1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/migrate.h> 45 #include <linux/delayacct.h> 46 #include <linux/sysctl.h> 47 #include <linux/oom.h> 48 #include <linux/pagevec.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 #include <linux/psi.h> 53 54 #include <asm/tlbflush.h> 55 #include <asm/div64.h> 56 57 #include <linux/swapops.h> 58 #include <linux/balloon_compaction.h> 59 60 #include "internal.h" 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/vmscan.h> 64 65 struct scan_control { 66 /* How many pages shrink_list() should reclaim */ 67 unsigned long nr_to_reclaim; 68 69 /* 70 * Nodemask of nodes allowed by the caller. If NULL, all nodes 71 * are scanned. 72 */ 73 nodemask_t *nodemask; 74 75 /* 76 * The memory cgroup that hit its limit and as a result is the 77 * primary target of this reclaim invocation. 78 */ 79 struct mem_cgroup *target_mem_cgroup; 80 81 /* 82 * Scan pressure balancing between anon and file LRUs 83 */ 84 unsigned long anon_cost; 85 unsigned long file_cost; 86 87 /* Can active pages be deactivated as part of reclaim? */ 88 #define DEACTIVATE_ANON 1 89 #define DEACTIVATE_FILE 2 90 unsigned int may_deactivate:2; 91 unsigned int force_deactivate:1; 92 unsigned int skipped_deactivate:1; 93 94 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 95 unsigned int may_writepage:1; 96 97 /* Can mapped pages be reclaimed? */ 98 unsigned int may_unmap:1; 99 100 /* Can pages be swapped as part of reclaim? */ 101 unsigned int may_swap:1; 102 103 /* 104 * Cgroup memory below memory.low is protected as long as we 105 * don't threaten to OOM. If any cgroup is reclaimed at 106 * reduced force or passed over entirely due to its memory.low 107 * setting (memcg_low_skipped), and nothing is reclaimed as a 108 * result, then go back for one more cycle that reclaims the protected 109 * memory (memcg_low_reclaim) to avert OOM. 110 */ 111 unsigned int memcg_low_reclaim:1; 112 unsigned int memcg_low_skipped:1; 113 114 unsigned int hibernation_mode:1; 115 116 /* One of the zones is ready for compaction */ 117 unsigned int compaction_ready:1; 118 119 /* There is easily reclaimable cold cache in the current node */ 120 unsigned int cache_trim_mode:1; 121 122 /* The file pages on the current node are dangerously low */ 123 unsigned int file_is_tiny:1; 124 125 /* Always discard instead of demoting to lower tier memory */ 126 unsigned int no_demotion:1; 127 128 /* Allocation order */ 129 s8 order; 130 131 /* Scan (total_size >> priority) pages at once */ 132 s8 priority; 133 134 /* The highest zone to isolate pages for reclaim from */ 135 s8 reclaim_idx; 136 137 /* This context's GFP mask */ 138 gfp_t gfp_mask; 139 140 /* Incremented by the number of inactive pages that were scanned */ 141 unsigned long nr_scanned; 142 143 /* Number of pages freed so far during a call to shrink_zones() */ 144 unsigned long nr_reclaimed; 145 146 struct { 147 unsigned int dirty; 148 unsigned int unqueued_dirty; 149 unsigned int congested; 150 unsigned int writeback; 151 unsigned int immediate; 152 unsigned int file_taken; 153 unsigned int taken; 154 } nr; 155 156 /* for recording the reclaimed slab by now */ 157 struct reclaim_state reclaim_state; 158 }; 159 160 #ifdef ARCH_HAS_PREFETCHW 161 #define prefetchw_prev_lru_page(_page, _base, _field) \ 162 do { \ 163 if ((_page)->lru.prev != _base) { \ 164 struct page *prev; \ 165 \ 166 prev = lru_to_page(&(_page->lru)); \ 167 prefetchw(&prev->_field); \ 168 } \ 169 } while (0) 170 #else 171 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 172 #endif 173 174 /* 175 * From 0 .. 200. Higher means more swappy. 176 */ 177 int vm_swappiness = 60; 178 179 static void set_task_reclaim_state(struct task_struct *task, 180 struct reclaim_state *rs) 181 { 182 /* Check for an overwrite */ 183 WARN_ON_ONCE(rs && task->reclaim_state); 184 185 /* Check for the nulling of an already-nulled member */ 186 WARN_ON_ONCE(!rs && !task->reclaim_state); 187 188 task->reclaim_state = rs; 189 } 190 191 static LIST_HEAD(shrinker_list); 192 static DECLARE_RWSEM(shrinker_rwsem); 193 194 #ifdef CONFIG_MEMCG 195 static int shrinker_nr_max; 196 197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 198 static inline int shrinker_map_size(int nr_items) 199 { 200 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 201 } 202 203 static inline int shrinker_defer_size(int nr_items) 204 { 205 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 206 } 207 208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 209 int nid) 210 { 211 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, 212 lockdep_is_held(&shrinker_rwsem)); 213 } 214 215 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 216 int map_size, int defer_size, 217 int old_map_size, int old_defer_size) 218 { 219 struct shrinker_info *new, *old; 220 struct mem_cgroup_per_node *pn; 221 int nid; 222 int size = map_size + defer_size; 223 224 for_each_node(nid) { 225 pn = memcg->nodeinfo[nid]; 226 old = shrinker_info_protected(memcg, nid); 227 /* Not yet online memcg */ 228 if (!old) 229 return 0; 230 231 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 232 if (!new) 233 return -ENOMEM; 234 235 new->nr_deferred = (atomic_long_t *)(new + 1); 236 new->map = (void *)new->nr_deferred + defer_size; 237 238 /* map: set all old bits, clear all new bits */ 239 memset(new->map, (int)0xff, old_map_size); 240 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 241 /* nr_deferred: copy old values, clear all new values */ 242 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 243 memset((void *)new->nr_deferred + old_defer_size, 0, 244 defer_size - old_defer_size); 245 246 rcu_assign_pointer(pn->shrinker_info, new); 247 kvfree_rcu(old, rcu); 248 } 249 250 return 0; 251 } 252 253 void free_shrinker_info(struct mem_cgroup *memcg) 254 { 255 struct mem_cgroup_per_node *pn; 256 struct shrinker_info *info; 257 int nid; 258 259 for_each_node(nid) { 260 pn = memcg->nodeinfo[nid]; 261 info = rcu_dereference_protected(pn->shrinker_info, true); 262 kvfree(info); 263 rcu_assign_pointer(pn->shrinker_info, NULL); 264 } 265 } 266 267 int alloc_shrinker_info(struct mem_cgroup *memcg) 268 { 269 struct shrinker_info *info; 270 int nid, size, ret = 0; 271 int map_size, defer_size = 0; 272 273 down_write(&shrinker_rwsem); 274 map_size = shrinker_map_size(shrinker_nr_max); 275 defer_size = shrinker_defer_size(shrinker_nr_max); 276 size = map_size + defer_size; 277 for_each_node(nid) { 278 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 279 if (!info) { 280 free_shrinker_info(memcg); 281 ret = -ENOMEM; 282 break; 283 } 284 info->nr_deferred = (atomic_long_t *)(info + 1); 285 info->map = (void *)info->nr_deferred + defer_size; 286 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 287 } 288 up_write(&shrinker_rwsem); 289 290 return ret; 291 } 292 293 static inline bool need_expand(int nr_max) 294 { 295 return round_up(nr_max, BITS_PER_LONG) > 296 round_up(shrinker_nr_max, BITS_PER_LONG); 297 } 298 299 static int expand_shrinker_info(int new_id) 300 { 301 int ret = 0; 302 int new_nr_max = new_id + 1; 303 int map_size, defer_size = 0; 304 int old_map_size, old_defer_size = 0; 305 struct mem_cgroup *memcg; 306 307 if (!need_expand(new_nr_max)) 308 goto out; 309 310 if (!root_mem_cgroup) 311 goto out; 312 313 lockdep_assert_held(&shrinker_rwsem); 314 315 map_size = shrinker_map_size(new_nr_max); 316 defer_size = shrinker_defer_size(new_nr_max); 317 old_map_size = shrinker_map_size(shrinker_nr_max); 318 old_defer_size = shrinker_defer_size(shrinker_nr_max); 319 320 memcg = mem_cgroup_iter(NULL, NULL, NULL); 321 do { 322 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 323 old_map_size, old_defer_size); 324 if (ret) { 325 mem_cgroup_iter_break(NULL, memcg); 326 goto out; 327 } 328 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 329 out: 330 if (!ret) 331 shrinker_nr_max = new_nr_max; 332 333 return ret; 334 } 335 336 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 337 { 338 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 339 struct shrinker_info *info; 340 341 rcu_read_lock(); 342 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 343 /* Pairs with smp mb in shrink_slab() */ 344 smp_mb__before_atomic(); 345 set_bit(shrinker_id, info->map); 346 rcu_read_unlock(); 347 } 348 } 349 350 static DEFINE_IDR(shrinker_idr); 351 352 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 353 { 354 int id, ret = -ENOMEM; 355 356 if (mem_cgroup_disabled()) 357 return -ENOSYS; 358 359 down_write(&shrinker_rwsem); 360 /* This may call shrinker, so it must use down_read_trylock() */ 361 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 362 if (id < 0) 363 goto unlock; 364 365 if (id >= shrinker_nr_max) { 366 if (expand_shrinker_info(id)) { 367 idr_remove(&shrinker_idr, id); 368 goto unlock; 369 } 370 } 371 shrinker->id = id; 372 ret = 0; 373 unlock: 374 up_write(&shrinker_rwsem); 375 return ret; 376 } 377 378 static void unregister_memcg_shrinker(struct shrinker *shrinker) 379 { 380 int id = shrinker->id; 381 382 BUG_ON(id < 0); 383 384 lockdep_assert_held(&shrinker_rwsem); 385 386 idr_remove(&shrinker_idr, id); 387 } 388 389 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 390 struct mem_cgroup *memcg) 391 { 392 struct shrinker_info *info; 393 394 info = shrinker_info_protected(memcg, nid); 395 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 396 } 397 398 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 399 struct mem_cgroup *memcg) 400 { 401 struct shrinker_info *info; 402 403 info = shrinker_info_protected(memcg, nid); 404 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 405 } 406 407 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 408 { 409 int i, nid; 410 long nr; 411 struct mem_cgroup *parent; 412 struct shrinker_info *child_info, *parent_info; 413 414 parent = parent_mem_cgroup(memcg); 415 if (!parent) 416 parent = root_mem_cgroup; 417 418 /* Prevent from concurrent shrinker_info expand */ 419 down_read(&shrinker_rwsem); 420 for_each_node(nid) { 421 child_info = shrinker_info_protected(memcg, nid); 422 parent_info = shrinker_info_protected(parent, nid); 423 for (i = 0; i < shrinker_nr_max; i++) { 424 nr = atomic_long_read(&child_info->nr_deferred[i]); 425 atomic_long_add(nr, &parent_info->nr_deferred[i]); 426 } 427 } 428 up_read(&shrinker_rwsem); 429 } 430 431 static bool cgroup_reclaim(struct scan_control *sc) 432 { 433 return sc->target_mem_cgroup; 434 } 435 436 /** 437 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 438 * @sc: scan_control in question 439 * 440 * The normal page dirty throttling mechanism in balance_dirty_pages() is 441 * completely broken with the legacy memcg and direct stalling in 442 * shrink_page_list() is used for throttling instead, which lacks all the 443 * niceties such as fairness, adaptive pausing, bandwidth proportional 444 * allocation and configurability. 445 * 446 * This function tests whether the vmscan currently in progress can assume 447 * that the normal dirty throttling mechanism is operational. 448 */ 449 static bool writeback_throttling_sane(struct scan_control *sc) 450 { 451 if (!cgroup_reclaim(sc)) 452 return true; 453 #ifdef CONFIG_CGROUP_WRITEBACK 454 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 455 return true; 456 #endif 457 return false; 458 } 459 #else 460 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 461 { 462 return -ENOSYS; 463 } 464 465 static void unregister_memcg_shrinker(struct shrinker *shrinker) 466 { 467 } 468 469 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 470 struct mem_cgroup *memcg) 471 { 472 return 0; 473 } 474 475 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 476 struct mem_cgroup *memcg) 477 { 478 return 0; 479 } 480 481 static bool cgroup_reclaim(struct scan_control *sc) 482 { 483 return false; 484 } 485 486 static bool writeback_throttling_sane(struct scan_control *sc) 487 { 488 return true; 489 } 490 #endif 491 492 static long xchg_nr_deferred(struct shrinker *shrinker, 493 struct shrink_control *sc) 494 { 495 int nid = sc->nid; 496 497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 498 nid = 0; 499 500 if (sc->memcg && 501 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 502 return xchg_nr_deferred_memcg(nid, shrinker, 503 sc->memcg); 504 505 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 506 } 507 508 509 static long add_nr_deferred(long nr, struct shrinker *shrinker, 510 struct shrink_control *sc) 511 { 512 int nid = sc->nid; 513 514 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 515 nid = 0; 516 517 if (sc->memcg && 518 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 519 return add_nr_deferred_memcg(nr, nid, shrinker, 520 sc->memcg); 521 522 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 523 } 524 525 static bool can_demote(int nid, struct scan_control *sc) 526 { 527 if (!numa_demotion_enabled) 528 return false; 529 if (sc) { 530 if (sc->no_demotion) 531 return false; 532 /* It is pointless to do demotion in memcg reclaim */ 533 if (cgroup_reclaim(sc)) 534 return false; 535 } 536 if (next_demotion_node(nid) == NUMA_NO_NODE) 537 return false; 538 539 return true; 540 } 541 542 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 543 int nid, 544 struct scan_control *sc) 545 { 546 if (memcg == NULL) { 547 /* 548 * For non-memcg reclaim, is there 549 * space in any swap device? 550 */ 551 if (get_nr_swap_pages() > 0) 552 return true; 553 } else { 554 /* Is the memcg below its swap limit? */ 555 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 556 return true; 557 } 558 559 /* 560 * The page can not be swapped. 561 * 562 * Can it be reclaimed from this node via demotion? 563 */ 564 return can_demote(nid, sc); 565 } 566 567 /* 568 * This misses isolated pages which are not accounted for to save counters. 569 * As the data only determines if reclaim or compaction continues, it is 570 * not expected that isolated pages will be a dominating factor. 571 */ 572 unsigned long zone_reclaimable_pages(struct zone *zone) 573 { 574 unsigned long nr; 575 576 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 577 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 578 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 579 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 580 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 581 582 return nr; 583 } 584 585 /** 586 * lruvec_lru_size - Returns the number of pages on the given LRU list. 587 * @lruvec: lru vector 588 * @lru: lru to use 589 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 590 */ 591 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 592 int zone_idx) 593 { 594 unsigned long size = 0; 595 int zid; 596 597 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 598 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 599 600 if (!managed_zone(zone)) 601 continue; 602 603 if (!mem_cgroup_disabled()) 604 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 605 else 606 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 607 } 608 return size; 609 } 610 611 /* 612 * Add a shrinker callback to be called from the vm. 613 */ 614 int prealloc_shrinker(struct shrinker *shrinker) 615 { 616 unsigned int size; 617 int err; 618 619 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 620 err = prealloc_memcg_shrinker(shrinker); 621 if (err != -ENOSYS) 622 return err; 623 624 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 625 } 626 627 size = sizeof(*shrinker->nr_deferred); 628 if (shrinker->flags & SHRINKER_NUMA_AWARE) 629 size *= nr_node_ids; 630 631 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 632 if (!shrinker->nr_deferred) 633 return -ENOMEM; 634 635 return 0; 636 } 637 638 void free_prealloced_shrinker(struct shrinker *shrinker) 639 { 640 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 641 down_write(&shrinker_rwsem); 642 unregister_memcg_shrinker(shrinker); 643 up_write(&shrinker_rwsem); 644 return; 645 } 646 647 kfree(shrinker->nr_deferred); 648 shrinker->nr_deferred = NULL; 649 } 650 651 void register_shrinker_prepared(struct shrinker *shrinker) 652 { 653 down_write(&shrinker_rwsem); 654 list_add_tail(&shrinker->list, &shrinker_list); 655 shrinker->flags |= SHRINKER_REGISTERED; 656 up_write(&shrinker_rwsem); 657 } 658 659 int register_shrinker(struct shrinker *shrinker) 660 { 661 int err = prealloc_shrinker(shrinker); 662 663 if (err) 664 return err; 665 register_shrinker_prepared(shrinker); 666 return 0; 667 } 668 EXPORT_SYMBOL(register_shrinker); 669 670 /* 671 * Remove one 672 */ 673 void unregister_shrinker(struct shrinker *shrinker) 674 { 675 if (!(shrinker->flags & SHRINKER_REGISTERED)) 676 return; 677 678 down_write(&shrinker_rwsem); 679 list_del(&shrinker->list); 680 shrinker->flags &= ~SHRINKER_REGISTERED; 681 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 682 unregister_memcg_shrinker(shrinker); 683 up_write(&shrinker_rwsem); 684 685 kfree(shrinker->nr_deferred); 686 shrinker->nr_deferred = NULL; 687 } 688 EXPORT_SYMBOL(unregister_shrinker); 689 690 /** 691 * synchronize_shrinkers - Wait for all running shrinkers to complete. 692 * 693 * This is equivalent to calling unregister_shrink() and register_shrinker(), 694 * but atomically and with less overhead. This is useful to guarantee that all 695 * shrinker invocations have seen an update, before freeing memory, similar to 696 * rcu. 697 */ 698 void synchronize_shrinkers(void) 699 { 700 down_write(&shrinker_rwsem); 701 up_write(&shrinker_rwsem); 702 } 703 EXPORT_SYMBOL(synchronize_shrinkers); 704 705 #define SHRINK_BATCH 128 706 707 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 708 struct shrinker *shrinker, int priority) 709 { 710 unsigned long freed = 0; 711 unsigned long long delta; 712 long total_scan; 713 long freeable; 714 long nr; 715 long new_nr; 716 long batch_size = shrinker->batch ? shrinker->batch 717 : SHRINK_BATCH; 718 long scanned = 0, next_deferred; 719 720 freeable = shrinker->count_objects(shrinker, shrinkctl); 721 if (freeable == 0 || freeable == SHRINK_EMPTY) 722 return freeable; 723 724 /* 725 * copy the current shrinker scan count into a local variable 726 * and zero it so that other concurrent shrinker invocations 727 * don't also do this scanning work. 728 */ 729 nr = xchg_nr_deferred(shrinker, shrinkctl); 730 731 if (shrinker->seeks) { 732 delta = freeable >> priority; 733 delta *= 4; 734 do_div(delta, shrinker->seeks); 735 } else { 736 /* 737 * These objects don't require any IO to create. Trim 738 * them aggressively under memory pressure to keep 739 * them from causing refetches in the IO caches. 