xref: /linux/mm/vmscan.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h>	/* for try_to_release_page(),
26 					buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 
39 #include <asm/tlbflush.h>
40 #include <asm/div64.h>
41 
42 #include <linux/swapops.h>
43 
44 #include "internal.h"
45 
46 struct scan_control {
47 	/* Incremented by the number of inactive pages that were scanned */
48 	unsigned long nr_scanned;
49 
50 	/* This context's GFP mask */
51 	gfp_t gfp_mask;
52 
53 	int may_writepage;
54 
55 	/* Can pages be swapped as part of reclaim? */
56 	int may_swap;
57 
58 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
59 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
60 	 * In this context, it doesn't matter that we scan the
61 	 * whole list at once. */
62 	int swap_cluster_max;
63 
64 	int swappiness;
65 };
66 
67 /*
68  * The list of shrinker callbacks used by to apply pressure to
69  * ageable caches.
70  */
71 struct shrinker {
72 	shrinker_t		shrinker;
73 	struct list_head	list;
74 	int			seeks;	/* seeks to recreate an obj */
75 	long			nr;	/* objs pending delete */
76 };
77 
78 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
79 
80 #ifdef ARCH_HAS_PREFETCH
81 #define prefetch_prev_lru_page(_page, _base, _field)			\
82 	do {								\
83 		if ((_page)->lru.prev != _base) {			\
84 			struct page *prev;				\
85 									\
86 			prev = lru_to_page(&(_page->lru));		\
87 			prefetch(&prev->_field);			\
88 		}							\
89 	} while (0)
90 #else
91 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
92 #endif
93 
94 #ifdef ARCH_HAS_PREFETCHW
95 #define prefetchw_prev_lru_page(_page, _base, _field)			\
96 	do {								\
97 		if ((_page)->lru.prev != _base) {			\
98 			struct page *prev;				\
99 									\
100 			prev = lru_to_page(&(_page->lru));		\
101 			prefetchw(&prev->_field);			\
102 		}							\
103 	} while (0)
104 #else
105 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
106 #endif
107 
108 /*
109  * From 0 .. 100.  Higher means more swappy.
110  */
111 int vm_swappiness = 60;
112 long vm_total_pages;	/* The total number of pages which the VM controls */
113 
114 static LIST_HEAD(shrinker_list);
115 static DECLARE_RWSEM(shrinker_rwsem);
116 
117 /*
118  * Add a shrinker callback to be called from the vm
119  */
120 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
121 {
122         struct shrinker *shrinker;
123 
124         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
125         if (shrinker) {
126 	        shrinker->shrinker = theshrinker;
127 	        shrinker->seeks = seeks;
128 	        shrinker->nr = 0;
129 	        down_write(&shrinker_rwsem);
130 	        list_add_tail(&shrinker->list, &shrinker_list);
131 	        up_write(&shrinker_rwsem);
132 	}
133 	return shrinker;
134 }
135 EXPORT_SYMBOL(set_shrinker);
136 
137 /*
138  * Remove one
139  */
140 void remove_shrinker(struct shrinker *shrinker)
141 {
142 	down_write(&shrinker_rwsem);
143 	list_del(&shrinker->list);
144 	up_write(&shrinker_rwsem);
145 	kfree(shrinker);
146 }
147 EXPORT_SYMBOL(remove_shrinker);
148 
149 #define SHRINK_BATCH 128
150 /*
151  * Call the shrink functions to age shrinkable caches
152  *
153  * Here we assume it costs one seek to replace a lru page and that it also
154  * takes a seek to recreate a cache object.  With this in mind we age equal
155  * percentages of the lru and ageable caches.  This should balance the seeks
156  * generated by these structures.
157  *
158  * If the vm encounted mapped pages on the LRU it increase the pressure on
159  * slab to avoid swapping.
160  *
161  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
162  *
163  * `lru_pages' represents the number of on-LRU pages in all the zones which
164  * are eligible for the caller's allocation attempt.  It is used for balancing
165  * slab reclaim versus page reclaim.
166  *
167  * Returns the number of slab objects which we shrunk.
168  */
169 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
170 			unsigned long lru_pages)
171 {
172 	struct shrinker *shrinker;
173 	unsigned long ret = 0;
174 
175 	if (scanned == 0)
176 		scanned = SWAP_CLUSTER_MAX;
177 
178 	if (!down_read_trylock(&shrinker_rwsem))
179 		return 1;	/* Assume we'll be able to shrink next time */
180 
181 	list_for_each_entry(shrinker, &shrinker_list, list) {
182 		unsigned long long delta;
183 		unsigned long total_scan;
184 		unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
185 
186 		delta = (4 * scanned) / shrinker->seeks;
187 		delta *= max_pass;
188 		do_div(delta, lru_pages + 1);
189 		shrinker->nr += delta;
190 		if (shrinker->nr < 0) {
191 			printk(KERN_ERR "%s: nr=%ld\n",
192 					__FUNCTION__, shrinker->nr);
193 			shrinker->nr = max_pass;
194 		}
195 
196 		/*
197 		 * Avoid risking looping forever due to too large nr value:
198 		 * never try to free more than twice the estimate number of
199 		 * freeable entries.
200 		 */
201 		if (shrinker->nr > max_pass * 2)
202 			shrinker->nr = max_pass * 2;
203 
204 		total_scan = shrinker->nr;
205 		shrinker->nr = 0;
206 
207 		while (total_scan >= SHRINK_BATCH) {
208 			long this_scan = SHRINK_BATCH;
209 			int shrink_ret;
210 			int nr_before;
211 
212 			nr_before = (*shrinker->shrinker)(0, gfp_mask);
213 			shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
214 			if (shrink_ret == -1)
215 				break;
216 			if (shrink_ret < nr_before)
217 				ret += nr_before - shrink_ret;
218 			count_vm_events(SLABS_SCANNED, this_scan);
219 			total_scan -= this_scan;
220 
221 			cond_resched();
222 		}
223 
224 		shrinker->nr += total_scan;
225 	}
226 	up_read(&shrinker_rwsem);
227 	return ret;
228 }
229 
230 /* Called without lock on whether page is mapped, so answer is unstable */
231 static inline int page_mapping_inuse(struct page *page)
232 {
233 	struct address_space *mapping;
234 
235 	/* Page is in somebody's page tables. */
236 	if (page_mapped(page))
237 		return 1;
238 
239 	/* Be more reluctant to reclaim swapcache than pagecache */
240 	if (PageSwapCache(page))
241 		return 1;
242 
243 	mapping = page_mapping(page);
244 	if (!mapping)
245 		return 0;
246 
247 	/* File is mmap'd by somebody? */
248 	return mapping_mapped(mapping);
249 }
250 
251 static inline int is_page_cache_freeable(struct page *page)
252 {
253 	return page_count(page) - !!PagePrivate(page) == 2;
254 }
255 
256 static int may_write_to_queue(struct backing_dev_info *bdi)
257 {
258 	if (current->flags & PF_SWAPWRITE)
259 		return 1;
260 	if (!bdi_write_congested(bdi))
261 		return 1;
262 	if (bdi == current->backing_dev_info)
263 		return 1;
264 	return 0;
265 }
266 
267 /*
268  * We detected a synchronous write error writing a page out.  Probably
269  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
270  * fsync(), msync() or close().
