xref: /linux/mm/vmscan.c (revision 0ad53fe3ae82443c74ff8cfd7bd13377cc1134a3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/migrate.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56 
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59 
60 #include "internal.h"
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/vmscan.h>
64 
65 struct scan_control {
66 	/* How many pages shrink_list() should reclaim */
67 	unsigned long nr_to_reclaim;
68 
69 	/*
70 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
71 	 * are scanned.
72 	 */
73 	nodemask_t	*nodemask;
74 
75 	/*
76 	 * The memory cgroup that hit its limit and as a result is the
77 	 * primary target of this reclaim invocation.
78 	 */
79 	struct mem_cgroup *target_mem_cgroup;
80 
81 	/*
82 	 * Scan pressure balancing between anon and file LRUs
83 	 */
84 	unsigned long	anon_cost;
85 	unsigned long	file_cost;
86 
87 	/* Can active pages be deactivated as part of reclaim? */
88 #define DEACTIVATE_ANON 1
89 #define DEACTIVATE_FILE 2
90 	unsigned int may_deactivate:2;
91 	unsigned int force_deactivate:1;
92 	unsigned int skipped_deactivate:1;
93 
94 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
95 	unsigned int may_writepage:1;
96 
97 	/* Can mapped pages be reclaimed? */
98 	unsigned int may_unmap:1;
99 
100 	/* Can pages be swapped as part of reclaim? */
101 	unsigned int may_swap:1;
102 
103 	/*
104 	 * Cgroup memory below memory.low is protected as long as we
105 	 * don't threaten to OOM. If any cgroup is reclaimed at
106 	 * reduced force or passed over entirely due to its memory.low
107 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
108 	 * result, then go back for one more cycle that reclaims the protected
109 	 * memory (memcg_low_reclaim) to avert OOM.
110 	 */
111 	unsigned int memcg_low_reclaim:1;
112 	unsigned int memcg_low_skipped:1;
113 
114 	unsigned int hibernation_mode:1;
115 
116 	/* One of the zones is ready for compaction */
117 	unsigned int compaction_ready:1;
118 
119 	/* There is easily reclaimable cold cache in the current node */
120 	unsigned int cache_trim_mode:1;
121 
122 	/* The file pages on the current node are dangerously low */
123 	unsigned int file_is_tiny:1;
124 
125 	/* Always discard instead of demoting to lower tier memory */
126 	unsigned int no_demotion:1;
127 
128 	/* Allocation order */
129 	s8 order;
130 
131 	/* Scan (total_size >> priority) pages at once */
132 	s8 priority;
133 
134 	/* The highest zone to isolate pages for reclaim from */
135 	s8 reclaim_idx;
136 
137 	/* This context's GFP mask */
138 	gfp_t gfp_mask;
139 
140 	/* Incremented by the number of inactive pages that were scanned */
141 	unsigned long nr_scanned;
142 
143 	/* Number of pages freed so far during a call to shrink_zones() */
144 	unsigned long nr_reclaimed;
145 
146 	struct {
147 		unsigned int dirty;
148 		unsigned int unqueued_dirty;
149 		unsigned int congested;
150 		unsigned int writeback;
151 		unsigned int immediate;
152 		unsigned int file_taken;
153 		unsigned int taken;
154 	} nr;
155 
156 	/* for recording the reclaimed slab by now */
157 	struct reclaim_state reclaim_state;
158 };
159 
160 #ifdef ARCH_HAS_PREFETCHW
161 #define prefetchw_prev_lru_page(_page, _base, _field)			\
162 	do {								\
163 		if ((_page)->lru.prev != _base) {			\
164 			struct page *prev;				\
165 									\
166 			prev = lru_to_page(&(_page->lru));		\
167 			prefetchw(&prev->_field);			\
168 		}							\
169 	} while (0)
170 #else
171 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
172 #endif
173 
174 /*
175  * From 0 .. 200.  Higher means more swappy.
176  */
177 int vm_swappiness = 60;
178 
179 static void set_task_reclaim_state(struct task_struct *task,
180 				   struct reclaim_state *rs)
181 {
182 	/* Check for an overwrite */
183 	WARN_ON_ONCE(rs && task->reclaim_state);
184 
185 	/* Check for the nulling of an already-nulled member */
186 	WARN_ON_ONCE(!rs && !task->reclaim_state);
187 
188 	task->reclaim_state = rs;
189 }
190 
191 static LIST_HEAD(shrinker_list);
192 static DECLARE_RWSEM(shrinker_rwsem);
193 
194 #ifdef CONFIG_MEMCG
195 static int shrinker_nr_max;
196 
197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
198 static inline int shrinker_map_size(int nr_items)
199 {
200 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
201 }
202 
203 static inline int shrinker_defer_size(int nr_items)
204 {
205 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
206 }
207 
208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
209 						     int nid)
210 {
211 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
212 					 lockdep_is_held(&shrinker_rwsem));
213 }
214 
215 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
216 				    int map_size, int defer_size,
217 				    int old_map_size, int old_defer_size)
218 {
219 	struct shrinker_info *new, *old;
220 	struct mem_cgroup_per_node *pn;
221 	int nid;
222 	int size = map_size + defer_size;
223 
224 	for_each_node(nid) {
225 		pn = memcg->nodeinfo[nid];
226 		old = shrinker_info_protected(memcg, nid);
227 		/* Not yet online memcg */
228 		if (!old)
229 			return 0;
230 
231 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
232 		if (!new)
233 			return -ENOMEM;
234 
235 		new->nr_deferred = (atomic_long_t *)(new + 1);
236 		new->map = (void *)new->nr_deferred + defer_size;
237 
238 		/* map: set all old bits, clear all new bits */
239 		memset(new->map, (int)0xff, old_map_size);
240 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
241 		/* nr_deferred: copy old values, clear all new values */
242 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
243 		memset((void *)new->nr_deferred + old_defer_size, 0,
244 		       defer_size - old_defer_size);
245 
246 		rcu_assign_pointer(pn->shrinker_info, new);
247 		kvfree_rcu(old, rcu);
248 	}
249 
250 	return 0;
251 }
252 
253 void free_shrinker_info(struct mem_cgroup *memcg)
254 {
255 	struct mem_cgroup_per_node *pn;
256 	struct shrinker_info *info;
257 	int nid;
258 
259 	for_each_node(nid) {
260 		pn = memcg->nodeinfo[nid];
261 		info = rcu_dereference_protected(pn->shrinker_info, true);
262 		kvfree(info);
263 		rcu_assign_pointer(pn->shrinker_info, NULL);
264 	}
265 }
266 
267 int alloc_shrinker_info(struct mem_cgroup *memcg)
268 {
269 	struct shrinker_info *info;
270 	int nid, size, ret = 0;
271 	int map_size, defer_size = 0;
272 
273 	down_write(&shrinker_rwsem);
274 	map_size = shrinker_map_size(shrinker_nr_max);
275 	defer_size = shrinker_defer_size(shrinker_nr_max);
276 	size = map_size + defer_size;
277 	for_each_node(nid) {
278 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
279 		if (!info) {
280 			free_shrinker_info(memcg);
281 			ret = -ENOMEM;
282 			break;
283 		}
284 		info->nr_deferred = (atomic_long_t *)(info + 1);
285 		info->map = (void *)info->nr_deferred + defer_size;
286 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
287 	}
288 	up_write(&shrinker_rwsem);
289 
290 	return ret;
291 }
292 
293 static inline bool need_expand(int nr_max)
294 {
295 	return round_up(nr_max, BITS_PER_LONG) >
296 	       round_up(shrinker_nr_max, BITS_PER_LONG);
297 }
298 
299 static int expand_shrinker_info(int new_id)
300 {
301 	int ret = 0;
302 	int new_nr_max = new_id + 1;
303 	int map_size, defer_size = 0;
304 	int old_map_size, old_defer_size = 0;
305 	struct mem_cgroup *memcg;
306 
307 	if (!need_expand(new_nr_max))
308 		goto out;
309 
310 	if (!root_mem_cgroup)
311 		goto out;
312 
313 	lockdep_assert_held(&shrinker_rwsem);
314 
315 	map_size = shrinker_map_size(new_nr_max);
316 	defer_size = shrinker_defer_size(new_nr_max);
317 	old_map_size = shrinker_map_size(shrinker_nr_max);
318 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
319 
320 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
321 	do {
322 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
323 					       old_map_size, old_defer_size);
324 		if (ret) {
325 			mem_cgroup_iter_break(NULL, memcg);
326 			goto out;
327 		}
328 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
329 out:
330 	if (!ret)
331 		shrinker_nr_max = new_nr_max;
332 
333 	return ret;
334 }
335 
336 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
337 {
338 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
339 		struct shrinker_info *info;
340 
341 		rcu_read_lock();
342 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
343 		/* Pairs with smp mb in shrink_slab() */
344 		smp_mb__before_atomic();
345 		set_bit(shrinker_id, info->map);
346 		rcu_read_unlock();
347 	}
348 }
349 
350 static DEFINE_IDR(shrinker_idr);
351 
352 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
353 {
354 	int id, ret = -ENOMEM;
355 
356 	if (mem_cgroup_disabled())
357 		return -ENOSYS;
358 
359 	down_write(&shrinker_rwsem);
360 	/* This may call shrinker, so it must use down_read_trylock() */
361 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
362 	if (id < 0)
363 		goto unlock;
364 
365 	if (id >= shrinker_nr_max) {
366 		if (expand_shrinker_info(id)) {
367 			idr_remove(&shrinker_idr, id);
368 			goto unlock;
369 		}
370 	}
371 	shrinker->id = id;
372 	ret = 0;
373 unlock:
374 	up_write(&shrinker_rwsem);
375 	return ret;
376 }
377 
378 static void unregister_memcg_shrinker(struct shrinker *shrinker)
379 {
380 	int id = shrinker->id;
381 
382 	BUG_ON(id < 0);
383 
384 	lockdep_assert_held(&shrinker_rwsem);
385 
386 	idr_remove(&shrinker_idr, id);
387 }
388 
389 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
390 				   struct mem_cgroup *memcg)
391 {
392 	struct shrinker_info *info;
393 
394 	info = shrinker_info_protected(memcg, nid);
395 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
396 }
397 
398 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
399 				  struct mem_cgroup *memcg)
400 {
401 	struct shrinker_info *info;
402 
403 	info = shrinker_info_protected(memcg, nid);
404 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
405 }
406 
407 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
408 {
409 	int i, nid;
410 	long nr;
411 	struct mem_cgroup *parent;
412 	struct shrinker_info *child_info, *parent_info;
413 
414 	parent = parent_mem_cgroup(memcg);
415 	if (!parent)
416 		parent = root_mem_cgroup;
417 
418 	/* Prevent from concurrent shrinker_info expand */
419 	down_read(&shrinker_rwsem);
420 	for_each_node(nid) {
421 		child_info = shrinker_info_protected(memcg, nid);
422 		parent_info = shrinker_info_protected(parent, nid);
423 		for (i = 0; i < shrinker_nr_max; i++) {
424 			nr = atomic_long_read(&child_info->nr_deferred[i]);
425 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
426 		}
427 	}
428 	up_read(&shrinker_rwsem);
429 }
430 
431 static bool cgroup_reclaim(struct scan_control *sc)
432 {
433 	return sc->target_mem_cgroup;
434 }
435 
436 /**
437  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
438  * @sc: scan_control in question
439  *
440  * The normal page dirty throttling mechanism in balance_dirty_pages() is
441  * completely broken with the legacy memcg and direct stalling in
442  * shrink_page_list() is used for throttling instead, which lacks all the
443  * niceties such as fairness, adaptive pausing, bandwidth proportional
444  * allocation and configurability.
445  *
446  * This function tests whether the vmscan currently in progress can assume
447  * that the normal dirty throttling mechanism is operational.
448  */
449 static bool writeback_throttling_sane(struct scan_control *sc)
450 {
451 	if (!cgroup_reclaim(sc))
452 		return true;
453 #ifdef CONFIG_CGROUP_WRITEBACK
454 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
455 		return true;
456 #endif
457 	return false;
458 }
459 #else
460 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
461 {
462 	return -ENOSYS;
463 }
464 
465 static void unregister_memcg_shrinker(struct shrinker *shrinker)
466 {
467 }
468 
469 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
470 				   struct mem_cgroup *memcg)
471 {
472 	return 0;
473 }
474 
475 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
476 				  struct mem_cgroup *memcg)
477 {
478 	return 0;
479 }
480 
481 static bool cgroup_reclaim(struct scan_control *sc)
482 {
483 	return false;
484 }
485 
486 static bool writeback_throttling_sane(struct scan_control *sc)
487 {
488 	return true;
489 }
490 #endif
491 
492 static long xchg_nr_deferred(struct shrinker *shrinker,
493 			     struct shrink_control *sc)
494 {
495 	int nid = sc->nid;
496 
497 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
498 		nid = 0;
499 
500 	if (sc->memcg &&
501 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
502 		return xchg_nr_deferred_memcg(nid, shrinker,
503 					      sc->memcg);
504 
505 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
506 }
507 
508 
509 static long add_nr_deferred(long nr, struct shrinker *shrinker,
510 			    struct shrink_control *sc)
511 {
512 	int nid = sc->nid;
513 
514 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
515 		nid = 0;
516 
517 	if (sc->memcg &&
518 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
519 		return add_nr_deferred_memcg(nr, nid, shrinker,
520 					     sc->memcg);
521 
522 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
523 }
524 
525 static bool can_demote(int nid, struct scan_control *sc)
526 {
527 	if (!numa_demotion_enabled)
528 		return false;
529 	if (sc) {
530 		if (sc->no_demotion)
531 			return false;
532 		/* It is pointless to do demotion in memcg reclaim */
533 		if (cgroup_reclaim(sc))
534 			return false;
535 	}
536 	if (next_demotion_node(nid) == NUMA_NO_NODE)
537 		return false;
538 
539 	return true;
540 }
541 
542 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
543 					  int nid,
544 					  struct scan_control *sc)
545 {
546 	if (memcg == NULL) {
547 		/*
548 		 * For non-memcg reclaim, is there
549 		 * space in any swap device?
550 		 */
551 		if (get_nr_swap_pages() > 0)
552 			return true;
553 	} else {
554 		/* Is the memcg below its swap limit? */
555 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
556 			return true;
557 	}
558 
559 	/*
560 	 * The page can not be swapped.
561 	 *
562 	 * Can it be reclaimed from this node via demotion?
563 	 */
564 	return can_demote(nid, sc);
565 }
566 
567 /*
568  * This misses isolated pages which are not accounted for to save counters.
569  * As the data only determines if reclaim or compaction continues, it is
570  * not expected that isolated pages will be a dominating factor.
571  */
572 unsigned long zone_reclaimable_pages(struct zone *zone)
573 {
574 	unsigned long nr;
575 
576 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
577 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
578 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
579 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
580 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
581 
582 	return nr;
583 }
584 
585 /**
586  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
587  * @lruvec: lru vector
588  * @lru: lru to use
589  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
590  */
591 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
592 				     int zone_idx)
593 {
594 	unsigned long size = 0;
595 	int zid;
596 
597 	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
598 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
599 
600 		if (!managed_zone(zone))
601 			continue;
602 
603 		if (!mem_cgroup_disabled())
604 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
605 		else
606 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
607 	}
608 	return size;
609 }
610 
611 /*
612  * Add a shrinker callback to be called from the vm.
613  */
614 int prealloc_shrinker(struct shrinker *shrinker)
615 {
616 	unsigned int size;
617 	int err;
618 
619 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
620 		err = prealloc_memcg_shrinker(shrinker);
621 		if (err != -ENOSYS)
622 			return err;
623 
624 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
625 	}
626 
627 	size = sizeof(*shrinker->nr_deferred);
628 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
629 		size *= nr_node_ids;
630 
631 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
632 	if (!shrinker->nr_deferred)
633 		return -ENOMEM;
634 
635 	return 0;
636 }
637 
638 void free_prealloced_shrinker(struct shrinker *shrinker)
639 {
640 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
641 		down_write(&shrinker_rwsem);
642 		unregister_memcg_shrinker(shrinker);
643 		up_write(&shrinker_rwsem);
644 		return;
645 	}
646 
647 	kfree(shrinker->nr_deferred);
648 	shrinker->nr_deferred = NULL;
649 }
650 
651 void register_shrinker_prepared(struct shrinker *shrinker)
652 {
653 	down_write(&shrinker_rwsem);
654 	list_add_tail(&shrinker->list, &shrinker_list);
655 	shrinker->flags |= SHRINKER_REGISTERED;
656 	up_write(&shrinker_rwsem);
657 }
658 
659 int register_shrinker(struct shrinker *shrinker)
660 {
661 	int err = prealloc_shrinker(shrinker);
662 
663 	if (err)
664 		return err;
665 	register_shrinker_prepared(shrinker);
666 	return 0;
667 }
668 EXPORT_SYMBOL(register_shrinker);
669 
670 /*
671  * Remove one
672  */
673 void unregister_shrinker(struct shrinker *shrinker)
674 {
675 	if (!(shrinker->flags & SHRINKER_REGISTERED))
676 		return;
677 
678 	down_write(&shrinker_rwsem);
679 	list_del(&shrinker->list);
680 	shrinker->flags &= ~SHRINKER_REGISTERED;
681 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
682 		unregister_memcg_shrinker(shrinker);
683 	up_write(&shrinker_rwsem);
684 
685 	kfree(shrinker->nr_deferred);
686 	shrinker->nr_deferred = NULL;
687 }
688 EXPORT_SYMBOL(unregister_shrinker);
689 
690 /**
691  * synchronize_shrinkers - Wait for all running shrinkers to complete.
692  *
693  * This is equivalent to calling unregister_shrink() and register_shrinker(),
694  * but atomically and with less overhead. This is useful to guarantee that all
695  * shrinker invocations have seen an update, before freeing memory, similar to
696  * rcu.
697  */
698 void synchronize_shrinkers(void)
699 {
700 	down_write(&shrinker_rwsem);
701 	up_write(&shrinker_rwsem);
702 }
703 EXPORT_SYMBOL(synchronize_shrinkers);
704 
705 #define SHRINK_BATCH 128
706 
707 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
708 				    struct shrinker *shrinker, int priority)
709 {
710 	unsigned long freed = 0;
711 	unsigned long long delta;
712 	long total_scan;
713 	long freeable;
714 	long nr;
715 	long new_nr;
716 	long batch_size = shrinker->batch ? shrinker->batch
717 					  : SHRINK_BATCH;
718 	long scanned = 0, next_deferred;
719 
720 	freeable = shrinker->count_objects(shrinker, shrinkctl);
721 	if (freeable == 0 || freeable == SHRINK_EMPTY)
722 		return freeable;
723 
724 	/*
725 	 * copy the current shrinker scan count into a local variable
726 	 * and zero it so that other concurrent shrinker invocations
727 	 * don't also do this scanning work.
