mapped(folio)) {
1246 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1247 			bool was_swapbacked = folio_test_swapbacked(folio);
1248 
1249 			if (folio_test_pmd_mappable(folio))
1250 				flags |= TTU_SPLIT_HUGE_PMD;
1251 
1252 			try_to_unmap(folio, flags);
1253 			if (folio_mapped(folio)) {
1254 				stat->nr_unmap_fail += nr_pages;
1255 				if (!was_swapbacked &&
1256 				    folio_test_swapbacked(folio))
1257 					stat->nr_lazyfree_fail += nr_pages;
1258 				goto activate_locked;
1259 			}
1260 		}
1261 
1262 		/*
1263 		 * Folio is unmapped now so it cannot be newly pinned anymore.
1264 		 * No point in trying to reclaim folio if it is pinned.
1265 		 * Furthermore we don't want to reclaim underlying fs metadata
1266 		 * if the folio is pinned and thus potentially modified by the
1267 		 * pinning process as that may upset the filesystem.
1268 		 */
1269 		if (folio_maybe_dma_pinned(folio))
1270 			goto activate_locked;
1271 
1272 		mapping = folio_mapping(folio);
1273 		if (folio_test_dirty(folio)) {
1274 			/*
1275 			 * Only kswapd can writeback filesystem folios
1276 			 * to avoid risk of stack overflow. But avoid
1277 			 * injecting inefficient single-folio I/O into
1278 			 * flusher writeback as much as possible: only
1279 			 * write folios when we've encountered many
1280 			 * dirty folios, and when we've already scanned
1281 			 * the rest of the LRU for clean folios and see
1282 			 * the same dirty folios again (with the reclaim
1283 			 * flag set).
1284 			 */
1285 			if (folio_is_file_lru(folio) &&
1286 			    (!current_is_kswapd() ||
1287 			     !folio_test_reclaim(folio) ||
1288 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1289 				/*
1290 				 * Immediately reclaim when written back.
1291 				 * Similar in principle to folio_deactivate()
1292 				 * except we already have the folio isolated
1293 				 * and know it's dirty
1294 				 */
1295 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1296 						nr_pages);
1297 				folio_set_reclaim(folio);
1298 
1299 				goto activate_locked;
1300 			}
1301 
1302 			if (references == FOLIOREF_RECLAIM_CLEAN)
1303 				goto keep_locked;
1304 			if (!may_enter_fs(folio, sc->gfp_mask))
1305 				goto keep_locked;
1306 			if (!sc->may_writepage)
1307 				goto keep_locked;
1308 
1309 			/*
1310 			 * Folio is dirty. Flush the TLB if a writable entry
1311 			 * potentially exists to avoid CPU writes after I/O
1312 			 * starts and then write it out here.
1313 			 */
1314 			try_to_unmap_flush_dirty();
1315 			switch (pageout(folio, mapping, &plug)) {
1316 			case PAGE_KEEP:
1317 				goto keep_locked;
1318 			case PAGE_ACTIVATE:
1319 				goto activate_locked;
1320 			case PAGE_SUCCESS:
1321 				stat->nr_pageout += nr_pages;
1322 
1323 				if (folio_test_writeback(folio))
1324 					goto keep;
1325 				if (folio_test_dirty(folio))
1326 					goto keep;
1327 
1328 				/*
1329 				 * A synchronous write - probably a ramdisk.  Go
1330 				 * ahead and try to reclaim the folio.
1331 				 */
1332 				if (!folio_trylock(folio))
1333 					goto keep;
1334 				if (folio_test_dirty(folio) ||
1335 				    folio_test_writeback(folio))
1336 					goto keep_locked;
1337 				mapping = folio_mapping(folio);
1338 				fallthrough;
1339 			case PAGE_CLEAN:
1340 				; /* try to free the folio below */
1341 			}
1342 		}
1343 
1344 		/*
1345 		 * If the folio has buffers, try to free the buffer
1346 		 * mappings associated with this folio. If we succeed
1347 		 * we try to free the folio as well.
1348 		 *
1349 		 * We do this even if the folio is dirty.
1350 		 * filemap_release_folio() does not perform I/O, but it
1351 		 * is possible for a folio to have the dirty flag set,
1352 		 * but it is actually clean (all its buffers are clean).
1353 		 * This happens if the buffers were written out directly,
1354 		 * with submit_bh(). ext3 will do this, as well as
1355 		 * the blockdev mapping.  filemap_release_folio() will
1356 		 * discover that cleanness and will drop the buffers
1357 		 * and mark the folio clean - it can be freed.
1358 		 *
1359 		 * Rarely, folios can have buffers and no ->mapping.
1360 		 * These are the folios which were not successfully
1361 		 * invalidated in truncate_cleanup_folio().  We try to
1362 		 * drop those buffers here and if that worked, and the
1363 		 * folio is no longer mapped into process address space
1364 		 * (refcount == 1) it can be freed.  Otherwise, leave
1365 		 * the folio on the LRU so it is swappable.
1366 		 */
1367 		if (folio_needs_release(folio)) {
1368 			if (!filemap_release_folio(folio, sc->gfp_mask))
1369 				goto activate_locked;
1370 			if (!mapping && folio_ref_count(folio) == 1) {
1371 				folio_unlock(folio);
1372 				if (folio_put_testzero(folio))
1373 					goto free_it;
1374 				else {
1375 					/*
1376 					 * rare race with speculative reference.
1377 					 * the speculative reference will free
1378 					 * this folio shortly, so we may
1379 					 * increment nr_reclaimed here (and
1380 					 * leave it off the LRU).
1381 					 */
1382 					nr_reclaimed += nr_pages;
1383 					continue;
1384 				}
1385 			}
1386 		}
1387 
1388 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1389 			/* follow __remove_mapping for reference */
1390 			if (!folio_ref_freeze(folio, 1))
1391 				goto keep_locked;
1392 			/*
1393 			 * The folio has only one reference left, which is
1394 			 * from the isolation. After the caller puts the
1395 			 * folio back on the lru and drops the reference, the
1396 			 * folio will be freed anyway. It doesn't matter
1397 			 * which lru it goes on. So we don't bother checking
1398 			 * the dirty flag here.
1399 			 */
1400 			count_vm_events(PGLAZYFREED, nr_pages);
1401 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1402 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1403 							 sc->target_mem_cgroup))
1404 			goto keep_locked;
1405 
1406 		folio_unlock(folio);
1407 free_it:
1408 		/*
1409 		 * Folio may get swapped out as a whole, need to account
1410 		 * all pages in it.
1411 		 */
1412 		nr_reclaimed += nr_pages;
1413 
1414 		/*
1415 		 * Is there need to periodically free_folio_list? It would
1416 		 * appear not as the counts should be low
1417 		 */
1418 		if (unlikely(folio_test_large(folio)))
1419 			destroy_large_folio(folio);
1420 		else
1421 			list_add(&folio->lru, &free_folios);
1422 		continue;
1423 
1424 activate_locked_split:
1425 		/*
1426 		 * The tail pages that are failed to add into swap cache
1427 		 * reach here.  Fixup nr_scanned and nr_pages.
1428 		 */
1429 		if (nr_pages > 1) {
1430 			sc->nr_scanned -= (nr_pages - 1);
1431 			nr_pages = 1;
1432 		}
1433 activate_locked:
1434 		/* Not a candidate for swapping, so reclaim swap space. */
1435 		if (folio_test_swapcache(folio) &&
1436 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1437 			folio_free_swap(folio);
1438 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1439 		if (!folio_test_mlocked(folio)) {
1440 			int type = folio_is_file_lru(folio);
1441 			folio_set_active(folio);
1442 			stat->nr_activate[type] += nr_pages;
1443 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1444 		}
1445 keep_locked:
1446 		folio_unlock(folio);
1447 keep:
1448 		list_add(&folio->lru, &ret_folios);
1449 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1450 				folio_test_unevictable(folio), folio);
1451 	}
1452 	/* 'folio_list' is always empty here */
1453 
1454 	/* Migrate folios selected for demotion */
1455 	nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
1456 	/* Folios that could not be demoted are still in @demote_folios */
1457 	if (!list_empty(&demote_folios)) {
1458 		/* Folios which weren't demoted go back on @folio_list */
1459 		list_splice_init(&demote_folios, folio_list);
1460 
1461 		/*
1462 		 * goto retry to reclaim the undemoted folios in folio_list if
1463 		 * desired.
1464 		 *
1465 		 * Reclaiming directly from top tier nodes is not often desired
1466 		 * due to it breaking the LRU ordering: in general memory
1467 		 * should be reclaimed from lower tier nodes and demoted from
1468 		 * top tier nodes.
1469 		 *
1470 		 * However, disabling reclaim from top tier nodes entirely
1471 		 * would cause ooms in edge scenarios where lower tier memory
1472 		 * is unreclaimable for whatever reason, eg memory being
1473 		 * mlocked or too hot to reclaim. We can disable reclaim
1474 		 * from top tier nodes in proactive reclaim though as that is
1475 		 * not real memory pressure.
1476 		 */
1477 		if (!sc->proactive) {
1478 			do_demote_pass = false;
1479 			goto retry;
1480 		}
1481 	}
1482 
1483 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1484 
1485 	mem_cgroup_uncharge_list(&free_folios);
1486 	try_to_unmap_flush();
1487 	free_unref_page_list(&free_folios);
1488 
1489 	list_splice(&ret_folios, folio_list);
1490 	count_vm_events(PGACTIVATE, pgactivate);
1491 
1492 	if (plug)
1493 		swap_write_unplug(plug);
1494 	return nr_reclaimed;
1495 }
1496 
1497 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1498 					   struct list_head *folio_list)
1499 {
1500 	struct scan_control sc = {
1501 		.gfp_mask = GFP_KERNEL,
1502 		.may_unmap = 1,
1503 	};
1504 	struct reclaim_stat stat;
1505 	unsigned int nr_reclaimed;
1506 	struct folio *folio, *next;
1507 	LIST_HEAD(clean_folios);
1508 	unsigned int noreclaim_flag;
1509 
1510 	list_for_each_entry_safe(folio, next, folio_list, lru) {
1511 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1512 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1513 		    !folio_test_unevictable(folio)) {
1514 			folio_clear_active(folio);
1515 			list_move(&folio->lru, &clean_folios);
1516 		}
1517 	}
1518 
1519 	/*
1520 	 * We should be safe here since we are only dealing with file pages and
1521 	 * we are not kswapd and therefore cannot write dirty file pages. But
1522 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1523 	 * change in the future.
1524 	 */
1525 	noreclaim_flag = memalloc_noreclaim_save();
1526 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1527 					&stat, true);
1528 	memalloc_noreclaim_restore(noreclaim_flag);
1529 
1530 	list_splice(&clean_folios, folio_list);
1531 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1532 			    -(long)nr_reclaimed);
1533 	/*
1534 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1535 	 * they will rotate back to anonymous LRU in the end if it failed to
1536 	 * discard so isolated count will be mismatched.
1537 	 * Compensate the isolated count for both LRU lists.
1538 	 */
1539 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1540 			    stat.nr_lazyfree_fail);
1541 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1542 			    -(long)stat.nr_lazyfree_fail);
1543 	return nr_reclaimed;
1544 }
1545 
1546 /*
1547  * Update LRU sizes after isolating pages. The LRU size updates must
1548  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1549  */
1550 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1551 			enum lru_list lru, unsigned long *nr_zone_taken)
1552 {
1553 	int zid;
1554 
1555 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1556 		if (!nr_zone_taken[zid])
1557 			continue;
1558 
1559 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1560 	}
1561 
1562 }
1563 
1564 #ifdef CONFIG_CMA
1565 /*
1566  * It is waste of effort to scan and reclaim CMA pages if it is not available
1567  * for current allocation context. Kswapd can not be enrolled as it can not
1568  * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL
1569  */
1570 static bool skip_cma(struct folio *folio, struct scan_control *sc)
1571 {
1572 	return !current_is_kswapd() &&
1573 			gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE &&
1574 			folio_migratetype(folio) == MIGRATE_CMA;
1575 }
1576 #else
1577 static bool skip_cma(struct folio *folio, struct scan_control *sc)
1578 {
1579 	return false;
1580 }
1581 #endif
1582 
1583 /*
1584  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1585  *
1586  * lruvec->lru_lock is heavily contended.  Some of the functions that
1587  * shrink the lists perform better by taking out a batch of pages
1588  * and working on them outside the LRU lock.
1589  *
1590  * For pagecache intensive workloads, this function is the hottest
1591  * spot in the kernel (apart from copy_*_user functions).
1592  *
1593  * Lru_lock must be held before calling this function.
1594  *
1595  * @nr_to_scan:	The number of eligible pages to look through on the list.
1596  * @lruvec:	The LRU vector to pull pages from.
1597  * @dst:	The temp list to put pages on to.
1598  * @nr_scanned:	The number of pages that were scanned.
1599  * @sc:		The scan_control struct for this reclaim session
1600  * @lru:	LRU list id for isolating
1601  *
1602  * returns how many pages were moved onto *@dst.
1603  */
1604 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1605 		struct lruvec *lruvec, struct list_head *dst,
1606 		unsigned long *nr_scanned, struct scan_control *sc,
1607 		enum lru_list lru)
1608 {
1609 	struct list_head *src = &lruvec->lists[lru];
1610 	unsigned long nr_taken = 0;
1611 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1612 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1613 	unsigned long skipped = 0;
1614 	unsigned long scan, total_scan, nr_pages;
1615 	LIST_HEAD(folios_skipped);
1616 
1617 	total_scan = 0;
1618 	scan = 0;
1619 	while (scan < nr_to_scan && !list_empty(src)) {
1620 		struct list_head *move_to = src;
1621 		struct folio *folio;
1622 
1623 		folio = lru_to_folio(src);
1624 		prefetchw_prev_lru_folio(folio, src, flags);
1625 
1626 		nr_pages = folio_nr_pages(folio);
1627 		total_scan += nr_pages;
1628 
1629 		if (folio_zonenum(folio) > sc->reclaim_idx ||
1630 				skip_cma(folio, sc)) {
1631 			nr_skipped[folio_zonenum(folio)] += nr_pages;
1632 			move_to = &folios_skipped;
1633 			goto move;
1634 		}
1635 
1636 		/*
1637 		 * Do not count skipped folios because that makes the function
1638 		 * return with no isolated folios if the LRU mostly contains
1639 		 * ineligible folios.  This causes the VM to not reclaim any
1640 		 * folios, triggering a premature OOM.
1641 		 * Account all pages in a folio.
1642 		 */
1643 		scan += nr_pages;
1644 
1645 		if (!folio_test_lru(folio))
1646 			goto move;
1647 		if (!sc->may_unmap && folio_mapped(folio))
1648 			goto move;
1649 
1650 		/*
1651 		 * Be careful not to clear the lru flag until after we're
1652 		 * sure the folio is not being freed elsewhere -- the
1653 		 * folio release code relies on it.
1654 		 */
1655 		if (unlikely(!folio_try_get(folio)))
1656 			goto move;
1657 
1658 		if (!folio_test_clear_lru(folio)) {
1659 			/* Another thread is already isolating this folio */
1660 			folio_put(folio);
1661 			goto move;
1662 		}
1663 
1664 		nr_taken += nr_pages;
1665 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1666 		move_to = dst;
1667 move:
1668 		list_move(&folio->lru, move_to);
1669 	}
1670 
1671 	/*
1672 	 * Splice any skipped folios to the start of the LRU list. Note that
1673 	 * this disrupts the LRU order when reclaiming for lower zones but
1674 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1675 	 * scanning would soon rescan the same folios to skip and waste lots
1676 	 * of cpu cycles.
1677 	 */
1678 	if (!list_empty(&folios_skipped)) {
1679 		int zid;
1680 
1681 		list_splice(&folios_skipped, src);
1682 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1683 			if (!nr_skipped[zid])
1684 				continue;
1685 
1686 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1687 			skipped += nr_skipped[zid];
1688 		}
1689 	}
1690 	*nr_scanned = total_scan;
1691 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1692 				    total_scan, skipped, nr_taken, lru);
1693 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1694 	return nr_taken;
1695 }
1696 
1697 /**
1698  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1699  * @folio: Folio to isolate from its LRU list.
1700  *
1701  * Isolate a @folio from an LRU list and adjust the vmstat statistic
1702  * corresponding to whatever LRU list the folio was on.
1703  *
1704  * The folio will have its LRU flag cleared.  If it was found on the
1705  * active list, it will have the Active flag set.  If it was found on the
1706  * unevictable list, it will have the Unevictable flag set.  These flags
1707  * may need to be cleared by the caller before letting the page go.
1708  *
1709  * Context:
1710  *
1711  * (1) Must be called with an elevated refcount on the folio. This is a
1712  *     fundamental difference from isolate_lru_folios() (which is called
1713  *     without a stable reference).
1714  * (2) The lru_lock must not be held.
1715  * (3) Interrupts must be enabled.
1716  *
1717  * Return: true if the folio was removed from an LRU list.
1718  * false if the folio was not on an LRU list.
1719  */
1720 bool folio_isolate_lru(struct folio *folio)
1721 {
1722 	bool ret = false;
1723 
1724 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1725 
1726 	if (folio_test_clear_lru(folio)) {
1727 		struct lruvec *lruvec;
1728 
1729 		folio_get(folio);
1730 		lruvec = folio_lruvec_lock_irq(folio);
1731 		lruvec_del_folio(lruvec, folio);
1732 		unlock_page_lruvec_irq(lruvec);
1733 		ret = true;
1734 	}
1735 
1736 	return ret;
1737 }
1738 
1739 /*
1740  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1741  * then get rescheduled. When there are massive number of tasks doing page
1742  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1743  * the LRU list will go small and be scanned faster than necessary, leading to
1744  * unnecessary swapping, thrashing and OOM.
1745  */
1746 static int too_many_isolated(struct pglist_data *pgdat, int file,
1747 		struct scan_control *sc)
1748 {
1749 	unsigned long inactive, isolated;
1750 	bool too_many;
1751 
1752 	if (current_is_kswapd())
1753 		return 0;
1754 
1755 	if (!writeback_throttling_sane(sc))
1756 		return 0;
1757 
1758 	if (file) {
1759 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1760 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1761 	} else {
1762 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1763 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1764 	}
1765 
1766 	/*
1767 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1768 	 * won't get blocked by normal direct-reclaimers, forming a circular
1769 	 * deadlock.
1770 	 */
1771 	if (gfp_has_io_fs(sc->gfp_mask))
1772 		inactive >>= 3;
1773 
1774 	too_many = isolated > inactive;
1775 
1776 	/* Wake up tasks throttled due to too_many_isolated. */
1777 	if (!too_many)
1778 		wake_throttle_isolated(pgdat);
1779 
1780 	return too_many;
1781 }
1782 
1783 /*
1784  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1785  * On return, @list is reused as a list of folios to be freed by the caller.
1786  *
1787  * Returns the number of pages moved to the given lruvec.
1788  */
1789 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1790 		struct list_head *list)
1791 {
1792 	int nr_pages, nr_moved = 0;
1793 	LIST_HEAD(folios_to_free);
1794 
1795 	while (!list_empty(list)) {
1796 		struct folio *folio = lru_to_folio(list);
1797 
1798 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1799 		list_del(&folio->lru);
1800 		if (unlikely(!folio_evictable(folio))) {
1801 			spin_unlock_irq(&lruvec->lru_lock);
1802 			folio_putback_lru(folio);
1803 			spin_lock_irq(&lruvec->lru_lock);
1804 			continue;
1805 		}
1806 
1807 		/*
1808 		 * The folio_set_lru needs to be kept here for list integrity.
1809 		 * Otherwise:
1810 		 *   #0 move_folios_to_lru             #1 release_pages
1811 		 *   if (!folio_put_testzero())
1812 		 *				      if (folio_put_testzero())
1813 		 *				        !lru //skip lru_lock
1814 		 *     folio_set_lru()
1815 		 *     list_add(&folio->lru,)
1816 		 *                                        list_add(&folio->lru,)
1817 		 */
1818 		folio_set_lru(folio);
1819 
1820 		if (unlikely(folio_put_testzero(folio))) {
1821 			__folio_clear_lru_flags(folio);
1822 
1823 			if (unlikely(folio_test_large(folio))) {
1824 				spin_unlock_irq(&lruvec->lru_lock);
1825 				destroy_large_folio(folio);
1826 				spin_lock_irq(&lruvec->lru_lock);
1827 			} else
1828 				list_add(&folio->lru, &folios_to_free);
1829 
1830 			continue;
1831 		}
1832 
1833 		/*
1834 		 * All pages were isolated from the same lruvec (and isolation
1835 		 * inhibits memcg migration).
1836 		 */
1837 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1838 		lruvec_add_folio(lruvec, folio);
1839 		nr_pages = folio_nr_pages(folio);
1840 		nr_moved += nr_pages;
1841 		if (folio_test_active(folio))
1842 			workingset_age_nonresident(lruvec, nr_pages);
1843 	}
1844 
1845 	/*
1846 	 * To save our caller's stack, now use input list for pages to free.
1847 	 */
1848 	list_splice(&folios_to_free, list);
1849 
1850 	return nr_moved;
1851 }
1852 
1853 /*
1854  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1855  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1856  * we should not throttle.  Otherwise it is safe to do so.
1857  */
1858 static int current_may_throttle(void)
1859 {
1860 	return !(current->flags & PF_LOCAL_THROTTLE);
1861 }
1862 
1863 /*
1864  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1865  * of reclaimed pages
1866  */
1867 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1868 		struct lruvec *lruvec, struct scan_control *sc,
1869 		enum lru_list lru)
1870 {
1871 	LIST_HEAD(folio_list);
1872 	unsigned long nr_scanned;
1873 	unsigned int nr_reclaimed = 0;
1874 	unsigned long nr_taken;
1875 	struct reclaim_stat stat;
1876 	bool file = is_file_lru(lru);
1877 	enum vm_event_item item;
1878 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1879 	bool stalled = false;
1880 
1881 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1882 		if (stalled)
1883 			return 0;
1884 
1885 		/* wait a bit for the reclaimer. */
1886 		stalled = true;
1887 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
1888 
1889 		/* We are about to die and free our memory. Return now. */
1890 		if (fatal_signal_pending(current))
1891 			return SWAP_CLUSTER_MAX;
1892 	}
1893 
1894 	lru_add_drain();
1895 
1896 	spin_lock_irq(&lruvec->lru_lock);
1897 
1898 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
1899 				     &nr_scanned, sc, lru);
1900 
1901 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1902 	item = PGSCAN_KSWAPD + reclaimer_offset();
1903 	if (!cgroup_reclaim(sc))
1904 		__count_vm_events(item, nr_scanned);
1905 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1906 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
1907 
1908 	spin_unlock_irq(&lruvec->lru_lock);
1909 
1910 	if (nr_taken == 0)
1911 		return 0;
1912 
1913 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
1914 
1915 	spin_lock_irq(&lruvec->lru_lock);
1916 	move_folios_to_lru(lruvec, &folio_list);
1917 
1918 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1919 	item = PGSTEAL_KSWAPD + reclaimer_offset();
1920 	if (!cgroup_reclaim(sc))
1921 		__count_vm_events(item, nr_reclaimed);
1922 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1923 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1924 	spin_unlock_irq(&lruvec->lru_lock);
1925 
1926 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
1927 	mem_cgroup_uncharge_list(&folio_list);
1928 	free_unref_page_list(&folio_list);
1929 
1930 	/*
1931 	 * If dirty folios are scanned that are not queued for IO, it
1932 	 * implies that flushers are not doing their job. This can
1933 	 * happen when memory pressure pushes dirty folios to the end of
1934 	 * the LRU before the dirty limits are breached and the dirty
1935 	 * data has expired. It can also happen when the proportion of
1936 	 * dirty folios grows not through writes but through memory
1937 	 * pressure reclaiming all the clean cache. And in some cases,
1938 	 * the flushers simply cannot keep up with the allocation
1939 	 * rate. Nudge the flusher threads in case they are asleep.