271  *
272  * The tricky part is that after writepage we cannot touch the mapping: nothing
273  * prevents it from being freed up.  But we have a ref on the page and once
274  * that page is locked, the mapping is pinned.
275  *
276  * We're allowed to run sleeping lock_page() here because we know the caller has
277  * __GFP_FS.
278  */
279 static void handle_write_error(struct address_space *mapping,
280 				struct page *page, int error)
281 {
282 	lock_page(page);
283 	if (page_mapping(page) == mapping) {
284 		if (error == -ENOSPC)
285 			set_bit(AS_ENOSPC, &mapping->flags);
286 		else
287 			set_bit(AS_EIO, &mapping->flags);
288 	}
289 	unlock_page(page);
290 }
291 
292 /* possible outcome of pageout() */
293 typedef enum {
294 	/* failed to write page out, page is locked */
295 	PAGE_KEEP,
296 	/* move page to the active list, page is locked */
297 	PAGE_ACTIVATE,
298 	/* page has been sent to the disk successfully, page is unlocked */
299 	PAGE_SUCCESS,
300 	/* page is clean and locked */
301 	PAGE_CLEAN,
302 } pageout_t;
303 
304 /*
305  * pageout is called by shrink_page_list() for each dirty page.
306  * Calls ->writepage().
307  */
308 static pageout_t pageout(struct page *page, struct address_space *mapping)
309 {
310 	/*
311 	 * If the page is dirty, only perform writeback if that write
312 	 * will be non-blocking.  To prevent this allocation from being
313 	 * stalled by pagecache activity.  But note that there may be
314 	 * stalls if we need to run get_block().  We could test
315 	 * PagePrivate for that.
316 	 *
317 	 * If this process is currently in generic_file_write() against
318 	 * this page's queue, we can perform writeback even if that
319 	 * will block.
320 	 *
321 	 * If the page is swapcache, write it back even if that would
322 	 * block, for some throttling. This happens by accident, because
323 	 * swap_backing_dev_info is bust: it doesn't reflect the
324 	 * congestion state of the swapdevs.  Easy to fix, if needed.
325 	 * See swapfile.c:page_queue_congested().
326 	 */
327 	if (!is_page_cache_freeable(page))
328 		return PAGE_KEEP;
329 	if (!mapping) {
330 		/*
331 		 * Some data journaling orphaned pages can have
332 		 * page->mapping == NULL while being dirty with clean buffers.
333 		 */
334 		if (PagePrivate(page)) {
335 			if (try_to_free_buffers(page)) {
336 				ClearPageDirty(page);
337 				printk("%s: orphaned page\n", __FUNCTION__);
338 				return PAGE_CLEAN;
339 			}
340 		}
341 		return PAGE_KEEP;
342 	}
343 	if (mapping->a_ops->writepage == NULL)
344 		return PAGE_ACTIVATE;
345 	if (!may_write_to_queue(mapping->backing_dev_info))
346 		return PAGE_KEEP;
347 
348 	if (clear_page_dirty_for_io(page)) {
349 		int res;
350 		struct writeback_control wbc = {
351 			.sync_mode = WB_SYNC_NONE,
352 			.nr_to_write = SWAP_CLUSTER_MAX,
353 			.range_start = 0,
354 			.range_end = LLONG_MAX,
355 			.nonblocking = 1,
356 			.for_reclaim = 1,
357 		};
358 
359 		SetPageReclaim(page);
360 		res = mapping->a_ops->writepage(page, &wbc);
361 		if (res < 0)
362 			handle_write_error(mapping, page, res);
363 		if (res == AOP_WRITEPAGE_ACTIVATE) {
364 			ClearPageReclaim(page);
365 			return PAGE_ACTIVATE;
366 		}
367 		if (!PageWriteback(page)) {
368 			/* synchronous write or broken a_ops? */
369 			ClearPageReclaim(page);
370 		}
371 
372 		return PAGE_SUCCESS;
373 	}
374 
375 	return PAGE_CLEAN;
376 }
377 
378 int remove_mapping(struct address_space *mapping, struct page *page)
379 {
380 	if (!mapping)
381 		return 0;		/* truncate got there first */
382 
383 	write_lock_irq(&mapping->tree_lock);
384 
385 	/*
386 	 * The non-racy check for busy page.  It is critical to check
387 	 * PageDirty _after_ making sure that the page is freeable and
388 	 * not in use by anybody. 	(pagecache + us == 2)
389 	 */
390 	if (unlikely(page_count(page) != 2))
391 		goto cannot_free;
392 	smp_rmb();
393 	if (unlikely(PageDirty(page)))
394 		goto cannot_free;
395 
396 	if (PageSwapCache(page)) {
397 		swp_entry_t swap = { .val = page_private(page) };
398 		__delete_from_swap_cache(page);
399 		write_unlock_irq(&mapping->tree_lock);
400 		swap_free(swap);
401 		__put_page(page);	/* The pagecache ref */
402 		return 1;
403 	}
404 
405 	__remove_from_page_cache(page);
406 	write_unlock_irq(&mapping->tree_lock);
407 	__put_page(page);
408 	return 1;
409 
410 cannot_free:
411 	write_unlock_irq(&mapping->tree_lock);
412 	return 0;
413 }
414 
415 /*
416  * shrink_page_list() returns the number of reclaimed pages
417  */
418 static unsigned long shrink_page_list(struct list_head *page_list,
419 					struct scan_control *sc)
420 {
421 	LIST_HEAD(ret_pages);
422 	struct pagevec freed_pvec;
423 	int pgactivate = 0;
424 	unsigned long nr_reclaimed = 0;
425 
426 	cond_resched();
427 
428 	pagevec_init(&freed_pvec, 1);
429 	while (!list_empty(page_list)) {
430 		struct address_space *mapping;
431 		struct page *page;
432 		int may_enter_fs;
433 		int referenced;
434 
435 		cond_resched();
436 
437 		page = lru_to_page(page_list);
438 		list_del(&page->lru);
439 
440 		if (TestSetPageLocked(page))
441 			goto keep;
442 
443 		BUG_ON(PageActive(page));
444 
445 		sc->nr_scanned++;
446 
447 		if (!sc->may_swap && page_mapped(page))
448 			goto keep_locked;
449 
450 		/* Double the slab pressure for mapped and swapcache pages */
451 		if (page_mapped(page) || PageSwapCache(page))
452 			sc->nr_scanned++;
453 
454 		if (PageWriteback(page))
455 			goto keep_locked;
456 
457 		referenced = page_referenced(page, 1);
458 		/* In active use or really unfreeable?  Activate it. */
459 		if (referenced && page_mapping_inuse(page))
460 			goto activate_locked;
461 
462 #ifdef CONFIG_SWAP
463 		/*
464 		 * Anonymous process memory has backing store?
