xref: /linux/mm/vmscan.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46 
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49 
50 #include <linux/swapops.h>
51 
52 #include "internal.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56 
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *			page from the LRU and reclaim all pages within a
64  *			naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *			order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74 
75 struct scan_control {
76 	/* Incremented by the number of inactive pages that were scanned */
77 	unsigned long nr_scanned;
78 
79 	/* Number of pages freed so far during a call to shrink_zones() */
80 	unsigned long nr_reclaimed;
81 
82 	/* How many pages shrink_list() should reclaim */
83 	unsigned long nr_to_reclaim;
84 
85 	unsigned long hibernation_mode;
86 
87 	/* This context's GFP mask */
88 	gfp_t gfp_mask;
89 
90 	int may_writepage;
91 
92 	/* Can mapped pages be reclaimed? */
93 	int may_unmap;
94 
95 	/* Can pages be swapped as part of reclaim? */
96 	int may_swap;
97 
98 	int swappiness;
99 
100 	int order;
101 
102 	/*
103 	 * Intend to reclaim enough continuous memory rather than reclaim
104 	 * enough amount of memory. i.e, mode for high order allocation.
105 	 */
106 	reclaim_mode_t reclaim_mode;
107 
108 	/* Which cgroup do we reclaim from */
109 	struct mem_cgroup *mem_cgroup;
110 
111 	/*
112 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
113 	 * are scanned.
114 	 */
115 	nodemask_t	*nodemask;
116 };
117 
118 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
119 
120 #ifdef ARCH_HAS_PREFETCH
121 #define prefetch_prev_lru_page(_page, _base, _field)			\
122 	do {								\
123 		if ((_page)->lru.prev != _base) {			\
124 			struct page *prev;				\
125 									\
126 			prev = lru_to_page(&(_page->lru));		\
127 			prefetch(&prev->_field);			\
128 		}							\
129 	} while (0)
130 #else
131 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132 #endif
133 
134 #ifdef ARCH_HAS_PREFETCHW
135 #define prefetchw_prev_lru_page(_page, _base, _field)			\
136 	do {								\
137 		if ((_page)->lru.prev != _base) {			\
138 			struct page *prev;				\
139 									\
140 			prev = lru_to_page(&(_page->lru));		\
141 			prefetchw(&prev->_field);			\
142 		}							\
143 	} while (0)
144 #else
145 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146 #endif
147 
148 /*
149  * From 0 .. 100.  Higher means more swappy.
150  */
151 int vm_swappiness = 60;
152 long vm_total_pages;	/* The total number of pages which the VM controls */
153 
154 static LIST_HEAD(shrinker_list);
155 static DECLARE_RWSEM(shrinker_rwsem);
156 
157 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
158 #define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
159 #else
160 #define scanning_global_lru(sc)	(1)
161 #endif
162 
163 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
164 						  struct scan_control *sc)
165 {
166 	if (!scanning_global_lru(sc))
167 		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
168 
169 	return &zone->reclaim_stat;
170 }
171 
172 static unsigned long zone_nr_lru_pages(struct zone *zone,
173 				struct scan_control *sc, enum lru_list lru)
174 {
175 	if (!scanning_global_lru(sc))
176 		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup, zone, lru);
177 
178 	return zone_page_state(zone, NR_LRU_BASE + lru);
179 }
180 
181 
182 /*
183  * Add a shrinker callback to be called from the vm
184  */
185 void register_shrinker(struct shrinker *shrinker)
186 {
187 	shrinker->nr = 0;
188 	down_write(&shrinker_rwsem);
189 	list_add_tail(&shrinker->list, &shrinker_list);
190 	up_write(&shrinker_rwsem);
191 }
192 EXPORT_SYMBOL(register_shrinker);
193 
194 /*
195  * Remove one
196  */
197 void unregister_shrinker(struct shrinker *shrinker)
198 {
199 	down_write(&shrinker_rwsem);
200 	list_del(&shrinker->list);
201 	up_write(&shrinker_rwsem);
202 }
203 EXPORT_SYMBOL(unregister_shrinker);
204 
205 static inline int do_shrinker_shrink(struct shrinker *shrinker,
206 				     struct shrink_control *sc,
207 				     unsigned long nr_to_scan)
208 {
209 	sc->nr_to_scan = nr_to_scan;
210 	return (*shrinker->shrink)(shrinker, sc);
211 }
212 
213 #define SHRINK_BATCH 128
214 /*
215  * Call the shrink functions to age shrinkable caches
216  *
217  * Here we assume it costs one seek to replace a lru page and that it also
218  * takes a seek to recreate a cache object.  With this in mind we age equal
219  * percentages of the lru and ageable caches.  This should balance the seeks
220  * generated by these structures.
221  *
222  * If the vm encountered mapped pages on the LRU it increase the pressure on
223  * slab to avoid swapping.
224  *
225  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
226  *
227  * `lru_pages' represents the number of on-LRU pages in all the zones which
228  * are eligible for the caller's allocation attempt.  It is used for balancing
229  * slab reclaim versus page reclaim.
230  *
231  * Returns the number of slab objects which we shrunk.
232  */
233 unsigned long shrink_slab(struct shrink_control *shrink,
234 			  unsigned long nr_pages_scanned,
235 			  unsigned long lru_pages)
236 {
237 	struct shrinker *shrinker;
238 	unsigned long ret = 0;
239 
240 	if (nr_pages_scanned == 0)
241 		nr_pages_scanned = SWAP_CLUSTER_MAX;
242 
243 	if (!down_read_trylock(&shrinker_rwsem)) {
244 		/* Assume we'll be able to shrink next time */
245 		ret = 1;
246 		goto out;
247 	}
248 
249 	list_for_each_entry(shrinker, &shrinker_list, list) {
250 		unsigned long long delta;
251 		unsigned long total_scan;
252 		unsigned long max_pass;
253 
254 		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
255 		delta = (4 * nr_pages_scanned) / shrinker->seeks;
256 		delta *= max_pass;
257 		do_div(delta, lru_pages + 1);
258 		shrinker->nr += delta;
259 		if (shrinker->nr < 0) {
260 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
261 			       "delete nr=%ld\n",
262 			       shrinker->shrink, shrinker->nr);
263 			shrinker->nr = max_pass;
264 		}
265 
266 		/*
267 		 * Avoid risking looping forever due to too large nr value:
268 		 * never try to free more than twice the estimate number of
269 		 * freeable entries.
270 		 */
271 		if (shrinker->nr > max_pass * 2)
272 			shrinker->nr = max_pass * 2;
273 
274 		total_scan = shrinker->nr;
275 		shrinker->nr = 0;
276 
277 		while (total_scan >= SHRINK_BATCH) {
278 			long this_scan = SHRINK_BATCH;
279 			int shrink_ret;
280 			int nr_before;
281 
282 			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
283 			shrink_ret = do_shrinker_shrink(shrinker, shrink,
284 							this_scan);
285 			if (shrink_ret == -1)
286 				break;
287 			if (shrink_ret < nr_before)
288 				ret += nr_before - shrink_ret;
289 			count_vm_events(SLABS_SCANNED, this_scan);
290 			total_scan -= this_scan;
291 
292 			cond_resched();
293 		}
294 
295 		shrinker->nr += total_scan;
296 	}
297 	up_read(&shrinker_rwsem);
298 out:
299 	cond_resched();
300 	return ret;
301 }
302 
303 static void set_reclaim_mode(int priority, struct scan_control *sc,
304 				   bool sync)
305 {
306 	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
307 
308 	/*
309 	 * Initially assume we are entering either lumpy reclaim or
310 	 * reclaim/compaction.Depending on the order, we will either set the
311 	 * sync mode or just reclaim order-0 pages later.
312 	 */
313 	if (COMPACTION_BUILD)
314 		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
315 	else
316 		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
317 
318 	/*
319 	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
320 	 * restricting when its set to either costly allocations or when
321 	 * under memory pressure
322 	 */
323 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
324 		sc->reclaim_mode |= syncmode;
325 	else if (sc->order && priority < DEF_PRIORITY - 2)
326 		sc->reclaim_mode |= syncmode;
327 	else
328 		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
329 }
330 
331 static void reset_reclaim_mode(struct scan_control *sc)
332 {
333 	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
334 }
335 
336 static inline int is_page_cache_freeable(struct page *page)
337 {
338 	/*
339 	 * A freeable page cache page is referenced only by the caller
340 	 * that isolated the page, the page cache radix tree and
341 	 * optional buffer heads at page->private.
342 	 */
343 	return page_count(page) - page_has_private(page) == 2;
344 }
345 
346 static int may_write_to_queue(struct backing_dev_info *bdi,
347 			      struct scan_control *sc)
348 {
349 	if (current->flags & PF_SWAPWRITE)
350 		return 1;
351 	if (!bdi_write_congested(bdi))
352 		return 1;
353 	if (bdi == current->backing_dev_info)
354 		return 1;
355 
356 	/* lumpy reclaim for hugepage often need a lot of write */
357 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
358 		return 1;
359 	return 0;
360 }
361 
362 /*
363  * We detected a synchronous write error writing a page out.  Probably
364  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
365  * fsync(), msync() or close().
366  *
367  * The tricky part is that after writepage we cannot touch the mapping: nothing
368  * prevents it from being freed up.  But we have a ref on the page and once
369  * that page is locked, the mapping is pinned.
370  *
371  * We're allowed to run sleeping lock_page() here because we know the caller has
372  * __GFP_FS.
373  */
374 static void handle_write_error(struct address_space *mapping,
375 				struct page *page, int error)
376 {
377 	lock_page(page);
378 	if (page_mapping(page) == mapping)
379 		mapping_set_error(mapping, error);
380 	unlock_page(page);
381 }
382 
383 /* possible outcome of pageout() */
384 typedef enum {
385 	/* failed to write page out, page is locked */
386 	PAGE_KEEP,
387 	/* move page to the active list, page is locked */
388 	PAGE_ACTIVATE,
389 	/* page has been sent to the disk successfully, page is unlocked */
390 	PAGE_SUCCESS,
391 	/* page is clean and locked */
392 	PAGE_CLEAN,
393 } pageout_t;
394 
395 /*
396  * pageout is called by shrink_page_list() for each dirty page.
397  * Calls ->writepage().
398  */
399 static pageout_t pageout(struct page *page, struct address_space *mapping,
400 			 struct scan_control *sc)
401 {
402 	/*
403 	 * If the page is dirty, only perform writeback if that write
404 	 * will be non-blocking.  To prevent this allocation from being
405 	 * stalled by pagecache activity.  But note that there may be
406 	 * stalls if we need to run get_block().  We could test
407 	 * PagePrivate for that.
408 	 *
409 	 * If this process is currently in __generic_file_aio_write() against
410 	 * this page's queue, we can perform writeback even if that
411 	 * will block.
412 	 *
413 	 * If the page is swapcache, write it back even if that would
414 	 * block, for some throttling. This happens by accident, because
415 	 * swap_backing_dev_info is bust: it doesn't reflect the
416 	 * congestion state of the swapdevs.  Easy to fix, if needed.
417 	 */
418 	if (!is_page_cache_freeable(page))
419 		return PAGE_KEEP;
420 	if (!mapping) {
421 		/*
422 		 * Some data journaling orphaned pages can have
423 		 * page->mapping == NULL while being dirty with clean buffers.
424 		 */
425 		if (page_has_private(page)) {
426 			if (try_to_free_buffers(page)) {
427 				ClearPageDirty(page);
428 				printk("%s: orphaned page\n", __func__);
429 				return PAGE_CLEAN;
430 			}
431 		}
432 		return PAGE_KEEP;
433 	}
434 	if (mapping->a_ops->writepage == NULL)
435 		return PAGE_ACTIVATE;
436 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
437 		return PAGE_KEEP;
438 
439 	if (clear_page_dirty_for_io(page)) {
440 		int res;
441 		struct writeback_control wbc = {
442 			.sync_mode = WB_SYNC_NONE,
443 			.nr_to_write = SWAP_CLUSTER_MAX,
444 			.range_start = 0,
445 			.range_end = LLONG_MAX,
446 			.for_reclaim = 1,
447 		};
448 
449 		SetPageReclaim(page);
450 		res = mapping->a_ops->writepage(page, &wbc);
451 		if (res < 0)
452 			handle_write_error(mapping, page, res);
453 		if (res == AOP_WRITEPAGE_ACTIVATE) {
454 			ClearPageReclaim(page);
455 			return PAGE_ACTIVATE;
456 		}
457 
458 		/*
459 		 * Wait on writeback if requested to. This happens when
460 		 * direct reclaiming a large contiguous area and the
461 		 * first attempt to free a range of pages fails.
462 		 */
463 		if (PageWriteback(page) &&
464 		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
465 			wait_on_page_writeback(page);
466 
467 		if (!PageWriteback(page)) {
468 			/* synchronous write or broken a_ops? */
469 			ClearPageReclaim(page);
470 		}
471 		trace_mm_vmscan_writepage(page,
472 			trace_reclaim_flags(page, sc->reclaim_mode));
473 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
474 		return PAGE_SUCCESS;
475 	}
476 
477 	return PAGE_CLEAN;
478 }
479 
480 /*
481  * Same as remove_mapping, but if the page is removed from the mapping, it
482  * gets returned with a refcount of 0.
483  */
484 static int __remove_mapping(struct address_space *mapping, struct page *page)
485 {
486 	BUG_ON(!PageLocked(page));
487 	BUG_ON(mapping != page_mapping(page));
488 
489 	spin_lock_irq(&mapping->tree_lock);
490 	/*
491 	 * The non racy check for a busy page.