728 	 */
729 	nr = xchg_nr_deferred(shrinker, shrinkctl);
730 
731 	if (shrinker->seeks) {
732 		delta = freeable >> priority;
733 		delta *= 4;
734 		do_div(delta, shrinker->seeks);
735 	} else {
736 		/*
737 		 * These objects don't require any IO to create. Trim
738 		 * them aggressively under memory pressure to keep
739 		 * them from causing refetches in the IO caches.
740 		 */
741 		delta = freeable / 2;
742 	}
743 
744 	total_scan = nr >> priority;
745 	total_scan += delta;
746 	total_scan = min(total_scan, (2 * freeable));
747 
748 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
749 				   freeable, delta, total_scan, priority);
750 
751 	/*
752 	 * Normally, we should not scan less than batch_size objects in one
753 	 * pass to avoid too frequent shrinker calls, but if the slab has less
754 	 * than batch_size objects in total and we are really tight on memory,
755 	 * we will try to reclaim all available objects, otherwise we can end
756 	 * up failing allocations although there are plenty of reclaimable
757 	 * objects spread over several slabs with usage less than the
758 	 * batch_size.
759 	 *
760 	 * We detect the "tight on memory" situations by looking at the total
761 	 * number of objects we want to scan (total_scan). If it is greater
762 	 * than the total number of objects on slab (freeable), we must be
763 	 * scanning at high prio and therefore should try to reclaim as much as
764 	 * possible.
765 	 */
766 	while (total_scan >= batch_size ||
767 	       total_scan >= freeable) {
768 		unsigned long ret;
769 		unsigned long nr_to_scan = min(batch_size, total_scan);
770 
771 		shrinkctl->nr_to_scan = nr_to_scan;
772 		shrinkctl->nr_scanned = nr_to_scan;
773 		ret = shrinker->scan_objects(shrinker, shrinkctl);
774 		if (ret == SHRINK_STOP)
775 			break;
776 		freed += ret;
777 
778 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
779 		total_scan -= shrinkctl->nr_scanned;
780 		scanned += shrinkctl->nr_scanned;
781 
782 		cond_resched();
783 	}
784 
785 	/*
786 	 * The deferred work is increased by any new work (delta) that wasn't
787 	 * done, decreased by old deferred work that was done now.
788 	 *
789 	 * And it is capped to two times of the freeable items.
790 	 */
791 	next_deferred = max_t(long, (nr + delta - scanned), 0);
792 	next_deferred = min(next_deferred, (2 * freeable));
793 
794 	/*
795 	 * move the unused scan count back into the shrinker in a
796 	 * manner that handles concurrent updates.
797 	 */
798 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
799 
800 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
801 	return freed;
802 }
803 
804 #ifdef CONFIG_MEMCG
805 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
806 			struct mem_cgroup *memcg, int priority)
807 {
808 	struct shrinker_info *info;
809 	unsigned long ret, freed = 0;
810 	int i;
811 
812 	if (!mem_cgroup_online(memcg))
813 		return 0;
814 
815 	if (!down_read_trylock(&shrinker_rwsem))
816 		return 0;
817 
818 	info = shrinker_info_protected(memcg, nid);
819 	if (unlikely(!info))
820 		goto unlock;
821 
822 	for_each_set_bit(i, info->map, shrinker_nr_max) {
823 		struct shrink_control sc = {
824 			.gfp_mask = gfp_mask,
825 			.nid = nid,
826 			.memcg = memcg,
827 		};
828 		struct shrinker *shrinker;
829 
830 		shrinker = idr_find(&shrinker_idr, i);
831 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
832 			if (!shrinker)
833 				clear_bit(i, info->map);
834 			continue;
835 		}
836 
837 		/* Call non-slab shrinkers even though kmem is disabled */
838 		if (!memcg_kmem_enabled() &&
839 		    !(shrinker->flags & SHRINKER_NONSLAB))
840 			continue;
841 
842 		ret = do_shrink_slab(&sc, shrinker, priority);
843 		if (ret == SHRINK_EMPTY) {
844 			clear_bit(i, info->map);
845 			/*
846 			 * After the shrinker reported that it had no objects to
847 			 * free, but before we cleared the corresponding bit in
848 			 * the memcg shrinker map, a new object might have been
849 			 * added. To make sure, we have the bit set in this
850 			 * case, we invoke the shrinker one more time and reset
851 			 * the bit if it reports that it is not empty anymore.
852 			 * The memory barrier here pairs with the barrier in
853 			 * set_shrinker_bit():
854 			 *
855 			 * list_lru_add()     shrink_slab_memcg()
856 			 *   list_add_tail()    clear_bit()
857 			 *   <MB>               <MB>
858 			 *   set_bit()          do_shrink_slab()
859 			 */
860 			smp_mb__after_atomic();
861 			ret = do_shrink_slab(&sc, shrinker, priority);
862 			if (ret == SHRINK_EMPTY)
863 				ret = 0;
864 			else
865 				set_shrinker_bit(memcg, nid, i);
866 		}
867 		freed += ret;
868 
869 		if (rwsem_is_contended(&shrinker_rwsem)) {
870 			freed = freed ? : 1;
871 			break;
872 		}
873 	}
874 unlock:
875 	up_read(&shrinker_rwsem);
876 	return freed;
877 }
878 #else /* CONFIG_MEMCG */
879 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
880 			struct mem_cgroup *memcg, int priority)
881 {
882 	return 0;
883 }
884 #endif /* CONFIG_MEMCG */
885 
886 /**
887  * shrink_slab - shrink slab caches
888  * @gfp_mask: allocation context
889  * @nid: node whose slab caches to target
890  * @memcg: memory cgroup whose slab caches to target
891  * @priority: the reclaim priority
892  *
893  * Call the shrink functions to age shrinkable caches.
894  *
895  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
896  * unaware shrinkers will receive a node id of 0 instead.
897  *
898  * @memcg specifies the memory cgroup to target. Unaware shrinkers
899  * are called only if it is the root cgroup.
900  *
901  * @priority is sc->priority, we take the number of objects and >> by priority
902  * in order to get the scan target.
903  *
904  * Returns the number of reclaimed slab objects.
905  */
906 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
907 				 struct mem_cgroup *memcg,
908 				 int priority)
909 {
910 	unsigned long ret, freed = 0;
911 	struct shrinker *shrinker;
912 
913 	/*
914 	 * The root memcg might be allocated even though memcg is disabled
915 	 * via "cgroup_disable=memory" boot parameter.  This could make
916 	 * mem_cgroup_is_root() return false, then just run memcg slab
917 	 * shrink, but skip global shrink.  This may result in premature
918 	 * oom.
919 	 */
920 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
921 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
922 
923 	if (!down_read_trylock(&shrinker_rwsem))
924 		goto out;
925 
926 	list_for_each_entry(shrinker, &shrinker_list, list) {
927 		struct shrink_control sc = {
928 			.gfp_mask = gfp_mask,
929 			.nid = nid,
930 			.memcg = memcg,
931 		};
932 
933 		ret = do_shrink_slab(&sc, shrinker, priority);
934 		if (ret == SHRINK_EMPTY)
935 			ret = 0;
936 		freed += ret;
937 		/*
938 		 * Bail out if someone want to register a new shrinker to
939 		 * prevent the registration from being stalled for long periods
940 		 * by parallel ongoing shrinking.
941 		 */
942 		if (rwsem_is_contended(&shrinker_rwsem)) {
943 			freed = freed ? : 1;
944 			break;
945 		}
946 	}
947 
948 	up_read(&shrinker_rwsem);
949 out:
950 	cond_resched();
951 	return freed;
952 }
953 
954 void drop_slab_node(int nid)
955 {
956 	unsigned long freed;
957 	int shift = 0;
958 
959 	do {
960 		struct mem_cgroup *memcg = NULL;
961 
962 		if (fatal_signal_pending(current))
963 			return;
964 
965 		freed = 0;
966 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
967 		do {
968 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
969 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
970 	} while ((freed >> shift++) > 1);
971 }
972 
973 void drop_slab(void)
974 {
975 	int nid;
976 
977 	for_each_online_node(nid)
978 		drop_slab_node(nid);
979 }
980 
981 static inline int is_page_cache_freeable(struct page *page)
982 {
983 	/*
984 	 * A freeable page cache page is referenced only by the caller
985 	 * that isolated the page, the page cache and optional buffer
986 	 * heads at page->private.
987 	 */
988 	int page_cache_pins = thp_nr_pages(page);
989 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
990 }
991 
992 static int may_write_to_inode(struct inode *inode)
993 {
994 	if (current->flags & PF_SWAPWRITE)
995 		return 1;
996 	if (!inode_write_congested(inode))
997 		return 1;
998 	if (inode_to_bdi(inode) == current->backing_dev_info)
999 		return 1;
1000 	return 0;
1001 }
1002 
1003 /*
1004  * We detected a synchronous write error writing a page out.  Probably
1005  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1006  * fsync(), msync() or close().
1007  *
1008  * The tricky part is that after writepage we cannot touch the mapping: nothing
1009  * prevents it from being freed up.  But we have a ref on the page and once
1010  * that page is locked, the mapping is pinned.
1011  *
1012  * We're allowed to run sleeping lock_page() here because we know the caller has
1013  * __GFP_FS.
1014  */
1015 static void handle_write_error(struct address_space *mapping,
1016 				struct page *page, int error)
1017 {
1018 	lock_page(page);
1019 	if (page_mapping(page) == mapping)
1020 		mapping_set_error(mapping, error);
1021 	unlock_page(page);
1022 }
1023 
1024 /* possible outcome of pageout() */
1025 typedef enum {
1026 	/* failed to write page out, page is locked */
1027 	PAGE_KEEP,
1028 	/* move page to the active list, page is locked */
1029 	PAGE_ACTIVATE,
1030 	/* page has been sent to the disk successfully, page is unlocked */
1031 	PAGE_SUCCESS,
1032 	/* page is clean and locked */
1033 	PAGE_CLEAN,
1034 } pageout_t;
1035 
1036 /*
1037  * pageout is called by shrink_page_list() for each dirty page.
1038  * Calls ->writepage().
1039  */
1040 static pageout_t pageout(struct page *page, struct address_space *mapping)
1041 {
1042 	/*
1043 	 * If the page is dirty, only perform writeback if that write
1044 	 * will be non-blocking.  To prevent this allocation from being
1045 	 * stalled by pagecache activity.  But note that there may be
1046 	 * stalls if we need to run get_block().  We could test
1047 	 * PagePrivate for that.
1048 	 *
1049 	 * If this process is currently in __generic_file_write_iter() against
1050 	 * this page's queue, we can perform writeback even if that
1051 	 * will block.
1052 	 *
1053 	 * If the page is swapcache, write it back even if that would
1054 	 * block, for some throttling. This happens by accident, because
1055 	 * swap_backing_dev_info is bust: it doesn't reflect the
1056 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1057 	 */
1058 	if (!is_page_cache_freeable(page))
1059 		return PAGE_KEEP;
1060 	if (!mapping) {
1061 		/*
1062 		 * Some data journaling orphaned pages can have
1063 		 * page->mapping == NULL while being dirty with clean buffers.
1064 		 */
1065 		if (page_has_private(page)) {
1066 			if (try_to_free_buffers(page)) {
1067 				ClearPageDirty(page);
1068 				pr_info("%s: orphaned page\n", __func__);
1069 				return PAGE_CLEAN;
1070 			}
1071 		}
1072 		return PAGE_KEEP;
1073 	}
1074 	if (mapping->a_ops->writepage == NULL)
1075 		return PAGE_ACTIVATE;
1076 	if (!may_write_to_inode(mapping->host))
1077 		return PAGE_KEEP;
1078 
1079 	if (clear_page_dirty_for_io(page)) {
1080 		int res;
1081 		struct writeback_control wbc = {
1082 			.sync_mode = WB_SYNC_NONE,
1083 			.nr_to_write = SWAP_CLUSTER_MAX,
1084 			.range_start = 0,
1085 			.range_end = LLONG_MAX,
1086 			.for_reclaim = 1,
1087 		};
1088 
1089 		SetPageReclaim(page);
1090 		res = mapping->a_ops->writepage(page, &wbc);
1091 		if (res < 0)
1092 			handle_write_error(mapping, page, res);
1093 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1094 			ClearPageReclaim(page);
1095 			return PAGE_ACTIVATE;
1096 		}
1097 
1098 		if (!PageWriteback(page)) {
1099 			/* synchronous write or broken a_ops? */
1100 			ClearPageReclaim(page);
1101 		}
1102 		trace_mm_vmscan_writepage(page);
1103 		inc_node_page_state(page, NR_VMSCAN_WRITE);
1104 		return PAGE_SUCCESS;
1105 	}
1106 
1107 	return PAGE_CLEAN;
1108 }
1109 
1110 /*
1111  * Same as remove_mapping, but if the page is removed from the mapping, it
1112  * gets returned with a refcount of 0.
1113  */
1114 static int __remove_mapping(struct address_space *mapping, struct page *page,
1115 			    bool reclaimed, struct mem_cgroup *target_memcg)
1116 {
1117 	int refcount;
1118 	void *shadow = NULL;
1119 
1120 	BUG_ON(!PageLocked(page));
1121 	BUG_ON(mapping != page_mapping(page));
1122 
1123 	xa_lock_irq(&mapping->i_pages);
1124 	/*
1125 	 * The non racy check for a busy page.
1126 	 *
1127 	 * Must be careful with the order of the tests. When someone has
1128 	 * a ref to the page, it may be possible that they dirty it then
1129 	 * drop the reference. So if PageDirty is tested before page_count
1130 	 * here, then the following race may occur:
1131 	 *
1132 	 * get_user_pages(&page);
1133 	 * [user mapping goes away]
1134 	 * write_to(page);
1135 	 *				!PageDirty(page)    [good]
1136 	 * SetPageDirty(page);
1137 	 * put_page(page);
1138 	 *				!page_count(page)   [good, discard it]
1139 	 *
1140 	 * [oops, our write_to data is lost]
1141 	 *
1142 	 * Reversing the order of the tests ensures such a situation cannot
1143 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1144 	 * load is not satisfied before that of page->_refcount.
1145 	 *
1146 	 * Note that if SetPageDirty is always performed via set_page_dirty,
1147 	 * and thus under the i_pages lock, then this ordering is not required.
1148 	 */
1149 	refcount = 1 + compound_nr(page);
1150 	if (!page_ref_freeze(page, refcount))
1151 		goto cannot_free;
1152 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1153 	if (unlikely(PageDirty(page))) {
1154 		page_ref_unfreeze(page, refcount);
1155 		goto cannot_free;
1156 	}
1157 
1158 	if (PageSwapCache(page)) {
1159 		swp_entry_t swap = { .val = page_private(page) };
1160 		mem_cgroup_swapout(page, swap);
1161 		if (reclaimed && !mapping_exiting(mapping))
1162 			shadow = workingset_eviction(page, target_memcg);
1163 		__delete_from_swap_cache(page, swap, shadow);
1164 		xa_unlock_irq(&mapping->i_pages);
1165 		put_swap_page(page, swap);
1166 	} else {
1167 		void (*freepage)(struct page *);
1168 
1169 		freepage = mapping->a_ops->freepage;
1170 		/*
1171 		 * Remember a shadow entry for reclaimed file cache in
1172 		 * order to detect refaults, thus thrashing, later on.
1173 		 *
1174 		 * But don't store shadows in an address space that is
1175 		 * already exiting.  This is not just an optimization,
1176 		 * inode reclaim needs to empty out the radix tree or
1177 		 * the nodes are lost.  Don't plant shadows behind its
1178 		 * back.
1179 		 *
1180 		 * We also don't store shadows for DAX mappings because the
1181 		 * only page cache pages found in these are zero pages
1182 		 * covering holes, and because we don't want to mix DAX
1183 		 * exceptional entries and shadow exceptional entries in the
1184 		 * same address_space.
1185 		 */
1186 		if (reclaimed && page_is_file_lru(page) &&
1187 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1188 			shadow = workingset_eviction(page, target_memcg);
1189 		__delete_from_page_cache(page, shadow);
1190 		xa_unlock_irq(&mapping->i_pages);
1191 
1192 		if (freepage != NULL)
1193 			freepage(page);
1194 	}
1195 
1196 	return 1;
1197 
1198 cannot_free:
1199 	xa_unlock_irq(&mapping->i_pages);
1200 	return 0;
1201 }
1202 
1203 /*
1204  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
1205  * someone else has a ref on the page, abort and return 0.  If it was
1206  * successfully detached, return 1.  Assumes the caller has a single ref on
1207  * this page.
1208  */
1209 int remove_mapping(struct address_space *mapping, struct page *page)
1210 {
1211 	if (__remove_mapping(mapping, page, false, NULL)) {
1212 		/*
1213 		 * Unfreezing the refcount with 1 rather than 2 effectively
1214 		 * drops the pagecache ref for us without requiring another
1215 		 * atomic operation.
1216 		 */
1217 		page_ref_unfreeze(page, 1);
1218 		return 1;
1219 	}
1220 	return 0;
1221 }
1222 
1223 /**
1224  * putback_lru_page - put previously isolated page onto appropriate LRU list
1225  * @page: page to be put back to appropriate lru list
1226  *
1227  * Add previously isolated @page to appropriate LRU list.
1228  * Page may still be unevictable for other reasons.
1229  *
1230  * lru_lock must not be held, interrupts must be enabled.
1231  */
1232 void putback_lru_page(struct page *page)
1233 {
1234 	lru_cache_add(page);
1235 	put_page(page);		/* drop ref from isolate */
1236 }
1237 
1238 enum page_references {
1239 	PAGEREF_RECLAIM,
1240 	PAGEREF_RECLAIM_CLEAN,
1241 	PAGEREF_KEEP,
1242 	PAGEREF_ACTIVATE,
1243 };
1244 
1245 static enum page_references page_check_references(struct page *page,
1246 						  struct scan_control *sc)
1247 {
1248 	int referenced_ptes, referenced_page;
1249 	unsigned long vm_flags;
1250 
1251 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1252 					  &vm_flags);
1253 	referenced_page = TestClearPageReferenced(page);
1254 
1255 	/*
1256 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1257 	 * move the page to the unevictable list.
1258 	 */
1259 	if (vm_flags & VM_LOCKED)
1260 		return PAGEREF_RECLAIM;
1261 
1262 	if (referenced_ptes) {
1263 		/*
1264 		 * All mapped pages start out with page table
1265 		 * references from the instantiating fault, so we need
1266 		 * to look twice if a mapped file page is used more
1267 		 * than once.
1268 		 *
1269 		 * Mark it and spare it for another trip around the
1270 		 * inactive list.  Another page table reference will
1271 		 * lead to its activation.
1272 		 *
1273 		 * Note: the mark is set for activated pages as well
1274 		 * so that recently deactivated but used pages are
1275 		 * quickly recovered.
1276 		 */
1277 		SetPageReferenced(page);
1278 
1279 		if (referenced_page || referenced_ptes > 1)
1280 			return PAGEREF_ACTIVATE;
1281 
1282 		/*
1283 		 * Activate file-backed executable pages after first usage.