465 		 * Try to allocate it some swap space here.
466 		 */
467 		if (PageAnon(page) && !PageSwapCache(page))
468 			if (!add_to_swap(page, GFP_ATOMIC))
469 				goto activate_locked;
470 #endif /* CONFIG_SWAP */
471 
472 		mapping = page_mapping(page);
473 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
474 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
475 
476 		/*
477 		 * The page is mapped into the page tables of one or more
478 		 * processes. Try to unmap it here.
479 		 */
480 		if (page_mapped(page) && mapping) {
481 			switch (try_to_unmap(page, 0)) {
482 			case SWAP_FAIL:
483 				goto activate_locked;
484 			case SWAP_AGAIN:
485 				goto keep_locked;
486 			case SWAP_SUCCESS:
487 				; /* try to free the page below */
488 			}
489 		}
490 
491 		if (PageDirty(page)) {
492 			if (referenced)
493 				goto keep_locked;
494 			if (!may_enter_fs)
495 				goto keep_locked;
496 			if (!sc->may_writepage)
497 				goto keep_locked;
498 
499 			/* Page is dirty, try to write it out here */
500 			switch(pageout(page, mapping)) {
501 			case PAGE_KEEP:
502 				goto keep_locked;
503 			case PAGE_ACTIVATE:
504 				goto activate_locked;
505 			case PAGE_SUCCESS:
506 				if (PageWriteback(page) || PageDirty(page))
507 					goto keep;
508 				/*
509 				 * A synchronous write - probably a ramdisk.  Go
510 				 * ahead and try to reclaim the page.
511 				 */
512 				if (TestSetPageLocked(page))
513 					goto keep;
514 				if (PageDirty(page) || PageWriteback(page))
515 					goto keep_locked;
516 				mapping = page_mapping(page);
517 			case PAGE_CLEAN:
518 				; /* try to free the page below */
519 			}
520 		}
521 
522 		/*
523 		 * If the page has buffers, try to free the buffer mappings
524 		 * associated with this page. If we succeed we try to free
525 		 * the page as well.
526 		 *
527 		 * We do this even if the page is PageDirty().
528 		 * try_to_release_page() does not perform I/O, but it is
529 		 * possible for a page to have PageDirty set, but it is actually
530 		 * clean (all its buffers are clean).  This happens if the
531 		 * buffers were written out directly, with submit_bh(). ext3
532 		 * will do this, as well as the blockdev mapping.
533 		 * try_to_release_page() will discover that cleanness and will
534 		 * drop the buffers and mark the page clean - it can be freed.
535 		 *
536 		 * Rarely, pages can have buffers and no ->mapping.  These are
537 		 * the pages which were not successfully invalidated in
538 		 * truncate_complete_page().  We try to drop those buffers here
539 		 * and if that worked, and the page is no longer mapped into
540 		 * process address space (page_count == 1) it can be freed.
541 		 * Otherwise, leave the page on the LRU so it is swappable.
542 		 */
543 		if (PagePrivate(page)) {
544 			if (!try_to_release_page(page, sc->gfp_mask))
545 				goto activate_locked;
546 			if (!mapping && page_count(page) == 1)
547 				goto free_it;
548 		}
549 
550 		if (!remove_mapping(mapping, page))
551 			goto keep_locked;
552 
553 free_it:
554 		unlock_page(page);
555 		nr_reclaimed++;
556 		if (!pagevec_add(&freed_pvec, page))
557 			__pagevec_release_nonlru(&freed_pvec);
558 		continue;
559 
560 activate_locked:
561 		SetPageActive(page);
562 		pgactivate++;
563 keep_locked:
564 		unlock_page(page);
565 keep:
566 		list_add(&page->lru, &ret_pages);
567 		BUG_ON(PageLRU(page));
568 	}
569 	list_splice(&ret_pages, page_list);
570 	if (pagevec_count(&freed_pvec))
571 		__pagevec_release_nonlru(&freed_pvec);
572 	count_vm_events(PGACTIVATE, pgactivate);
573 	return nr_reclaimed;
574 }
575 
576 /*
577  * zone->lru_lock is heavily contended.  Some of the functions that
578  * shrink the lists perform better by taking out a batch of pages
579  * and working on them outside the LRU lock.
580  *
581  * For pagecache intensive workloads, this function is the hottest
582  * spot in the kernel (apart from copy_*_user functions).
583  *
584  * Appropriate locks must be held before calling this function.
585  *
586  * @nr_to_scan:	The number of pages to look through on the list.
587  * @src:	The LRU list to pull pages off.
588  * @dst:	The temp list to put pages on to.
589  * @scanned:	The number of pages that were scanned.
590  *
591  * returns how many pages were moved onto *@dst.
592  */
593 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
594 		struct list_head *src, struct list_head *dst,
595 		unsigned long *scanned)
596 {
597 	unsigned long nr_taken = 0;
598 	struct page *page;
599 	unsigned long scan;
600 
601 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
602 		struct list_head *target;
603 		page = lru_to_page(src);
604 		prefetchw_prev_lru_page(page, src, flags);
605 
606 		BUG_ON(!PageLRU(page));
607 
608 		list_del(&page->lru);
609 		target = src;
610 		if (likely(get_page_unless_zero(page))) {
611 			/*
612 			 * Be careful not to clear PageLRU until after we're
613 			 * sure the page is not being freed elsewhere -- the
614 			 * page release code relies on it.
615 			 */
616 			ClearPageLRU(page);
617 			target = dst;
618 			nr_taken++;
619 		} /* else it is being freed elsewhere */
620 
621 		list_add(&page->lru, target);
622 	}
623 
624 	*scanned = scan;
625 	return nr_taken;
626 }
627 
628 /*
629  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
630  * of reclaimed pages
631  */
632 static unsigned long shrink_inactive_list(unsigned long max_scan,
633 				struct zone *zone, struct scan_control *sc)
634 {
635 	LIST_HEAD(page_list);
636 	struct pagevec pvec;
637 	unsigned long nr_scanned = 0;
638 	unsigned long nr_reclaimed = 0;
639 
640 	pagevec_init(&pvec, 1);
641 
642 	lru_add_drain();
643 	spin_lock_irq(&zone->lru_lock);
644 	do {
645 		struct page *page;
646 		unsigned long nr_taken;
647 		unsigned long nr_scan;
648 		unsigned long nr_freed;
649 
650 		nr_taken = isolate_lru_pages(sc->swap_cluster_max,
651 					     &zone->inactive_list,
652 					     &page_list, &nr_scan);
653 		zone->nr_inactive -= nr_taken;
654 		zone->pages_scanned += nr_scan;
655 		spin_unlock_irq(&zone->lru_lock);
656 
657 		nr_scanned += nr_scan;
658 		nr_freed = shrink_page_list(&page_list, sc);
659 		nr_reclaimed += nr_freed;
660 		local_irq_disable();
661 		if (current_is_kswapd()) {
662 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
663 			__count_vm_events(KSWAPD_STEAL, nr_freed);
664 		} else
665 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
666 		__count_vm_events(PGACTIVATE, nr_freed);
667 
668 		if (nr_taken == 0)
669 			goto done;
670 
671 		spin_lock(&zone->lru_lock);
672 		/*
673 		 * Put back any unfreeable pages.