492 	 *
493 	 * Must be careful with the order of the tests. When someone has
494 	 * a ref to the page, it may be possible that they dirty it then
495 	 * drop the reference. So if PageDirty is tested before page_count
496 	 * here, then the following race may occur:
497 	 *
498 	 * get_user_pages(&page);
499 	 * [user mapping goes away]
500 	 * write_to(page);
501 	 *				!PageDirty(page)    [good]
502 	 * SetPageDirty(page);
503 	 * put_page(page);
504 	 *				!page_count(page)   [good, discard it]
505 	 *
506 	 * [oops, our write_to data is lost]
507 	 *
508 	 * Reversing the order of the tests ensures such a situation cannot
509 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
510 	 * load is not satisfied before that of page->_count.
511 	 *
512 	 * Note that if SetPageDirty is always performed via set_page_dirty,
513 	 * and thus under tree_lock, then this ordering is not required.
514 	 */
515 	if (!page_freeze_refs(page, 2))
516 		goto cannot_free;
517 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
518 	if (unlikely(PageDirty(page))) {
519 		page_unfreeze_refs(page, 2);
520 		goto cannot_free;
521 	}
522 
523 	if (PageSwapCache(page)) {
524 		swp_entry_t swap = { .val = page_private(page) };
525 		__delete_from_swap_cache(page);
526 		spin_unlock_irq(&mapping->tree_lock);
527 		swapcache_free(swap, page);
528 	} else {
529 		void (*freepage)(struct page *);
530 
531 		freepage = mapping->a_ops->freepage;
532 
533 		__delete_from_page_cache(page);
534 		spin_unlock_irq(&mapping->tree_lock);
535 		mem_cgroup_uncharge_cache_page(page);
536 
537 		if (freepage != NULL)
538 			freepage(page);
539 	}
540 
541 	return 1;
542 
543 cannot_free:
544 	spin_unlock_irq(&mapping->tree_lock);
545 	return 0;
546 }
547 
548 /*
549  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
550  * someone else has a ref on the page, abort and return 0.  If it was
551  * successfully detached, return 1.  Assumes the caller has a single ref on
552  * this page.
553  */
554 int remove_mapping(struct address_space *mapping, struct page *page)
555 {
556 	if (__remove_mapping(mapping, page)) {
557 		/*
558 		 * Unfreezing the refcount with 1 rather than 2 effectively
559 		 * drops the pagecache ref for us without requiring another
560 		 * atomic operation.
561 		 */
562 		page_unfreeze_refs(page, 1);
563 		return 1;
564 	}
565 	return 0;
566 }
567 
568 /**
569  * putback_lru_page - put previously isolated page onto appropriate LRU list
570  * @page: page to be put back to appropriate lru list
571  *
572  * Add previously isolated @page to appropriate LRU list.
573  * Page may still be unevictable for other reasons.
574  *
575  * lru_lock must not be held, interrupts must be enabled.
576  */
577 void putback_lru_page(struct page *page)
578 {
579 	int lru;
580 	int active = !!TestClearPageActive(page);
581 	int was_unevictable = PageUnevictable(page);
582 
583 	VM_BUG_ON(PageLRU(page));
584 
585 redo:
586 	ClearPageUnevictable(page);
587 
588 	if (page_evictable(page, NULL)) {
589 		/*
590 		 * For evictable pages, we can use the cache.
591 		 * In event of a race, worst case is we end up with an
592 		 * unevictable page on [in]active list.
593 		 * We know how to handle that.
594 		 */
595 		lru = active + page_lru_base_type(page);
596 		lru_cache_add_lru(page, lru);
597 	} else {
598 		/*
599 		 * Put unevictable pages directly on zone's unevictable
600 		 * list.
601 		 */
602 		lru = LRU_UNEVICTABLE;
603 		add_page_to_unevictable_list(page);
604 		/*
605 		 * When racing with an mlock clearing (page is
606 		 * unlocked), make sure that if the other thread does
607 		 * not observe our setting of PG_lru and fails
608 		 * isolation, we see PG_mlocked cleared below and move
609 		 * the page back to the evictable list.
610 		 *
611 		 * The other side is TestClearPageMlocked().
612 		 */
613 		smp_mb();
614 	}
615 
616 	/*
617 	 * page's status can change while we move it among lru. If an evictable
618 	 * page is on unevictable list, it never be freed. To avoid that,
619 	 * check after we added it to the list, again.
620 	 */
621 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
622 		if (!isolate_lru_page(page)) {
623 			put_page(page);
624 			goto redo;
625 		}
626 		/* This means someone else dropped this page from LRU
627 		 * So, it will be freed or putback to LRU again. There is
628 		 * nothing to do here.
629 		 */
630 	}
631 
632 	if (was_unevictable && lru != LRU_UNEVICTABLE)
633 		count_vm_event(UNEVICTABLE_PGRESCUED);
634 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
635 		count_vm_event(UNEVICTABLE_PGCULLED);
636 
637 	put_page(page);		/* drop ref from isolate */
638 }
639 
640 enum page_references {
641 	PAGEREF_RECLAIM,
642 	PAGEREF_RECLAIM_CLEAN,
643 	PAGEREF_KEEP,
644 	PAGEREF_ACTIVATE,
645 };
646 
647 static enum page_references page_check_references(struct page *page,
648 						  struct scan_control *sc)
649 {
650 	int referenced_ptes, referenced_page;
651 	unsigned long vm_flags;
652 
653 	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
654 	referenced_page = TestClearPageReferenced(page);
655 
656 	/* Lumpy reclaim - ignore references */
657 	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
658 		return PAGEREF_RECLAIM;
659 
660 	/*
661 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
662 	 * move the page to the unevictable list.
663 	 */
664 	if (vm_flags & VM_LOCKED)
665 		return PAGEREF_RECLAIM;
666 
667 	if (referenced_ptes) {
668 		if (PageAnon(page))
669 			return PAGEREF_ACTIVATE;
670 		/*
671 		 * All mapped pages start out with page table
672 		 * references from the instantiating fault, so we need
673 		 * to look twice if a mapped file page is used more
674 		 * than once.
675 		 *
676 		 * Mark it and spare it for another trip around the
677 		 * inactive list.  Another page table reference will
678 		 * lead to its activation.
679 		 *
680 		 * Note: the mark is set for activated pages as well
681 		 * so that recently deactivated but used pages are
682 		 * quickly recovered.
683 		 */
684 		SetPageReferenced(page);
685 
686 		if (referenced_page)
687 			return PAGEREF_ACTIVATE;
688 
689 		return PAGEREF_KEEP;
690 	}
691 
692 	/* Reclaim if clean, defer dirty pages to writeback */
693 	if (referenced_page && !PageSwapBacked(page))
694 		return PAGEREF_RECLAIM_CLEAN;
695 
696 	return PAGEREF_RECLAIM;
697 }
698 
699 static noinline_for_stack void free_page_list(struct list_head *free_pages)
700 {
701 	struct pagevec freed_pvec;
702 	struct page *page, *tmp;
703 
704 	pagevec_init(&freed_pvec, 1);
705 
706 	list_for_each_entry_safe(page, tmp, free_pages, lru) {
707 		list_del(&page->lru);
708 		if (!pagevec_add(&freed_pvec, page)) {
709 			__pagevec_free(&freed_pvec);
710 			pagevec_reinit(&freed_pvec);
711 		}
712 	}
713 
714 	pagevec_free(&freed_pvec);
715 }
716 
717 /*
718  * shrink_page_list() returns the number of reclaimed pages
719  */
720 static unsigned long shrink_page_list(struct list_head *page_list,
721 				      struct zone *zone,
722 				      struct scan_control *sc)
723 {
724 	LIST_HEAD(ret_pages);
725 	LIST_HEAD(free_pages);
726 	int pgactivate = 0;
727 	unsigned long nr_dirty = 0;
728 	unsigned long nr_congested = 0;
729 	unsigned long nr_reclaimed = 0;
730 
731 	cond_resched();
732 
733 	while (!list_empty(page_list)) {
734 		enum page_references references;
735 		struct address_space *mapping;
736 		struct page *page;
737 		int may_enter_fs;
738 
739 		cond_resched();
740 
741 		page = lru_to_page(page_list);
742 		list_del(&page->lru);
743 
744 		if (!trylock_page(page))
745 			goto keep;
746 
747 		VM_BUG_ON(PageActive(page));
748 		VM_BUG_ON(page_zone(page) != zone);
749 
750 		sc->nr_scanned++;
751 
752 		if (unlikely(!page_evictable(page, NULL)))
753 			goto cull_mlocked;
754 
755 		if (!sc->may_unmap && page_mapped(page))
756 			goto keep_locked;
757 
758 		/* Double the slab pressure for mapped and swapcache pages */
759 		if (page_mapped(page) || PageSwapCache(page))
760 			sc->nr_scanned++;
761 
762 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
763 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
764 
765 		if (PageWriteback(page)) {
766 			/*
767 			 * Synchronous reclaim is performed in two passes,
768 			 * first an asynchronous pass over the list to
769 			 * start parallel writeback, and a second synchronous
770 			 * pass to wait for the IO to complete.  Wait here
771 			 * for any page for which writeback has already
772 			 * started.
773 			 */
774 			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
775 			    may_enter_fs)
776 				wait_on_page_writeback(page);
777 			else {
778 				unlock_page(page);
779 				goto keep_lumpy;
780 			}
781 		}
782 
783 		references = page_check_references(page, sc);
784 		switch (references) {
785 		case PAGEREF_ACTIVATE:
786 			goto activate_locked;
787 		case PAGEREF_KEEP:
788 			goto keep_locked;
789 		case PAGEREF_RECLAIM:
790 		case PAGEREF_RECLAIM_CLEAN:
791 			; /* try to reclaim the page below */
792 		}
793 
794 		/*
795 		 * Anonymous process memory has backing store?
796 		 * Try to allocate it some swap space here.
797 		 */
798 		if (PageAnon(page) && !PageSwapCache(page)) {
799 			if (!(sc->gfp_mask & __GFP_IO))
800 				goto keep_locked;
801 			if (!add_to_swap(page))
802 				goto activate_locked;
803 			may_enter_fs = 1;
804 		}
805 
806 		mapping = page_mapping(page);
807 
808 		/*
809 		 * The page is mapped into the page tables of one or more
810 		 * processes. Try to unmap it here.
811 		 */
812 		if (page_mapped(page) && mapping) {
813 			switch (try_to_unmap(page, TTU_UNMAP)) {
814 			case SWAP_FAIL:
815 				goto activate_locked;
816 			case SWAP_AGAIN:
817 				goto keep_locked;
818 			case SWAP_MLOCK:
819 				goto cull_mlocked;
820 			case SWAP_SUCCESS:
821 				; /* try to free the page below */
822 			}
823 		}
824 
825 		if (PageDirty(page)) {
826 			nr_dirty++;
827 
828 			if (references == PAGEREF_RECLAIM_CLEAN)
829 				goto keep_locked;
830 			if (!may_enter_fs)
831 				goto keep_locked;
832 			if (!sc->may_writepage)
833 				goto keep_locked;
834 
835 			/* Page is dirty, try to write it out here */
836 			switch (pageout(page, mapping, sc)) {
837 			case PAGE_KEEP:
838 				nr_congested++;
839 				goto keep_locked;
840 			case PAGE_ACTIVATE:
841 				goto activate_locked;
842 			case PAGE_SUCCESS:
843 				if (PageWriteback(page))
844 					goto keep_lumpy;
845 				if (PageDirty(page))
846 					goto keep;
847 
848 				/*
849 				 * A synchronous write - probably a ramdisk.  Go
850 				 * ahead and try to reclaim the page.
851 				 */
852 				if (!trylock_page(page))
853 					goto keep;
854 				if (PageDirty(page) || PageWriteback(page))
855 					goto keep_locked;
856 				mapping = page_mapping(page);
857 			case PAGE_CLEAN:
858 				; /* try to free the page below */
859 			}
860 		}
861 
862 		/*
863 		 * If the page has buffers, try to free the buffer mappings
864 		 * associated with this page. If we succeed we try to free
865 		 * the page as well.
866 		 *
867 		 * We do this even if the page is PageDirty().
868 		 * try_to_release_page() does not perform I/O, but it is
869 		 * possible for a page to have PageDirty set, but it is actually
870 		 * clean (all its buffers are clean).  This happens if the
871 		 * buffers were written out directly, with submit_bh(). ext3
872 		 * will do this, as well as the blockdev mapping.
873 		 * try_to_release_page() will discover that cleanness and will
874 		 * drop the buffers and mark the page clean - it can be freed.
875 		 *
876 		 * Rarely, pages can have buffers and no ->mapping.  These are
877 		 * the pages which were not successfully invalidated in
878 		 * truncate_complete_page().  We try to drop those buffers here
879 		 * and if that worked, and the page is no longer mapped into
880 		 * process address space (page_count == 1) it can be freed.
881 		 * Otherwise, leave the page on the LRU so it is swappable.
882 		 */
883 		if (page_has_private(page)) {
884 			if (!try_to_release_page(page, sc->gfp_mask))
885 				goto activate_locked;
886 			if (!mapping && page_count(page) == 1) {
887 				unlock_page(page);
888 				if (put_page_testzero(page))
889 					goto free_it;
890 				else {
891 					/*
892 					 * rare race with speculative reference.
893 					 * the speculative reference will free
894 					 * this page shortly, so we may
895 					 * increment nr_reclaimed here (and
896 					 * leave it off the LRU).