1284 		 */
1285 		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1286 			return PAGEREF_ACTIVATE;
1287 
1288 		return PAGEREF_KEEP;
1289 	}
1290 
1291 	/* Reclaim if clean, defer dirty pages to writeback */
1292 	if (referenced_page && !PageSwapBacked(page))
1293 		return PAGEREF_RECLAIM_CLEAN;
1294 
1295 	return PAGEREF_RECLAIM;
1296 }
1297 
1298 /* Check if a page is dirty or under writeback */
1299 static void page_check_dirty_writeback(struct page *page,
1300 				       bool *dirty, bool *writeback)
1301 {
1302 	struct address_space *mapping;
1303 
1304 	/*
1305 	 * Anonymous pages are not handled by flushers and must be written
1306 	 * from reclaim context. Do not stall reclaim based on them
1307 	 */
1308 	if (!page_is_file_lru(page) ||
1309 	    (PageAnon(page) && !PageSwapBacked(page))) {
1310 		*dirty = false;
1311 		*writeback = false;
1312 		return;
1313 	}
1314 
1315 	/* By default assume that the page flags are accurate */
1316 	*dirty = PageDirty(page);
1317 	*writeback = PageWriteback(page);
1318 
1319 	/* Verify dirty/writeback state if the filesystem supports it */
1320 	if (!page_has_private(page))
1321 		return;
1322 
1323 	mapping = page_mapping(page);
1324 	if (mapping && mapping->a_ops->is_dirty_writeback)
1325 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1326 }
1327 
1328 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1329 {
1330 	struct migration_target_control mtc = {
1331 		/*
1332 		 * Allocate from 'node', or fail quickly and quietly.
1333 		 * When this happens, 'page' will likely just be discarded
1334 		 * instead of migrated.
1335 		 */
1336 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1337 			    __GFP_THISNODE  | __GFP_NOWARN |
1338 			    __GFP_NOMEMALLOC | GFP_NOWAIT,
1339 		.nid = node
1340 	};
1341 
1342 	return alloc_migration_target(page, (unsigned long)&mtc);
1343 }
1344 
1345 /*
1346  * Take pages on @demote_list and attempt to demote them to
1347  * another node.  Pages which are not demoted are left on
1348  * @demote_pages.
1349  */
1350 static unsigned int demote_page_list(struct list_head *demote_pages,
1351 				     struct pglist_data *pgdat)
1352 {
1353 	int target_nid = next_demotion_node(pgdat->node_id);
1354 	unsigned int nr_succeeded;
1355 	int err;
1356 
1357 	if (list_empty(demote_pages))
1358 		return 0;
1359 
1360 	if (target_nid == NUMA_NO_NODE)
1361 		return 0;
1362 
1363 	/* Demotion ignores all cpuset and mempolicy settings */
1364 	err = migrate_pages(demote_pages, alloc_demote_page, NULL,
1365 			    target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1366 			    &nr_succeeded);
1367 
1368 	if (current_is_kswapd())
1369 		__count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1370 	else
1371 		__count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1372 
1373 	return nr_succeeded;
1374 }
1375 
1376 /*
1377  * shrink_page_list() returns the number of reclaimed pages
1378  */
1379 static unsigned int shrink_page_list(struct list_head *page_list,
1380 				     struct pglist_data *pgdat,
1381 				     struct scan_control *sc,
1382 				     struct reclaim_stat *stat,
1383 				     bool ignore_references)
1384 {
1385 	LIST_HEAD(ret_pages);
1386 	LIST_HEAD(free_pages);
1387 	LIST_HEAD(demote_pages);
1388 	unsigned int nr_reclaimed = 0;
1389 	unsigned int pgactivate = 0;
1390 	bool do_demote_pass;
1391 
1392 	memset(stat, 0, sizeof(*stat));
1393 	cond_resched();
1394 	do_demote_pass = can_demote(pgdat->node_id, sc);
1395 
1396 retry:
1397 	while (!list_empty(page_list)) {
1398 		struct address_space *mapping;
1399 		struct page *page;
1400 		enum page_references references = PAGEREF_RECLAIM;
1401 		bool dirty, writeback, may_enter_fs;
1402 		unsigned int nr_pages;
1403 
1404 		cond_resched();
1405 
1406 		page = lru_to_page(page_list);
1407 		list_del(&page->lru);
1408 
1409 		if (!trylock_page(page))
1410 			goto keep;
1411 
1412 		VM_BUG_ON_PAGE(PageActive(page), page);
1413 
1414 		nr_pages = compound_nr(page);
1415 
1416 		/* Account the number of base pages even though THP */
1417 		sc->nr_scanned += nr_pages;
1418 
1419 		if (unlikely(!page_evictable(page)))
1420 			goto activate_locked;
1421 
1422 		if (!sc->may_unmap && page_mapped(page))
1423 			goto keep_locked;
1424 
1425 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1426 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1427 
1428 		/*
1429 		 * The number of dirty pages determines if a node is marked
1430 		 * reclaim_congested which affects wait_iff_congested. kswapd
1431 		 * will stall and start writing pages if the tail of the LRU
1432 		 * is all dirty unqueued pages.
1433 		 */
1434 		page_check_dirty_writeback(page, &dirty, &writeback);
1435 		if (dirty || writeback)
1436 			stat->nr_dirty++;
1437 
1438 		if (dirty && !writeback)
1439 			stat->nr_unqueued_dirty++;
1440 
1441 		/*
1442 		 * Treat this page as congested if the underlying BDI is or if
1443 		 * pages are cycling through the LRU so quickly that the
1444 		 * pages marked for immediate reclaim are making it to the
1445 		 * end of the LRU a second time.
1446 		 */
1447 		mapping = page_mapping(page);
1448 		if (((dirty || writeback) && mapping &&
1449 		     inode_write_congested(mapping->host)) ||
1450 		    (writeback && PageReclaim(page)))
1451 			stat->nr_congested++;
1452 
1453 		/*
1454 		 * If a page at the tail of the LRU is under writeback, there
1455 		 * are three cases to consider.
1456 		 *
1457 		 * 1) If reclaim is encountering an excessive number of pages
1458 		 *    under writeback and this page is both under writeback and
1459 		 *    PageReclaim then it indicates that pages are being queued
1460 		 *    for IO but are being recycled through the LRU before the
1461 		 *    IO can complete. Waiting on the page itself risks an
1462 		 *    indefinite stall if it is impossible to writeback the
1463 		 *    page due to IO error or disconnected storage so instead
1464 		 *    note that the LRU is being scanned too quickly and the
1465 		 *    caller can stall after page list has been processed.
1466 		 *
1467 		 * 2) Global or new memcg reclaim encounters a page that is
1468 		 *    not marked for immediate reclaim, or the caller does not
1469 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1470 		 *    not to fs). In this case mark the page for immediate
1471 		 *    reclaim and continue scanning.
1472 		 *
1473 		 *    Require may_enter_fs because we would wait on fs, which
1474 		 *    may not have submitted IO yet. And the loop driver might
1475 		 *    enter reclaim, and deadlock if it waits on a page for
1476 		 *    which it is needed to do the write (loop masks off
1477 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1478 		 *    would probably show more reasons.
1479 		 *
1480 		 * 3) Legacy memcg encounters a page that is already marked
1481 		 *    PageReclaim. memcg does not have any dirty pages
1482 		 *    throttling so we could easily OOM just because too many
1483 		 *    pages are in writeback and there is nothing else to
1484 		 *    reclaim. Wait for the writeback to complete.
1485 		 *
1486 		 * In cases 1) and 2) we activate the pages to get them out of
1487 		 * the way while we continue scanning for clean pages on the
1488 		 * inactive list and refilling from the active list. The
1489 		 * observation here is that waiting for disk writes is more
1490 		 * expensive than potentially causing reloads down the line.
1491 		 * Since they're marked for immediate reclaim, they won't put
1492 		 * memory pressure on the cache working set any longer than it
1493 		 * takes to write them to disk.
1494 		 */
1495 		if (PageWriteback(page)) {
1496 			/* Case 1 above */
1497 			if (current_is_kswapd() &&
1498 			    PageReclaim(page) &&
1499 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1500 				stat->nr_immediate++;
1501 				goto activate_locked;
1502 
1503 			/* Case 2 above */
1504 			} else if (writeback_throttling_sane(sc) ||
1505 			    !PageReclaim(page) || !may_enter_fs) {
1506 				/*
1507 				 * This is slightly racy - end_page_writeback()
1508 				 * might have just cleared PageReclaim, then
1509 				 * setting PageReclaim here end up interpreted
1510 				 * as PageReadahead - but that does not matter
1511 				 * enough to care.  What we do want is for this
1512 				 * page to have PageReclaim set next time memcg
1513 				 * reclaim reaches the tests above, so it will
1514 				 * then wait_on_page_writeback() to avoid OOM;
1515 				 * and it's also appropriate in global reclaim.
1516 				 */
1517 				SetPageReclaim(page);
1518 				stat->nr_writeback++;
1519 				goto activate_locked;
1520 
1521 			/* Case 3 above */
1522 			} else {
1523 				unlock_page(page);
1524 				wait_on_page_writeback(page);
1525 				/* then go back and try same page again */
1526 				list_add_tail(&page->lru, page_list);
1527 				continue;
1528 			}
1529 		}
1530 
1531 		if (!ignore_references)
1532 			references = page_check_references(page, sc);
1533 
1534 		switch (references) {
1535 		case PAGEREF_ACTIVATE:
1536 			goto activate_locked;
1537 		case PAGEREF_KEEP:
1538 			stat->nr_ref_keep += nr_pages;
1539 			goto keep_locked;
1540 		case PAGEREF_RECLAIM:
1541 		case PAGEREF_RECLAIM_CLEAN:
1542 			; /* try to reclaim the page below */
1543 		}
1544 
1545 		/*
1546 		 * Before reclaiming the page, try to relocate
1547 		 * its contents to another node.
1548 		 */
1549 		if (do_demote_pass &&
1550 		    (thp_migration_supported() || !PageTransHuge(page))) {
1551 			list_add(&page->lru, &demote_pages);
1552 			unlock_page(page);
1553 			continue;
1554 		}
1555 
1556 		/*
1557 		 * Anonymous process memory has backing store?
1558 		 * Try to allocate it some swap space here.
1559 		 * Lazyfree page could be freed directly
1560 		 */
1561 		if (PageAnon(page) && PageSwapBacked(page)) {
1562 			if (!PageSwapCache(page)) {
1563 				if (!(sc->gfp_mask & __GFP_IO))
1564 					goto keep_locked;
1565 				if (page_maybe_dma_pinned(page))
1566 					goto keep_locked;
1567 				if (PageTransHuge(page)) {
1568 					/* cannot split THP, skip it */
1569 					if (!can_split_huge_page(page, NULL))
1570 						goto activate_locked;
1571 					/*
1572 					 * Split pages without a PMD map right
1573 					 * away. Chances are some or all of the
1574 					 * tail pages can be freed without IO.
1575 					 */
1576 					if (!compound_mapcount(page) &&
1577 					    split_huge_page_to_list(page,
1578 								    page_list))
1579 						goto activate_locked;
1580 				}
1581 				if (!add_to_swap(page)) {
1582 					if (!PageTransHuge(page))
1583 						goto activate_locked_split;
1584 					/* Fallback to swap normal pages */
1585 					if (split_huge_page_to_list(page,
1586 								    page_list))
1587 						goto activate_locked;
1588 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1589 					count_vm_event(THP_SWPOUT_FALLBACK);
1590 #endif
1591 					if (!add_to_swap(page))
1592 						goto activate_locked_split;
1593 				}
1594 
1595 				may_enter_fs = true;
1596 
1597 				/* Adding to swap updated mapping */
1598 				mapping = page_mapping(page);
1599 			}
1600 		} else if (unlikely(PageTransHuge(page))) {
1601 			/* Split file THP */
1602 			if (split_huge_page_to_list(page, page_list))
1603 				goto keep_locked;
1604 		}
1605 
1606 		/*
1607 		 * THP may get split above, need minus tail pages and update
1608 		 * nr_pages to avoid accounting tail pages twice.
1609 		 *
1610 		 * The tail pages that are added into swap cache successfully
1611 		 * reach here.
1612 		 */
1613 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1614 			sc->nr_scanned -= (nr_pages - 1);
1615 			nr_pages = 1;
1616 		}
1617 
1618 		/*
1619 		 * The page is mapped into the page tables of one or more
1620 		 * processes. Try to unmap it here.
1621 		 */
1622 		if (page_mapped(page)) {
1623 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1624 			bool was_swapbacked = PageSwapBacked(page);
1625 
1626 			if (unlikely(PageTransHuge(page)))
1627 				flags |= TTU_SPLIT_HUGE_PMD;
1628 
1629 			try_to_unmap(page, flags);
1630 			if (page_mapped(page)) {
1631 				stat->nr_unmap_fail += nr_pages;
1632 				if (!was_swapbacked && PageSwapBacked(page))
1633 					stat->nr_lazyfree_fail += nr_pages;
1634 				goto activate_locked;
1635 			}
1636 		}
1637 
1638 		if (PageDirty(page)) {
1639 			/*
1640 			 * Only kswapd can writeback filesystem pages
1641 			 * to avoid risk of stack overflow. But avoid
1642 			 * injecting inefficient single-page IO into
1643 			 * flusher writeback as much as possible: only
1644 			 * write pages when we've encountered many
1645 			 * dirty pages, and when we've already scanned
1646 			 * the rest of the LRU for clean pages and see
1647 			 * the same dirty pages again (PageReclaim).
1648 			 */
1649 			if (page_is_file_lru(page) &&
1650 			    (!current_is_kswapd() || !PageReclaim(page) ||
1651 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1652 				/*
1653 				 * Immediately reclaim when written back.
1654 				 * Similar in principal to deactivate_page()
1655 				 * except we already have the page isolated
1656 				 * and know it's dirty
1657 				 */
1658 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1659 				SetPageReclaim(page);
1660 
1661 				goto activate_locked;
1662 			}
1663 
1664 			if (references == PAGEREF_RECLAIM_CLEAN)
1665 				goto keep_locked;
1666 			if (!may_enter_fs)
1667 				goto keep_locked;
1668 			if (!sc->may_writepage)
1669 				goto keep_locked;
1670 
1671 			/*
1672 			 * Page is dirty. Flush the TLB if a writable entry
1673 			 * potentially exists to avoid CPU writes after IO
1674 			 * starts and then write it out here.
1675 			 */
1676 			try_to_unmap_flush_dirty();
1677 			switch (pageout(page, mapping)) {
1678 			case PAGE_KEEP:
1679 				goto keep_locked;
1680 			case PAGE_ACTIVATE:
1681 				goto activate_locked;
1682 			case PAGE_SUCCESS:
1683 				stat->nr_pageout += thp_nr_pages(page);
1684 
1685 				if (PageWriteback(page))
1686 					goto keep;
1687 				if (PageDirty(page))
1688 					goto keep;
1689 
1690 				/*
1691 				 * A synchronous write - probably a ramdisk.  Go
1692 				 * ahead and try to reclaim the page.
1693 				 */
1694 				if (!trylock_page(page))
1695 					goto keep;
1696 				if (PageDirty(page) || PageWriteback(page))
1697 					goto keep_locked;
1698 				mapping = page_mapping(page);
1699 				fallthrough;
1700 			case PAGE_CLEAN:
1701 				; /* try to free the page below */
1702 			}
1703 		}
1704 
1705 		/*
1706 		 * If the page has buffers, try to free the buffer mappings
1707 		 * associated with this page. If we succeed we try to free
1708 		 * the page as well.
1709 		 *
1710 		 * We do this even if the page is PageDirty().
1711 		 * try_to_release_page() does not perform I/O, but it is
1712 		 * possible for a page to have PageDirty set, but it is actually
1713 		 * clean (all its buffers are clean).  This happens if the
1714 		 * buffers were written out directly, with submit_bh(). ext3
1715 		 * will do this, as well as the blockdev mapping.
1716 		 * try_to_release_page() will discover that cleanness and will
1717 		 * drop the buffers and mark the page clean - it can be freed.
1718 		 *
1719 		 * Rarely, pages can have buffers and no ->mapping.  These are
1720 		 * the pages which were not successfully invalidated in
1721 		 * truncate_cleanup_page().  We try to drop those buffers here
1722 		 * and if that worked, and the page is no longer mapped into
1723 		 * process address space (page_count == 1) it can be freed.
1724 		 * Otherwise, leave the page on the LRU so it is swappable.
1725 		 */
1726 		if (page_has_private(page)) {
1727 			if (!try_to_release_page(page, sc->gfp_mask))
1728 				goto activate_locked;
1729 			if (!mapping && page_count(page) == 1) {
1730 				unlock_page(page);
1731 				if (put_page_testzero(page))
1732 					goto free_it;
1733 				else {
1734 					/*
1735 					 * rare race with speculative reference.
1736 					 * the speculative reference will free
1737 					 * this page shortly, so we may
1738 					 * increment nr_reclaimed here (and
1739 					 * leave it off the LRU).
1740 					 */
1741 					nr_reclaimed++;
1742 					continue;
1743 				}
1744 			}
1745 		}
1746 
1747 		if (PageAnon(page) && !PageSwapBacked(page)) {
1748 			/* follow __remove_mapping for reference */
1749 			if (!page_ref_freeze(page, 1))
1750 				goto keep_locked;
1751 			/*
1752 			 * The page has only one reference left, which is
1753 			 * from the isolation. After the caller puts the
1754 			 * page back on lru and drops the reference, the
1755 			 * page will be freed anyway. It doesn't matter
1756 			 * which lru it goes. So we don't bother checking
1757 			 * PageDirty here.
1758 			 */
1759 			count_vm_event(PGLAZYFREED);
1760 			count_memcg_page_event(page, PGLAZYFREED);
1761 		} else if (!mapping || !__remove_mapping(mapping, page, true,
1762 							 sc->target_mem_cgroup))
1763 			goto keep_locked;
1764 
1765 		unlock_page(page);
1766 free_it:
1767 		/*
1768 		 * THP may get swapped out in a whole, need account
1769 		 * all base pages.
1770 		 */
1771 		nr_reclaimed += nr_pages;
1772 
1773 		/*
1774 		 * Is there need to periodically free_page_list? It would
1775 		 * appear not as the counts should be low
1776 		 */
1777 		if (unlikely(PageTransHuge(page)))
1778 			destroy_compound_page(page);
1779 		else
1780 			list_add(&page->lru, &free_pages);
1781 		continue;
1782 
1783 activate_locked_split:
1784 		/*
1785 		 * The tail pages that are failed to add into swap cache
1786 		 * reach here.  Fixup nr_scanned and nr_pages.