740 */ 741 delta = freeable / 2; 742 } 743 744 total_scan = nr >> priority; 745 total_scan += delta; 746 total_scan = min(total_scan, (2 * freeable)); 747 748 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 749 freeable, delta, total_scan, priority); 750 751 /* 752 * Normally, we should not scan less than batch_size objects in one 753 * pass to avoid too frequent shrinker calls, but if the slab has less 754 * than batch_size objects in total and we are really tight on memory, 755 * we will try to reclaim all available objects, otherwise we can end 756 * up failing allocations although there are plenty of reclaimable 757 * objects spread over several slabs with usage less than the 758 * batch_size. 759 * 760 * We detect the "tight on memory" situations by looking at the total 761 * number of objects we want to scan (total_scan). If it is greater 762 * than the total number of objects on slab (freeable), we must be 763 * scanning at high prio and therefore should try to reclaim as much as 764 * possible. 765 */ 766 while (total_scan >= batch_size || 767 total_scan >= freeable) { 768 unsigned long ret; 769 unsigned long nr_to_scan = min(batch_size, total_scan); 770 771 shrinkctl->nr_to_scan = nr_to_scan; 772 shrinkctl->nr_scanned = nr_to_scan; 773 ret = shrinker->scan_objects(shrinker, shrinkctl); 774 if (ret == SHRINK_STOP) 775 break; 776 freed += ret; 777 778 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 779 total_scan -= shrinkctl->nr_scanned; 780 scanned += shrinkctl->nr_scanned; 781 782 cond_resched(); 783 } 784 785 /* 786 * The deferred work is increased by any new work (delta) that wasn't 787 * done, decreased by old deferred work that was done now. 788 * 789 * And it is capped to two times of the freeable items. 790 */ 791 next_deferred = max_t(long, (nr + delta - scanned), 0); 792 next_deferred = min(next_deferred, (2 * freeable)); 793 794 /* 795 * move the unused scan count back into the shrinker in a 796 * manner that handles concurrent updates. 797 */ 798 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 799 800 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 801 return freed; 802 } 803 804 #ifdef CONFIG_MEMCG 805 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 806 struct mem_cgroup *memcg, int priority) 807 { 808 struct shrinker_info *info; 809 unsigned long ret, freed = 0; 810 int i; 811 812 if (!mem_cgroup_online(memcg)) 813 return 0; 814 815 if (!down_read_trylock(&shrinker_rwsem)) 816 return 0; 817 818 info = shrinker_info_protected(memcg, nid); 819 if (unlikely(!info)) 820 goto unlock; 821 822 for_each_set_bit(i, info->map, shrinker_nr_max) { 823 struct shrink_control sc = { 824 .gfp_mask = gfp_mask, 825 .nid = nid, 826 .memcg = memcg, 827 }; 828 struct shrinker *shrinker; 829 830 shrinker = idr_find(&shrinker_idr, i); 831 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 832 if (!shrinker) 833 clear_bit(i, info->map); 834 continue; 835 } 836 837 /* Call non-slab shrinkers even though kmem is disabled */ 838 if (!memcg_kmem_enabled() && 839 !(shrinker->flags & SHRINKER_NONSLAB)) 840 continue; 841 842 ret = do_shrink_slab(&sc, shrinker, priority); 843 if (ret == SHRINK_EMPTY) { 844 clear_bit(i, info->map); 845 /* 846 * After the shrinker reported that it had no objects to 847 * free, but before we cleared the corresponding bit in 848 * the memcg shrinker map, a new object might have been 849 * added. To make sure, we have the bit set in this 850 * case, we invoke the shrinker one more time and reset 851 * the bit if it reports that it is not empty anymore. 852 * The memory barrier here pairs with the barrier in 853 * set_shrinker_bit(): 854 * 855 * list_lru_add() shrink_slab_memcg() 856 * list_add_tail() clear_bit() 857 * <MB> <MB> 858 * set_bit() do_shrink_slab() 859 */ 860 smp_mb__after_atomic(); 861 ret = do_shrink_slab(&sc, shrinker, priority); 862 if (ret == SHRINK_EMPTY) 863 ret = 0; 864 else 865 set_shrinker_bit(memcg, nid, i); 866 } 867 freed += ret; 868 869 if (rwsem_is_contended(&shrinker_rwsem)) { 870 freed = freed ? : 1; 871 break; 872 } 873 } 874 unlock: 875 up_read(&shrinker_rwsem); 876 return freed; 877 } 878 #else /* CONFIG_MEMCG */ 879 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 880 struct mem_cgroup *memcg, int priority) 881 { 882 return 0; 883 } 884 #endif /* CONFIG_MEMCG */ 885 886 /** 887 * shrink_slab - shrink slab caches 888 * @gfp_mask: allocation context 889 * @nid: node whose slab caches to target 890 * @memcg: memory cgroup whose slab caches to target 891 * @priority: the reclaim priority 892 * 893 * Call the shrink functions to age shrinkable caches. 894 * 895 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 896 * unaware shrinkers will receive a node id of 0 instead. 897 * 898 * @memcg specifies the memory cgroup to target. Unaware shrinkers 899 * are called only if it is the root cgroup. 900 * 901 * @priority is sc->priority, we take the number of objects and >> by priority 902 * in order to get the scan target. 903 * 904 * Returns the number of reclaimed slab objects. 905 */ 906 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 907 struct mem_cgroup *memcg, 908 int priority) 909 { 910 unsigned long ret, freed = 0; 911 struct shrinker *shrinker; 912 913 /* 914 * The root memcg might be allocated even though memcg is disabled 915 * via "cgroup_disable=memory" boot parameter. This could make 916 * mem_cgroup_is_root() return false, then just run memcg slab 917 * shrink, but skip global shrink. This may result in premature 918 * oom. 919 */ 920 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 921 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 922 923 if (!down_read_trylock(&shrinker_rwsem)) 924 goto out; 925 926 list_for_each_entry(shrinker, &shrinker_list, list) { 927 struct shrink_control sc = { 928 .gfp_mask = gfp_mask, 929 .nid = nid, 930 .memcg = memcg, 931 }; 932 933 ret = do_shrink_slab(&sc, shrinker, priority); 934 if (ret == SHRINK_EMPTY) 935 ret = 0; 936 freed += ret; 937 /* 938 * Bail out if someone want to register a new shrinker to 939 * prevent the registration from being stalled for long periods 940 * by parallel ongoing shrinking. 941 */ 942 if (rwsem_is_contended(&shrinker_rwsem)) { 943 freed = freed ? : 1; 944 break; 945 } 946 } 947 948 up_read(&shrinker_rwsem); 949 out: 950 cond_resched(); 951 return freed; 952 } 953 954 void drop_slab_node(int nid) 955 { 956 unsigned long freed; 957 int shift = 0; 958 959 do { 960 struct mem_cgroup *memcg = NULL; 961 962 if (fatal_signal_pending(current)) 963 return; 964 965 freed = 0; 966 memcg = mem_cgroup_iter(NULL, NULL, NULL); 967 do { 968 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 969 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 970 } while ((freed >> shift++) > 1); 971 } 972 973 void drop_slab(void) 974 { 975 int nid; 976 977 for_each_online_node(nid) 978 drop_slab_node(nid); 979 } 980 981 static inline int is_page_cache_freeable(struct page *page) 982 { 983 /* 984 * A freeable page cache page is referenced only by the caller 985 * that isolated the page, the page cache and optional buffer 986 * heads at page->private. 987 */ 988 int page_cache_pins = thp_nr_pages(page); 989 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 990 } 991 992 static int may_write_to_inode(struct inode *inode) 993 { 994 if (current->flags & PF_SWAPWRITE) 995 return 1; 996 if (!inode_write_congested(inode)) 997 return 1; 998 if (inode_to_bdi(inode) == current->backing_dev_info) 999 return 1; 1000 return 0; 1001 } 1002 1003 /* 1004 * We detected a synchronous write error writing a page out. Probably 1005 * -ENOSPC. We need to propagate that into the address_space for a subsequent 1006 * fsync(), msync() or close(). 1007 * 1008 * The tricky part is that after writepage we cannot touch the mapping: nothing 1009 * prevents it from being freed up. But we have a ref on the page and once 1010 * that page is locked, the mapping is pinned. 1011 * 1012 * We're allowed to run sleeping lock_page() here because we know the caller has 1013 * __GFP_FS. 1014 */ 1015 static void handle_write_error(struct address_space *mapping, 1016 struct page *page, int error) 1017 { 1018 lock_page(page); 1019 if (page_mapping(page) == mapping) 1020 mapping_set_error(mapping, error); 1021 unlock_page(page); 1022 } 1023 1024 /* possible outcome of pageout() */ 1025 typedef enum { 1026 /* failed to write page out, page is locked */ 1027 PAGE_KEEP, 1028 /* move page to the active list, page is locked */ 1029 PAGE_ACTIVATE, 1030 /* page has been sent to the disk successfully, page is unlocked */ 1031 PAGE_SUCCESS, 1032 /* page is clean and locked */ 1033 PAGE_CLEAN, 1034 } pageout_t; 1035 1036 /* 1037 * pageout is called by shrink_page_list() for each dirty page. 1038 * Calls ->writepage(). 1039 */ 1040 static pageout_t pageout(struct page *page, struct address_space *mapping) 1041 { 1042 /* 1043 * If the page is dirty, only perform writeback if that write 1044 * will be non-blocking. To prevent this allocation from being 1045 * stalled by pagecache activity. But note that there may be 1046 * stalls if we need to run get_block(). We could test 1047 * PagePrivate for that. 1048 * 1049 * If this process is currently in __generic_file_write_iter() against 1050 * this page's queue, we can perform writeback even if that 1051 * will block. 1052 * 1053 * If the page is swapcache, write it back even if that would 1054 * block, for some throttling. This happens by accident, because 1055 * swap_backing_dev_info is bust: it doesn't reflect the 1056 * congestion state of the swapdevs. Easy to fix, if needed. 1057 */ 1058 if (!is_page_cache_freeable(page)) 1059 return PAGE_KEEP; 1060 if (!mapping) { 1061 /* 1062 * Some data journaling orphaned pages can have 1063 * page->mapping == NULL while being dirty with clean buffers. 1064 */ 1065 if (page_has_private(page)) { 1066 if (try_to_free_buffers(page)) { 1067 ClearPageDirty(page); 1068 pr_info("%s: orphaned page\n", __func__); 1069 return PAGE_CLEAN; 1070 } 1071 } 1072 return PAGE_KEEP; 1073 } 1074 if (mapping->a_ops->writepage == NULL) 1075 return PAGE_ACTIVATE; 1076 if (!may_write_to_inode(mapping->host)) 1077 return PAGE_KEEP; 1078 1079 if (clear_page_dirty_for_io(page)) { 1080 int res; 1081 struct writeback_control wbc = { 1082 .sync_mode = WB_SYNC_NONE, 1083 .nr_to_write = SWAP_CLUSTER_MAX, 1084 .range_start = 0, 1085 .range_end = LLONG_MAX, 1086 .for_reclaim = 1, 1087 }; 1088 1089 SetPageReclaim(page); 1090 res = mapping->a_ops->writepage(page, &wbc); 1091 if (res < 0) 1092 handle_write_error(mapping, page, res); 1093 if (res == AOP_WRITEPAGE_ACTIVATE) { 1094 ClearPageReclaim(page); 1095 return PAGE_ACTIVATE; 1096 } 1097 1098 if (!PageWriteback(page)) { 1099 /* synchronous write or broken a_ops? */ 1100 ClearPageReclaim(page); 1101 } 1102 trace_mm_vmscan_writepage(page); 1103 inc_node_page_state(page, NR_VMSCAN_WRITE); 1104 return PAGE_SUCCESS; 1105 } 1106 1107 return PAGE_CLEAN; 1108 } 1109 1110 /* 1111 * Same as remove_mapping, but if the page is removed from the mapping, it 1112 * gets returned with a refcount of 0. 1113 */ 1114 static int __remove_mapping(struct address_space *mapping, struct page *page, 1115 bool reclaimed, struct mem_cgroup *target_memcg) 1116 { 1117 int refcount; 1118 void *shadow = NULL; 1119 1120 BUG_ON(!PageLocked(page)); 1121 BUG_ON(mapping != page_mapping(page)); 1122 1123 xa_lock_irq(&mapping->i_pages); 1124 /* 1125 * The non racy check for a busy page. 1126 * 1127 * Must be careful with the order of the tests. When someone has 1128 * a ref to the page, it may be possible that they dirty it then 1129 * drop the reference. So if PageDirty is tested before page_count 1130 * here, then the following race may occur: 1131 * 1132 * get_user_pages(&page); 1133 * [user mapping goes away] 1134 * write_to(page); 1135 * !PageDirty(page) [good] 1136 * SetPageDirty(page); 1137 * put_page(page); 1138 * !page_count(page) [good, discard it] 1139 * 1140 * [oops, our write_to data is lost] 1141 * 1142 * Reversing the order of the tests ensures such a situation cannot 1143 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 1144 * load is not satisfied before that of page->_refcount. 1145 * 1146 * Note that if SetPageDirty is always performed via set_page_dirty, 1147 * and thus under the i_pages lock, then this ordering is not required. 1148 */ 1149 refcount = 1 + compound_nr(page); 1150 if (!page_ref_freeze(page, refcount)) 1151 goto cannot_free; 1152 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 1153 if (unlikely(PageDirty(page))) { 1154 page_ref_unfreeze(page, refcount); 1155 goto cannot_free; 1156 } 1157 1158 if (PageSwapCache(page)) { 1159 swp_entry_t swap = { .val = page_private(page) }; 1160 mem_cgroup_swapout(page, swap); 1161 if (reclaimed && !mapping_exiting(mapping)) 1162 shadow = workingset_eviction(page, target_memcg); 1163 __delete_from_swap_cache(page, swap, shadow); 1164 xa_unlock_irq(&mapping->i_pages); 1165 put_swap_page(page, swap); 1166 } else { 1167 void (*freepage)(struct page *); 1168 1169 freepage = mapping->a_ops->freepage; 1170 /* 1171 * Remember a shadow entry for reclaimed file cache in 1172 * order to detect refaults, thus thrashing, later on. 1173 * 1174 * But don't store shadows in an address space that is 1175 * already exiting. This is not just an optimization, 1176 * inode reclaim needs to empty out the radix tree or 1177 * the nodes are lost. Don't plant shadows behind its 1178 * back. 1179 * 1180 * We also don't store shadows for DAX mappings because the 1181 * only page cache pages found in these are zero pages 1182 * covering holes, and because we don't want to mix DAX 1183 * exceptional entries and shadow exceptional entries in the 1184 * same address_space. 1185 */ 1186 if (reclaimed && page_is_file_lru(page) && 1187 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1188 shadow = workingset_eviction(page, target_memcg); 1189 __delete_from_page_cache(page, shadow); 1190 xa_unlock_irq(&mapping->i_pages); 1191 1192 if (freepage != NULL) 1193 freepage(page); 1194 } 1195 1196 return 1; 1197 1198 cannot_free: 1199 xa_unlock_irq(&mapping->i_pages); 1200 return 0; 1201 } 1202 1203 /* 1204 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 1205 * someone else has a ref on the page, abort and return 0. If it was 1206 * successfully detached, return 1. Assumes the caller has a single ref on 1207 * this page. 1208 */ 1209 int remove_mapping(struct address_space *mapping, struct page *page) 1210 { 1211 if (__remove_mapping(mapping, page, false, NULL)) { 1212 /* 1213 * Unfreezing the refcount with 1 rather than 2 effectively 1214 * drops the pagecache ref for us without requiring another 1215 * atomic operation. 1216 */ 1217 page_ref_unfreeze(page, 1); 1218 return 1; 1219 } 1220 return 0; 1221 } 1222 1223 /** 1224 * putback_lru_page - put previously isolated page onto appropriate LRU list 1225 * @page: page to be put back to appropriate lru list 1226 * 1227 * Add previously isolated @page to appropriate LRU list. 1228 * Page may still be unevictable for other reasons. 1229 * 1230 * lru_lock must not be held, interrupts must be enabled. 1231 */ 1232 void putback_lru_page(struct page *page) 1233 { 1234 lru_cache_add(page); 1235 put_page(page); /* drop ref from isolate */ 1236 } 1237 1238 enum page_references { 1239 PAGEREF_RECLAIM, 1240 PAGEREF_RECLAIM_CLEAN, 1241 PAGEREF_KEEP, 1242 PAGEREF_ACTIVATE, 1243 }; 1244 1245 static enum page_references page_check_references(struct page *page, 1246 struct scan_control *sc) 1247 { 1248 int referenced_ptes, referenced_page; 1249 unsigned long vm_flags; 1250 1251 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1252 &vm_flags); 1253 referenced_page = TestClearPageReferenced(page); 1254 1255 /* 1256 * Mlock lost the isolation race with us. Let try_to_unmap() 1257 * move the page to the unevictable list. 1258 */ 1259 if (vm_flags & VM_LOCKED) 1260 return PAGEREF_RECLAIM; 1261 1262 if (referenced_ptes) { 1263 /* 1264 * All mapped pages start out with page table 1265 * references from the instantiating fault, so we need 1266 * to look twice if a mapped file page is used more 1267 * than once. 1268 * 1269 * Mark it and spare it for another trip around the 1270 * inactive list. Another page table reference will 1271 * lead to its activation. 1272 * 1273 * Note: the mark is set for activated pages as well 1274 * so that recently deactivated but used pages are 1275 * quickly recovered. 1276 */ 1277 SetPageReferenced(page); 1278 1279 if (referenced_page || referenced_ptes > 1) 1280 return PAGEREF_ACTIVATE; 1281 1282 /* 1283 * Activate file-backed executable pages after first usage. 1284 */ 1285 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page)) 1286 return PAGEREF_ACTIVATE; 1287 1288 return PAGEREF_KEEP; 1289 } 1290 1291 /* Reclaim if clean, defer dirty pages to writeback */ 1292 if (referenced_page && !PageSwapBacked(page)) 1293 return PAGEREF_RECLAIM_CLEAN; 1294 1295 return PAGEREF_RECLAIM; 1296 } 1297 1298 /* Check if a page is dirty or under writeback */ 1299 static void page_check_dirty_writeback(struct page *page, 1300 bool *dirty, bool *writeback) 1301 { 1302 struct address_space *mapping; 1303 1304 /* 1305 * Anonymous pages are not handled by flushers and must be written 1306 * from reclaim context. Do not stall reclaim based on them 1307 */ 1308 if (!page_is_file_lru(page) || 1309 (PageAnon(page) && !PageSwapBacked(page))) { 1310 *dirty = false; 1311 *writeback = false; 1312 return; 1313 } 1314 1315 /* By default assume that the page flags are accurate */ 1316 *dirty = PageDirty(page); 1317 *writeback = PageWriteback(page); 1318 1319 /* Verify dirty/writeback state if the filesystem supports it */ 1320 if (!page_has_private(page)) 1321 return; 1322 1323 mapping = page_mapping(page); 1324 if (mapping && mapping->a_ops->is_dirty_writeback) 1325 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1326 } 1327 1328 static struct page *alloc_demote_page(struct page *page, unsigned long node) 1329 { 1330 struct migration_target_control mtc = { 1331 /* 1332 * Allocate from 'node', or fail quickly and quietly. 