897 					 */
898 					nr_reclaimed++;
899 					continue;
900 				}
901 			}
902 		}
903 
904 		if (!mapping || !__remove_mapping(mapping, page))
905 			goto keep_locked;
906 
907 		/*
908 		 * At this point, we have no other references and there is
909 		 * no way to pick any more up (removed from LRU, removed
910 		 * from pagecache). Can use non-atomic bitops now (and
911 		 * we obviously don't have to worry about waking up a process
912 		 * waiting on the page lock, because there are no references.
913 		 */
914 		__clear_page_locked(page);
915 free_it:
916 		nr_reclaimed++;
917 
918 		/*
919 		 * Is there need to periodically free_page_list? It would
920 		 * appear not as the counts should be low
921 		 */
922 		list_add(&page->lru, &free_pages);
923 		continue;
924 
925 cull_mlocked:
926 		if (PageSwapCache(page))
927 			try_to_free_swap(page);
928 		unlock_page(page);
929 		putback_lru_page(page);
930 		reset_reclaim_mode(sc);
931 		continue;
932 
933 activate_locked:
934 		/* Not a candidate for swapping, so reclaim swap space. */
935 		if (PageSwapCache(page) && vm_swap_full())
936 			try_to_free_swap(page);
937 		VM_BUG_ON(PageActive(page));
938 		SetPageActive(page);
939 		pgactivate++;
940 keep_locked:
941 		unlock_page(page);
942 keep:
943 		reset_reclaim_mode(sc);
944 keep_lumpy:
945 		list_add(&page->lru, &ret_pages);
946 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
947 	}
948 
949 	/*
950 	 * Tag a zone as congested if all the dirty pages encountered were
951 	 * backed by a congested BDI. In this case, reclaimers should just
952 	 * back off and wait for congestion to clear because further reclaim
953 	 * will encounter the same problem
954 	 */
955 	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
956 		zone_set_flag(zone, ZONE_CONGESTED);
957 
958 	free_page_list(&free_pages);
959 
960 	list_splice(&ret_pages, page_list);
961 	count_vm_events(PGACTIVATE, pgactivate);
962 	return nr_reclaimed;
963 }
964 
965 /*
966  * Attempt to remove the specified page from its LRU.  Only take this page
967  * if it is of the appropriate PageActive status.  Pages which are being
968  * freed elsewhere are also ignored.
969  *
970  * page:	page to consider
971  * mode:	one of the LRU isolation modes defined above
972  *
973  * returns 0 on success, -ve errno on failure.
974  */
975 int __isolate_lru_page(struct page *page, int mode, int file)
976 {
977 	int ret = -EINVAL;
978 
979 	/* Only take pages on the LRU. */
980 	if (!PageLRU(page))
981 		return ret;
982 
983 	/*
984 	 * When checking the active state, we need to be sure we are
985 	 * dealing with comparible boolean values.  Take the logical not
986 	 * of each.
987 	 */
988 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
989 		return ret;
990 
991 	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
992 		return ret;
993 
994 	/*
995 	 * When this function is being called for lumpy reclaim, we
996 	 * initially look into all LRU pages, active, inactive and
997 	 * unevictable; only give shrink_page_list evictable pages.
998 	 */
999 	if (PageUnevictable(page))
1000 		return ret;
1001 
1002 	ret = -EBUSY;
1003 
1004 	if (likely(get_page_unless_zero(page))) {
1005 		/*
1006 		 * Be careful not to clear PageLRU until after we're
1007 		 * sure the page is not being freed elsewhere -- the
1008 		 * page release code relies on it.
1009 		 */
1010 		ClearPageLRU(page);
1011 		ret = 0;
1012 	}
1013 
1014 	return ret;
1015 }
1016 
1017 /*
1018  * zone->lru_lock is heavily contended.  Some of the functions that
1019  * shrink the lists perform better by taking out a batch of pages
1020  * and working on them outside the LRU lock.
1021  *
1022  * For pagecache intensive workloads, this function is the hottest
1023  * spot in the kernel (apart from copy_*_user functions).
1024  *
1025  * Appropriate locks must be held before calling this function.
1026  *
1027  * @nr_to_scan:	The number of pages to look through on the list.
1028  * @src:	The LRU list to pull pages off.
1029  * @dst:	The temp list to put pages on to.
1030  * @scanned:	The number of pages that were scanned.
1031  * @order:	The caller's attempted allocation order
1032  * @mode:	One of the LRU isolation modes
1033  * @file:	True [1] if isolating file [!anon] pages
1034  *
1035  * returns how many pages were moved onto *@dst.
1036  */
1037 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1038 		struct list_head *src, struct list_head *dst,
1039 		unsigned long *scanned, int order, int mode, int file)
1040 {
1041 	unsigned long nr_taken = 0;
1042 	unsigned long nr_lumpy_taken = 0;
1043 	unsigned long nr_lumpy_dirty = 0;
1044 	unsigned long nr_lumpy_failed = 0;
1045 	unsigned long scan;
1046 
1047 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1048 		struct page *page;
1049 		unsigned long pfn;
1050 		unsigned long end_pfn;
1051 		unsigned long page_pfn;
1052 		int zone_id;
1053 
1054 		page = lru_to_page(src);
1055 		prefetchw_prev_lru_page(page, src, flags);
1056 
1057 		VM_BUG_ON(!PageLRU(page));
1058 
1059 		switch (__isolate_lru_page(page, mode, file)) {
1060 		case 0:
1061 			list_move(&page->lru, dst);
1062 			mem_cgroup_del_lru(page);
1063 			nr_taken += hpage_nr_pages(page);
1064 			break;
1065 
1066 		case -EBUSY:
1067 			/* else it is being freed elsewhere */
1068 			list_move(&page->lru, src);
1069 			mem_cgroup_rotate_lru_list(page, page_lru(page));
1070 			continue;
1071 
1072 		default:
1073 			BUG();
1074 		}
1075 
1076 		if (!order)
1077 			continue;
1078 
1079 		/*
1080 		 * Attempt to take all pages in the order aligned region
1081 		 * surrounding the tag page.  Only take those pages of
1082 		 * the same active state as that tag page.  We may safely
1083 		 * round the target page pfn down to the requested order
1084 		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1085 		 * where that page is in a different zone we will detect
1086 		 * it from its zone id and abort this block scan.
1087 		 */
1088 		zone_id = page_zone_id(page);
1089 		page_pfn = page_to_pfn(page);
1090 		pfn = page_pfn & ~((1 << order) - 1);
1091 		end_pfn = pfn + (1 << order);
1092 		for (; pfn < end_pfn; pfn++) {
1093 			struct page *cursor_page;
1094 
1095 			/* The target page is in the block, ignore it. */
1096 			if (unlikely(pfn == page_pfn))
1097 				continue;
1098 
1099 			/* Avoid holes within the zone. */
1100 			if (unlikely(!pfn_valid_within(pfn)))
1101 				break;
1102 
1103 			cursor_page = pfn_to_page(pfn);
1104 
1105 			/* Check that we have not crossed a zone boundary. */
1106 			if (unlikely(page_zone_id(cursor_page) != zone_id))
1107 				break;
1108 
1109 			/*
1110 			 * If we don't have enough swap space, reclaiming of
1111 			 * anon page which don't already have a swap slot is
1112 			 * pointless.
1113 			 */
1114 			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1115 			    !PageSwapCache(cursor_page))
1116 				break;
1117 
1118 			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1119 				list_move(&cursor_page->lru, dst);
1120 				mem_cgroup_del_lru(cursor_page);
1121 				nr_taken += hpage_nr_pages(page);
1122 				nr_lumpy_taken++;
1123 				if (PageDirty(cursor_page))
1124 					nr_lumpy_dirty++;
1125 				scan++;
1126 			} else {
1127 				/* the page is freed already. */
1128 				if (!page_count(cursor_page))
1129 					continue;
1130 				break;
1131 			}
1132 		}
1133 
1134 		/* If we break out of the loop above, lumpy reclaim failed */
1135 		if (pfn < end_pfn)
1136 			nr_lumpy_failed++;
1137 	}
1138 
1139 	*scanned = scan;
1140 
1141 	trace_mm_vmscan_lru_isolate(order,
1142 			nr_to_scan, scan,
1143 			nr_taken,
1144 			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1145 			mode);
1146 	return nr_taken;
1147 }
1148 
1149 static unsigned long isolate_pages_global(unsigned long nr,
1150 					struct list_head *dst,
1151 					unsigned long *scanned, int order,
1152 					int mode, struct zone *z,
1153 					int active, int file)
1154 {
1155 	int lru = LRU_BASE;
1156 	if (active)
1157 		lru += LRU_ACTIVE;
1158 	if (file)
1159 		lru += LRU_FILE;
1160 	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1161 								mode, file);
1162 }
1163 
1164 /*
1165  * clear_active_flags() is a helper for shrink_active_list(), clearing
1166  * any active bits from the pages in the list.
1167  */
1168 static unsigned long clear_active_flags(struct list_head *page_list,
1169 					unsigned int *count)
1170 {
1171 	int nr_active = 0;
1172 	int lru;
1173 	struct page *page;
1174 
1175 	list_for_each_entry(page, page_list, lru) {
1176 		int numpages = hpage_nr_pages(page);
1177 		lru = page_lru_base_type(page);
1178 		if (PageActive(page)) {
1179 			lru += LRU_ACTIVE;
1180 			ClearPageActive(page);
1181 			nr_active += numpages;
1182 		}
1183 		if (count)
1184 			count[lru] += numpages;
1185 	}
1186 
1187 	return nr_active;
1188 }
1189 
1190 /**
1191  * isolate_lru_page - tries to isolate a page from its LRU list
1192  * @page: page to isolate from its LRU list
1193  *
1194  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1195  * vmstat statistic corresponding to whatever LRU list the page was on.
1196  *
1197  * Returns 0 if the page was removed from an LRU list.
1198  * Returns -EBUSY if the page was not on an LRU list.
1199  *
1200  * The returned page will have PageLRU() cleared.  If it was found on
1201  * the active list, it will have PageActive set.  If it was found on
1202  * the unevictable list, it will have the PageUnevictable bit set. That flag
1203  * may need to be cleared by the caller before letting the page go.
1204  *
1205  * The vmstat statistic corresponding to the list on which the page was
1206  * found will be decremented.
1207  *
1208  * Restrictions:
1209  * (1) Must be called with an elevated refcount on the page. This is a
1210  *     fundamentnal difference from isolate_lru_pages (which is called
1211  *     without a stable reference).
1212  * (2) the lru_lock must not be held.
1213  * (3) interrupts must be enabled.
1214  */
1215 int isolate_lru_page(struct page *page)
1216 {
1217 	int ret = -EBUSY;
1218 
1219 	VM_BUG_ON(!page_count(page));
1220 
1221 	if (PageLRU(page)) {
1222 		struct zone *zone = page_zone(page);
1223 
1224 		spin_lock_irq(&zone->lru_lock);
1225 		if (PageLRU(page)) {
1226 			int lru = page_lru(page);
1227 			ret = 0;
1228 			get_page(page);
1229 			ClearPageLRU(page);
1230 
1231 			del_page_from_lru_list(zone, page, lru);
1232 		}
1233 		spin_unlock_irq(&zone->lru_lock);
1234 	}
1235 	return ret;
1236 }
1237 
1238 /*
1239  * Are there way too many processes in the direct reclaim path already?
1240  */
1241 static int too_many_isolated(struct zone *zone, int file,
1242 		struct scan_control *sc)
1243 {
1244 	unsigned long inactive, isolated;
1245 
1246 	if (current_is_kswapd())
1247 		return 0;
1248 
1249 	if (!scanning_global_lru(sc))
1250 		return 0;
1251 
1252 	if (file) {
1253 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1254 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1255 	} else {
1256 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1257 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1258 	}
1259 
1260 	return isolated > inactive;
1261 }
1262 
1263 /*
1264  * TODO: Try merging with migrations version of putback_lru_pages
1265  */
1266 static noinline_for_stack void
1267 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1268 				unsigned long nr_anon, unsigned long nr_file,
1269 				struct list_head *page_list)
1270 {
1271 	struct page *page;
1272 	struct pagevec pvec;
1273 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1274 
1275 	pagevec_init(&pvec, 1);
1276 
1277 	/*
1278 	 * Put back any unfreeable pages.
