xref: /linux/mm/vmscan.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45 
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48 
49 #include <linux/swapops.h>
50 
51 #include "internal.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55 
56 struct scan_control {
57 	/* Incremented by the number of inactive pages that were scanned */
58 	unsigned long nr_scanned;
59 
60 	/* Number of pages freed so far during a call to shrink_zones() */
61 	unsigned long nr_reclaimed;
62 
63 	/* How many pages shrink_list() should reclaim */
64 	unsigned long nr_to_reclaim;
65 
66 	unsigned long hibernation_mode;
67 
68 	/* This context's GFP mask */
69 	gfp_t gfp_mask;
70 
71 	int may_writepage;
72 
73 	/* Can mapped pages be reclaimed? */
74 	int may_unmap;
75 
76 	/* Can pages be swapped as part of reclaim? */
77 	int may_swap;
78 
79 	int order;
80 
81 	/* Scan (total_size >> priority) pages at once */
82 	int priority;
83 
84 	/*
85 	 * The memory cgroup that hit its limit and as a result is the
86 	 * primary target of this reclaim invocation.
87 	 */
88 	struct mem_cgroup *target_mem_cgroup;
89 
90 	/*
91 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 	 * are scanned.
93 	 */
94 	nodemask_t	*nodemask;
95 };
96 
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98 
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field)			\
101 	do {								\
102 		if ((_page)->lru.prev != _base) {			\
103 			struct page *prev;				\
104 									\
105 			prev = lru_to_page(&(_page->lru));		\
106 			prefetch(&prev->_field);			\
107 		}							\
108 	} while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112 
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field)			\
115 	do {								\
116 		if ((_page)->lru.prev != _base) {			\
117 			struct page *prev;				\
118 									\
119 			prev = lru_to_page(&(_page->lru));		\
120 			prefetchw(&prev->_field);			\
121 		}							\
122 	} while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126 
127 /*
128  * From 0 .. 100.  Higher means more swappy.
129  */
130 int vm_swappiness = 60;
131 long vm_total_pages;	/* The total number of pages which the VM controls */
132 
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135 
136 #ifdef CONFIG_MEMCG
137 static bool global_reclaim(struct scan_control *sc)
138 {
139 	return !sc->target_mem_cgroup;
140 }
141 #else
142 static bool global_reclaim(struct scan_control *sc)
143 {
144 	return true;
145 }
146 #endif
147 
148 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
149 {
150 	if (!mem_cgroup_disabled())
151 		return mem_cgroup_get_lru_size(lruvec, lru);
152 
153 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
154 }
155 
156 /*
157  * Add a shrinker callback to be called from the vm
158  */
159 void register_shrinker(struct shrinker *shrinker)
160 {
161 	atomic_long_set(&shrinker->nr_in_batch, 0);
162 	down_write(&shrinker_rwsem);
163 	list_add_tail(&shrinker->list, &shrinker_list);
164 	up_write(&shrinker_rwsem);
165 }
166 EXPORT_SYMBOL(register_shrinker);
167 
168 /*
169  * Remove one
170  */
171 void unregister_shrinker(struct shrinker *shrinker)
172 {
173 	down_write(&shrinker_rwsem);
174 	list_del(&shrinker->list);
175 	up_write(&shrinker_rwsem);
176 }
177 EXPORT_SYMBOL(unregister_shrinker);
178 
179 static inline int do_shrinker_shrink(struct shrinker *shrinker,
180 				     struct shrink_control *sc,
181 				     unsigned long nr_to_scan)
182 {
183 	sc->nr_to_scan = nr_to_scan;
184 	return (*shrinker->shrink)(shrinker, sc);
185 }
186 
187 #define SHRINK_BATCH 128
188 /*
189  * Call the shrink functions to age shrinkable caches
190  *
191  * Here we assume it costs one seek to replace a lru page and that it also
192  * takes a seek to recreate a cache object.  With this in mind we age equal
193  * percentages of the lru and ageable caches.  This should balance the seeks
194  * generated by these structures.
195  *
196  * If the vm encountered mapped pages on the LRU it increase the pressure on
197  * slab to avoid swapping.
198  *
199  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
200  *
201  * `lru_pages' represents the number of on-LRU pages in all the zones which
202  * are eligible for the caller's allocation attempt.  It is used for balancing
203  * slab reclaim versus page reclaim.
204  *
205  * Returns the number of slab objects which we shrunk.
206  */
207 unsigned long shrink_slab(struct shrink_control *shrink,
208 			  unsigned long nr_pages_scanned,
209 			  unsigned long lru_pages)
210 {
211 	struct shrinker *shrinker;
212 	unsigned long ret = 0;
213 
214 	if (nr_pages_scanned == 0)
215 		nr_pages_scanned = SWAP_CLUSTER_MAX;
216 
217 	if (!down_read_trylock(&shrinker_rwsem)) {
218 		/* Assume we'll be able to shrink next time */
219 		ret = 1;
220 		goto out;
221 	}
222 
223 	list_for_each_entry(shrinker, &shrinker_list, list) {
224 		unsigned long long delta;
225 		long total_scan;
226 		long max_pass;
227 		int shrink_ret = 0;
228 		long nr;
229 		long new_nr;
230 		long batch_size = shrinker->batch ? shrinker->batch
231 						  : SHRINK_BATCH;
232 
233 		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
234 		if (max_pass <= 0)
235 			continue;
236 
237 		/*
238 		 * copy the current shrinker scan count into a local variable
239 		 * and zero it so that other concurrent shrinker invocations
240 		 * don't also do this scanning work.
241 		 */
242 		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
243 
244 		total_scan = nr;
245 		delta = (4 * nr_pages_scanned) / shrinker->seeks;
246 		delta *= max_pass;
247 		do_div(delta, lru_pages + 1);
248 		total_scan += delta;
249 		if (total_scan < 0) {
250 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
251 			       "delete nr=%ld\n",
252 			       shrinker->shrink, total_scan);
253 			total_scan = max_pass;
254 		}
255 
256 		/*
257 		 * We need to avoid excessive windup on filesystem shrinkers
258 		 * due to large numbers of GFP_NOFS allocations causing the
259 		 * shrinkers to return -1 all the time. This results in a large
260 		 * nr being built up so when a shrink that can do some work
261 		 * comes along it empties the entire cache due to nr >>>
262 		 * max_pass.  This is bad for sustaining a working set in
263 		 * memory.