674 		 */
675 		while (!list_empty(&page_list)) {
676 			page = lru_to_page(&page_list);
677 			BUG_ON(PageLRU(page));
678 			SetPageLRU(page);
679 			list_del(&page->lru);
680 			if (PageActive(page))
681 				add_page_to_active_list(zone, page);
682 			else
683 				add_page_to_inactive_list(zone, page);
684 			if (!pagevec_add(&pvec, page)) {
685 				spin_unlock_irq(&zone->lru_lock);
686 				__pagevec_release(&pvec);
687 				spin_lock_irq(&zone->lru_lock);
688 			}
689 		}
690   	} while (nr_scanned < max_scan);
691 	spin_unlock(&zone->lru_lock);
692 done:
693 	local_irq_enable();
694 	pagevec_release(&pvec);
695 	return nr_reclaimed;
696 }
697 
698 /*
699  * This moves pages from the active list to the inactive list.
700  *
701  * We move them the other way if the page is referenced by one or more
702  * processes, from rmap.
703  *
704  * If the pages are mostly unmapped, the processing is fast and it is
705  * appropriate to hold zone->lru_lock across the whole operation.  But if
706  * the pages are mapped, the processing is slow (page_referenced()) so we
707  * should drop zone->lru_lock around each page.  It's impossible to balance
708  * this, so instead we remove the pages from the LRU while processing them.
709  * It is safe to rely on PG_active against the non-LRU pages in here because
710  * nobody will play with that bit on a non-LRU page.
711  *
712  * The downside is that we have to touch page->_count against each page.
713  * But we had to alter page->flags anyway.
714  */
715 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
716 				struct scan_control *sc)
717 {
718 	unsigned long pgmoved;
719 	int pgdeactivate = 0;
720 	unsigned long pgscanned;
721 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
722 	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
723 	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
724 	struct page *page;
725 	struct pagevec pvec;
726 	int reclaim_mapped = 0;
727 
728 	if (sc->may_swap) {
729 		long mapped_ratio;
730 		long distress;
731 		long swap_tendency;
732 
733 		/*
734 		 * `distress' is a measure of how much trouble we're having
735 		 * reclaiming pages.  0 -> no problems.  100 -> great trouble.
736 		 */
737 		distress = 100 >> zone->prev_priority;
738 
739 		/*
740 		 * The point of this algorithm is to decide when to start
741 		 * reclaiming mapped memory instead of just pagecache.  Work out
742 		 * how much memory
743 		 * is mapped.
744 		 */
745 		mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
746 				global_page_state(NR_ANON_PAGES)) * 100) /
747 					vm_total_pages;
748 
749 		/*
750 		 * Now decide how much we really want to unmap some pages.  The
751 		 * mapped ratio is downgraded - just because there's a lot of
752 		 * mapped memory doesn't necessarily mean that page reclaim
753 		 * isn't succeeding.
754 		 *
755 		 * The distress ratio is important - we don't want to start
756 		 * going oom.
757 		 *
758 		 * A 100% value of vm_swappiness overrides this algorithm
759 		 * altogether.
760 		 */
761 		swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
762 
763 		/*
764 		 * Now use this metric to decide whether to start moving mapped
765 		 * memory onto the inactive list.
766 		 */
767 		if (swap_tendency >= 100)
768 			reclaim_mapped = 1;
769 	}
770 
771 	lru_add_drain();
772 	spin_lock_irq(&zone->lru_lock);
773 	pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
774 				    &l_hold, &pgscanned);
775 	zone->pages_scanned += pgscanned;
776 	zone->nr_active -= pgmoved;
777 	spin_unlock_irq(&zone->lru_lock);
778 
779 	while (!list_empty(&l_hold)) {
780 		cond_resched();
781 		page = lru_to_page(&l_hold);
782 		list_del(&page->lru);
783 		if (page_mapped(page)) {
784 			if (!reclaim_mapped ||
785 			    (total_swap_pages == 0 && PageAnon(page)) ||
786 			    page_referenced(page, 0)) {
787 				list_add(&page->lru, &l_active);
788 				continue;
789 			}
790 		}
791 		list_add(&page->lru, &l_inactive);
792 	}
793 
794 	pagevec_init(&pvec, 1);
795 	pgmoved = 0;
796 	spin_lock_irq(&zone->lru_lock);
797 	while (!list_empty(&l_inactive)) {
798 		page = lru_to_page(&l_inactive);
799 		prefetchw_prev_lru_page(page, &l_inactive, flags);
800 		BUG_ON(PageLRU(page));
801 		SetPageLRU(page);
802 		BUG_ON(!PageActive(page));
803 		ClearPageActive(page);
804 
805 		list_move(&page->lru, &zone->inactive_list);
806 		pgmoved++;
807 		if (!pagevec_add(&pvec, page)) {
808 			zone->nr_inactive += pgmoved;
809 			spin_unlock_irq(&zone->lru_lock);
810 			pgdeactivate += pgmoved;
811 			pgmoved = 0;
812 			if (buffer_heads_over_limit)
813 				pagevec_strip(&pvec);
814 			__pagevec_release(&pvec);
815 			spin_lock_irq(&zone->lru_lock);
816 		}
817 	}
818 	zone->nr_inactive += pgmoved;
819 	pgdeactivate += pgmoved;
820 	if (buffer_heads_over_limit) {
821 		spin_unlock_irq(&zone->lru_lock);
822 		pagevec_strip(&pvec);
823 		spin_lock_irq(&zone->lru_lock);
824 	}
825 
826 	pgmoved = 0;
827 	while (!list_empty(&l_active)) {
828 		page = lru_to_page(&l_active);
829 		prefetchw_prev_lru_page(page, &l_active, flags);
830 		BUG_ON(PageLRU(page));
831 		SetPageLRU(page);
832 		BUG_ON(!PageActive(page));
833 		list_move(&page->lru, &zone->active_list);
834 		pgmoved++;
835 		if (!pagevec_add(&pvec, page)) {
836 			zone->nr_active += pgmoved;
837 			pgmoved = 0;
838 			spin_unlock_irq(&zone->lru_lock);
839 			__pagevec_release(&pvec);
840 			spin_lock_irq(&zone->lru_lock);
841 		}
842 	}
843 	zone->nr_active += pgmoved;
844 
845 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
846 	__count_vm_events(PGDEACTIVATE, pgdeactivate);
847 	spin_unlock_irq(&zone->lru_lock);
848 
849 	pagevec_release(&pvec);
850 }
851 
852 /*
853  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
854  */
855 static unsigned long shrink_zone(int priority, struct zone *zone,
856 				struct scan_control *sc)
857 {
858 	unsigned long nr_active;
859 	unsigned long nr_inactive;
860 	unsigned long nr_to_scan;
861 	unsigned long nr_reclaimed = 0;
862 
863 	atomic_inc(&zone->reclaim_in_progress);
864 
865 	/*
866 	 * Add one to `nr_to_scan' just to make sure that the kernel will
867 	 * slowly sift through the active list.