1279 	 */
1280 	spin_lock(&zone->lru_lock);
1281 	while (!list_empty(page_list)) {
1282 		int lru;
1283 		page = lru_to_page(page_list);
1284 		VM_BUG_ON(PageLRU(page));
1285 		list_del(&page->lru);
1286 		if (unlikely(!page_evictable(page, NULL))) {
1287 			spin_unlock_irq(&zone->lru_lock);
1288 			putback_lru_page(page);
1289 			spin_lock_irq(&zone->lru_lock);
1290 			continue;
1291 		}
1292 		SetPageLRU(page);
1293 		lru = page_lru(page);
1294 		add_page_to_lru_list(zone, page, lru);
1295 		if (is_active_lru(lru)) {
1296 			int file = is_file_lru(lru);
1297 			int numpages = hpage_nr_pages(page);
1298 			reclaim_stat->recent_rotated[file] += numpages;
1299 		}
1300 		if (!pagevec_add(&pvec, page)) {
1301 			spin_unlock_irq(&zone->lru_lock);
1302 			__pagevec_release(&pvec);
1303 			spin_lock_irq(&zone->lru_lock);
1304 		}
1305 	}
1306 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1307 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1308 
1309 	spin_unlock_irq(&zone->lru_lock);
1310 	pagevec_release(&pvec);
1311 }
1312 
1313 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1314 					struct scan_control *sc,
1315 					unsigned long *nr_anon,
1316 					unsigned long *nr_file,
1317 					struct list_head *isolated_list)
1318 {
1319 	unsigned long nr_active;
1320 	unsigned int count[NR_LRU_LISTS] = { 0, };
1321 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1322 
1323 	nr_active = clear_active_flags(isolated_list, count);
1324 	__count_vm_events(PGDEACTIVATE, nr_active);
1325 
1326 	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1327 			      -count[LRU_ACTIVE_FILE]);
1328 	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1329 			      -count[LRU_INACTIVE_FILE]);
1330 	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1331 			      -count[LRU_ACTIVE_ANON]);
1332 	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1333 			      -count[LRU_INACTIVE_ANON]);
1334 
1335 	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1336 	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1337 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1338 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1339 
1340 	reclaim_stat->recent_scanned[0] += *nr_anon;
1341 	reclaim_stat->recent_scanned[1] += *nr_file;
1342 }
1343 
1344 /*
1345  * Returns true if the caller should wait to clean dirty/writeback pages.
1346  *
1347  * If we are direct reclaiming for contiguous pages and we do not reclaim
1348  * everything in the list, try again and wait for writeback IO to complete.
1349  * This will stall high-order allocations noticeably. Only do that when really
1350  * need to free the pages under high memory pressure.
1351  */
1352 static inline bool should_reclaim_stall(unsigned long nr_taken,
1353 					unsigned long nr_freed,
1354 					int priority,
1355 					struct scan_control *sc)
1356 {
1357 	int lumpy_stall_priority;
1358 
1359 	/* kswapd should not stall on sync IO */
1360 	if (current_is_kswapd())
1361 		return false;
1362 
1363 	/* Only stall on lumpy reclaim */
1364 	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1365 		return false;
1366 
1367 	/* If we have relaimed everything on the isolated list, no stall */
1368 	if (nr_freed == nr_taken)
1369 		return false;
1370 
1371 	/*
1372 	 * For high-order allocations, there are two stall thresholds.
1373 	 * High-cost allocations stall immediately where as lower
1374 	 * order allocations such as stacks require the scanning
1375 	 * priority to be much higher before stalling.
1376 	 */
1377 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1378 		lumpy_stall_priority = DEF_PRIORITY;
1379 	else
1380 		lumpy_stall_priority = DEF_PRIORITY / 3;
1381 
1382 	return priority <= lumpy_stall_priority;
1383 }
1384 
1385 /*
1386  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1387  * of reclaimed pages
1388  */
1389 static noinline_for_stack unsigned long
1390 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1391 			struct scan_control *sc, int priority, int file)
1392 {
1393 	LIST_HEAD(page_list);
1394 	unsigned long nr_scanned;
1395 	unsigned long nr_reclaimed = 0;
1396 	unsigned long nr_taken;
1397 	unsigned long nr_anon;
1398 	unsigned long nr_file;
1399 
1400 	while (unlikely(too_many_isolated(zone, file, sc))) {
1401 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1402 
1403 		/* We are about to die and free our memory. Return now. */
1404 		if (fatal_signal_pending(current))
1405 			return SWAP_CLUSTER_MAX;
1406 	}
1407 
1408 	set_reclaim_mode(priority, sc, false);
1409 	lru_add_drain();
1410 	spin_lock_irq(&zone->lru_lock);
1411 
1412 	if (scanning_global_lru(sc)) {
1413 		nr_taken = isolate_pages_global(nr_to_scan,
1414 			&page_list, &nr_scanned, sc->order,
1415 			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1416 					ISOLATE_BOTH : ISOLATE_INACTIVE,
1417 			zone, 0, file);
1418 		zone->pages_scanned += nr_scanned;
1419 		if (current_is_kswapd())
1420 			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1421 					       nr_scanned);
1422 		else
1423 			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1424 					       nr_scanned);
1425 	} else {
1426 		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1427 			&page_list, &nr_scanned, sc->order,
1428 			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1429 					ISOLATE_BOTH : ISOLATE_INACTIVE,
1430 			zone, sc->mem_cgroup,
1431 			0, file);
1432 		/*
1433 		 * mem_cgroup_isolate_pages() keeps track of
1434 		 * scanned pages on its own.
1435 		 */
1436 	}
1437 
1438 	if (nr_taken == 0) {
1439 		spin_unlock_irq(&zone->lru_lock);
1440 		return 0;
1441 	}
1442 
1443 	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1444 
1445 	spin_unlock_irq(&zone->lru_lock);
1446 
1447 	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1448 
1449 	/* Check if we should syncronously wait for writeback */
1450 	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1451 		set_reclaim_mode(priority, sc, true);
1452 		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1453 	}
1454 
1455 	local_irq_disable();
1456 	if (current_is_kswapd())
1457 		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1458 	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1459 
1460 	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1461 
1462 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1463 		zone_idx(zone),
1464 		nr_scanned, nr_reclaimed,
1465 		priority,
1466 		trace_shrink_flags(file, sc->reclaim_mode));
1467 	return nr_reclaimed;
1468 }
1469 
1470 /*
1471  * This moves pages from the active list to the inactive list.
1472  *
1473  * We move them the other way if the page is referenced by one or more
1474  * processes, from rmap.
1475  *
1476  * If the pages are mostly unmapped, the processing is fast and it is
1477  * appropriate to hold zone->lru_lock across the whole operation.  But if
1478  * the pages are mapped, the processing is slow (page_referenced()) so we
1479  * should drop zone->lru_lock around each page.  It's impossible to balance
1480  * this, so instead we remove the pages from the LRU while processing them.
1481  * It is safe to rely on PG_active against the non-LRU pages in here because
1482  * nobody will play with that bit on a non-LRU page.
1483  *
1484  * The downside is that we have to touch page->_count against each page.
1485  * But we had to alter page->flags anyway.
1486  */
1487 
1488 static void move_active_pages_to_lru(struct zone *zone,
1489 				     struct list_head *list,
1490 				     enum lru_list lru)
1491 {
1492 	unsigned long pgmoved = 0;
1493 	struct pagevec pvec;
1494 	struct page *page;
1495 
1496 	pagevec_init(&pvec, 1);
1497 
1498 	while (!list_empty(list)) {
1499 		page = lru_to_page(list);
1500 
1501 		VM_BUG_ON(PageLRU(page));
1502 		SetPageLRU(page);
1503 
1504 		list_move(&page->lru, &zone->lru[lru].list);
1505 		mem_cgroup_add_lru_list(page, lru);
1506 		pgmoved += hpage_nr_pages(page);
1507 
1508 		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1509 			spin_unlock_irq(&zone->lru_lock);
1510 			if (buffer_heads_over_limit)
1511 				pagevec_strip(&pvec);
1512 			__pagevec_release(&pvec);
1513 			spin_lock_irq(&zone->lru_lock);
1514 		}
1515 	}
1516 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1517 	if (!is_active_lru(lru))
1518 		__count_vm_events(PGDEACTIVATE, pgmoved);
1519 }
1520 
1521 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1522 			struct scan_control *sc, int priority, int file)
1523 {
1524 	unsigned long nr_taken;
1525 	unsigned long pgscanned;
1526 	unsigned long vm_flags;
1527 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1528 	LIST_HEAD(l_active);
1529 	LIST_HEAD(l_inactive);
1530 	struct page *page;
1531 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1532 	unsigned long nr_rotated = 0;
1533 
1534 	lru_add_drain();
1535 	spin_lock_irq(&zone->lru_lock);
1536 	if (scanning_global_lru(sc)) {
1537 		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1538 						&pgscanned, sc->order,
1539 						ISOLATE_ACTIVE, zone,
1540 						1, file);
1541 		zone->pages_scanned += pgscanned;
1542 	} else {
1543 		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1544 						&pgscanned, sc->order,
1545 						ISOLATE_ACTIVE, zone,
1546 						sc->mem_cgroup, 1, file);
1547 		/*
1548 		 * mem_cgroup_isolate_pages() keeps track of
1549 		 * scanned pages on its own.
1550 		 */
1551 	}
1552 
1553 	reclaim_stat->recent_scanned[file] += nr_taken;
1554 
1555 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1556 	if (file)
1557 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1558 	else
1559 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1560 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1561 	spin_unlock_irq(&zone->lru_lock);
1562 
1563 	while (!list_empty(&l_hold)) {
1564 		cond_resched();
1565 		page = lru_to_page(&l_hold);
1566 		list_del(&page->lru);
1567 
1568 		if (unlikely(!page_evictable(page, NULL))) {
1569 			putback_lru_page(page);
1570 			continue;
1571 		}
1572 
1573 		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1574 			nr_rotated += hpage_nr_pages(page);
1575 			/*
1576 			 * Identify referenced, file-backed active pages and
1577 			 * give them one more trip around the active list. So
1578 			 * that executable code get better chances to stay in
1579 			 * memory under moderate memory pressure.  Anon pages
1580 			 * are not likely to be evicted by use-once streaming
1581 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1582 			 * so we ignore them here.
1583 			 */
1584 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1585 				list_add(&page->lru, &l_active);
1586 				continue;
1587 			}
1588 		}
1589 
1590 		ClearPageActive(page);	/* we are de-activating */
1591 		list_add(&page->lru, &l_inactive);
1592 	}
1593 
1594 	/*
1595 	 * Move pages back to the lru list.
1596 	 */
1597 	spin_lock_irq(&zone->lru_lock);
1598 	/*
1599 	 * Count referenced pages from currently used mappings as rotated,
1600 	 * even though only some of them are actually re-activated.  This
1601 	 * helps balance scan pressure between file and anonymous pages in
1602 	 * get_scan_ratio.
1603 	 */
1604 	reclaim_stat->recent_rotated[file] += nr_rotated;
1605 
1606 	move_active_pages_to_lru(zone, &l_active,
1607 						LRU_ACTIVE + file * LRU_FILE);
1608 	move_active_pages_to_lru(zone, &l_inactive,
1609 						LRU_BASE   + file * LRU_FILE);
1610 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1611 	spin_unlock_irq(&zone->lru_lock);
1612 }
1613 
1614 #ifdef CONFIG_SWAP
1615 static int inactive_anon_is_low_global(struct zone *zone)
1616 {
1617 	unsigned long active, inactive;
1618 
1619 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1620 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1621 
1622 	if (inactive * zone->inactive_ratio < active)
1623 		return 1;
1624 
1625 	return 0;
1626 }
1627 
1628 /**
1629  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1630  * @zone: zone to check
1631  * @sc:   scan control of this context
1632  *
1633  * Returns true if the zone does not have enough inactive anon pages,
1634  * meaning some active anon pages need to be deactivated.
1635  */
1636 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1637 {
1638 	int low;
1639 
1640 	/*
1641 	 * If we don't have swap space, anonymous page deactivation
1642 	 * is pointless.
1643 	 */
1644 	if (!total_swap_pages)
1645 		return 0;
1646 
1647 	if (scanning_global_lru(sc))
1648 		low = inactive_anon_is_low_global(zone);
1649 	else
1650 		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1651 	return low;
1652 }
1653 #else
1654 static inline int inactive_anon_is_low(struct zone *zone,
1655 					struct scan_control *sc)
1656 {
1657 	return 0;
1658 }
1659 #endif
1660 
1661 static int inactive_file_is_low_global(struct zone *zone)
1662 {
1663 	unsigned long active, inactive;
1664 
1665 	active = zone_page_state(zone, NR_ACTIVE_FILE);
1666 	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1667 
1668 	return (active > inactive);
1669 }
1670 
1671 /**
1672  * inactive_file_is_low - check if file pages need to be deactivated
1673  * @zone: zone to check
1674  * @sc:   scan control of this context
1675  *
1676  * When the system is doing streaming IO, memory pressure here
1677  * ensures that active file pages get deactivated, until more
1678  * than half of the file pages are on the inactive list.
1679  *
1680  * Once we get to that situation, protect the system's working
1681  * set from being evicted by disabling active file page aging.
1682  *
1683  * This uses a different ratio than the anonymous pages, because
1684  * the page cache uses a use-once replacement algorithm.
1685  */
1686 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1687 {
1688 	int low;
1689 
1690 	if (scanning_global_lru(sc))
1691 		low = inactive_file_is_low_global(zone);
1692 	else
1693 		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1694 	return low;
1695 }
1696 
1697 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1698 				int file)
1699 {
1700 	if (file)
1701 		return inactive_file_is_low(zone, sc);
1702 	else
1703 		return inactive_anon_is_low(zone, sc);
1704 }
1705 
1706 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1707 	struct zone *zone, struct scan_control *sc, int priority)
1708 {
1709 	int file = is_file_lru(lru);
1710 
1711 	if (is_active_lru(lru)) {
1712 		if (inactive_list_is_low(zone, sc, file))
1713 		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1714 		return 0;
1715 	}
1716 
1717 	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1718 }
1719 
1720 /*
1721  * Determine how aggressively the anon and file LRU lists should be
1722  * scanned.  The relative value of each set of LRU lists is determined
1723  * by looking at the fraction of the pages scanned we did rotate back
1724  * onto the active list instead of evict.