264 		 *
265 		 * Hence only allow the shrinker to scan the entire cache when
266 		 * a large delta change is calculated directly.
267 		 */
268 		if (delta < max_pass / 4)
269 			total_scan = min(total_scan, max_pass / 2);
270 
271 		/*
272 		 * Avoid risking looping forever due to too large nr value:
273 		 * never try to free more than twice the estimate number of
274 		 * freeable entries.
275 		 */
276 		if (total_scan > max_pass * 2)
277 			total_scan = max_pass * 2;
278 
279 		trace_mm_shrink_slab_start(shrinker, shrink, nr,
280 					nr_pages_scanned, lru_pages,
281 					max_pass, delta, total_scan);
282 
283 		while (total_scan >= batch_size) {
284 			int nr_before;
285 
286 			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
287 			shrink_ret = do_shrinker_shrink(shrinker, shrink,
288 							batch_size);
289 			if (shrink_ret == -1)
290 				break;
291 			if (shrink_ret < nr_before)
292 				ret += nr_before - shrink_ret;
293 			count_vm_events(SLABS_SCANNED, batch_size);
294 			total_scan -= batch_size;
295 
296 			cond_resched();
297 		}
298 
299 		/*
300 		 * move the unused scan count back into the shrinker in a
301 		 * manner that handles concurrent updates. If we exhausted the
302 		 * scan, there is no need to do an update.
303 		 */
304 		if (total_scan > 0)
305 			new_nr = atomic_long_add_return(total_scan,
306 					&shrinker->nr_in_batch);
307 		else
308 			new_nr = atomic_long_read(&shrinker->nr_in_batch);
309 
310 		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
311 	}
312 	up_read(&shrinker_rwsem);
313 out:
314 	cond_resched();
315 	return ret;
316 }
317 
318 static inline int is_page_cache_freeable(struct page *page)
319 {
320 	/*
321 	 * A freeable page cache page is referenced only by the caller
322 	 * that isolated the page, the page cache radix tree and
323 	 * optional buffer heads at page->private.
324 	 */
325 	return page_count(page) - page_has_private(page) == 2;
326 }
327 
328 static int may_write_to_queue(struct backing_dev_info *bdi,
329 			      struct scan_control *sc)
330 {
331 	if (current->flags & PF_SWAPWRITE)
332 		return 1;
333 	if (!bdi_write_congested(bdi))
334 		return 1;
335 	if (bdi == current->backing_dev_info)
336 		return 1;
337 	return 0;
338 }
339 
340 /*
341  * We detected a synchronous write error writing a page out.  Probably
342  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
343  * fsync(), msync() or close().
344  *
345  * The tricky part is that after writepage we cannot touch the mapping: nothing
346  * prevents it from being freed up.  But we have a ref on the page and once
347  * that page is locked, the mapping is pinned.
348  *
349  * We're allowed to run sleeping lock_page() here because we know the caller has
350  * __GFP_FS.
351  */
352 static void handle_write_error(struct address_space *mapping,
353 				struct page *page, int error)
354 {
355 	lock_page(page);
356 	if (page_mapping(page) == mapping)
357 		mapping_set_error(mapping, error);
358 	unlock_page(page);
359 }
360 
361 /* possible outcome of pageout() */
362 typedef enum {
363 	/* failed to write page out, page is locked */
364 	PAGE_KEEP,
365 	/* move page to the active list, page is locked */
366 	PAGE_ACTIVATE,
367 	/* page has been sent to the disk successfully, page is unlocked */
368 	PAGE_SUCCESS,
369 	/* page is clean and locked */
370 	PAGE_CLEAN,
371 } pageout_t;
372 
373 /*
374  * pageout is called by shrink_page_list() for each dirty page.
375  * Calls ->writepage().
376  */
377 static pageout_t pageout(struct page *page, struct address_space *mapping,
378 			 struct scan_control *sc)
379 {
380 	/*
381 	 * If the page is dirty, only perform writeback if that write
382 	 * will be non-blocking.  To prevent this allocation from being
383 	 * stalled by pagecache activity.  But note that there may be
384 	 * stalls if we need to run get_block().  We could test
385 	 * PagePrivate for that.
386 	 *
387 	 * If this process is currently in __generic_file_aio_write() against
388 	 * this page's queue, we can perform writeback even if that
389 	 * will block.
390 	 *
391 	 * If the page is swapcache, write it back even if that would
392 	 * block, for some throttling. This happens by accident, because
393 	 * swap_backing_dev_info is bust: it doesn't reflect the
394 	 * congestion state of the swapdevs.  Easy to fix, if needed.
395 	 */
396 	if (!is_page_cache_freeable(page))
397 		return PAGE_KEEP;
398 	if (!mapping) {
399 		/*
400 		 * Some data journaling orphaned pages can have
401 		 * page->mapping == NULL while being dirty with clean buffers.
402 		 */
403 		if (page_has_private(page)) {
404 			if (try_to_free_buffers(page)) {
405 				ClearPageDirty(page);
406 				printk("%s: orphaned page\n", __func__);
407 				return PAGE_CLEAN;
408 			}
409 		}
410 		return PAGE_KEEP;
411 	}
412 	if (mapping->a_ops->writepage == NULL)
413 		return PAGE_ACTIVATE;
414 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
415 		return PAGE_KEEP;
416 
417 	if (clear_page_dirty_for_io(page)) {
418 		int res;
419 		struct writeback_control wbc = {
420 			.sync_mode = WB_SYNC_NONE,
421 			.nr_to_write = SWAP_CLUSTER_MAX,
422 			.range_start = 0,
423 			.range_end = LLONG_MAX,
424 			.for_reclaim = 1,
425 		};
426 
427 		SetPageReclaim(page);
428 		res = mapping->a_ops->writepage(page, &wbc);
429 		if (res < 0)
430 			handle_write_error(mapping, page, res);
431 		if (res == AOP_WRITEPAGE_ACTIVATE) {
432 			ClearPageReclaim(page);
433 			return PAGE_ACTIVATE;
434 		}
435 
436 		if (!PageWriteback(page)) {
437 			/* synchronous write or broken a_ops? */
438 			ClearPageReclaim(page);
439 		}
440 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
441 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
442 		return PAGE_SUCCESS;
443 	}
444 
445 	return PAGE_CLEAN;
446 }
447 
448 /*
449  * Same as remove_mapping, but if the page is removed from the mapping, it
450  * gets returned with a refcount of 0.