1787 		 */
1788 		if (nr_pages > 1) {
1789 			sc->nr_scanned -= (nr_pages - 1);
1790 			nr_pages = 1;
1791 		}
1792 activate_locked:
1793 		/* Not a candidate for swapping, so reclaim swap space. */
1794 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1795 						PageMlocked(page)))
1796 			try_to_free_swap(page);
1797 		VM_BUG_ON_PAGE(PageActive(page), page);
1798 		if (!PageMlocked(page)) {
1799 			int type = page_is_file_lru(page);
1800 			SetPageActive(page);
1801 			stat->nr_activate[type] += nr_pages;
1802 			count_memcg_page_event(page, PGACTIVATE);
1803 		}
1804 keep_locked:
1805 		unlock_page(page);
1806 keep:
1807 		list_add(&page->lru, &ret_pages);
1808 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1809 	}
1810 	/* 'page_list' is always empty here */
1811 
1812 	/* Migrate pages selected for demotion */
1813 	nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1814 	/* Pages that could not be demoted are still in @demote_pages */
1815 	if (!list_empty(&demote_pages)) {
1816 		/* Pages which failed to demoted go back on @page_list for retry: */
1817 		list_splice_init(&demote_pages, page_list);
1818 		do_demote_pass = false;
1819 		goto retry;
1820 	}
1821 
1822 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1823 
1824 	mem_cgroup_uncharge_list(&free_pages);
1825 	try_to_unmap_flush();
1826 	free_unref_page_list(&free_pages);
1827 
1828 	list_splice(&ret_pages, page_list);
1829 	count_vm_events(PGACTIVATE, pgactivate);
1830 
1831 	return nr_reclaimed;
1832 }
1833 
1834 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1835 					    struct list_head *page_list)
1836 {
1837 	struct scan_control sc = {
1838 		.gfp_mask = GFP_KERNEL,
1839 		.may_unmap = 1,
1840 	};
1841 	struct reclaim_stat stat;
1842 	unsigned int nr_reclaimed;
1843 	struct page *page, *next;
1844 	LIST_HEAD(clean_pages);
1845 	unsigned int noreclaim_flag;
1846 
1847 	list_for_each_entry_safe(page, next, page_list, lru) {
1848 		if (!PageHuge(page) && page_is_file_lru(page) &&
1849 		    !PageDirty(page) && !__PageMovable(page) &&
1850 		    !PageUnevictable(page)) {
1851 			ClearPageActive(page);
1852 			list_move(&page->lru, &clean_pages);
1853 		}
1854 	}
1855 
1856 	/*
1857 	 * We should be safe here since we are only dealing with file pages and
1858 	 * we are not kswapd and therefore cannot write dirty file pages. But
1859 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1860 	 * change in the future.
1861 	 */
1862 	noreclaim_flag = memalloc_noreclaim_save();
1863 	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1864 					&stat, true);
1865 	memalloc_noreclaim_restore(noreclaim_flag);
1866 
1867 	list_splice(&clean_pages, page_list);
1868 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1869 			    -(long)nr_reclaimed);
1870 	/*
1871 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1872 	 * they will rotate back to anonymous LRU in the end if it failed to
1873 	 * discard so isolated count will be mismatched.
1874 	 * Compensate the isolated count for both LRU lists.
1875 	 */
1876 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1877 			    stat.nr_lazyfree_fail);
1878 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1879 			    -(long)stat.nr_lazyfree_fail);
1880 	return nr_reclaimed;
1881 }
1882 
1883 /*
1884  * Attempt to remove the specified page from its LRU.  Only take this page
1885  * if it is of the appropriate PageActive status.  Pages which are being
1886  * freed elsewhere are also ignored.
1887  *
1888  * page:	page to consider
1889  * mode:	one of the LRU isolation modes defined above
1890  *
1891  * returns true on success, false on failure.
1892  */
1893 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
1894 {
1895 	/* Only take pages on the LRU. */
1896 	if (!PageLRU(page))
1897 		return false;
1898 
1899 	/* Compaction should not handle unevictable pages but CMA can do so */
1900 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1901 		return false;
1902 
1903 	/*
1904 	 * To minimise LRU disruption, the caller can indicate that it only
1905 	 * wants to isolate pages it will be able to operate on without
1906 	 * blocking - clean pages for the most part.
1907 	 *
1908 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1909 	 * that it is possible to migrate without blocking
1910 	 */
1911 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1912 		/* All the caller can do on PageWriteback is block */
1913 		if (PageWriteback(page))
1914 			return false;
1915 
1916 		if (PageDirty(page)) {
1917 			struct address_space *mapping;
1918 			bool migrate_dirty;
1919 
1920 			/*
1921 			 * Only pages without mappings or that have a
1922 			 * ->migratepage callback are possible to migrate
1923 			 * without blocking. However, we can be racing with
1924 			 * truncation so it's necessary to lock the page
1925 			 * to stabilise the mapping as truncation holds
1926 			 * the page lock until after the page is removed
1927 			 * from the page cache.
1928 			 */
1929 			if (!trylock_page(page))
1930 				return false;
1931 
1932 			mapping = page_mapping(page);
1933 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1934 			unlock_page(page);
1935 			if (!migrate_dirty)
1936 				return false;
1937 		}
1938 	}
1939 
1940 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1941 		return false;
1942 
1943 	return true;
1944 }
1945 
1946 /*
1947  * Update LRU sizes after isolating pages. The LRU size updates must
1948  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1949  */
1950 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1951 			enum lru_list lru, unsigned long *nr_zone_taken)
1952 {
1953 	int zid;
1954 
1955 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1956 		if (!nr_zone_taken[zid])
1957 			continue;
1958 
1959 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1960 	}
1961 
1962 }
1963 
1964 /*
1965  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1966  *
1967  * lruvec->lru_lock is heavily contended.  Some of the functions that
1968  * shrink the lists perform better by taking out a batch of pages
1969  * and working on them outside the LRU lock.
1970  *
1971  * For pagecache intensive workloads, this function is the hottest
1972  * spot in the kernel (apart from copy_*_user functions).
1973  *
1974  * Lru_lock must be held before calling this function.
1975  *
1976  * @nr_to_scan:	The number of eligible pages to look through on the list.
1977  * @lruvec:	The LRU vector to pull pages from.
1978  * @dst:	The temp list to put pages on to.
1979  * @nr_scanned:	The number of pages that were scanned.
1980  * @sc:		The scan_control struct for this reclaim session
1981  * @lru:	LRU list id for isolating
1982  *
1983  * returns how many pages were moved onto *@dst.
1984  */
1985 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1986 		struct lruvec *lruvec, struct list_head *dst,
1987 		unsigned long *nr_scanned, struct scan_control *sc,
1988 		enum lru_list lru)
1989 {
1990 	struct list_head *src = &lruvec->lists[lru];
1991 	unsigned long nr_taken = 0;
1992 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1993 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1994 	unsigned long skipped = 0;
1995 	unsigned long scan, total_scan, nr_pages;
1996 	LIST_HEAD(pages_skipped);
1997 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1998 
1999 	total_scan = 0;
2000 	scan = 0;
2001 	while (scan < nr_to_scan && !list_empty(src)) {
2002 		struct page *page;
2003 
2004 		page = lru_to_page(src);
2005 		prefetchw_prev_lru_page(page, src, flags);
2006 
2007 		nr_pages = compound_nr(page);
2008 		total_scan += nr_pages;
2009 
2010 		if (page_zonenum(page) > sc->reclaim_idx) {
2011 			list_move(&page->lru, &pages_skipped);
2012 			nr_skipped[page_zonenum(page)] += nr_pages;
2013 			continue;
2014 		}
2015 
2016 		/*
2017 		 * Do not count skipped pages because that makes the function
2018 		 * return with no isolated pages if the LRU mostly contains
2019 		 * ineligible pages.  This causes the VM to not reclaim any
2020 		 * pages, triggering a premature OOM.
2021 		 *
2022 		 * Account all tail pages of THP.  This would not cause
2023 		 * premature OOM since __isolate_lru_page() returns -EBUSY
2024 		 * only when the page is being freed somewhere else.
2025 		 */
2026 		scan += nr_pages;
2027 		if (!__isolate_lru_page_prepare(page, mode)) {
2028 			/* It is being freed elsewhere */
2029 			list_move(&page->lru, src);
2030 			continue;
2031 		}
2032 		/*
2033 		 * Be careful not to clear PageLRU until after we're
2034 		 * sure the page is not being freed elsewhere -- the
2035 		 * page release code relies on it.
2036 		 */
2037 		if (unlikely(!get_page_unless_zero(page))) {
2038 			list_move(&page->lru, src);
2039 			continue;
2040 		}
2041 
2042 		if (!TestClearPageLRU(page)) {
2043 			/* Another thread is already isolating this page */
2044 			put_page(page);
2045 			list_move(&page->lru, src);
2046 			continue;
2047 		}
2048 
2049 		nr_taken += nr_pages;
2050 		nr_zone_taken[page_zonenum(page)] += nr_pages;
2051 		list_move(&page->lru, dst);
2052 	}
2053 
2054 	/*
2055 	 * Splice any skipped pages to the start of the LRU list. Note that
2056 	 * this disrupts the LRU order when reclaiming for lower zones but
2057 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2058 	 * scanning would soon rescan the same pages to skip and put the
2059 	 * system at risk of premature OOM.
2060 	 */
2061 	if (!list_empty(&pages_skipped)) {
2062 		int zid;
2063 
2064 		list_splice(&pages_skipped, src);
2065 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2066 			if (!nr_skipped[zid])
2067 				continue;
2068 
2069 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2070 			skipped += nr_skipped[zid];
2071 		}
2072 	}
2073 	*nr_scanned = total_scan;
2074 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2075 				    total_scan, skipped, nr_taken, mode, lru);
2076 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2077 	return nr_taken;
2078 }
2079 
2080 /**
2081  * isolate_lru_page - tries to isolate a page from its LRU list
2082  * @page: page to isolate from its LRU list
2083  *
2084  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
2085  * vmstat statistic corresponding to whatever LRU list the page was on.
2086  *
2087  * Returns 0 if the page was removed from an LRU list.
2088  * Returns -EBUSY if the page was not on an LRU list.
2089  *
2090  * The returned page will have PageLRU() cleared.  If it was found on
2091  * the active list, it will have PageActive set.  If it was found on
2092  * the unevictable list, it will have the PageUnevictable bit set. That flag
2093  * may need to be cleared by the caller before letting the page go.
2094  *
2095  * The vmstat statistic corresponding to the list on which the page was
2096  * found will be decremented.
2097  *
2098  * Restrictions:
2099  *
2100  * (1) Must be called with an elevated refcount on the page. This is a
2101  *     fundamental difference from isolate_lru_pages (which is called
2102  *     without a stable reference).
2103  * (2) the lru_lock must not be held.
2104  * (3) interrupts must be enabled.
2105  */
2106 int isolate_lru_page(struct page *page)
2107 {
2108 	int ret = -EBUSY;
2109 
2110 	VM_BUG_ON_PAGE(!page_count(page), page);
2111 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
2112 
2113 	if (TestClearPageLRU(page)) {
2114 		struct lruvec *lruvec;
2115 
2116 		get_page(page);
2117 		lruvec = lock_page_lruvec_irq(page);
2118 		del_page_from_lru_list(page, lruvec);
2119 		unlock_page_lruvec_irq(lruvec);
2120 		ret = 0;
2121 	}
2122 
2123 	return ret;
2124 }
2125 
2126 /*
2127  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2128  * then get rescheduled. When there are massive number of tasks doing page
2129  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2130  * the LRU list will go small and be scanned faster than necessary, leading to
2131  * unnecessary swapping, thrashing and OOM.
2132  */
2133 static int too_many_isolated(struct pglist_data *pgdat, int file,
2134 		struct scan_control *sc)
2135 {
2136 	unsigned long inactive, isolated;
2137 
2138 	if (current_is_kswapd())
2139 		return 0;
2140 
2141 	if (!writeback_throttling_sane(sc))
2142 		return 0;
2143 
2144 	if (file) {
2145 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2146 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2147 	} else {
2148 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2149 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2150 	}
2151 
2152 	/*
2153 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2154 	 * won't get blocked by normal direct-reclaimers, forming a circular
2155 	 * deadlock.
2156 	 */
2157 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2158 		inactive >>= 3;
2159 
2160 	return isolated > inactive;
2161 }
2162 
2163 /*
2164  * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2165  * On return, @list is reused as a list of pages to be freed by the caller.
2166  *
2167  * Returns the number of pages moved to the given lruvec.
2168  */
2169 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2170 				      struct list_head *list)
2171 {
2172 	int nr_pages, nr_moved = 0;
2173 	LIST_HEAD(pages_to_free);
2174 	struct page *page;
2175 
2176 	while (!list_empty(list)) {
2177 		page = lru_to_page(list);
2178 		VM_BUG_ON_PAGE(PageLRU(page), page);
2179 		list_del(&page->lru);
2180 		if (unlikely(!page_evictable(page))) {
2181 			spin_unlock_irq(&lruvec->lru_lock);
2182 			putback_lru_page(page);
2183 			spin_lock_irq(&lruvec->lru_lock);
2184 			continue;
2185 		}
2186 
2187 		/*
2188 		 * The SetPageLRU needs to be kept here for list integrity.
2189 		 * Otherwise:
2190 		 *   #0 move_pages_to_lru             #1 release_pages
2191 		 *   if !put_page_testzero
2192 		 *				      if (put_page_testzero())
2193 		 *				        !PageLRU //skip lru_lock
2194 		 *     SetPageLRU()
2195 		 *     list_add(&page->lru,)
2196 		 *                                        list_add(&page->lru,)
2197 		 */
2198 		SetPageLRU(page);
2199 
2200 		if (unlikely(put_page_testzero(page))) {
2201 			__clear_page_lru_flags(page);
2202 
2203 			if (unlikely(PageCompound(page))) {
2204 				spin_unlock_irq(&lruvec->lru_lock);
2205 				destroy_compound_page(page);
2206 				spin_lock_irq(&lruvec->lru_lock);
2207 			} else
2208 				list_add(&page->lru, &pages_to_free);
2209 
2210 			continue;
2211 		}
2212 
2213 		/*
2214 		 * All pages were isolated from the same lruvec (and isolation
2215 		 * inhibits memcg migration).
2216 		 */
2217 		VM_BUG_ON_PAGE(!page_matches_lruvec(page, lruvec), page);
2218 		add_page_to_lru_list(page, lruvec);
2219 		nr_pages = thp_nr_pages(page);
2220 		nr_moved += nr_pages;
2221 		if (PageActive(page))
2222 			workingset_age_nonresident(lruvec, nr_pages);
2223 	}
2224 
2225 	/*
2226 	 * To save our caller's stack, now use input list for pages to free.
2227 	 */
2228 	list_splice(&pages_to_free, list);
2229 
2230 	return nr_moved;
2231 }
2232 
2233 /*
2234  * If a kernel thread (such as nfsd for loop-back mounts) services
2235  * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2236  * In that case we should only throttle if the backing device it is
2237  * writing to is congested.  In other cases it is safe to throttle.
2238  */
2239 static int current_may_throttle(void)
2240 {
2241 	return !(current->flags & PF_LOCAL_THROTTLE) ||
2242 		current->backing_dev_info == NULL ||
2243 		bdi_write_congested(current->backing_dev_info);
2244 }
2245 
2246 /*
2247  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2248  * of reclaimed pages
2249  */
2250 static unsigned long
2251 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2252 		     struct scan_control *sc, enum lru_list lru)
2253 {
2254 	LIST_HEAD(page_list);
2255 	unsigned long nr_scanned;
2256 	unsigned int nr_reclaimed = 0;
2257 	unsigned long nr_taken;
2258 	struct reclaim_stat stat;
2259 	bool file = is_file_lru(lru);
2260 	enum vm_event_item item;
2261 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2262 	bool stalled = false;
2263 
2264 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2265 		if (stalled)
2266 			return 0;
2267 
2268 		/* wait a bit for the reclaimer. */
2269 		msleep(100);
2270 		stalled = true;
2271 
2272 		/* We are about to die and free our memory. Return now. */
2273 		if (fatal_signal_pending(current))
2274 			return SWAP_CLUSTER_MAX;
2275 	}
2276 
2277 	lru_add_drain();
2278 
2279 	spin_lock_irq(&lruvec->lru_lock);
2280 
2281 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2282 				     &nr_scanned, sc, lru);
2283 
2284 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2285 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2286 	if (!cgroup_reclaim(sc))
2287 		__count_vm_events(item, nr_scanned);
2288 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2289 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2290 
2291 	spin_unlock_irq(&lruvec->lru_lock);
2292 
2293 	if (nr_taken == 0)
2294 		return 0;
2295 
2296 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2297 
2298 	spin_lock_irq(&lruvec->lru_lock);
2299 	move_pages_to_lru(lruvec, &page_list);
2300 
2301 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2302 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2303 	if (!cgroup_reclaim(sc))
2304 		__count_vm_events(item, nr_reclaimed);
2305 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2306 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2307 	spin_unlock_irq(&lruvec->lru_lock);
2308 
2309 	lru_note_cost(lruvec, file, stat.nr_pageout);
2310 	mem_cgroup_uncharge_list(&page_list);
2311 	free_unref_page_list(&page_list);
2312 
2313 	/*
2314 	 * If dirty pages are scanned that are not queued for IO, it
2315 	 * implies that flushers are not doing their job. This can
2316 	 * happen when memory pressure pushes dirty pages to the end of
2317 	 * the LRU before the dirty limits are breached and the dirty
2318 	 * data has expired. It can also happen when the proportion of
2319 	 * dirty pages grows not through writes but through memory
2320 	 * pressure reclaiming all the clean cache. And in some cases,
2321 	 * the flushers simply cannot keep up with the allocation
2322 	 * rate. Nudge the flusher threads in case they are asleep.
2323 	 */
2324 	if (stat.nr_unqueued_dirty == nr_taken)
2325 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2326 
2327 	sc->nr.dirty += stat.nr_dirty;
2328 	sc->nr.congested += stat.nr_congested;
2329 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2330 	sc->nr.writeback += stat.nr_writeback;
2331 	sc->nr.immediate += stat.nr_immediate;
2332 	sc->nr.taken += nr_taken;
2333 	if (file)
2334 		sc->nr.file_taken += nr_taken;
2335 
2336 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2337 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2338 	return nr_reclaimed;
2339 }
2340 
2341 /*
2342  * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2343  *
2344  * We move them the other way if the page is referenced by one or more
2345  * processes.
2346  *
2347  * If the pages are mostly unmapped, the processing is fast and it is
2348  * appropriate to hold lru_lock across the whole operation.  But if
2349  * the pages are mapped, the processing is slow (page_referenced()), so
2350  * we should drop lru_lock around each page.  It's impossible to balance
2351  * this, so instead we remove the pages from the LRU while processing them.
2352  * It is safe to rely on PG_active against the non-LRU pages in here because
2353  * nobody will play with that bit on a non-LRU page.
2354  *
2355  * The downside is that we have to touch page->_refcount against each page.
2356  * But we had to alter page->flags anyway.