1725  *
1726  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1727  */
1728 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1729 					unsigned long *nr, int priority)
1730 {
1731 	unsigned long anon, file, free;
1732 	unsigned long anon_prio, file_prio;
1733 	unsigned long ap, fp;
1734 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1735 	u64 fraction[2], denominator;
1736 	enum lru_list l;
1737 	int noswap = 0;
1738 	int force_scan = 0;
1739 
1740 
1741 	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1742 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1743 	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1744 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1745 
1746 	if (((anon + file) >> priority) < SWAP_CLUSTER_MAX) {
1747 		/* kswapd does zone balancing and need to scan this zone */
1748 		if (scanning_global_lru(sc) && current_is_kswapd())
1749 			force_scan = 1;
1750 		/* memcg may have small limit and need to avoid priority drop */
1751 		if (!scanning_global_lru(sc))
1752 			force_scan = 1;
1753 	}
1754 
1755 	/* If we have no swap space, do not bother scanning anon pages. */
1756 	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1757 		noswap = 1;
1758 		fraction[0] = 0;
1759 		fraction[1] = 1;
1760 		denominator = 1;
1761 		goto out;
1762 	}
1763 
1764 	if (scanning_global_lru(sc)) {
1765 		free  = zone_page_state(zone, NR_FREE_PAGES);
1766 		/* If we have very few page cache pages,
1767 		   force-scan anon pages. */
1768 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1769 			fraction[0] = 1;
1770 			fraction[1] = 0;
1771 			denominator = 1;
1772 			goto out;
1773 		}
1774 	}
1775 
1776 	/*
1777 	 * With swappiness at 100, anonymous and file have the same priority.
1778 	 * This scanning priority is essentially the inverse of IO cost.
1779 	 */
1780 	anon_prio = sc->swappiness;
1781 	file_prio = 200 - sc->swappiness;
1782 
1783 	/*
1784 	 * OK, so we have swap space and a fair amount of page cache
1785 	 * pages.  We use the recently rotated / recently scanned
1786 	 * ratios to determine how valuable each cache is.
1787 	 *
1788 	 * Because workloads change over time (and to avoid overflow)
1789 	 * we keep these statistics as a floating average, which ends
1790 	 * up weighing recent references more than old ones.
1791 	 *
1792 	 * anon in [0], file in [1]
1793 	 */
1794 	spin_lock_irq(&zone->lru_lock);
1795 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1796 		reclaim_stat->recent_scanned[0] /= 2;
1797 		reclaim_stat->recent_rotated[0] /= 2;
1798 	}
1799 
1800 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1801 		reclaim_stat->recent_scanned[1] /= 2;
1802 		reclaim_stat->recent_rotated[1] /= 2;
1803 	}
1804 
1805 	/*
1806 	 * The amount of pressure on anon vs file pages is inversely
1807 	 * proportional to the fraction of recently scanned pages on
1808 	 * each list that were recently referenced and in active use.
1809 	 */
1810 	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1811 	ap /= reclaim_stat->recent_rotated[0] + 1;
1812 
1813 	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1814 	fp /= reclaim_stat->recent_rotated[1] + 1;
1815 	spin_unlock_irq(&zone->lru_lock);
1816 
1817 	fraction[0] = ap;
1818 	fraction[1] = fp;
1819 	denominator = ap + fp + 1;
1820 out:
1821 	for_each_evictable_lru(l) {
1822 		int file = is_file_lru(l);
1823 		unsigned long scan;
1824 
1825 		scan = zone_nr_lru_pages(zone, sc, l);
1826 		if (priority || noswap) {
1827 			scan >>= priority;
1828 			scan = div64_u64(scan * fraction[file], denominator);
1829 		}
1830 
1831 		/*
1832 		 * If zone is small or memcg is small, nr[l] can be 0.
1833 		 * This results no-scan on this priority and priority drop down.
1834 		 * For global direct reclaim, it can visit next zone and tend
1835 		 * not to have problems. For global kswapd, it's for zone
1836 		 * balancing and it need to scan a small amounts. When using
1837 		 * memcg, priority drop can cause big latency. So, it's better
1838 		 * to scan small amount. See may_noscan above.
1839 		 */
1840 		if (!scan && force_scan) {
1841 			if (file)
1842 				scan = SWAP_CLUSTER_MAX;
1843 			else if (!noswap)
1844 				scan = SWAP_CLUSTER_MAX;
1845 		}
1846 		nr[l] = scan;
1847 	}
1848 }
1849 
1850 /*
1851  * Reclaim/compaction depends on a number of pages being freed. To avoid
1852  * disruption to the system, a small number of order-0 pages continue to be
1853  * rotated and reclaimed in the normal fashion. However, by the time we get
1854  * back to the allocator and call try_to_compact_zone(), we ensure that
1855  * there are enough free pages for it to be likely successful
1856  */
1857 static inline bool should_continue_reclaim(struct zone *zone,
1858 					unsigned long nr_reclaimed,
1859 					unsigned long nr_scanned,
1860 					struct scan_control *sc)
1861 {
1862 	unsigned long pages_for_compaction;
1863 	unsigned long inactive_lru_pages;
1864 
1865 	/* If not in reclaim/compaction mode, stop */
1866 	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1867 		return false;
1868 
1869 	/* Consider stopping depending on scan and reclaim activity */
1870 	if (sc->gfp_mask & __GFP_REPEAT) {
1871 		/*
1872 		 * For __GFP_REPEAT allocations, stop reclaiming if the
1873 		 * full LRU list has been scanned and we are still failing
1874 		 * to reclaim pages. This full LRU scan is potentially
1875 		 * expensive but a __GFP_REPEAT caller really wants to succeed
1876 		 */
1877 		if (!nr_reclaimed && !nr_scanned)
1878 			return false;
1879 	} else {
1880 		/*
1881 		 * For non-__GFP_REPEAT allocations which can presumably
1882 		 * fail without consequence, stop if we failed to reclaim
1883 		 * any pages from the last SWAP_CLUSTER_MAX number of
1884 		 * pages that were scanned. This will return to the
1885 		 * caller faster at the risk reclaim/compaction and
1886 		 * the resulting allocation attempt fails
1887 		 */
1888 		if (!nr_reclaimed)
1889 			return false;
1890 	}
1891 
1892 	/*
1893 	 * If we have not reclaimed enough pages for compaction and the
1894 	 * inactive lists are large enough, continue reclaiming
1895 	 */
1896 	pages_for_compaction = (2UL << sc->order);
1897 	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1898 				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1899 	if (sc->nr_reclaimed < pages_for_compaction &&
1900 			inactive_lru_pages > pages_for_compaction)
1901 		return true;
1902 
1903 	/* If compaction would go ahead or the allocation would succeed, stop */
1904 	switch (compaction_suitable(zone, sc->order)) {
1905 	case COMPACT_PARTIAL:
1906 	case COMPACT_CONTINUE:
1907 		return false;
1908 	default:
1909 		return true;
1910 	}
1911 }
1912 
1913 /*
1914  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1915  */
1916 static void shrink_zone(int priority, struct zone *zone,
1917 				struct scan_control *sc)
1918 {
1919 	unsigned long nr[NR_LRU_LISTS];
1920 	unsigned long nr_to_scan;
1921 	enum lru_list l;
1922 	unsigned long nr_reclaimed, nr_scanned;
1923 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1924 
1925 restart:
1926 	nr_reclaimed = 0;
1927 	nr_scanned = sc->nr_scanned;
1928 	get_scan_count(zone, sc, nr, priority);
1929 
1930 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1931 					nr[LRU_INACTIVE_FILE]) {
1932 		for_each_evictable_lru(l) {
1933 			if (nr[l]) {
1934 				nr_to_scan = min_t(unsigned long,
1935 						   nr[l], SWAP_CLUSTER_MAX);
1936 				nr[l] -= nr_to_scan;
1937 
1938 				nr_reclaimed += shrink_list(l, nr_to_scan,
1939 							    zone, sc, priority);
1940 			}
1941 		}
1942 		/*
1943 		 * On large memory systems, scan >> priority can become
1944 		 * really large. This is fine for the starting priority;
1945 		 * we want to put equal scanning pressure on each zone.
1946 		 * However, if the VM has a harder time of freeing pages,
1947 		 * with multiple processes reclaiming pages, the total
1948 		 * freeing target can get unreasonably large.
1949 		 */
1950 		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1951 			break;
1952 	}
1953 	sc->nr_reclaimed += nr_reclaimed;
1954 
1955 	/*
1956 	 * Even if we did not try to evict anon pages at all, we want to
1957 	 * rebalance the anon lru active/inactive ratio.
1958 	 */
1959 	if (inactive_anon_is_low(zone, sc))
1960 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1961 
1962 	/* reclaim/compaction might need reclaim to continue */
1963 	if (should_continue_reclaim(zone, nr_reclaimed,
1964 					sc->nr_scanned - nr_scanned, sc))
1965 		goto restart;
1966 
1967 	throttle_vm_writeout(sc->gfp_mask);
1968 }
1969 
1970 /*
1971  * This is the direct reclaim path, for page-allocating processes.  We only
1972  * try to reclaim pages from zones which will satisfy the caller's allocation
1973  * request.
1974  *
1975  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1976  * Because:
1977  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1978  *    allocation or
1979  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1980  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1981  *    zone defense algorithm.
1982  *
1983  * If a zone is deemed to be full of pinned pages then just give it a light
1984  * scan then give up on it.
1985  */
1986 static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
1987 					struct scan_control *sc)
1988 {
1989 	struct zoneref *z;
1990 	struct zone *zone;
1991 	unsigned long nr_soft_reclaimed;
1992 	unsigned long nr_soft_scanned;
1993 	unsigned long total_scanned = 0;
1994 
1995 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1996 					gfp_zone(sc->gfp_mask), sc->nodemask) {
1997 		if (!populated_zone(zone))
1998 			continue;
1999 		/*
2000 		 * Take care memory controller reclaiming has small influence
2001 		 * to global LRU.
2002 		 */
2003 		if (scanning_global_lru(sc)) {
2004 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2005 				continue;
2006 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2007 				continue;	/* Let kswapd poll it */
2008 		}
2009 
2010 		nr_soft_scanned = 0;
2011 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2012 							sc->order, sc->gfp_mask,
2013 							&nr_soft_scanned);
2014 		sc->nr_reclaimed += nr_soft_reclaimed;
2015 		total_scanned += nr_soft_scanned;
2016 
2017 		shrink_zone(priority, zone, sc);
2018 	}
2019 
2020 	return total_scanned;
2021 }
2022 
2023 static bool zone_reclaimable(struct zone *zone)
2024 {
2025 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2026 }
2027 
2028 /* All zones in zonelist are unreclaimable? */
2029 static bool all_unreclaimable(struct zonelist *zonelist,
2030 		struct scan_control *sc)
2031 {
2032 	struct zoneref *z;
2033 	struct zone *zone;
2034 
2035 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2036 			gfp_zone(sc->gfp_mask), sc->nodemask) {
2037 		if (!populated_zone(zone))
2038 			continue;
2039 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2040 			continue;
2041 		if (!zone->all_unreclaimable)
2042 			return false;
2043 	}
2044 
2045 	return true;
2046 }
2047 
2048 /*
2049  * This is the main entry point to direct page reclaim.
2050  *
2051  * If a full scan of the inactive list fails to free enough memory then we
2052  * are "out of memory" and something needs to be killed.
2053  *
2054  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2055  * high - the zone may be full of dirty or under-writeback pages, which this
2056  * caller can't do much about.  We kick the writeback threads and take explicit
2057  * naps in the hope that some of these pages can be written.  But if the
2058  * allocating task holds filesystem locks which prevent writeout this might not
2059  * work, and the allocation attempt will fail.
2060  *
2061  * returns:	0, if no pages reclaimed
2062  * 		else, the number of pages reclaimed
2063  */
2064 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2065 					struct scan_control *sc,
2066 					struct shrink_control *shrink)
2067 {
2068 	int priority;
2069 	unsigned long total_scanned = 0;
2070 	struct reclaim_state *reclaim_state = current->reclaim_state;
2071 	struct zoneref *z;
2072 	struct zone *zone;
2073 	unsigned long writeback_threshold;
2074 
2075 	get_mems_allowed();
2076 	delayacct_freepages_start();
2077 
2078 	if (scanning_global_lru(sc))
2079 		count_vm_event(ALLOCSTALL);
2080 
2081 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2082 		sc->nr_scanned = 0;
2083 		if (!priority)
2084 			disable_swap_token();
2085 		total_scanned += shrink_zones(priority, zonelist, sc);
2086 		/*
2087 		 * Don't shrink slabs when reclaiming memory from
2088 		 * over limit cgroups
2089 		 */
2090 		if (scanning_global_lru(sc)) {
2091 			unsigned long lru_pages = 0;
2092 			for_each_zone_zonelist(zone, z, zonelist,
2093 					gfp_zone(sc->gfp_mask)) {
2094 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2095 					continue;
2096 
2097 				lru_pages += zone_reclaimable_pages(zone);
2098 			}
2099 
2100 			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2101 			if (reclaim_state) {
2102 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2103 				reclaim_state->reclaimed_slab = 0;
2104 			}
2105 		}
2106 		total_scanned += sc->nr_scanned;
2107 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2108 			goto out;
2109 
2110 		/*
2111 		 * Try to write back as many pages as we just scanned.  This
2112 		 * tends to cause slow streaming writers to write data to the
2113 		 * disk smoothly, at the dirtying rate, which is nice.   But
2114 		 * that's undesirable in laptop mode, where we *want* lumpy
2115 		 * writeout.  So in laptop mode, write out the whole world.