451  */
452 static int __remove_mapping(struct address_space *mapping, struct page *page)
453 {
454 	BUG_ON(!PageLocked(page));
455 	BUG_ON(mapping != page_mapping(page));
456 
457 	spin_lock_irq(&mapping->tree_lock);
458 	/*
459 	 * The non racy check for a busy page.
460 	 *
461 	 * Must be careful with the order of the tests. When someone has
462 	 * a ref to the page, it may be possible that they dirty it then
463 	 * drop the reference. So if PageDirty is tested before page_count
464 	 * here, then the following race may occur:
465 	 *
466 	 * get_user_pages(&page);
467 	 * [user mapping goes away]
468 	 * write_to(page);
469 	 *				!PageDirty(page)    [good]
470 	 * SetPageDirty(page);
471 	 * put_page(page);
472 	 *				!page_count(page)   [good, discard it]
473 	 *
474 	 * [oops, our write_to data is lost]
475 	 *
476 	 * Reversing the order of the tests ensures such a situation cannot
477 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478 	 * load is not satisfied before that of page->_count.
479 	 *
480 	 * Note that if SetPageDirty is always performed via set_page_dirty,
481 	 * and thus under tree_lock, then this ordering is not required.
482 	 */
483 	if (!page_freeze_refs(page, 2))
484 		goto cannot_free;
485 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486 	if (unlikely(PageDirty(page))) {
487 		page_unfreeze_refs(page, 2);
488 		goto cannot_free;
489 	}
490 
491 	if (PageSwapCache(page)) {
492 		swp_entry_t swap = { .val = page_private(page) };
493 		__delete_from_swap_cache(page);
494 		spin_unlock_irq(&mapping->tree_lock);
495 		swapcache_free(swap, page);
496 	} else {
497 		void (*freepage)(struct page *);
498 
499 		freepage = mapping->a_ops->freepage;
500 
501 		__delete_from_page_cache(page);
502 		spin_unlock_irq(&mapping->tree_lock);
503 		mem_cgroup_uncharge_cache_page(page);
504 
505 		if (freepage != NULL)
506 			freepage(page);
507 	}
508 
509 	return 1;
510 
511 cannot_free:
512 	spin_unlock_irq(&mapping->tree_lock);
513 	return 0;
514 }
515 
516 /*
517  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
518  * someone else has a ref on the page, abort and return 0.  If it was
519  * successfully detached, return 1.  Assumes the caller has a single ref on
520  * this page.
521  */
522 int remove_mapping(struct address_space *mapping, struct page *page)
523 {
524 	if (__remove_mapping(mapping, page)) {
525 		/*
526 		 * Unfreezing the refcount with 1 rather than 2 effectively
527 		 * drops the pagecache ref for us without requiring another
528 		 * atomic operation.
529 		 */
530 		page_unfreeze_refs(page, 1);
531 		return 1;
532 	}
533 	return 0;
534 }
535 
536 /**
537  * putback_lru_page - put previously isolated page onto appropriate LRU list
538  * @page: page to be put back to appropriate lru list
539  *
540  * Add previously isolated @page to appropriate LRU list.
541  * Page may still be unevictable for other reasons.
542  *
543  * lru_lock must not be held, interrupts must be enabled.
544  */
545 void putback_lru_page(struct page *page)
546 {
547 	int lru;
548 	int active = !!TestClearPageActive(page);
549 	int was_unevictable = PageUnevictable(page);
550 
551 	VM_BUG_ON(PageLRU(page));
552 
553 redo:
554 	ClearPageUnevictable(page);
555 
556 	if (page_evictable(page)) {
557 		/*
558 		 * For evictable pages, we can use the cache.
559 		 * In event of a race, worst case is we end up with an
560 		 * unevictable page on [in]active list.
561 		 * We know how to handle that.
562 		 */
563 		lru = active + page_lru_base_type(page);
564 		lru_cache_add_lru(page, lru);
565 	} else {
566 		/*
567 		 * Put unevictable pages directly on zone's unevictable
568 		 * list.
569 		 */
570 		lru = LRU_UNEVICTABLE;
571 		add_page_to_unevictable_list(page);
572 		/*
573 		 * When racing with an mlock or AS_UNEVICTABLE clearing
574 		 * (page is unlocked) make sure that if the other thread
575 		 * does not observe our setting of PG_lru and fails
576 		 * isolation/check_move_unevictable_pages,
577 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 		 * the page back to the evictable list.
579 		 *
580 		 * The other side is TestClearPageMlocked() or shmem_lock().
581 		 */
582 		smp_mb();
583 	}
584 
585 	/*
586 	 * page's status can change while we move it among lru. If an evictable
587 	 * page is on unevictable list, it never be freed. To avoid that,
588 	 * check after we added it to the list, again.
589 	 */
590 	if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
591 		if (!isolate_lru_page(page)) {
592 			put_page(page);
593 			goto redo;
594 		}
595 		/* This means someone else dropped this page from LRU
596 		 * So, it will be freed or putback to LRU again. There is
597 		 * nothing to do here.
598 		 */
599 	}
600 
601 	if (was_unevictable && lru != LRU_UNEVICTABLE)
602 		count_vm_event(UNEVICTABLE_PGRESCUED);
603 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604 		count_vm_event(UNEVICTABLE_PGCULLED);
605 
606 	put_page(page);		/* drop ref from isolate */
607 }
608 
609 enum page_references {
610 	PAGEREF_RECLAIM,
611 	PAGEREF_RECLAIM_CLEAN,
612 	PAGEREF_KEEP,
613 	PAGEREF_ACTIVATE,
614 };
615 
616 static enum page_references page_check_references(struct page *page,
617 						  struct scan_control *sc)
618 {
619 	int referenced_ptes, referenced_page;
620 	unsigned long vm_flags;
621 
622 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623 					  &vm_flags);
624 	referenced_page = TestClearPageReferenced(page);
625 
626 	/*
627 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
628 	 * move the page to the unevictable list.