1940 	 */
1941 	if (stat.nr_unqueued_dirty == nr_taken) {
1942 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1943 		/*
1944 		 * For cgroupv1 dirty throttling is achieved by waking up
1945 		 * the kernel flusher here and later waiting on folios
1946 		 * which are in writeback to finish (see shrink_folio_list()).
1947 		 *
1948 		 * Flusher may not be able to issue writeback quickly
1949 		 * enough for cgroupv1 writeback throttling to work
1950 		 * on a large system.
1951 		 */
1952 		if (!writeback_throttling_sane(sc))
1953 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
1954 	}
1955 
1956 	sc->nr.dirty += stat.nr_dirty;
1957 	sc->nr.congested += stat.nr_congested;
1958 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1959 	sc->nr.writeback += stat.nr_writeback;
1960 	sc->nr.immediate += stat.nr_immediate;
1961 	sc->nr.taken += nr_taken;
1962 	if (file)
1963 		sc->nr.file_taken += nr_taken;
1964 
1965 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1966 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1967 	return nr_reclaimed;
1968 }
1969 
1970 /*
1971  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
1972  *
1973  * We move them the other way if the folio is referenced by one or more
1974  * processes.
1975  *
1976  * If the folios are mostly unmapped, the processing is fast and it is
1977  * appropriate to hold lru_lock across the whole operation.  But if
1978  * the folios are mapped, the processing is slow (folio_referenced()), so
1979  * we should drop lru_lock around each folio.  It's impossible to balance
1980  * this, so instead we remove the folios from the LRU while processing them.
1981  * It is safe to rely on the active flag against the non-LRU folios in here
1982  * because nobody will play with that bit on a non-LRU folio.
1983  *
1984  * The downside is that we have to touch folio->_refcount against each folio.
1985  * But we had to alter folio->flags anyway.
1986  */
1987 static void shrink_active_list(unsigned long nr_to_scan,
1988 			       struct lruvec *lruvec,
1989 			       struct scan_control *sc,
1990 			       enum lru_list lru)
1991 {
1992 	unsigned long nr_taken;
1993 	unsigned long nr_scanned;
1994 	unsigned long vm_flags;
1995 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
1996 	LIST_HEAD(l_active);
1997 	LIST_HEAD(l_inactive);
1998 	unsigned nr_deactivate, nr_activate;
1999 	unsigned nr_rotated = 0;
2000 	int file = is_file_lru(lru);
2001 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2002 
2003 	lru_add_drain();
2004 
2005 	spin_lock_irq(&lruvec->lru_lock);
2006 
2007 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2008 				     &nr_scanned, sc, lru);
2009 
2010 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2011 
2012 	if (!cgroup_reclaim(sc))
2013 		__count_vm_events(PGREFILL, nr_scanned);
2014 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2015 
2016 	spin_unlock_irq(&lruvec->lru_lock);
2017 
2018 	while (!list_empty(&l_hold)) {
2019 		struct folio *folio;
2020 
2021 		cond_resched();
2022 		folio = lru_to_folio(&l_hold);
2023 		list_del(&folio->lru);
2024 
2025 		if (unlikely(!folio_evictable(folio))) {
2026 			folio_putback_lru(folio);
2027 			continue;
2028 		}
2029 
2030 		if (unlikely(buffer_heads_over_limit)) {
2031 			if (folio_needs_release(folio) &&
2032 			    folio_trylock(folio)) {
2033 				filemap_release_folio(folio, 0);
2034 				folio_unlock(folio);
2035 			}
2036 		}
2037 
2038 		/* Referenced or rmap lock contention: rotate */
2039 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2040 				     &vm_flags) != 0) {
2041 			/*
2042 			 * Identify referenced, file-backed active folios and
2043 			 * give them one more trip around the active list. So
2044 			 * that executable code get better chances to stay in
2045 			 * memory under moderate memory pressure.  Anon folios
2046 			 * are not likely to be evicted by use-once streaming
2047 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2048 			 * so we ignore them here.
2049 			 */
2050 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2051 				nr_rotated += folio_nr_pages(folio);
2052 				list_add(&folio->lru, &l_active);
2053 				continue;
2054 			}
2055 		}
2056 
2057 		folio_clear_active(folio);	/* we are de-activating */
2058 		folio_set_workingset(folio);
2059 		list_add(&folio->lru, &l_inactive);
2060 	}
2061 
2062 	/*
2063 	 * Move folios back to the lru list.
2064 	 */
2065 	spin_lock_irq(&lruvec->lru_lock);
2066 
2067 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2068 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2069 	/* Keep all free folios in l_active list */
2070 	list_splice(&l_inactive, &l_active);
2071 
2072 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2073 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2074 
2075 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2076 	spin_unlock_irq(&lruvec->lru_lock);
2077 
2078 	if (nr_rotated)
2079 		lru_note_cost(lruvec, file, 0, nr_rotated);
2080 	mem_cgroup_uncharge_list(&l_active);
2081 	free_unref_page_list(&l_active);
2082 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2083 			nr_deactivate, nr_rotated, sc->priority, file);
2084 }
2085 
2086 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2087 				      struct pglist_data *pgdat)
2088 {
2089 	struct reclaim_stat dummy_stat;
2090 	unsigned int nr_reclaimed;
2091 	struct folio *folio;
2092 	struct scan_control sc = {
2093 		.gfp_mask = GFP_KERNEL,
2094 		.may_writepage = 1,
2095 		.may_unmap = 1,
2096 		.may_swap = 1,
2097 		.no_demotion = 1,
2098 	};
2099 
2100 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2101 	while (!list_empty(folio_list)) {
2102 		folio = lru_to_folio(folio_list);
2103 		list_del(&folio->lru);
2104 		folio_putback_lru(folio);
2105 	}
2106 
2107 	return nr_reclaimed;
2108 }
2109 
2110 unsigned long reclaim_pages(struct list_head *folio_list)
2111 {
2112 	int nid;
2113 	unsigned int nr_reclaimed = 0;
2114 	LIST_HEAD(node_folio_list);
2115 	unsigned int noreclaim_flag;
2116 
2117 	if (list_empty(folio_list))
2118 		return nr_reclaimed;
2119 
2120 	noreclaim_flag = memalloc_noreclaim_save();
2121 
2122 	nid = folio_nid(lru_to_folio(folio_list));
2123 	do {
2124 		struct folio *folio = lru_to_folio(folio_list);
2125 
2126 		if (nid == folio_nid(folio)) {
2127 			folio_clear_active(folio);
2128 			list_move(&folio->lru, &node_folio_list);
2129 			continue;
2130 		}
2131 
2132 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2133 		nid = folio_nid(lru_to_folio(folio_list));
2134 	} while (!list_empty(folio_list));
2135 
2136 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2137 
2138 	memalloc_noreclaim_restore(noreclaim_flag);
2139 
2140 	return nr_reclaimed;
2141 }
2142 
2143 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2144 				 struct lruvec *lruvec, struct scan_control *sc)
2145 {
2146 	if (is_active_lru(lru)) {
2147 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2148 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2149 		else
2150 			sc->skipped_deactivate = 1;
2151 		return 0;
2152 	}
2153 
2154 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2155 }
2156 
2157 /*
2158  * The inactive anon list should be small enough that the VM never has
2159  * to do too much work.
2160  *
2161  * The inactive file list should be small enough to leave most memory
2162  * to the established workingset on the scan-resistant active list,
2163  * but large enough to avoid thrashing the aggregate readahead window.
2164  *
2165  * Both inactive lists should also be large enough that each inactive
2166  * folio has a chance to be referenced again before it is reclaimed.
2167  *
2168  * If that fails and refaulting is observed, the inactive list grows.
2169  *
2170  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2171  * on this LRU, maintained by the pageout code. An inactive_ratio
2172  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2173  *
2174  * total     target    max
2175  * memory    ratio     inactive
2176  * -------------------------------------
2177  *   10MB       1         5MB
2178  *  100MB       1        50MB
2179  *    1GB       3       250MB
2180  *   10GB      10       0.9GB
2181  *  100GB      31         3GB
2182  *    1TB     101        10GB
2183  *   10TB     320        32GB
2184  */
2185 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2186 {
2187 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2188 	unsigned long inactive, active;
2189 	unsigned long inactive_ratio;
2190 	unsigned long gb;
2191 
2192 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2193 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2194 
2195 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2196 	if (gb)
2197 		inactive_ratio = int_sqrt(10 * gb);
2198 	else
2199 		inactive_ratio = 1;
2200 
2201 	return inactive * inactive_ratio < active;
2202 }
2203 
2204 enum scan_balance {
2205 	SCAN_EQUAL,
2206 	SCAN_FRACT,
2207 	SCAN_ANON,
2208 	SCAN_FILE,
2209 };
2210 
2211 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2212 {
2213 	unsigned long file;
2214 	struct lruvec *target_lruvec;
2215 
2216 	if (lru_gen_enabled())
2217 		return;
2218 
2219 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2220 
2221 	/*
2222 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2223 	 * lruvec stats for heuristics.
2224 	 */
2225 	mem_cgroup_flush_stats();
2226 
2227 	/*
2228 	 * Determine the scan balance between anon and file LRUs.
2229 	 */
2230 	spin_lock_irq(&target_lruvec->lru_lock);
2231 	sc->anon_cost = target_lruvec->anon_cost;
2232 	sc->file_cost = target_lruvec->file_cost;
2233 	spin_unlock_irq(&target_lruvec->lru_lock);
2234 
2235 	/*
2236 	 * Target desirable inactive:active list ratios for the anon
2237 	 * and file LRU lists.
2238 	 */
2239 	if (!sc->force_deactivate) {
2240 		unsigned long refaults;
2241 
2242 		/*
2243 		 * When refaults are being observed, it means a new
2244 		 * workingset is being established. Deactivate to get
2245 		 * rid of any stale active pages quickly.
2246 		 */
2247 		refaults = lruvec_page_state(target_lruvec,
2248 				WORKINGSET_ACTIVATE_ANON);
2249 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2250 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2251 			sc->may_deactivate |= DEACTIVATE_ANON;
2252 		else
2253 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2254 
2255 		refaults = lruvec_page_state(target_lruvec,
2256 				WORKINGSET_ACTIVATE_FILE);
2257 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2258 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2259 			sc->may_deactivate |= DEACTIVATE_FILE;
2260 		else
2261 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2262 	} else
2263 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2264 
2265 	/*
2266 	 * If we have plenty of inactive file pages that aren't
2267 	 * thrashing, try to reclaim those first before touching
2268 	 * anonymous pages.
2269 	 */
2270 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2271 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2272 		sc->cache_trim_mode = 1;
2273 	else
2274 		sc->cache_trim_mode = 0;
2275 
2276 	/*
2277 	 * Prevent the reclaimer from falling into the cache trap: as
2278 	 * cache pages start out inactive, every cache fault will tip
2279 	 * the scan balance towards the file LRU.  And as the file LRU
2280 	 * shrinks, so does the window for rotation from references.
2281 	 * This means we have a runaway feedback loop where a tiny
2282 	 * thrashing file LRU becomes infinitely more attractive than
2283 	 * anon pages.  Try to detect this based on file LRU size.
2284 	 */
2285 	if (!cgroup_reclaim(sc)) {
2286 		unsigned long total_high_wmark = 0;
2287 		unsigned long free, anon;
2288 		int z;
2289 
2290 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2291 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2292 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2293 
2294 		for (z = 0; z < MAX_NR_ZONES; z++) {
2295 			struct zone *zone = &pgdat->node_zones[z];
2296 
2297 			if (!managed_zone(zone))
2298 				continue;
2299 
2300 			total_high_wmark += high_wmark_pages(zone);
2301 		}
2302 
2303 		/*
2304 		 * Consider anon: if that's low too, this isn't a
2305 		 * runaway file reclaim problem, but rather just
2306 		 * extreme pressure. Reclaim as per usual then.
2307 		 */
2308 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2309 
2310 		sc->file_is_tiny =
2311 			file + free <= total_high_wmark &&
2312 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2313 			anon >> sc->priority;
2314 	}
2315 }
2316 
2317 /*
2318  * Determine how aggressively the anon and file LRU lists should be
2319  * scanned.
2320  *
2321  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2322  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2323  */
2324 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2325 			   unsigned long *nr)
2326 {
2327 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2328 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2329 	unsigned long anon_cost, file_cost, total_cost;
2330 	int swappiness = mem_cgroup_swappiness(memcg);
2331 	u64 fraction[ANON_AND_FILE];
2332 	u64 denominator = 0;	/* gcc */
2333 	enum scan_balance scan_balance;
2334 	unsigned long ap, fp;
2335 	enum lru_list lru;
2336 
2337 	/* If we have no swap space, do not bother scanning anon folios. */
2338 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2339 		scan_balance = SCAN_FILE;
2340 		goto out;
2341 	}
2342 
2343 	/*
2344 	 * Global reclaim will swap to prevent OOM even with no
2345 	 * swappiness, but memcg users want to use this knob to
2346 	 * disable swapping for individual groups completely when
2347 	 * using the memory controller's swap limit feature would be
2348 	 * too expensive.
2349 	 */
2350 	if (cgroup_reclaim(sc) && !swappiness) {
2351 		scan_balance = SCAN_FILE;
2352 		goto out;
2353 	}
2354 
2355 	/*
2356 	 * Do not apply any pressure balancing cleverness when the
2357 	 * system is close to OOM, scan both anon and file equally
2358 	 * (unless the swappiness setting disagrees with swapping).
2359 	 */
2360 	if (!sc->priority && swappiness) {
2361 		scan_balance = SCAN_EQUAL;
2362 		goto out;
2363 	}
2364 
2365 	/*
2366 	 * If the system is almost out of file pages, force-scan anon.
2367 	 */
2368 	if (sc->file_is_tiny) {
2369 		scan_balance = SCAN_ANON;
2370 		goto out;
2371 	}
2372 
2373 	/*
2374 	 * If there is enough inactive page cache, we do not reclaim
2375 	 * anything from the anonymous working right now.
2376 	 */
2377 	if (sc->cache_trim_mode) {
2378 		scan_balance = SCAN_FILE;
2379 		goto out;
2380 	}
2381 
2382 	scan_balance = SCAN_FRACT;
2383 	/*
2384 	 * Calculate the pressure balance between anon and file pages.
2385 	 *
2386 	 * The amount of pressure we put on each LRU is inversely
2387 	 * proportional to the cost of reclaiming each list, as
2388 	 * determined by the share of pages that are refaulting, times
2389 	 * the relative IO cost of bringing back a swapped out
2390 	 * anonymous page vs reloading a filesystem page (swappiness).
2391 	 *
2392 	 * Although we limit that influence to ensure no list gets
2393 	 * left behind completely: at least a third of the pressure is
2394 	 * applied, before swappiness.
2395 	 *
2396 	 * With swappiness at 100, anon and file have equal IO cost.
2397 	 */
2398 	total_cost = sc->anon_cost + sc->file_cost;
2399 	anon_cost = total_cost + sc->anon_cost;
2400 	file_cost = total_cost + sc->file_cost;
2401 	total_cost = anon_cost + file_cost;
2402 
2403 	ap = swappiness * (total_cost + 1);
2404 	ap /= anon_cost + 1;
2405 
2406 	fp = (200 - swappiness) * (total_cost + 1);
2407 	fp /= file_cost + 1;
2408 
2409 	fraction[0] = ap;
2410 	fraction[1] = fp;
2411 	denominator = ap + fp;
2412 out:
2413 	for_each_evictable_lru(lru) {
2414 		int file = is_file_lru(lru);
2415 		unsigned long lruvec_size;
2416 		unsigned long low, min;
2417 		unsigned long scan;
2418 
2419 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2420 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2421 				      &min, &low);
2422 
2423 		if (min || low) {
2424 			/*
2425 			 * Scale a cgroup's reclaim pressure by proportioning
2426 			 * its current usage to its memory.low or memory.min
2427 			 * setting.
2428 			 *
2429 			 * This is important, as otherwise scanning aggression
2430 			 * becomes extremely binary -- from nothing as we
2431 			 * approach the memory protection threshold, to totally
2432 			 * nominal as we exceed it.  This results in requiring
2433 			 * setting extremely liberal protection thresholds. It
2434 			 * also means we simply get no protection at all if we
2435 			 * set it too low, which is not ideal.
2436 			 *
2437 			 * If there is any protection in place, we reduce scan
2438 			 * pressure by how much of the total memory used is
2439 			 * within protection thresholds.
2440 			 *
2441 			 * There is one special case: in the first reclaim pass,
2442 			 * we skip over all groups that are within their low
2443 			 * protection. If that fails to reclaim enough pages to
2444 			 * satisfy the reclaim goal, we come back and override
2445 			 * the best-effort low protection. However, we still
2446 			 * ideally want to honor how well-behaved groups are in
2447 			 * that case instead of simply punishing them all
2448 			 * equally. As such, we reclaim them based on how much
2449 			 * memory they are using, reducing the scan pressure
2450 			 * again by how much of the total memory used is under
2451 			 * hard protection.
2452 			 */
2453 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2454 			unsigned long protection;
2455 
2456 			/* memory.low scaling, make sure we retry before OOM */
2457 			if (!sc->memcg_low_reclaim && low > min) {
2458 				protection = low;
2459 				sc->memcg_low_skipped = 1;
2460 			} else {
2461 				protection = min;
2462 			}
2463 
2464 			/* Avoid TOCTOU with earlier protection check */
2465 			cgroup_size = max(cgroup_size, protection);
2466 
2467 			scan = lruvec_size - lruvec_size * protection /
2468 				(cgroup_size + 1);
2469 
2470 			/*
2471 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2472 			 * reclaim moving forwards, avoiding decrementing
2473 			 * sc->priority further than desirable.
2474 			 */
2475 			scan = max(scan, SWAP_CLUSTER_MAX);
2476 		} else {
2477 			scan = lruvec_size;
2478 		}
2479 
2480 		scan >>= sc->priority;
2481 
2482 		/*
2483 		 * If the cgroup's already been deleted, make sure to
2484 		 * scrape out the remaining cache.
2485 		 */
2486 		if (!scan && !mem_cgroup_online(memcg))
2487 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2488 
2489 		switch (scan_balance) {
2490 		case SCAN_EQUAL:
2491 			/* Scan lists relative to size */
2492 			break;
2493 		case SCAN_FRACT:
2494 			/*
2495 			 * Scan types proportional to swappiness and
2496 			 * their relative recent reclaim efficiency.
2497 			 * Make sure we don't miss the last page on
2498 			 * the offlined memory cgroups because of a
2499 			 * round-off error.
2500 			 */
2501 			scan = mem_cgroup_online(memcg) ?
2502 			       div64_u64(scan * fraction[file], denominator) :
2503 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2504 						  denominator);
2505 			break;
2506 		case SCAN_FILE:
2507 		case SCAN_ANON:
2508 			/* Scan one type exclusively */
2509 			if ((scan_balance == SCAN_FILE) != file)
2510 				scan = 0;
2511 			break;
2512 		default:
2513 			/* Look ma, no brain */
2514 			BUG();
2515 		}
2516 
2517 		nr[lru] = scan;
2518 	}
2519 }
2520 
2521 /*
2522  * Anonymous LRU management is a waste if there is
2523  * ultimately no way to reclaim the memory.
2524  */
2525 static bool can_age_anon_pages(struct pglist_data *pgdat,
2526 			       struct scan_control *sc)
2527 {
2528 	/* Aging the anon LRU is valuable if swap is present: */
2529 	if (total_swap_pages > 0)
2530 		return true;
2531 
2532 	/* Also valuable if anon pages can be demoted: */
2533 	return can_demote(pgdat->node_id, sc);
2534 }
2535 
2536 #ifdef CONFIG_LRU_GEN
2537 
2538 #ifdef CONFIG_LRU_GEN_ENABLED
2539 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2540 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
2541 #else
2542 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2543 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
2544 #endif
2545 
2546 static bool should_walk_mmu(void)
2547 {
2548 	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2549 }
2550 
2551 static bool should_clear_pmd_young(void)
2552 {
2553 	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2554 }
2555 
2556 /******************************************************************************
2557  *                          shorthand helpers
2558  ******************************************************************************/
2559 
2560 #define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
2561 
2562 #define DEFINE_MAX_SEQ(lruvec)						\
2563 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2564 
2565 #define DEFINE_MIN_SEQ(lruvec)						\
2566 	unsigned long min_seq[ANON_AND_FILE] = {			\
2567 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
2568 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
2569 	}
2570 
2571 #define for_each_gen_type_zone(gen, type, zone)				\
2572 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
2573 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
2574 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2575 
2576 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
2577 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
2578 
2579 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2580 {
2581 	struct pglist_data *pgdat = NODE_DATA(nid);
2582 
2583 #ifdef CONFIG_MEMCG
2584 	if (memcg) {
2585 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2586 
2587 		/* see the comment in mem_cgroup_lruvec() */
2588 		if (!lruvec->pgdat)
2589 			lruvec->pgdat = pgdat;
2590 
2591 		return lruvec;
2592 	}
2593 #endif
2594 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2595 
2596 	return &pgdat->__lruvec;
2597 }
2598 
2599 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2600 {
2601 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2602 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2603 
2604 	if (!sc->may_swap)
2605 		return 0;
2606 
2607 	if (!can_demote(pgdat->node_id, sc) &&
2608 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2609 		return 0;
2610 
2611 	return mem_cgroup_swappiness(memcg);
2612 }
2613 
2614 static int get_nr_gens(struct lruvec *lruvec, int type)
2615 {
2616 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2617 }
2618 
2619 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2620 {
2621 	/* see the comment on lru_gen_folio */
2622 	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
2623 	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
2624 	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
2625 }
2626 
2627 /******************************************************************************
2628  *                          Bloom filters
2629  ******************************************************************************/
2630 
2631 /*
2632  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2633  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2634  * bits in a bitmap, k is the number of hash functions and n is the number of
2635  * inserted items.
2636  *
2637  * Page table walkers use one of the two filters to reduce their search space.
2638  * To get rid of non-leaf entries that no longer have enough leaf entries, the
2639  * aging uses the double-buffering technique to flip to the other filter each
2640  * time it produces a new generation. For non-leaf entries that have enough
2641  * leaf entries, the aging carries them over to the next generation in
2642  * walk_pmd_range(); the eviction also report them when walking the rmap
2643  * in lru_gen_look_around().
2644  *
2645  * For future optimizations:
2646  * 1. It's not necessary to keep both filters all the time. The spare one can be
2647  *    freed after the RCU grace period and reallocated if needed again.
2648  * 2. And when reallocating, it's worth scaling its size according to the number
2649  *    of inserted entries in the other filter, to reduce the memory overhead on
2650  *    small systems and false positives on large systems.