2357  */
2358 static void shrink_active_list(unsigned long nr_to_scan,
2359 			       struct lruvec *lruvec,
2360 			       struct scan_control *sc,
2361 			       enum lru_list lru)
2362 {
2363 	unsigned long nr_taken;
2364 	unsigned long nr_scanned;
2365 	unsigned long vm_flags;
2366 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2367 	LIST_HEAD(l_active);
2368 	LIST_HEAD(l_inactive);
2369 	struct page *page;
2370 	unsigned nr_deactivate, nr_activate;
2371 	unsigned nr_rotated = 0;
2372 	int file = is_file_lru(lru);
2373 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2374 
2375 	lru_add_drain();
2376 
2377 	spin_lock_irq(&lruvec->lru_lock);
2378 
2379 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2380 				     &nr_scanned, sc, lru);
2381 
2382 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2383 
2384 	if (!cgroup_reclaim(sc))
2385 		__count_vm_events(PGREFILL, nr_scanned);
2386 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2387 
2388 	spin_unlock_irq(&lruvec->lru_lock);
2389 
2390 	while (!list_empty(&l_hold)) {
2391 		cond_resched();
2392 		page = lru_to_page(&l_hold);
2393 		list_del(&page->lru);
2394 
2395 		if (unlikely(!page_evictable(page))) {
2396 			putback_lru_page(page);
2397 			continue;
2398 		}
2399 
2400 		if (unlikely(buffer_heads_over_limit)) {
2401 			if (page_has_private(page) && trylock_page(page)) {
2402 				if (page_has_private(page))
2403 					try_to_release_page(page, 0);
2404 				unlock_page(page);
2405 			}
2406 		}
2407 
2408 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2409 				    &vm_flags)) {
2410 			/*
2411 			 * Identify referenced, file-backed active pages and
2412 			 * give them one more trip around the active list. So
2413 			 * that executable code get better chances to stay in
2414 			 * memory under moderate memory pressure.  Anon pages
2415 			 * are not likely to be evicted by use-once streaming
2416 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2417 			 * so we ignore them here.
2418 			 */
2419 			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2420 				nr_rotated += thp_nr_pages(page);
2421 				list_add(&page->lru, &l_active);
2422 				continue;
2423 			}
2424 		}
2425 
2426 		ClearPageActive(page);	/* we are de-activating */
2427 		SetPageWorkingset(page);
2428 		list_add(&page->lru, &l_inactive);
2429 	}
2430 
2431 	/*
2432 	 * Move pages back to the lru list.
2433 	 */
2434 	spin_lock_irq(&lruvec->lru_lock);
2435 
2436 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2437 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2438 	/* Keep all free pages in l_active list */
2439 	list_splice(&l_inactive, &l_active);
2440 
2441 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2442 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2443 
2444 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2445 	spin_unlock_irq(&lruvec->lru_lock);
2446 
2447 	mem_cgroup_uncharge_list(&l_active);
2448 	free_unref_page_list(&l_active);
2449 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2450 			nr_deactivate, nr_rotated, sc->priority, file);
2451 }
2452 
2453 unsigned long reclaim_pages(struct list_head *page_list)
2454 {
2455 	int nid = NUMA_NO_NODE;
2456 	unsigned int nr_reclaimed = 0;
2457 	LIST_HEAD(node_page_list);
2458 	struct reclaim_stat dummy_stat;
2459 	struct page *page;
2460 	unsigned int noreclaim_flag;
2461 	struct scan_control sc = {
2462 		.gfp_mask = GFP_KERNEL,
2463 		.may_writepage = 1,
2464 		.may_unmap = 1,
2465 		.may_swap = 1,
2466 		.no_demotion = 1,
2467 	};
2468 
2469 	noreclaim_flag = memalloc_noreclaim_save();
2470 
2471 	while (!list_empty(page_list)) {
2472 		page = lru_to_page(page_list);
2473 		if (nid == NUMA_NO_NODE) {
2474 			nid = page_to_nid(page);
2475 			INIT_LIST_HEAD(&node_page_list);
2476 		}
2477 
2478 		if (nid == page_to_nid(page)) {
2479 			ClearPageActive(page);
2480 			list_move(&page->lru, &node_page_list);
2481 			continue;
2482 		}
2483 
2484 		nr_reclaimed += shrink_page_list(&node_page_list,
2485 						NODE_DATA(nid),
2486 						&sc, &dummy_stat, false);
2487 		while (!list_empty(&node_page_list)) {
2488 			page = lru_to_page(&node_page_list);
2489 			list_del(&page->lru);
2490 			putback_lru_page(page);
2491 		}
2492 
2493 		nid = NUMA_NO_NODE;
2494 	}
2495 
2496 	if (!list_empty(&node_page_list)) {
2497 		nr_reclaimed += shrink_page_list(&node_page_list,
2498 						NODE_DATA(nid),
2499 						&sc, &dummy_stat, false);
2500 		while (!list_empty(&node_page_list)) {
2501 			page = lru_to_page(&node_page_list);
2502 			list_del(&page->lru);
2503 			putback_lru_page(page);
2504 		}
2505 	}
2506 
2507 	memalloc_noreclaim_restore(noreclaim_flag);
2508 
2509 	return nr_reclaimed;
2510 }
2511 
2512 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2513 				 struct lruvec *lruvec, struct scan_control *sc)
2514 {
2515 	if (is_active_lru(lru)) {
2516 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2517 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2518 		else
2519 			sc->skipped_deactivate = 1;
2520 		return 0;
2521 	}
2522 
2523 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2524 }
2525 
2526 /*
2527  * The inactive anon list should be small enough that the VM never has
2528  * to do too much work.
2529  *
2530  * The inactive file list should be small enough to leave most memory
2531  * to the established workingset on the scan-resistant active list,
2532  * but large enough to avoid thrashing the aggregate readahead window.
2533  *
2534  * Both inactive lists should also be large enough that each inactive
2535  * page has a chance to be referenced again before it is reclaimed.
2536  *
2537  * If that fails and refaulting is observed, the inactive list grows.
2538  *
2539  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2540  * on this LRU, maintained by the pageout code. An inactive_ratio
2541  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2542  *
2543  * total     target    max
2544  * memory    ratio     inactive
2545  * -------------------------------------
2546  *   10MB       1         5MB
2547  *  100MB       1        50MB
2548  *    1GB       3       250MB
2549  *   10GB      10       0.9GB
2550  *  100GB      31         3GB
2551  *    1TB     101        10GB
2552  *   10TB     320        32GB
2553  */
2554 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2555 {
2556 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2557 	unsigned long inactive, active;
2558 	unsigned long inactive_ratio;
2559 	unsigned long gb;
2560 
2561 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2562 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2563 
2564 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2565 	if (gb)
2566 		inactive_ratio = int_sqrt(10 * gb);
2567 	else
2568 		inactive_ratio = 1;
2569 
2570 	return inactive * inactive_ratio < active;
2571 }
2572 
2573 enum scan_balance {
2574 	SCAN_EQUAL,
2575 	SCAN_FRACT,
2576 	SCAN_ANON,
2577 	SCAN_FILE,
2578 };
2579 
2580 /*
2581  * Determine how aggressively the anon and file LRU lists should be
2582  * scanned.  The relative value of each set of LRU lists is determined
2583  * by looking at the fraction of the pages scanned we did rotate back
2584  * onto the active list instead of evict.
2585  *
2586  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2587  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2588  */
2589 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2590 			   unsigned long *nr)
2591 {
2592 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2593 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2594 	unsigned long anon_cost, file_cost, total_cost;
2595 	int swappiness = mem_cgroup_swappiness(memcg);
2596 	u64 fraction[ANON_AND_FILE];
2597 	u64 denominator = 0;	/* gcc */
2598 	enum scan_balance scan_balance;
2599 	unsigned long ap, fp;
2600 	enum lru_list lru;
2601 
2602 	/* If we have no swap space, do not bother scanning anon pages. */
2603 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2604 		scan_balance = SCAN_FILE;
2605 		goto out;
2606 	}
2607 
2608 	/*
2609 	 * Global reclaim will swap to prevent OOM even with no
2610 	 * swappiness, but memcg users want to use this knob to
2611 	 * disable swapping for individual groups completely when
2612 	 * using the memory controller's swap limit feature would be
2613 	 * too expensive.
2614 	 */
2615 	if (cgroup_reclaim(sc) && !swappiness) {
2616 		scan_balance = SCAN_FILE;
2617 		goto out;
2618 	}
2619 
2620 	/*
2621 	 * Do not apply any pressure balancing cleverness when the
2622 	 * system is close to OOM, scan both anon and file equally
2623 	 * (unless the swappiness setting disagrees with swapping).
2624 	 */
2625 	if (!sc->priority && swappiness) {
2626 		scan_balance = SCAN_EQUAL;
2627 		goto out;
2628 	}
2629 
2630 	/*
2631 	 * If the system is almost out of file pages, force-scan anon.
2632 	 */
2633 	if (sc->file_is_tiny) {
2634 		scan_balance = SCAN_ANON;
2635 		goto out;
2636 	}
2637 
2638 	/*
2639 	 * If there is enough inactive page cache, we do not reclaim
2640 	 * anything from the anonymous working right now.
2641 	 */
2642 	if (sc->cache_trim_mode) {
2643 		scan_balance = SCAN_FILE;
2644 		goto out;
2645 	}
2646 
2647 	scan_balance = SCAN_FRACT;
2648 	/*
2649 	 * Calculate the pressure balance between anon and file pages.
2650 	 *
2651 	 * The amount of pressure we put on each LRU is inversely
2652 	 * proportional to the cost of reclaiming each list, as
2653 	 * determined by the share of pages that are refaulting, times
2654 	 * the relative IO cost of bringing back a swapped out
2655 	 * anonymous page vs reloading a filesystem page (swappiness).
2656 	 *
2657 	 * Although we limit that influence to ensure no list gets
2658 	 * left behind completely: at least a third of the pressure is
2659 	 * applied, before swappiness.
2660 	 *
2661 	 * With swappiness at 100, anon and file have equal IO cost.
2662 	 */
2663 	total_cost = sc->anon_cost + sc->file_cost;
2664 	anon_cost = total_cost + sc->anon_cost;
2665 	file_cost = total_cost + sc->file_cost;
2666 	total_cost = anon_cost + file_cost;
2667 
2668 	ap = swappiness * (total_cost + 1);
2669 	ap /= anon_cost + 1;
2670 
2671 	fp = (200 - swappiness) * (total_cost + 1);
2672 	fp /= file_cost + 1;
2673 
2674 	fraction[0] = ap;
2675 	fraction[1] = fp;
2676 	denominator = ap + fp;
2677 out:
2678 	for_each_evictable_lru(lru) {
2679 		int file = is_file_lru(lru);
2680 		unsigned long lruvec_size;
2681 		unsigned long low, min;
2682 		unsigned long scan;
2683 
2684 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2685 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2686 				      &min, &low);
2687 
2688 		if (min || low) {
2689 			/*
2690 			 * Scale a cgroup's reclaim pressure by proportioning
2691 			 * its current usage to its memory.low or memory.min
2692 			 * setting.
2693 			 *
2694 			 * This is important, as otherwise scanning aggression
2695 			 * becomes extremely binary -- from nothing as we
2696 			 * approach the memory protection threshold, to totally
2697 			 * nominal as we exceed it.  This results in requiring
2698 			 * setting extremely liberal protection thresholds. It
2699 			 * also means we simply get no protection at all if we
2700 			 * set it too low, which is not ideal.
2701 			 *
2702 			 * If there is any protection in place, we reduce scan
2703 			 * pressure by how much of the total memory used is
2704 			 * within protection thresholds.
2705 			 *
2706 			 * There is one special case: in the first reclaim pass,
2707 			 * we skip over all groups that are within their low
2708 			 * protection. If that fails to reclaim enough pages to
2709 			 * satisfy the reclaim goal, we come back and override
2710 			 * the best-effort low protection. However, we still
2711 			 * ideally want to honor how well-behaved groups are in
2712 			 * that case instead of simply punishing them all
2713 			 * equally. As such, we reclaim them based on how much
2714 			 * memory they are using, reducing the scan pressure
2715 			 * again by how much of the total memory used is under
2716 			 * hard protection.
2717 			 */
2718 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2719 			unsigned long protection;
2720 
2721 			/* memory.low scaling, make sure we retry before OOM */
2722 			if (!sc->memcg_low_reclaim && low > min) {
2723 				protection = low;
2724 				sc->memcg_low_skipped = 1;
2725 			} else {
2726 				protection = min;
2727 			}
2728 
2729 			/* Avoid TOCTOU with earlier protection check */
2730 			cgroup_size = max(cgroup_size, protection);
2731 
2732 			scan = lruvec_size - lruvec_size * protection /
2733 				(cgroup_size + 1);
2734 
2735 			/*
2736 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2737 			 * reclaim moving forwards, avoiding decrementing
2738 			 * sc->priority further than desirable.
2739 			 */
2740 			scan = max(scan, SWAP_CLUSTER_MAX);
2741 		} else {
2742 			scan = lruvec_size;
2743 		}
2744 
2745 		scan >>= sc->priority;
2746 
2747 		/*
2748 		 * If the cgroup's already been deleted, make sure to
2749 		 * scrape out the remaining cache.
2750 		 */
2751 		if (!scan && !mem_cgroup_online(memcg))
2752 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2753 
2754 		switch (scan_balance) {
2755 		case SCAN_EQUAL:
2756 			/* Scan lists relative to size */
2757 			break;
2758 		case SCAN_FRACT:
2759 			/*
2760 			 * Scan types proportional to swappiness and
2761 			 * their relative recent reclaim efficiency.
2762 			 * Make sure we don't miss the last page on
2763 			 * the offlined memory cgroups because of a
2764 			 * round-off error.
2765 			 */
2766 			scan = mem_cgroup_online(memcg) ?
2767 			       div64_u64(scan * fraction[file], denominator) :
2768 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2769 						  denominator);
2770 			break;
2771 		case SCAN_FILE:
2772 		case SCAN_ANON:
2773 			/* Scan one type exclusively */
2774 			if ((scan_balance == SCAN_FILE) != file)
2775 				scan = 0;
2776 			break;
2777 		default:
2778 			/* Look ma, no brain */
2779 			BUG();
2780 		}
2781 
2782 		nr[lru] = scan;
2783 	}
2784 }
2785 
2786 /*
2787  * Anonymous LRU management is a waste if there is
2788  * ultimately no way to reclaim the memory.
2789  */
2790 static bool can_age_anon_pages(struct pglist_data *pgdat,
2791 			       struct scan_control *sc)
2792 {
2793 	/* Aging the anon LRU is valuable if swap is present: */
2794 	if (total_swap_pages > 0)
2795 		return true;
2796 
2797 	/* Also valuable if anon pages can be demoted: */
2798 	return can_demote(pgdat->node_id, sc);
2799 }
2800 
2801 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2802 {
2803 	unsigned long nr[NR_LRU_LISTS];
2804 	unsigned long targets[NR_LRU_LISTS];
2805 	unsigned long nr_to_scan;
2806 	enum lru_list lru;
2807 	unsigned long nr_reclaimed = 0;
2808 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2809 	struct blk_plug plug;
2810 	bool scan_adjusted;
2811 
2812 	get_scan_count(lruvec, sc, nr);
2813 
2814 	/* Record the original scan target for proportional adjustments later */
2815 	memcpy(targets, nr, sizeof(nr));
2816 
2817 	/*
2818 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2819 	 * event that can occur when there is little memory pressure e.g.
2820 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2821 	 * when the requested number of pages are reclaimed when scanning at
2822 	 * DEF_PRIORITY on the assumption that the fact we are direct
2823 	 * reclaiming implies that kswapd is not keeping up and it is best to
2824 	 * do a batch of work at once. For memcg reclaim one check is made to
2825 	 * abort proportional reclaim if either the file or anon lru has already
2826 	 * dropped to zero at the first pass.
2827 	 */
2828 	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2829 			 sc->priority == DEF_PRIORITY);
2830 
2831 	blk_start_plug(&plug);
2832 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2833 					nr[LRU_INACTIVE_FILE]) {
2834 		unsigned long nr_anon, nr_file, percentage;
2835 		unsigned long nr_scanned;
2836 
2837 		for_each_evictable_lru(lru) {
2838 			if (nr[lru]) {
2839 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2840 				nr[lru] -= nr_to_scan;
2841 
2842 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2843 							    lruvec, sc);
2844 			}
2845 		}
2846 
2847 		cond_resched();
2848 
2849 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2850 			continue;
2851 
2852 		/*
2853 		 * For kswapd and memcg, reclaim at least the number of pages
2854 		 * requested. Ensure that the anon and file LRUs are scanned
2855 		 * proportionally what was requested by get_scan_count(). We
2856 		 * stop reclaiming one LRU and reduce the amount scanning
2857 		 * proportional to the original scan target.
2858 		 */
2859 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2860 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2861 
2862 		/*
2863 		 * It's just vindictive to attack the larger once the smaller
2864 		 * has gone to zero.  And given the way we stop scanning the
2865 		 * smaller below, this makes sure that we only make one nudge
2866 		 * towards proportionality once we've got nr_to_reclaim.
2867 		 */
2868 		if (!nr_file || !nr_anon)
2869 			break;
2870 
2871 		if (nr_file > nr_anon) {
2872 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2873 						targets[LRU_ACTIVE_ANON] + 1;
2874 			lru = LRU_BASE;
2875 			percentage = nr_anon * 100 / scan_target;
2876 		} else {
2877 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2878 						targets[LRU_ACTIVE_FILE] + 1;
2879 			lru = LRU_FILE;
2880 			percentage = nr_file * 100 / scan_target;
2881 		}
2882 
2883 		/* Stop scanning the smaller of the LRU */
2884 		nr[lru] = 0;
2885 		nr[lru + LRU_ACTIVE] = 0;
2886 
2887 		/*
2888 		 * Recalculate the other LRU scan count based on its original
2889 		 * scan target and the percentage scanning already complete
2890 		 */
2891 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2892 		nr_scanned = targets[lru] - nr[lru];
2893 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2894 		nr[lru] -= min(nr[lru], nr_scanned);
2895 
2896 		lru += LRU_ACTIVE;
2897 		nr_scanned = targets[lru] - nr[lru];
2898 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2899 		nr[lru] -= min(nr[lru], nr_scanned);
2900 
2901 		scan_adjusted = true;
2902 	}
2903 	blk_finish_plug(&plug);
2904 	sc->nr_reclaimed += nr_reclaimed;
2905 
2906 	/*
2907 	 * Even if we did not try to evict anon pages at all, we want to
2908 	 * rebalance the anon lru active/inactive ratio.
2909 	 */
2910 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
2911 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2912 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2913 				   sc, LRU_ACTIVE_ANON);
2914 }
2915 
2916 /* Use reclaim/compaction for costly allocs or under memory pressure */
2917 static bool in_reclaim_compaction(struct scan_control *sc)
2918 {
2919 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2920 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2921 			 sc->priority < DEF_PRIORITY - 2))
2922 		return true;
2923 
2924 	return false;
2925 }
2926 
2927 /*
2928  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2929  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2930  * true if more pages should be reclaimed such that when the page allocator
2931  * calls try_to_compact_pages() that it will have enough free pages to succeed.
2932  * It will give up earlier than that if there is difficulty reclaiming pages.