868 	 */
869 	zone->nr_scan_active += (zone->nr_active >> priority) + 1;
870 	nr_active = zone->nr_scan_active;
871 	if (nr_active >= sc->swap_cluster_max)
872 		zone->nr_scan_active = 0;
873 	else
874 		nr_active = 0;
875 
876 	zone->nr_scan_inactive += (zone->nr_inactive >> priority) + 1;
877 	nr_inactive = zone->nr_scan_inactive;
878 	if (nr_inactive >= sc->swap_cluster_max)
879 		zone->nr_scan_inactive = 0;
880 	else
881 		nr_inactive = 0;
882 
883 	while (nr_active || nr_inactive) {
884 		if (nr_active) {
885 			nr_to_scan = min(nr_active,
886 					(unsigned long)sc->swap_cluster_max);
887 			nr_active -= nr_to_scan;
888 			shrink_active_list(nr_to_scan, zone, sc);
889 		}
890 
891 		if (nr_inactive) {
892 			nr_to_scan = min(nr_inactive,
893 					(unsigned long)sc->swap_cluster_max);
894 			nr_inactive -= nr_to_scan;
895 			nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
896 								sc);
897 		}
898 	}
899 
900 	throttle_vm_writeout();
901 
902 	atomic_dec(&zone->reclaim_in_progress);
903 	return nr_reclaimed;
904 }
905 
906 /*
907  * This is the direct reclaim path, for page-allocating processes.  We only
908  * try to reclaim pages from zones which will satisfy the caller's allocation
909  * request.
910  *
911  * We reclaim from a zone even if that zone is over pages_high.  Because:
912  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
913  *    allocation or
914  * b) The zones may be over pages_high but they must go *over* pages_high to
915  *    satisfy the `incremental min' zone defense algorithm.
916  *
917  * Returns the number of reclaimed pages.
918  *
919  * If a zone is deemed to be full of pinned pages then just give it a light
920  * scan then give up on it.
921  */
922 static unsigned long shrink_zones(int priority, struct zone **zones,
923 					struct scan_control *sc)
924 {
925 	unsigned long nr_reclaimed = 0;
926 	int i;
927 
928 	for (i = 0; zones[i] != NULL; i++) {
929 		struct zone *zone = zones[i];
930 
931 		if (!populated_zone(zone))
932 			continue;
933 
934 		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
935 			continue;
936 
937 		zone->temp_priority = priority;
938 		if (zone->prev_priority > priority)
939 			zone->prev_priority = priority;
940 
941 		if (zone->all_unreclaimable && priority != DEF_PRIORITY)
942 			continue;	/* Let kswapd poll it */
943 
944 		nr_reclaimed += shrink_zone(priority, zone, sc);
945 	}
946 	return nr_reclaimed;
947 }
948 
949 /*
950  * This is the main entry point to direct page reclaim.
951  *
952  * If a full scan of the inactive list fails to free enough memory then we
953  * are "out of memory" and something needs to be killed.
954  *
955  * If the caller is !__GFP_FS then the probability of a failure is reasonably
956  * high - the zone may be full of dirty or under-writeback pages, which this
957  * caller can't do much about.  We kick pdflush and take explicit naps in the
958  * hope that some of these pages can be written.  But if the allocating task
959  * holds filesystem locks which prevent writeout this might not work, and the
960  * allocation attempt will fail.
961  */
962 unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
963 {
964 	int priority;
965 	int ret = 0;
966 	unsigned long total_scanned = 0;
967 	unsigned long nr_reclaimed = 0;
968 	struct reclaim_state *reclaim_state = current->reclaim_state;
969 	unsigned long lru_pages = 0;
970 	int i;
971 	struct scan_control sc = {
972 		.gfp_mask = gfp_mask,
973 		.may_writepage = !laptop_mode,
974 		.swap_cluster_max = SWAP_CLUSTER_MAX,
975 		.may_swap = 1,
976 		.swappiness = vm_swappiness,
977 	};
978 
979 	count_vm_event(ALLOCSTALL);
980 
981 	for (i = 0; zones[i] != NULL; i++) {
982 		struct zone *zone = zones[i];
983 
984 		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
985 			continue;
986 
987 		zone->temp_priority = DEF_PRIORITY;
988 		lru_pages += zone->nr_active + zone->nr_inactive;
989 	}
990 
991 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
992 		sc.nr_scanned = 0;
993 		if (!priority)
994 			disable_swap_token();
995 		nr_reclaimed += shrink_zones(priority, zones, &sc);
996 		shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
997 		if (reclaim_state) {
998 			nr_reclaimed += reclaim_state->reclaimed_slab;
999 			reclaim_state->reclaimed_slab = 0;
1000 		}
1001 		total_scanned += sc.nr_scanned;
1002 		if (nr_reclaimed >= sc.swap_cluster_max) {
1003 			ret = 1;
1004 			goto out;
1005 		}
1006 
1007 		/*
1008 		 * Try to write back as many pages as we just scanned.  This
1009 		 * tends to cause slow streaming writers to write data to the
1010 		 * disk smoothly, at the dirtying rate, which is nice.   But
1011 		 * that's undesirable in laptop mode, where we *want* lumpy
1012 		 * writeout.  So in laptop mode, write out the whole world.
1013 		 */
1014 		if (total_scanned > sc.swap_cluster_max +
1015 					sc.swap_cluster_max / 2) {
1016 			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1017 			sc.may_writepage = 1;
1018 		}
1019 
1020 		/* Take a nap, wait for some writeback to complete */
1021 		if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1022 			blk_congestion_wait(WRITE, HZ/10);
1023 	}
1024 out:
1025 	for (i = 0; zones[i] != 0; i++) {
1026 		struct zone *zone = zones[i];
1027 
1028 		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1029 			continue;
1030 
1031 		zone->prev_priority = zone->temp_priority;
1032 	}
1033 	return ret;
1034 }
1035 
1036 /*
1037  * For kswapd, balance_pgdat() will work across all this node's zones until
1038  * they are all at pages_high.
1039  *
1040  * Returns the number of pages which were actually freed.
1041  *
1042  * There is special handling here for zones which are full of pinned pages.