2116 		 */
2117 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2118 		if (total_scanned > writeback_threshold) {
2119 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2120 			sc->may_writepage = 1;
2121 		}
2122 
2123 		/* Take a nap, wait for some writeback to complete */
2124 		if (!sc->hibernation_mode && sc->nr_scanned &&
2125 		    priority < DEF_PRIORITY - 2) {
2126 			struct zone *preferred_zone;
2127 
2128 			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2129 						&cpuset_current_mems_allowed,
2130 						&preferred_zone);
2131 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2132 		}
2133 	}
2134 
2135 out:
2136 	delayacct_freepages_end();
2137 	put_mems_allowed();
2138 
2139 	if (sc->nr_reclaimed)
2140 		return sc->nr_reclaimed;
2141 
2142 	/*
2143 	 * As hibernation is going on, kswapd is freezed so that it can't mark
2144 	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2145 	 * check.
2146 	 */
2147 	if (oom_killer_disabled)
2148 		return 0;
2149 
2150 	/* top priority shrink_zones still had more to do? don't OOM, then */
2151 	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2152 		return 1;
2153 
2154 	return 0;
2155 }
2156 
2157 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2158 				gfp_t gfp_mask, nodemask_t *nodemask)
2159 {
2160 	unsigned long nr_reclaimed;
2161 	struct scan_control sc = {
2162 		.gfp_mask = gfp_mask,
2163 		.may_writepage = !laptop_mode,
2164 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2165 		.may_unmap = 1,
2166 		.may_swap = 1,
2167 		.swappiness = vm_swappiness,
2168 		.order = order,
2169 		.mem_cgroup = NULL,
2170 		.nodemask = nodemask,
2171 	};
2172 	struct shrink_control shrink = {
2173 		.gfp_mask = sc.gfp_mask,
2174 	};
2175 
2176 	trace_mm_vmscan_direct_reclaim_begin(order,
2177 				sc.may_writepage,
2178 				gfp_mask);
2179 
2180 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2181 
2182 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2183 
2184 	return nr_reclaimed;
2185 }
2186 
2187 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2188 
2189 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2190 						gfp_t gfp_mask, bool noswap,
2191 						unsigned int swappiness,
2192 						struct zone *zone,
2193 						unsigned long *nr_scanned)
2194 {
2195 	struct scan_control sc = {
2196 		.nr_scanned = 0,
2197 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2198 		.may_writepage = !laptop_mode,
2199 		.may_unmap = 1,
2200 		.may_swap = !noswap,
2201 		.swappiness = swappiness,
2202 		.order = 0,
2203 		.mem_cgroup = mem,
2204 	};
2205 
2206 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2207 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2208 
2209 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2210 						      sc.may_writepage,
2211 						      sc.gfp_mask);
2212 
2213 	/*
2214 	 * NOTE: Although we can get the priority field, using it
2215 	 * here is not a good idea, since it limits the pages we can scan.
2216 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2217 	 * will pick up pages from other mem cgroup's as well. We hack
2218 	 * the priority and make it zero.
2219 	 */
2220 	shrink_zone(0, zone, &sc);
2221 
2222 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2223 
2224 	*nr_scanned = sc.nr_scanned;
2225 	return sc.nr_reclaimed;
2226 }
2227 
2228 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2229 					   gfp_t gfp_mask,
2230 					   bool noswap,
2231 					   unsigned int swappiness)
2232 {
2233 	struct zonelist *zonelist;
2234 	unsigned long nr_reclaimed;
2235 	int nid;
2236 	struct scan_control sc = {
2237 		.may_writepage = !laptop_mode,
2238 		.may_unmap = 1,
2239 		.may_swap = !noswap,
2240 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2241 		.swappiness = swappiness,
2242 		.order = 0,
2243 		.mem_cgroup = mem_cont,
2244 		.nodemask = NULL, /* we don't care the placement */
2245 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2246 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2247 	};
2248 	struct shrink_control shrink = {
2249 		.gfp_mask = sc.gfp_mask,
2250 	};
2251 
2252 	/*
2253 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2254 	 * take care of from where we get pages. So the node where we start the
2255 	 * scan does not need to be the current node.
2256 	 */
2257 	nid = mem_cgroup_select_victim_node(mem_cont);
2258 
2259 	zonelist = NODE_DATA(nid)->node_zonelists;
2260 
2261 	trace_mm_vmscan_memcg_reclaim_begin(0,
2262 					    sc.may_writepage,
2263 					    sc.gfp_mask);
2264 
2265 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2266 
2267 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2268 
2269 	return nr_reclaimed;
2270 }
2271 #endif
2272 
2273 /*
2274  * pgdat_balanced is used when checking if a node is balanced for high-order
2275  * allocations. Only zones that meet watermarks and are in a zone allowed
2276  * by the callers classzone_idx are added to balanced_pages. The total of
2277  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2278  * for the node to be considered balanced. Forcing all zones to be balanced
2279  * for high orders can cause excessive reclaim when there are imbalanced zones.
2280  * The choice of 25% is due to
2281  *   o a 16M DMA zone that is balanced will not balance a zone on any
2282  *     reasonable sized machine
2283  *   o On all other machines, the top zone must be at least a reasonable
2284  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2285  *     would need to be at least 256M for it to be balance a whole node.
2286  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2287  *     to balance a node on its own. These seemed like reasonable ratios.
2288  */
2289 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2290 						int classzone_idx)
2291 {
2292 	unsigned long present_pages = 0;
2293 	int i;
2294 
2295 	for (i = 0; i <= classzone_idx; i++)
2296 		present_pages += pgdat->node_zones[i].present_pages;
2297 
2298 	return balanced_pages > (present_pages >> 2);
2299 }
2300 
2301 /* is kswapd sleeping prematurely? */
2302 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2303 					int classzone_idx)
2304 {
2305 	int i;
2306 	unsigned long balanced = 0;
2307 	bool all_zones_ok = true;
2308 
2309 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2310 	if (remaining)
2311 		return true;
2312 
2313 	/* Check the watermark levels */
2314 	for (i = 0; i < pgdat->nr_zones; i++) {
2315 		struct zone *zone = pgdat->node_zones + i;
2316 
2317 		if (!populated_zone(zone))
2318 			continue;
2319 
2320 		/*
2321 		 * balance_pgdat() skips over all_unreclaimable after
2322 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2323 		 * they must be considered balanced here as well if kswapd
2324 		 * is to sleep
2325 		 */
2326 		if (zone->all_unreclaimable) {
2327 			balanced += zone->present_pages;
2328 			continue;
2329 		}
2330 
2331 		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2332 							classzone_idx, 0))
2333 			all_zones_ok = false;
2334 		else
2335 			balanced += zone->present_pages;
2336 	}
2337 
2338 	/*
2339 	 * For high-order requests, the balanced zones must contain at least
2340 	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2341 	 * must be balanced
2342 	 */
2343 	if (order)
2344 		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2345 	else
2346 		return !all_zones_ok;
2347 }
2348 
2349 /*
2350  * For kswapd, balance_pgdat() will work across all this node's zones until
2351  * they are all at high_wmark_pages(zone).
2352  *
2353  * Returns the final order kswapd was reclaiming at
2354  *
2355  * There is special handling here for zones which are full of pinned pages.
2356  * This can happen if the pages are all mlocked, or if they are all used by
2357  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2358  * What we do is to detect the case where all pages in the zone have been
2359  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2360  * dead and from now on, only perform a short scan.  Basically we're polling
2361  * the zone for when the problem goes away.
2362  *
2363  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2364  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2365  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2366  * lower zones regardless of the number of free pages in the lower zones. This
2367  * interoperates with the page allocator fallback scheme to ensure that aging
2368  * of pages is balanced across the zones.
2369  */
2370 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2371 							int *classzone_idx)
2372 {
2373 	int all_zones_ok;
2374 	unsigned long balanced;
2375 	int priority;
2376 	int i;
2377 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2378 	unsigned long total_scanned;
2379 	struct reclaim_state *reclaim_state = current->reclaim_state;
2380 	unsigned long nr_soft_reclaimed;
2381 	unsigned long nr_soft_scanned;
2382 	struct scan_control sc = {
2383 		.gfp_mask = GFP_KERNEL,
2384 		.may_unmap = 1,
2385 		.may_swap = 1,
2386 		/*
2387 		 * kswapd doesn't want to be bailed out while reclaim. because
2388 		 * we want to put equal scanning pressure on each zone.
2389 		 */
2390 		.nr_to_reclaim = ULONG_MAX,
2391 		.swappiness = vm_swappiness,
2392 		.order = order,
2393 		.mem_cgroup = NULL,
2394 	};
2395 	struct shrink_control shrink = {
2396 		.gfp_mask = sc.gfp_mask,
2397 	};
2398 loop_again:
2399 	total_scanned = 0;
2400 	sc.nr_reclaimed = 0;
2401 	sc.may_writepage = !laptop_mode;
2402 	count_vm_event(PAGEOUTRUN);
2403 
2404 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2405 		unsigned long lru_pages = 0;
2406 		int has_under_min_watermark_zone = 0;
2407 
2408 		/* The swap token gets in the way of swapout... */
2409 		if (!priority)
2410 			disable_swap_token();
2411 
2412 		all_zones_ok = 1;
2413 		balanced = 0;
2414 
2415 		/*
2416 		 * Scan in the highmem->dma direction for the highest
2417 		 * zone which needs scanning
2418 		 */
2419 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2420 			struct zone *zone = pgdat->node_zones + i;
2421 
2422 			if (!populated_zone(zone))
2423 				continue;
2424 
2425 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2426 				continue;
2427 
2428 			/*
2429 			 * Do some background aging of the anon list, to give
2430 			 * pages a chance to be referenced before reclaiming.
2431 			 */
2432 			if (inactive_anon_is_low(zone, &sc))
2433 				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2434 							&sc, priority, 0);
2435 
2436 			if (!zone_watermark_ok_safe(zone, order,
2437 					high_wmark_pages(zone), 0, 0)) {
2438 				end_zone = i;
2439 				*classzone_idx = i;
2440 				break;
2441 			}
2442 		}
2443 		if (i < 0)
2444 			goto out;
2445 
2446 		for (i = 0; i <= end_zone; i++) {
2447 			struct zone *zone = pgdat->node_zones + i;
2448 
2449 			lru_pages += zone_reclaimable_pages(zone);
2450 		}
2451 
2452 		/*
2453 		 * Now scan the zone in the dma->highmem direction, stopping
2454 		 * at the last zone which needs scanning.
2455 		 *
2456 		 * We do this because the page allocator works in the opposite
2457 		 * direction.  This prevents the page allocator from allocating
2458 		 * pages behind kswapd's direction of progress, which would
2459 		 * cause too much scanning of the lower zones.
2460 		 */
2461 		for (i = 0; i <= end_zone; i++) {
2462 			struct zone *zone = pgdat->node_zones + i;
2463 			int nr_slab;
2464 			unsigned long balance_gap;
2465 
2466 			if (!populated_zone(zone))
2467 				continue;
2468 
2469 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2470 				continue;
2471 
2472 			sc.nr_scanned = 0;
2473 
2474 			nr_soft_scanned = 0;
2475 			/*
2476 			 * Call soft limit reclaim before calling shrink_zone.
2477 			 */
2478 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2479 							order, sc.gfp_mask,
2480 							&nr_soft_scanned);
2481 			sc.nr_reclaimed += nr_soft_reclaimed;
2482 			total_scanned += nr_soft_scanned;
2483 
2484 			/*
2485 			 * We put equal pressure on every zone, unless
2486 			 * one zone has way too many pages free
2487 			 * already. The "too many pages" is defined
2488 			 * as the high wmark plus a "gap" where the
2489 			 * gap is either the low watermark or 1%
2490 			 * of the zone, whichever is smaller.
2491 			 */
2492 			balance_gap = min(low_wmark_pages(zone),
2493 				(zone->present_pages +
2494 					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2495 				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2496 			if (!zone_watermark_ok_safe(zone, order,
2497 					high_wmark_pages(zone) + balance_gap,
2498 					end_zone, 0))
2499 				shrink_zone(priority, zone, &sc);
2500 			reclaim_state->reclaimed_slab = 0;
2501 			nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2502 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2503 			total_scanned += sc.nr_scanned;
2504 
2505 			if (zone->all_unreclaimable)
2506 				continue;
2507 			if (nr_slab == 0 &&
2508 			    !zone_reclaimable(zone))
2509 				zone->all_unreclaimable = 1;
2510 			/*
2511 			 * If we've done a decent amount of scanning and
2512 			 * the reclaim ratio is low, start doing writepage
2513 			 * even in laptop mode
2514 			 */
2515 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2516 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2517 				sc.may_writepage = 1;
2518 
2519 			if (!zone_watermark_ok_safe(zone, order,
2520 					high_wmark_pages(zone), end_zone, 0)) {
2521 				all_zones_ok = 0;
2522 				/*
2523 				 * We are still under min water mark.  This
2524 				 * means that we have a GFP_ATOMIC allocation
2525 				 * failure risk. Hurry up!
2526 				 */
2527 				if (!zone_watermark_ok_safe(zone, order,
2528 					    min_wmark_pages(zone), end_zone, 0))
2529 					has_under_min_watermark_zone = 1;
2530 			} else {
2531 				/*
2532 				 * If a zone reaches its high watermark,
2533 				 * consider it to be no longer congested. It's
2534 				 * possible there are dirty pages backed by
2535 				 * congested BDIs but as pressure is relieved,
2536 				 * spectulatively avoid congestion waits
2537 				 */
2538 				zone_clear_flag(zone, ZONE_CONGESTED);
2539 				if (i <= *classzone_idx)
2540 					balanced += zone->present_pages;
2541 			}
2542 
2543 		}
2544 		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2545 			break;		/* kswapd: all done */
2546 		/*
2547 		 * OK, kswapd is getting into trouble.  Take a nap, then take
2548 		 * another pass across the zones.