2651  * 3. Jenkins' hash function is an alternative to Knuth's.
2652  */
2653 #define BLOOM_FILTER_SHIFT	15
2654 
2655 static inline int filter_gen_from_seq(unsigned long seq)
2656 {
2657 	return seq % NR_BLOOM_FILTERS;
2658 }
2659 
2660 static void get_item_key(void *item, int *key)
2661 {
2662 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2663 
2664 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2665 
2666 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2667 	key[1] = hash >> BLOOM_FILTER_SHIFT;
2668 }
2669 
2670 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
2671 {
2672 	int key[2];
2673 	unsigned long *filter;
2674 	int gen = filter_gen_from_seq(seq);
2675 
2676 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
2677 	if (!filter)
2678 		return true;
2679 
2680 	get_item_key(item, key);
2681 
2682 	return test_bit(key[0], filter) && test_bit(key[1], filter);
2683 }
2684 
2685 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
2686 {
2687 	int key[2];
2688 	unsigned long *filter;
2689 	int gen = filter_gen_from_seq(seq);
2690 
2691 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
2692 	if (!filter)
2693 		return;
2694 
2695 	get_item_key(item, key);
2696 
2697 	if (!test_bit(key[0], filter))
2698 		set_bit(key[0], filter);
2699 	if (!test_bit(key[1], filter))
2700 		set_bit(key[1], filter);
2701 }
2702 
2703 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
2704 {
2705 	unsigned long *filter;
2706 	int gen = filter_gen_from_seq(seq);
2707 
2708 	filter = lruvec->mm_state.filters[gen];
2709 	if (filter) {
2710 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2711 		return;
2712 	}
2713 
2714 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2715 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2716 	WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
2717 }
2718 
2719 /******************************************************************************
2720  *                          mm_struct list
2721  ******************************************************************************/
2722 
2723 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2724 {
2725 	static struct lru_gen_mm_list mm_list = {
2726 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
2727 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2728 	};
2729 
2730 #ifdef CONFIG_MEMCG
2731 	if (memcg)
2732 		return &memcg->mm_list;
2733 #endif
2734 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2735 
2736 	return &mm_list;
2737 }
2738 
2739 void lru_gen_add_mm(struct mm_struct *mm)
2740 {
2741 	int nid;
2742 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2743 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2744 
2745 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2746 #ifdef CONFIG_MEMCG
2747 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2748 	mm->lru_gen.memcg = memcg;
2749 #endif
2750 	spin_lock(&mm_list->lock);
2751 
2752 	for_each_node_state(nid, N_MEMORY) {
2753 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2754 
2755 		/* the first addition since the last iteration */
2756 		if (lruvec->mm_state.tail == &mm_list->fifo)
2757 			lruvec->mm_state.tail = &mm->lru_gen.list;
2758 	}
2759 
2760 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2761 
2762 	spin_unlock(&mm_list->lock);
2763 }
2764 
2765 void lru_gen_del_mm(struct mm_struct *mm)
2766 {
2767 	int nid;
2768 	struct lru_gen_mm_list *mm_list;
2769 	struct mem_cgroup *memcg = NULL;
2770 
2771 	if (list_empty(&mm->lru_gen.list))
2772 		return;
2773 
2774 #ifdef CONFIG_MEMCG
2775 	memcg = mm->lru_gen.memcg;
2776 #endif
2777 	mm_list = get_mm_list(memcg);
2778 
2779 	spin_lock(&mm_list->lock);
2780 
2781 	for_each_node(nid) {
2782 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2783 
2784 		/* where the current iteration continues after */
2785 		if (lruvec->mm_state.head == &mm->lru_gen.list)
2786 			lruvec->mm_state.head = lruvec->mm_state.head->prev;
2787 
2788 		/* where the last iteration ended before */
2789 		if (lruvec->mm_state.tail == &mm->lru_gen.list)
2790 			lruvec->mm_state.tail = lruvec->mm_state.tail->next;
2791 	}
2792 
2793 	list_del_init(&mm->lru_gen.list);
2794 
2795 	spin_unlock(&mm_list->lock);
2796 
2797 #ifdef CONFIG_MEMCG
2798 	mem_cgroup_put(mm->lru_gen.memcg);
2799 	mm->lru_gen.memcg = NULL;
2800 #endif
2801 }
2802 
2803 #ifdef CONFIG_MEMCG
2804 void lru_gen_migrate_mm(struct mm_struct *mm)
2805 {
2806 	struct mem_cgroup *memcg;
2807 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2808 
2809 	VM_WARN_ON_ONCE(task->mm != mm);
2810 	lockdep_assert_held(&task->alloc_lock);
2811 
2812 	/* for mm_update_next_owner() */
2813 	if (mem_cgroup_disabled())
2814 		return;
2815 
2816 	/* migration can happen before addition */
2817 	if (!mm->lru_gen.memcg)
2818 		return;
2819 
2820 	rcu_read_lock();
2821 	memcg = mem_cgroup_from_task(task);
2822 	rcu_read_unlock();
2823 	if (memcg == mm->lru_gen.memcg)
2824 		return;
2825 
2826 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2827 
2828 	lru_gen_del_mm(mm);
2829 	lru_gen_add_mm(mm);
2830 }
2831 #endif
2832 
2833 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
2834 {
2835 	int i;
2836 	int hist;
2837 
2838 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
2839 
2840 	if (walk) {
2841 		hist = lru_hist_from_seq(walk->max_seq);
2842 
2843 		for (i = 0; i < NR_MM_STATS; i++) {
2844 			WRITE_ONCE(lruvec->mm_state.stats[hist][i],
2845 				   lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
2846 			walk->mm_stats[i] = 0;
2847 		}
2848 	}
2849 
2850 	if (NR_HIST_GENS > 1 && last) {
2851 		hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
2852 
2853 		for (i = 0; i < NR_MM_STATS; i++)
2854 			WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
2855 	}
2856 }
2857 
2858 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
2859 {
2860 	int type;
2861 	unsigned long size = 0;
2862 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2863 	int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2864 
2865 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2866 		return true;
2867 
2868 	clear_bit(key, &mm->lru_gen.bitmap);
2869 
2870 	for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
2871 		size += type ? get_mm_counter(mm, MM_FILEPAGES) :
2872 			       get_mm_counter(mm, MM_ANONPAGES) +
2873 			       get_mm_counter(mm, MM_SHMEMPAGES);
2874 	}
2875 
2876 	if (size < MIN_LRU_BATCH)
2877 		return true;
2878 
2879 	return !mmget_not_zero(mm);
2880 }
2881 
2882 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
2883 			    struct mm_struct **iter)
2884 {
2885 	bool first = false;
2886 	bool last = false;
2887 	struct mm_struct *mm = NULL;
2888 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2889 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2890 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
2891 
2892 	/*
2893 	 * mm_state->seq is incremented after each iteration of mm_list. There
2894 	 * are three interesting cases for this page table walker:
2895 	 * 1. It tries to start a new iteration with a stale max_seq: there is
2896 	 *    nothing left to do.
2897 	 * 2. It started the next iteration: it needs to reset the Bloom filter
2898 	 *    so that a fresh set of PTE tables can be recorded.
2899 	 * 3. It ended the current iteration: it needs to reset the mm stats
2900 	 *    counters and tell its caller to increment max_seq.
2901 	 */
2902 	spin_lock(&mm_list->lock);
2903 
2904 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
2905 
2906 	if (walk->max_seq <= mm_state->seq)
2907 		goto done;
2908 
2909 	if (!mm_state->head)
2910 		mm_state->head = &mm_list->fifo;
2911 
2912 	if (mm_state->head == &mm_list->fifo)
2913 		first = true;
2914 
2915 	do {
2916 		mm_state->head = mm_state->head->next;
2917 		if (mm_state->head == &mm_list->fifo) {
2918 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2919 			last = true;
2920 			break;
2921 		}
2922 
2923 		/* force scan for those added after the last iteration */
2924 		if (!mm_state->tail || mm_state->tail == mm_state->head) {
2925 			mm_state->tail = mm_state->head->next;
2926 			walk->force_scan = true;
2927 		}
2928 
2929 		mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2930 		if (should_skip_mm(mm, walk))
2931 			mm = NULL;
2932 	} while (!mm);
2933 done:
2934 	if (*iter || last)
2935 		reset_mm_stats(lruvec, walk, last);
2936 
2937 	spin_unlock(&mm_list->lock);
2938 
2939 	if (mm && first)
2940 		reset_bloom_filter(lruvec, walk->max_seq + 1);
2941 
2942 	if (*iter)
2943 		mmput_async(*iter);
2944 
2945 	*iter = mm;
2946 
2947 	return last;
2948 }
2949 
2950 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
2951 {
2952 	bool success = false;
2953 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2954 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2955 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
2956 
2957 	spin_lock(&mm_list->lock);
2958 
2959 	VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
2960 
2961 	if (max_seq > mm_state->seq) {
2962 		mm_state->head = NULL;
2963 		mm_state->tail = NULL;
2964 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2965 		reset_mm_stats(lruvec, NULL, true);
2966 		success = true;
2967 	}
2968 
2969 	spin_unlock(&mm_list->lock);
2970 
2971 	return success;
2972 }
2973 
2974 /******************************************************************************
2975  *                          PID controller
2976  ******************************************************************************/
2977 
2978 /*
2979  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
2980  *
2981  * The P term is refaulted/(evicted+protected) from a tier in the generation
2982  * currently being evicted; the I term is the exponential moving average of the
2983  * P term over the generations previously evicted, using the smoothing factor
2984  * 1/2; the D term isn't supported.
2985  *
2986  * The setpoint (SP) is always the first tier of one type; the process variable
2987  * (PV) is either any tier of the other type or any other tier of the same
2988  * type.
2989  *
2990  * The error is the difference between the SP and the PV; the correction is to
2991  * turn off protection when SP>PV or turn on protection when SP<PV.
2992  *
2993  * For future optimizations:
2994  * 1. The D term may discount the other two terms over time so that long-lived
2995  *    generations can resist stale information.
2996  */
2997 struct ctrl_pos {
2998 	unsigned long refaulted;
2999 	unsigned long total;
3000 	int gain;
3001 };
3002 
3003 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3004 			  struct ctrl_pos *pos)
3005 {
3006 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3007 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3008 
3009 	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3010 			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3011 	pos->total = lrugen->avg_total[type][tier] +
3012 		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3013 	if (tier)
3014 		pos->total += lrugen->protected[hist][type][tier - 1];
3015 	pos->gain = gain;
3016 }
3017 
3018 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3019 {
3020 	int hist, tier;
3021 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3022 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3023 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3024 
3025 	lockdep_assert_held(&lruvec->lru_lock);
3026 
3027 	if (!carryover && !clear)
3028 		return;
3029 
3030 	hist = lru_hist_from_seq(seq);
3031 
3032 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3033 		if (carryover) {
3034 			unsigned long sum;
3035 
3036 			sum = lrugen->avg_refaulted[type][tier] +
3037 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3038 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3039 
3040 			sum = lrugen->avg_total[type][tier] +
3041 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3042 			if (tier)
3043 				sum += lrugen->protected[hist][type][tier - 1];
3044 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3045 		}
3046 
3047 		if (clear) {
3048 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3049 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3050 			if (tier)
3051 				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3052 		}
3053 	}
3054 }
3055 
3056 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3057 {
3058 	/*
3059 	 * Return true if the PV has a limited number of refaults or a lower
3060 	 * refaulted/total than the SP.
3061 	 */
3062 	return pv->refaulted < MIN_LRU_BATCH ||
3063 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3064 	       (sp->refaulted + 1) * pv->total * pv->gain;
3065 }
3066 
3067 /******************************************************************************
3068  *                          the aging
3069  ******************************************************************************/
3070 
3071 /* promote pages accessed through page tables */
3072 static int folio_update_gen(struct folio *folio, int gen)
3073 {
3074 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3075 
3076 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3077 	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3078 
3079 	do {
3080 		/* lru_gen_del_folio() has isolated this page? */
3081 		if (!(old_flags & LRU_GEN_MASK)) {
3082 			/* for shrink_folio_list() */
3083 			new_flags = old_flags | BIT(PG_referenced);
3084 			continue;
3085 		}
3086 
3087 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3088 		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3089 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3090 
3091 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3092 }
3093 
3094 /* protect pages accessed multiple times through file descriptors */
3095 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3096 {
3097 	int type = folio_is_file_lru(folio);
3098 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3099 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3100 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3101 
3102 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3103 
3104 	do {
3105 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3106 		/* folio_update_gen() has promoted this page? */
3107 		if (new_gen >= 0 && new_gen != old_gen)
3108 			return new_gen;
3109 
3110 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3111 
3112 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3113 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3114 		/* for folio_end_writeback() */
3115 		if (reclaiming)
3116 			new_flags |= BIT(PG_reclaim);
3117 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3118 
3119 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3120 
3121 	return new_gen;
3122 }
3123 
3124 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3125 			      int old_gen, int new_gen)
3126 {
3127 	int type = folio_is_file_lru(folio);
3128 	int zone = folio_zonenum(folio);
3129 	int delta = folio_nr_pages(folio);
3130 
3131 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3132 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3133 
3134 	walk->batched++;
3135 
3136 	walk->nr_pages[old_gen][type][zone] -= delta;
3137 	walk->nr_pages[new_gen][type][zone] += delta;
3138 }
3139 
3140 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3141 {
3142 	int gen, type, zone;
3143 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3144 
3145 	walk->batched = 0;
3146 
3147 	for_each_gen_type_zone(gen, type, zone) {
3148 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3149 		int delta = walk->nr_pages[gen][type][zone];
3150 
3151 		if (!delta)
3152 			continue;
3153 
3154 		walk->nr_pages[gen][type][zone] = 0;
3155 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3156 			   lrugen->nr_pages[gen][type][zone] + delta);
3157 
3158 		if (lru_gen_is_active(lruvec, gen))
3159 			lru += LRU_ACTIVE;
3160 		__update_lru_size(lruvec, lru, zone, delta);
3161 	}
3162 }
3163 
3164 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3165 {
3166 	struct address_space *mapping;
3167 	struct vm_area_struct *vma = args->vma;
3168 	struct lru_gen_mm_walk *walk = args->private;
3169 
3170 	if (!vma_is_accessible(vma))
3171 		return true;
3172 
3173 	if (is_vm_hugetlb_page(vma))
3174 		return true;
3175 
3176 	if (!vma_has_recency(vma))
3177 		return true;
3178 
3179 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3180 		return true;
3181 
3182 	if (vma == get_gate_vma(vma->vm_mm))
3183 		return true;
3184 
3185 	if (vma_is_anonymous(vma))
3186 		return !walk->can_swap;
3187 
3188 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3189 		return true;
3190 
3191 	mapping = vma->vm_file->f_mapping;
3192 	if (mapping_unevictable(mapping))
3193 		return true;
3194 
3195 	if (shmem_mapping(mapping))
3196 		return !walk->can_swap;
3197 
3198 	/* to exclude special mappings like dax, etc. */
3199 	return !mapping->a_ops->read_folio;
3200 }
3201 
3202 /*
3203  * Some userspace memory allocators map many single-page VMAs. Instead of
3204  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3205  * table to reduce zigzags and improve cache performance.
3206  */
3207 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3208 			 unsigned long *vm_start, unsigned long *vm_end)
3209 {
3210 	unsigned long start = round_up(*vm_end, size);
3211 	unsigned long end = (start | ~mask) + 1;
3212 	VMA_ITERATOR(vmi, args->mm, start);
3213 
3214 	VM_WARN_ON_ONCE(mask & size);
3215 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3216 
3217 	for_each_vma(vmi, args->vma) {
3218 		if (end && end <= args->vma->vm_start)
3219 			return false;
3220 
3221 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3222 			continue;
3223 
3224 		*vm_start = max(start, args->vma->vm_start);
3225 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3226 
3227 		return true;
3228 	}
3229 
3230 	return false;
3231 }
3232 
3233 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3234 {
3235 	unsigned long pfn = pte_pfn(pte);
3236 
3237 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3238 
3239 	if (!pte_present(pte) || is_zero_pfn(pfn))
3240 		return -1;
3241 
3242 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3243 		return -1;
3244 
3245 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3246 		return -1;
3247 
3248 	return pfn;
3249 }
3250 
3251 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3252 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3253 {
3254 	unsigned long pfn = pmd_pfn(pmd);
3255 
3256 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3257 
3258 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3259 		return -1;
3260 
3261 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3262 		return -1;
3263 
3264 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3265 		return -1;
3266 
3267 	return pfn;
3268 }
3269 #endif
3270 
3271 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3272 				   struct pglist_data *pgdat, bool can_swap)
3273 {
3274 	struct folio *folio;
3275 
3276 	/* try to avoid unnecessary memory loads */
3277 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3278 		return NULL;
3279 
3280 	folio = pfn_folio(pfn);
3281 	if (folio_nid(folio) != pgdat->node_id)
3282 		return NULL;
3283 
3284 	if (folio_memcg_rcu(folio) != memcg)
3285 		return NULL;
3286 
3287 	/* file VMAs can contain anon pages from COW */
3288 	if (!folio_is_file_lru(folio) && !can_swap)
3289 		return NULL;
3290 
3291 	return folio;
3292 }
3293 
3294 static bool suitable_to_scan(int total, int young)
3295 {
3296 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3297 
3298 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3299 	return young * n >= total;
3300 }
3301 
3302 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3303 			   struct mm_walk *args)
3304 {
3305 	int i;
3306 	pte_t *pte;
3307 	spinlock_t *ptl;
3308 	unsigned long addr;
3309 	int total = 0;
3310 	int young = 0;
3311 	struct lru_gen_mm_walk *walk = args->private;
3312 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3313 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3314 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3315 
3316 	pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl);
3317 	if (!pte)
3318 		return false;
3319 	if (!spin_trylock(ptl)) {
3320 		pte_unmap(pte);
3321 		return false;
3322 	}
3323 
3324 	arch_enter_lazy_mmu_mode();
3325 restart:
3326 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3327 		unsigned long pfn;
3328 		struct folio *folio;
3329 		pte_t ptent = ptep_get(pte + i);
3330 
3331 		total++;
3332 		walk->mm_stats[MM_LEAF_TOTAL]++;
3333 
3334 		pfn = get_pte_pfn(ptent, args->vma, addr);
3335 		if (pfn == -1)
3336 			continue;
3337 
3338 		if (!pte_young(ptent)) {
3339 			walk->mm_stats[MM_LEAF_OLD]++;
3340 			continue;
3341 		}
3342 
3343 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3344 		if (!folio)
3345 			continue;
3346 
3347 		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3348 			VM_WARN_ON_ONCE(true);
3349 
3350 		young++;
3351 		walk->mm_stats[MM_LEAF_YOUNG]++;
3352 
3353 		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
3354 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3355 		      !folio_test_swapcache(folio)))
3356 			folio_mark_dirty(folio);
3357 
3358 		old_gen = folio_update_gen(folio, new_gen);
3359 		if (old_gen >= 0 && old_gen != new_gen)
3360 			update_batch_size(walk, folio, old_gen, new_gen);
3361 	}
3362 
3363 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3364 		goto restart;
3365 
3366 	arch_leave_lazy_mmu_mode();
3367 	pte_unmap_unlock(pte, ptl);
3368 
3369 	return suitable_to_scan(total, young);
3370 }
3371 
3372 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3373 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3374 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3375 {
3376 	int i;
3377 	pmd_t *pmd;
3378 	spinlock_t *ptl;
3379 	struct lru_gen_mm_walk *walk = args->private;
3380 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3381 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3382 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3383 
3384 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3385 
3386 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3387 	if (*first == -1) {
3388 		*first = addr;
3389 		bitmap_zero(bitmap, MIN_LRU_BATCH);
3390 		return;
3391 	}
3392 
3393 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3394 	if (i && i <= MIN_LRU_BATCH) {
3395 		__set_bit(i - 1, bitmap);
3396 		return;
3397 	}
3398 
3399 	pmd = pmd_offset(pud, *first);
3400 
3401 	ptl = pmd_lockptr(args->mm, pmd);
3402 	if (!spin_trylock(ptl))
3403 		goto done;
3404 
3405 	arch_enter_lazy_mmu_mode();
3406 
3407 	do {
3408 		unsigned long pfn;
3409 		struct folio *folio;
3410 
3411 		/* don't round down the first address */
3412 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3413 
3414 		pfn = get_pmd_pfn(pmd[i], vma, addr);
3415 		if (pfn == -1)
3416 			goto next;
3417 
3418 		if (!pmd_trans_huge(pmd[i])) {
3419 			if (should_clear_pmd_young())
3420 				pmdp_test_and_clear_young(vma, addr, pmd + i);
3421 			goto next;
3422 		}
3423 
3424 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3425 		if (!folio)
3426 			goto next;
3427 
3428 		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
3429 			goto next;
3430 
3431 		walk->mm_stats[MM_LEAF_YOUNG]++;
3432 
3433 		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
3434 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3435 		      !folio_test_swapcache(folio)))
3436 			folio_mark_dirty(folio);
3437 
3438 		old_gen = folio_update_gen(folio, new_gen);
3439 		if (old_gen >= 0 && old_gen != new_gen)
3440 			update_batch_size(walk, folio, old_gen, new_gen);
3441 next:
3442 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3443 	} while (i <= MIN_LRU_BATCH);
3444 
3445 	arch_leave_lazy_mmu_mode();
3446 	spin_unlock(ptl);
3447 done:
3448 	*first = -1;
3449 }
3450 #else
3451 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3452 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3453 {
3454 }
3455 #endif
3456 
3457 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3458 			   struct mm_walk *args)
3459 {
3460 	int i;
3461 	pmd_t *pmd;
3462 	unsigned long next;
3463 	unsigned long addr;
3464 	struct vm_area_struct *vma;
3465 	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3466 	unsigned long first = -1;
3467 	struct lru_gen_mm_walk *walk = args->private;
3468 
3469 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3470 
3471 	/*
3472 	 * Finish an entire PMD in two passes: the first only reaches to PTE
3473 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
3474 	 * the PMD lock to clear the accessed bit in PMD entries.