629 	 */
630 	if (vm_flags & VM_LOCKED)
631 		return PAGEREF_RECLAIM;
632 
633 	if (referenced_ptes) {
634 		if (PageSwapBacked(page))
635 			return PAGEREF_ACTIVATE;
636 		/*
637 		 * All mapped pages start out with page table
638 		 * references from the instantiating fault, so we need
639 		 * to look twice if a mapped file page is used more
640 		 * than once.
641 		 *
642 		 * Mark it and spare it for another trip around the
643 		 * inactive list.  Another page table reference will
644 		 * lead to its activation.
645 		 *
646 		 * Note: the mark is set for activated pages as well
647 		 * so that recently deactivated but used pages are
648 		 * quickly recovered.
649 		 */
650 		SetPageReferenced(page);
651 
652 		if (referenced_page || referenced_ptes > 1)
653 			return PAGEREF_ACTIVATE;
654 
655 		/*
656 		 * Activate file-backed executable pages after first usage.
657 		 */
658 		if (vm_flags & VM_EXEC)
659 			return PAGEREF_ACTIVATE;
660 
661 		return PAGEREF_KEEP;
662 	}
663 
664 	/* Reclaim if clean, defer dirty pages to writeback */
665 	if (referenced_page && !PageSwapBacked(page))
666 		return PAGEREF_RECLAIM_CLEAN;
667 
668 	return PAGEREF_RECLAIM;
669 }
670 
671 /*
672  * shrink_page_list() returns the number of reclaimed pages
673  */
674 static unsigned long shrink_page_list(struct list_head *page_list,
675 				      struct zone *zone,
676 				      struct scan_control *sc,
677 				      enum ttu_flags ttu_flags,
678 				      unsigned long *ret_nr_dirty,
679 				      unsigned long *ret_nr_writeback,
680 				      bool force_reclaim)
681 {
682 	LIST_HEAD(ret_pages);
683 	LIST_HEAD(free_pages);
684 	int pgactivate = 0;
685 	unsigned long nr_dirty = 0;
686 	unsigned long nr_congested = 0;
687 	unsigned long nr_reclaimed = 0;
688 	unsigned long nr_writeback = 0;
689 
690 	cond_resched();
691 
692 	mem_cgroup_uncharge_start();
693 	while (!list_empty(page_list)) {
694 		struct address_space *mapping;
695 		struct page *page;
696 		int may_enter_fs;
697 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
698 
699 		cond_resched();
700 
701 		page = lru_to_page(page_list);
702 		list_del(&page->lru);
703 
704 		if (!trylock_page(page))
705 			goto keep;
706 
707 		VM_BUG_ON(PageActive(page));
708 		VM_BUG_ON(page_zone(page) != zone);
709 
710 		sc->nr_scanned++;
711 
712 		if (unlikely(!page_evictable(page)))
713 			goto cull_mlocked;
714 
715 		if (!sc->may_unmap && page_mapped(page))
716 			goto keep_locked;
717 
718 		/* Double the slab pressure for mapped and swapcache pages */
719 		if (page_mapped(page) || PageSwapCache(page))
720 			sc->nr_scanned++;
721 
722 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
723 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
724 
725 		if (PageWriteback(page)) {
726 			/*
727 			 * memcg doesn't have any dirty pages throttling so we
728 			 * could easily OOM just because too many pages are in
729 			 * writeback and there is nothing else to reclaim.
730 			 *
731 			 * Check __GFP_IO, certainly because a loop driver
732 			 * thread might enter reclaim, and deadlock if it waits
733 			 * on a page for which it is needed to do the write
734 			 * (loop masks off __GFP_IO|__GFP_FS for this reason);
735 			 * but more thought would probably show more reasons.
736 			 *
737 			 * Don't require __GFP_FS, since we're not going into
738 			 * the FS, just waiting on its writeback completion.
739 			 * Worryingly, ext4 gfs2 and xfs allocate pages with
740 			 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
741 			 * testing may_enter_fs here is liable to OOM on them.
742 			 */
743 			if (global_reclaim(sc) ||
744 			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
745 				/*
746 				 * This is slightly racy - end_page_writeback()
747 				 * might have just cleared PageReclaim, then
748 				 * setting PageReclaim here end up interpreted
749 				 * as PageReadahead - but that does not matter
750 				 * enough to care.  What we do want is for this
751 				 * page to have PageReclaim set next time memcg
752 				 * reclaim reaches the tests above, so it will
753 				 * then wait_on_page_writeback() to avoid OOM;
754 				 * and it's also appropriate in global reclaim.
755 				 */
756 				SetPageReclaim(page);
757 				nr_writeback++;
758 				goto keep_locked;
759 			}
760 			wait_on_page_writeback(page);
761 		}
762 
763 		if (!force_reclaim)
764 			references = page_check_references(page, sc);
765 
766 		switch (references) {
767 		case PAGEREF_ACTIVATE:
768 			goto activate_locked;
769 		case PAGEREF_KEEP:
770 			goto keep_locked;
771 		case PAGEREF_RECLAIM:
772 		case PAGEREF_RECLAIM_CLEAN:
773 			; /* try to reclaim the page below */
774 		}
775 
776 		/*
777 		 * Anonymous process memory has backing store?
778 		 * Try to allocate it some swap space here.
779 		 */
780 		if (PageAnon(page) && !PageSwapCache(page)) {
781 			if (!(sc->gfp_mask & __GFP_IO))
782 				goto keep_locked;
783 			if (!add_to_swap(page))
784 				goto activate_locked;
785 			may_enter_fs = 1;
786 		}
787 
788 		mapping = page_mapping(page);
789 
790 		/*
791 		 * The page is mapped into the page tables of one or more
792 		 * processes. Try to unmap it here.