2933  */
2934 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2935 					unsigned long nr_reclaimed,
2936 					struct scan_control *sc)
2937 {
2938 	unsigned long pages_for_compaction;
2939 	unsigned long inactive_lru_pages;
2940 	int z;
2941 
2942 	/* If not in reclaim/compaction mode, stop */
2943 	if (!in_reclaim_compaction(sc))
2944 		return false;
2945 
2946 	/*
2947 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2948 	 * number of pages that were scanned. This will return to the caller
2949 	 * with the risk reclaim/compaction and the resulting allocation attempt
2950 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2951 	 * allocations through requiring that the full LRU list has been scanned
2952 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2953 	 * scan, but that approximation was wrong, and there were corner cases
2954 	 * where always a non-zero amount of pages were scanned.
2955 	 */
2956 	if (!nr_reclaimed)
2957 		return false;
2958 
2959 	/* If compaction would go ahead or the allocation would succeed, stop */
2960 	for (z = 0; z <= sc->reclaim_idx; z++) {
2961 		struct zone *zone = &pgdat->node_zones[z];
2962 		if (!managed_zone(zone))
2963 			continue;
2964 
2965 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2966 		case COMPACT_SUCCESS:
2967 		case COMPACT_CONTINUE:
2968 			return false;
2969 		default:
2970 			/* check next zone */
2971 			;
2972 		}
2973 	}
2974 
2975 	/*
2976 	 * If we have not reclaimed enough pages for compaction and the
2977 	 * inactive lists are large enough, continue reclaiming
2978 	 */
2979 	pages_for_compaction = compact_gap(sc->order);
2980 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2981 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
2982 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2983 
2984 	return inactive_lru_pages > pages_for_compaction;
2985 }
2986 
2987 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2988 {
2989 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2990 	struct mem_cgroup *memcg;
2991 
2992 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2993 	do {
2994 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2995 		unsigned long reclaimed;
2996 		unsigned long scanned;
2997 
2998 		/*
2999 		 * This loop can become CPU-bound when target memcgs
3000 		 * aren't eligible for reclaim - either because they
3001 		 * don't have any reclaimable pages, or because their
3002 		 * memory is explicitly protected. Avoid soft lockups.
3003 		 */
3004 		cond_resched();
3005 
3006 		mem_cgroup_calculate_protection(target_memcg, memcg);
3007 
3008 		if (mem_cgroup_below_min(memcg)) {
3009 			/*
3010 			 * Hard protection.
3011 			 * If there is no reclaimable memory, OOM.
3012 			 */
3013 			continue;
3014 		} else if (mem_cgroup_below_low(memcg)) {
3015 			/*
3016 			 * Soft protection.
3017 			 * Respect the protection only as long as
3018 			 * there is an unprotected supply
3019 			 * of reclaimable memory from other cgroups.
3020 			 */
3021 			if (!sc->memcg_low_reclaim) {
3022 				sc->memcg_low_skipped = 1;
3023 				continue;
3024 			}
3025 			memcg_memory_event(memcg, MEMCG_LOW);
3026 		}
3027 
3028 		reclaimed = sc->nr_reclaimed;
3029 		scanned = sc->nr_scanned;
3030 
3031 		shrink_lruvec(lruvec, sc);
3032 
3033 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3034 			    sc->priority);
3035 
3036 		/* Record the group's reclaim efficiency */
3037 		vmpressure(sc->gfp_mask, memcg, false,
3038 			   sc->nr_scanned - scanned,
3039 			   sc->nr_reclaimed - reclaimed);
3040 
3041 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3042 }
3043 
3044 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3045 {
3046 	struct reclaim_state *reclaim_state = current->reclaim_state;
3047 	unsigned long nr_reclaimed, nr_scanned;
3048 	struct lruvec *target_lruvec;
3049 	bool reclaimable = false;
3050 	unsigned long file;
3051 
3052 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3053 
3054 again:
3055 	/*
3056 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
3057 	 * lruvec stats for heuristics.
3058 	 */
3059 	mem_cgroup_flush_stats();
3060 
3061 	memset(&sc->nr, 0, sizeof(sc->nr));
3062 
3063 	nr_reclaimed = sc->nr_reclaimed;
3064 	nr_scanned = sc->nr_scanned;
3065 
3066 	/*
3067 	 * Determine the scan balance between anon and file LRUs.
3068 	 */
3069 	spin_lock_irq(&target_lruvec->lru_lock);
3070 	sc->anon_cost = target_lruvec->anon_cost;
3071 	sc->file_cost = target_lruvec->file_cost;
3072 	spin_unlock_irq(&target_lruvec->lru_lock);
3073 
3074 	/*
3075 	 * Target desirable inactive:active list ratios for the anon
3076 	 * and file LRU lists.
3077 	 */
3078 	if (!sc->force_deactivate) {
3079 		unsigned long refaults;
3080 
3081 		refaults = lruvec_page_state(target_lruvec,
3082 				WORKINGSET_ACTIVATE_ANON);
3083 		if (refaults != target_lruvec->refaults[0] ||
3084 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3085 			sc->may_deactivate |= DEACTIVATE_ANON;
3086 		else
3087 			sc->may_deactivate &= ~DEACTIVATE_ANON;
3088 
3089 		/*
3090 		 * When refaults are being observed, it means a new
3091 		 * workingset is being established. Deactivate to get
3092 		 * rid of any stale active pages quickly.
3093 		 */
3094 		refaults = lruvec_page_state(target_lruvec,
3095 				WORKINGSET_ACTIVATE_FILE);
3096 		if (refaults != target_lruvec->refaults[1] ||
3097 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3098 			sc->may_deactivate |= DEACTIVATE_FILE;
3099 		else
3100 			sc->may_deactivate &= ~DEACTIVATE_FILE;
3101 	} else
3102 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3103 
3104 	/*
3105 	 * If we have plenty of inactive file pages that aren't
3106 	 * thrashing, try to reclaim those first before touching
3107 	 * anonymous pages.
3108 	 */
3109 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3110 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3111 		sc->cache_trim_mode = 1;
3112 	else
3113 		sc->cache_trim_mode = 0;
3114 
3115 	/*
3116 	 * Prevent the reclaimer from falling into the cache trap: as
3117 	 * cache pages start out inactive, every cache fault will tip
3118 	 * the scan balance towards the file LRU.  And as the file LRU
3119 	 * shrinks, so does the window for rotation from references.
3120 	 * This means we have a runaway feedback loop where a tiny
3121 	 * thrashing file LRU becomes infinitely more attractive than
3122 	 * anon pages.  Try to detect this based on file LRU size.
3123 	 */
3124 	if (!cgroup_reclaim(sc)) {
3125 		unsigned long total_high_wmark = 0;
3126 		unsigned long free, anon;
3127 		int z;
3128 
3129 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3130 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3131 			   node_page_state(pgdat, NR_INACTIVE_FILE);
3132 
3133 		for (z = 0; z < MAX_NR_ZONES; z++) {
3134 			struct zone *zone = &pgdat->node_zones[z];
3135 			if (!managed_zone(zone))
3136 				continue;
3137 
3138 			total_high_wmark += high_wmark_pages(zone);
3139 		}
3140 
3141 		/*
3142 		 * Consider anon: if that's low too, this isn't a
3143 		 * runaway file reclaim problem, but rather just
3144 		 * extreme pressure. Reclaim as per usual then.
3145 		 */
3146 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3147 
3148 		sc->file_is_tiny =
3149 			file + free <= total_high_wmark &&
3150 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
3151 			anon >> sc->priority;
3152 	}
3153 
3154 	shrink_node_memcgs(pgdat, sc);
3155 
3156 	if (reclaim_state) {
3157 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3158 		reclaim_state->reclaimed_slab = 0;
3159 	}
3160 
3161 	/* Record the subtree's reclaim efficiency */
3162 	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3163 		   sc->nr_scanned - nr_scanned,
3164 		   sc->nr_reclaimed - nr_reclaimed);
3165 
3166 	if (sc->nr_reclaimed - nr_reclaimed)
3167 		reclaimable = true;
3168 
3169 	if (current_is_kswapd()) {
3170 		/*
3171 		 * If reclaim is isolating dirty pages under writeback,
3172 		 * it implies that the long-lived page allocation rate
3173 		 * is exceeding the page laundering rate. Either the
3174 		 * global limits are not being effective at throttling
3175 		 * processes due to the page distribution throughout
3176 		 * zones or there is heavy usage of a slow backing
3177 		 * device. The only option is to throttle from reclaim
3178 		 * context which is not ideal as there is no guarantee
3179 		 * the dirtying process is throttled in the same way
3180 		 * balance_dirty_pages() manages.
3181 		 *
3182 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3183 		 * count the number of pages under pages flagged for
3184 		 * immediate reclaim and stall if any are encountered
3185 		 * in the nr_immediate check below.
3186 		 */
3187 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3188 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3189 
3190 		/* Allow kswapd to start writing pages during reclaim.*/
3191 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3192 			set_bit(PGDAT_DIRTY, &pgdat->flags);
3193 
3194 		/*
3195 		 * If kswapd scans pages marked for immediate
3196 		 * reclaim and under writeback (nr_immediate), it
3197 		 * implies that pages are cycling through the LRU
3198 		 * faster than they are written so also forcibly stall.
3199 		 */
3200 		if (sc->nr.immediate)
3201 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3202 	}
3203 
3204 	/*
3205 	 * Tag a node/memcg as congested if all the dirty pages
3206 	 * scanned were backed by a congested BDI and
3207 	 * wait_iff_congested will stall.
3208 	 *
3209 	 * Legacy memcg will stall in page writeback so avoid forcibly
3210 	 * stalling in wait_iff_congested().
3211 	 */
3212 	if ((current_is_kswapd() ||
3213 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3214 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3215 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3216 
3217 	/*
3218 	 * Stall direct reclaim for IO completions if underlying BDIs
3219 	 * and node is congested. Allow kswapd to continue until it
3220 	 * starts encountering unqueued dirty pages or cycling through
3221 	 * the LRU too quickly.
3222 	 */
3223 	if (!current_is_kswapd() && current_may_throttle() &&
3224 	    !sc->hibernation_mode &&
3225 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3226 		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
3227 
3228 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3229 				    sc))
3230 		goto again;
3231 
3232 	/*
3233 	 * Kswapd gives up on balancing particular nodes after too
3234 	 * many failures to reclaim anything from them and goes to
3235 	 * sleep. On reclaim progress, reset the failure counter. A
3236 	 * successful direct reclaim run will revive a dormant kswapd.
3237 	 */
3238 	if (reclaimable)
3239 		pgdat->kswapd_failures = 0;
3240 }
3241 
3242 /*
3243  * Returns true if compaction should go ahead for a costly-order request, or
3244  * the allocation would already succeed without compaction. Return false if we
3245  * should reclaim first.
3246  */
3247 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3248 {
3249 	unsigned long watermark;
3250 	enum compact_result suitable;
3251 
3252 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3253 	if (suitable == COMPACT_SUCCESS)
3254 		/* Allocation should succeed already. Don't reclaim. */
3255 		return true;
3256 	if (suitable == COMPACT_SKIPPED)
3257 		/* Compaction cannot yet proceed. Do reclaim. */
3258 		return false;
3259 
3260 	/*
3261 	 * Compaction is already possible, but it takes time to run and there
3262 	 * are potentially other callers using the pages just freed. So proceed
3263 	 * with reclaim to make a buffer of free pages available to give
3264 	 * compaction a reasonable chance of completing and allocating the page.
3265 	 * Note that we won't actually reclaim the whole buffer in one attempt
3266 	 * as the target watermark in should_continue_reclaim() is lower. But if
3267 	 * we are already above the high+gap watermark, don't reclaim at all.
3268 	 */
3269 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3270 
3271 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3272 }
3273 
3274 /*
3275  * This is the direct reclaim path, for page-allocating processes.  We only
3276  * try to reclaim pages from zones which will satisfy the caller's allocation
3277  * request.
3278  *
3279  * If a zone is deemed to be full of pinned pages then just give it a light
3280  * scan then give up on it.
3281  */
3282 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3283 {
3284 	struct zoneref *z;
3285 	struct zone *zone;
3286 	unsigned long nr_soft_reclaimed;
3287 	unsigned long nr_soft_scanned;
3288 	gfp_t orig_mask;
3289 	pg_data_t *last_pgdat = NULL;
3290 
3291 	/*
3292 	 * If the number of buffer_heads in the machine exceeds the maximum
3293 	 * allowed level, force direct reclaim to scan the highmem zone as
3294 	 * highmem pages could be pinning lowmem pages storing buffer_heads
3295 	 */
3296 	orig_mask = sc->gfp_mask;
3297 	if (buffer_heads_over_limit) {
3298 		sc->gfp_mask |= __GFP_HIGHMEM;
3299 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3300 	}
3301 
3302 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3303 					sc->reclaim_idx, sc->nodemask) {
3304 		/*
3305 		 * Take care memory controller reclaiming has small influence
3306 		 * to global LRU.
3307 		 */
3308 		if (!cgroup_reclaim(sc)) {
3309 			if (!cpuset_zone_allowed(zone,
3310 						 GFP_KERNEL | __GFP_HARDWALL))
3311 				continue;
3312 
3313 			/*
3314 			 * If we already have plenty of memory free for
3315 			 * compaction in this zone, don't free any more.
3316 			 * Even though compaction is invoked for any
3317 			 * non-zero order, only frequent costly order
3318 			 * reclamation is disruptive enough to become a
3319 			 * noticeable problem, like transparent huge
3320 			 * page allocations.
3321 			 */
3322 			if (IS_ENABLED(CONFIG_COMPACTION) &&
3323 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3324 			    compaction_ready(zone, sc)) {
3325 				sc->compaction_ready = true;
3326 				continue;
3327 			}
3328 
3329 			/*
3330 			 * Shrink each node in the zonelist once. If the
3331 			 * zonelist is ordered by zone (not the default) then a
3332 			 * node may be shrunk multiple times but in that case
3333 			 * the user prefers lower zones being preserved.
3334 			 */
3335 			if (zone->zone_pgdat == last_pgdat)
3336 				continue;
3337 
3338 			/*
3339 			 * This steals pages from memory cgroups over softlimit
3340 			 * and returns the number of reclaimed pages and
3341 			 * scanned pages. This works for global memory pressure
3342 			 * and balancing, not for a memcg's limit.
3343 			 */
3344 			nr_soft_scanned = 0;
3345 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3346 						sc->order, sc->gfp_mask,
3347 						&nr_soft_scanned);
3348 			sc->nr_reclaimed += nr_soft_reclaimed;
3349 			sc->nr_scanned += nr_soft_scanned;
3350 			/* need some check for avoid more shrink_zone() */
3351 		}
3352 
3353 		/* See comment about same check for global reclaim above */
3354 		if (zone->zone_pgdat == last_pgdat)
3355 			continue;
3356 		last_pgdat = zone->zone_pgdat;
3357 		shrink_node(zone->zone_pgdat, sc);
3358 	}
3359 
3360 	/*
3361 	 * Restore to original mask to avoid the impact on the caller if we
3362 	 * promoted it to __GFP_HIGHMEM.
3363 	 */
3364 	sc->gfp_mask = orig_mask;
3365 }
3366 
3367 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3368 {
3369 	struct lruvec *target_lruvec;
3370 	unsigned long refaults;
3371 
3372 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3373 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3374 	target_lruvec->refaults[0] = refaults;
3375 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3376 	target_lruvec->refaults[1] = refaults;
3377 }
3378 
3379 /*
3380  * This is the main entry point to direct page reclaim.
3381  *
3382  * If a full scan of the inactive list fails to free enough memory then we
3383  * are "out of memory" and something needs to be killed.
3384  *
3385  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3386  * high - the zone may be full of dirty or under-writeback pages, which this
3387  * caller can't do much about.  We kick the writeback threads and take explicit
3388  * naps in the hope that some of these pages can be written.  But if the
3389  * allocating task holds filesystem locks which prevent writeout this might not
3390  * work, and the allocation attempt will fail.
3391  *
3392  * returns:	0, if no pages reclaimed
3393  * 		else, the number of pages reclaimed
3394  */
3395 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3396 					  struct scan_control *sc)
3397 {
3398 	int initial_priority = sc->priority;
3399 	pg_data_t *last_pgdat;
3400 	struct zoneref *z;
3401 	struct zone *zone;
3402 retry:
3403 	delayacct_freepages_start();
3404 
3405 	if (!cgroup_reclaim(sc))
3406 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3407 
3408 	do {
3409 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3410 				sc->priority);
3411 		sc->nr_scanned = 0;
3412 		shrink_zones(zonelist, sc);
3413 
3414 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3415 			break;
3416 
3417 		if (sc->compaction_ready)
3418 			break;
3419 
3420 		/*
3421 		 * If we're getting trouble reclaiming, start doing
3422 		 * writepage even in laptop mode.
3423 		 */
3424 		if (sc->priority < DEF_PRIORITY - 2)
3425 			sc->may_writepage = 1;
3426 	} while (--sc->priority >= 0);
3427 
3428 	last_pgdat = NULL;
3429 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3430 					sc->nodemask) {
3431 		if (zone->zone_pgdat == last_pgdat)
3432 			continue;
3433 		last_pgdat = zone->zone_pgdat;
3434 
3435 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3436 
3437 		if (cgroup_reclaim(sc)) {
3438 			struct lruvec *lruvec;
3439 
3440 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3441 						   zone->zone_pgdat);
3442 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3443 		}
3444 	}
3445 
3446 	delayacct_freepages_end();
3447 
3448 	if (sc->nr_reclaimed)
3449 		return sc->nr_reclaimed;
3450 
3451 	/* Aborted reclaim to try compaction? don't OOM, then */
3452 	if (sc->compaction_ready)
3453 		return 1;
3454 
3455 	/*
3456 	 * We make inactive:active ratio decisions based on the node's
3457 	 * composition of memory, but a restrictive reclaim_idx or a
3458 	 * memory.low cgroup setting can exempt large amounts of
3459 	 * memory from reclaim. Neither of which are very common, so
3460 	 * instead of doing costly eligibility calculations of the
3461 	 * entire cgroup subtree up front, we assume the estimates are
3462 	 * good, and retry with forcible deactivation if that fails.
3463 	 */
3464 	if (sc->skipped_deactivate) {
3465 		sc->priority = initial_priority;
3466 		sc->force_deactivate = 1;
3467 		sc->skipped_deactivate = 0;
3468 		goto retry;
3469 	}
3470 
3471 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3472 	if (sc->memcg_low_skipped) {
3473 		sc->priority = initial_priority;
3474 		sc->force_deactivate = 0;
3475 		sc->memcg_low_reclaim = 1;
3476 		sc->memcg_low_skipped = 0;
3477 		goto retry;
3478 	}
3479 
3480 	return 0;
3481 }
3482 
3483 static bool allow_direct_reclaim(pg_data_t *pgdat)
3484 {
3485 	struct zone *zone;
3486 	unsigned long pfmemalloc_reserve = 0;
3487 	unsigned long free_pages = 0;
3488 	int i;
3489 	bool wmark_ok;
3490 
3491 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3492 		return true;
3493 
3494 	for (i = 0; i <= ZONE_NORMAL; i++) {
3495 		zone = &pgdat->node_zones[i];
3496 		if (!managed_zone(zone))
3497 			continue;
3498 
3499 		if (!zone_reclaimable_pages(zone))
3500 			continue;
3501 
3502 		pfmemalloc_reserve += min_wmark_pages(zone);
3503 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3504 	}
3505 
3506 	/* If there are no reserves (unexpected config) then do not throttle */
3507 	if (!pfmemalloc_reserve)
3508 		return true;
3509 
3510 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3511 
3512 	/* kswapd must be awake if processes are being throttled */
3513 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3514 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3515 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3516 
3517 		wake_up_interruptible(&pgdat->kswapd_wait);
3518 	}
3519 
3520 	return wmark_ok;
3521 }
3522 
3523 /*
3524  * Throttle direct reclaimers if backing storage is backed by the network
3525  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3526  * depleted. kswapd will continue to make progress and wake the processes
3527  * when the low watermark is reached.