3475 	 */
3476 	pmd = pmd_offset(pud, start & PUD_MASK);
3477 restart:
3478 	/* walk_pte_range() may call get_next_vma() */
3479 	vma = args->vma;
3480 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3481 		pmd_t val = pmdp_get_lockless(pmd + i);
3482 
3483 		next = pmd_addr_end(addr, end);
3484 
3485 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3486 			walk->mm_stats[MM_LEAF_TOTAL]++;
3487 			continue;
3488 		}
3489 
3490 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3491 		if (pmd_trans_huge(val)) {
3492 			unsigned long pfn = pmd_pfn(val);
3493 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3494 
3495 			walk->mm_stats[MM_LEAF_TOTAL]++;
3496 
3497 			if (!pmd_young(val)) {
3498 				walk->mm_stats[MM_LEAF_OLD]++;
3499 				continue;
3500 			}
3501 
3502 			/* try to avoid unnecessary memory loads */
3503 			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3504 				continue;
3505 
3506 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3507 			continue;
3508 		}
3509 #endif
3510 		walk->mm_stats[MM_NONLEAF_TOTAL]++;
3511 
3512 		if (should_clear_pmd_young()) {
3513 			if (!pmd_young(val))
3514 				continue;
3515 
3516 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3517 		}
3518 
3519 		if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
3520 			continue;
3521 
3522 		walk->mm_stats[MM_NONLEAF_FOUND]++;
3523 
3524 		if (!walk_pte_range(&val, addr, next, args))
3525 			continue;
3526 
3527 		walk->mm_stats[MM_NONLEAF_ADDED]++;
3528 
3529 		/* carry over to the next generation */
3530 		update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
3531 	}
3532 
3533 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3534 
3535 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3536 		goto restart;
3537 }
3538 
3539 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3540 			  struct mm_walk *args)
3541 {
3542 	int i;
3543 	pud_t *pud;
3544 	unsigned long addr;
3545 	unsigned long next;
3546 	struct lru_gen_mm_walk *walk = args->private;
3547 
3548 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3549 
3550 	pud = pud_offset(p4d, start & P4D_MASK);
3551 restart:
3552 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3553 		pud_t val = READ_ONCE(pud[i]);
3554 
3555 		next = pud_addr_end(addr, end);
3556 
3557 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3558 			continue;
3559 
3560 		walk_pmd_range(&val, addr, next, args);
3561 
3562 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3563 			end = (addr | ~PUD_MASK) + 1;
3564 			goto done;
3565 		}
3566 	}
3567 
3568 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3569 		goto restart;
3570 
3571 	end = round_up(end, P4D_SIZE);
3572 done:
3573 	if (!end || !args->vma)
3574 		return 1;
3575 
3576 	walk->next_addr = max(end, args->vma->vm_start);
3577 
3578 	return -EAGAIN;
3579 }
3580 
3581 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3582 {
3583 	static const struct mm_walk_ops mm_walk_ops = {
3584 		.test_walk = should_skip_vma,
3585 		.p4d_entry = walk_pud_range,
3586 		.walk_lock = PGWALK_RDLOCK,
3587 	};
3588 
3589 	int err;
3590 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3591 
3592 	walk->next_addr = FIRST_USER_ADDRESS;
3593 
3594 	do {
3595 		DEFINE_MAX_SEQ(lruvec);
3596 
3597 		err = -EBUSY;
3598 
3599 		/* another thread might have called inc_max_seq() */
3600 		if (walk->max_seq != max_seq)
3601 			break;
3602 
3603 		/* folio_update_gen() requires stable folio_memcg() */
3604 		if (!mem_cgroup_trylock_pages(memcg))
3605 			break;
3606 
3607 		/* the caller might be holding the lock for write */
3608 		if (mmap_read_trylock(mm)) {
3609 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3610 
3611 			mmap_read_unlock(mm);
3612 		}
3613 
3614 		mem_cgroup_unlock_pages();
3615 
3616 		if (walk->batched) {
3617 			spin_lock_irq(&lruvec->lru_lock);
3618 			reset_batch_size(lruvec, walk);
3619 			spin_unlock_irq(&lruvec->lru_lock);
3620 		}
3621 
3622 		cond_resched();
3623 	} while (err == -EAGAIN);
3624 }
3625 
3626 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3627 {
3628 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3629 
3630 	if (pgdat && current_is_kswapd()) {
3631 		VM_WARN_ON_ONCE(walk);
3632 
3633 		walk = &pgdat->mm_walk;
3634 	} else if (!walk && force_alloc) {
3635 		VM_WARN_ON_ONCE(current_is_kswapd());
3636 
3637 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3638 	}
3639 
3640 	current->reclaim_state->mm_walk = walk;
3641 
3642 	return walk;
3643 }
3644 
3645 static void clear_mm_walk(void)
3646 {
3647 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3648 
3649 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3650 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3651 
3652 	current->reclaim_state->mm_walk = NULL;
3653 
3654 	if (!current_is_kswapd())
3655 		kfree(walk);
3656 }
3657 
3658 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
3659 {
3660 	int zone;
3661 	int remaining = MAX_LRU_BATCH;
3662 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3663 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3664 
3665 	if (type == LRU_GEN_ANON && !can_swap)
3666 		goto done;
3667 
3668 	/* prevent cold/hot inversion if force_scan is true */
3669 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3670 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
3671 
3672 		while (!list_empty(head)) {
3673 			struct folio *folio = lru_to_folio(head);
3674 
3675 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3676 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3677 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3678 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3679 
3680 			new_gen = folio_inc_gen(lruvec, folio, false);
3681 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3682 
3683 			if (!--remaining)
3684 				return false;
3685 		}
3686 	}
3687 done:
3688 	reset_ctrl_pos(lruvec, type, true);
3689 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3690 
3691 	return true;
3692 }
3693 
3694 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
3695 {
3696 	int gen, type, zone;
3697 	bool success = false;
3698 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3699 	DEFINE_MIN_SEQ(lruvec);
3700 
3701 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3702 
3703 	/* find the oldest populated generation */
3704 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3705 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3706 			gen = lru_gen_from_seq(min_seq[type]);
3707 
3708 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3709 				if (!list_empty(&lrugen->folios[gen][type][zone]))
3710 					goto next;
3711 			}
3712 
3713 			min_seq[type]++;
3714 		}
3715 next:
3716 		;
3717 	}
3718 
3719 	/* see the comment on lru_gen_folio */
3720 	if (can_swap) {
3721 		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
3722 		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
3723 	}
3724 
3725 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3726 		if (min_seq[type] == lrugen->min_seq[type])
3727 			continue;
3728 
3729 		reset_ctrl_pos(lruvec, type, true);
3730 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3731 		success = true;
3732 	}
3733 
3734 	return success;
3735 }
3736 
3737 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
3738 {
3739 	int prev, next;
3740 	int type, zone;
3741 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3742 restart:
3743 	spin_lock_irq(&lruvec->lru_lock);
3744 
3745 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3746 
3747 	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
3748 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3749 			continue;
3750 
3751 		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
3752 
3753 		if (inc_min_seq(lruvec, type, can_swap))
3754 			continue;
3755 
3756 		spin_unlock_irq(&lruvec->lru_lock);
3757 		cond_resched();
3758 		goto restart;
3759 	}
3760 
3761 	/*
3762 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
3763 	 * the current max_seq need to be covered, since max_seq+1 can overlap
3764 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3765 	 * overlap, cold/hot inversion happens.
3766 	 */
3767 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
3768 	next = lru_gen_from_seq(lrugen->max_seq + 1);
3769 
3770 	for (type = 0; type < ANON_AND_FILE; type++) {
3771 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3772 			enum lru_list lru = type * LRU_INACTIVE_FILE;
3773 			long delta = lrugen->nr_pages[prev][type][zone] -
3774 				     lrugen->nr_pages[next][type][zone];
3775 
3776 			if (!delta)
3777 				continue;
3778 
3779 			__update_lru_size(lruvec, lru, zone, delta);
3780 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3781 		}
3782 	}
3783 
3784 	for (type = 0; type < ANON_AND_FILE; type++)
3785 		reset_ctrl_pos(lruvec, type, false);
3786 
3787 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
3788 	/* make sure preceding modifications appear */
3789 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
3790 
3791 	spin_unlock_irq(&lruvec->lru_lock);
3792 }
3793 
3794 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
3795 			       struct scan_control *sc, bool can_swap, bool force_scan)
3796 {
3797 	bool success;
3798 	struct lru_gen_mm_walk *walk;
3799 	struct mm_struct *mm = NULL;
3800 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3801 
3802 	VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
3803 
3804 	/* see the comment in iterate_mm_list() */
3805 	if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
3806 		success = false;
3807 		goto done;
3808 	}
3809 
3810 	/*
3811 	 * If the hardware doesn't automatically set the accessed bit, fallback
3812 	 * to lru_gen_look_around(), which only clears the accessed bit in a
3813 	 * handful of PTEs. Spreading the work out over a period of time usually
3814 	 * is less efficient, but it avoids bursty page faults.
3815 	 */
3816 	if (!should_walk_mmu()) {
3817 		success = iterate_mm_list_nowalk(lruvec, max_seq);
3818 		goto done;
3819 	}
3820 
3821 	walk = set_mm_walk(NULL, true);
3822 	if (!walk) {
3823 		success = iterate_mm_list_nowalk(lruvec, max_seq);
3824 		goto done;
3825 	}
3826 
3827 	walk->lruvec = lruvec;
3828 	walk->max_seq = max_seq;
3829 	walk->can_swap = can_swap;
3830 	walk->force_scan = force_scan;
3831 
3832 	do {
3833 		success = iterate_mm_list(lruvec, walk, &mm);
3834 		if (mm)
3835 			walk_mm(lruvec, mm, walk);
3836 	} while (mm);
3837 done:
3838 	if (success)
3839 		inc_max_seq(lruvec, can_swap, force_scan);
3840 
3841 	return success;
3842 }
3843 
3844 /******************************************************************************
3845  *                          working set protection
3846  ******************************************************************************/
3847 
3848 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
3849 {
3850 	int gen, type, zone;
3851 	unsigned long total = 0;
3852 	bool can_swap = get_swappiness(lruvec, sc);
3853 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3854 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3855 	DEFINE_MAX_SEQ(lruvec);
3856 	DEFINE_MIN_SEQ(lruvec);
3857 
3858 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3859 		unsigned long seq;
3860 
3861 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
3862 			gen = lru_gen_from_seq(seq);
3863 
3864 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
3865 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
3866 		}
3867 	}
3868 
3869 	/* whether the size is big enough to be helpful */
3870 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
3871 }
3872 
3873 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
3874 				  unsigned long min_ttl)
3875 {
3876 	int gen;
3877 	unsigned long birth;
3878 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3879 	DEFINE_MIN_SEQ(lruvec);
3880 
3881 	/* see the comment on lru_gen_folio */
3882 	gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
3883 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
3884 
3885 	if (time_is_after_jiffies(birth + min_ttl))
3886 		return false;
3887 
3888 	if (!lruvec_is_sizable(lruvec, sc))
3889 		return false;
3890 
3891 	mem_cgroup_calculate_protection(NULL, memcg);
3892 
3893 	return !mem_cgroup_below_min(NULL, memcg);
3894 }
3895 
3896 /* to protect the working set of the last N jiffies */
3897 static unsigned long lru_gen_min_ttl __read_mostly;
3898 
3899 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
3900 {
3901 	struct mem_cgroup *memcg;
3902 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
3903 
3904 	VM_WARN_ON_ONCE(!current_is_kswapd());
3905 
3906 	/* check the order to exclude compaction-induced reclaim */
3907 	if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
3908 		return;
3909 
3910 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3911 	do {
3912 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3913 
3914 		if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
3915 			mem_cgroup_iter_break(NULL, memcg);
3916 			return;
3917 		}
3918 
3919 		cond_resched();
3920 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
3921 
3922 	/*
3923 	 * The main goal is to OOM kill if every generation from all memcgs is
3924 	 * younger than min_ttl. However, another possibility is all memcgs are
3925 	 * either too small or below min.
3926 	 */
3927 	if (mutex_trylock(&oom_lock)) {
3928 		struct oom_control oc = {
3929 			.gfp_mask = sc->gfp_mask,
3930 		};
3931 
3932 		out_of_memory(&oc);
3933 
3934 		mutex_unlock(&oom_lock);
3935 	}
3936 }
3937 
3938 /******************************************************************************
3939  *                          rmap/PT walk feedback
3940  ******************************************************************************/
3941 
3942 /*
3943  * This function exploits spatial locality when shrink_folio_list() walks the
3944  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
3945  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
3946  * the PTE table to the Bloom filter. This forms a feedback loop between the
3947  * eviction and the aging.
3948  */
3949 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
3950 {
3951 	int i;
3952 	unsigned long start;
3953 	unsigned long end;
3954 	struct lru_gen_mm_walk *walk;
3955 	int young = 0;
3956 	pte_t *pte = pvmw->pte;
3957 	unsigned long addr = pvmw->address;
3958 	struct folio *folio = pfn_folio(pvmw->pfn);
3959 	bool can_swap = !folio_is_file_lru(folio);
3960 	struct mem_cgroup *memcg = folio_memcg(folio);
3961 	struct pglist_data *pgdat = folio_pgdat(folio);
3962 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3963 	DEFINE_MAX_SEQ(lruvec);
3964 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
3965 
3966 	lockdep_assert_held(pvmw->ptl);
3967 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
3968 
3969 	if (spin_is_contended(pvmw->ptl))
3970 		return;
3971 
3972 	/* avoid taking the LRU lock under the PTL when possible */
3973 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
3974 
3975 	start = max(addr & PMD_MASK, pvmw->vma->vm_start);
3976 	end = min(addr | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
3977 
3978 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
3979 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
3980 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
3981 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
3982 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
3983 		else {
3984 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
3985 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
3986 		}
3987 	}
3988 
3989 	/* folio_update_gen() requires stable folio_memcg() */
3990 	if (!mem_cgroup_trylock_pages(memcg))
3991 		return;
3992 
3993 	arch_enter_lazy_mmu_mode();
3994 
3995 	pte -= (addr - start) / PAGE_SIZE;
3996 
3997 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
3998 		unsigned long pfn;
3999 		pte_t ptent = ptep_get(pte + i);
4000 
4001 		pfn = get_pte_pfn(ptent, pvmw->vma, addr);
4002 		if (pfn == -1)
4003 			continue;
4004 
4005 		if (!pte_young(ptent))
4006 			continue;
4007 
4008 		folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4009 		if (!folio)
4010 			continue;
4011 
4012 		if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4013 			VM_WARN_ON_ONCE(true);
4014 
4015 		young++;
4016 
4017 		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4018 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4019 		      !folio_test_swapcache(folio)))
4020 			folio_mark_dirty(folio);
4021 
4022 		if (walk) {
4023 			old_gen = folio_update_gen(folio, new_gen);
4024 			if (old_gen >= 0 && old_gen != new_gen)
4025 				update_batch_size(walk, folio, old_gen, new_gen);
4026 
4027 			continue;
4028 		}
4029 
4030 		old_gen = folio_lru_gen(folio);
4031 		if (old_gen < 0)
4032 			folio_set_referenced(folio);
4033 		else if (old_gen != new_gen)
4034 			folio_activate(folio);
4035 	}
4036 
4037 	arch_leave_lazy_mmu_mode();
4038 	mem_cgroup_unlock_pages();
4039 
4040 	/* feedback from rmap walkers to page table walkers */
4041 	if (suitable_to_scan(i, young))
4042 		update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4043 }
4044 
4045 /******************************************************************************
4046  *                          memcg LRU
4047  ******************************************************************************/
4048 
4049 /* see the comment on MEMCG_NR_GENS */
4050 enum {
4051 	MEMCG_LRU_NOP,
4052 	MEMCG_LRU_HEAD,
4053 	MEMCG_LRU_TAIL,
4054 	MEMCG_LRU_OLD,
4055 	MEMCG_LRU_YOUNG,
4056 };
4057 
4058 #ifdef CONFIG_MEMCG
4059 
4060 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4061 {
4062 	return READ_ONCE(lruvec->lrugen.seg);
4063 }
4064 
4065 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4066 {
4067 	int seg;
4068 	int old, new;
4069 	unsigned long flags;
4070 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4071 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4072 
4073 	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4074 
4075 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4076 
4077 	seg = 0;
4078 	new = old = lruvec->lrugen.gen;
4079 
4080 	/* see the comment on MEMCG_NR_GENS */
4081 	if (op == MEMCG_LRU_HEAD)
4082 		seg = MEMCG_LRU_HEAD;
4083 	else if (op == MEMCG_LRU_TAIL)
4084 		seg = MEMCG_LRU_TAIL;
4085 	else if (op == MEMCG_LRU_OLD)
4086 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4087 	else if (op == MEMCG_LRU_YOUNG)
4088 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4089 	else
4090 		VM_WARN_ON_ONCE(true);
4091 
4092 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4093 
4094 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4095 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4096 	else
4097 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4098 
4099 	pgdat->memcg_lru.nr_memcgs[old]--;
4100 	pgdat->memcg_lru.nr_memcgs[new]++;
4101 
4102 	lruvec->lrugen.gen = new;
4103 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4104 
4105 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4106 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4107 
4108 	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4109 }
4110 
4111 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4112 {
4113 	int gen;
4114 	int nid;
4115 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4116 
4117 	for_each_node(nid) {
4118 		struct pglist_data *pgdat = NODE_DATA(nid);
4119 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4120 
4121 		spin_lock_irq(&pgdat->memcg_lru.lock);
4122 
4123 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4124 
4125 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4126 
4127 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4128 		pgdat->memcg_lru.nr_memcgs[gen]++;
4129 
4130 		lruvec->lrugen.gen = gen;
4131 
4132 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4133 	}
4134 }
4135 
4136 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4137 {
4138 	int nid;
4139 
4140 	for_each_node(nid) {
4141 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4142 
4143 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4144 	}
4145 }
4146 
4147 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4148 {
4149 	int gen;
4150 	int nid;
4151 
4152 	for_each_node(nid) {
4153 		struct pglist_data *pgdat = NODE_DATA(nid);
4154 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4155 
4156 		spin_lock_irq(&pgdat->memcg_lru.lock);
4157 
4158 		if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4159 			goto unlock;
4160 
4161 		gen = lruvec->lrugen.gen;
4162 
4163 		hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4164 		pgdat->memcg_lru.nr_memcgs[gen]--;
4165 
4166 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4167 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4168 unlock:
4169 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4170 	}
4171 }
4172 
4173 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4174 {
4175 	struct lruvec *lruvec = get_lruvec(memcg, nid);
4176 
4177 	/* see the comment on MEMCG_NR_GENS */
4178 	if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD)
4179 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4180 }
4181 
4182 #else /* !CONFIG_MEMCG */
4183 
4184 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4185 {
4186 	return 0;
4187 }
4188 
4189 #endif
4190 
4191 /******************************************************************************
4192  *                          the eviction
4193  ******************************************************************************/
4194 
4195 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4196 		       int tier_idx)
4197 {
4198 	bool success;
4199 	int gen = folio_lru_gen(folio);
4200 	int type = folio_is_file_lru(folio);
4201 	int zone = folio_zonenum(folio);
4202 	int delta = folio_nr_pages(folio);
4203 	int refs = folio_lru_refs(folio);
4204 	int tier = lru_tier_from_refs(refs);
4205 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4206 
4207 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4208 
4209 	/* unevictable */
4210 	if (!folio_evictable(folio)) {
4211 		success = lru_gen_del_folio(lruvec, folio, true);
4212 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4213 		folio_set_unevictable(folio);
4214 		lruvec_add_folio(lruvec, folio);
4215 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4216 		return true;
4217 	}
4218 
4219 	/* dirty lazyfree */
4220 	if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4221 		success = lru_gen_del_folio(lruvec, folio, true);
4222 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4223 		folio_set_swapbacked(folio);
4224 		lruvec_add_folio_tail(lruvec, folio);
4225 		return true;
4226 	}
4227 
4228 	/* promoted */
4229 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4230 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4231 		return true;
4232 	}
4233 
4234 	/* protected */
4235 	if (tier > tier_idx) {
4236 		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4237 
4238 		gen = folio_inc_gen(lruvec, folio, false);
4239 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4240 
4241 		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4242 			   lrugen->protected[hist][type][tier - 1] + delta);
4243 		return true;
4244 	}
4245 
4246 	/* ineligible */
4247 	if (zone > sc->reclaim_idx || skip_cma(folio, sc)) {
4248 		gen = folio_inc_gen(lruvec, folio, false);
4249 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4250 		return true;
4251 	}
4252 
4253 	/* waiting for writeback */
4254 	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4255 	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4256 		gen = folio_inc_gen(lruvec, folio, true);
4257 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4258 		return true;
4259 	}
4260 
4261 	return false;
4262 }
4263 
4264 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4265 {
4266 	bool success;
4267 
4268 	/* swapping inhibited */
4269 	if (!(sc->gfp_mask & __GFP_IO) &&
4270 	    (folio_test_dirty(folio) ||
4271 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4272 		return false;
4273 
4274 	/* raced with release_pages() */
4275 	if (!folio_try_get(folio))
4276 		return false;
4277 
4278 	/* raced with another isolation */
4279 	if (!folio_test_clear_lru(folio)) {
4280 		folio_put(folio);
4281 		return false;
4282 	}
4283 
4284 	/* see the comment on MAX_NR_TIERS */
4285 	if (!folio_test_referenced(folio))
4286 		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4287 
4288 	/* for shrink_folio_list() */
4289 	folio_clear_reclaim(folio);
4290 	folio_clear_referenced(folio);
4291 
4292 	success = lru_gen_del_folio(lruvec, folio, true);
4293 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4294 
4295 	return true;
4296 }
4297 
4298 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4299 		       int type, int tier, struct list_head *list)
4300 {
4301 	int i;
4302 	int gen;
4303 	enum vm_event_item item;
4304 	int sorted = 0;
4305 	int scanned = 0;
4306 	int isolated = 0;
4307 	int skipped = 0;
4308 	int remaining = MAX_LRU_BATCH;
4309 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4310 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4311 
4312 	VM_WARN_ON_ONCE(!list_empty(list));
4313 
4314 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4315 		return 0;
4316 
4317 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4318 
4319 	for (i = MAX_NR_ZONES; i > 0; i--) {
4320 		LIST_HEAD(moved);
4321 		int skipped_zone = 0;
4322 		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4323 		struct list_head *head = &lrugen->folios[gen][type][zone];
4324 
4325 		while (!list_empty(head)) {
4326 			struct folio *folio = lru_to_folio(head);
4327 			int delta = folio_nr_pages(folio);
4328 
4329 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4330 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4331 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4332 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4333 
4334 			scanned += delta;
4335 
4336 			if (sort_folio(lruvec, folio, sc, tier))
4337 				sorted += delta;
4338 			else if (isolate_folio(lruvec, folio, sc)) {
4339 				list_add(&folio->lru, list);
4340 				isolated += delta;
4341 			} else {
4342 				list_move(&folio->lru, &moved);
4343 				skipped_zone += delta;
4344 			}
4345 
4346 			if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4347 				break;
4348 		}
4349 
4350 		if (skipped_zone) {
4351 			list_splice(&moved, head);
4352 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4353 			skipped += skipped_zone;
4354 		}
4355 
4356 		if (!remaining || isolated >= MIN_LRU_BATCH)
4357 			break;
4358 	}
4359 
4360 	item = PGSCAN_KSWAPD + reclaimer_offset();
4361 	if (!cgroup_reclaim(sc)) {
4362 		__count_vm_events(item, isolated);
4363 		__count_vm_events(PGREFILL, sorted);
4364 	}
4365 	__count_memcg_events(memcg, item, isolated);
4366 	__count_memcg_events(memcg, PGREFILL, sorted);
4367 	__count_vm_events(PGSCAN_ANON + type, isolated);
4368 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4369 				scanned, skipped, isolated,
4370 				type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4371 
4372 	/*
4373 	 * There might not be eligible folios due to reclaim_idx. Check the
4374 	 * remaining to prevent livelock if it's not making progress.
4375 	 */
4376 	return isolated || !remaining ? scanned : 0;
4377 }
4378 
4379 static int get_tier_idx(struct lruvec *lruvec, int type)
4380 {
4381 	int tier;
4382 	struct ctrl_pos sp, pv;
4383 
4384 	/*
4385 	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4386 	 * This value is chosen because any other tier would have at least twice
4387 	 * as many refaults as the first tier.