793 		 */
794 		if (page_mapped(page) && mapping) {
795 			switch (try_to_unmap(page, ttu_flags)) {
796 			case SWAP_FAIL:
797 				goto activate_locked;
798 			case SWAP_AGAIN:
799 				goto keep_locked;
800 			case SWAP_MLOCK:
801 				goto cull_mlocked;
802 			case SWAP_SUCCESS:
803 				; /* try to free the page below */
804 			}
805 		}
806 
807 		if (PageDirty(page)) {
808 			nr_dirty++;
809 
810 			/*
811 			 * Only kswapd can writeback filesystem pages to
812 			 * avoid risk of stack overflow but do not writeback
813 			 * unless under significant pressure.
814 			 */
815 			if (page_is_file_cache(page) &&
816 					(!current_is_kswapd() ||
817 					 sc->priority >= DEF_PRIORITY - 2)) {
818 				/*
819 				 * Immediately reclaim when written back.
820 				 * Similar in principal to deactivate_page()
821 				 * except we already have the page isolated
822 				 * and know it's dirty
823 				 */
824 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
825 				SetPageReclaim(page);
826 
827 				goto keep_locked;
828 			}
829 
830 			if (references == PAGEREF_RECLAIM_CLEAN)
831 				goto keep_locked;
832 			if (!may_enter_fs)
833 				goto keep_locked;
834 			if (!sc->may_writepage)
835 				goto keep_locked;
836 
837 			/* Page is dirty, try to write it out here */
838 			switch (pageout(page, mapping, sc)) {
839 			case PAGE_KEEP:
840 				nr_congested++;
841 				goto keep_locked;
842 			case PAGE_ACTIVATE:
843 				goto activate_locked;
844 			case PAGE_SUCCESS:
845 				if (PageWriteback(page))
846 					goto keep;
847 				if (PageDirty(page))
848 					goto keep;
849 
850 				/*
851 				 * A synchronous write - probably a ramdisk.  Go
852 				 * ahead and try to reclaim the page.
853 				 */
854 				if (!trylock_page(page))
855 					goto keep;
856 				if (PageDirty(page) || PageWriteback(page))
857 					goto keep_locked;
858 				mapping = page_mapping(page);
859 			case PAGE_CLEAN:
860 				; /* try to free the page below */
861 			}
862 		}
863 
864 		/*
865 		 * If the page has buffers, try to free the buffer mappings
866 		 * associated with this page. If we succeed we try to free
867 		 * the page as well.
868 		 *
869 		 * We do this even if the page is PageDirty().
870 		 * try_to_release_page() does not perform I/O, but it is
871 		 * possible for a page to have PageDirty set, but it is actually
872 		 * clean (all its buffers are clean).  This happens if the
873 		 * buffers were written out directly, with submit_bh(). ext3
874 		 * will do this, as well as the blockdev mapping.
875 		 * try_to_release_page() will discover that cleanness and will
876 		 * drop the buffers and mark the page clean - it can be freed.
877 		 *
878 		 * Rarely, pages can have buffers and no ->mapping.  These are
879 		 * the pages which were not successfully invalidated in
880 		 * truncate_complete_page().  We try to drop those buffers here
881 		 * and if that worked, and the page is no longer mapped into
882 		 * process address space (page_count == 1) it can be freed.
883 		 * Otherwise, leave the page on the LRU so it is swappable.
884 		 */
885 		if (page_has_private(page)) {
886 			if (!try_to_release_page(page, sc->gfp_mask))
887 				goto activate_locked;
888 			if (!mapping && page_count(page) == 1) {
889 				unlock_page(page);
890 				if (put_page_testzero(page))
891 					goto free_it;
892 				else {
893 					/*
894 					 * rare race with speculative reference.
895 					 * the speculative reference will free
896 					 * this page shortly, so we may
897 					 * increment nr_reclaimed here (and
898 					 * leave it off the LRU).
899 					 */
900 					nr_reclaimed++;
901 					continue;
902 				}
903 			}
904 		}
905 
906 		if (!mapping || !__remove_mapping(mapping, page))
907 			goto keep_locked;
908 
909 		/*
910 		 * At this point, we have no other references and there is
911 		 * no way to pick any more up (removed from LRU, removed
912 		 * from pagecache). Can use non-atomic bitops now (and
913 		 * we obviously don't have to worry about waking up a process
914 		 * waiting on the page lock, because there are no references.
915 		 */
916 		__clear_page_locked(page);
917 free_it:
918 		nr_reclaimed++;
919 
920 		/*
921 		 * Is there need to periodically free_page_list? It would
922 		 * appear not as the counts should be low
923 		 */
924 		list_add(&page->lru, &free_pages);
925 		continue;
926 
927 cull_mlocked:
928 		if (PageSwapCache(page))
929 			try_to_free_swap(page);
930 		unlock_page(page);
931 		putback_lru_page(page);
932 		continue;
933 
934 activate_locked:
935 		/* Not a candidate for swapping, so reclaim swap space. */
936 		if (PageSwapCache(page) && vm_swap_full())
937 			try_to_free_swap(page);
938 		VM_BUG_ON(PageActive(page));
939 		SetPageActive(page);
940 		pgactivate++;
941 keep_locked:
942 		unlock_page(page);
943 keep:
944 		list_add(&page->lru, &ret_pages);
945 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
946 	}
947 
948 	/*
949 	 * Tag a zone as congested if all the dirty pages encountered were
950 	 * backed by a congested BDI. In this case, reclaimers should just
951 	 * back off and wait for congestion to clear because further reclaim
952 	 * will encounter the same problem
953 	 */
954 	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
955 		zone_set_flag(zone, ZONE_CONGESTED);
956 
957 	free_hot_cold_page_list(&free_pages, 1);
958 
959 	list_splice(&ret_pages, page_list);
960 	count_vm_events(PGACTIVATE, pgactivate);
961 	mem_cgroup_uncharge_end();
962 	*ret_nr_dirty += nr_dirty;
963 	*ret_nr_writeback += nr_writeback;
964 	return nr_reclaimed;
965 }
966 
967 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
968 					    struct list_head *page_list)
969 {
970 	struct scan_control sc = {
971 		.gfp_mask = GFP_KERNEL,
972 		.priority = DEF_PRIORITY,
973 		.may_unmap = 1,
974 	};
975 	unsigned long ret, dummy1, dummy2;
976 	struct page *page, *next;
977 	LIST_HEAD(clean_pages);
978 
979 	list_for_each_entry_safe(page, next, page_list, lru) {
980 		if (page_is_file_cache(page) && !PageDirty(page)) {
981 			ClearPageActive(page);
982 			list_move(&page->lru, &clean_pages);
983 		}
984 	}
985 
986 	ret = shrink_page_list(&clean_pages, zone, &sc,
987 				TTU_UNMAP|TTU_IGNORE_ACCESS,
988 				&dummy1, &dummy2, true);
989 	list_splice(&clean_pages, page_list);
990 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
991 	return ret;
992 }
993 
994 /*
995  * Attempt to remove the specified page from its LRU.  Only take this page
996  * if it is of the appropriate PageActive status.  Pages which are being
997  * freed elsewhere are also ignored.