1043  * This can happen if the pages are all mlocked, or if they are all used by
1044  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1045  * What we do is to detect the case where all pages in the zone have been
1046  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1047  * dead and from now on, only perform a short scan.  Basically we're polling
1048  * the zone for when the problem goes away.
1049  *
1050  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1051  * zones which have free_pages > pages_high, but once a zone is found to have
1052  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1053  * of the number of free pages in the lower zones.  This interoperates with
1054  * the page allocator fallback scheme to ensure that aging of pages is balanced
1055  * across the zones.
1056  */
1057 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1058 {
1059 	int all_zones_ok;
1060 	int priority;
1061 	int i;
1062 	unsigned long total_scanned;
1063 	unsigned long nr_reclaimed;
1064 	struct reclaim_state *reclaim_state = current->reclaim_state;
1065 	struct scan_control sc = {
1066 		.gfp_mask = GFP_KERNEL,
1067 		.may_swap = 1,
1068 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1069 		.swappiness = vm_swappiness,
1070 	};
1071 
1072 loop_again:
1073 	total_scanned = 0;
1074 	nr_reclaimed = 0;
1075 	sc.may_writepage = !laptop_mode;
1076 	count_vm_event(PAGEOUTRUN);
1077 
1078 	for (i = 0; i < pgdat->nr_zones; i++) {
1079 		struct zone *zone = pgdat->node_zones + i;
1080 
1081 		zone->temp_priority = DEF_PRIORITY;
1082 	}
1083 
1084 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1085 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1086 		unsigned long lru_pages = 0;
1087 
1088 		/* The swap token gets in the way of swapout... */
1089 		if (!priority)
1090 			disable_swap_token();
1091 
1092 		all_zones_ok = 1;
1093 
1094 		/*
1095 		 * Scan in the highmem->dma direction for the highest
1096 		 * zone which needs scanning
1097 		 */
1098 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1099 			struct zone *zone = pgdat->node_zones + i;
1100 
1101 			if (!populated_zone(zone))
1102 				continue;
1103 
1104 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1105 				continue;
1106 
1107 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1108 					       0, 0)) {
1109 				end_zone = i;
1110 				goto scan;
1111 			}
1112 		}
1113 		goto out;
1114 scan:
1115 		for (i = 0; i <= end_zone; i++) {
1116 			struct zone *zone = pgdat->node_zones + i;
1117 
1118 			lru_pages += zone->nr_active + zone->nr_inactive;
1119 		}
1120 
1121 		/*
1122 		 * Now scan the zone in the dma->highmem direction, stopping
1123 		 * at the last zone which needs scanning.
1124 		 *
1125 		 * We do this because the page allocator works in the opposite
1126 		 * direction.  This prevents the page allocator from allocating
1127 		 * pages behind kswapd's direction of progress, which would
1128 		 * cause too much scanning of the lower zones.
1129 		 */
1130 		for (i = 0; i <= end_zone; i++) {
1131 			struct zone *zone = pgdat->node_zones + i;
1132 			int nr_slab;
1133 
1134 			if (!populated_zone(zone))
1135 				continue;
1136 
1137 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1138 				continue;
1139 
1140 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1141 					       end_zone, 0))
1142 				all_zones_ok = 0;
1143 			zone->temp_priority = priority;
1144 			if (zone->prev_priority > priority)
1145 				zone->prev_priority = priority;
1146 			sc.nr_scanned = 0;
1147 			nr_reclaimed += shrink_zone(priority, zone, &sc);
1148 			reclaim_state->reclaimed_slab = 0;
1149 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1150 						lru_pages);
1151 			nr_reclaimed += reclaim_state->reclaimed_slab;
1152 			total_scanned += sc.nr_scanned;
1153 			if (zone->all_unreclaimable)
1154 				continue;
1155 			if (nr_slab == 0 && zone->pages_scanned >=
1156 				    (zone->nr_active + zone->nr_inactive) * 4)
1157 				zone->all_unreclaimable = 1;
1158 			/*
1159 			 * If we've done a decent amount of scanning and
1160 			 * the reclaim ratio is low, start doing writepage
1161 			 * even in laptop mode
1162 			 */
1163 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1164 			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
1165 				sc.may_writepage = 1;
1166 		}
1167 		if (all_zones_ok)
1168 			break;		/* kswapd: all done */
1169 		/*
1170 		 * OK, kswapd is getting into trouble.  Take a nap, then take
1171 		 * another pass across the zones.
1172 		 */
1173 		if (total_scanned && priority < DEF_PRIORITY - 2)
1174 			blk_congestion_wait(WRITE, HZ/10);
1175 
1176 		/*
1177 		 * We do this so kswapd doesn't build up large priorities for
1178 		 * example when it is freeing in parallel with allocators. It
1179 		 * matches the direct reclaim path behaviour in terms of impact
1180 		 * on zone->*_priority.
1181 		 */
1182 		if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1183 			break;
1184 	}
1185 out:
1186 	for (i = 0; i < pgdat->nr_zones; i++) {
1187 		struct zone *zone = pgdat->node_zones + i;
1188 
1189 		zone->prev_priority = zone->temp_priority;
1190 	}
1191 	if (!all_zones_ok) {
1192 		cond_resched();
1193 		goto loop_again;
1194 	}
1195 
1196 	return nr_reclaimed;
1197 }
1198 
1199 /*
1200  * The background pageout daemon, started as a kernel thread
1201  * from the init process.
1202  *
1203  * This basically trickles out pages so that we have _some_
1204  * free memory available even if there is no other activity
1205  * that frees anything up. This is needed for things like routing
1206  * etc, where we otherwise might have all activity going on in
1207  * asynchronous contexts that cannot page things out.
1208  *
1209  * If there are applications that are active memory-allocators
1210  * (most normal use), this basically shouldn't matter.
1211  */
1212 static int kswapd(void *p)
1213 {
1214 	unsigned long order;
1215 	pg_data_t *pgdat = (pg_data_t*)p;
1216 	struct task_struct *tsk = current;
1217 	DEFINE_WAIT(wait);
1218 	struct reclaim_state reclaim_state = {
1219 		.reclaimed_slab = 0,
1220 	};
1221 	cpumask_t cpumask;
1222 
1223 	cpumask = node_to_cpumask(pgdat->node_id);
1224 	if (!cpus_empty(cpumask))
1225 		set_cpus_allowed(tsk, cpumask);
1226 	current->reclaim_state = &reclaim_state;
1227 
1228 	/*
1229 	 * Tell the memory management that we're a "memory allocator",
1230 	 * and that if we need more memory we should get access to it
1231 	 * regardless (see "__alloc_pages()"). "kswapd" should
1232 	 * never get caught in the normal page freeing logic.