4388 	 */
4389 	read_ctrl_pos(lruvec, type, 0, 1, &sp);
4390 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4391 		read_ctrl_pos(lruvec, type, tier, 2, &pv);
4392 		if (!positive_ctrl_err(&sp, &pv))
4393 			break;
4394 	}
4395 
4396 	return tier - 1;
4397 }
4398 
4399 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4400 {
4401 	int type, tier;
4402 	struct ctrl_pos sp, pv;
4403 	int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4404 
4405 	/*
4406 	 * Compare the first tier of anon with that of file to determine which
4407 	 * type to scan. Also need to compare other tiers of the selected type
4408 	 * with the first tier of the other type to determine the last tier (of
4409 	 * the selected type) to evict.
4410 	 */
4411 	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4412 	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4413 	type = positive_ctrl_err(&sp, &pv);
4414 
4415 	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4416 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4417 		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4418 		if (!positive_ctrl_err(&sp, &pv))
4419 			break;
4420 	}
4421 
4422 	*tier_idx = tier - 1;
4423 
4424 	return type;
4425 }
4426 
4427 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4428 			  int *type_scanned, struct list_head *list)
4429 {
4430 	int i;
4431 	int type;
4432 	int scanned;
4433 	int tier = -1;
4434 	DEFINE_MIN_SEQ(lruvec);
4435 
4436 	/*
4437 	 * Try to make the obvious choice first. When anon and file are both
4438 	 * available from the same generation, interpret swappiness 1 as file
4439 	 * first and 200 as anon first.
4440 	 */
4441 	if (!swappiness)
4442 		type = LRU_GEN_FILE;
4443 	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4444 		type = LRU_GEN_ANON;
4445 	else if (swappiness == 1)
4446 		type = LRU_GEN_FILE;
4447 	else if (swappiness == 200)
4448 		type = LRU_GEN_ANON;
4449 	else
4450 		type = get_type_to_scan(lruvec, swappiness, &tier);
4451 
4452 	for (i = !swappiness; i < ANON_AND_FILE; i++) {
4453 		if (tier < 0)
4454 			tier = get_tier_idx(lruvec, type);
4455 
4456 		scanned = scan_folios(lruvec, sc, type, tier, list);
4457 		if (scanned)
4458 			break;
4459 
4460 		type = !type;
4461 		tier = -1;
4462 	}
4463 
4464 	*type_scanned = type;
4465 
4466 	return scanned;
4467 }
4468 
4469 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4470 {
4471 	int type;
4472 	int scanned;
4473 	int reclaimed;
4474 	LIST_HEAD(list);
4475 	LIST_HEAD(clean);
4476 	struct folio *folio;
4477 	struct folio *next;
4478 	enum vm_event_item item;
4479 	struct reclaim_stat stat;
4480 	struct lru_gen_mm_walk *walk;
4481 	bool skip_retry = false;
4482 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4483 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4484 
4485 	spin_lock_irq(&lruvec->lru_lock);
4486 
4487 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4488 
4489 	scanned += try_to_inc_min_seq(lruvec, swappiness);
4490 
4491 	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4492 		scanned = 0;
4493 
4494 	spin_unlock_irq(&lruvec->lru_lock);
4495 
4496 	if (list_empty(&list))
4497 		return scanned;
4498 retry:
4499 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4500 	sc->nr_reclaimed += reclaimed;
4501 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4502 			scanned, reclaimed, &stat, sc->priority,
4503 			type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4504 
4505 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4506 		if (!folio_evictable(folio)) {
4507 			list_del(&folio->lru);
4508 			folio_putback_lru(folio);
4509 			continue;
4510 		}
4511 
4512 		if (folio_test_reclaim(folio) &&
4513 		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
4514 			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
4515 			if (folio_test_workingset(folio))
4516 				folio_set_referenced(folio);
4517 			continue;
4518 		}
4519 
4520 		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
4521 		    folio_mapped(folio) || folio_test_locked(folio) ||
4522 		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
4523 			/* don't add rejected folios to the oldest generation */
4524 			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
4525 				      BIT(PG_active));
4526 			continue;
4527 		}
4528 
4529 		/* retry folios that may have missed folio_rotate_reclaimable() */
4530 		list_move(&folio->lru, &clean);
4531 		sc->nr_scanned -= folio_nr_pages(folio);
4532 	}
4533 
4534 	spin_lock_irq(&lruvec->lru_lock);
4535 
4536 	move_folios_to_lru(lruvec, &list);
4537 
4538 	walk = current->reclaim_state->mm_walk;
4539 	if (walk && walk->batched)
4540 		reset_batch_size(lruvec, walk);
4541 
4542 	item = PGSTEAL_KSWAPD + reclaimer_offset();
4543 	if (!cgroup_reclaim(sc))
4544 		__count_vm_events(item, reclaimed);
4545 	__count_memcg_events(memcg, item, reclaimed);
4546 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
4547 
4548 	spin_unlock_irq(&lruvec->lru_lock);
4549 
4550 	mem_cgroup_uncharge_list(&list);
4551 	free_unref_page_list(&list);
4552 
4553 	INIT_LIST_HEAD(&list);
4554 	list_splice_init(&clean, &list);
4555 
4556 	if (!list_empty(&list)) {
4557 		skip_retry = true;
4558 		goto retry;
4559 	}
4560 
4561 	return scanned;
4562 }
4563 
4564 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4565 			     struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
4566 {
4567 	int gen, type, zone;
4568 	unsigned long old = 0;
4569 	unsigned long young = 0;
4570 	unsigned long total = 0;
4571 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4572 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4573 	DEFINE_MIN_SEQ(lruvec);
4574 
4575 	/* whether this lruvec is completely out of cold folios */
4576 	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
4577 		*nr_to_scan = 0;
4578 		return true;
4579 	}
4580 
4581 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4582 		unsigned long seq;
4583 
4584 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4585 			unsigned long size = 0;
4586 
4587 			gen = lru_gen_from_seq(seq);
4588 
4589 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4590 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4591 
4592 			total += size;
4593 			if (seq == max_seq)
4594 				young += size;
4595 			else if (seq + MIN_NR_GENS == max_seq)
4596 				old += size;
4597 		}
4598 	}
4599 
4600 	/* try to scrape all its memory if this memcg was deleted */
4601 	*nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4602 
4603 	/*
4604 	 * The aging tries to be lazy to reduce the overhead, while the eviction
4605 	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4606 	 * ideal number of generations is MIN_NR_GENS+1.
4607 	 */
4608 	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4609 		return false;
4610 
4611 	/*
4612 	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4613 	 * of the total number of pages for each generation. A reasonable range
4614 	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4615 	 * aging cares about the upper bound of hot pages, while the eviction
4616 	 * cares about the lower bound of cold pages.
4617 	 */
4618 	if (young * MIN_NR_GENS > total)
4619 		return true;
4620 	if (old * (MIN_NR_GENS + 2) < total)
4621 		return true;
4622 
4623 	return false;
4624 }
4625 
4626 /*
4627  * For future optimizations:
4628  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4629  *    reclaim.
4630  */
4631 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
4632 {
4633 	unsigned long nr_to_scan;
4634 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4635 	DEFINE_MAX_SEQ(lruvec);
4636 
4637 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4638 		return 0;
4639 
4640 	if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
4641 		return nr_to_scan;
4642 
4643 	/* skip the aging path at the default priority */
4644 	if (sc->priority == DEF_PRIORITY)
4645 		return nr_to_scan;
4646 
4647 	/* skip this lruvec as it's low on cold folios */
4648 	return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
4649 }
4650 
4651 static unsigned long get_nr_to_reclaim(struct scan_control *sc)
4652 {
4653 	/* don't abort memcg reclaim to ensure fairness */
4654 	if (!root_reclaim(sc))
4655 		return -1;
4656 
4657 	return max(sc->nr_to_reclaim, compact_gap(sc->order));
4658 }
4659 
4660 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4661 {
4662 	long nr_to_scan;
4663 	unsigned long scanned = 0;
4664 	unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
4665 	int swappiness = get_swappiness(lruvec, sc);
4666 
4667 	/* clean file folios are more likely to exist */
4668 	if (swappiness && !(sc->gfp_mask & __GFP_IO))
4669 		swappiness = 1;
4670 
4671 	while (true) {
4672 		int delta;
4673 
4674 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4675 		if (nr_to_scan <= 0)
4676 			break;
4677 
4678 		delta = evict_folios(lruvec, sc, swappiness);
4679 		if (!delta)
4680 			break;
4681 
4682 		scanned += delta;
4683 		if (scanned >= nr_to_scan)
4684 			break;
4685 
4686 		if (sc->nr_reclaimed >= nr_to_reclaim)
4687 			break;
4688 
4689 		cond_resched();
4690 	}
4691 
4692 	/* whether try_to_inc_max_seq() was successful */
4693 	return nr_to_scan < 0;
4694 }
4695 
4696 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4697 {
4698 	bool success;
4699 	unsigned long scanned = sc->nr_scanned;
4700 	unsigned long reclaimed = sc->nr_reclaimed;
4701 	int seg = lru_gen_memcg_seg(lruvec);
4702 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4703 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4704 
4705 	/* see the comment on MEMCG_NR_GENS */
4706 	if (!lruvec_is_sizable(lruvec, sc))
4707 		return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4708 
4709 	mem_cgroup_calculate_protection(NULL, memcg);
4710 
4711 	if (mem_cgroup_below_min(NULL, memcg))
4712 		return MEMCG_LRU_YOUNG;
4713 
4714 	if (mem_cgroup_below_low(NULL, memcg)) {
4715 		/* see the comment on MEMCG_NR_GENS */
4716 		if (seg != MEMCG_LRU_TAIL)
4717 			return MEMCG_LRU_TAIL;
4718 
4719 		memcg_memory_event(memcg, MEMCG_LOW);
4720 	}
4721 
4722 	success = try_to_shrink_lruvec(lruvec, sc);
4723 
4724 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4725 
4726 	if (!sc->proactive)
4727 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4728 			   sc->nr_reclaimed - reclaimed);
4729 
4730 	flush_reclaim_state(sc);
4731 
4732 	return success ? MEMCG_LRU_YOUNG : 0;
4733 }
4734 
4735 #ifdef CONFIG_MEMCG
4736 
4737 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4738 {
4739 	int op;
4740 	int gen;
4741 	int bin;
4742 	int first_bin;
4743 	struct lruvec *lruvec;
4744 	struct lru_gen_folio *lrugen;
4745 	struct mem_cgroup *memcg;
4746 	const struct hlist_nulls_node *pos;
4747 	unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
4748 
4749 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4750 restart:
4751 	op = 0;
4752 	memcg = NULL;
4753 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4754 
4755 	rcu_read_lock();
4756 
4757 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4758 		if (op) {
4759 			lru_gen_rotate_memcg(lruvec, op);
4760 			op = 0;
4761 		}
4762 
4763 		mem_cgroup_put(memcg);
4764 
4765 		lruvec = container_of(lrugen, struct lruvec, lrugen);
4766 		memcg = lruvec_memcg(lruvec);
4767 
4768 		if (!mem_cgroup_tryget(memcg)) {
4769 			lru_gen_release_memcg(memcg);
4770 			memcg = NULL;
4771 			continue;
4772 		}
4773 
4774 		rcu_read_unlock();
4775 
4776 		op = shrink_one(lruvec, sc);
4777 
4778 		rcu_read_lock();
4779 
4780 		if (sc->nr_reclaimed >= nr_to_reclaim)
4781 			break;
4782 	}
4783 
4784 	rcu_read_unlock();
4785 
4786 	if (op)
4787 		lru_gen_rotate_memcg(lruvec, op);
4788 
4789 	mem_cgroup_put(memcg);
4790 
4791 	if (sc->nr_reclaimed >= nr_to_reclaim)
4792 		return;
4793 
4794 	/* restart if raced with lru_gen_rotate_memcg() */
4795 	if (gen != get_nulls_value(pos))
4796 		goto restart;
4797 
4798 	/* try the rest of the bins of the current generation */
4799 	bin = get_memcg_bin(bin + 1);
4800 	if (bin != first_bin)
4801 		goto restart;
4802 }
4803 
4804 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4805 {
4806 	struct blk_plug plug;
4807 
4808 	VM_WARN_ON_ONCE(root_reclaim(sc));
4809 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
4810 
4811 	lru_add_drain();
4812 
4813 	blk_start_plug(&plug);
4814 
4815 	set_mm_walk(NULL, sc->proactive);
4816 
4817 	if (try_to_shrink_lruvec(lruvec, sc))
4818 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
4819 
4820 	clear_mm_walk();
4821 
4822 	blk_finish_plug(&plug);
4823 }
4824 
4825 #else /* !CONFIG_MEMCG */
4826 
4827 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4828 {
4829 	BUILD_BUG();
4830 }
4831 
4832 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4833 {
4834 	BUILD_BUG();
4835 }
4836 
4837 #endif
4838 
4839 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4840 {
4841 	int priority;
4842 	unsigned long reclaimable;
4843 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
4844 
4845 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4846 		return;
4847 	/*
4848 	 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >>
4849 	 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the
4850 	 * estimated reclaimed_to_scanned_ratio = inactive / total.
4851 	 */
4852 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4853 	if (get_swappiness(lruvec, sc))
4854 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4855 
4856 	reclaimable /= MEMCG_NR_GENS;
4857 
4858 	/* round down reclaimable and round up sc->nr_to_reclaim */
4859 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4860 
4861 	sc->priority = clamp(priority, 0, DEF_PRIORITY);
4862 }
4863 
4864 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
4865 {
4866 	struct blk_plug plug;
4867 	unsigned long reclaimed = sc->nr_reclaimed;
4868 
4869 	VM_WARN_ON_ONCE(!root_reclaim(sc));
4870 
4871 	/*
4872 	 * Unmapped clean folios are already prioritized. Scanning for more of
4873 	 * them is likely futile and can cause high reclaim latency when there
4874 	 * is a large number of memcgs.
4875 	 */
4876 	if (!sc->may_writepage || !sc->may_unmap)
4877 		goto done;
4878 
4879 	lru_add_drain();
4880 
4881 	blk_start_plug(&plug);
4882 
4883 	set_mm_walk(pgdat, sc->proactive);
4884 
4885 	set_initial_priority(pgdat, sc);
4886 
4887 	if (current_is_kswapd())
4888 		sc->nr_reclaimed = 0;
4889 
4890 	if (mem_cgroup_disabled())
4891 		shrink_one(&pgdat->__lruvec, sc);
4892 	else
4893 		shrink_many(pgdat, sc);
4894 
4895 	if (current_is_kswapd())
4896 		sc->nr_reclaimed += reclaimed;
4897 
4898 	clear_mm_walk();
4899 
4900 	blk_finish_plug(&plug);
4901 done:
4902 	/* kswapd should never fail */
4903 	pgdat->kswapd_failures = 0;
4904 }
4905 
4906 /******************************************************************************
4907  *                          state change
4908  ******************************************************************************/
4909 
4910 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
4911 {
4912 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4913 
4914 	if (lrugen->enabled) {
4915 		enum lru_list lru;
4916 
4917 		for_each_evictable_lru(lru) {
4918 			if (!list_empty(&lruvec->lists[lru]))
4919 				return false;
4920 		}
4921 	} else {
4922 		int gen, type, zone;
4923 
4924 		for_each_gen_type_zone(gen, type, zone) {
4925 			if (!list_empty(&lrugen->folios[gen][type][zone]))
4926 				return false;
4927 		}
4928 	}
4929 
4930 	return true;
4931 }
4932 
4933 static bool fill_evictable(struct lruvec *lruvec)
4934 {
4935 	enum lru_list lru;
4936 	int remaining = MAX_LRU_BATCH;
4937 
4938 	for_each_evictable_lru(lru) {
4939 		int type = is_file_lru(lru);
4940 		bool active = is_active_lru(lru);
4941 		struct list_head *head = &lruvec->lists[lru];
4942 
4943 		while (!list_empty(head)) {
4944 			bool success;
4945 			struct folio *folio = lru_to_folio(head);
4946 
4947 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4948 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
4949 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4950 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
4951 
4952 			lruvec_del_folio(lruvec, folio);
4953 			success = lru_gen_add_folio(lruvec, folio, false);
4954 			VM_WARN_ON_ONCE(!success);
4955 
4956 			if (!--remaining)
4957 				return false;
4958 		}
4959 	}
4960 
4961 	return true;
4962 }
4963 
4964 static bool drain_evictable(struct lruvec *lruvec)
4965 {
4966 	int gen, type, zone;
4967 	int remaining = MAX_LRU_BATCH;
4968 
4969 	for_each_gen_type_zone(gen, type, zone) {
4970 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
4971 
4972 		while (!list_empty(head)) {
4973 			bool success;
4974 			struct folio *folio = lru_to_folio(head);
4975 
4976 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4977 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4978 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4979 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4980 
4981 			success = lru_gen_del_folio(lruvec, folio, false);
4982 			VM_WARN_ON_ONCE(!success);
4983 			lruvec_add_folio(lruvec, folio);
4984 
4985 			if (!--remaining)
4986 				return false;
4987 		}
4988 	}
4989 
4990 	return true;
4991 }
4992 
4993 static void lru_gen_change_state(bool enabled)
4994 {
4995 	static DEFINE_MUTEX(state_mutex);
4996 
4997 	struct mem_cgroup *memcg;
4998 
4999 	cgroup_lock();
5000 	cpus_read_lock();
5001 	get_online_mems();
5002 	mutex_lock(&state_mutex);
5003 
5004 	if (enabled == lru_gen_enabled())
5005 		goto unlock;
5006 
5007 	if (enabled)
5008 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5009 	else
5010 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5011 
5012 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5013 	do {
5014 		int nid;
5015 
5016 		for_each_node(nid) {
5017 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5018 
5019 			spin_lock_irq(&lruvec->lru_lock);
5020 
5021 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5022 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5023 
5024 			lruvec->lrugen.enabled = enabled;
5025 
5026 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5027 				spin_unlock_irq(&lruvec->lru_lock);
5028 				cond_resched();
5029 				spin_lock_irq(&lruvec->lru_lock);
5030 			}
5031 
5032 			spin_unlock_irq(&lruvec->lru_lock);
5033 		}
5034 
5035 		cond_resched();
5036 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5037 unlock:
5038 	mutex_unlock(&state_mutex);
5039 	put_online_mems();
5040 	cpus_read_unlock();
5041 	cgroup_unlock();
5042 }
5043 
5044 /******************************************************************************
5045  *                          sysfs interface
5046  ******************************************************************************/
5047 
5048 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5049 {
5050 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5051 }
5052 
5053 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5054 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5055 				const char *buf, size_t len)
5056 {
5057 	unsigned int msecs;
5058 
5059 	if (kstrtouint(buf, 0, &msecs))
5060 		return -EINVAL;
5061 
5062 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5063 
5064 	return len;
5065 }
5066 
5067 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5068 
5069 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5070 {
5071 	unsigned int caps = 0;
5072 
5073 	if (get_cap(LRU_GEN_CORE))
5074 		caps |= BIT(LRU_GEN_CORE);
5075 
5076 	if (should_walk_mmu())
5077 		caps |= BIT(LRU_GEN_MM_WALK);
5078 
5079 	if (should_clear_pmd_young())
5080 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5081 
5082 	return sysfs_emit(buf, "0x%04x\n", caps);
5083 }
5084 
5085 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5086 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5087 			     const char *buf, size_t len)
5088 {
5089 	int i;
5090 	unsigned int caps;
5091 
5092 	if (tolower(*buf) == 'n')
5093 		caps = 0;
5094 	else if (tolower(*buf) == 'y')
5095 		caps = -1;
5096 	else if (kstrtouint(buf, 0, &caps))
5097 		return -EINVAL;
5098 
5099 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5100 		bool enabled = caps & BIT(i);
5101 
5102 		if (i == LRU_GEN_CORE)
5103 			lru_gen_change_state(enabled);
5104 		else if (enabled)
5105 			static_branch_enable(&lru_gen_caps[i]);
5106 		else
5107 			static_branch_disable(&lru_gen_caps[i]);
5108 	}
5109 
5110 	return len;
5111 }
5112 
5113 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5114 
5115 static struct attribute *lru_gen_attrs[] = {
5116 	&lru_gen_min_ttl_attr.attr,
5117 	&lru_gen_enabled_attr.attr,
5118 	NULL
5119 };
5120 
5121 static const struct attribute_group lru_gen_attr_group = {
5122 	.name = "lru_gen",
5123 	.attrs = lru_gen_attrs,
5124 };
5125 
5126 /******************************************************************************
5127  *                          debugfs interface
5128  ******************************************************************************/
5129 
5130 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5131 {
5132 	struct mem_cgroup *memcg;
5133 	loff_t nr_to_skip = *pos;
5134 
5135 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5136 	if (!m->private)
5137 		return ERR_PTR(-ENOMEM);
5138 
5139 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5140 	do {
5141 		int nid;
5142 
5143 		for_each_node_state(nid, N_MEMORY) {
5144 			if (!nr_to_skip--)
5145 				return get_lruvec(memcg, nid);
5146 		}
5147 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5148 
5149 	return NULL;
5150 }
5151 
5152 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5153 {
5154 	if (!IS_ERR_OR_NULL(v))
5155 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5156 
5157 	kvfree(m->private);
5158 	m->private = NULL;
5159 }
5160 
5161 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5162 {
5163 	int nid = lruvec_pgdat(v)->node_id;
5164 	struct mem_cgroup *memcg = lruvec_memcg(v);
5165 
5166 	++*pos;
5167 
5168 	nid = next_memory_node(nid);
5169 	if (nid == MAX_NUMNODES) {
5170 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5171 		if (!memcg)
5172 			return NULL;
5173 
5174 		nid = first_memory_node;
5175 	}
5176 
5177 	return get_lruvec(memcg, nid);
5178 }
5179 
5180 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5181 				  unsigned long max_seq, unsigned long *min_seq,
5182 				  unsigned long seq)
5183 {
5184 	int i;
5185 	int type, tier;
5186 	int hist = lru_hist_from_seq(seq);
5187 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5188 
5189 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5190 		seq_printf(m, "            %10d", tier);
5191 		for (type = 0; type < ANON_AND_FILE; type++) {
5192 			const char *s = "   ";
5193 			unsigned long n[3] = {};
5194 
5195 			if (seq == max_seq) {
5196 				s = "RT ";
5197 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5198 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5199 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5200 				s = "rep";
5201 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5202 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5203 				if (tier)
5204 					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5205 			}
5206 
5207 			for (i = 0; i < 3; i++)
5208 				seq_printf(m, " %10lu%c", n[i], s[i]);
5209 		}
5210 		seq_putc(m, '\n');
5211 	}
5212 
5213 	seq_puts(m, "                      ");
5214 	for (i = 0; i < NR_MM_STATS; i++) {
5215 		const char *s = "      ";
5216 		unsigned long n = 0;
5217 
5218 		if (seq == max_seq && NR_HIST_GENS == 1) {
5219 			s = "LOYNFA";
5220 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5221 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5222 			s = "loynfa";
5223 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5224 		}
5225 
5226 		seq_printf(m, " %10lu%c", n, s[i]);
5227 	}
5228 	seq_putc(m, '\n');
5229 }
5230 