2549 		 */
2550 		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2551 			if (has_under_min_watermark_zone)
2552 				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2553 			else
2554 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2555 		}
2556 
2557 		/*
2558 		 * We do this so kswapd doesn't build up large priorities for
2559 		 * example when it is freeing in parallel with allocators. It
2560 		 * matches the direct reclaim path behaviour in terms of impact
2561 		 * on zone->*_priority.
2562 		 */
2563 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2564 			break;
2565 	}
2566 out:
2567 
2568 	/*
2569 	 * order-0: All zones must meet high watermark for a balanced node
2570 	 * high-order: Balanced zones must make up at least 25% of the node
2571 	 *             for the node to be balanced
2572 	 */
2573 	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2574 		cond_resched();
2575 
2576 		try_to_freeze();
2577 
2578 		/*
2579 		 * Fragmentation may mean that the system cannot be
2580 		 * rebalanced for high-order allocations in all zones.
2581 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2582 		 * it means the zones have been fully scanned and are still
2583 		 * not balanced. For high-order allocations, there is
2584 		 * little point trying all over again as kswapd may
2585 		 * infinite loop.
2586 		 *
2587 		 * Instead, recheck all watermarks at order-0 as they
2588 		 * are the most important. If watermarks are ok, kswapd will go
2589 		 * back to sleep. High-order users can still perform direct
2590 		 * reclaim if they wish.
2591 		 */
2592 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2593 			order = sc.order = 0;
2594 
2595 		goto loop_again;
2596 	}
2597 
2598 	/*
2599 	 * If kswapd was reclaiming at a higher order, it has the option of
2600 	 * sleeping without all zones being balanced. Before it does, it must
2601 	 * ensure that the watermarks for order-0 on *all* zones are met and
2602 	 * that the congestion flags are cleared. The congestion flag must
2603 	 * be cleared as kswapd is the only mechanism that clears the flag
2604 	 * and it is potentially going to sleep here.
2605 	 */
2606 	if (order) {
2607 		for (i = 0; i <= end_zone; i++) {
2608 			struct zone *zone = pgdat->node_zones + i;
2609 
2610 			if (!populated_zone(zone))
2611 				continue;
2612 
2613 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2614 				continue;
2615 
2616 			/* Confirm the zone is balanced for order-0 */
2617 			if (!zone_watermark_ok(zone, 0,
2618 					high_wmark_pages(zone), 0, 0)) {
2619 				order = sc.order = 0;
2620 				goto loop_again;
2621 			}
2622 
2623 			/* If balanced, clear the congested flag */
2624 			zone_clear_flag(zone, ZONE_CONGESTED);
2625 		}
2626 	}
2627 
2628 	/*
2629 	 * Return the order we were reclaiming at so sleeping_prematurely()
2630 	 * makes a decision on the order we were last reclaiming at. However,
2631 	 * if another caller entered the allocator slow path while kswapd
2632 	 * was awake, order will remain at the higher level
2633 	 */
2634 	*classzone_idx = end_zone;
2635 	return order;
2636 }
2637 
2638 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2639 {
2640 	long remaining = 0;
2641 	DEFINE_WAIT(wait);
2642 
2643 	if (freezing(current) || kthread_should_stop())
2644 		return;
2645 
2646 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2647 
2648 	/* Try to sleep for a short interval */
2649 	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2650 		remaining = schedule_timeout(HZ/10);
2651 		finish_wait(&pgdat->kswapd_wait, &wait);
2652 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2653 	}
2654 
2655 	/*
2656 	 * After a short sleep, check if it was a premature sleep. If not, then
2657 	 * go fully to sleep until explicitly woken up.
2658 	 */
2659 	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2660 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2661 
2662 		/*
2663 		 * vmstat counters are not perfectly accurate and the estimated
2664 		 * value for counters such as NR_FREE_PAGES can deviate from the
2665 		 * true value by nr_online_cpus * threshold. To avoid the zone
2666 		 * watermarks being breached while under pressure, we reduce the
2667 		 * per-cpu vmstat threshold while kswapd is awake and restore
2668 		 * them before going back to sleep.
2669 		 */
2670 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2671 		schedule();
2672 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2673 	} else {
2674 		if (remaining)
2675 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2676 		else
2677 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2678 	}
2679 	finish_wait(&pgdat->kswapd_wait, &wait);
2680 }
2681 
2682 /*
2683  * The background pageout daemon, started as a kernel thread
2684  * from the init process.
2685  *
2686  * This basically trickles out pages so that we have _some_
2687  * free memory available even if there is no other activity
2688  * that frees anything up. This is needed for things like routing
2689  * etc, where we otherwise might have all activity going on in
2690  * asynchronous contexts that cannot page things out.
2691  *
2692  * If there are applications that are active memory-allocators
2693  * (most normal use), this basically shouldn't matter.
2694  */
2695 static int kswapd(void *p)
2696 {
2697 	unsigned long order;
2698 	int classzone_idx;
2699 	pg_data_t *pgdat = (pg_data_t*)p;
2700 	struct task_struct *tsk = current;
2701 
2702 	struct reclaim_state reclaim_state = {
2703 		.reclaimed_slab = 0,
2704 	};
2705 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2706 
2707 	lockdep_set_current_reclaim_state(GFP_KERNEL);
2708 
2709 	if (!cpumask_empty(cpumask))
2710 		set_cpus_allowed_ptr(tsk, cpumask);
2711 	current->reclaim_state = &reclaim_state;
2712 
2713 	/*
2714 	 * Tell the memory management that we're a "memory allocator",
2715 	 * and that if we need more memory we should get access to it
2716 	 * regardless (see "__alloc_pages()"). "kswapd" should
2717 	 * never get caught in the normal page freeing logic.
2718 	 *
2719 	 * (Kswapd normally doesn't need memory anyway, but sometimes
2720 	 * you need a small amount of memory in order to be able to
2721 	 * page out something else, and this flag essentially protects
2722 	 * us from recursively trying to free more memory as we're
2723 	 * trying to free the first piece of memory in the first place).
2724 	 */
2725 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2726 	set_freezable();
2727 
2728 	order = 0;
2729 	classzone_idx = MAX_NR_ZONES - 1;
2730 	for ( ; ; ) {
2731 		unsigned long new_order;
2732 		int new_classzone_idx;
2733 		int ret;
2734 
2735 		new_order = pgdat->kswapd_max_order;
2736 		new_classzone_idx = pgdat->classzone_idx;
2737 		pgdat->kswapd_max_order = 0;
2738 		pgdat->classzone_idx = MAX_NR_ZONES - 1;
2739 		if (order < new_order || classzone_idx > new_classzone_idx) {
2740 			/*
2741 			 * Don't sleep if someone wants a larger 'order'
2742 			 * allocation or has tigher zone constraints
2743 			 */
2744 			order = new_order;
2745 			classzone_idx = new_classzone_idx;
2746 		} else {
2747 			kswapd_try_to_sleep(pgdat, order, classzone_idx);
2748 			order = pgdat->kswapd_max_order;
2749 			classzone_idx = pgdat->classzone_idx;
2750 			pgdat->kswapd_max_order = 0;
2751 			pgdat->classzone_idx = MAX_NR_ZONES - 1;
2752 		}
2753 
2754 		ret = try_to_freeze();
2755 		if (kthread_should_stop())
2756 			break;
2757 
2758 		/*
2759 		 * We can speed up thawing tasks if we don't call balance_pgdat
2760 		 * after returning from the refrigerator
2761 		 */
2762 		if (!ret) {
2763 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2764 			order = balance_pgdat(pgdat, order, &classzone_idx);
2765 		}
2766 	}
2767 	return 0;
2768 }
2769 
2770 /*
2771  * A zone is low on free memory, so wake its kswapd task to service it.
2772  */
2773 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2774 {
2775 	pg_data_t *pgdat;
2776 
2777 	if (!populated_zone(zone))
2778 		return;
2779 
2780 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2781 		return;
2782 	pgdat = zone->zone_pgdat;
2783 	if (pgdat->kswapd_max_order < order) {
2784 		pgdat->kswapd_max_order = order;
2785 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2786 	}
2787 	if (!waitqueue_active(&pgdat->kswapd_wait))
2788 		return;
2789 	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2790 		return;
2791 
2792 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2793 	wake_up_interruptible(&pgdat->kswapd_wait);
2794 }
2795 
2796 /*
2797  * The reclaimable count would be mostly accurate.
2798  * The less reclaimable pages may be
2799  * - mlocked pages, which will be moved to unevictable list when encountered
2800  * - mapped pages, which may require several travels to be reclaimed
2801  * - dirty pages, which is not "instantly" reclaimable
2802  */
2803 unsigned long global_reclaimable_pages(void)
2804 {
2805 	int nr;
2806 
2807 	nr = global_page_state(NR_ACTIVE_FILE) +
2808 	     global_page_state(NR_INACTIVE_FILE);
2809 
2810 	if (nr_swap_pages > 0)
2811 		nr += global_page_state(NR_ACTIVE_ANON) +
2812 		      global_page_state(NR_INACTIVE_ANON);
2813 
2814 	return nr;
2815 }
2816 
2817 unsigned long zone_reclaimable_pages(struct zone *zone)
2818 {
2819 	int nr;
2820 
2821 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2822 	     zone_page_state(zone, NR_INACTIVE_FILE);
2823 
2824 	if (nr_swap_pages > 0)
2825 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2826 		      zone_page_state(zone, NR_INACTIVE_ANON);
2827 
2828 	return nr;
2829 }
2830 
2831 #ifdef CONFIG_HIBERNATION
2832 /*
2833  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2834  * freed pages.
2835  *
2836  * Rather than trying to age LRUs the aim is to preserve the overall
2837  * LRU order by reclaiming preferentially
2838  * inactive > active > active referenced > active mapped
2839  */
2840 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2841 {
2842 	struct reclaim_state reclaim_state;
2843 	struct scan_control sc = {
2844 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2845 		.may_swap = 1,
2846 		.may_unmap = 1,
2847 		.may_writepage = 1,
2848 		.nr_to_reclaim = nr_to_reclaim,
2849 		.hibernation_mode = 1,
2850 		.swappiness = vm_swappiness,
2851 		.order = 0,
2852 	};
2853 	struct shrink_control shrink = {
2854 		.gfp_mask = sc.gfp_mask,
2855 	};
2856 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2857 	struct task_struct *p = current;
2858 	unsigned long nr_reclaimed;
2859 
2860 	p->flags |= PF_MEMALLOC;
2861 	lockdep_set_current_reclaim_state(sc.gfp_mask);
2862 	reclaim_state.reclaimed_slab = 0;
2863 	p->reclaim_state = &reclaim_state;
2864 
2865 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2866 
2867 	p->reclaim_state = NULL;
2868 	lockdep_clear_current_reclaim_state();
2869 	p->flags &= ~PF_MEMALLOC;
2870 
2871 	return nr_reclaimed;
2872 }
2873 #endif /* CONFIG_HIBERNATION */
2874 
2875 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2876    not required for correctness.  So if the last cpu in a node goes
2877    away, we get changed to run anywhere: as the first one comes back,
2878    restore their cpu bindings. */
2879 static int __devinit cpu_callback(struct notifier_block *nfb,
2880 				  unsigned long action, void *hcpu)
2881 {
2882 	int nid;
2883 
2884 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2885 		for_each_node_state(nid, N_HIGH_MEMORY) {
2886 			pg_data_t *pgdat = NODE_DATA(nid);
2887 			const struct cpumask *mask;
2888 
2889 			mask = cpumask_of_node(pgdat->node_id);
2890 
2891 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2892 				/* One of our CPUs online: restore mask */
2893 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2894 		}
2895 	}
2896 	return NOTIFY_OK;
2897 }
2898 
2899 /*
2900  * This kswapd start function will be called by init and node-hot-add.
2901  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2902  */
2903 int kswapd_run(int nid)
2904 {
2905 	pg_data_t *pgdat = NODE_DATA(nid);
2906 	int ret = 0;
2907 
2908 	if (pgdat->kswapd)
2909 		return 0;
2910 
2911 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2912 	if (IS_ERR(pgdat->kswapd)) {
2913 		/* failure at boot is fatal */
2914 		BUG_ON(system_state == SYSTEM_BOOTING);
2915 		printk("Failed to start kswapd on node %d\n",nid);
2916 		ret = -1;
2917 	}
2918 	return ret;
2919 }
2920 
2921 /*
2922  * Called by memory hotplug when all memory in a node is offlined.
2923  */
2924 void kswapd_stop(int nid)
2925 {
2926 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2927 
2928 	if (kswapd)
2929 		kthread_stop(kswapd);
2930 }
2931 
2932 static int __init kswapd_init(void)
2933 {
2934 	int nid;
2935 
2936 	swap_setup();
2937 	for_each_node_state(nid, N_HIGH_MEMORY)
2938  		kswapd_run(nid);
2939 	hotcpu_notifier(cpu_callback, 0);
2940 	return 0;
2941 }
2942 
2943 module_init(kswapd_init)
2944 
2945 #ifdef CONFIG_NUMA
2946 /*
2947  * Zone reclaim mode
2948  *
2949  * If non-zero call zone_reclaim when the number of free pages falls below
2950  * the watermarks.