3528  *
3529  * Returns true if a fatal signal was delivered during throttling. If this
3530  * happens, the page allocator should not consider triggering the OOM killer.
3531  */
3532 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3533 					nodemask_t *nodemask)
3534 {
3535 	struct zoneref *z;
3536 	struct zone *zone;
3537 	pg_data_t *pgdat = NULL;
3538 
3539 	/*
3540 	 * Kernel threads should not be throttled as they may be indirectly
3541 	 * responsible for cleaning pages necessary for reclaim to make forward
3542 	 * progress. kjournald for example may enter direct reclaim while
3543 	 * committing a transaction where throttling it could forcing other
3544 	 * processes to block on log_wait_commit().
3545 	 */
3546 	if (current->flags & PF_KTHREAD)
3547 		goto out;
3548 
3549 	/*
3550 	 * If a fatal signal is pending, this process should not throttle.
3551 	 * It should return quickly so it can exit and free its memory
3552 	 */
3553 	if (fatal_signal_pending(current))
3554 		goto out;
3555 
3556 	/*
3557 	 * Check if the pfmemalloc reserves are ok by finding the first node
3558 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3559 	 * GFP_KERNEL will be required for allocating network buffers when
3560 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3561 	 *
3562 	 * Throttling is based on the first usable node and throttled processes
3563 	 * wait on a queue until kswapd makes progress and wakes them. There
3564 	 * is an affinity then between processes waking up and where reclaim
3565 	 * progress has been made assuming the process wakes on the same node.
3566 	 * More importantly, processes running on remote nodes will not compete
3567 	 * for remote pfmemalloc reserves and processes on different nodes
3568 	 * should make reasonable progress.
3569 	 */
3570 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3571 					gfp_zone(gfp_mask), nodemask) {
3572 		if (zone_idx(zone) > ZONE_NORMAL)
3573 			continue;
3574 
3575 		/* Throttle based on the first usable node */
3576 		pgdat = zone->zone_pgdat;
3577 		if (allow_direct_reclaim(pgdat))
3578 			goto out;
3579 		break;
3580 	}
3581 
3582 	/* If no zone was usable by the allocation flags then do not throttle */
3583 	if (!pgdat)
3584 		goto out;
3585 
3586 	/* Account for the throttling */
3587 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3588 
3589 	/*
3590 	 * If the caller cannot enter the filesystem, it's possible that it
3591 	 * is due to the caller holding an FS lock or performing a journal
3592 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3593 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3594 	 * blocked waiting on the same lock. Instead, throttle for up to a
3595 	 * second before continuing.
3596 	 */
3597 	if (!(gfp_mask & __GFP_FS))
3598 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3599 			allow_direct_reclaim(pgdat), HZ);
3600 	else
3601 		/* Throttle until kswapd wakes the process */
3602 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3603 			allow_direct_reclaim(pgdat));
3604 
3605 	if (fatal_signal_pending(current))
3606 		return true;
3607 
3608 out:
3609 	return false;
3610 }
3611 
3612 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3613 				gfp_t gfp_mask, nodemask_t *nodemask)
3614 {
3615 	unsigned long nr_reclaimed;
3616 	struct scan_control sc = {
3617 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3618 		.gfp_mask = current_gfp_context(gfp_mask),
3619 		.reclaim_idx = gfp_zone(gfp_mask),
3620 		.order = order,
3621 		.nodemask = nodemask,
3622 		.priority = DEF_PRIORITY,
3623 		.may_writepage = !laptop_mode,
3624 		.may_unmap = 1,
3625 		.may_swap = 1,
3626 	};
3627 
3628 	/*
3629 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3630 	 * Confirm they are large enough for max values.
3631 	 */
3632 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3633 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3634 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3635 
3636 	/*
3637 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3638 	 * 1 is returned so that the page allocator does not OOM kill at this
3639 	 * point.
3640 	 */
3641 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3642 		return 1;
3643 
3644 	set_task_reclaim_state(current, &sc.reclaim_state);
3645 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3646 
3647 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3648 
3649 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3650 	set_task_reclaim_state(current, NULL);
3651 
3652 	return nr_reclaimed;
3653 }
3654 
3655 #ifdef CONFIG_MEMCG
3656 
3657 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3658 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3659 						gfp_t gfp_mask, bool noswap,
3660 						pg_data_t *pgdat,
3661 						unsigned long *nr_scanned)
3662 {
3663 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3664 	struct scan_control sc = {
3665 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3666 		.target_mem_cgroup = memcg,
3667 		.may_writepage = !laptop_mode,
3668 		.may_unmap = 1,
3669 		.reclaim_idx = MAX_NR_ZONES - 1,
3670 		.may_swap = !noswap,
3671 	};
3672 
3673 	WARN_ON_ONCE(!current->reclaim_state);
3674 
3675 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3676 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3677 
3678 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3679 						      sc.gfp_mask);
3680 
3681 	/*
3682 	 * NOTE: Although we can get the priority field, using it
3683 	 * here is not a good idea, since it limits the pages we can scan.
3684 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3685 	 * will pick up pages from other mem cgroup's as well. We hack
3686 	 * the priority and make it zero.
3687 	 */
3688 	shrink_lruvec(lruvec, &sc);
3689 
3690 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3691 
3692 	*nr_scanned = sc.nr_scanned;
3693 
3694 	return sc.nr_reclaimed;
3695 }
3696 
3697 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3698 					   unsigned long nr_pages,
3699 					   gfp_t gfp_mask,
3700 					   bool may_swap)
3701 {
3702 	unsigned long nr_reclaimed;
3703 	unsigned int noreclaim_flag;
3704 	struct scan_control sc = {
3705 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3706 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3707 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3708 		.reclaim_idx = MAX_NR_ZONES - 1,
3709 		.target_mem_cgroup = memcg,
3710 		.priority = DEF_PRIORITY,
3711 		.may_writepage = !laptop_mode,
3712 		.may_unmap = 1,
3713 		.may_swap = may_swap,
3714 	};
3715 	/*
3716 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3717 	 * equal pressure on all the nodes. This is based on the assumption that
3718 	 * the reclaim does not bail out early.
3719 	 */
3720 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3721 
3722 	set_task_reclaim_state(current, &sc.reclaim_state);
3723 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3724 	noreclaim_flag = memalloc_noreclaim_save();
3725 
3726 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3727 
3728 	memalloc_noreclaim_restore(noreclaim_flag);
3729 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3730 	set_task_reclaim_state(current, NULL);
3731 
3732 	return nr_reclaimed;
3733 }
3734 #endif
3735 
3736 static void age_active_anon(struct pglist_data *pgdat,
3737 				struct scan_control *sc)
3738 {
3739 	struct mem_cgroup *memcg;
3740 	struct lruvec *lruvec;
3741 
3742 	if (!can_age_anon_pages(pgdat, sc))
3743 		return;
3744 
3745 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3746 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3747 		return;
3748 
3749 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3750 	do {
3751 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3752 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3753 				   sc, LRU_ACTIVE_ANON);
3754 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3755 	} while (memcg);
3756 }
3757 
3758 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3759 {
3760 	int i;
3761 	struct zone *zone;
3762 
3763 	/*
3764 	 * Check for watermark boosts top-down as the higher zones
3765 	 * are more likely to be boosted. Both watermarks and boosts
3766 	 * should not be checked at the same time as reclaim would
3767 	 * start prematurely when there is no boosting and a lower
3768 	 * zone is balanced.
3769 	 */
3770 	for (i = highest_zoneidx; i >= 0; i--) {
3771 		zone = pgdat->node_zones + i;
3772 		if (!managed_zone(zone))
3773 			continue;
3774 
3775 		if (zone->watermark_boost)
3776 			return true;
3777 	}
3778 
3779 	return false;
3780 }
3781 
3782 /*
3783  * Returns true if there is an eligible zone balanced for the request order
3784  * and highest_zoneidx
3785  */
3786 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3787 {
3788 	int i;
3789 	unsigned long mark = -1;
3790 	struct zone *zone;
3791 
3792 	/*
3793 	 * Check watermarks bottom-up as lower zones are more likely to
3794 	 * meet watermarks.
3795 	 */
3796 	for (i = 0; i <= highest_zoneidx; i++) {
3797 		zone = pgdat->node_zones + i;
3798 
3799 		if (!managed_zone(zone))
3800 			continue;
3801 
3802 		mark = high_wmark_pages(zone);
3803 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3804 			return true;
3805 	}
3806 
3807 	/*
3808 	 * If a node has no populated zone within highest_zoneidx, it does not
3809 	 * need balancing by definition. This can happen if a zone-restricted
3810 	 * allocation tries to wake a remote kswapd.
3811 	 */
3812 	if (mark == -1)
3813 		return true;
3814 
3815 	return false;
3816 }
3817 
3818 /* Clear pgdat state for congested, dirty or under writeback. */
3819 static void clear_pgdat_congested(pg_data_t *pgdat)
3820 {
3821 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3822 
3823 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3824 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3825 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3826 }
3827 
3828 /*
3829  * Prepare kswapd for sleeping. This verifies that there are no processes
3830  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3831  *
3832  * Returns true if kswapd is ready to sleep
3833  */
3834 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3835 				int highest_zoneidx)
3836 {
3837 	/*
3838 	 * The throttled processes are normally woken up in balance_pgdat() as
3839 	 * soon as allow_direct_reclaim() is true. But there is a potential
3840 	 * race between when kswapd checks the watermarks and a process gets
3841 	 * throttled. There is also a potential race if processes get
3842 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3843 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3844 	 * the wake up checks. If kswapd is going to sleep, no process should
3845 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3846 	 * the wake up is premature, processes will wake kswapd and get
3847 	 * throttled again. The difference from wake ups in balance_pgdat() is
3848 	 * that here we are under prepare_to_wait().
3849 	 */
3850 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3851 		wake_up_all(&pgdat->pfmemalloc_wait);
3852 
3853 	/* Hopeless node, leave it to direct reclaim */
3854 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3855 		return true;
3856 
3857 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3858 		clear_pgdat_congested(pgdat);
3859 		return true;
3860 	}
3861 
3862 	return false;
3863 }
3864 
3865 /*
3866  * kswapd shrinks a node of pages that are at or below the highest usable
3867  * zone that is currently unbalanced.
3868  *
3869  * Returns true if kswapd scanned at least the requested number of pages to
3870  * reclaim or if the lack of progress was due to pages under writeback.
3871  * This is used to determine if the scanning priority needs to be raised.
3872  */
3873 static bool kswapd_shrink_node(pg_data_t *pgdat,
3874 			       struct scan_control *sc)
3875 {
3876 	struct zone *zone;
3877 	int z;
3878 
3879 	/* Reclaim a number of pages proportional to the number of zones */
3880 	sc->nr_to_reclaim = 0;
3881 	for (z = 0; z <= sc->reclaim_idx; z++) {
3882 		zone = pgdat->node_zones + z;
3883 		if (!managed_zone(zone))
3884 			continue;
3885 
3886 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3887 	}
3888 
3889 	/*
3890 	 * Historically care was taken to put equal pressure on all zones but
3891 	 * now pressure is applied based on node LRU order.
3892 	 */
3893 	shrink_node(pgdat, sc);
3894 
3895 	/*
3896 	 * Fragmentation may mean that the system cannot be rebalanced for
3897 	 * high-order allocations. If twice the allocation size has been
3898 	 * reclaimed then recheck watermarks only at order-0 to prevent
3899 	 * excessive reclaim. Assume that a process requested a high-order
3900 	 * can direct reclaim/compact.
3901 	 */
3902 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3903 		sc->order = 0;
3904 
3905 	return sc->nr_scanned >= sc->nr_to_reclaim;
3906 }
3907 
3908 /* Page allocator PCP high watermark is lowered if reclaim is active. */
3909 static inline void
3910 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
3911 {
3912 	int i;
3913 	struct zone *zone;
3914 
3915 	for (i = 0; i <= highest_zoneidx; i++) {
3916 		zone = pgdat->node_zones + i;
3917 
3918 		if (!managed_zone(zone))
3919 			continue;
3920 
3921 		if (active)
3922 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3923 		else
3924 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3925 	}
3926 }
3927 
3928 static inline void
3929 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3930 {
3931 	update_reclaim_active(pgdat, highest_zoneidx, true);
3932 }
3933 
3934 static inline void
3935 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3936 {
3937 	update_reclaim_active(pgdat, highest_zoneidx, false);
3938 }
3939 
3940 /*
3941  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3942  * that are eligible for use by the caller until at least one zone is
3943  * balanced.
3944  *
3945  * Returns the order kswapd finished reclaiming at.
3946  *
3947  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3948  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3949  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3950  * or lower is eligible for reclaim until at least one usable zone is
3951  * balanced.
3952  */
3953 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3954 {
3955 	int i;
3956 	unsigned long nr_soft_reclaimed;
3957 	unsigned long nr_soft_scanned;
3958 	unsigned long pflags;
3959 	unsigned long nr_boost_reclaim;
3960 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3961 	bool boosted;
3962 	struct zone *zone;
3963 	struct scan_control sc = {
3964 		.gfp_mask = GFP_KERNEL,
3965 		.order = order,
3966 		.may_unmap = 1,
3967 	};
3968 
3969 	set_task_reclaim_state(current, &sc.reclaim_state);
3970 	psi_memstall_enter(&pflags);
3971 	__fs_reclaim_acquire(_THIS_IP_);
3972 
3973 	count_vm_event(PAGEOUTRUN);
3974 
3975 	/*
3976 	 * Account for the reclaim boost. Note that the zone boost is left in
3977 	 * place so that parallel allocations that are near the watermark will
3978 	 * stall or direct reclaim until kswapd is finished.
3979 	 */
3980 	nr_boost_reclaim = 0;
3981 	for (i = 0; i <= highest_zoneidx; i++) {
3982 		zone = pgdat->node_zones + i;
3983 		if (!managed_zone(zone))
3984 			continue;
3985 
3986 		nr_boost_reclaim += zone->watermark_boost;
3987 		zone_boosts[i] = zone->watermark_boost;
3988 	}
3989 	boosted = nr_boost_reclaim;
3990 
3991 restart:
3992 	set_reclaim_active(pgdat, highest_zoneidx);
3993 	sc.priority = DEF_PRIORITY;
3994 	do {
3995 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3996 		bool raise_priority = true;
3997 		bool balanced;
3998 		bool ret;
3999 
4000 		sc.reclaim_idx = highest_zoneidx;
4001 
4002 		/*
4003 		 * If the number of buffer_heads exceeds the maximum allowed
4004 		 * then consider reclaiming from all zones. This has a dual
4005 		 * purpose -- on 64-bit systems it is expected that
4006 		 * buffer_heads are stripped during active rotation. On 32-bit
4007 		 * systems, highmem pages can pin lowmem memory and shrinking
4008 		 * buffers can relieve lowmem pressure. Reclaim may still not
4009 		 * go ahead if all eligible zones for the original allocation
4010 		 * request are balanced to avoid excessive reclaim from kswapd.
4011 		 */
4012 		if (buffer_heads_over_limit) {
4013 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4014 				zone = pgdat->node_zones + i;
4015 				if (!managed_zone(zone))
4016 					continue;
4017 
4018 				sc.reclaim_idx = i;
4019 				break;
4020 			}
4021 		}
4022 
4023 		/*
4024 		 * If the pgdat is imbalanced then ignore boosting and preserve
4025 		 * the watermarks for a later time and restart. Note that the
4026 		 * zone watermarks will be still reset at the end of balancing
4027 		 * on the grounds that the normal reclaim should be enough to
4028 		 * re-evaluate if boosting is required when kswapd next wakes.
4029 		 */
4030 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4031 		if (!balanced && nr_boost_reclaim) {
4032 			nr_boost_reclaim = 0;
4033 			goto restart;
4034 		}
4035 
4036 		/*
4037 		 * If boosting is not active then only reclaim if there are no
4038 		 * eligible zones. Note that sc.reclaim_idx is not used as
4039 		 * buffer_heads_over_limit may have adjusted it.
4040 		 */
4041 		if (!nr_boost_reclaim && balanced)
4042 			goto out;
4043 
4044 		/* Limit the priority of boosting to avoid reclaim writeback */
4045 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4046 			raise_priority = false;
4047 
4048 		/*
4049 		 * Do not writeback or swap pages for boosted reclaim. The
4050 		 * intent is to relieve pressure not issue sub-optimal IO
4051 		 * from reclaim context. If no pages are reclaimed, the
4052 		 * reclaim will be aborted.
4053 		 */
4054 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4055 		sc.may_swap = !nr_boost_reclaim;
4056 
4057 		/*
4058 		 * Do some background aging of the anon list, to give
4059 		 * pages a chance to be referenced before reclaiming. All
4060 		 * pages are rotated regardless of classzone as this is
4061 		 * about consistent aging.
4062 		 */
4063 		age_active_anon(pgdat, &sc);
4064 
4065 		/*
4066 		 * If we're getting trouble reclaiming, start doing writepage
4067 		 * even in laptop mode.
4068 		 */
4069 		if (sc.priority < DEF_PRIORITY - 2)
4070 			sc.may_writepage = 1;
4071 
4072 		/* Call soft limit reclaim before calling shrink_node. */
4073 		sc.nr_scanned = 0;
4074 		nr_soft_scanned = 0;
4075 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4076 						sc.gfp_mask, &nr_soft_scanned);
4077 		sc.nr_reclaimed += nr_soft_reclaimed;
4078 
4079 		/*
4080 		 * There should be no need to raise the scanning priority if
4081 		 * enough pages are already being scanned that that high
4082 		 * watermark would be met at 100% efficiency.
4083 		 */
4084 		if (kswapd_shrink_node(pgdat, &sc))
4085 			raise_priority = false;
4086 
4087 		/*
4088 		 * If the low watermark is met there is no need for processes
4089 		 * to be throttled on pfmemalloc_wait as they should not be
4090 		 * able to safely make forward progress. Wake them
4091 		 */
4092 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4093 				allow_direct_reclaim(pgdat))
4094 			wake_up_all(&pgdat->pfmemalloc_wait);
4095 
4096 		/* Check if kswapd should be suspending */
4097 		__fs_reclaim_release(_THIS_IP_);
4098 		ret = try_to_freeze();
4099 		__fs_reclaim_acquire(_THIS_IP_);
4100 		if (ret || kthread_should_stop())
4101 			break;
4102 
4103 		/*
4104 		 * Raise priority if scanning rate is too low or there was no
4105 		 * progress in reclaiming pages
4106 		 */
4107 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4108 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4109 
4110 		/*
4111 		 * If reclaim made no progress for a boost, stop reclaim as
4112 		 * IO cannot be queued and it could be an infinite loop in
4113 		 * extreme circumstances.