1333 * When this happens, 'page' will likely just be discarded 1334 * instead of migrated. 1335 */ 1336 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | 1337 __GFP_THISNODE | __GFP_NOWARN | 1338 __GFP_NOMEMALLOC | GFP_NOWAIT, 1339 .nid = node 1340 }; 1341 1342 return alloc_migration_target(page, (unsigned long)&mtc); 1343 } 1344 1345 /* 1346 * Take pages on @demote_list and attempt to demote them to 1347 * another node. Pages which are not demoted are left on 1348 * @demote_pages. 1349 */ 1350 static unsigned int demote_page_list(struct list_head *demote_pages, 1351 struct pglist_data *pgdat) 1352 { 1353 int target_nid = next_demotion_node(pgdat->node_id); 1354 unsigned int nr_succeeded; 1355 int err; 1356 1357 if (list_empty(demote_pages)) 1358 return 0; 1359 1360 if (target_nid == NUMA_NO_NODE) 1361 return 0; 1362 1363 /* Demotion ignores all cpuset and mempolicy settings */ 1364 err = migrate_pages(demote_pages, alloc_demote_page, NULL, 1365 target_nid, MIGRATE_ASYNC, MR_DEMOTION, 1366 &nr_succeeded); 1367 1368 if (current_is_kswapd()) 1369 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded); 1370 else 1371 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded); 1372 1373 return nr_succeeded; 1374 } 1375 1376 /* 1377 * shrink_page_list() returns the number of reclaimed pages 1378 */ 1379 static unsigned int shrink_page_list(struct list_head *page_list, 1380 struct pglist_data *pgdat, 1381 struct scan_control *sc, 1382 struct reclaim_stat *stat, 1383 bool ignore_references) 1384 { 1385 LIST_HEAD(ret_pages); 1386 LIST_HEAD(free_pages); 1387 LIST_HEAD(demote_pages); 1388 unsigned int nr_reclaimed = 0; 1389 unsigned int pgactivate = 0; 1390 bool do_demote_pass; 1391 1392 memset(stat, 0, sizeof(*stat)); 1393 cond_resched(); 1394 do_demote_pass = can_demote(pgdat->node_id, sc); 1395 1396 retry: 1397 while (!list_empty(page_list)) { 1398 struct address_space *mapping; 1399 struct page *page; 1400 enum page_references references = PAGEREF_RECLAIM; 1401 bool dirty, writeback, may_enter_fs; 1402 unsigned int nr_pages; 1403 1404 cond_resched(); 1405 1406 page = lru_to_page(page_list); 1407 list_del(&page->lru); 1408 1409 if (!trylock_page(page)) 1410 goto keep; 1411 1412 VM_BUG_ON_PAGE(PageActive(page), page); 1413 1414 nr_pages = compound_nr(page); 1415 1416 /* Account the number of base pages even though THP */ 1417 sc->nr_scanned += nr_pages; 1418 1419 if (unlikely(!page_evictable(page))) 1420 goto activate_locked; 1421 1422 if (!sc->may_unmap && page_mapped(page)) 1423 goto keep_locked; 1424 1425 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1426 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1427 1428 /* 1429 * The number of dirty pages determines if a node is marked 1430 * reclaim_congested which affects wait_iff_congested. kswapd 1431 * will stall and start writing pages if the tail of the LRU 1432 * is all dirty unqueued pages. 1433 */ 1434 page_check_dirty_writeback(page, &dirty, &writeback); 1435 if (dirty || writeback) 1436 stat->nr_dirty++; 1437 1438 if (dirty && !writeback) 1439 stat->nr_unqueued_dirty++; 1440 1441 /* 1442 * Treat this page as congested if the underlying BDI is or if 1443 * pages are cycling through the LRU so quickly that the 1444 * pages marked for immediate reclaim are making it to the 1445 * end of the LRU a second time. 1446 */ 1447 mapping = page_mapping(page); 1448 if (((dirty || writeback) && mapping && 1449 inode_write_congested(mapping->host)) || 1450 (writeback && PageReclaim(page))) 1451 stat->nr_congested++; 1452 1453 /* 1454 * If a page at the tail of the LRU is under writeback, there 1455 * are three cases to consider. 1456 * 1457 * 1) If reclaim is encountering an excessive number of pages 1458 * under writeback and this page is both under writeback and 1459 * PageReclaim then it indicates that pages are being queued 1460 * for IO but are being recycled through the LRU before the 1461 * IO can complete. Waiting on the page itself risks an 1462 * indefinite stall if it is impossible to writeback the 1463 * page due to IO error or disconnected storage so instead 1464 * note that the LRU is being scanned too quickly and the 1465 * caller can stall after page list has been processed. 1466 * 1467 * 2) Global or new memcg reclaim encounters a page that is 1468 * not marked for immediate reclaim, or the caller does not 1469 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1470 * not to fs). In this case mark the page for immediate 1471 * reclaim and continue scanning. 1472 * 1473 * Require may_enter_fs because we would wait on fs, which 1474 * may not have submitted IO yet. And the loop driver might 1475 * enter reclaim, and deadlock if it waits on a page for 1476 * which it is needed to do the write (loop masks off 1477 * __GFP_IO|__GFP_FS for this reason); but more thought 1478 * would probably show more reasons. 1479 * 1480 * 3) Legacy memcg encounters a page that is already marked 1481 * PageReclaim. memcg does not have any dirty pages 1482 * throttling so we could easily OOM just because too many 1483 * pages are in writeback and there is nothing else to 1484 * reclaim. Wait for the writeback to complete. 1485 * 1486 * In cases 1) and 2) we activate the pages to get them out of 1487 * the way while we continue scanning for clean pages on the 1488 * inactive list and refilling from the active list. The 1489 * observation here is that waiting for disk writes is more 1490 * expensive than potentially causing reloads down the line. 1491 * Since they're marked for immediate reclaim, they won't put 1492 * memory pressure on the cache working set any longer than it 1493 * takes to write them to disk. 1494 */ 1495 if (PageWriteback(page)) { 1496 /* Case 1 above */ 1497 if (current_is_kswapd() && 1498 PageReclaim(page) && 1499 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1500 stat->nr_immediate++; 1501 goto activate_locked; 1502 1503 /* Case 2 above */ 1504 } else if (writeback_throttling_sane(sc) || 1505 !PageReclaim(page) || !may_enter_fs) { 1506 /* 1507 * This is slightly racy - end_page_writeback() 1508 * might have just cleared PageReclaim, then 1509 * setting PageReclaim here end up interpreted 1510 * as PageReadahead - but that does not matter 1511 * enough to care. What we do want is for this 1512 * page to have PageReclaim set next time memcg 1513 * reclaim reaches the tests above, so it will 1514 * then wait_on_page_writeback() to avoid OOM; 1515 * and it's also appropriate in global reclaim. 1516 */ 1517 SetPageReclaim(page); 1518 stat->nr_writeback++; 1519 goto activate_locked; 1520 1521 /* Case 3 above */ 1522 } else { 1523 unlock_page(page); 1524 wait_on_page_writeback(page); 1525 /* then go back and try same page again */ 1526 list_add_tail(&page->lru, page_list); 1527 continue; 1528 } 1529 } 1530 1531 if (!ignore_references) 1532 references = page_check_references(page, sc); 1533 1534 switch (references) { 1535 case PAGEREF_ACTIVATE: 1536 goto activate_locked; 1537 case PAGEREF_KEEP: 1538 stat->nr_ref_keep += nr_pages; 1539 goto keep_locked; 1540 case PAGEREF_RECLAIM: 1541 case PAGEREF_RECLAIM_CLEAN: 1542 ; /* try to reclaim the page below */ 1543 } 1544 1545 /* 1546 * Before reclaiming the page, try to relocate 1547 * its contents to another node. 1548 */ 1549 if (do_demote_pass && 1550 (thp_migration_supported() || !PageTransHuge(page))) { 1551 list_add(&page->lru, &demote_pages); 1552 unlock_page(page); 1553 continue; 1554 } 1555 1556 /* 1557 * Anonymous process memory has backing store? 1558 * Try to allocate it some swap space here. 1559 * Lazyfree page could be freed directly 1560 */ 1561 if (PageAnon(page) && PageSwapBacked(page)) { 1562 if (!PageSwapCache(page)) { 1563 if (!(sc->gfp_mask & __GFP_IO)) 1564 goto keep_locked; 1565 if (page_maybe_dma_pinned(page)) 1566 goto keep_locked; 1567 if (PageTransHuge(page)) { 1568 /* cannot split THP, skip it */ 1569 if (!can_split_huge_page(page, NULL)) 1570 goto activate_locked; 1571 /* 1572 * Split pages without a PMD map right 1573 * away. Chances are some or all of the 1574 * tail pages can be freed without IO. 1575 */ 1576 if (!compound_mapcount(page) && 1577 split_huge_page_to_list(page, 1578 page_list)) 1579 goto activate_locked; 1580 } 1581 if (!add_to_swap(page)) { 1582 if (!PageTransHuge(page)) 1583 goto activate_locked_split; 1584 /* Fallback to swap normal pages */ 1585 if (split_huge_page_to_list(page, 1586 page_list)) 1587 goto activate_locked; 1588 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1589 count_vm_event(THP_SWPOUT_FALLBACK); 1590 #endif 1591 if (!add_to_swap(page)) 1592 goto activate_locked_split; 1593 } 1594 1595 may_enter_fs = true; 1596 1597 /* Adding to swap updated mapping */ 1598 mapping = page_mapping(page); 1599 } 1600 } else if (unlikely(PageTransHuge(page))) { 1601 /* Split file THP */ 1602 if (split_huge_page_to_list(page, page_list)) 1603 goto keep_locked; 1604 } 1605 1606 /* 1607 * THP may get split above, need minus tail pages and update 1608 * nr_pages to avoid accounting tail pages twice. 1609 * 1610 * The tail pages that are added into swap cache successfully 1611 * reach here. 1612 */ 1613 if ((nr_pages > 1) && !PageTransHuge(page)) { 1614 sc->nr_scanned -= (nr_pages - 1); 1615 nr_pages = 1; 1616 } 1617 1618 /* 1619 * The page is mapped into the page tables of one or more 1620 * processes. Try to unmap it here. 1621 */ 1622 if (page_mapped(page)) { 1623 enum ttu_flags flags = TTU_BATCH_FLUSH; 1624 bool was_swapbacked = PageSwapBacked(page); 1625 1626 if (unlikely(PageTransHuge(page))) 1627 flags |= TTU_SPLIT_HUGE_PMD; 1628 1629 try_to_unmap(page, flags); 1630 if (page_mapped(page)) { 1631 stat->nr_unmap_fail += nr_pages; 1632 if (!was_swapbacked && PageSwapBacked(page)) 1633 stat->nr_lazyfree_fail += nr_pages; 1634 goto activate_locked; 1635 } 1636 } 1637 1638 if (PageDirty(page)) { 1639 /* 1640 * Only kswapd can writeback filesystem pages 1641 * to avoid risk of stack overflow. But avoid 1642 * injecting inefficient single-page IO into 1643 * flusher writeback as much as possible: only 1644 * write pages when we've encountered many 1645 * dirty pages, and when we've already scanned 1646 * the rest of the LRU for clean pages and see 1647 * the same dirty pages again (PageReclaim). 1648 */ 1649 if (page_is_file_lru(page) && 1650 (!current_is_kswapd() || !PageReclaim(page) || 1651 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1652 /* 1653 * Immediately reclaim when written back. 1654 * Similar in principal to deactivate_page() 1655 * except we already have the page isolated 1656 * and know it's dirty 1657 */ 1658 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1659 SetPageReclaim(page); 1660 1661 goto activate_locked; 1662 } 1663 1664 if (references == PAGEREF_RECLAIM_CLEAN) 1665 goto keep_locked; 1666 if (!may_enter_fs) 1667 goto keep_locked; 1668 if (!sc->may_writepage) 1669 goto keep_locked; 1670 1671 /* 1672 * Page is dirty. Flush the TLB if a writable entry 1673 * potentially exists to avoid CPU writes after IO 1674 * starts and then write it out here. 1675 */ 1676 try_to_unmap_flush_dirty(); 1677 switch (pageout(page, mapping)) { 1678 case PAGE_KEEP: 1679 goto keep_locked; 1680 case PAGE_ACTIVATE: 1681 goto activate_locked; 1682 case PAGE_SUCCESS: 1683 stat->nr_pageout += thp_nr_pages(page); 1684 1685 if (PageWriteback(page)) 1686 goto keep; 1687 if (PageDirty(page)) 1688 goto keep; 1689 1690 /* 1691 * A synchronous write - probably a ramdisk. Go 1692 * ahead and try to reclaim the page. 1693 */ 1694 if (!trylock_page(page)) 1695 goto keep; 1696 if (PageDirty(page) || PageWriteback(page)) 1697 goto keep_locked; 1698 mapping = page_mapping(page); 1699 fallthrough; 1700 case PAGE_CLEAN: 1701 ; /* try to free the page below */ 1702 } 1703 } 1704 1705 /* 1706 * If the page has buffers, try to free the buffer mappings 1707 * associated with this page. If we succeed we try to free 1708 * the page as well. 1709 * 1710 * We do this even if the page is PageDirty(). 1711 * try_to_release_page() does not perform I/O, but it is 1712 * possible for a page to have PageDirty set, but it is actually 1713 * clean (all its buffers are clean). This happens if the 1714 * buffers were written out directly, with submit_bh(). ext3 1715 * will do this, as well as the blockdev mapping. 1716 * try_to_release_page() will discover that cleanness and will 1717 * drop the buffers and mark the page clean - it can be freed. 1718 * 1719 * Rarely, pages can have buffers and no ->mapping. These are 1720 * the pages which were not successfully invalidated in 1721 * truncate_cleanup_page(). We try to drop those buffers here 1722 * and if that worked, and the page is no longer mapped into 1723 * process address space (page_count == 1) it can be freed. 1724 * Otherwise, leave the page on the LRU so it is swappable. 1725 */ 1726 if (page_has_private(page)) { 1727 if (!try_to_release_page(page, sc->gfp_mask)) 1728 goto activate_locked; 1729 if (!mapping && page_count(page) == 1) { 1730 unlock_page(page); 1731 if (put_page_testzero(page)) 1732 goto free_it; 1733 else { 1734 /* 1735 * rare race with speculative reference. 1736 * the speculative reference will free 1737 * this page shortly, so we may 1738 * increment nr_reclaimed here (and 1739 * leave it off the LRU). 1740 */ 1741 nr_reclaimed++; 1742 continue; 1743 } 1744 } 1745 } 1746 1747 if (PageAnon(page) && !PageSwapBacked(page)) { 1748 /* follow __remove_mapping for reference */ 1749 if (!page_ref_freeze(page, 1)) 1750 goto keep_locked; 1751 /* 1752 * The page has only one reference left, which is 1753 * from the isolation. After the caller puts the 1754 * page back on lru and drops the reference, the 1755 * page will be freed anyway. It doesn't matter 1756 * which lru it goes. So we don't bother checking 1757 * PageDirty here. 1758 */ 1759 count_vm_event(PGLAZYFREED); 1760 count_memcg_page_event(page, PGLAZYFREED); 1761 } else if (!mapping || !__remove_mapping(mapping, page, true, 1762 sc->target_mem_cgroup)) 1763 goto keep_locked; 1764 1765 unlock_page(page); 1766 free_it: 1767 /* 1768 * THP may get swapped out in a whole, need account 1769 * all base pages. 1770 */ 1771 nr_reclaimed += nr_pages; 1772 1773 /* 1774 * Is there need to periodically free_page_list? It would 1775 * appear not as the counts should be low 1776 */ 1777 if (unlikely(PageTransHuge(page))) 1778 destroy_compound_page(page); 1779 else 1780 list_add(&page->lru, &free_pages); 1781 continue; 1782 1783 activate_locked_split: 1784 /* 1785 * The tail pages that are failed to add into swap cache 1786 * reach here. Fixup nr_scanned and nr_pages. 1787 */ 1788 if (nr_pages > 1) { 1789 sc->nr_scanned -= (nr_pages - 1); 1790 nr_pages = 1; 1791 } 1792 activate_locked: 1793 /* Not a candidate for swapping, so reclaim swap space. */ 1794 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1795 PageMlocked(page))) 1796 try_to_free_swap(page); 1797 VM_BUG_ON_PAGE(PageActive(page), page); 1798 if (!PageMlocked(page)) { 1799 int type = page_is_file_lru(page); 1800 SetPageActive(page); 1801 stat->nr_activate[type] += nr_pages; 1802 count_memcg_page_event(page, PGACTIVATE); 1803 } 1804 keep_locked: 1805 unlock_page(page); 1806 keep: 1807 list_add(&page->lru, &ret_pages); 1808 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1809 } 1810 /* 'page_list' is always empty here */ 1811 1812 /* Migrate pages selected for demotion */ 1813 nr_reclaimed += demote_page_list(&demote_pages, pgdat); 1814 /* Pages that could not be demoted are still in @demote_pages */ 1815 if (!list_empty(&demote_pages)) { 1816 /* Pages which failed to demoted go back on @page_list for retry: */ 1817 list_splice_init(&demote_pages, page_list); 1818 do_demote_pass = false; 1819 goto retry; 1820 } 1821 1822 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1823 1824 mem_cgroup_uncharge_list(&free_pages); 1825 try_to_unmap_flush(); 1826 free_unref_page_list(&free_pages); 1827 1828 list_splice(&ret_pages, page_list); 1829 count_vm_events(PGACTIVATE, pgactivate); 1830 1831 return nr_reclaimed; 1832 } 1833 1834 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1835 struct list_head *page_list) 1836 { 1837 struct scan_control sc = { 1838 .gfp_mask = GFP_KERNEL, 1839 .may_unmap = 1, 1840 }; 1841 struct reclaim_stat stat; 1842 unsigned int nr_reclaimed; 1843 struct page *page, *next; 1844 LIST_HEAD(clean_pages); 1845 unsigned int noreclaim_flag; 1846 1847 list_for_each_entry_safe(page, next, page_list, lru) { 1848 if (!PageHuge(page) && page_is_file_lru(page) && 1849 !PageDirty(page) && !__PageMovable(page) && 1850 !PageUnevictable(page)) { 1851 ClearPageActive(page); 1852 list_move(&page->lru, &clean_pages); 1853 } 1854 } 1855 1856 /* 1857 * We should be safe here since we are only dealing with file pages and 1858 * we are not kswapd and therefore cannot write dirty file pages. But 1859 * call memalloc_noreclaim_save() anyway, just in case these conditions 1860 * change in the future. 1861 */ 1862 noreclaim_flag = memalloc_noreclaim_save(); 1863 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1864 &stat, true); 1865 memalloc_noreclaim_restore(noreclaim_flag); 1866 1867 list_splice(&clean_pages, page_list); 1868 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1869 -(long)nr_reclaimed); 1870 /* 1871 * Since lazyfree pages are isolated from file LRU from the beginning, 1872 * they will rotate back to anonymous LRU in the end if it failed to 1873 * discard so isolated count will be mismatched. 1874 * Compensate the isolated count for both LRU lists. 1875 */ 1876 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1877 stat.nr_lazyfree_fail); 1878 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1879 -(long)stat.nr_lazyfree_fail); 1880 return nr_reclaimed; 1881 } 1882 1883 /* 1884 * Attempt to remove the specified page from its LRU. Only take this page 1885 * if it is of the appropriate PageActive status. Pages which are being 1886 * freed elsewhere are also ignored. 1887 * 1888 * page: page to consider 1889 * mode: one of the LRU isolation modes defined above 1890 * 1891 * returns true on success, false on failure. 