5231 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5232 static int lru_gen_seq_show(struct seq_file *m, void *v)
5233 {
5234 	unsigned long seq;
5235 	bool full = !debugfs_real_fops(m->file)->write;
5236 	struct lruvec *lruvec = v;
5237 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5238 	int nid = lruvec_pgdat(lruvec)->node_id;
5239 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5240 	DEFINE_MAX_SEQ(lruvec);
5241 	DEFINE_MIN_SEQ(lruvec);
5242 
5243 	if (nid == first_memory_node) {
5244 		const char *path = memcg ? m->private : "";
5245 
5246 #ifdef CONFIG_MEMCG
5247 		if (memcg)
5248 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5249 #endif
5250 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5251 	}
5252 
5253 	seq_printf(m, " node %5d\n", nid);
5254 
5255 	if (!full)
5256 		seq = min_seq[LRU_GEN_ANON];
5257 	else if (max_seq >= MAX_NR_GENS)
5258 		seq = max_seq - MAX_NR_GENS + 1;
5259 	else
5260 		seq = 0;
5261 
5262 	for (; seq <= max_seq; seq++) {
5263 		int type, zone;
5264 		int gen = lru_gen_from_seq(seq);
5265 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5266 
5267 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5268 
5269 		for (type = 0; type < ANON_AND_FILE; type++) {
5270 			unsigned long size = 0;
5271 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5272 
5273 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5274 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5275 
5276 			seq_printf(m, " %10lu%c", size, mark);
5277 		}
5278 
5279 		seq_putc(m, '\n');
5280 
5281 		if (full)
5282 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5283 	}
5284 
5285 	return 0;
5286 }
5287 
5288 static const struct seq_operations lru_gen_seq_ops = {
5289 	.start = lru_gen_seq_start,
5290 	.stop = lru_gen_seq_stop,
5291 	.next = lru_gen_seq_next,
5292 	.show = lru_gen_seq_show,
5293 };
5294 
5295 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5296 		     bool can_swap, bool force_scan)
5297 {
5298 	DEFINE_MAX_SEQ(lruvec);
5299 	DEFINE_MIN_SEQ(lruvec);
5300 
5301 	if (seq < max_seq)
5302 		return 0;
5303 
5304 	if (seq > max_seq)
5305 		return -EINVAL;
5306 
5307 	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5308 		return -ERANGE;
5309 
5310 	try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5311 
5312 	return 0;
5313 }
5314 
5315 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5316 			int swappiness, unsigned long nr_to_reclaim)
5317 {
5318 	DEFINE_MAX_SEQ(lruvec);
5319 
5320 	if (seq + MIN_NR_GENS > max_seq)
5321 		return -EINVAL;
5322 
5323 	sc->nr_reclaimed = 0;
5324 
5325 	while (!signal_pending(current)) {
5326 		DEFINE_MIN_SEQ(lruvec);
5327 
5328 		if (seq < min_seq[!swappiness])
5329 			return 0;
5330 
5331 		if (sc->nr_reclaimed >= nr_to_reclaim)
5332 			return 0;
5333 
5334 		if (!evict_folios(lruvec, sc, swappiness))
5335 			return 0;
5336 
5337 		cond_resched();
5338 	}
5339 
5340 	return -EINTR;
5341 }
5342 
5343 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5344 		   struct scan_control *sc, int swappiness, unsigned long opt)
5345 {
5346 	struct lruvec *lruvec;
5347 	int err = -EINVAL;
5348 	struct mem_cgroup *memcg = NULL;
5349 
5350 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5351 		return -EINVAL;
5352 
5353 	if (!mem_cgroup_disabled()) {
5354 		rcu_read_lock();
5355 
5356 		memcg = mem_cgroup_from_id(memcg_id);
5357 		if (!mem_cgroup_tryget(memcg))
5358 			memcg = NULL;
5359 
5360 		rcu_read_unlock();
5361 
5362 		if (!memcg)
5363 			return -EINVAL;
5364 	}
5365 
5366 	if (memcg_id != mem_cgroup_id(memcg))
5367 		goto done;
5368 
5369 	lruvec = get_lruvec(memcg, nid);
5370 
5371 	if (swappiness < 0)
5372 		swappiness = get_swappiness(lruvec, sc);
5373 	else if (swappiness > 200)
5374 		goto done;
5375 
5376 	switch (cmd) {
5377 	case '+':
5378 		err = run_aging(lruvec, seq, sc, swappiness, opt);
5379 		break;
5380 	case '-':
5381 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5382 		break;
5383 	}
5384 done:
5385 	mem_cgroup_put(memcg);
5386 
5387 	return err;
5388 }
5389 
5390 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5391 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5392 				 size_t len, loff_t *pos)
5393 {
5394 	void *buf;
5395 	char *cur, *next;
5396 	unsigned int flags;
5397 	struct blk_plug plug;
5398 	int err = -EINVAL;
5399 	struct scan_control sc = {
5400 		.may_writepage = true,
5401 		.may_unmap = true,
5402 		.may_swap = true,
5403 		.reclaim_idx = MAX_NR_ZONES - 1,
5404 		.gfp_mask = GFP_KERNEL,
5405 	};
5406 
5407 	buf = kvmalloc(len + 1, GFP_KERNEL);
5408 	if (!buf)
5409 		return -ENOMEM;
5410 
5411 	if (copy_from_user(buf, src, len)) {
5412 		kvfree(buf);
5413 		return -EFAULT;
5414 	}
5415 
5416 	set_task_reclaim_state(current, &sc.reclaim_state);
5417 	flags = memalloc_noreclaim_save();
5418 	blk_start_plug(&plug);
5419 	if (!set_mm_walk(NULL, true)) {
5420 		err = -ENOMEM;
5421 		goto done;
5422 	}
5423 
5424 	next = buf;
5425 	next[len] = '\0';
5426 
5427 	while ((cur = strsep(&next, ",;\n"))) {
5428 		int n;
5429 		int end;
5430 		char cmd;
5431 		unsigned int memcg_id;
5432 		unsigned int nid;
5433 		unsigned long seq;
5434 		unsigned int swappiness = -1;
5435 		unsigned long opt = -1;
5436 
5437 		cur = skip_spaces(cur);
5438 		if (!*cur)
5439 			continue;
5440 
5441 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5442 			   &seq, &end, &swappiness, &end, &opt, &end);
5443 		if (n < 4 || cur[end]) {
5444 			err = -EINVAL;
5445 			break;
5446 		}
5447 
5448 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5449 		if (err)
5450 			break;
5451 	}
5452 done:
5453 	clear_mm_walk();
5454 	blk_finish_plug(&plug);
5455 	memalloc_noreclaim_restore(flags);
5456 	set_task_reclaim_state(current, NULL);
5457 
5458 	kvfree(buf);
5459 
5460 	return err ? : len;
5461 }
5462 
5463 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5464 {
5465 	return seq_open(file, &lru_gen_seq_ops);
5466 }
5467 
5468 static const struct file_operations lru_gen_rw_fops = {
5469 	.open = lru_gen_seq_open,
5470 	.read = seq_read,
5471 	.write = lru_gen_seq_write,
5472 	.llseek = seq_lseek,
5473 	.release = seq_release,
5474 };
5475 
5476 static const struct file_operations lru_gen_ro_fops = {
5477 	.open = lru_gen_seq_open,
5478 	.read = seq_read,
5479 	.llseek = seq_lseek,
5480 	.release = seq_release,
5481 };
5482 
5483 /******************************************************************************
5484  *                          initialization
5485  ******************************************************************************/
5486 
5487 void lru_gen_init_lruvec(struct lruvec *lruvec)
5488 {
5489 	int i;
5490 	int gen, type, zone;
5491 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5492 
5493 	lrugen->max_seq = MIN_NR_GENS + 1;
5494 	lrugen->enabled = lru_gen_enabled();
5495 
5496 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5497 		lrugen->timestamps[i] = jiffies;
5498 
5499 	for_each_gen_type_zone(gen, type, zone)
5500 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5501 
5502 	lruvec->mm_state.seq = MIN_NR_GENS;
5503 }
5504 
5505 #ifdef CONFIG_MEMCG
5506 
5507 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5508 {
5509 	int i, j;
5510 
5511 	spin_lock_init(&pgdat->memcg_lru.lock);
5512 
5513 	for (i = 0; i < MEMCG_NR_GENS; i++) {
5514 		for (j = 0; j < MEMCG_NR_BINS; j++)
5515 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5516 	}
5517 }
5518 
5519 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5520 {
5521 	INIT_LIST_HEAD(&memcg->mm_list.fifo);
5522 	spin_lock_init(&memcg->mm_list.lock);
5523 }
5524 
5525 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5526 {
5527 	int i;
5528 	int nid;
5529 
5530 	VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo));
5531 
5532 	for_each_node(nid) {
5533 		struct lruvec *lruvec = get_lruvec(memcg, nid);
5534 
5535 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5536 					   sizeof(lruvec->lrugen.nr_pages)));
5537 
5538 		lruvec->lrugen.list.next = LIST_POISON1;
5539 
5540 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5541 			bitmap_free(lruvec->mm_state.filters[i]);
5542 			lruvec->mm_state.filters[i] = NULL;
5543 		}
5544 	}
5545 }
5546 
5547 #endif /* CONFIG_MEMCG */
5548 
5549 static int __init init_lru_gen(void)
5550 {
5551 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5552 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5553 
5554 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5555 		pr_err("lru_gen: failed to create sysfs group\n");
5556 
5557 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5558 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5559 
5560 	return 0;
5561 };
5562 late_initcall(init_lru_gen);
5563 
5564 #else /* !CONFIG_LRU_GEN */
5565 
5566 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5567 {
5568 }
5569 
5570 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5571 {
5572 }
5573 
5574 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5575 {
5576 }
5577 
5578 #endif /* CONFIG_LRU_GEN */
5579 
5580 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5581 {
5582 	unsigned long nr[NR_LRU_LISTS];
5583 	unsigned long targets[NR_LRU_LISTS];
5584 	unsigned long nr_to_scan;
5585 	enum lru_list lru;
5586 	unsigned long nr_reclaimed = 0;
5587 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5588 	bool proportional_reclaim;
5589 	struct blk_plug plug;
5590 
5591 	if (lru_gen_enabled() && !root_reclaim(sc)) {
5592 		lru_gen_shrink_lruvec(lruvec, sc);
5593 		return;
5594 	}
5595 
5596 	get_scan_count(lruvec, sc, nr);
5597 
5598 	/* Record the original scan target for proportional adjustments later */
5599 	memcpy(targets, nr, sizeof(nr));
5600 
5601 	/*
5602 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5603 	 * event that can occur when there is little memory pressure e.g.
5604 	 * multiple streaming readers/writers. Hence, we do not abort scanning
5605 	 * when the requested number of pages are reclaimed when scanning at
5606 	 * DEF_PRIORITY on the assumption that the fact we are direct
5607 	 * reclaiming implies that kswapd is not keeping up and it is best to
5608 	 * do a batch of work at once. For memcg reclaim one check is made to
5609 	 * abort proportional reclaim if either the file or anon lru has already
5610 	 * dropped to zero at the first pass.
5611 	 */
5612 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5613 				sc->priority == DEF_PRIORITY);
5614 
5615 	blk_start_plug(&plug);
5616 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5617 					nr[LRU_INACTIVE_FILE]) {
5618 		unsigned long nr_anon, nr_file, percentage;
5619 		unsigned long nr_scanned;
5620 
5621 		for_each_evictable_lru(lru) {
5622 			if (nr[lru]) {
5623 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5624 				nr[lru] -= nr_to_scan;
5625 
5626 				nr_reclaimed += shrink_list(lru, nr_to_scan,
5627 							    lruvec, sc);
5628 			}
5629 		}
5630 
5631 		cond_resched();
5632 
5633 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5634 			continue;
5635 
5636 		/*
5637 		 * For kswapd and memcg, reclaim at least the number of pages
5638 		 * requested. Ensure that the anon and file LRUs are scanned
5639 		 * proportionally what was requested by get_scan_count(). We
5640 		 * stop reclaiming one LRU and reduce the amount scanning
5641 		 * proportional to the original scan target.
5642 		 */
5643 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5644 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5645 
5646 		/*
5647 		 * It's just vindictive to attack the larger once the smaller
5648 		 * has gone to zero.  And given the way we stop scanning the
5649 		 * smaller below, this makes sure that we only make one nudge
5650 		 * towards proportionality once we've got nr_to_reclaim.
5651 		 */
5652 		if (!nr_file || !nr_anon)
5653 			break;
5654 
5655 		if (nr_file > nr_anon) {
5656 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5657 						targets[LRU_ACTIVE_ANON] + 1;
5658 			lru = LRU_BASE;
5659 			percentage = nr_anon * 100 / scan_target;
5660 		} else {
5661 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5662 						targets[LRU_ACTIVE_FILE] + 1;
5663 			lru = LRU_FILE;
5664 			percentage = nr_file * 100 / scan_target;
5665 		}
5666 
5667 		/* Stop scanning the smaller of the LRU */
5668 		nr[lru] = 0;
5669 		nr[lru + LRU_ACTIVE] = 0;
5670 
5671 		/*
5672 		 * Recalculate the other LRU scan count based on its original
5673 		 * scan target and the percentage scanning already complete
5674 		 */
5675 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5676 		nr_scanned = targets[lru] - nr[lru];
5677 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5678 		nr[lru] -= min(nr[lru], nr_scanned);
5679 
5680 		lru += LRU_ACTIVE;
5681 		nr_scanned = targets[lru] - nr[lru];
5682 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5683 		nr[lru] -= min(nr[lru], nr_scanned);
5684 	}
5685 	blk_finish_plug(&plug);
5686 	sc->nr_reclaimed += nr_reclaimed;
5687 
5688 	/*
5689 	 * Even if we did not try to evict anon pages at all, we want to
5690 	 * rebalance the anon lru active/inactive ratio.
5691 	 */
5692 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5693 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5694 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5695 				   sc, LRU_ACTIVE_ANON);
5696 }
5697 
5698 /* Use reclaim/compaction for costly allocs or under memory pressure */
5699 static bool in_reclaim_compaction(struct scan_control *sc)
5700 {
5701 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
5702 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5703 			 sc->priority < DEF_PRIORITY - 2))
5704 		return true;
5705 
5706 	return false;
5707 }
5708 
5709 /*
5710  * Reclaim/compaction is used for high-order allocation requests. It reclaims
5711  * order-0 pages before compacting the zone. should_continue_reclaim() returns
5712  * true if more pages should be reclaimed such that when the page allocator
5713  * calls try_to_compact_pages() that it will have enough free pages to succeed.
5714  * It will give up earlier than that if there is difficulty reclaiming pages.
5715  */
5716 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5717 					unsigned long nr_reclaimed,
5718 					struct scan_control *sc)
5719 {
5720 	unsigned long pages_for_compaction;
5721 	unsigned long inactive_lru_pages;
5722 	int z;
5723 
5724 	/* If not in reclaim/compaction mode, stop */
5725 	if (!in_reclaim_compaction(sc))
5726 		return false;
5727 
5728 	/*
5729 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5730 	 * number of pages that were scanned. This will return to the caller
5731 	 * with the risk reclaim/compaction and the resulting allocation attempt
5732 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5733 	 * allocations through requiring that the full LRU list has been scanned
5734 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5735 	 * scan, but that approximation was wrong, and there were corner cases
5736 	 * where always a non-zero amount of pages were scanned.
5737 	 */
5738 	if (!nr_reclaimed)
5739 		return false;
5740 
5741 	/* If compaction would go ahead or the allocation would succeed, stop */
5742 	for (z = 0; z <= sc->reclaim_idx; z++) {
5743 		struct zone *zone = &pgdat->node_zones[z];
5744 		if (!managed_zone(zone))
5745 			continue;
5746 
5747 		/* Allocation can already succeed, nothing to do */
5748 		if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
5749 				      sc->reclaim_idx, 0))
5750 			return false;
5751 
5752 		if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
5753 			return false;
5754 	}
5755 
5756 	/*
5757 	 * If we have not reclaimed enough pages for compaction and the
5758 	 * inactive lists are large enough, continue reclaiming
5759 	 */
5760 	pages_for_compaction = compact_gap(sc->order);
5761 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5762 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5763 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5764 
5765 	return inactive_lru_pages > pages_for_compaction;
5766 }
5767 
5768 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5769 {
5770 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5771 	struct mem_cgroup *memcg;
5772 
5773 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
5774 	do {
5775 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5776 		unsigned long reclaimed;
5777 		unsigned long scanned;
5778 
5779 		/*
5780 		 * This loop can become CPU-bound when target memcgs
5781 		 * aren't eligible for reclaim - either because they
5782 		 * don't have any reclaimable pages, or because their
5783 		 * memory is explicitly protected. Avoid soft lockups.
5784 		 */
5785 		cond_resched();
5786 
5787 		mem_cgroup_calculate_protection(target_memcg, memcg);
5788 
5789 		if (mem_cgroup_below_min(target_memcg, memcg)) {
5790 			/*
5791 			 * Hard protection.
5792 			 * If there is no reclaimable memory, OOM.
5793 			 */
5794 			continue;
5795 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
5796 			/*
5797 			 * Soft protection.
5798 			 * Respect the protection only as long as
5799 			 * there is an unprotected supply
5800 			 * of reclaimable memory from other cgroups.
5801 			 */
5802 			if (!sc->memcg_low_reclaim) {
5803 				sc->memcg_low_skipped = 1;
5804 				continue;
5805 			}
5806 			memcg_memory_event(memcg, MEMCG_LOW);
5807 		}
5808 
5809 		reclaimed = sc->nr_reclaimed;
5810 		scanned = sc->nr_scanned;
5811 
5812 		shrink_lruvec(lruvec, sc);
5813 
5814 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
5815 			    sc->priority);
5816 
5817 		/* Record the group's reclaim efficiency */
5818 		if (!sc->proactive)
5819 			vmpressure(sc->gfp_mask, memcg, false,
5820 				   sc->nr_scanned - scanned,
5821 				   sc->nr_reclaimed - reclaimed);
5822 
5823 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
5824 }
5825 
5826 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
5827 {
5828 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
5829 	struct lruvec *target_lruvec;
5830 	bool reclaimable = false;
5831 
5832 	if (lru_gen_enabled() && root_reclaim(sc)) {
5833 		lru_gen_shrink_node(pgdat, sc);
5834 		return;
5835 	}
5836 
5837 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
5838 
5839 again:
5840 	memset(&sc->nr, 0, sizeof(sc->nr));
5841 
5842 	nr_reclaimed = sc->nr_reclaimed;
5843 	nr_scanned = sc->nr_scanned;
5844 
5845 	prepare_scan_control(pgdat, sc);
5846 
5847 	shrink_node_memcgs(pgdat, sc);
5848 
5849 	flush_reclaim_state(sc);
5850 
5851 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
5852 
5853 	/* Record the subtree's reclaim efficiency */
5854 	if (!sc->proactive)
5855 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
5856 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
5857 
5858 	if (nr_node_reclaimed)
5859 		reclaimable = true;
5860 
5861 	if (current_is_kswapd()) {
5862 		/*
5863 		 * If reclaim is isolating dirty pages under writeback,
5864 		 * it implies that the long-lived page allocation rate
5865 		 * is exceeding the page laundering rate. Either the
5866 		 * global limits are not being effective at throttling
5867 		 * processes due to the page distribution throughout
5868 		 * zones or there is heavy usage of a slow backing
5869 		 * device. The only option is to throttle from reclaim
5870 		 * context which is not ideal as there is no guarantee
5871 		 * the dirtying process is throttled in the same way
5872 		 * balance_dirty_pages() manages.
5873 		 *
5874 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
5875 		 * count the number of pages under pages flagged for
5876 		 * immediate reclaim and stall if any are encountered
5877 		 * in the nr_immediate check below.
5878 		 */
5879 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
5880 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
5881 
5882 		/* Allow kswapd to start writing pages during reclaim.*/
5883 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
5884 			set_bit(PGDAT_DIRTY, &pgdat->flags);
5885 
5886 		/*
5887 		 * If kswapd scans pages marked for immediate
5888 		 * reclaim and under writeback (nr_immediate), it
5889 		 * implies that pages are cycling through the LRU
5890 		 * faster than they are written so forcibly stall
5891 		 * until some pages complete writeback.
5892 		 */
5893 		if (sc->nr.immediate)
5894 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
5895 	}
5896 
5897 	/*
5898 	 * Tag a node/memcg as congested if all the dirty pages were marked
5899 	 * for writeback and immediate reclaim (counted in nr.congested).
5900 	 *
5901 	 * Legacy memcg will stall in page writeback so avoid forcibly
5902 	 * stalling in reclaim_throttle().
5903 	 */
5904 	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
5905 		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
5906 			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
5907 
5908 		if (current_is_kswapd())
5909 			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
5910 	}
5911 
5912 	/*
5913 	 * Stall direct reclaim for IO completions if the lruvec is
5914 	 * node is congested. Allow kswapd to continue until it
5915 	 * starts encountering unqueued dirty pages or cycling through
5916 	 * the LRU too quickly.
5917 	 */
5918 	if (!current_is_kswapd() && current_may_throttle() &&
5919 	    !sc->hibernation_mode &&
5920 	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
5921 	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
5922 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
5923 
5924 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
5925 		goto again;
5926 
5927 	/*
5928 	 * Kswapd gives up on balancing particular nodes after too
5929 	 * many failures to reclaim anything from them and goes to
5930 	 * sleep. On reclaim progress, reset the failure counter. A
5931 	 * successful direct reclaim run will revive a dormant kswapd.
5932 	 */
5933 	if (reclaimable)
5934 		pgdat->kswapd_failures = 0;
5935 }
5936 
5937 /*
5938  * Returns true if compaction should go ahead for a costly-order request, or
5939  * the allocation would already succeed without compaction. Return false if we
5940  * should reclaim first.
5941  */
5942 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
5943 {
5944 	unsigned long watermark;
5945 
5946 	/* Allocation can already succeed, nothing to do */
5947 	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
5948 			      sc->reclaim_idx, 0))
5949 		return true;
5950 
5951 	/* Compaction cannot yet proceed. Do reclaim. */
5952 	if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
5953 		return false;
5954 
5955 	/*
5956 	 * Compaction is already possible, but it takes time to run and there
5957 	 * are potentially other callers using the pages just freed. So proceed
5958 	 * with reclaim to make a buffer of free pages available to give
5959 	 * compaction a reasonable chance of completing and allocating the page.
5960 	 * Note that we won't actually reclaim the whole buffer in one attempt
5961 	 * as the target watermark in should_continue_reclaim() is lower. But if
5962 	 * we are already above the high+gap watermark, don't reclaim at all.
5963 	 */
5964 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
5965 
5966 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
5967 }
5968 
5969 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
5970 {
5971 	/*
5972 	 * If reclaim is making progress greater than 12% efficiency then
5973 	 * wake all the NOPROGRESS throttled tasks.
5974 	 */
5975 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
5976 		wait_queue_head_t *wqh;
5977 
5978 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
5979 		if (waitqueue_active(wqh))
5980 			wake_up(wqh);
5981 
5982 		return;
5983 	}
5984 
5985 	/*
5986 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
5987 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
5988 	 * under writeback and marked for immediate reclaim at the tail of the
5989 	 * LRU.