998  *
999  * page:	page to consider
1000  * mode:	one of the LRU isolation modes defined above
1001  *
1002  * returns 0 on success, -ve errno on failure.
1003  */
1004 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1005 {
1006 	int ret = -EINVAL;
1007 
1008 	/* Only take pages on the LRU. */
1009 	if (!PageLRU(page))
1010 		return ret;
1011 
1012 	/* Compaction should not handle unevictable pages but CMA can do so */
1013 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1014 		return ret;
1015 
1016 	ret = -EBUSY;
1017 
1018 	/*
1019 	 * To minimise LRU disruption, the caller can indicate that it only
1020 	 * wants to isolate pages it will be able to operate on without
1021 	 * blocking - clean pages for the most part.
1022 	 *
1023 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1024 	 * is used by reclaim when it is cannot write to backing storage
1025 	 *
1026 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1027 	 * that it is possible to migrate without blocking
1028 	 */
1029 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1030 		/* All the caller can do on PageWriteback is block */
1031 		if (PageWriteback(page))
1032 			return ret;
1033 
1034 		if (PageDirty(page)) {
1035 			struct address_space *mapping;
1036 
1037 			/* ISOLATE_CLEAN means only clean pages */
1038 			if (mode & ISOLATE_CLEAN)
1039 				return ret;
1040 
1041 			/*
1042 			 * Only pages without mappings or that have a
1043 			 * ->migratepage callback are possible to migrate
1044 			 * without blocking
1045 			 */
1046 			mapping = page_mapping(page);
1047 			if (mapping && !mapping->a_ops->migratepage)
1048 				return ret;
1049 		}
1050 	}
1051 
1052 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1053 		return ret;
1054 
1055 	if (likely(get_page_unless_zero(page))) {
1056 		/*
1057 		 * Be careful not to clear PageLRU until after we're
1058 		 * sure the page is not being freed elsewhere -- the
1059 		 * page release code relies on it.
1060 		 */
1061 		ClearPageLRU(page);
1062 		ret = 0;
1063 	}
1064 
1065 	return ret;
1066 }
1067 
1068 /*
1069  * zone->lru_lock is heavily contended.  Some of the functions that
1070  * shrink the lists perform better by taking out a batch of pages
1071  * and working on them outside the LRU lock.
1072  *
1073  * For pagecache intensive workloads, this function is the hottest
1074  * spot in the kernel (apart from copy_*_user functions).
1075  *
1076  * Appropriate locks must be held before calling this function.
1077  *
1078  * @nr_to_scan:	The number of pages to look through on the list.
1079  * @lruvec:	The LRU vector to pull pages from.
1080  * @dst:	The temp list to put pages on to.
1081  * @nr_scanned:	The number of pages that were scanned.
1082  * @sc:		The scan_control struct for this reclaim session
1083  * @mode:	One of the LRU isolation modes
1084  * @lru:	LRU list id for isolating
1085  *
1086  * returns how many pages were moved onto *@dst.
1087  */
1088 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1089 		struct lruvec *lruvec, struct list_head *dst,
1090 		unsigned long *nr_scanned, struct scan_control *sc,
1091 		isolate_mode_t mode, enum lru_list lru)
1092 {
1093 	struct list_head *src = &lruvec->lists[lru];
1094 	unsigned long nr_taken = 0;
1095 	unsigned long scan;
1096 
1097 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1098 		struct page *page;
1099 		int nr_pages;
1100 
1101 		page = lru_to_page(src);
1102 		prefetchw_prev_lru_page(page, src, flags);
1103 
1104 		VM_BUG_ON(!PageLRU(page));
1105 
1106 		switch (__isolate_lru_page(page, mode)) {
1107 		case 0:
1108 			nr_pages = hpage_nr_pages(page);
1109 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1110 			list_move(&page->lru, dst);
1111 			nr_taken += nr_pages;
1112 			break;
1113 
1114 		case -EBUSY:
1115 			/* else it is being freed elsewhere */
1116 			list_move(&page->lru, src);
1117 			continue;
1118 
1119 		default:
1120 			BUG();
1121 		}
1122 	}
1123 
1124 	*nr_scanned = scan;
1125 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1126 				    nr_taken, mode, is_file_lru(lru));
1127 	return nr_taken;
1128 }
1129 
1130 /**
1131  * isolate_lru_page - tries to isolate a page from its LRU list
1132  * @page: page to isolate from its LRU list
1133  *
1134  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1135  * vmstat statistic corresponding to whatever LRU list the page was on.
1136  *
1137  * Returns 0 if the page was removed from an LRU list.
1138  * Returns -EBUSY if the page was not on an LRU list.
1139  *
1140  * The returned page will have PageLRU() cleared.  If it was found on
1141  * the active list, it will have PageActive set.  If it was found on
1142  * the unevictable list, it will have the PageUnevictable bit set. That flag
1143  * may need to be cleared by the caller before letting the page go.
1144  *
1145  * The vmstat statistic corresponding to the list on which the page was
1146  * found will be decremented.
1147  *
1148  * Restrictions:
1149  * (1) Must be called with an elevated refcount on the page. This is a
1150  *     fundamentnal difference from isolate_lru_pages (which is called
1151  *     without a stable reference).