2951  */
2952 int zone_reclaim_mode __read_mostly;
2953 
2954 #define RECLAIM_OFF 0
2955 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2956 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2957 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2958 
2959 /*
2960  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2961  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2962  * a zone.
2963  */
2964 #define ZONE_RECLAIM_PRIORITY 4
2965 
2966 /*
2967  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2968  * occur.
2969  */
2970 int sysctl_min_unmapped_ratio = 1;
2971 
2972 /*
2973  * If the number of slab pages in a zone grows beyond this percentage then
2974  * slab reclaim needs to occur.
2975  */
2976 int sysctl_min_slab_ratio = 5;
2977 
2978 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2979 {
2980 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2981 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2982 		zone_page_state(zone, NR_ACTIVE_FILE);
2983 
2984 	/*
2985 	 * It's possible for there to be more file mapped pages than
2986 	 * accounted for by the pages on the file LRU lists because
2987 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2988 	 */
2989 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2990 }
2991 
2992 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2993 static long zone_pagecache_reclaimable(struct zone *zone)
2994 {
2995 	long nr_pagecache_reclaimable;
2996 	long delta = 0;
2997 
2998 	/*
2999 	 * If RECLAIM_SWAP is set, then all file pages are considered
3000 	 * potentially reclaimable. Otherwise, we have to worry about
3001 	 * pages like swapcache and zone_unmapped_file_pages() provides
3002 	 * a better estimate
3003 	 */
3004 	if (zone_reclaim_mode & RECLAIM_SWAP)
3005 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3006 	else
3007 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3008 
3009 	/* If we can't clean pages, remove dirty pages from consideration */
3010 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3011 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3012 
3013 	/* Watch for any possible underflows due to delta */
3014 	if (unlikely(delta > nr_pagecache_reclaimable))
3015 		delta = nr_pagecache_reclaimable;
3016 
3017 	return nr_pagecache_reclaimable - delta;
3018 }
3019 
3020 /*
3021  * Try to free up some pages from this zone through reclaim.
3022  */
3023 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3024 {
3025 	/* Minimum pages needed in order to stay on node */
3026 	const unsigned long nr_pages = 1 << order;
3027 	struct task_struct *p = current;
3028 	struct reclaim_state reclaim_state;
3029 	int priority;
3030 	struct scan_control sc = {
3031 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3032 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3033 		.may_swap = 1,
3034 		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3035 				       SWAP_CLUSTER_MAX),
3036 		.gfp_mask = gfp_mask,
3037 		.swappiness = vm_swappiness,
3038 		.order = order,
3039 	};
3040 	struct shrink_control shrink = {
3041 		.gfp_mask = sc.gfp_mask,
3042 	};
3043 	unsigned long nr_slab_pages0, nr_slab_pages1;
3044 
3045 	cond_resched();
3046 	/*
3047 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3048 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3049 	 * and RECLAIM_SWAP.
3050 	 */
3051 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3052 	lockdep_set_current_reclaim_state(gfp_mask);
3053 	reclaim_state.reclaimed_slab = 0;
3054 	p->reclaim_state = &reclaim_state;
3055 
3056 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3057 		/*
3058 		 * Free memory by calling shrink zone with increasing
3059 		 * priorities until we have enough memory freed.
3060 		 */
3061 		priority = ZONE_RECLAIM_PRIORITY;
3062 		do {
3063 			shrink_zone(priority, zone, &sc);
3064 			priority--;
3065 		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3066 	}
3067 
3068 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3069 	if (nr_slab_pages0 > zone->min_slab_pages) {
3070 		/*
3071 		 * shrink_slab() does not currently allow us to determine how
3072 		 * many pages were freed in this zone. So we take the current
3073 		 * number of slab pages and shake the slab until it is reduced
3074 		 * by the same nr_pages that we used for reclaiming unmapped
3075 		 * pages.
3076 		 *
3077 		 * Note that shrink_slab will free memory on all zones and may
3078 		 * take a long time.
3079 		 */
3080 		for (;;) {
3081 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3082 
3083 			/* No reclaimable slab or very low memory pressure */
3084 			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3085 				break;
3086 
3087 			/* Freed enough memory */
3088 			nr_slab_pages1 = zone_page_state(zone,
3089 							NR_SLAB_RECLAIMABLE);
3090 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3091 				break;
3092 		}
3093 
3094 		/*
3095 		 * Update nr_reclaimed by the number of slab pages we
3096 		 * reclaimed from this zone.
3097 		 */
3098 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3099 		if (nr_slab_pages1 < nr_slab_pages0)
3100 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3101 	}
3102 
3103 	p->reclaim_state = NULL;
3104 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3105 	lockdep_clear_current_reclaim_state();
3106 	return sc.nr_reclaimed >= nr_pages;
3107 }
3108 
3109 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3110 {
3111 	int node_id;
3112 	int ret;
3113 
3114 	/*
3115 	 * Zone reclaim reclaims unmapped file backed pages and
3116 	 * slab pages if we are over the defined limits.
3117 	 *
3118 	 * A small portion of unmapped file backed pages is needed for
3119 	 * file I/O otherwise pages read by file I/O will be immediately
3120 	 * thrown out if the zone is overallocated. So we do not reclaim
3121 	 * if less than a specified percentage of the zone is used by
3122 	 * unmapped file backed pages.
3123 	 */
3124 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3125 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3126 		return ZONE_RECLAIM_FULL;
3127 
3128 	if (zone->all_unreclaimable)
3129 		return ZONE_RECLAIM_FULL;
3130 
3131 	/*
3132 	 * Do not scan if the allocation should not be delayed.
3133 	 */
3134 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3135 		return ZONE_RECLAIM_NOSCAN;
3136 
3137 	/*
3138 	 * Only run zone reclaim on the local zone or on zones that do not
3139 	 * have associated processors. This will favor the local processor
3140 	 * over remote processors and spread off node memory allocations
3141 	 * as wide as possible.
3142 	 */
3143 	node_id = zone_to_nid(zone);
3144 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3145 		return ZONE_RECLAIM_NOSCAN;
3146 
3147 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3148 		return ZONE_RECLAIM_NOSCAN;
3149 
3150 	ret = __zone_reclaim(zone, gfp_mask, order);
3151 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3152 
3153 	if (!ret)
3154 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3155 
3156 	return ret;
3157 }
3158 #endif
3159 
3160 /*
3161  * page_evictable - test whether a page is evictable
3162  * @page: the page to test
3163  * @vma: the VMA in which the page is or will be mapped, may be NULL
3164  *
3165  * Test whether page is evictable--i.e., should be placed on active/inactive
3166  * lists vs unevictable list.  The vma argument is !NULL when called from the
3167  * fault path to determine how to instantate a new page.
3168  *
3169  * Reasons page might not be evictable:
3170  * (1) page's mapping marked unevictable
3171  * (2) page is part of an mlocked VMA
3172  *
3173  */
3174 int page_evictable(struct page *page, struct vm_area_struct *vma)
3175 {
3176 
3177 	if (mapping_unevictable(page_mapping(page)))
3178 		return 0;
3179 
3180 	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3181 		return 0;
3182 
3183 	return 1;
3184 }
3185 
3186 /**
3187  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3188  * @page: page to check evictability and move to appropriate lru list
3189  * @zone: zone page is in
3190  *
3191  * Checks a page for evictability and moves the page to the appropriate
3192  * zone lru list.
3193  *
3194  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3195  * have PageUnevictable set.
3196  */
3197 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3198 {
3199 	VM_BUG_ON(PageActive(page));
3200 
3201 retry:
3202 	ClearPageUnevictable(page);
3203 	if (page_evictable(page, NULL)) {
3204 		enum lru_list l = page_lru_base_type(page);
3205 
3206 		__dec_zone_state(zone, NR_UNEVICTABLE);
3207 		list_move(&page->lru, &zone->lru[l].list);
3208 		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3209 		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3210 		__count_vm_event(UNEVICTABLE_PGRESCUED);
3211 	} else {
3212 		/*
3213 		 * rotate unevictable list
3214 		 */
3215 		SetPageUnevictable(page);
3216 		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3217 		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3218 		if (page_evictable(page, NULL))
3219 			goto retry;
3220 	}
3221 }
3222 
3223 /**
3224  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3225  * @mapping: struct address_space to scan for evictable pages
3226  *
3227  * Scan all pages in mapping.  Check unevictable pages for
3228  * evictability and move them to the appropriate zone lru list.
3229  */
3230 void scan_mapping_unevictable_pages(struct address_space *mapping)
3231 {
3232 	pgoff_t next = 0;
3233 	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3234 			 PAGE_CACHE_SHIFT;
3235 	struct zone *zone;
3236 	struct pagevec pvec;
3237 
3238 	if (mapping->nrpages == 0)
3239 		return;
3240 
3241 	pagevec_init(&pvec, 0);
3242 	while (next < end &&
3243 		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3244 		int i;
3245 		int pg_scanned = 0;
3246 
3247 		zone = NULL;
3248 
3249 		for (i = 0; i < pagevec_count(&pvec); i++) {
3250 			struct page *page = pvec.pages[i];
3251 			pgoff_t page_index = page->index;
3252 			struct zone *pagezone = page_zone(page);
3253 
3254 			pg_scanned++;
3255 			if (page_index > next)
3256 				next = page_index;
3257 			next++;
3258 
3259 			if (pagezone != zone) {
3260 				if (zone)
3261 					spin_unlock_irq(&zone->lru_lock);
3262 				zone = pagezone;
3263 				spin_lock_irq(&zone->lru_lock);
3264 			}
3265 
3266 			if (PageLRU(page) && PageUnevictable(page))
3267 				check_move_unevictable_page(page, zone);
3268 		}
3269 		if (zone)
3270 			spin_unlock_irq(&zone->lru_lock);
3271 		pagevec_release(&pvec);
3272 
3273 		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3274 	}
3275 
3276 }
3277 
3278 /**
3279  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3280  * @zone - zone of which to scan the unevictable list
3281  *
3282  * Scan @zone's unevictable LRU lists to check for pages that have become
3283  * evictable.  Move those that have to @zone's inactive list where they
3284  * become candidates for reclaim, unless shrink_inactive_zone() decides
3285  * to reactivate them.  Pages that are still unevictable are rotated
3286  * back onto @zone's unevictable list.
3287  */
3288 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3289 static void scan_zone_unevictable_pages(struct zone *zone)
3290 {
3291 	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3292 	unsigned long scan;
3293 	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3294 
3295 	while (nr_to_scan > 0) {
3296 		unsigned long batch_size = min(nr_to_scan,
3297 						SCAN_UNEVICTABLE_BATCH_SIZE);
3298 
3299 		spin_lock_irq(&zone->lru_lock);
3300 		for (scan = 0;  scan < batch_size; scan++) {
3301 			struct page *page = lru_to_page(l_unevictable);
3302 
3303 			if (!trylock_page(page))
3304 				continue;
3305 
3306 			prefetchw_prev_lru_page(page, l_unevictable, flags);
3307 
3308 			if (likely(PageLRU(page) && PageUnevictable(page)))
3309 				check_move_unevictable_page(page, zone);
3310 
3311 			unlock_page(page);
3312 		}
3313 		spin_unlock_irq(&zone->lru_lock);
3314 
3315 		nr_to_scan -= batch_size;
3316 	}
3317 }
3318 
3319 
3320 /**
3321  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3322  *
3323  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3324  * pages that have become evictable.  Move those back to the zones'
3325  * inactive list where they become candidates for reclaim.
3326  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3327  * and we add swap to the system.  As such, it runs in the context of a task
3328  * that has possibly/probably made some previously unevictable pages
3329  * evictable.
3330  */
3331 static void scan_all_zones_unevictable_pages(void)
3332 {
3333 	struct zone *zone;
3334 
3335 	for_each_zone(zone) {
3336 		scan_zone_unevictable_pages(zone);
3337 	}
3338 }
3339 
3340 /*
3341  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3342  * all nodes' unevictable lists for evictable pages
3343  */
3344 unsigned long scan_unevictable_pages;
3345 
3346 int scan_unevictable_handler(struct ctl_table *table, int write,
3347 			   void __user *buffer,
3348 			   size_t *length, loff_t *ppos)
3349 {
3350 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3351 
3352 	if (write && *(unsigned long *)table->data)
3353 		scan_all_zones_unevictable_pages();
3354 
3355 	scan_unevictable_pages = 0;
3356 	return 0;
3357 }
3358 
3359 #ifdef CONFIG_NUMA
3360 /*
3361  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3362  * a specified node's per zone unevictable lists for evictable pages.
3363  */
3364 
3365 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3366 					  struct sysdev_attribute *attr,
3367 					  char *buf)
3368 {
3369 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3370 }
3371 
3372 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3373 					   struct sysdev_attribute *attr,
3374 					const char *buf, size_t count)
3375 {
3376 	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3377 	struct zone *zone;
3378 	unsigned long res;
3379 	unsigned long req = strict_strtoul(buf, 10, &res);
3380 
3381 	if (!req)
3382 		return 1;	/* zero is no-op */
3383 
3384 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3385 		if (!populated_zone(zone))
3386 			continue;
3387 		scan_zone_unevictable_pages(zone);
3388 	}
3389 	return 1;
3390 }
3391 
3392 
3393 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3394 			read_scan_unevictable_node,
3395 			write_scan_unevictable_node);
3396 
3397 int scan_unevictable_register_node(struct node *node)
3398 {
3399 	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3400 }
3401 
3402 void scan_unevictable_unregister_node(struct node *node)
3403 {
3404 	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3405 }
3406 #endif
3407