5990 	 */
5991 	if (current_is_kswapd() || cgroup_reclaim(sc))
5992 		return;
5993 
5994 	/* Throttle if making no progress at high prioities. */
5995 	if (sc->priority == 1 && !sc->nr_reclaimed)
5996 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
5997 }
5998 
5999 /*
6000  * This is the direct reclaim path, for page-allocating processes.  We only
6001  * try to reclaim pages from zones which will satisfy the caller's allocation
6002  * request.
6003  *
6004  * If a zone is deemed to be full of pinned pages then just give it a light
6005  * scan then give up on it.
6006  */
6007 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6008 {
6009 	struct zoneref *z;
6010 	struct zone *zone;
6011 	unsigned long nr_soft_reclaimed;
6012 	unsigned long nr_soft_scanned;
6013 	gfp_t orig_mask;
6014 	pg_data_t *last_pgdat = NULL;
6015 	pg_data_t *first_pgdat = NULL;
6016 
6017 	/*
6018 	 * If the number of buffer_heads in the machine exceeds the maximum
6019 	 * allowed level, force direct reclaim to scan the highmem zone as
6020 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6021 	 */
6022 	orig_mask = sc->gfp_mask;
6023 	if (buffer_heads_over_limit) {
6024 		sc->gfp_mask |= __GFP_HIGHMEM;
6025 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6026 	}
6027 
6028 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6029 					sc->reclaim_idx, sc->nodemask) {
6030 		/*
6031 		 * Take care memory controller reclaiming has small influence
6032 		 * to global LRU.
6033 		 */
6034 		if (!cgroup_reclaim(sc)) {
6035 			if (!cpuset_zone_allowed(zone,
6036 						 GFP_KERNEL | __GFP_HARDWALL))
6037 				continue;
6038 
6039 			/*
6040 			 * If we already have plenty of memory free for
6041 			 * compaction in this zone, don't free any more.
6042 			 * Even though compaction is invoked for any
6043 			 * non-zero order, only frequent costly order
6044 			 * reclamation is disruptive enough to become a
6045 			 * noticeable problem, like transparent huge
6046 			 * page allocations.
6047 			 */
6048 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6049 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6050 			    compaction_ready(zone, sc)) {
6051 				sc->compaction_ready = true;
6052 				continue;
6053 			}
6054 
6055 			/*
6056 			 * Shrink each node in the zonelist once. If the
6057 			 * zonelist is ordered by zone (not the default) then a
6058 			 * node may be shrunk multiple times but in that case
6059 			 * the user prefers lower zones being preserved.
6060 			 */
6061 			if (zone->zone_pgdat == last_pgdat)
6062 				continue;
6063 
6064 			/*
6065 			 * This steals pages from memory cgroups over softlimit
6066 			 * and returns the number of reclaimed pages and
6067 			 * scanned pages. This works for global memory pressure
6068 			 * and balancing, not for a memcg's limit.
6069 			 */
6070 			nr_soft_scanned = 0;
6071 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6072 						sc->order, sc->gfp_mask,
6073 						&nr_soft_scanned);
6074 			sc->nr_reclaimed += nr_soft_reclaimed;
6075 			sc->nr_scanned += nr_soft_scanned;
6076 			/* need some check for avoid more shrink_zone() */
6077 		}
6078 
6079 		if (!first_pgdat)
6080 			first_pgdat = zone->zone_pgdat;
6081 
6082 		/* See comment about same check for global reclaim above */
6083 		if (zone->zone_pgdat == last_pgdat)
6084 			continue;
6085 		last_pgdat = zone->zone_pgdat;
6086 		shrink_node(zone->zone_pgdat, sc);
6087 	}
6088 
6089 	if (first_pgdat)
6090 		consider_reclaim_throttle(first_pgdat, sc);
6091 
6092 	/*
6093 	 * Restore to original mask to avoid the impact on the caller if we
6094 	 * promoted it to __GFP_HIGHMEM.
6095 	 */
6096 	sc->gfp_mask = orig_mask;
6097 }
6098 
6099 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6100 {
6101 	struct lruvec *target_lruvec;
6102 	unsigned long refaults;
6103 
6104 	if (lru_gen_enabled())
6105 		return;
6106 
6107 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6108 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6109 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6110 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6111 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6112 }
6113 
6114 /*
6115  * This is the main entry point to direct page reclaim.
6116  *
6117  * If a full scan of the inactive list fails to free enough memory then we
6118  * are "out of memory" and something needs to be killed.
6119  *
6120  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6121  * high - the zone may be full of dirty or under-writeback pages, which this
6122  * caller can't do much about.  We kick the writeback threads and take explicit
6123  * naps in the hope that some of these pages can be written.  But if the
6124  * allocating task holds filesystem locks which prevent writeout this might not
6125  * work, and the allocation attempt will fail.
6126  *
6127  * returns:	0, if no pages reclaimed
6128  * 		else, the number of pages reclaimed
6129  */
6130 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6131 					  struct scan_control *sc)
6132 {
6133 	int initial_priority = sc->priority;
6134 	pg_data_t *last_pgdat;
6135 	struct zoneref *z;
6136 	struct zone *zone;
6137 retry:
6138 	delayacct_freepages_start();
6139 
6140 	if (!cgroup_reclaim(sc))
6141 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6142 
6143 	do {
6144 		if (!sc->proactive)
6145 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6146 					sc->priority);
6147 		sc->nr_scanned = 0;
6148 		shrink_zones(zonelist, sc);
6149 
6150 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6151 			break;
6152 
6153 		if (sc->compaction_ready)
6154 			break;
6155 
6156 		/*
6157 		 * If we're getting trouble reclaiming, start doing
6158 		 * writepage even in laptop mode.
6159 		 */
6160 		if (sc->priority < DEF_PRIORITY - 2)
6161 			sc->may_writepage = 1;
6162 	} while (--sc->priority >= 0);
6163 
6164 	last_pgdat = NULL;
6165 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6166 					sc->nodemask) {
6167 		if (zone->zone_pgdat == last_pgdat)
6168 			continue;
6169 		last_pgdat = zone->zone_pgdat;
6170 
6171 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6172 
6173 		if (cgroup_reclaim(sc)) {
6174 			struct lruvec *lruvec;
6175 
6176 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6177 						   zone->zone_pgdat);
6178 			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6179 		}
6180 	}
6181 
6182 	delayacct_freepages_end();
6183 
6184 	if (sc->nr_reclaimed)
6185 		return sc->nr_reclaimed;
6186 
6187 	/* Aborted reclaim to try compaction? don't OOM, then */
6188 	if (sc->compaction_ready)
6189 		return 1;
6190 
6191 	/*
6192 	 * We make inactive:active ratio decisions based on the node's
6193 	 * composition of memory, but a restrictive reclaim_idx or a
6194 	 * memory.low cgroup setting can exempt large amounts of
6195 	 * memory from reclaim. Neither of which are very common, so
6196 	 * instead of doing costly eligibility calculations of the
6197 	 * entire cgroup subtree up front, we assume the estimates are
6198 	 * good, and retry with forcible deactivation if that fails.
6199 	 */
6200 	if (sc->skipped_deactivate) {
6201 		sc->priority = initial_priority;
6202 		sc->force_deactivate = 1;
6203 		sc->skipped_deactivate = 0;
6204 		goto retry;
6205 	}
6206 
6207 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6208 	if (sc->memcg_low_skipped) {
6209 		sc->priority = initial_priority;
6210 		sc->force_deactivate = 0;
6211 		sc->memcg_low_reclaim = 1;
6212 		sc->memcg_low_skipped = 0;
6213 		goto retry;
6214 	}
6215 
6216 	return 0;
6217 }
6218 
6219 static bool allow_direct_reclaim(pg_data_t *pgdat)
6220 {
6221 	struct zone *zone;
6222 	unsigned long pfmemalloc_reserve = 0;
6223 	unsigned long free_pages = 0;
6224 	int i;
6225 	bool wmark_ok;
6226 
6227 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6228 		return true;
6229 
6230 	for (i = 0; i <= ZONE_NORMAL; i++) {
6231 		zone = &pgdat->node_zones[i];
6232 		if (!managed_zone(zone))
6233 			continue;
6234 
6235 		if (!zone_reclaimable_pages(zone))
6236 			continue;
6237 
6238 		pfmemalloc_reserve += min_wmark_pages(zone);
6239 		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6240 	}
6241 
6242 	/* If there are no reserves (unexpected config) then do not throttle */
6243 	if (!pfmemalloc_reserve)
6244 		return true;
6245 
6246 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6247 
6248 	/* kswapd must be awake if processes are being throttled */
6249 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6250 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6251 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6252 
6253 		wake_up_interruptible(&pgdat->kswapd_wait);
6254 	}
6255 
6256 	return wmark_ok;
6257 }
6258 
6259 /*
6260  * Throttle direct reclaimers if backing storage is backed by the network
6261  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6262  * depleted. kswapd will continue to make progress and wake the processes
6263  * when the low watermark is reached.
6264  *
6265  * Returns true if a fatal signal was delivered during throttling. If this
6266  * happens, the page allocator should not consider triggering the OOM killer.
6267  */
6268 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6269 					nodemask_t *nodemask)
6270 {
6271 	struct zoneref *z;
6272 	struct zone *zone;
6273 	pg_data_t *pgdat = NULL;
6274 
6275 	/*
6276 	 * Kernel threads should not be throttled as they may be indirectly
6277 	 * responsible for cleaning pages necessary for reclaim to make forward
6278 	 * progress. kjournald for example may enter direct reclaim while
6279 	 * committing a transaction where throttling it could forcing other
6280 	 * processes to block on log_wait_commit().
6281 	 */
6282 	if (current->flags & PF_KTHREAD)
6283 		goto out;
6284 
6285 	/*
6286 	 * If a fatal signal is pending, this process should not throttle.
6287 	 * It should return quickly so it can exit and free its memory
6288 	 */
6289 	if (fatal_signal_pending(current))
6290 		goto out;
6291 
6292 	/*
6293 	 * Check if the pfmemalloc reserves are ok by finding the first node
6294 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6295 	 * GFP_KERNEL will be required for allocating network buffers when
6296 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6297 	 *
6298 	 * Throttling is based on the first usable node and throttled processes
6299 	 * wait on a queue until kswapd makes progress and wakes them. There
6300 	 * is an affinity then between processes waking up and where reclaim
6301 	 * progress has been made assuming the process wakes on the same node.
6302 	 * More importantly, processes running on remote nodes will not compete
6303 	 * for remote pfmemalloc reserves and processes on different nodes
6304 	 * should make reasonable progress.
6305 	 */
6306 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6307 					gfp_zone(gfp_mask), nodemask) {
6308 		if (zone_idx(zone) > ZONE_NORMAL)
6309 			continue;
6310 
6311 		/* Throttle based on the first usable node */
6312 		pgdat = zone->zone_pgdat;
6313 		if (allow_direct_reclaim(pgdat))
6314 			goto out;
6315 		break;
6316 	}
6317 
6318 	/* If no zone was usable by the allocation flags then do not throttle */
6319 	if (!pgdat)
6320 		goto out;
6321 
6322 	/* Account for the throttling */
6323 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6324 
6325 	/*
6326 	 * If the caller cannot enter the filesystem, it's possible that it
6327 	 * is due to the caller holding an FS lock or performing a journal
6328 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6329 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6330 	 * blocked waiting on the same lock. Instead, throttle for up to a
6331 	 * second before continuing.
6332 	 */
6333 	if (!(gfp_mask & __GFP_FS))
6334 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6335 			allow_direct_reclaim(pgdat), HZ);
6336 	else
6337 		/* Throttle until kswapd wakes the process */
6338 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6339 			allow_direct_reclaim(pgdat));
6340 
6341 	if (fatal_signal_pending(current))
6342 		return true;
6343 
6344 out:
6345 	return false;
6346 }
6347 
6348 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6349 				gfp_t gfp_mask, nodemask_t *nodemask)
6350 {
6351 	unsigned long nr_reclaimed;
6352 	struct scan_control sc = {
6353 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6354 		.gfp_mask = current_gfp_context(gfp_mask),
6355 		.reclaim_idx = gfp_zone(gfp_mask),
6356 		.order = order,
6357 		.nodemask = nodemask,
6358 		.priority = DEF_PRIORITY,
6359 		.may_writepage = !laptop_mode,
6360 		.may_unmap = 1,
6361 		.may_swap = 1,
6362 	};
6363 
6364 	/*
6365 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6366 	 * Confirm they are large enough for max values.
6367 	 */
6368 	BUILD_BUG_ON(MAX_ORDER >= S8_MAX);
6369 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6370 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6371 
6372 	/*
6373 	 * Do not enter reclaim if fatal signal was delivered while throttled.
6374 	 * 1 is returned so that the page allocator does not OOM kill at this
6375 	 * point.
6376 	 */
6377 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6378 		return 1;
6379 
6380 	set_task_reclaim_state(current, &sc.reclaim_state);
6381 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6382 
6383 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6384 
6385 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6386 	set_task_reclaim_state(current, NULL);
6387 
6388 	return nr_reclaimed;
6389 }
6390 
6391 #ifdef CONFIG_MEMCG
6392 
6393 /* Only used by soft limit reclaim. Do not reuse for anything else. */
6394 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6395 						gfp_t gfp_mask, bool noswap,
6396 						pg_data_t *pgdat,
6397 						unsigned long *nr_scanned)
6398 {
6399 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6400 	struct scan_control sc = {
6401 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6402 		.target_mem_cgroup = memcg,
6403 		.may_writepage = !laptop_mode,
6404 		.may_unmap = 1,
6405 		.reclaim_idx = MAX_NR_ZONES - 1,
6406 		.may_swap = !noswap,
6407 	};
6408 
6409 	WARN_ON_ONCE(!current->reclaim_state);
6410 
6411 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6412 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6413 
6414 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6415 						      sc.gfp_mask);
6416 
6417 	/*
6418 	 * NOTE: Although we can get the priority field, using it
6419 	 * here is not a good idea, since it limits the pages we can scan.
6420 	 * if we don't reclaim here, the shrink_node from balance_pgdat
6421 	 * will pick up pages from other mem cgroup's as well. We hack
6422 	 * the priority and make it zero.
6423 	 */
6424 	shrink_lruvec(lruvec, &sc);
6425 
6426 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6427 
6428 	*nr_scanned = sc.nr_scanned;
6429 
6430 	return sc.nr_reclaimed;
6431 }
6432 
6433 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6434 					   unsigned long nr_pages,
6435 					   gfp_t gfp_mask,
6436 					   unsigned int reclaim_options)
6437 {
6438 	unsigned long nr_reclaimed;
6439 	unsigned int noreclaim_flag;
6440 	struct scan_control sc = {
6441 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6442 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6443 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6444 		.reclaim_idx = MAX_NR_ZONES - 1,
6445 		.target_mem_cgroup = memcg,
6446 		.priority = DEF_PRIORITY,
6447 		.may_writepage = !laptop_mode,
6448 		.may_unmap = 1,
6449 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6450 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6451 	};
6452 	/*
6453 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6454 	 * equal pressure on all the nodes. This is based on the assumption that
6455 	 * the reclaim does not bail out early.
6456 	 */
6457 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6458 
6459 	set_task_reclaim_state(current, &sc.reclaim_state);
6460 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6461 	noreclaim_flag = memalloc_noreclaim_save();
6462 
6463 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6464 
6465 	memalloc_noreclaim_restore(noreclaim_flag);
6466 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6467 	set_task_reclaim_state(current, NULL);
6468 
6469 	return nr_reclaimed;
6470 }
6471 #endif
6472 
6473 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6474 {
6475 	struct mem_cgroup *memcg;
6476 	struct lruvec *lruvec;
6477 
6478 	if (lru_gen_enabled()) {
6479 		lru_gen_age_node(pgdat, sc);
6480 		return;
6481 	}
6482 
6483 	if (!can_age_anon_pages(pgdat, sc))
6484 		return;
6485 
6486 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6487 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6488 		return;
6489 
6490 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6491 	do {
6492 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6493 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6494 				   sc, LRU_ACTIVE_ANON);
6495 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6496 	} while (memcg);
6497 }
6498 
6499 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6500 {
6501 	int i;
6502 	struct zone *zone;
6503 
6504 	/*
6505 	 * Check for watermark boosts top-down as the higher zones
6506 	 * are more likely to be boosted. Both watermarks and boosts
6507 	 * should not be checked at the same time as reclaim would
6508 	 * start prematurely when there is no boosting and a lower
6509 	 * zone is balanced.
6510 	 */
6511 	for (i = highest_zoneidx; i >= 0; i--) {
6512 		zone = pgdat->node_zones + i;
6513 		if (!managed_zone(zone))
6514 			continue;
6515 
6516 		if (zone->watermark_boost)
6517 			return true;
6518 	}
6519 
6520 	return false;
6521 }
6522 
6523 /*
6524  * Returns true if there is an eligible zone balanced for the request order
6525  * and highest_zoneidx
6526  */
6527 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6528 {
6529 	int i;
6530 	unsigned long mark = -1;
6531 	struct zone *zone;
6532 
6533 	/*
6534 	 * Check watermarks bottom-up as lower zones are more likely to
6535 	 * meet watermarks.
6536 	 */
6537 	for (i = 0; i <= highest_zoneidx; i++) {
6538 		zone = pgdat->node_zones + i;
6539 
6540 		if (!managed_zone(zone))
6541 			continue;
6542 
6543 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6544 			mark = wmark_pages(zone, WMARK_PROMO);
6545 		else
6546 			mark = high_wmark_pages(zone);
6547 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6548 			return true;
6549 	}
6550 
6551 	/*
6552 	 * If a node has no managed zone within highest_zoneidx, it does not
6553 	 * need balancing by definition. This can happen if a zone-restricted
6554 	 * allocation tries to wake a remote kswapd.
6555 	 */
6556 	if (mark == -1)
6557 		return true;
6558 
6559 	return false;
6560 }
6561 
6562 /* Clear pgdat state for congested, dirty or under writeback. */
6563 static void clear_pgdat_congested(pg_data_t *pgdat)
6564 {
6565 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6566 
6567 	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6568 	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6569 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
6570 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6571 }
6572 
6573 /*
6574  * Prepare kswapd for sleeping. This verifies that there are no processes
6575  * waiting in throttle_direct_reclaim() and that watermarks have been met.
6576  *
6577  * Returns true if kswapd is ready to sleep
6578  */
6579 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6580 				int highest_zoneidx)
6581 {
6582 	/*
6583 	 * The throttled processes are normally woken up in balance_pgdat() as
6584 	 * soon as allow_direct_reclaim() is true. But there is a potential
6585 	 * race between when kswapd checks the watermarks and a process gets
6586 	 * throttled. There is also a potential race if processes get
6587 	 * throttled, kswapd wakes, a large process exits thereby balancing the
6588 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6589 	 * the wake up checks. If kswapd is going to sleep, no process should
6590 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6591 	 * the wake up is premature, processes will wake kswapd and get
6592 	 * throttled again. The difference from wake ups in balance_pgdat() is
6593 	 * that here we are under prepare_to_wait().
6594 	 */
6595 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6596 		wake_up_all(&pgdat->pfmemalloc_wait);
6597 
6598 	/* Hopeless node, leave it to direct reclaim */
6599 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6600 		return true;
6601 
6602 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6603 		clear_pgdat_congested(pgdat);
6604 		return true;
6605 	}
6606 
6607 	return false;
6608 }
6609 
6610 /*
6611  * kswapd shrinks a node of pages that are at or below the highest usable
6612  * zone that is currently unbalanced.
6613  *
6614  * Returns true if kswapd scanned at least the requested number of pages to
6615  * reclaim or if the lack of progress was due to pages under writeback.
6616  * This is used to determine if the scanning priority needs to be raised.
6617  */
6618 static bool kswapd_shrink_node(pg_data_t *pgdat,
6619 			       struct scan_control *sc)
6620 {
6621 	struct zone *zone;
6622 	int z;
6623 
6624 	/* Reclaim a number of pages proportional to the number of zones */
6625 	sc->nr_to_reclaim = 0;
6626 	for (z = 0; z <= sc->reclaim_idx; z++) {
6627 		zone = pgdat->node_zones + z;
6628 		if (!managed_zone(zone))
6629 			continue;
6630 
6631 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6632 	}
6633 
6634 	/*
6635 	 * Historically care was taken to put equal pressure on all zones but
6636 	 * now pressure is applied based on node LRU order.
6637 	 */
6638 	shrink_node(pgdat, sc);
6639 
6640 	/*
6641 	 * Fragmentation may mean that the system cannot be rebalanced for
6642 	 * high-order allocations. If twice the allocation size has been
6643 	 * reclaimed then recheck watermarks only at order-0 to prevent
6644 	 * excessive reclaim. Assume that a process requested a high-order
6645 	 * can direct reclaim/compact.
6646 	 */
6647 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6648 		sc->order = 0;
6649 
6650 	return sc->nr_scanned >= sc->nr_to_reclaim;
6651 }
6652 
6653 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6654 static inline void
6655 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6656 {
6657 	int i;
6658 	struct zone *zone;
6659 
6660 	for (i = 0; i <= highest_zoneidx; i++) {
6661 		zone = pgdat->node_zones + i;
6662 
6663 		if (!managed_zone(zone))
6664 			continue;
6665 
6666 		if (active)
6667 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6668 		else
6669 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6670 	}
6671 }
6672 
6673 static inline void
6674 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6675 {
6676 	update_reclaim_active(pgdat, highest_zoneidx, true);
6677 }
6678 
6679 static inline void
6680 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6681 {
6682 	update_reclaim_active(pgdat, highest_zoneidx, false);
6683 }
6684 
6685 /*
6686  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6687  * that are eligible for use by the caller until at least one zone is
6688  * balanced.
6689  *
6690  * Returns the order kswapd finished reclaiming at.
6691  *
6692  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
6693  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6694  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6695  * or lower is eligible for reclaim until at least one usable zone is
6696  * balanced.
6697  */
6698 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6699 {
6700 	int i;
6701 	unsigned long nr_soft_reclaimed;
6702 	unsigned long nr_soft_scanned;
6703 	unsigned long pflags;
6704 	unsigned long nr_boost_reclaim;
6705 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6706 	bool boosted;
6707 	struct zone *zone;
6708 	struct scan_control sc = {
6709 		.gfp_mask = GFP_KERNEL,
6710 		.order = order,
6711 		.may_unmap = 1,
6712 	};
6713 
6714 	set_task_reclaim_state(current, &sc.reclaim_state);
6715 	psi_memstall_enter(&pflags);
6716 	__fs_reclaim_acquire(_THIS_IP_);
6717 
6718 	count_vm_event(PAGEOUTRUN);
6719 
6720 	/*
6721 	 * Account for the reclaim boost. Note that the zone boost is left in
6722 	 * place so that parallel allocations that are near the watermark will
6723 	 * stall or direct reclaim until kswapd is finished.