1233 	 *
1234 	 * (Kswapd normally doesn't need memory anyway, but sometimes
1235 	 * you need a small amount of memory in order to be able to
1236 	 * page out something else, and this flag essentially protects
1237 	 * us from recursively trying to free more memory as we're
1238 	 * trying to free the first piece of memory in the first place).
1239 	 */
1240 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1241 
1242 	order = 0;
1243 	for ( ; ; ) {
1244 		unsigned long new_order;
1245 
1246 		try_to_freeze();
1247 
1248 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1249 		new_order = pgdat->kswapd_max_order;
1250 		pgdat->kswapd_max_order = 0;
1251 		if (order < new_order) {
1252 			/*
1253 			 * Don't sleep if someone wants a larger 'order'
1254 			 * allocation
1255 			 */
1256 			order = new_order;
1257 		} else {
1258 			schedule();
1259 			order = pgdat->kswapd_max_order;
1260 		}
1261 		finish_wait(&pgdat->kswapd_wait, &wait);
1262 
1263 		balance_pgdat(pgdat, order);
1264 	}
1265 	return 0;
1266 }
1267 
1268 /*
1269  * A zone is low on free memory, so wake its kswapd task to service it.
1270  */
1271 void wakeup_kswapd(struct zone *zone, int order)
1272 {
1273 	pg_data_t *pgdat;
1274 
1275 	if (!populated_zone(zone))
1276 		return;
1277 
1278 	pgdat = zone->zone_pgdat;
1279 	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1280 		return;
1281 	if (pgdat->kswapd_max_order < order)
1282 		pgdat->kswapd_max_order = order;
1283 	if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1284 		return;
1285 	if (!waitqueue_active(&pgdat->kswapd_wait))
1286 		return;
1287 	wake_up_interruptible(&pgdat->kswapd_wait);
1288 }
1289 
1290 #ifdef CONFIG_PM
1291 /*
1292  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1293  * from LRU lists system-wide, for given pass and priority, and returns the
1294  * number of reclaimed pages
1295  *
1296  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1297  */
1298 static unsigned long shrink_all_zones(unsigned long nr_pages, int pass,
1299 				      int prio, struct scan_control *sc)
1300 {
1301 	struct zone *zone;
1302 	unsigned long nr_to_scan, ret = 0;
1303 
1304 	for_each_zone(zone) {
1305 
1306 		if (!populated_zone(zone))
1307 			continue;
1308 
1309 		if (zone->all_unreclaimable && prio != DEF_PRIORITY)
1310 			continue;
1311 
1312 		/* For pass = 0 we don't shrink the active list */
1313 		if (pass > 0) {
1314 			zone->nr_scan_active += (zone->nr_active >> prio) + 1;
1315 			if (zone->nr_scan_active >= nr_pages || pass > 3) {
1316 				zone->nr_scan_active = 0;
1317 				nr_to_scan = min(nr_pages, zone->nr_active);
1318 				shrink_active_list(nr_to_scan, zone, sc);
1319 			}
1320 		}
1321 
1322 		zone->nr_scan_inactive += (zone->nr_inactive >> prio) + 1;
1323 		if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1324 			zone->nr_scan_inactive = 0;
1325 			nr_to_scan = min(nr_pages, zone->nr_inactive);
1326 			ret += shrink_inactive_list(nr_to_scan, zone, sc);
1327 			if (ret >= nr_pages)
1328 				return ret;
1329 		}
1330 	}
1331 
1332 	return ret;
1333 }
1334 
1335 /*
1336  * Try to free `nr_pages' of memory, system-wide, and return the number of
1337  * freed pages.
1338  *
1339  * Rather than trying to age LRUs the aim is to preserve the overall
1340  * LRU order by reclaiming preferentially
1341  * inactive > active > active referenced > active mapped
1342  */
1343 unsigned long shrink_all_memory(unsigned long nr_pages)
1344 {
1345 	unsigned long lru_pages, nr_slab;
1346 	unsigned long ret = 0;
1347 	int pass;
1348 	struct reclaim_state reclaim_state;
1349 	struct zone *zone;
1350 	struct scan_control sc = {
1351 		.gfp_mask = GFP_KERNEL,
1352 		.may_swap = 0,
1353 		.swap_cluster_max = nr_pages,
1354 		.may_writepage = 1,
1355 		.swappiness = vm_swappiness,
1356 	};
1357 
1358 	current->reclaim_state = &reclaim_state;
1359 
1360 	lru_pages = 0;
1361 	for_each_zone(zone)
1362 		lru_pages += zone->nr_active + zone->nr_inactive;
1363 
1364 	nr_slab = global_page_state(NR_SLAB);
1365 	/* If slab caches are huge, it's better to hit them first */
1366 	while (nr_slab >= lru_pages) {
1367 		reclaim_state.reclaimed_slab = 0;
1368 		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1369 		if (!reclaim_state.reclaimed_slab)
1370 			break;
1371 
1372 		ret += reclaim_state.reclaimed_slab;
1373 		if (ret >= nr_pages)
1374 			goto out;
1375 
1376 		nr_slab -= reclaim_state.reclaimed_slab;
1377 	}
1378 
1379 	/*
1380 	 * We try to shrink LRUs in 5 passes:
1381 	 * 0 = Reclaim from inactive_list only
1382 	 * 1 = Reclaim from active list but don't reclaim mapped
1383 	 * 2 = 2nd pass of type 1
1384 	 * 3 = Reclaim mapped (normal reclaim)
1385 	 * 4 = 2nd pass of type 3
1386 	 */
1387 	for (pass = 0; pass < 5; pass++) {
1388 		int prio;
1389 
1390 		/* Needed for shrinking slab caches later on */
1391 		if (!lru_pages)
1392 			for_each_zone(zone) {
1393 				lru_pages += zone->nr_active;
1394 				lru_pages += zone->nr_inactive;
1395 			}
1396 
1397 		/* Force reclaiming mapped pages in the passes #3 and #4 */
1398 		if (pass > 2) {
1399 			sc.may_swap = 1;
1400 			sc.swappiness = 100;
1401 		}
1402 
1403 		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1404 			unsigned long nr_to_scan = nr_pages - ret;
1405 
1406 			sc.nr_scanned = 0;
1407 			ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1408 			if (ret >= nr_pages)
1409 				goto out;
1410 
1411 			reclaim_state.reclaimed_slab = 0;
1412 			shrink_slab(sc.nr_scanned, sc.gfp_mask, lru_pages);
1413 			ret += reclaim_state.reclaimed_slab;
1414 			if (ret >= nr_pages)
1415 				goto out;
1416 
1417 			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1418 				blk_congestion_wait(WRITE, HZ / 10);
1419 		}
1420 
1421 		lru_pages = 0;
1422 	}
1423 
1424 	/*
1425 	 * If ret = 0, we could not shrink LRUs, but there may be something
1426 	 * in slab caches
1427 	 */
1428 	if (!ret)
1429 		do {
1430 			reclaim_state.reclaimed_slab = 0;
1431 			shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1432 			ret += reclaim_state.reclaimed_slab;
1433 		} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1434 
1435 out:
1436 	current->reclaim_state = NULL;
1437 
1438 	return ret;
1439 }
1440 #endif
1441 
1442 #ifdef CONFIG_HOTPLUG_CPU
1443 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1444    not required for correctness.  So if the last cpu in a node goes
1445    away, we get changed to run anywhere: as the first one comes back,
1446    restore their cpu bindings. */
1447 static int __devinit cpu_callback(struct notifier_block *nfb,
1448 				  unsigned long action, void *hcpu)
1449 {
1450 	pg_data_t *pgdat;
1451 	cpumask_t mask;
1452 
1453 	if (action == CPU_ONLINE) {
1454 		for_each_online_pgdat(pgdat) {
1455 			mask = node_to_cpumask(pgdat->node_id);
1456 			if (any_online_cpu(mask) != NR_CPUS)
1457 				/* One of our CPUs online: restore mask */
1458 				set_cpus_allowed(pgdat->kswapd, mask);
1459 		}
1460 	}
1461 	return NOTIFY_OK;
1462 }
1463 #endif /* CONFIG_HOTPLUG_CPU */
1464 
1465 /*
1466  * This kswapd start function will be called by init and node-hot-add.