1152  * (2) the lru_lock must not be held.
1153  * (3) interrupts must be enabled.
1154  */
1155 int isolate_lru_page(struct page *page)
1156 {
1157 	int ret = -EBUSY;
1158 
1159 	VM_BUG_ON(!page_count(page));
1160 
1161 	if (PageLRU(page)) {
1162 		struct zone *zone = page_zone(page);
1163 		struct lruvec *lruvec;
1164 
1165 		spin_lock_irq(&zone->lru_lock);
1166 		lruvec = mem_cgroup_page_lruvec(page, zone);
1167 		if (PageLRU(page)) {
1168 			int lru = page_lru(page);
1169 			get_page(page);
1170 			ClearPageLRU(page);
1171 			del_page_from_lru_list(page, lruvec, lru);
1172 			ret = 0;
1173 		}
1174 		spin_unlock_irq(&zone->lru_lock);
1175 	}
1176 	return ret;
1177 }
1178 
1179 /*
1180  * Are there way too many processes in the direct reclaim path already?
1181  */
1182 static int too_many_isolated(struct zone *zone, int file,
1183 		struct scan_control *sc)
1184 {
1185 	unsigned long inactive, isolated;
1186 
1187 	if (current_is_kswapd())
1188 		return 0;
1189 
1190 	if (!global_reclaim(sc))
1191 		return 0;
1192 
1193 	if (file) {
1194 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1195 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1196 	} else {
1197 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1198 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1199 	}
1200 
1201 	return isolated > inactive;
1202 }
1203 
1204 static noinline_for_stack void
1205 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1206 {
1207 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1208 	struct zone *zone = lruvec_zone(lruvec);
1209 	LIST_HEAD(pages_to_free);
1210 
1211 	/*
1212 	 * Put back any unfreeable pages.
1213 	 */
1214 	while (!list_empty(page_list)) {
1215 		struct page *page = lru_to_page(page_list);
1216 		int lru;
1217 
1218 		VM_BUG_ON(PageLRU(page));
1219 		list_del(&page->lru);
1220 		if (unlikely(!page_evictable(page))) {
1221 			spin_unlock_irq(&zone->lru_lock);
1222 			putback_lru_page(page);
1223 			spin_lock_irq(&zone->lru_lock);
1224 			continue;
1225 		}
1226 
1227 		lruvec = mem_cgroup_page_lruvec(page, zone);
1228 
1229 		SetPageLRU(page);
1230 		lru = page_lru(page);
1231 		add_page_to_lru_list(page, lruvec, lru);
1232 
1233 		if (is_active_lru(lru)) {
1234 			int file = is_file_lru(lru);
1235 			int numpages = hpage_nr_pages(page);
1236 			reclaim_stat->recent_rotated[file] += numpages;
1237 		}
1238 		if (put_page_testzero(page)) {
1239 			__ClearPageLRU(page);
1240 			__ClearPageActive(page);
1241 			del_page_from_lru_list(page, lruvec, lru);
1242 
1243 			if (unlikely(PageCompound(page))) {
1244 				spin_unlock_irq(&zone->lru_lock);
1245 				(*get_compound_page_dtor(page))(page);
1246 				spin_lock_irq(&zone->lru_lock);
1247 			} else
1248 				list_add(&page->lru, &pages_to_free);
1249 		}
1250 	}
1251 
1252 	/*
1253 	 * To save our caller's stack, now use input list for pages to free.
1254 	 */
1255 	list_splice(&pages_to_free, page_list);
1256 }
1257 
1258 /*
1259  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1260  * of reclaimed pages
1261  */
1262 static noinline_for_stack unsigned long
1263 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1264 		     struct scan_control *sc, enum lru_list lru)
1265 {
1266 	LIST_HEAD(page_list);
1267 	unsigned long nr_scanned;
1268 	unsigned long nr_reclaimed = 0;
1269 	unsigned long nr_taken;
1270 	unsigned long nr_dirty = 0;
1271 	unsigned long nr_writeback = 0;
1272 	isolate_mode_t isolate_mode = 0;
1273 	int file = is_file_lru(lru);
1274 	struct zone *zone = lruvec_zone(lruvec);
1275 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1276 
1277 	while (unlikely(too_many_isolated(zone, file, sc))) {
1278 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1279 
1280 		/* We are about to die and free our memory. Return now. */
1281 		if (fatal_signal_pending(current))
1282 			return SWAP_CLUSTER_MAX;
1283 	}
1284 
1285 	lru_add_drain();
1286 
1287 	if (!sc->may_unmap)
1288 		isolate_mode |= ISOLATE_UNMAPPED;
1289 	if (!sc->may_writepage)
1290 		isolate_mode |= ISOLATE_CLEAN;
1291 
1292 	spin_lock_irq(&zone->lru_lock);
1293 
1294 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1295 				     &nr_scanned, sc, isolate_mode, lru);
1296 
1297 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1298 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1299 
1300 	if (global_reclaim(sc)) {
1301 		zone->pages_scanned += nr_scanned;
1302 		if (current_is_kswapd())
1303 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1304 		else
1305 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1306 	}
1307 	spin_unlock_irq(&zone->lru_lock);
1308 
1309 	if (nr_taken == 0)
1310 		return 0;
1311 
1312 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1313 					&nr_dirty, &nr_writeback, false);
1314 
1315 	spin_lock_irq(&zone->lru_lock);
1316 
1317 	reclaim_stat->recent_scanned[file] += nr_taken;
1318 
1319 	if (global_reclaim(sc)) {
1320 		if (current_is_kswapd())
1321 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1322 					       nr_reclaimed);
1323 		else
1324 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1325 					       nr_reclaimed);
1326 	}
1327 
1328 	putback_inactive_pages(lruvec, &page_list);
1329 
1330 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1331 
1332 	spin_unlock_irq(&zone->lru_lock);
1333 
1334 	free_hot_cold_page_list(&page_list, 1);
1335 
1336 	/*
1337 	 * If reclaim is isolating dirty pages under writeback, it implies
1338 	 * that the long-lived page allocation rate is exceeding the page
1339 	 * laundering rate. Either the global limits are not being effective
1340 	 * at throttling processes due to the page distribution throughout
1341 	 * zones or there is heavy usage of a slow backing device. The
1342 	 * only option is to throttle from reclaim context which is not ideal
1343 	 * as there is no guarantee the dirtying process is throttled in the
1344 	 * same way balance_dirty_pages() manages.