4114 		 */
4115 		if (nr_boost_reclaim && !nr_reclaimed)
4116 			break;
4117 
4118 		if (raise_priority || !nr_reclaimed)
4119 			sc.priority--;
4120 	} while (sc.priority >= 1);
4121 
4122 	if (!sc.nr_reclaimed)
4123 		pgdat->kswapd_failures++;
4124 
4125 out:
4126 	clear_reclaim_active(pgdat, highest_zoneidx);
4127 
4128 	/* If reclaim was boosted, account for the reclaim done in this pass */
4129 	if (boosted) {
4130 		unsigned long flags;
4131 
4132 		for (i = 0; i <= highest_zoneidx; i++) {
4133 			if (!zone_boosts[i])
4134 				continue;
4135 
4136 			/* Increments are under the zone lock */
4137 			zone = pgdat->node_zones + i;
4138 			spin_lock_irqsave(&zone->lock, flags);
4139 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4140 			spin_unlock_irqrestore(&zone->lock, flags);
4141 		}
4142 
4143 		/*
4144 		 * As there is now likely space, wakeup kcompact to defragment
4145 		 * pageblocks.
4146 		 */
4147 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4148 	}
4149 
4150 	snapshot_refaults(NULL, pgdat);
4151 	__fs_reclaim_release(_THIS_IP_);
4152 	psi_memstall_leave(&pflags);
4153 	set_task_reclaim_state(current, NULL);
4154 
4155 	/*
4156 	 * Return the order kswapd stopped reclaiming at as
4157 	 * prepare_kswapd_sleep() takes it into account. If another caller
4158 	 * entered the allocator slow path while kswapd was awake, order will
4159 	 * remain at the higher level.
4160 	 */
4161 	return sc.order;
4162 }
4163 
4164 /*
4165  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4166  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4167  * not a valid index then either kswapd runs for first time or kswapd couldn't
4168  * sleep after previous reclaim attempt (node is still unbalanced). In that
4169  * case return the zone index of the previous kswapd reclaim cycle.
4170  */
4171 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4172 					   enum zone_type prev_highest_zoneidx)
4173 {
4174 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4175 
4176 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4177 }
4178 
4179 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4180 				unsigned int highest_zoneidx)
4181 {
4182 	long remaining = 0;
4183 	DEFINE_WAIT(wait);
4184 
4185 	if (freezing(current) || kthread_should_stop())
4186 		return;
4187 
4188 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4189 
4190 	/*
4191 	 * Try to sleep for a short interval. Note that kcompactd will only be
4192 	 * woken if it is possible to sleep for a short interval. This is
4193 	 * deliberate on the assumption that if reclaim cannot keep an
4194 	 * eligible zone balanced that it's also unlikely that compaction will
4195 	 * succeed.
4196 	 */
4197 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4198 		/*
4199 		 * Compaction records what page blocks it recently failed to
4200 		 * isolate pages from and skips them in the future scanning.
4201 		 * When kswapd is going to sleep, it is reasonable to assume
4202 		 * that pages and compaction may succeed so reset the cache.
4203 		 */
4204 		reset_isolation_suitable(pgdat);
4205 
4206 		/*
4207 		 * We have freed the memory, now we should compact it to make
4208 		 * allocation of the requested order possible.
4209 		 */
4210 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4211 
4212 		remaining = schedule_timeout(HZ/10);
4213 
4214 		/*
4215 		 * If woken prematurely then reset kswapd_highest_zoneidx and
4216 		 * order. The values will either be from a wakeup request or
4217 		 * the previous request that slept prematurely.
4218 		 */
4219 		if (remaining) {
4220 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4221 					kswapd_highest_zoneidx(pgdat,
4222 							highest_zoneidx));
4223 
4224 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4225 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4226 		}
4227 
4228 		finish_wait(&pgdat->kswapd_wait, &wait);
4229 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4230 	}
4231 
4232 	/*
4233 	 * After a short sleep, check if it was a premature sleep. If not, then
4234 	 * go fully to sleep until explicitly woken up.
4235 	 */
4236 	if (!remaining &&
4237 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4238 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4239 
4240 		/*
4241 		 * vmstat counters are not perfectly accurate and the estimated
4242 		 * value for counters such as NR_FREE_PAGES can deviate from the
4243 		 * true value by nr_online_cpus * threshold. To avoid the zone
4244 		 * watermarks being breached while under pressure, we reduce the
4245 		 * per-cpu vmstat threshold while kswapd is awake and restore
4246 		 * them before going back to sleep.
4247 		 */
4248 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4249 
4250 		if (!kthread_should_stop())
4251 			schedule();
4252 
4253 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4254 	} else {
4255 		if (remaining)
4256 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4257 		else
4258 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4259 	}
4260 	finish_wait(&pgdat->kswapd_wait, &wait);
4261 }
4262 
4263 /*
4264  * The background pageout daemon, started as a kernel thread
4265  * from the init process.
4266  *
4267  * This basically trickles out pages so that we have _some_
4268  * free memory available even if there is no other activity
4269  * that frees anything up. This is needed for things like routing
4270  * etc, where we otherwise might have all activity going on in
4271  * asynchronous contexts that cannot page things out.
4272  *
4273  * If there are applications that are active memory-allocators
4274  * (most normal use), this basically shouldn't matter.
4275  */
4276 static int kswapd(void *p)
4277 {
4278 	unsigned int alloc_order, reclaim_order;
4279 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4280 	pg_data_t *pgdat = (pg_data_t *)p;
4281 	struct task_struct *tsk = current;
4282 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4283 
4284 	if (!cpumask_empty(cpumask))
4285 		set_cpus_allowed_ptr(tsk, cpumask);
4286 
4287 	/*
4288 	 * Tell the memory management that we're a "memory allocator",
4289 	 * and that if we need more memory we should get access to it
4290 	 * regardless (see "__alloc_pages()"). "kswapd" should
4291 	 * never get caught in the normal page freeing logic.
4292 	 *
4293 	 * (Kswapd normally doesn't need memory anyway, but sometimes
4294 	 * you need a small amount of memory in order to be able to
4295 	 * page out something else, and this flag essentially protects
4296 	 * us from recursively trying to free more memory as we're
4297 	 * trying to free the first piece of memory in the first place).
4298 	 */
4299 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
4300 	set_freezable();
4301 
4302 	WRITE_ONCE(pgdat->kswapd_order, 0);
4303 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4304 	for ( ; ; ) {
4305 		bool ret;
4306 
4307 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4308 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4309 							highest_zoneidx);
4310 
4311 kswapd_try_sleep:
4312 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4313 					highest_zoneidx);
4314 
4315 		/* Read the new order and highest_zoneidx */
4316 		alloc_order = READ_ONCE(pgdat->kswapd_order);
4317 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4318 							highest_zoneidx);
4319 		WRITE_ONCE(pgdat->kswapd_order, 0);
4320 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4321 
4322 		ret = try_to_freeze();
4323 		if (kthread_should_stop())
4324 			break;
4325 
4326 		/*
4327 		 * We can speed up thawing tasks if we don't call balance_pgdat
4328 		 * after returning from the refrigerator
4329 		 */
4330 		if (ret)
4331 			continue;
4332 
4333 		/*
4334 		 * Reclaim begins at the requested order but if a high-order
4335 		 * reclaim fails then kswapd falls back to reclaiming for
4336 		 * order-0. If that happens, kswapd will consider sleeping
4337 		 * for the order it finished reclaiming at (reclaim_order)
4338 		 * but kcompactd is woken to compact for the original
4339 		 * request (alloc_order).
4340 		 */
4341 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4342 						alloc_order);
4343 		reclaim_order = balance_pgdat(pgdat, alloc_order,
4344 						highest_zoneidx);
4345 		if (reclaim_order < alloc_order)
4346 			goto kswapd_try_sleep;
4347 	}
4348 
4349 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
4350 
4351 	return 0;
4352 }
4353 
4354 /*
4355  * A zone is low on free memory or too fragmented for high-order memory.  If
4356  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4357  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
4358  * has failed or is not needed, still wake up kcompactd if only compaction is
4359  * needed.
4360  */
4361 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4362 		   enum zone_type highest_zoneidx)
4363 {
4364 	pg_data_t *pgdat;
4365 	enum zone_type curr_idx;
4366 
4367 	if (!managed_zone(zone))
4368 		return;
4369 
4370 	if (!cpuset_zone_allowed(zone, gfp_flags))
4371 		return;
4372 
4373 	pgdat = zone->zone_pgdat;
4374 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4375 
4376 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4377 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4378 
4379 	if (READ_ONCE(pgdat->kswapd_order) < order)
4380 		WRITE_ONCE(pgdat->kswapd_order, order);
4381 
4382 	if (!waitqueue_active(&pgdat->kswapd_wait))
4383 		return;
4384 
4385 	/* Hopeless node, leave it to direct reclaim if possible */
4386 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4387 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4388 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4389 		/*
4390 		 * There may be plenty of free memory available, but it's too
4391 		 * fragmented for high-order allocations.  Wake up kcompactd
4392 		 * and rely on compaction_suitable() to determine if it's
4393 		 * needed.  If it fails, it will defer subsequent attempts to
4394 		 * ratelimit its work.
4395 		 */
4396 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4397 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
4398 		return;
4399 	}
4400 
4401 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4402 				      gfp_flags);
4403 	wake_up_interruptible(&pgdat->kswapd_wait);
4404 }
4405 
4406 #ifdef CONFIG_HIBERNATION
4407 /*
4408  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4409  * freed pages.
4410  *
4411  * Rather than trying to age LRUs the aim is to preserve the overall
4412  * LRU order by reclaiming preferentially
4413  * inactive > active > active referenced > active mapped
4414  */
4415 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4416 {
4417 	struct scan_control sc = {
4418 		.nr_to_reclaim = nr_to_reclaim,
4419 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4420 		.reclaim_idx = MAX_NR_ZONES - 1,
4421 		.priority = DEF_PRIORITY,
4422 		.may_writepage = 1,
4423 		.may_unmap = 1,
4424 		.may_swap = 1,
4425 		.hibernation_mode = 1,
4426 	};
4427 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4428 	unsigned long nr_reclaimed;
4429 	unsigned int noreclaim_flag;
4430 
4431 	fs_reclaim_acquire(sc.gfp_mask);
4432 	noreclaim_flag = memalloc_noreclaim_save();
4433 	set_task_reclaim_state(current, &sc.reclaim_state);
4434 
4435 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4436 
4437 	set_task_reclaim_state(current, NULL);
4438 	memalloc_noreclaim_restore(noreclaim_flag);
4439 	fs_reclaim_release(sc.gfp_mask);
4440 
4441 	return nr_reclaimed;
4442 }
4443 #endif /* CONFIG_HIBERNATION */
4444 
4445 /*
4446  * This kswapd start function will be called by init and node-hot-add.
4447  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4448  */
4449 void kswapd_run(int nid)
4450 {
4451 	pg_data_t *pgdat = NODE_DATA(nid);
4452 
4453 	if (pgdat->kswapd)
4454 		return;
4455 
4456 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4457 	if (IS_ERR(pgdat->kswapd)) {
4458 		/* failure at boot is fatal */
4459 		BUG_ON(system_state < SYSTEM_RUNNING);
4460 		pr_err("Failed to start kswapd on node %d\n", nid);
4461 		pgdat->kswapd = NULL;
4462 	}
4463 }
4464 
4465 /*
4466  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4467  * hold mem_hotplug_begin/end().
4468  */
4469 void kswapd_stop(int nid)
4470 {
4471 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4472 
4473 	if (kswapd) {
4474 		kthread_stop(kswapd);
4475 		NODE_DATA(nid)->kswapd = NULL;
4476 	}
4477 }
4478 
4479 static int __init kswapd_init(void)
4480 {
4481 	int nid;
4482 
4483 	swap_setup();
4484 	for_each_node_state(nid, N_MEMORY)
4485  		kswapd_run(nid);
4486 	return 0;
4487 }
4488 
4489 module_init(kswapd_init)
4490 
4491 #ifdef CONFIG_NUMA
4492 /*
4493  * Node reclaim mode
4494  *
4495  * If non-zero call node_reclaim when the number of free pages falls below
4496  * the watermarks.
4497  */
4498 int node_reclaim_mode __read_mostly;
4499 
4500 /*
4501  * Priority for NODE_RECLAIM. This determines the fraction of pages
4502  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4503  * a zone.
4504  */
4505 #define NODE_RECLAIM_PRIORITY 4
4506 
4507 /*
4508  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4509  * occur.
4510  */
4511 int sysctl_min_unmapped_ratio = 1;
4512 
4513 /*
4514  * If the number of slab pages in a zone grows beyond this percentage then
4515  * slab reclaim needs to occur.
4516  */
4517 int sysctl_min_slab_ratio = 5;
4518 
4519 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4520 {
4521 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4522 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4523 		node_page_state(pgdat, NR_ACTIVE_FILE);
4524 
4525 	/*
4526 	 * It's possible for there to be more file mapped pages than
4527 	 * accounted for by the pages on the file LRU lists because
4528 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4529 	 */
4530 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4531 }
4532 
4533 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4534 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4535 {
4536 	unsigned long nr_pagecache_reclaimable;
4537 	unsigned long delta = 0;
4538 
4539 	/*
4540 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4541 	 * potentially reclaimable. Otherwise, we have to worry about
4542 	 * pages like swapcache and node_unmapped_file_pages() provides
4543 	 * a better estimate
4544 	 */
4545 	if (node_reclaim_mode & RECLAIM_UNMAP)
4546 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4547 	else
4548 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4549 
4550 	/* If we can't clean pages, remove dirty pages from consideration */
4551 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4552 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4553 
4554 	/* Watch for any possible underflows due to delta */
4555 	if (unlikely(delta > nr_pagecache_reclaimable))
4556 		delta = nr_pagecache_reclaimable;
4557 
4558 	return nr_pagecache_reclaimable - delta;
4559 }
4560 
4561 /*
4562  * Try to free up some pages from this node through reclaim.
4563  */
4564 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4565 {
4566 	/* Minimum pages needed in order to stay on node */
4567 	const unsigned long nr_pages = 1 << order;
4568 	struct task_struct *p = current;
4569 	unsigned int noreclaim_flag;
4570 	struct scan_control sc = {
4571 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4572 		.gfp_mask = current_gfp_context(gfp_mask),
4573 		.order = order,
4574 		.priority = NODE_RECLAIM_PRIORITY,
4575 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4576 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4577 		.may_swap = 1,
4578 		.reclaim_idx = gfp_zone(gfp_mask),
4579 	};
4580 	unsigned long pflags;
4581 
4582 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4583 					   sc.gfp_mask);
4584 
4585 	cond_resched();
4586 	psi_memstall_enter(&pflags);
4587 	fs_reclaim_acquire(sc.gfp_mask);
4588 	/*
4589 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4590 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4591 	 * and RECLAIM_UNMAP.
4592 	 */
4593 	noreclaim_flag = memalloc_noreclaim_save();
4594 	p->flags |= PF_SWAPWRITE;
4595 	set_task_reclaim_state(p, &sc.reclaim_state);
4596 
4597 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4598 		/*
4599 		 * Free memory by calling shrink node with increasing
4600 		 * priorities until we have enough memory freed.
4601 		 */
4602 		do {
4603 			shrink_node(pgdat, &sc);
4604 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4605 	}
4606 
4607 	set_task_reclaim_state(p, NULL);
4608 	current->flags &= ~PF_SWAPWRITE;
4609 	memalloc_noreclaim_restore(noreclaim_flag);
4610 	fs_reclaim_release(sc.gfp_mask);
4611 	psi_memstall_leave(&pflags);
4612 
4613 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4614 
4615 	return sc.nr_reclaimed >= nr_pages;
4616 }
4617 
4618 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4619 {
4620 	int ret;
4621 
4622 	/*
4623 	 * Node reclaim reclaims unmapped file backed pages and
4624 	 * slab pages if we are over the defined limits.
4625 	 *
4626 	 * A small portion of unmapped file backed pages is needed for
4627 	 * file I/O otherwise pages read by file I/O will be immediately
4628 	 * thrown out if the node is overallocated. So we do not reclaim
4629 	 * if less than a specified percentage of the node is used by
4630 	 * unmapped file backed pages.
4631 	 */
4632 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4633 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4634 	    pgdat->min_slab_pages)
4635 		return NODE_RECLAIM_FULL;
4636 
4637 	/*
4638 	 * Do not scan if the allocation should not be delayed.
4639 	 */
4640 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4641 		return NODE_RECLAIM_NOSCAN;
4642 
4643 	/*
4644 	 * Only run node reclaim on the local node or on nodes that do not
4645 	 * have associated processors. This will favor the local processor
4646 	 * over remote processors and spread off node memory allocations
4647 	 * as wide as possible.
4648 	 */
4649 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4650 		return NODE_RECLAIM_NOSCAN;
4651 
4652 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4653 		return NODE_RECLAIM_NOSCAN;
4654 
4655 	ret = __node_reclaim(pgdat, gfp_mask, order);
4656 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4657 
4658 	if (!ret)
4659 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4660 
4661 	return ret;
4662 }
4663 #endif
4664 
4665 /**
4666  * check_move_unevictable_pages - check pages for evictability and move to
4667  * appropriate zone lru list
4668  * @pvec: pagevec with lru pages to check
4669  *
4670  * Checks pages for evictability, if an evictable page is in the unevictable
4671  * lru list, moves it to the appropriate evictable lru list. This function
4672  * should be only used for lru pages.
4673  */
4674 void check_move_unevictable_pages(struct pagevec *pvec)
4675 {
4676 	struct lruvec *lruvec = NULL;
4677 	int pgscanned = 0;
4678 	int pgrescued = 0;
4679 	int i;
4680 
4681 	for (i = 0; i < pvec->nr; i++) {
4682 		struct page *page = pvec->pages[i];
4683 		int nr_pages;
4684 
4685 		if (PageTransTail(page))
4686 			continue;
4687 
4688 		nr_pages = thp_nr_pages(page);
4689 		pgscanned += nr_pages;
4690 
4691 		/* block memcg migration during page moving between lru */
4692 		if (!TestClearPageLRU(page))
4693 			continue;
4694 
4695 		lruvec = relock_page_lruvec_irq(page, lruvec);
4696 		if (page_evictable(page) && PageUnevictable(page)) {
4697 			del_page_from_lru_list(page, lruvec);
4698 			ClearPageUnevictable(page);
4699 			add_page_to_lru_list(page, lruvec);
4700 			pgrescued += nr_pages;
4701 		}
4702 		SetPageLRU(page);
4703 	}
4704 
4705 	if (lruvec) {
4706 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4707 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4708 		unlock_page_lruvec_irq(lruvec);
4709 	} else if (pgscanned) {
4710 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4711 	}
4712 }
4713 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4714