1467  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1468  */
1469 int kswapd_run(int nid)
1470 {
1471 	pg_data_t *pgdat = NODE_DATA(nid);
1472 	int ret = 0;
1473 
1474 	if (pgdat->kswapd)
1475 		return 0;
1476 
1477 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1478 	if (IS_ERR(pgdat->kswapd)) {
1479 		/* failure at boot is fatal */
1480 		BUG_ON(system_state == SYSTEM_BOOTING);
1481 		printk("Failed to start kswapd on node %d\n",nid);
1482 		ret = -1;
1483 	}
1484 	return ret;
1485 }
1486 
1487 static int __init kswapd_init(void)
1488 {
1489 	int nid;
1490 
1491 	swap_setup();
1492 	for_each_online_node(nid)
1493  		kswapd_run(nid);
1494 	hotcpu_notifier(cpu_callback, 0);
1495 	return 0;
1496 }
1497 
1498 module_init(kswapd_init)
1499 
1500 #ifdef CONFIG_NUMA
1501 /*
1502  * Zone reclaim mode
1503  *
1504  * If non-zero call zone_reclaim when the number of free pages falls below
1505  * the watermarks.
1506  */
1507 int zone_reclaim_mode __read_mostly;
1508 
1509 #define RECLAIM_OFF 0
1510 #define RECLAIM_ZONE (1<<0)	/* Run shrink_cache on the zone */
1511 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
1512 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
1513 #define RECLAIM_SLAB (1<<3)	/* Do a global slab shrink if the zone is out of memory */
1514 
1515 /*
1516  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1517  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1518  * a zone.
1519  */
1520 #define ZONE_RECLAIM_PRIORITY 4
1521 
1522 /*
1523  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1524  * occur.
1525  */
1526 int sysctl_min_unmapped_ratio = 1;
1527 
1528 /*
1529  * Try to free up some pages from this zone through reclaim.
1530  */
1531 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1532 {
1533 	/* Minimum pages needed in order to stay on node */
1534 	const unsigned long nr_pages = 1 << order;
1535 	struct task_struct *p = current;
1536 	struct reclaim_state reclaim_state;
1537 	int priority;
1538 	unsigned long nr_reclaimed = 0;
1539 	struct scan_control sc = {
1540 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1541 		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1542 		.swap_cluster_max = max_t(unsigned long, nr_pages,
1543 					SWAP_CLUSTER_MAX),
1544 		.gfp_mask = gfp_mask,
1545 		.swappiness = vm_swappiness,
1546 	};
1547 
1548 	disable_swap_token();
1549 	cond_resched();
1550 	/*
1551 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1552 	 * and we also need to be able to write out pages for RECLAIM_WRITE
1553 	 * and RECLAIM_SWAP.
1554 	 */
1555 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1556 	reclaim_state.reclaimed_slab = 0;
1557 	p->reclaim_state = &reclaim_state;
1558 
1559 	/*
1560 	 * Free memory by calling shrink zone with increasing priorities
1561 	 * until we have enough memory freed.
1562 	 */
1563 	priority = ZONE_RECLAIM_PRIORITY;
1564 	do {
1565 		nr_reclaimed += shrink_zone(priority, zone, &sc);
1566 		priority--;
1567 	} while (priority >= 0 && nr_reclaimed < nr_pages);
1568 
1569 	if (nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) {
1570 		/*
1571 		 * shrink_slab() does not currently allow us to determine how
1572 		 * many pages were freed in this zone. So we just shake the slab
1573 		 * a bit and then go off node for this particular allocation
1574 		 * despite possibly having freed enough memory to allocate in
1575 		 * this zone.  If we freed local memory then the next
1576 		 * allocations will be local again.
1577 		 *
1578 		 * shrink_slab will free memory on all zones and may take
1579 		 * a long time.
1580 		 */
1581 		shrink_slab(sc.nr_scanned, gfp_mask, order);
1582 	}
1583 
1584 	p->reclaim_state = NULL;
1585 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1586 	return nr_reclaimed >= nr_pages;
1587 }
1588 
1589 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1590 {
1591 	cpumask_t mask;
1592 	int node_id;
1593 
1594 	/*
1595 	 * Zone reclaim reclaims unmapped file backed pages.
1596 	 *
1597 	 * A small portion of unmapped file backed pages is needed for
1598 	 * file I/O otherwise pages read by file I/O will be immediately
1599 	 * thrown out if the zone is overallocated. So we do not reclaim
1600 	 * if less than a specified percentage of the zone is used by
1601 	 * unmapped file backed pages.
1602 	 */
1603 	if (zone_page_state(zone, NR_FILE_PAGES) -
1604 	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_ratio)
1605 		return 0;
1606 
1607 	/*
1608 	 * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1609 	 * not have reclaimable pages and if we should not delay the allocation
1610 	 * then do not scan.
1611 	 */
1612 	if (!(gfp_mask & __GFP_WAIT) ||
1613 		zone->all_unreclaimable ||
1614 		atomic_read(&zone->reclaim_in_progress) > 0 ||
1615 		(current->flags & PF_MEMALLOC))
1616 			return 0;
1617 
1618 	/*
1619 	 * Only run zone reclaim on the local zone or on zones that do not
1620 	 * have associated processors. This will favor the local processor
1621 	 * over remote processors and spread off node memory allocations
1622 	 * as wide as possible.
1623 	 */
1624 	node_id = zone->zone_pgdat->node_id;
1625 	mask = node_to_cpumask(node_id);
1626 	if (!cpus_empty(mask) && node_id != numa_node_id())
1627 		return 0;
1628 	return __zone_reclaim(zone, gfp_mask, order);
1629 }
1630 #endif
1631