1892 */ 1893 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode) 1894 { 1895 /* Only take pages on the LRU. */ 1896 if (!PageLRU(page)) 1897 return false; 1898 1899 /* Compaction should not handle unevictable pages but CMA can do so */ 1900 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1901 return false; 1902 1903 /* 1904 * To minimise LRU disruption, the caller can indicate that it only 1905 * wants to isolate pages it will be able to operate on without 1906 * blocking - clean pages for the most part. 1907 * 1908 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1909 * that it is possible to migrate without blocking 1910 */ 1911 if (mode & ISOLATE_ASYNC_MIGRATE) { 1912 /* All the caller can do on PageWriteback is block */ 1913 if (PageWriteback(page)) 1914 return false; 1915 1916 if (PageDirty(page)) { 1917 struct address_space *mapping; 1918 bool migrate_dirty; 1919 1920 /* 1921 * Only pages without mappings or that have a 1922 * ->migratepage callback are possible to migrate 1923 * without blocking. However, we can be racing with 1924 * truncation so it's necessary to lock the page 1925 * to stabilise the mapping as truncation holds 1926 * the page lock until after the page is removed 1927 * from the page cache. 1928 */ 1929 if (!trylock_page(page)) 1930 return false; 1931 1932 mapping = page_mapping(page); 1933 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1934 unlock_page(page); 1935 if (!migrate_dirty) 1936 return false; 1937 } 1938 } 1939 1940 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1941 return false; 1942 1943 return true; 1944 } 1945 1946 /* 1947 * Update LRU sizes after isolating pages. The LRU size updates must 1948 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1949 */ 1950 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1951 enum lru_list lru, unsigned long *nr_zone_taken) 1952 { 1953 int zid; 1954 1955 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1956 if (!nr_zone_taken[zid]) 1957 continue; 1958 1959 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1960 } 1961 1962 } 1963 1964 /* 1965 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1966 * 1967 * lruvec->lru_lock is heavily contended. Some of the functions that 1968 * shrink the lists perform better by taking out a batch of pages 1969 * and working on them outside the LRU lock. 1970 * 1971 * For pagecache intensive workloads, this function is the hottest 1972 * spot in the kernel (apart from copy_*_user functions). 1973 * 1974 * Lru_lock must be held before calling this function. 1975 * 1976 * @nr_to_scan: The number of eligible pages to look through on the list. 1977 * @lruvec: The LRU vector to pull pages from. 1978 * @dst: The temp list to put pages on to. 1979 * @nr_scanned: The number of pages that were scanned. 1980 * @sc: The scan_control struct for this reclaim session 1981 * @lru: LRU list id for isolating 1982 * 1983 * returns how many pages were moved onto *@dst. 1984 */ 1985 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1986 struct lruvec *lruvec, struct list_head *dst, 1987 unsigned long *nr_scanned, struct scan_control *sc, 1988 enum lru_list lru) 1989 { 1990 struct list_head *src = &lruvec->lists[lru]; 1991 unsigned long nr_taken = 0; 1992 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1993 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1994 unsigned long skipped = 0; 1995 unsigned long scan, total_scan, nr_pages; 1996 LIST_HEAD(pages_skipped); 1997 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1998 1999 total_scan = 0; 2000 scan = 0; 2001 while (scan < nr_to_scan && !list_empty(src)) { 2002 struct page *page; 2003 2004 page = lru_to_page(src); 2005 prefetchw_prev_lru_page(page, src, flags); 2006 2007 nr_pages = compound_nr(page); 2008 total_scan += nr_pages; 2009 2010 if (page_zonenum(page) > sc->reclaim_idx) { 2011 list_move(&page->lru, &pages_skipped); 2012 nr_skipped[page_zonenum(page)] += nr_pages; 2013 continue; 2014 } 2015 2016 /* 2017 * Do not count skipped pages because that makes the function 2018 * return with no isolated pages if the LRU mostly contains 2019 * ineligible pages. This causes the VM to not reclaim any 2020 * pages, triggering a premature OOM. 2021 * 2022 * Account all tail pages of THP. This would not cause 2023 * premature OOM since __isolate_lru_page() returns -EBUSY 2024 * only when the page is being freed somewhere else. 2025 */ 2026 scan += nr_pages; 2027 if (!__isolate_lru_page_prepare(page, mode)) { 2028 /* It is being freed elsewhere */ 2029 list_move(&page->lru, src); 2030 continue; 2031 } 2032 /* 2033 * Be careful not to clear PageLRU until after we're 2034 * sure the page is not being freed elsewhere -- the 2035 * page release code relies on it. 2036 */ 2037 if (unlikely(!get_page_unless_zero(page))) { 2038 list_move(&page->lru, src); 2039 continue; 2040 } 2041 2042 if (!TestClearPageLRU(page)) { 2043 /* Another thread is already isolating this page */ 2044 put_page(page); 2045 list_move(&page->lru, src); 2046 continue; 2047 } 2048 2049 nr_taken += nr_pages; 2050 nr_zone_taken[page_zonenum(page)] += nr_pages; 2051 list_move(&page->lru, dst); 2052 } 2053 2054 /* 2055 * Splice any skipped pages to the start of the LRU list. Note that 2056 * this disrupts the LRU order when reclaiming for lower zones but 2057 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 2058 * scanning would soon rescan the same pages to skip and put the 2059 * system at risk of premature OOM. 2060 */ 2061 if (!list_empty(&pages_skipped)) { 2062 int zid; 2063 2064 list_splice(&pages_skipped, src); 2065 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2066 if (!nr_skipped[zid]) 2067 continue; 2068 2069 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 2070 skipped += nr_skipped[zid]; 2071 } 2072 } 2073 *nr_scanned = total_scan; 2074 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 2075 total_scan, skipped, nr_taken, mode, lru); 2076 update_lru_sizes(lruvec, lru, nr_zone_taken); 2077 return nr_taken; 2078 } 2079 2080 /** 2081 * isolate_lru_page - tries to isolate a page from its LRU list 2082 * @page: page to isolate from its LRU list 2083 * 2084 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 2085 * vmstat statistic corresponding to whatever LRU list the page was on. 2086 * 2087 * Returns 0 if the page was removed from an LRU list. 2088 * Returns -EBUSY if the page was not on an LRU list. 2089 * 2090 * The returned page will have PageLRU() cleared. If it was found on 2091 * the active list, it will have PageActive set. If it was found on 2092 * the unevictable list, it will have the PageUnevictable bit set. That flag 2093 * may need to be cleared by the caller before letting the page go. 2094 * 2095 * The vmstat statistic corresponding to the list on which the page was 2096 * found will be decremented. 2097 * 2098 * Restrictions: 2099 * 2100 * (1) Must be called with an elevated refcount on the page. This is a 2101 * fundamental difference from isolate_lru_pages (which is called 2102 * without a stable reference). 2103 * (2) the lru_lock must not be held. 2104 * (3) interrupts must be enabled. 2105 */ 2106 int isolate_lru_page(struct page *page) 2107 { 2108 int ret = -EBUSY; 2109 2110 VM_BUG_ON_PAGE(!page_count(page), page); 2111 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 2112 2113 if (TestClearPageLRU(page)) { 2114 struct lruvec *lruvec; 2115 2116 get_page(page); 2117 lruvec = lock_page_lruvec_irq(page); 2118 del_page_from_lru_list(page, lruvec); 2119 unlock_page_lruvec_irq(lruvec); 2120 ret = 0; 2121 } 2122 2123 return ret; 2124 } 2125 2126 /* 2127 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 2128 * then get rescheduled. When there are massive number of tasks doing page 2129 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 2130 * the LRU list will go small and be scanned faster than necessary, leading to 2131 * unnecessary swapping, thrashing and OOM. 2132 */ 2133 static int too_many_isolated(struct pglist_data *pgdat, int file, 2134 struct scan_control *sc) 2135 { 2136 unsigned long inactive, isolated; 2137 2138 if (current_is_kswapd()) 2139 return 0; 2140 2141 if (!writeback_throttling_sane(sc)) 2142 return 0; 2143 2144 if (file) { 2145 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2146 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2147 } else { 2148 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2149 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2150 } 2151 2152 /* 2153 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2154 * won't get blocked by normal direct-reclaimers, forming a circular 2155 * deadlock. 2156 */ 2157 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2158 inactive >>= 3; 2159 2160 return isolated > inactive; 2161 } 2162 2163 /* 2164 * move_pages_to_lru() moves pages from private @list to appropriate LRU list. 2165 * On return, @list is reused as a list of pages to be freed by the caller. 2166 * 2167 * Returns the number of pages moved to the given lruvec. 2168 */ 2169 static unsigned int move_pages_to_lru(struct lruvec *lruvec, 2170 struct list_head *list) 2171 { 2172 int nr_pages, nr_moved = 0; 2173 LIST_HEAD(pages_to_free); 2174 struct page *page; 2175 2176 while (!list_empty(list)) { 2177 page = lru_to_page(list); 2178 VM_BUG_ON_PAGE(PageLRU(page), page); 2179 list_del(&page->lru); 2180 if (unlikely(!page_evictable(page))) { 2181 spin_unlock_irq(&lruvec->lru_lock); 2182 putback_lru_page(page); 2183 spin_lock_irq(&lruvec->lru_lock); 2184 continue; 2185 } 2186 2187 /* 2188 * The SetPageLRU needs to be kept here for list integrity. 2189 * Otherwise: 2190 * #0 move_pages_to_lru #1 release_pages 2191 * if !put_page_testzero 2192 * if (put_page_testzero()) 2193 * !PageLRU //skip lru_lock 2194 * SetPageLRU() 2195 * list_add(&page->lru,) 2196 * list_add(&page->lru,) 2197 */ 2198 SetPageLRU(page); 2199 2200 if (unlikely(put_page_testzero(page))) { 2201 __clear_page_lru_flags(page); 2202 2203 if (unlikely(PageCompound(page))) { 2204 spin_unlock_irq(&lruvec->lru_lock); 2205 destroy_compound_page(page); 2206 spin_lock_irq(&lruvec->lru_lock); 2207 } else 2208 list_add(&page->lru, &pages_to_free); 2209 2210 continue; 2211 } 2212 2213 /* 2214 * All pages were isolated from the same lruvec (and isolation 2215 * inhibits memcg migration). 2216 */ 2217 VM_BUG_ON_PAGE(!page_matches_lruvec(page, lruvec), page); 2218 add_page_to_lru_list(page, lruvec); 2219 nr_pages = thp_nr_pages(page); 2220 nr_moved += nr_pages; 2221 if (PageActive(page)) 2222 workingset_age_nonresident(lruvec, nr_pages); 2223 } 2224 2225 /* 2226 * To save our caller's stack, now use input list for pages to free. 2227 */ 2228 list_splice(&pages_to_free, list); 2229 2230 return nr_moved; 2231 } 2232 2233 /* 2234 * If a kernel thread (such as nfsd for loop-back mounts) services 2235 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE. 2236 * In that case we should only throttle if the backing device it is 2237 * writing to is congested. In other cases it is safe to throttle. 2238 */ 2239 static int current_may_throttle(void) 2240 { 2241 return !(current->flags & PF_LOCAL_THROTTLE) || 2242 current->backing_dev_info == NULL || 2243 bdi_write_congested(current->backing_dev_info); 2244 } 2245 2246 /* 2247 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2248 * of reclaimed pages 2249 */ 2250 static unsigned long 2251 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 2252 struct scan_control *sc, enum lru_list lru) 2253 { 2254 LIST_HEAD(page_list); 2255 unsigned long nr_scanned; 2256 unsigned int nr_reclaimed = 0; 2257 unsigned long nr_taken; 2258 struct reclaim_stat stat; 2259 bool file = is_file_lru(lru); 2260 enum vm_event_item item; 2261 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2262 bool stalled = false; 2263 2264 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2265 if (stalled) 2266 return 0; 2267 2268 /* wait a bit for the reclaimer. */ 2269 msleep(100); 2270 stalled = true; 2271 2272 /* We are about to die and free our memory. Return now. */ 2273 if (fatal_signal_pending(current)) 2274 return SWAP_CLUSTER_MAX; 2275 } 2276 2277 lru_add_drain(); 2278 2279 spin_lock_irq(&lruvec->lru_lock); 2280 2281 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 2282 &nr_scanned, sc, lru); 2283 2284 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2285 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 2286 if (!cgroup_reclaim(sc)) 2287 __count_vm_events(item, nr_scanned); 2288 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2289 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2290 2291 spin_unlock_irq(&lruvec->lru_lock); 2292 2293 if (nr_taken == 0) 2294 return 0; 2295 2296 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false); 2297 2298 spin_lock_irq(&lruvec->lru_lock); 2299 move_pages_to_lru(lruvec, &page_list); 2300 2301 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2302 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 2303 if (!cgroup_reclaim(sc)) 2304 __count_vm_events(item, nr_reclaimed); 2305 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2306 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2307 spin_unlock_irq(&lruvec->lru_lock); 2308 2309 lru_note_cost(lruvec, file, stat.nr_pageout); 2310 mem_cgroup_uncharge_list(&page_list); 2311 free_unref_page_list(&page_list); 2312 2313 /* 2314 * If dirty pages are scanned that are not queued for IO, it 2315 * implies that flushers are not doing their job. This can 2316 * happen when memory pressure pushes dirty pages to the end of 2317 * the LRU before the dirty limits are breached and the dirty 2318 * data has expired. It can also happen when the proportion of 2319 * dirty pages grows not through writes but through memory 2320 * pressure reclaiming all the clean cache. And in some cases, 2321 * the flushers simply cannot keep up with the allocation 2322 * rate. Nudge the flusher threads in case they are asleep. 2323 */ 2324 if (stat.nr_unqueued_dirty == nr_taken) 2325 wakeup_flusher_threads(WB_REASON_VMSCAN); 2326 2327 sc->nr.dirty += stat.nr_dirty; 2328 sc->nr.congested += stat.nr_congested; 2329 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2330 sc->nr.writeback += stat.nr_writeback; 2331 sc->nr.immediate += stat.nr_immediate; 2332 sc->nr.taken += nr_taken; 2333 if (file) 2334 sc->nr.file_taken += nr_taken; 2335 2336 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2337 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2338 return nr_reclaimed; 2339 } 2340 2341 /* 2342 * shrink_active_list() moves pages from the active LRU to the inactive LRU. 2343 * 2344 * We move them the other way if the page is referenced by one or more 2345 * processes. 2346 * 2347 * If the pages are mostly unmapped, the processing is fast and it is 2348 * appropriate to hold lru_lock across the whole operation. But if 2349 * the pages are mapped, the processing is slow (page_referenced()), so 2350 * we should drop lru_lock around each page. It's impossible to balance 2351 * this, so instead we remove the pages from the LRU while processing them. 2352 * It is safe to rely on PG_active against the non-LRU pages in here because 2353 * nobody will play with that bit on a non-LRU page. 2354 * 2355 * The downside is that we have to touch page->_refcount against each page. 2356 * But we had to alter page->flags anyway. 2357 */ 2358 static void shrink_active_list(unsigned long nr_to_scan, 2359 struct lruvec *lruvec, 2360 struct scan_control *sc, 2361 enum lru_list lru) 2362 { 2363 unsigned long nr_taken; 2364 unsigned long nr_scanned; 2365 unsigned long vm_flags; 2366 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2367 LIST_HEAD(l_active); 2368 LIST_HEAD(l_inactive); 2369 struct page *page; 2370 unsigned nr_deactivate, nr_activate; 2371 unsigned nr_rotated = 0; 2372 int file = is_file_lru(lru); 2373 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2374 2375 lru_add_drain(); 2376 2377 spin_lock_irq(&lruvec->lru_lock); 2378 2379 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2380 &nr_scanned, sc, lru); 2381 2382 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2383 2384 if (!cgroup_reclaim(sc)) 2385 __count_vm_events(PGREFILL, nr_scanned); 2386 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2387 2388 spin_unlock_irq(&lruvec->lru_lock); 2389 2390 while (!list_empty(&l_hold)) { 2391 cond_resched(); 2392 page = lru_to_page(&l_hold); 2393 list_del(&page->lru); 2394 2395 if (unlikely(!page_evictable(page))) { 2396 putback_lru_page(page); 2397 continue; 2398 } 2399 2400 if (unlikely(buffer_heads_over_limit)) { 2401 if (page_has_private(page) && trylock_page(page)) { 2402 if (page_has_private(page)) 2403 try_to_release_page(page, 0); 2404 unlock_page(page); 2405 } 2406 } 2407 2408 if (page_referenced(page, 0, sc->target_mem_cgroup, 2409 &vm_flags)) { 2410 /* 2411 * Identify referenced, file-backed active pages and 2412 * give them one more trip around the active list. So 2413 * that executable code get better chances to stay in 2414 * memory under moderate memory pressure. Anon pages 2415 * are not likely to be evicted by use-once streaming 2416 * IO, plus JVM can create lots of anon VM_EXEC pages, 2417 * so we ignore them here. 2418 */ 2419 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2420 nr_rotated += thp_nr_pages(page); 2421 list_add(&page->lru, &l_active); 2422 continue; 2423 } 2424 } 2425 2426 ClearPageActive(page); /* we are de-activating */ 2427 SetPageWorkingset(page); 2428 list_add(&page->lru, &l_inactive); 2429 } 2430 2431 /* 2432 * Move pages back to the lru list. 2433 */ 2434 spin_lock_irq(&lruvec->lru_lock); 2435 2436 nr_activate = move_pages_to_lru(lruvec, &l_active); 2437 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2438 /* Keep all free pages in l_active list */ 2439 list_splice(&l_inactive, &l_active); 2440 2441 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2442 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2443 2444 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2445 spin_unlock_irq(&lruvec->lru_lock); 2446 2447 mem_cgroup_uncharge_list(&l_active); 2448 free_unref_page_list(&l_active); 2449 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2450 nr_deactivate, nr_rotated, sc->priority, file); 2451 } 2452 2453 unsigned long reclaim_pages(struct list_head *page_list) 2454 { 2455 int nid = NUMA_NO_NODE; 2456 unsigned int nr_reclaimed = 0; 2457 LIST_HEAD(node_page_list); 2458 struct reclaim_stat dummy_stat; 2459 struct page *page; 2460 unsigned int noreclaim_flag; 2461 struct scan_control sc = { 2462 .gfp_mask = GFP_KERNEL, 2463 .may_writepage = 1, 2464 .may_unmap = 1, 2465 .may_swap = 1, 2466 .no_demotion = 1, 2467 }; 2468 2469 noreclaim_flag = memalloc_noreclaim_save(); 2470 2471 while (!list_empty(page_list)) { 2472 page = lru_to_page(page_list); 2473 if (nid == NUMA_NO_NODE) { 2474 nid = page_to_nid(page); 2475 INIT_LIST_HEAD(&node_page_list); 2476 } 2477 2478 if (nid == page_to_nid(page)) { 2479 ClearPageActive(page); 2480 list_move(&page->lru, &node_page_list); 2481 continue; 2482 } 2483 2484 nr_reclaimed += shrink_page_list(&node_page_list, 2485 NODE_DATA(nid), 2486 &sc, &dummy_stat, false); 2487 while (!list_empty(&node_page_list)) { 2488 page = lru_to_page(&node_page_list); 2489 list_del(&page->lru); 2490 putback_lru_page(page); 2491 } 2492 2493 nid = NUMA_NO_NODE; 2494 } 2495 2496 if (!list_empty(&node_page_list)) { 2497 nr_reclaimed += shrink_page_list(&node_page_list, 2498 NODE_DATA(nid), 2499 &sc, &dummy_stat, false); 2500 while (!list_empty(&node_page_list)) { 2501 page = lru_to_page(&node_page_list); 2502 list_del(&page->lru); 2503 putback_lru_page(page); 2504 } 2505 } 2506 2507 memalloc_noreclaim_restore(noreclaim_flag); 2508 2509 return nr_reclaimed; 2510 } 2511 2512 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2513 struct lruvec *lruvec, struct scan_control *sc) 2514 { 2515 if (is_active_lru(lru)) { 2516 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2517 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2518 else 2519 sc->skipped_deactivate = 1; 2520 return 0; 2521 } 2522 2523 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2524 } 2525 2526 /* 2527 * The inactive anon list should be small enough that the VM never has 2528 * to do too much work. 2529 * 2530 * The inactive file list should be small enough to leave most memory 2531 * to the established workingset on the scan-resistant active list, 2532 * but large enough to avoid thrashing the aggregate readahead window. 