6724 	 */
6725 	nr_boost_reclaim = 0;
6726 	for (i = 0; i <= highest_zoneidx; i++) {
6727 		zone = pgdat->node_zones + i;
6728 		if (!managed_zone(zone))
6729 			continue;
6730 
6731 		nr_boost_reclaim += zone->watermark_boost;
6732 		zone_boosts[i] = zone->watermark_boost;
6733 	}
6734 	boosted = nr_boost_reclaim;
6735 
6736 restart:
6737 	set_reclaim_active(pgdat, highest_zoneidx);
6738 	sc.priority = DEF_PRIORITY;
6739 	do {
6740 		unsigned long nr_reclaimed = sc.nr_reclaimed;
6741 		bool raise_priority = true;
6742 		bool balanced;
6743 		bool ret;
6744 
6745 		sc.reclaim_idx = highest_zoneidx;
6746 
6747 		/*
6748 		 * If the number of buffer_heads exceeds the maximum allowed
6749 		 * then consider reclaiming from all zones. This has a dual
6750 		 * purpose -- on 64-bit systems it is expected that
6751 		 * buffer_heads are stripped during active rotation. On 32-bit
6752 		 * systems, highmem pages can pin lowmem memory and shrinking
6753 		 * buffers can relieve lowmem pressure. Reclaim may still not
6754 		 * go ahead if all eligible zones for the original allocation
6755 		 * request are balanced to avoid excessive reclaim from kswapd.
6756 		 */
6757 		if (buffer_heads_over_limit) {
6758 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
6759 				zone = pgdat->node_zones + i;
6760 				if (!managed_zone(zone))
6761 					continue;
6762 
6763 				sc.reclaim_idx = i;
6764 				break;
6765 			}
6766 		}
6767 
6768 		/*
6769 		 * If the pgdat is imbalanced then ignore boosting and preserve
6770 		 * the watermarks for a later time and restart. Note that the
6771 		 * zone watermarks will be still reset at the end of balancing
6772 		 * on the grounds that the normal reclaim should be enough to
6773 		 * re-evaluate if boosting is required when kswapd next wakes.
6774 		 */
6775 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
6776 		if (!balanced && nr_boost_reclaim) {
6777 			nr_boost_reclaim = 0;
6778 			goto restart;
6779 		}
6780 
6781 		/*
6782 		 * If boosting is not active then only reclaim if there are no
6783 		 * eligible zones. Note that sc.reclaim_idx is not used as
6784 		 * buffer_heads_over_limit may have adjusted it.
6785 		 */
6786 		if (!nr_boost_reclaim && balanced)
6787 			goto out;
6788 
6789 		/* Limit the priority of boosting to avoid reclaim writeback */
6790 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
6791 			raise_priority = false;
6792 
6793 		/*
6794 		 * Do not writeback or swap pages for boosted reclaim. The
6795 		 * intent is to relieve pressure not issue sub-optimal IO
6796 		 * from reclaim context. If no pages are reclaimed, the
6797 		 * reclaim will be aborted.
6798 		 */
6799 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
6800 		sc.may_swap = !nr_boost_reclaim;
6801 
6802 		/*
6803 		 * Do some background aging, to give pages a chance to be
6804 		 * referenced before reclaiming. All pages are rotated
6805 		 * regardless of classzone as this is about consistent aging.
6806 		 */
6807 		kswapd_age_node(pgdat, &sc);
6808 
6809 		/*
6810 		 * If we're getting trouble reclaiming, start doing writepage
6811 		 * even in laptop mode.
6812 		 */
6813 		if (sc.priority < DEF_PRIORITY - 2)
6814 			sc.may_writepage = 1;
6815 
6816 		/* Call soft limit reclaim before calling shrink_node. */
6817 		sc.nr_scanned = 0;
6818 		nr_soft_scanned = 0;
6819 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
6820 						sc.gfp_mask, &nr_soft_scanned);
6821 		sc.nr_reclaimed += nr_soft_reclaimed;
6822 
6823 		/*
6824 		 * There should be no need to raise the scanning priority if
6825 		 * enough pages are already being scanned that that high
6826 		 * watermark would be met at 100% efficiency.
6827 		 */
6828 		if (kswapd_shrink_node(pgdat, &sc))
6829 			raise_priority = false;
6830 
6831 		/*
6832 		 * If the low watermark is met there is no need for processes
6833 		 * to be throttled on pfmemalloc_wait as they should not be
6834 		 * able to safely make forward progress. Wake them
6835 		 */
6836 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
6837 				allow_direct_reclaim(pgdat))
6838 			wake_up_all(&pgdat->pfmemalloc_wait);
6839 
6840 		/* Check if kswapd should be suspending */
6841 		__fs_reclaim_release(_THIS_IP_);
6842 		ret = try_to_freeze();
6843 		__fs_reclaim_acquire(_THIS_IP_);
6844 		if (ret || kthread_should_stop())
6845 			break;
6846 
6847 		/*
6848 		 * Raise priority if scanning rate is too low or there was no
6849 		 * progress in reclaiming pages
6850 		 */
6851 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
6852 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
6853 
6854 		/*
6855 		 * If reclaim made no progress for a boost, stop reclaim as
6856 		 * IO cannot be queued and it could be an infinite loop in
6857 		 * extreme circumstances.
6858 		 */
6859 		if (nr_boost_reclaim && !nr_reclaimed)
6860 			break;
6861 
6862 		if (raise_priority || !nr_reclaimed)
6863 			sc.priority--;
6864 	} while (sc.priority >= 1);
6865 
6866 	if (!sc.nr_reclaimed)
6867 		pgdat->kswapd_failures++;
6868 
6869 out:
6870 	clear_reclaim_active(pgdat, highest_zoneidx);
6871 
6872 	/* If reclaim was boosted, account for the reclaim done in this pass */
6873 	if (boosted) {
6874 		unsigned long flags;
6875 
6876 		for (i = 0; i <= highest_zoneidx; i++) {
6877 			if (!zone_boosts[i])
6878 				continue;
6879 
6880 			/* Increments are under the zone lock */
6881 			zone = pgdat->node_zones + i;
6882 			spin_lock_irqsave(&zone->lock, flags);
6883 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
6884 			spin_unlock_irqrestore(&zone->lock, flags);
6885 		}
6886 
6887 		/*
6888 		 * As there is now likely space, wakeup kcompact to defragment
6889 		 * pageblocks.
6890 		 */
6891 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
6892 	}
6893 
6894 	snapshot_refaults(NULL, pgdat);
6895 	__fs_reclaim_release(_THIS_IP_);
6896 	psi_memstall_leave(&pflags);
6897 	set_task_reclaim_state(current, NULL);
6898 
6899 	/*
6900 	 * Return the order kswapd stopped reclaiming at as
6901 	 * prepare_kswapd_sleep() takes it into account. If another caller
6902 	 * entered the allocator slow path while kswapd was awake, order will
6903 	 * remain at the higher level.
6904 	 */
6905 	return sc.order;
6906 }
6907 
6908 /*
6909  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
6910  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
6911  * not a valid index then either kswapd runs for first time or kswapd couldn't
6912  * sleep after previous reclaim attempt (node is still unbalanced). In that
6913  * case return the zone index of the previous kswapd reclaim cycle.
6914  */
6915 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
6916 					   enum zone_type prev_highest_zoneidx)
6917 {
6918 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
6919 
6920 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
6921 }
6922 
6923 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
6924 				unsigned int highest_zoneidx)
6925 {
6926 	long remaining = 0;
6927 	DEFINE_WAIT(wait);
6928 
6929 	if (freezing(current) || kthread_should_stop())
6930 		return;
6931 
6932 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
6933 
6934 	/*
6935 	 * Try to sleep for a short interval. Note that kcompactd will only be
6936 	 * woken if it is possible to sleep for a short interval. This is
6937 	 * deliberate on the assumption that if reclaim cannot keep an
6938 	 * eligible zone balanced that it's also unlikely that compaction will
6939 	 * succeed.
6940 	 */
6941 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
6942 		/*
6943 		 * Compaction records what page blocks it recently failed to
6944 		 * isolate pages from and skips them in the future scanning.
6945 		 * When kswapd is going to sleep, it is reasonable to assume
6946 		 * that pages and compaction may succeed so reset the cache.
6947 		 */
6948 		reset_isolation_suitable(pgdat);
6949 
6950 		/*
6951 		 * We have freed the memory, now we should compact it to make
6952 		 * allocation of the requested order possible.
6953 		 */
6954 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
6955 
6956 		remaining = schedule_timeout(HZ/10);
6957 
6958 		/*
6959 		 * If woken prematurely then reset kswapd_highest_zoneidx and
6960 		 * order. The values will either be from a wakeup request or
6961 		 * the previous request that slept prematurely.
6962 		 */
6963 		if (remaining) {
6964 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
6965 					kswapd_highest_zoneidx(pgdat,
6966 							highest_zoneidx));
6967 
6968 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
6969 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
6970 		}
6971 
6972 		finish_wait(&pgdat->kswapd_wait, &wait);
6973 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
6974 	}
6975 
6976 	/*
6977 	 * After a short sleep, check if it was a premature sleep. If not, then
6978 	 * go fully to sleep until explicitly woken up.
6979 	 */
6980 	if (!remaining &&
6981 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
6982 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
6983 
6984 		/*
6985 		 * vmstat counters are not perfectly accurate and the estimated
6986 		 * value for counters such as NR_FREE_PAGES can deviate from the
6987 		 * true value by nr_online_cpus * threshold. To avoid the zone
6988 		 * watermarks being breached while under pressure, we reduce the
6989 		 * per-cpu vmstat threshold while kswapd is awake and restore
6990 		 * them before going back to sleep.
6991 		 */
6992 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
6993 
6994 		if (!kthread_should_stop())
6995 			schedule();
6996 
6997 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
6998 	} else {
6999 		if (remaining)
7000 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7001 		else
7002 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7003 	}
7004 	finish_wait(&pgdat->kswapd_wait, &wait);
7005 }
7006 
7007 /*
7008  * The background pageout daemon, started as a kernel thread
7009  * from the init process.
7010  *
7011  * This basically trickles out pages so that we have _some_
7012  * free memory available even if there is no other activity
7013  * that frees anything up. This is needed for things like routing
7014  * etc, where we otherwise might have all activity going on in
7015  * asynchronous contexts that cannot page things out.
7016  *
7017  * If there are applications that are active memory-allocators
7018  * (most normal use), this basically shouldn't matter.
7019  */
7020 static int kswapd(void *p)
7021 {
7022 	unsigned int alloc_order, reclaim_order;
7023 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7024 	pg_data_t *pgdat = (pg_data_t *)p;
7025 	struct task_struct *tsk = current;
7026 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7027 
7028 	if (!cpumask_empty(cpumask))
7029 		set_cpus_allowed_ptr(tsk, cpumask);
7030 
7031 	/*
7032 	 * Tell the memory management that we're a "memory allocator",
7033 	 * and that if we need more memory we should get access to it
7034 	 * regardless (see "__alloc_pages()"). "kswapd" should
7035 	 * never get caught in the normal page freeing logic.
7036 	 *
7037 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7038 	 * you need a small amount of memory in order to be able to
7039 	 * page out something else, and this flag essentially protects
7040 	 * us from recursively trying to free more memory as we're
7041 	 * trying to free the first piece of memory in the first place).
7042 	 */
7043 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7044 	set_freezable();
7045 
7046 	WRITE_ONCE(pgdat->kswapd_order, 0);
7047 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7048 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7049 	for ( ; ; ) {
7050 		bool ret;
7051 
7052 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7053 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7054 							highest_zoneidx);
7055 
7056 kswapd_try_sleep:
7057 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7058 					highest_zoneidx);
7059 
7060 		/* Read the new order and highest_zoneidx */
7061 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7062 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7063 							highest_zoneidx);
7064 		WRITE_ONCE(pgdat->kswapd_order, 0);
7065 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7066 
7067 		ret = try_to_freeze();
7068 		if (kthread_should_stop())
7069 			break;
7070 
7071 		/*
7072 		 * We can speed up thawing tasks if we don't call balance_pgdat
7073 		 * after returning from the refrigerator
7074 		 */
7075 		if (ret)
7076 			continue;
7077 
7078 		/*
7079 		 * Reclaim begins at the requested order but if a high-order
7080 		 * reclaim fails then kswapd falls back to reclaiming for
7081 		 * order-0. If that happens, kswapd will consider sleeping
7082 		 * for the order it finished reclaiming at (reclaim_order)
7083 		 * but kcompactd is woken to compact for the original
7084 		 * request (alloc_order).
7085 		 */
7086 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7087 						alloc_order);
7088 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7089 						highest_zoneidx);
7090 		if (reclaim_order < alloc_order)
7091 			goto kswapd_try_sleep;
7092 	}
7093 
7094 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7095 
7096 	return 0;
7097 }
7098 
7099 /*
7100  * A zone is low on free memory or too fragmented for high-order memory.  If
7101  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7102  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7103  * has failed or is not needed, still wake up kcompactd if only compaction is
7104  * needed.
7105  */
7106 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7107 		   enum zone_type highest_zoneidx)
7108 {
7109 	pg_data_t *pgdat;
7110 	enum zone_type curr_idx;
7111 
7112 	if (!managed_zone(zone))
7113 		return;
7114 
7115 	if (!cpuset_zone_allowed(zone, gfp_flags))
7116 		return;
7117 
7118 	pgdat = zone->zone_pgdat;
7119 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7120 
7121 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7122 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7123 
7124 	if (READ_ONCE(pgdat->kswapd_order) < order)
7125 		WRITE_ONCE(pgdat->kswapd_order, order);
7126 
7127 	if (!waitqueue_active(&pgdat->kswapd_wait))
7128 		return;
7129 
7130 	/* Hopeless node, leave it to direct reclaim if possible */
7131 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7132 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7133 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7134 		/*
7135 		 * There may be plenty of free memory available, but it's too
7136 		 * fragmented for high-order allocations.  Wake up kcompactd
7137 		 * and rely on compaction_suitable() to determine if it's
7138 		 * needed.  If it fails, it will defer subsequent attempts to
7139 		 * ratelimit its work.
7140 		 */
7141 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7142 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7143 		return;
7144 	}
7145 
7146 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7147 				      gfp_flags);
7148 	wake_up_interruptible(&pgdat->kswapd_wait);
7149 }
7150 
7151 #ifdef CONFIG_HIBERNATION
7152 /*
7153  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7154  * freed pages.
7155  *
7156  * Rather than trying to age LRUs the aim is to preserve the overall
7157  * LRU order by reclaiming preferentially
7158  * inactive > active > active referenced > active mapped
7159  */
7160 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7161 {
7162 	struct scan_control sc = {
7163 		.nr_to_reclaim = nr_to_reclaim,
7164 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7165 		.reclaim_idx = MAX_NR_ZONES - 1,
7166 		.priority = DEF_PRIORITY,
7167 		.may_writepage = 1,
7168 		.may_unmap = 1,
7169 		.may_swap = 1,
7170 		.hibernation_mode = 1,
7171 	};
7172 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7173 	unsigned long nr_reclaimed;
7174 	unsigned int noreclaim_flag;
7175 
7176 	fs_reclaim_acquire(sc.gfp_mask);
7177 	noreclaim_flag = memalloc_noreclaim_save();
7178 	set_task_reclaim_state(current, &sc.reclaim_state);
7179 
7180 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7181 
7182 	set_task_reclaim_state(current, NULL);
7183 	memalloc_noreclaim_restore(noreclaim_flag);
7184 	fs_reclaim_release(sc.gfp_mask);
7185 
7186 	return nr_reclaimed;
7187 }
7188 #endif /* CONFIG_HIBERNATION */
7189 
7190 /*
7191  * This kswapd start function will be called by init and node-hot-add.
7192  */
7193 void __meminit kswapd_run(int nid)
7194 {
7195 	pg_data_t *pgdat = NODE_DATA(nid);
7196 
7197 	pgdat_kswapd_lock(pgdat);
7198 	if (!pgdat->kswapd) {
7199 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7200 		if (IS_ERR(pgdat->kswapd)) {
7201 			/* failure at boot is fatal */
7202 			pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7203 				   nid, PTR_ERR(pgdat->kswapd));
7204 			BUG_ON(system_state < SYSTEM_RUNNING);
7205 			pgdat->kswapd = NULL;
7206 		}
7207 	}
7208 	pgdat_kswapd_unlock(pgdat);
7209 }
7210 
7211 /*
7212  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7213  * be holding mem_hotplug_begin/done().
7214  */
7215 void __meminit kswapd_stop(int nid)
7216 {
7217 	pg_data_t *pgdat = NODE_DATA(nid);
7218 	struct task_struct *kswapd;
7219 
7220 	pgdat_kswapd_lock(pgdat);
7221 	kswapd = pgdat->kswapd;
7222 	if (kswapd) {
7223 		kthread_stop(kswapd);
7224 		pgdat->kswapd = NULL;
7225 	}
7226 	pgdat_kswapd_unlock(pgdat);
7227 }
7228 
7229 static int __init kswapd_init(void)
7230 {
7231 	int nid;
7232 
7233 	swap_setup();
7234 	for_each_node_state(nid, N_MEMORY)
7235  		kswapd_run(nid);
7236 	return 0;
7237 }
7238 
7239 module_init(kswapd_init)
7240 
7241 #ifdef CONFIG_NUMA
7242 /*
7243  * Node reclaim mode
7244  *
7245  * If non-zero call node_reclaim when the number of free pages falls below
7246  * the watermarks.
7247  */
7248 int node_reclaim_mode __read_mostly;
7249 
7250 /*
7251  * Priority for NODE_RECLAIM. This determines the fraction of pages
7252  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7253  * a zone.
7254  */
7255 #define NODE_RECLAIM_PRIORITY 4
7256 
7257 /*
7258  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7259  * occur.
7260  */
7261 int sysctl_min_unmapped_ratio = 1;
7262 
7263 /*
7264  * If the number of slab pages in a zone grows beyond this percentage then
7265  * slab reclaim needs to occur.
7266  */
7267 int sysctl_min_slab_ratio = 5;
7268 
7269 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7270 {
7271 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7272 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7273 		node_page_state(pgdat, NR_ACTIVE_FILE);
7274 
7275 	/*
7276 	 * It's possible for there to be more file mapped pages than
7277 	 * accounted for by the pages on the file LRU lists because
7278 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7279 	 */
7280 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7281 }
7282 
7283 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7284 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7285 {
7286 	unsigned long nr_pagecache_reclaimable;
7287 	unsigned long delta = 0;
7288 
7289 	/*
7290 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7291 	 * potentially reclaimable. Otherwise, we have to worry about
7292 	 * pages like swapcache and node_unmapped_file_pages() provides
7293 	 * a better estimate
7294 	 */
7295 	if (node_reclaim_mode & RECLAIM_UNMAP)
7296 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7297 	else
7298 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7299 
7300 	/* If we can't clean pages, remove dirty pages from consideration */
7301 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7302 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7303 
7304 	/* Watch for any possible underflows due to delta */
7305 	if (unlikely(delta > nr_pagecache_reclaimable))
7306 		delta = nr_pagecache_reclaimable;
7307 
7308 	return nr_pagecache_reclaimable - delta;
7309 }
7310 
7311 /*
7312  * Try to free up some pages from this node through reclaim.
7313  */
7314 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7315 {
7316 	/* Minimum pages needed in order to stay on node */
7317 	const unsigned long nr_pages = 1 << order;
7318 	struct task_struct *p = current;
7319 	unsigned int noreclaim_flag;
7320 	struct scan_control sc = {
7321 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7322 		.gfp_mask = current_gfp_context(gfp_mask),
7323 		.order = order,
7324 		.priority = NODE_RECLAIM_PRIORITY,
7325 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7326 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7327 		.may_swap = 1,
7328 		.reclaim_idx = gfp_zone(gfp_mask),
7329 	};
7330 	unsigned long pflags;
7331 
7332 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7333 					   sc.gfp_mask);
7334 
7335 	cond_resched();
7336 	psi_memstall_enter(&pflags);
7337 	delayacct_freepages_start();
7338 	fs_reclaim_acquire(sc.gfp_mask);
7339 	/*
7340 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7341 	 */
7342 	noreclaim_flag = memalloc_noreclaim_save();
7343 	set_task_reclaim_state(p, &sc.reclaim_state);
7344 
7345 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7346 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7347 		/*
7348 		 * Free memory by calling shrink node with increasing
7349 		 * priorities until we have enough memory freed.
7350 		 */
7351 		do {
7352 			shrink_node(pgdat, &sc);
7353 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7354 	}
7355 
7356 	set_task_reclaim_state(p, NULL);
7357 	memalloc_noreclaim_restore(noreclaim_flag);
7358 	fs_reclaim_release(sc.gfp_mask);
7359 	psi_memstall_leave(&pflags);
7360 	delayacct_freepages_end();
7361 
7362 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7363 
7364 	return sc.nr_reclaimed >= nr_pages;
7365 }
7366 
7367 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7368 {
7369 	int ret;
7370 
7371 	/*
7372 	 * Node reclaim reclaims unmapped file backed pages and
7373 	 * slab pages if we are over the defined limits.
7374 	 *
7375 	 * A small portion of unmapped file backed pages is needed for
7376 	 * file I/O otherwise pages read by file I/O will be immediately
7377 	 * thrown out if the node is overallocated. So we do not reclaim
7378 	 * if less than a specified percentage of the node is used by
7379 	 * unmapped file backed pages.
7380 	 */
7381 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7382 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7383 	    pgdat->min_slab_pages)
7384 		return NODE_RECLAIM_FULL;
7385 
7386 	/*
7387 	 * Do not scan if the allocation should not be delayed.
7388 	 */
7389 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7390 		return NODE_RECLAIM_NOSCAN;
7391 
7392 	/*
7393 	 * Only run node reclaim on the local node or on nodes that do not
7394 	 * have associated processors. This will favor the local processor
7395 	 * over remote processors and spread off node memory allocations
7396 	 * as wide as possible.
7397 	 */
7398 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7399 		return NODE_RECLAIM_NOSCAN;
7400 
7401 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7402 		return NODE_RECLAIM_NOSCAN;
7403 
7404 	ret = __node_reclaim(pgdat, gfp_mask, order);
7405 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7406 
7407 	if (!ret)
7408 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7409 
7410 	return ret;
7411 }
7412 #endif
7413 
7414 /**
7415  * check_move_unevictable_folios - Move evictable folios to appropriate zone
7416  * lru list
7417  * @fbatch: Batch of lru folios to check.
7418  *
7419  * Checks folios for evictability, if an evictable folio is in the unevictable
7420  * lru list, moves it to the appropriate evictable lru list. This function
7421  * should be only used for lru folios.
7422  */
7423 void check_move_unevictable_folios(struct folio_batch *fbatch)
7424 {
7425 	struct lruvec *lruvec = NULL;
7426 	int pgscanned = 0;
7427 	int pgrescued = 0;
7428 	int i;
7429 
7430 	for (i = 0; i < fbatch->nr; i++) {
7431 		struct folio *folio = fbatch->folios[i];
7432 		int nr_pages = folio_nr_pages(folio);
7433 
7434 		pgscanned += nr_pages;
7435 
7436 		/* block memcg migration while the folio moves between lrus */
7437 		if (!folio_test_clear_lru(folio))
7438 			continue;
7439 
7440 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7441 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7442 			lruvec_del_folio(lruvec, folio);
7443 			folio_clear_unevictable(folio);
7444 			lruvec_add_folio(lruvec, folio);
7445 			pgrescued += nr_pages;
7446 		}
7447 		folio_set_lru(folio);
7448 	}
7449 
7450 	if (lruvec) {
7451 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7452 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7453 		unlock_page_lruvec_irq(lruvec);
7454 	} else if (pgscanned) {
7455 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7456 	}
7457 }
7458 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7459