2533 * 2534 * Both inactive lists should also be large enough that each inactive 2535 * page has a chance to be referenced again before it is reclaimed. 2536 * 2537 * If that fails and refaulting is observed, the inactive list grows. 2538 * 2539 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2540 * on this LRU, maintained by the pageout code. An inactive_ratio 2541 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2542 * 2543 * total target max 2544 * memory ratio inactive 2545 * ------------------------------------- 2546 * 10MB 1 5MB 2547 * 100MB 1 50MB 2548 * 1GB 3 250MB 2549 * 10GB 10 0.9GB 2550 * 100GB 31 3GB 2551 * 1TB 101 10GB 2552 * 10TB 320 32GB 2553 */ 2554 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2555 { 2556 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2557 unsigned long inactive, active; 2558 unsigned long inactive_ratio; 2559 unsigned long gb; 2560 2561 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2562 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2563 2564 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2565 if (gb) 2566 inactive_ratio = int_sqrt(10 * gb); 2567 else 2568 inactive_ratio = 1; 2569 2570 return inactive * inactive_ratio < active; 2571 } 2572 2573 enum scan_balance { 2574 SCAN_EQUAL, 2575 SCAN_FRACT, 2576 SCAN_ANON, 2577 SCAN_FILE, 2578 }; 2579 2580 /* 2581 * Determine how aggressively the anon and file LRU lists should be 2582 * scanned. The relative value of each set of LRU lists is determined 2583 * by looking at the fraction of the pages scanned we did rotate back 2584 * onto the active list instead of evict. 2585 * 2586 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2587 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2588 */ 2589 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2590 unsigned long *nr) 2591 { 2592 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2593 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2594 unsigned long anon_cost, file_cost, total_cost; 2595 int swappiness = mem_cgroup_swappiness(memcg); 2596 u64 fraction[ANON_AND_FILE]; 2597 u64 denominator = 0; /* gcc */ 2598 enum scan_balance scan_balance; 2599 unsigned long ap, fp; 2600 enum lru_list lru; 2601 2602 /* If we have no swap space, do not bother scanning anon pages. */ 2603 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2604 scan_balance = SCAN_FILE; 2605 goto out; 2606 } 2607 2608 /* 2609 * Global reclaim will swap to prevent OOM even with no 2610 * swappiness, but memcg users want to use this knob to 2611 * disable swapping for individual groups completely when 2612 * using the memory controller's swap limit feature would be 2613 * too expensive. 2614 */ 2615 if (cgroup_reclaim(sc) && !swappiness) { 2616 scan_balance = SCAN_FILE; 2617 goto out; 2618 } 2619 2620 /* 2621 * Do not apply any pressure balancing cleverness when the 2622 * system is close to OOM, scan both anon and file equally 2623 * (unless the swappiness setting disagrees with swapping). 2624 */ 2625 if (!sc->priority && swappiness) { 2626 scan_balance = SCAN_EQUAL; 2627 goto out; 2628 } 2629 2630 /* 2631 * If the system is almost out of file pages, force-scan anon. 2632 */ 2633 if (sc->file_is_tiny) { 2634 scan_balance = SCAN_ANON; 2635 goto out; 2636 } 2637 2638 /* 2639 * If there is enough inactive page cache, we do not reclaim 2640 * anything from the anonymous working right now. 2641 */ 2642 if (sc->cache_trim_mode) { 2643 scan_balance = SCAN_FILE; 2644 goto out; 2645 } 2646 2647 scan_balance = SCAN_FRACT; 2648 /* 2649 * Calculate the pressure balance between anon and file pages. 2650 * 2651 * The amount of pressure we put on each LRU is inversely 2652 * proportional to the cost of reclaiming each list, as 2653 * determined by the share of pages that are refaulting, times 2654 * the relative IO cost of bringing back a swapped out 2655 * anonymous page vs reloading a filesystem page (swappiness). 2656 * 2657 * Although we limit that influence to ensure no list gets 2658 * left behind completely: at least a third of the pressure is 2659 * applied, before swappiness. 2660 * 2661 * With swappiness at 100, anon and file have equal IO cost. 2662 */ 2663 total_cost = sc->anon_cost + sc->file_cost; 2664 anon_cost = total_cost + sc->anon_cost; 2665 file_cost = total_cost + sc->file_cost; 2666 total_cost = anon_cost + file_cost; 2667 2668 ap = swappiness * (total_cost + 1); 2669 ap /= anon_cost + 1; 2670 2671 fp = (200 - swappiness) * (total_cost + 1); 2672 fp /= file_cost + 1; 2673 2674 fraction[0] = ap; 2675 fraction[1] = fp; 2676 denominator = ap + fp; 2677 out: 2678 for_each_evictable_lru(lru) { 2679 int file = is_file_lru(lru); 2680 unsigned long lruvec_size; 2681 unsigned long low, min; 2682 unsigned long scan; 2683 2684 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2685 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2686 &min, &low); 2687 2688 if (min || low) { 2689 /* 2690 * Scale a cgroup's reclaim pressure by proportioning 2691 * its current usage to its memory.low or memory.min 2692 * setting. 2693 * 2694 * This is important, as otherwise scanning aggression 2695 * becomes extremely binary -- from nothing as we 2696 * approach the memory protection threshold, to totally 2697 * nominal as we exceed it. This results in requiring 2698 * setting extremely liberal protection thresholds. It 2699 * also means we simply get no protection at all if we 2700 * set it too low, which is not ideal. 2701 * 2702 * If there is any protection in place, we reduce scan 2703 * pressure by how much of the total memory used is 2704 * within protection thresholds. 2705 * 2706 * There is one special case: in the first reclaim pass, 2707 * we skip over all groups that are within their low 2708 * protection. If that fails to reclaim enough pages to 2709 * satisfy the reclaim goal, we come back and override 2710 * the best-effort low protection. However, we still 2711 * ideally want to honor how well-behaved groups are in 2712 * that case instead of simply punishing them all 2713 * equally. As such, we reclaim them based on how much 2714 * memory they are using, reducing the scan pressure 2715 * again by how much of the total memory used is under 2716 * hard protection. 2717 */ 2718 unsigned long cgroup_size = mem_cgroup_size(memcg); 2719 unsigned long protection; 2720 2721 /* memory.low scaling, make sure we retry before OOM */ 2722 if (!sc->memcg_low_reclaim && low > min) { 2723 protection = low; 2724 sc->memcg_low_skipped = 1; 2725 } else { 2726 protection = min; 2727 } 2728 2729 /* Avoid TOCTOU with earlier protection check */ 2730 cgroup_size = max(cgroup_size, protection); 2731 2732 scan = lruvec_size - lruvec_size * protection / 2733 (cgroup_size + 1); 2734 2735 /* 2736 * Minimally target SWAP_CLUSTER_MAX pages to keep 2737 * reclaim moving forwards, avoiding decrementing 2738 * sc->priority further than desirable. 2739 */ 2740 scan = max(scan, SWAP_CLUSTER_MAX); 2741 } else { 2742 scan = lruvec_size; 2743 } 2744 2745 scan >>= sc->priority; 2746 2747 /* 2748 * If the cgroup's already been deleted, make sure to 2749 * scrape out the remaining cache. 2750 */ 2751 if (!scan && !mem_cgroup_online(memcg)) 2752 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2753 2754 switch (scan_balance) { 2755 case SCAN_EQUAL: 2756 /* Scan lists relative to size */ 2757 break; 2758 case SCAN_FRACT: 2759 /* 2760 * Scan types proportional to swappiness and 2761 * their relative recent reclaim efficiency. 2762 * Make sure we don't miss the last page on 2763 * the offlined memory cgroups because of a 2764 * round-off error. 2765 */ 2766 scan = mem_cgroup_online(memcg) ? 2767 div64_u64(scan * fraction[file], denominator) : 2768 DIV64_U64_ROUND_UP(scan * fraction[file], 2769 denominator); 2770 break; 2771 case SCAN_FILE: 2772 case SCAN_ANON: 2773 /* Scan one type exclusively */ 2774 if ((scan_balance == SCAN_FILE) != file) 2775 scan = 0; 2776 break; 2777 default: 2778 /* Look ma, no brain */ 2779 BUG(); 2780 } 2781 2782 nr[lru] = scan; 2783 } 2784 } 2785 2786 /* 2787 * Anonymous LRU management is a waste if there is 2788 * ultimately no way to reclaim the memory. 2789 */ 2790 static bool can_age_anon_pages(struct pglist_data *pgdat, 2791 struct scan_control *sc) 2792 { 2793 /* Aging the anon LRU is valuable if swap is present: */ 2794 if (total_swap_pages > 0) 2795 return true; 2796 2797 /* Also valuable if anon pages can be demoted: */ 2798 return can_demote(pgdat->node_id, sc); 2799 } 2800 2801 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2802 { 2803 unsigned long nr[NR_LRU_LISTS]; 2804 unsigned long targets[NR_LRU_LISTS]; 2805 unsigned long nr_to_scan; 2806 enum lru_list lru; 2807 unsigned long nr_reclaimed = 0; 2808 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2809 struct blk_plug plug; 2810 bool scan_adjusted; 2811 2812 get_scan_count(lruvec, sc, nr); 2813 2814 /* Record the original scan target for proportional adjustments later */ 2815 memcpy(targets, nr, sizeof(nr)); 2816 2817 /* 2818 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2819 * event that can occur when there is little memory pressure e.g. 2820 * multiple streaming readers/writers. Hence, we do not abort scanning 2821 * when the requested number of pages are reclaimed when scanning at 2822 * DEF_PRIORITY on the assumption that the fact we are direct 2823 * reclaiming implies that kswapd is not keeping up and it is best to 2824 * do a batch of work at once. For memcg reclaim one check is made to 2825 * abort proportional reclaim if either the file or anon lru has already 2826 * dropped to zero at the first pass. 2827 */ 2828 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2829 sc->priority == DEF_PRIORITY); 2830 2831 blk_start_plug(&plug); 2832 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2833 nr[LRU_INACTIVE_FILE]) { 2834 unsigned long nr_anon, nr_file, percentage; 2835 unsigned long nr_scanned; 2836 2837 for_each_evictable_lru(lru) { 2838 if (nr[lru]) { 2839 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2840 nr[lru] -= nr_to_scan; 2841 2842 nr_reclaimed += shrink_list(lru, nr_to_scan, 2843 lruvec, sc); 2844 } 2845 } 2846 2847 cond_resched(); 2848 2849 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2850 continue; 2851 2852 /* 2853 * For kswapd and memcg, reclaim at least the number of pages 2854 * requested. Ensure that the anon and file LRUs are scanned 2855 * proportionally what was requested by get_scan_count(). We 2856 * stop reclaiming one LRU and reduce the amount scanning 2857 * proportional to the original scan target. 2858 */ 2859 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2860 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2861 2862 /* 2863 * It's just vindictive to attack the larger once the smaller 2864 * has gone to zero. And given the way we stop scanning the 2865 * smaller below, this makes sure that we only make one nudge 2866 * towards proportionality once we've got nr_to_reclaim. 2867 */ 2868 if (!nr_file || !nr_anon) 2869 break; 2870 2871 if (nr_file > nr_anon) { 2872 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2873 targets[LRU_ACTIVE_ANON] + 1; 2874 lru = LRU_BASE; 2875 percentage = nr_anon * 100 / scan_target; 2876 } else { 2877 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2878 targets[LRU_ACTIVE_FILE] + 1; 2879 lru = LRU_FILE; 2880 percentage = nr_file * 100 / scan_target; 2881 } 2882 2883 /* Stop scanning the smaller of the LRU */ 2884 nr[lru] = 0; 2885 nr[lru + LRU_ACTIVE] = 0; 2886 2887 /* 2888 * Recalculate the other LRU scan count based on its original 2889 * scan target and the percentage scanning already complete 2890 */ 2891 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2892 nr_scanned = targets[lru] - nr[lru]; 2893 nr[lru] = targets[lru] * (100 - percentage) / 100; 2894 nr[lru] -= min(nr[lru], nr_scanned); 2895 2896 lru += LRU_ACTIVE; 2897 nr_scanned = targets[lru] - nr[lru]; 2898 nr[lru] = targets[lru] * (100 - percentage) / 100; 2899 nr[lru] -= min(nr[lru], nr_scanned); 2900 2901 scan_adjusted = true; 2902 } 2903 blk_finish_plug(&plug); 2904 sc->nr_reclaimed += nr_reclaimed; 2905 2906 /* 2907 * Even if we did not try to evict anon pages at all, we want to 2908 * rebalance the anon lru active/inactive ratio. 2909 */ 2910 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 2911 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 2912 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2913 sc, LRU_ACTIVE_ANON); 2914 } 2915 2916 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2917 static bool in_reclaim_compaction(struct scan_control *sc) 2918 { 2919 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2920 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2921 sc->priority < DEF_PRIORITY - 2)) 2922 return true; 2923 2924 return false; 2925 } 2926 2927 /* 2928 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2929 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2930 * true if more pages should be reclaimed such that when the page allocator 2931 * calls try_to_compact_pages() that it will have enough free pages to succeed. 2932 * It will give up earlier than that if there is difficulty reclaiming pages. 2933 */ 2934 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2935 unsigned long nr_reclaimed, 2936 struct scan_control *sc) 2937 { 2938 unsigned long pages_for_compaction; 2939 unsigned long inactive_lru_pages; 2940 int z; 2941 2942 /* If not in reclaim/compaction mode, stop */ 2943 if (!in_reclaim_compaction(sc)) 2944 return false; 2945 2946 /* 2947 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 2948 * number of pages that were scanned. This will return to the caller 2949 * with the risk reclaim/compaction and the resulting allocation attempt 2950 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 2951 * allocations through requiring that the full LRU list has been scanned 2952 * first, by assuming that zero delta of sc->nr_scanned means full LRU 2953 * scan, but that approximation was wrong, and there were corner cases 2954 * where always a non-zero amount of pages were scanned. 2955 */ 2956 if (!nr_reclaimed) 2957 return false; 2958 2959 /* If compaction would go ahead or the allocation would succeed, stop */ 2960 for (z = 0; z <= sc->reclaim_idx; z++) { 2961 struct zone *zone = &pgdat->node_zones[z]; 2962 if (!managed_zone(zone)) 2963 continue; 2964 2965 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2966 case COMPACT_SUCCESS: 2967 case COMPACT_CONTINUE: 2968 return false; 2969 default: 2970 /* check next zone */ 2971 ; 2972 } 2973 } 2974 2975 /* 2976 * If we have not reclaimed enough pages for compaction and the 2977 * inactive lists are large enough, continue reclaiming 2978 */ 2979 pages_for_compaction = compact_gap(sc->order); 2980 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2981 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 2982 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2983 2984 return inactive_lru_pages > pages_for_compaction; 2985 } 2986 2987 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 2988 { 2989 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 2990 struct mem_cgroup *memcg; 2991 2992 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 2993 do { 2994 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2995 unsigned long reclaimed; 2996 unsigned long scanned; 2997 2998 /* 2999 * This loop can become CPU-bound when target memcgs 3000 * aren't eligible for reclaim - either because they 3001 * don't have any reclaimable pages, or because their 3002 * memory is explicitly protected. Avoid soft lockups. 3003 */ 3004 cond_resched(); 3005 3006 mem_cgroup_calculate_protection(target_memcg, memcg); 3007 3008 if (mem_cgroup_below_min(memcg)) { 3009 /* 3010 * Hard protection. 3011 * If there is no reclaimable memory, OOM. 3012 */ 3013 continue; 3014 } else if (mem_cgroup_below_low(memcg)) { 3015 /* 3016 * Soft protection. 3017 * Respect the protection only as long as 3018 * there is an unprotected supply 3019 * of reclaimable memory from other cgroups. 3020 */ 3021 if (!sc->memcg_low_reclaim) { 3022 sc->memcg_low_skipped = 1; 3023 continue; 3024 } 3025 memcg_memory_event(memcg, MEMCG_LOW); 3026 } 3027 3028 reclaimed = sc->nr_reclaimed; 3029 scanned = sc->nr_scanned; 3030 3031 shrink_lruvec(lruvec, sc); 3032 3033 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 3034 sc->priority); 3035 3036 /* Record the group's reclaim efficiency */ 3037 vmpressure(sc->gfp_mask, memcg, false, 3038 sc->nr_scanned - scanned, 3039 sc->nr_reclaimed - reclaimed); 3040 3041 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 3042 } 3043 3044 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 3045 { 3046 struct reclaim_state *reclaim_state = current->reclaim_state; 3047 unsigned long nr_reclaimed, nr_scanned; 3048 struct lruvec *target_lruvec; 3049 bool reclaimable = false; 3050 unsigned long file; 3051 3052 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 3053 3054 again: 3055 /* 3056 * Flush the memory cgroup stats, so that we read accurate per-memcg 3057 * lruvec stats for heuristics. 3058 */ 3059 mem_cgroup_flush_stats(); 3060 3061 memset(&sc->nr, 0, sizeof(sc->nr)); 3062 3063 nr_reclaimed = sc->nr_reclaimed; 3064 nr_scanned = sc->nr_scanned; 3065 3066 /* 3067 * Determine the scan balance between anon and file LRUs. 3068 */ 3069 spin_lock_irq(&target_lruvec->lru_lock); 3070 sc->anon_cost = target_lruvec->anon_cost; 3071 sc->file_cost = target_lruvec->file_cost; 3072 spin_unlock_irq(&target_lruvec->lru_lock); 3073 3074 /* 3075 * Target desirable inactive:active list ratios for the anon 3076 * and file LRU lists. 3077 */ 3078 if (!sc->force_deactivate) { 3079 unsigned long refaults; 3080 3081 refaults = lruvec_page_state(target_lruvec, 3082 WORKINGSET_ACTIVATE_ANON); 3083 if (refaults != target_lruvec->refaults[0] || 3084 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 3085 sc->may_deactivate |= DEACTIVATE_ANON; 3086 else 3087 sc->may_deactivate &= ~DEACTIVATE_ANON; 3088 3089 /* 3090 * When refaults are being observed, it means a new 3091 * workingset is being established. Deactivate to get 3092 * rid of any stale active pages quickly. 3093 */ 3094 refaults = lruvec_page_state(target_lruvec, 3095 WORKINGSET_ACTIVATE_FILE); 3096 if (refaults != target_lruvec->refaults[1] || 3097 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 3098 sc->may_deactivate |= DEACTIVATE_FILE; 3099 else 3100 sc->may_deactivate &= ~DEACTIVATE_FILE; 3101 } else 3102 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 3103 3104 /* 3105 * If we have plenty of inactive file pages that aren't 3106 * thrashing, try to reclaim those first before touching 3107 * anonymous pages. 3108 */ 3109 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 3110 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 3111 sc->cache_trim_mode = 1; 3112 else 3113 sc->cache_trim_mode = 0; 3114 3115 /* 3116 * Prevent the reclaimer from falling into the cache trap: as 3117 * cache pages start out inactive, every cache fault will tip 3118 * the scan balance towards the file LRU. And as the file LRU 3119 * shrinks, so does the window for rotation from references. 3120 * This means we have a runaway feedback loop where a tiny 3121 * thrashing file LRU becomes infinitely more attractive than 3122 * anon pages. Try to detect this based on file LRU size. 3123 */ 3124 if (!cgroup_reclaim(sc)) { 3125 unsigned long total_high_wmark = 0; 3126 unsigned long free, anon; 3127 int z; 3128 3129 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 3130 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 3131 node_page_state(pgdat, NR_INACTIVE_FILE); 3132 3133 for (z = 0; z < MAX_NR_ZONES; z++) { 3134 struct zone *zone = &pgdat->node_zones[z]; 3135 if (!managed_zone(zone)) 3136 continue; 3137 3138 total_high_wmark += high_wmark_pages(zone); 3139 } 3140 3141 /* 3142 * Consider anon: if that's low too, this isn't a 3143 * runaway file reclaim problem, but rather just 3144 * extreme pressure. Reclaim as per usual then. 3145 */ 3146 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 3147 3148 sc->file_is_tiny = 3149 file + free <= total_high_wmark && 3150 !(sc->may_deactivate & DEACTIVATE_ANON) && 3151 anon >> sc->priority; 3152 } 3153 3154 shrink_node_memcgs(pgdat, sc); 3155 3156 if (reclaim_state) { 3157 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 3158 reclaim_state->reclaimed_slab = 0; 3159 } 3160 3161 /* Record the subtree's reclaim efficiency */ 3162 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 3163 sc->nr_scanned - nr_scanned, 3164 sc->nr_reclaimed - nr_reclaimed); 3165 3166 if (sc->nr_reclaimed - nr_reclaimed) 3167 reclaimable = true; 3168 3169 if (current_is_kswapd()) { 3170 /* 3171 * If reclaim is isolating dirty pages under writeback, 3172 * it implies that the long-lived page allocation rate 3173 * is exceeding the page laundering rate. Either the 3174 * global limits are not being effective at throttling 3175 * processes due to the page distribution throughout 3176 * zones or there is heavy usage of a slow backing 3177 * device. The only option is to throttle from reclaim 3178 * context which is not ideal as there is no guarantee 3179 * the dirtying process is throttled in the same way 3180 * balance_dirty_pages() manages. 3181 * 3182 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 3183 * count the number of pages under pages flagged for 3184 * immediate reclaim and stall if any are encountered 3185 * in the nr_immediate check below. 3186 */ 3187 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 3188 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 3189 3190 /* Allow kswapd to start writing pages during reclaim.*/ 3191 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 3192 set_bit(PGDAT_DIRTY, &pgdat->flags); 3193 3194 /* 3195 * If kswapd scans pages marked for immediate 3196 * reclaim and under writeback (nr_immediate), it 3197 * implies that pages are cycling through the LRU 3198 * faster than they are written so also forcibly stall. 3199 */ 3200 if (sc->nr.immediate) 3201 congestion_wait(BLK_RW_ASYNC, HZ/10); 3202 } 3203 3204 /* 3205 * Tag a node/memcg as congested if all the dirty pages 3206 * scanned were backed by a congested BDI and 3207 * wait_iff_congested will stall. 3208 * 3209 * Legacy memcg will stall in page writeback so avoid forcibly 3210 * stalling in wait_iff_congested(). 3211 */ 3212 if ((current_is_kswapd() || 3213 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 3214 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 3215 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 3216 3217 /* 3218 * Stall direct reclaim for IO completions if underlying BDIs 3219 * and node is congested. Allow kswapd to continue until it 3220 * starts encountering unqueued dirty pages or cycling through 3221 * the LRU too quickly. 3222 */ 3223 if (!current_is_kswapd() && current_may_throttle() && 3224 !sc->hibernation_mode && 3225 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 3226 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 3227 3228 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 3229 sc)) 3230 goto again; 3231 3232 /* 3233 * Kswapd gives up on balancing particular nodes after too 3234 * many failures to reclaim anything from them and goes to 3235 * sleep. On reclaim progress, reset the failure counter. A 3236 * successful direct reclaim run will revive a dormant kswapd. 3237 */ 3238 if (reclaimable) 3239 pgdat->kswapd_failures = 0; 3240 } 3241 3242 /* 3243 * Returns true if compaction should go ahead for a costly-order request, or 3244 * the allocation would already succeed without compaction. Return false if we 3245 * should reclaim first. 3246 */ 3247 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 3248 { 3249 unsigned long watermark; 3250 enum compact_result suitable; 3251 3252 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 3253 if (suitable == COMPACT_SUCCESS) 3254 /* Allocation should succeed already. Don't reclaim. */ 3255 return true; 3256 if (suitable == COMPACT_SKIPPED) 3257 /* Compaction cannot yet proceed. Do reclaim. */ 3258 return false; 3259 3260 /* 3261 * Compaction is already possible, but it takes time to run and there 3262 * are potentially other callers using the pages just freed. So proceed 3263 * with reclaim to make a buffer of free pages available to give 3264 * compaction a reasonable chance of completing and allocating the page. 3265 * Note that we won't actually reclaim the whole buffer in one attempt 3266 * as the target watermark in should_continue_reclaim() is lower. But if 3267 * we are already above the high+gap watermark, don't reclaim at all. 3268 */ 3269 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 3270 3271 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 3272 } 3273 3274 /* 3275 * This is the direct reclaim path, for page-allocating processes. We only 3276 * try to reclaim pages from zones which will satisfy the caller's allocation 3277 * request. 3278 * 3279 * If a zone is deemed to be full of pinned pages then just give it a light 3280 * scan then give up on it. 3281 */ 3282 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 3283 { 3284 struct zoneref *z; 3285 struct zone *zone; 3286 unsigned long nr_soft_reclaimed; 3287 unsigned long nr_soft_scanned; 3288 gfp_t orig_mask; 3289 pg_data_t *last_pgdat = NULL; 3290 3291 /* 3292 * If the number of buffer_heads in the machine exceeds the maximum 3293 * allowed level, force direct reclaim to scan the highmem zone as 3294 * highmem pages could be pinning lowmem pages storing buffer_heads 3295 */ 3296 orig_mask = sc->gfp_mask; 3297 if (buffer_heads_over_limit) { 3298 sc->gfp_mask |= __GFP_HIGHMEM; 3299 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 3300 } 3301 3302 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3303 sc->reclaim_idx, sc->nodemask) { 3304 /* 3305 * Take care memory controller reclaiming has small influence 3306 * to global LRU. 3307 */ 3308 if (!cgroup_reclaim(sc)) { 3309 if (!cpuset_zone_allowed(zone, 3310 GFP_KERNEL | __GFP_HARDWALL)) 3311 continue; 3312 3313 /* 3314 * If we already have plenty of memory free for 3315 * compaction in this zone, don't free any more. 3316 * Even though compaction is invoked for any 3317 * non-zero order, only frequent costly order 3318 * reclamation is disruptive enough to become a 3319 * noticeable problem, like transparent huge 3320 * page allocations. 3321 */ 3322 if (IS_ENABLED(CONFIG_COMPACTION) && 3323 sc->order > PAGE_ALLOC_COSTLY_ORDER && 3324 compaction_ready(zone, sc)) { 3325 sc->compaction_ready = true; 3326 continue; 3327 } 3328 3329 /* 3330 * Shrink each node in the zonelist once. If the 3331 * zonelist is ordered by zone (not the default) then a 3332 * node may be shrunk multiple times but in that case 3333 * the user prefers lower zones being preserved. 3334 */ 3335 if (zone->zone_pgdat == last_pgdat) 3336 continue; 3337 3338 /* 3339 * This steals pages from memory cgroups over softlimit 3340 * and returns the number of reclaimed pages and 3341 * scanned pages. This works for global memory pressure 3342 * and balancing, not for a memcg's limit. 3343 */ 3344 nr_soft_scanned = 0; 3345 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 3346 sc->order, sc->gfp_mask, 3347 &nr_soft_scanned); 3348 sc->nr_reclaimed += nr_soft_reclaimed; 3349 sc->nr_scanned += nr_soft_scanned; 3350 /* need some check for avoid more shrink_zone() */ 3351 } 3352 3353 /* See comment about same check for global reclaim above */ 3354 if (zone->zone_pgdat == last_pgdat) 3355 continue; 3356 last_pgdat = zone->zone_pgdat; 3357 shrink_node(zone->zone_pgdat, sc); 3358 } 3359 3360 /* 3361 * Restore to original mask to avoid the impact on the caller if we 3362 * promoted it to __GFP_HIGHMEM. 3363 */ 3364 sc->gfp_mask = orig_mask; 3365 } 3366 3367 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 3368 { 3369 struct lruvec *target_lruvec; 3370 unsigned long refaults; 3371 3372 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 3373 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 3374 target_lruvec->refaults[0] = refaults; 3375 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 3376 target_lruvec->refaults[1] = refaults; 3377 } 3378 3379 /* 3380 * This is the main entry point to direct page reclaim. 3381 * 3382 * If a full scan of the inactive list fails to free enough memory then we 3383 * are "out of memory" and something needs to be killed. 3384 * 3385 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3386 * high - the zone may be full of dirty or under-writeback pages, which this 3387 * caller can't do much about. We kick the writeback threads and take explicit 3388 * naps in the hope that some of these pages can be written. But if the 3389 * allocating task holds filesystem locks which prevent writeout this might not 3390 * work, and the allocation attempt will fail. 3391 * 3392 * returns: 0, if no pages reclaimed 3393 * else, the number of pages reclaimed 3394 */ 3395 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3396 struct scan_control *sc) 3397 { 3398 int initial_priority = sc->priority; 3399 pg_data_t *last_pgdat; 3400 struct zoneref *z; 3401 struct zone *zone; 3402 retry: 3403 delayacct_freepages_start(); 3404 3405 if (!cgroup_reclaim(sc)) 3406 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3407 3408 do { 3409 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3410 sc->priority); 3411 sc->nr_scanned = 0; 3412 shrink_zones(zonelist, sc); 3413 3414 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3415 break; 3416 3417 if (sc->compaction_ready) 3418 break; 3419 3420 /* 3421 * If we're getting trouble reclaiming, start doing 3422 * writepage even in laptop mode. 3423 */ 3424 if (sc->priority < DEF_PRIORITY - 2) 3425 sc->may_writepage = 1; 3426 } while (--sc->priority >= 0); 3427 3428 last_pgdat = NULL; 3429 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3430 sc->nodemask) { 3431 if (zone->zone_pgdat == last_pgdat) 3432 continue; 3433 last_pgdat = zone->zone_pgdat; 3434 3435 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3436 3437 if (cgroup_reclaim(sc)) { 3438 struct lruvec *lruvec; 3439 3440 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3441 zone->zone_pgdat); 3442 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3443 } 3444 } 3445 3446 delayacct_freepages_end(); 3447 3448 if (sc->nr_reclaimed) 3449 return sc->nr_reclaimed; 3450 3451 /* Aborted reclaim to try compaction? don't OOM, then */ 3452 if (sc->compaction_ready) 3453 return 1; 3454 3455 /* 3456 * We make inactive:active ratio decisions based on the node's 3457 * composition of memory, but a restrictive reclaim_idx or a 3458 * memory.low cgroup setting can exempt large amounts of 3459 * memory from reclaim. Neither of which are very common, so 3460 * instead of doing costly eligibility calculations of the 3461 * entire cgroup subtree up front, we assume the estimates are 3462 * good, and retry with forcible deactivation if that fails. 3463 */ 3464 if (sc->skipped_deactivate) { 3465 sc->priority = initial_priority; 3466 sc->force_deactivate = 1; 3467 sc->skipped_deactivate = 0; 3468 goto retry; 3469 } 3470 3471 /* Untapped cgroup reserves? Don't OOM, retry. */ 3472 if (sc->memcg_low_skipped) { 3473 sc->priority = initial_priority; 3474 sc->force_deactivate = 0; 3475 sc->memcg_low_reclaim = 1; 3476 sc->memcg_low_skipped = 0; 3477 goto retry; 3478 } 3479 3480 return 0; 3481 } 3482 3483 static bool allow_direct_reclaim(pg_data_t *pgdat) 3484 { 3485 struct zone *zone; 3486 unsigned long pfmemalloc_reserve = 0; 3487 unsigned long free_pages = 0; 3488 int i; 3489 bool wmark_ok; 3490 3491 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3492 return true; 3493 3494 for (i = 0; i <= ZONE_NORMAL; i++) { 3495 zone = &pgdat->node_zones[i]; 3496 if (!managed_zone(zone)) 3497 continue; 3498 3499 if (!zone_reclaimable_pages(zone)) 3500 continue; 3501 3502 pfmemalloc_reserve += min_wmark_pages(zone); 3503 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3504 } 3505 3506 /* If there are no reserves (unexpected config) then do not throttle */ 3507 if (!pfmemalloc_reserve) 3508 return true; 3509 3510 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3511 3512 /* kswapd must be awake if processes are being throttled */ 3513 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3514 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 3515 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 3516 3517 wake_up_interruptible(&pgdat->kswapd_wait); 3518 } 3519 3520 return wmark_ok; 3521 } 3522 3523 /* 3524 * Throttle direct reclaimers if backing storage is backed by the network 3525 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3526 * depleted. kswapd will continue to make progress and wake the processes 3527 * when the low watermark is reached. 3528 * 3529 * Returns true if a fatal signal was delivered during throttling. If this 3530 * happens, the page allocator should not consider triggering the OOM killer. 3531 */ 3532 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3533 nodemask_t *nodemask) 3534 { 3535 struct zoneref *z; 3536 struct zone *zone; 3537 pg_data_t *pgdat = NULL; 3538 3539 /* 3540 * Kernel threads should not be throttled as they may be indirectly 3541 * responsible for cleaning pages necessary for reclaim to make forward 3542 * progress. kjournald for example may enter direct reclaim while 3543 * committing a transaction where throttling it could forcing other 3544 * processes to block on log_wait_commit(). 3545 */ 3546 if (current->flags & PF_KTHREAD) 3547 goto out; 3548 3549 /* 3550 * If a fatal signal is pending, this process should not throttle. 3551 * It should return quickly so it can exit and free its memory 3552 */ 3553 if (fatal_signal_pending(current)) 3554 goto out; 3555 3556 /* 3557 * Check if the pfmemalloc reserves are ok by finding the first node 3558 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3559 * GFP_KERNEL will be required for allocating network buffers when 3560 * swapping over the network so ZONE_HIGHMEM is unusable. 3561 * 3562 * Throttling is based on the first usable node and throttled processes 3563 * wait on a queue until kswapd makes progress and wakes them. There 3564 * is an affinity then between processes waking up and where reclaim 3565 * progress has been made assuming the process wakes on the same node. 3566 * More importantly, processes running on remote nodes will not compete 3567 * for remote pfmemalloc reserves and processes on different nodes 3568 * should make reasonable progress. 3569 */ 3570 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3571 gfp_zone(gfp_mask), nodemask) { 3572 if (zone_idx(zone) > ZONE_NORMAL) 3573 continue; 3574 3575 /* Throttle based on the first usable node */ 3576 pgdat = zone->zone_pgdat; 3577 if (allow_direct_reclaim(pgdat)) 3578 goto out; 3579 break; 3580 } 3581 3582 /* If no zone was usable by the allocation flags then do not throttle */ 3583 if (!pgdat) 3584 goto out; 3585 3586 /* Account for the throttling */ 3587 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3588 3589 /* 3590 * If the caller cannot enter the filesystem, it's possible that it 3591 * is due to the caller holding an FS lock or performing a journal 3592 * transaction in the case of a filesystem like ext[3|4]. In this case, 3593 * it is not safe to block on pfmemalloc_wait as kswapd could be 3594 * blocked waiting on the same lock. Instead, throttle for up to a 3595 * second before continuing. 3596 */ 3597 if (!(gfp_mask & __GFP_FS)) 3598 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3599 allow_direct_reclaim(pgdat), HZ); 3600 else 3601 /* Throttle until kswapd wakes the process */ 3602 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3603 allow_direct_reclaim(pgdat)); 3604 3605 if (fatal_signal_pending(current)) 3606 return true; 3607 3608 out: 3609 return false; 3610 } 3611 3612 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3613 gfp_t gfp_mask, nodemask_t *nodemask) 3614 { 3615 unsigned long nr_reclaimed; 3616 struct scan_control sc = { 3617 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3618 .gfp_mask = current_gfp_context(gfp_mask), 3619 .reclaim_idx = gfp_zone(gfp_mask), 3620 .order = order, 3621 .nodemask = nodemask, 3622 .priority = DEF_PRIORITY, 3623 .may_writepage = !laptop_mode, 3624 .may_unmap = 1, 3625 .may_swap = 1, 3626 }; 3627 3628 /* 3629 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3630 * Confirm they are large enough for max values. 3631 */ 3632 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3633 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3634 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3635 3636 /* 3637 * Do not enter reclaim if fatal signal was delivered while throttled. 3638 * 1 is returned so that the page allocator does not OOM kill at this 3639 * point. 3640 */ 3641 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3642 return 1; 3643 3644 set_task_reclaim_state(current, &sc.reclaim_state); 3645 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3646 3647 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3648 3649 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3650 set_task_reclaim_state(current, NULL); 3651 3652 return nr_reclaimed; 3653 } 3654 3655 #ifdef CONFIG_MEMCG 3656 3657 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3658 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3659 gfp_t gfp_mask, bool noswap, 3660 pg_data_t *pgdat, 3661 unsigned long *nr_scanned) 3662 { 3663 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3664 struct scan_control sc = { 3665 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3666 .target_mem_cgroup = memcg, 3667 .may_writepage = !laptop_mode, 3668 .may_unmap = 1, 3669 .reclaim_idx = MAX_NR_ZONES - 1, 3670 .may_swap = !noswap, 3671 }; 3672 3673 WARN_ON_ONCE(!current->reclaim_state); 3674 3675 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3676 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3677 3678 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3679 sc.gfp_mask); 3680 3681 /* 3682 * NOTE: Although we can get the priority field, using it 3683 * here is not a good idea, since it limits the pages we can scan. 3684 * if we don't reclaim here, the shrink_node from balance_pgdat 3685 * will pick up pages from other mem cgroup's as well. We hack 3686 * the priority and make it zero. 3687 */ 3688 shrink_lruvec(lruvec, &sc); 3689 3690 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3691 3692 *nr_scanned = sc.nr_scanned; 3693 3694 return sc.nr_reclaimed; 3695 } 3696 3697 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3698 unsigned long nr_pages, 3699 gfp_t gfp_mask, 3700 bool may_swap) 3701 { 3702 unsigned long nr_reclaimed; 3703 unsigned int noreclaim_flag; 3704 struct scan_control sc = { 3705 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3706 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3707 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3708 .reclaim_idx = MAX_NR_ZONES - 1, 3709 .target_mem_cgroup = memcg, 3710 .priority = DEF_PRIORITY, 3711 .may_writepage = !laptop_mode, 3712 .may_unmap = 1, 3713 .may_swap = may_swap, 3714 }; 3715 /* 3716 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3717 * equal pressure on all the nodes. This is based on the assumption that 3718 * the reclaim does not bail out early. 3719 */ 3720 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3721 3722 set_task_reclaim_state(current, &sc.reclaim_state); 3723 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3724 noreclaim_flag = memalloc_noreclaim_save(); 3725 3726 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3727 3728 memalloc_noreclaim_restore(noreclaim_flag); 3729 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3730 set_task_reclaim_state(current, NULL); 3731 3732 return nr_reclaimed; 3733 } 3734 #endif 3735 3736 static void age_active_anon(struct pglist_data *pgdat, 3737 struct scan_control *sc) 3738 { 3739 struct mem_cgroup *memcg; 3740 struct lruvec *lruvec; 3741 3742 if (!can_age_anon_pages(pgdat, sc)) 3743 return; 3744 3745 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3746 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3747 return; 3748 3749 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3750 do { 3751 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3752 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3753 sc, LRU_ACTIVE_ANON); 3754 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3755 } while (memcg); 3756 } 3757 3758 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 3759 { 3760 int i; 3761 struct zone *zone; 3762 3763 /* 3764 * Check for watermark boosts top-down as the higher zones 3765 * are more likely to be boosted. Both watermarks and boosts 3766 * should not be checked at the same time as reclaim would 3767 * start prematurely when there is no boosting and a lower 3768 * zone is balanced. 3769 */ 3770 for (i = highest_zoneidx; i >= 0; i--) { 3771 zone = pgdat->node_zones + i; 3772 if (!managed_zone(zone)) 3773 continue; 3774 3775 if (zone->watermark_boost) 3776 return true; 3777 } 3778 3779 return false; 3780 } 3781 3782 /* 3783 * Returns true if there is an eligible zone balanced for the request order 3784 * and highest_zoneidx 3785 */ 3786 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 3787 { 3788 int i; 3789 unsigned long mark = -1; 3790 struct zone *zone; 3791 3792 /* 3793 * Check watermarks bottom-up as lower zones are more likely to 3794 * meet watermarks. 3795 */ 3796 for (i = 0; i <= highest_zoneidx; i++) { 3797 zone = pgdat->node_zones + i; 3798 3799 if (!managed_zone(zone)) 3800 continue; 3801 3802 mark = high_wmark_pages(zone); 3803 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 3804 return true; 3805 } 3806 3807 /* 3808 * If a node has no populated zone within highest_zoneidx, it does not 3809 * need balancing by definition. This can happen if a zone-restricted 3810 * allocation tries to wake a remote kswapd. 3811 */ 3812 if (mark == -1) 3813 return true; 3814 3815 return false; 3816 } 3817 3818 /* Clear pgdat state for congested, dirty or under writeback. */ 3819 static void clear_pgdat_congested(pg_data_t *pgdat) 3820 { 3821 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3822 3823 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3824 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3825 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3826 } 3827 3828 /* 3829 * Prepare kswapd for sleeping. This verifies that there are no processes 3830 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3831 * 3832 * Returns true if kswapd is ready to sleep 3833 */ 3834 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 3835 int highest_zoneidx) 3836 { 3837 /* 3838 * The throttled processes are normally woken up in balance_pgdat() as 3839 * soon as allow_direct_reclaim() is true. But there is a potential 3840 * race between when kswapd checks the watermarks and a process gets 3841 * throttled. There is also a potential race if processes get 3842 * throttled, kswapd wakes, a large process exits thereby balancing the 3843 * zones, which causes kswapd to exit balance_pgdat() before reaching 3844 * the wake up checks. If kswapd is going to sleep, no process should 3845 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3846 * the wake up is premature, processes will wake kswapd and get 3847 * throttled again. The difference from wake ups in balance_pgdat() is 3848 * that here we are under prepare_to_wait(). 3849 */ 3850 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3851 wake_up_all(&pgdat->pfmemalloc_wait); 3852 3853 /* Hopeless node, leave it to direct reclaim */ 3854 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3855 return true; 3856 3857 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 3858 clear_pgdat_congested(pgdat); 3859 return true; 3860 } 3861 3862 return false; 3863 } 3864 3865 /* 3866 * kswapd shrinks a node of pages that are at or below the highest usable 3867 * zone that is currently unbalanced. 3868 * 3869 * Returns true if kswapd scanned at least the requested number of pages to 3870 * reclaim or if the lack of progress was due to pages under writeback. 3871 * This is used to determine if the scanning priority needs to be raised. 3872 */ 3873 static bool kswapd_shrink_node(pg_data_t *pgdat, 3874 struct scan_control *sc) 3875 { 3876 struct zone *zone; 3877 int z; 3878 3879 /* Reclaim a number of pages proportional to the number of zones */ 3880 sc->nr_to_reclaim = 0; 3881 for (z = 0; z <= sc->reclaim_idx; z++) { 3882 zone = pgdat->node_zones + z; 3883 if (!managed_zone(zone)) 3884 continue; 3885 3886 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3887 } 3888 3889 /* 3890 * Historically care was taken to put equal pressure on all zones but 3891 * now pressure is applied based on node LRU order. 3892 */ 3893 shrink_node(pgdat, sc); 3894 3895 /* 3896 * Fragmentation may mean that the system cannot be rebalanced for 3897 * high-order allocations. If twice the allocation size has been 3898 * reclaimed then recheck watermarks only at order-0 to prevent 3899 * excessive reclaim. Assume that a process requested a high-order 3900 * can direct reclaim/compact. 3901 */ 3902 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3903 sc->order = 0; 3904 3905 return sc->nr_scanned >= sc->nr_to_reclaim; 3906 } 3907 3908 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 3909 static inline void 3910 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 3911 { 3912 int i; 3913 struct zone *zone; 3914 3915 for (i = 0; i <= highest_zoneidx; i++) { 3916 zone = pgdat->node_zones + i; 3917 3918 if (!managed_zone(zone)) 3919 continue; 3920 3921 if (active) 3922 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 3923 else 3924 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 3925 } 3926 } 3927 3928 static inline void 3929 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 3930 { 3931 update_reclaim_active(pgdat, highest_zoneidx, true); 3932 } 3933 3934 static inline void 3935 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 3936 { 3937 update_reclaim_active(pgdat, highest_zoneidx, false); 3938 } 3939 3940 /* 3941 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3942 * that are eligible for use by the caller until at least one zone is 3943 * balanced. 3944 * 3945 * Returns the order kswapd finished reclaiming at. 3946 * 3947 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3948 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3949 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3950 * or lower is eligible for reclaim until at least one usable zone is 3951 * balanced. 3952 */ 3953 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 3954 { 3955 int i; 3956 unsigned long nr_soft_reclaimed; 3957 unsigned long nr_soft_scanned; 3958 unsigned long pflags; 3959 unsigned long nr_boost_reclaim; 3960 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3961 bool boosted; 3962 struct zone *zone; 3963 struct scan_control sc = { 3964 .gfp_mask = GFP_KERNEL, 3965 .order = order, 3966 .may_unmap = 1, 3967 }; 3968 3969 set_task_reclaim_state(current, &sc.reclaim_state); 3970 psi_memstall_enter(&pflags); 3971 __fs_reclaim_acquire(_THIS_IP_); 3972 3973 count_vm_event(PAGEOUTRUN); 3974 3975 /* 3976 * Account for the reclaim boost. Note that the zone boost is left in 3977 * place so that parallel allocations that are near the watermark will 3978 * stall or direct reclaim until kswapd is finished. 3979 */ 3980 nr_boost_reclaim = 0; 3981 for (i = 0; i <= highest_zoneidx; i++) { 3982 zone = pgdat->node_zones + i; 3983 if (!managed_zone(zone)) 3984 continue; 3985 3986 nr_boost_reclaim += zone->watermark_boost; 3987 zone_boosts[i] = zone->watermark_boost; 3988 } 3989 boosted = nr_boost_reclaim; 3990 3991 restart: 3992 set_reclaim_active(pgdat, highest_zoneidx); 3993 sc.priority = DEF_PRIORITY; 3994 do { 3995 unsigned long nr_reclaimed = sc.nr_reclaimed; 3996 bool raise_priority = true; 3997 bool balanced; 3998 bool ret; 3999 4000 sc.reclaim_idx = highest_zoneidx; 4001 4002 /* 4003 * If the number of buffer_heads exceeds the maximum allowed 4004 * then consider reclaiming from all zones. This has a dual 4005 * purpose -- on 64-bit systems it is expected that 4006 * buffer_heads are stripped during active rotation. On 32-bit 4007 * systems, highmem pages can pin lowmem memory and shrinking 4008 * buffers can relieve lowmem pressure. Reclaim may still not 4009 * go ahead if all eligible zones for the original allocation 4010 * request are balanced to avoid excessive reclaim from kswapd. 4011 */ 4012 if (buffer_heads_over_limit) { 4013 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 4014 zone = pgdat->node_zones + i; 4015 if (!managed_zone(zone)) 4016 continue; 4017 4018 sc.reclaim_idx = i; 4019 break; 4020 } 4021 } 4022 4023 /* 4024 * If the pgdat is imbalanced then ignore boosting and preserve 4025 * the watermarks for a later time and restart. Note that the 4026 * zone watermarks will be still reset at the end of balancing 4027 * on the grounds that the normal reclaim should be enough to 4028 * re-evaluate if boosting is required when kswapd next wakes. 4029 */ 4030 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 4031 if (!balanced && nr_boost_reclaim) { 4032 nr_boost_reclaim = 0; 4033 goto restart; 4034 } 4035 4036 /* 4037 * If boosting is not active then only reclaim if there are no 4038 * eligible zones. Note that sc.reclaim_idx is not used as 4039 * buffer_heads_over_limit may have adjusted it. 4040 */ 4041 if (!nr_boost_reclaim && balanced) 4042 goto out; 4043 4044 /* Limit the priority of boosting to avoid reclaim writeback */ 4045 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 4046 raise_priority = false; 4047 4048 /* 4049 * Do not writeback or swap pages for boosted reclaim. The 4050 * intent is to relieve pressure not issue sub-optimal IO 4051 * from reclaim context. If no pages are reclaimed, the 4052 * reclaim will be aborted. 4053 */ 4054 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 4055 sc.may_swap = !nr_boost_reclaim; 4056 4057 /* 4058 * Do some background aging of the anon list, to give 4059 * pages a chance to be referenced before reclaiming. All 4060 * pages are rotated regardless of classzone as this is 4061 * about consistent aging. 4062 */ 4063 age_active_anon(pgdat, &sc); 4064 4065 /* 4066 * If we're getting trouble reclaiming, start doing writepage 4067 * even in laptop mode. 4068 */ 4069 if (sc.priority < DEF_PRIORITY - 2) 4070 sc.may_writepage = 1; 4071 4072 /* Call soft limit reclaim before calling shrink_node. */ 4073 sc.nr_scanned = 0; 4074 nr_soft_scanned = 0; 4075 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 4076 sc.gfp_mask, &nr_soft_scanned); 4077 sc.nr_reclaimed += nr_soft_reclaimed; 4078 4079 /* 4080 * There should be no need to raise the scanning priority if 4081 * enough pages are already being scanned that that high 4082 * watermark would be met at 100% efficiency. 4083 */ 4084 if (kswapd_shrink_node(pgdat, &sc)) 4085 raise_priority = false; 4086 4087 /* 4088 * If the low watermark is met there is no need for processes 4089 * to be throttled on pfmemalloc_wait as they should not be 4090 * able to safely make forward progress. Wake them 4091 */ 4092 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 4093 allow_direct_reclaim(pgdat)) 4094 wake_up_all(&pgdat->pfmemalloc_wait); 4095 4096 /* Check if kswapd should be suspending */ 4097 __fs_reclaim_release(_THIS_IP_); 4098 ret = try_to_freeze(); 4099 __fs_reclaim_acquire(_THIS_IP_); 4100 if (ret || kthread_should_stop()) 4101 break; 4102 4103 /* 4104 * Raise priority if scanning rate is too low or there was no 4105 * progress in reclaiming pages 4106 */ 4107 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 4108 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 4109 4110 /* 4111 * If reclaim made no progress for a boost, stop reclaim as 4112 * IO cannot be queued and it could be an infinite loop in 4113 * extreme circumstances. 4114 */ 4115 if (nr_boost_reclaim && !nr_reclaimed) 4116 break; 4117 4118 if (raise_priority || !nr_reclaimed) 4119 sc.priority--; 4120 } while (sc.priority >= 1); 4121 4122 if (!sc.nr_reclaimed) 4123 pgdat->kswapd_failures++; 4124 4125 out: 4126 clear_reclaim_active(pgdat, highest_zoneidx); 4127 4128 /* If reclaim was boosted, account for the reclaim done in this pass */ 4129 if (boosted) { 4130 unsigned long flags; 4131 4132 for (i = 0; i <= highest_zoneidx; i++) { 4133 if (!zone_boosts[i]) 4134 continue; 4135 4136 /* Increments are under the zone lock */ 4137 zone = pgdat->node_zones + i; 4138 spin_lock_irqsave(&zone->lock, flags); 4139 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 4140 spin_unlock_irqrestore(&zone->lock, flags); 4141 } 4142 4143 /* 4144 * As there is now likely space, wakeup kcompact to defragment 4145 * pageblocks. 4146 */ 4147 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 4148 } 4149 4150 snapshot_refaults(NULL, pgdat); 4151 __fs_reclaim_release(_THIS_IP_); 4152 psi_memstall_leave(&pflags); 4153 set_task_reclaim_state(current, NULL); 4154 4155 /* 4156 * Return the order kswapd stopped reclaiming at as 4157 * prepare_kswapd_sleep() takes it into account. If another caller 4158 * entered the allocator slow path while kswapd was awake, order will 4159 * remain at the higher level. 4160 */ 4161 return sc.order; 4162 } 4163 4164 /* 4165 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 4166 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 4167 * not a valid index then either kswapd runs for first time or kswapd couldn't 4168 * sleep after previous reclaim attempt (node is still unbalanced). In that 4169 * case return the zone index of the previous kswapd reclaim cycle. 4170 */ 4171 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 4172 enum zone_type prev_highest_zoneidx) 4173 { 4174 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4175 4176 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 4177 } 4178 4179 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 4180 unsigned int highest_zoneidx) 4181 { 4182 long remaining = 0; 4183 DEFINE_WAIT(wait); 4184 4185 if (freezing(current) || kthread_should_stop()) 4186 return; 4187 4188 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4189 4190 /* 4191 * Try to sleep for a short interval. Note that kcompactd will only be 4192 * woken if it is possible to sleep for a short interval. This is 4193 * deliberate on the assumption that if reclaim cannot keep an 4194 * eligible zone balanced that it's also unlikely that compaction will 4195 * succeed. 4196 */ 4197 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4198 /* 4199 * Compaction records what page blocks it recently failed to 4200 * isolate pages from and skips them in the future scanning. 4201 * When kswapd is going to sleep, it is reasonable to assume 4202 * that pages and compaction may succeed so reset the cache. 4203 */ 4204 reset_isolation_suitable(pgdat); 4205 4206 /* 4207 * We have freed the memory, now we should compact it to make 4208 * allocation of the requested order possible. 4209 */ 4210 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 4211 4212 remaining = schedule_timeout(HZ/10); 4213 4214 /* 4215 * If woken prematurely then reset kswapd_highest_zoneidx and 4216 * order. The values will either be from a wakeup request or 4217 * the previous request that slept prematurely. 4218 */ 4219 if (remaining) { 4220 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 4221 kswapd_highest_zoneidx(pgdat, 4222 highest_zoneidx)); 4223 4224 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 4225 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 4226 } 4227 4228 finish_wait(&pgdat->kswapd_wait, &wait); 4229 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4230 } 4231 4232 /* 4233 * After a short sleep, check if it was a premature sleep. If not, then 4234 * go fully to sleep until explicitly woken up. 4235 */ 4236 if (!remaining && 4237 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4238 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 4239 4240 /* 4241 * vmstat counters are not perfectly accurate and the estimated 4242 * value for counters such as NR_FREE_PAGES can deviate from the 4243 * true value by nr_online_cpus * threshold. To avoid the zone 4244 * watermarks being breached while under pressure, we reduce the 4245 * per-cpu vmstat threshold while kswapd is awake and restore 4246 * them before going back to sleep. 4247 */ 4248 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 4249 4250 if (!kthread_should_stop()) 4251 schedule(); 4252 4253 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 4254 } else { 4255 if (remaining) 4256 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 4257 else 4258 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 4259 } 4260 finish_wait(&pgdat->kswapd_wait, &wait); 4261 } 4262 4263 /* 4264 * The background pageout daemon, started as a kernel thread 4265 * from the init process. 4266 * 4267 * This basically trickles out pages so that we have _some_ 4268 * free memory available even if there is no other activity 4269 * that frees anything up. This is needed for things like routing 4270 * etc, where we otherwise might have all activity going on in 4271 * asynchronous contexts that cannot page things out. 4272 * 4273 * If there are applications that are active memory-allocators 4274 * (most normal use), this basically shouldn't matter. 4275 */ 4276 static int kswapd(void *p) 4277 { 4278 unsigned int alloc_order, reclaim_order; 4279 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 4280 pg_data_t *pgdat = (pg_data_t *)p; 4281 struct task_struct *tsk = current; 4282 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 4283 4284 if (!cpumask_empty(cpumask)) 4285 set_cpus_allowed_ptr(tsk, cpumask); 4286 4287 /* 4288 * Tell the memory management that we're a "memory allocator", 4289 * and that if we need more memory we should get access to it 4290 * regardless (see "__alloc_pages()"). "kswapd" should 4291 * never get caught in the normal page freeing logic. 4292 * 4293 * (Kswapd normally doesn't need memory anyway, but sometimes 4294 * you need a small amount of memory in order to be able to 4295 * page out something else, and this flag essentially protects 4296 * us from recursively trying to free more memory as we're 4297 * trying to free the first piece of memory in the first place). 4298 */ 4299 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 4300 set_freezable(); 4301 4302 WRITE_ONCE(pgdat->kswapd_order, 0); 4303 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4304 for ( ; ; ) { 4305 bool ret; 4306 4307 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 4308 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4309 highest_zoneidx); 4310 4311 kswapd_try_sleep: 4312 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 4313 highest_zoneidx); 4314 4315 /* Read the new order and highest_zoneidx */ 4316 alloc_order = READ_ONCE(pgdat->kswapd_order); 4317 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4318 highest_zoneidx); 4319 WRITE_ONCE(pgdat->kswapd_order, 0); 4320 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4321 4322 ret = try_to_freeze(); 4323 if (kthread_should_stop()) 4324 break; 4325 4326 /* 4327 * We can speed up thawing tasks if we don't call balance_pgdat 4328 * after returning from the refrigerator 4329 */ 4330 if (ret) 4331 continue; 4332 4333 /* 4334 * Reclaim begins at the requested order but if a high-order 4335 * reclaim fails then kswapd falls back to reclaiming for 4336 * order-0. If that happens, kswapd will consider sleeping 4337 * for the order it finished reclaiming at (reclaim_order) 4338 * but kcompactd is woken to compact for the original 4339 * request (alloc_order). 4340 */ 4341 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 4342 alloc_order); 4343 reclaim_order = balance_pgdat(pgdat, alloc_order, 4344 highest_zoneidx); 4345 if (reclaim_order < alloc_order) 4346 goto kswapd_try_sleep; 4347 } 4348 4349 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 4350 4351 return 0; 4352 } 4353 4354 /* 4355 * A zone is low on free memory or too fragmented for high-order memory. If 4356 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 4357 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 4358 * has failed or is not needed, still wake up kcompactd if only compaction is 4359 * needed. 4360 */ 4361 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 4362 enum zone_type highest_zoneidx) 4363 { 4364 pg_data_t *pgdat; 4365 enum zone_type curr_idx; 4366 4367 if (!managed_zone(zone)) 4368 return; 4369 4370 if (!cpuset_zone_allowed(zone, gfp_flags)) 4371 return; 4372 4373 pgdat = zone->zone_pgdat; 4374 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4375 4376 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 4377 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 4378 4379 if (READ_ONCE(pgdat->kswapd_order) < order) 4380 WRITE_ONCE(pgdat->kswapd_order, order); 4381 4382 if (!waitqueue_active(&pgdat->kswapd_wait)) 4383 return; 4384 4385 /* Hopeless node, leave it to direct reclaim if possible */ 4386 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 4387 (pgdat_balanced(pgdat, order, highest_zoneidx) && 4388 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 4389 /* 4390 * There may be plenty of free memory available, but it's too 4391 * fragmented for high-order allocations. Wake up kcompactd 4392 * and rely on compaction_suitable() to determine if it's 4393 * needed. If it fails, it will defer subsequent attempts to 4394 * ratelimit its work. 4395 */ 4396 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 4397 wakeup_kcompactd(pgdat, order, highest_zoneidx); 4398 return; 4399 } 4400 4401 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 4402 gfp_flags); 4403 wake_up_interruptible(&pgdat->kswapd_wait); 4404 } 4405 4406 #ifdef CONFIG_HIBERNATION 4407 /* 4408 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 4409 * freed pages. 4410 * 4411 * Rather than trying to age LRUs the aim is to preserve the overall 4412 * LRU order by reclaiming preferentially 4413 * inactive > active > active referenced > active mapped 4414 */ 4415 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4416 { 4417 struct scan_control sc = { 4418 .nr_to_reclaim = nr_to_reclaim, 4419 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4420 .reclaim_idx = MAX_NR_ZONES - 1, 4421 .priority = DEF_PRIORITY, 4422 .may_writepage = 1, 4423 .may_unmap = 1, 4424 .may_swap = 1, 4425 .hibernation_mode = 1, 4426 }; 4427 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4428 unsigned long nr_reclaimed; 4429 unsigned int noreclaim_flag; 4430 4431 fs_reclaim_acquire(sc.gfp_mask); 4432 noreclaim_flag = memalloc_noreclaim_save(); 4433 set_task_reclaim_state(current, &sc.reclaim_state); 4434 4435 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4436 4437 set_task_reclaim_state(current, NULL); 4438 memalloc_noreclaim_restore(noreclaim_flag); 4439 fs_reclaim_release(sc.gfp_mask); 4440 4441 return nr_reclaimed; 4442 } 4443 #endif /* CONFIG_HIBERNATION */ 4444 4445 /* 4446 * This kswapd start function will be called by init and node-hot-add. 4447 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4448 */ 4449 void kswapd_run(int nid) 4450 { 4451 pg_data_t *pgdat = NODE_DATA(nid); 4452 4453 if (pgdat->kswapd) 4454 return; 4455 4456 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4457 if (IS_ERR(pgdat->kswapd)) { 4458 /* failure at boot is fatal */ 4459 BUG_ON(system_state < SYSTEM_RUNNING); 4460 pr_err("Failed to start kswapd on node %d\n", nid); 4461 pgdat->kswapd = NULL; 4462 } 4463 } 4464 4465 /* 4466 * Called by memory hotplug when all memory in a node is offlined. Caller must 4467 * hold mem_hotplug_begin/end(). 4468 */ 4469 void kswapd_stop(int nid) 4470 { 4471 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4472 4473 if (kswapd) { 4474 kthread_stop(kswapd); 4475 NODE_DATA(nid)->kswapd = NULL; 4476 } 4477 } 4478 4479 static int __init kswapd_init(void) 4480 { 4481 int nid; 4482 4483 swap_setup(); 4484 for_each_node_state(nid, N_MEMORY) 4485 kswapd_run(nid); 4486 return 0; 4487 } 4488 4489 module_init(kswapd_init) 4490 4491 #ifdef CONFIG_NUMA 4492 /* 4493 * Node reclaim mode 4494 * 4495 * If non-zero call node_reclaim when the number of free pages falls below 4496 * the watermarks. 4497 */ 4498 int node_reclaim_mode __read_mostly; 4499 4500 /* 4501 * Priority for NODE_RECLAIM. This determines the fraction of pages 4502 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4503 * a zone. 4504 */ 4505 #define NODE_RECLAIM_PRIORITY 4 4506 4507 /* 4508 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4509 * occur. 4510 */ 4511 int sysctl_min_unmapped_ratio = 1; 4512 4513 /* 4514 * If the number of slab pages in a zone grows beyond this percentage then 4515 * slab reclaim needs to occur. 4516 */ 4517 int sysctl_min_slab_ratio = 5; 4518 4519 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4520 { 4521 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4522 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4523 node_page_state(pgdat, NR_ACTIVE_FILE); 4524 4525 /* 4526 * It's possible for there to be more file mapped pages than 4527 * accounted for by the pages on the file LRU lists because 4528 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4529 */ 4530 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4531 } 4532 4533 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4534 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4535 { 4536 unsigned long nr_pagecache_reclaimable; 4537 unsigned long delta = 0; 4538 4539 /* 4540 * If RECLAIM_UNMAP is set, then all file pages are considered 4541 * potentially reclaimable. Otherwise, we have to worry about 4542 * pages like swapcache and node_unmapped_file_pages() provides 4543 * a better estimate 4544 */ 4545 if (node_reclaim_mode & RECLAIM_UNMAP) 4546 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4547 else 4548 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4549 4550 /* If we can't clean pages, remove dirty pages from consideration */ 4551 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4552 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4553 4554 /* Watch for any possible underflows due to delta */ 4555 if (unlikely(delta > nr_pagecache_reclaimable)) 4556 delta = nr_pagecache_reclaimable; 4557 4558 return nr_pagecache_reclaimable - delta; 4559 } 4560 4561 /* 4562 * Try to free up some pages from this node through reclaim. 4563 */ 4564 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4565 { 4566 /* Minimum pages needed in order to stay on node */ 4567 const unsigned long nr_pages = 1 << order; 4568 struct task_struct *p = current; 4569 unsigned int noreclaim_flag; 4570 struct scan_control sc = { 4571 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4572 .gfp_mask = current_gfp_context(gfp_mask), 4573 .order = order, 4574 .priority = NODE_RECLAIM_PRIORITY, 4575 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4576 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4577 .may_swap = 1, 4578 .reclaim_idx = gfp_zone(gfp_mask), 4579 }; 4580 unsigned long pflags; 4581 4582 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4583 sc.gfp_mask); 4584 4585 cond_resched(); 4586 psi_memstall_enter(&pflags); 4587 fs_reclaim_acquire(sc.gfp_mask); 4588 /* 4589 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4590 * and we also need to be able to write out pages for RECLAIM_WRITE 4591 * and RECLAIM_UNMAP. 4592 */ 4593 noreclaim_flag = memalloc_noreclaim_save(); 4594 p->flags |= PF_SWAPWRITE; 4595 set_task_reclaim_state(p, &sc.reclaim_state); 4596 4597 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4598 /* 4599 * Free memory by calling shrink node with increasing 4600 * priorities until we have enough memory freed. 4601 */ 4602 do { 4603 shrink_node(pgdat, &sc); 4604 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4605 } 4606 4607 set_task_reclaim_state(p, NULL); 4608 current->flags &= ~PF_SWAPWRITE; 4609 memalloc_noreclaim_restore(noreclaim_flag); 4610 fs_reclaim_release(sc.gfp_mask); 4611 psi_memstall_leave(&pflags); 4612 4613 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4614 4615 return sc.nr_reclaimed >= nr_pages; 4616 } 4617 4618 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4619 { 4620 int ret; 4621 4622 /* 4623 * Node reclaim reclaims unmapped file backed pages and 4624 * slab pages if we are over the defined limits. 4625 * 4626 * A small portion of unmapped file backed pages is needed for 4627 * file I/O otherwise pages read by file I/O will be immediately 4628 * thrown out if the node is overallocated. So we do not reclaim 4629 * if less than a specified percentage of the node is used by 4630 * unmapped file backed pages. 4631 */ 4632 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4633 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 4634 pgdat->min_slab_pages) 4635 return NODE_RECLAIM_FULL; 4636 4637 /* 4638 * Do not scan if the allocation should not be delayed. 4639 */ 4640 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4641 return NODE_RECLAIM_NOSCAN; 4642 4643 /* 4644 * Only run node reclaim on the local node or on nodes that do not 4645 * have associated processors. This will favor the local processor 4646 * over remote processors and spread off node memory allocations 4647 * as wide as possible. 4648 */ 4649 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4650 return NODE_RECLAIM_NOSCAN; 4651 4652 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4653 return NODE_RECLAIM_NOSCAN; 4654 4655 ret = __node_reclaim(pgdat, gfp_mask, order); 4656 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4657 4658 if (!ret) 4659 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4660 4661 return ret; 4662 } 4663 #endif 4664 4665 /** 4666 * check_move_unevictable_pages - check pages for evictability and move to 4667 * appropriate zone lru list 4668 * @pvec: pagevec with lru pages to check 4669 * 4670 * Checks pages for evictability, if an evictable page is in the unevictable 4671 * lru list, moves it to the appropriate evictable lru list. This function 4672 * should be only used for lru pages. 4673 */ 4674 void check_move_unevictable_pages(struct pagevec *pvec) 4675 { 4676 struct lruvec *lruvec = NULL; 4677 int pgscanned = 0; 4678 int pgrescued = 0; 4679 int i; 4680 4681 for (i = 0; i < pvec->nr; i++) { 4682 struct page *page = pvec->pages[i]; 4683 int nr_pages; 4684 4685 if (PageTransTail(page)) 4686 continue; 4687 4688 nr_pages = thp_nr_pages(page); 4689 pgscanned += nr_pages; 4690 4691 /* block memcg migration during page moving between lru */ 4692 if (!TestClearPageLRU(page)) 4693 continue; 4694 4695 lruvec = relock_page_lruvec_irq(page, lruvec); 4696 if (page_evictable(page) && PageUnevictable(page)) { 4697 del_page_from_lru_list(page, lruvec); 4698 ClearPageUnevictable(page); 4699 add_page_to_lru_list(page, lruvec); 4700 pgrescued += nr_pages; 4701 } 4702 SetPageLRU(page); 4703 } 4704 4705 if (lruvec) { 4706 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4707 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4708 unlock_page_lruvec_irq(lruvec); 4709 } else if (pgscanned) { 4710 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4711 } 4712 } 4713 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4714