1345 	 *
1346 	 * This scales the number of dirty pages that must be under writeback
1347 	 * before throttling depending on priority. It is a simple backoff
1348 	 * function that has the most effect in the range DEF_PRIORITY to
1349 	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1350 	 * in trouble and reclaim is considered to be in trouble.
1351 	 *
1352 	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1353 	 * DEF_PRIORITY-1  50% must be PageWriteback
1354 	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1355 	 * ...
1356 	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1357 	 *                     isolated page is PageWriteback
1358 	 */
1359 	if (nr_writeback && nr_writeback >=
1360 			(nr_taken >> (DEF_PRIORITY - sc->priority)))
1361 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1362 
1363 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1364 		zone_idx(zone),
1365 		nr_scanned, nr_reclaimed,
1366 		sc->priority,
1367 		trace_shrink_flags(file));
1368 	return nr_reclaimed;
1369 }
1370 
1371 /*
1372  * This moves pages from the active list to the inactive list.
1373  *
1374  * We move them the other way if the page is referenced by one or more
1375  * processes, from rmap.
1376  *
1377  * If the pages are mostly unmapped, the processing is fast and it is
1378  * appropriate to hold zone->lru_lock across the whole operation.  But if
1379  * the pages are mapped, the processing is slow (page_referenced()) so we
1380  * should drop zone->lru_lock around each page.  It's impossible to balance
1381  * this, so instead we remove the pages from the LRU while processing them.
1382  * It is safe to rely on PG_active against the non-LRU pages in here because
1383  * nobody will play with that bit on a non-LRU page.
1384  *
1385  * The downside is that we have to touch page->_count against each page.
1386  * But we had to alter page->flags anyway.
1387  */
1388 
1389 static void move_active_pages_to_lru(struct lruvec *lruvec,
1390 				     struct list_head *list,
1391 				     struct list_head *pages_to_free,
1392 				     enum lru_list lru)
1393 {
1394 	struct zone *zone = lruvec_zone(lruvec);
1395 	unsigned long pgmoved = 0;
1396 	struct page *page;
1397 	int nr_pages;
1398 
1399 	while (!list_empty(list)) {
1400 		page = lru_to_page(list);
1401 		lruvec = mem_cgroup_page_lruvec(page, zone);
1402 
1403 		VM_BUG_ON(PageLRU(page));
1404 		SetPageLRU(page);
1405 
1406 		nr_pages = hpage_nr_pages(page);
1407 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1408 		list_move(&page->lru, &lruvec->lists[lru]);
1409 		pgmoved += nr_pages;
1410 
1411 		if (put_page_testzero(page)) {
1412 			__ClearPageLRU(page);
1413 			__ClearPageActive(page);
1414 			del_page_from_lru_list(page, lruvec, lru);
1415 
1416 			if (unlikely(PageCompound(page))) {
1417 				spin_unlock_irq(&zone->lru_lock);
1418 				(*get_compound_page_dtor(page))(page);
1419 				spin_lock_irq(&zone->lru_lock);
1420 			} else
1421 				list_add(&page->lru, pages_to_free);
1422 		}
1423 	}
1424 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1425 	if (!is_active_lru(lru))
1426 		__count_vm_events(PGDEACTIVATE, pgmoved);
1427 }
1428 
1429 static void shrink_active_list(unsigned long nr_to_scan,
1430 			       struct lruvec *lruvec,
1431 			       struct scan_control *sc,
1432 			       enum lru_list lru)
1433 {
1434 	unsigned long nr_taken;
1435 	unsigned long nr_scanned;
1436 	unsigned long vm_flags;
1437 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1438 	LIST_HEAD(l_active);
1439 	LIST_HEAD(l_inactive);
1440 	struct page *page;
1441 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1442 	unsigned long nr_rotated = 0;
1443 	isolate_mode_t isolate_mode = 0;
1444 	int file = is_file_lru(lru);
1445 	struct zone *zone = lruvec_zone(lruvec);
1446 
1447 	lru_add_drain();
1448 
1449 	if (!sc->may_unmap)
1450 		isolate_mode |= ISOLATE_UNMAPPED;
1451 	if (!sc->may_writepage)
1452 		isolate_mode |= ISOLATE_CLEAN;
1453 
1454 	spin_lock_irq(&zone->lru_lock);
1455 
1456 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1457 				     &nr_scanned, sc, isolate_mode, lru);
1458 	if (global_reclaim(sc))
1459 		zone->pages_scanned += nr_scanned;
1460 
1461 	reclaim_stat->recent_scanned[file] += nr_taken;
1462 
1463 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1464 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1465 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1466 	spin_unlock_irq(&zone->lru_lock);
1467 
1468 	while (!list_empty(&l_hold)) {
1469 		cond_resched();
1470 		page = lru_to_page(&l_hold);
1471 		list_del(&page->lru);
1472 
1473 		if (unlikely(!page_evictable(page))) {
1474 			putback_lru_page(page);
1475 			continue;
1476 		}
1477 
1478 		if (unlikely(buffer_heads_over_limit)) {
1479 			if (page_has_private(page) && trylock_page(page)) {
1480 				if (page_has_private(page))
1481 					try_to_release_page(page, 0);
1482 				unlock_page(page);
1483 			}
1484 		}
1485 
1486 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1487 				    &vm_flags)) {
1488 			nr_rotated += hpage_nr_pages(page);
1489 			/*
1490 			 * Identify referenced, file-backed active pages and
1491 			 * give them one more trip around the active list. So
1492 			 * that executable code get better chances to stay in
1493 			 * memory under moderate memory pressure.  Anon pages
1494 			 * are not likely to be evicted by use-once streaming
1495 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1496 			 * so we ignore them here.
1497 			 */
1498 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1499 				list_add(&page->lru, &l_active);
1500 				continue;
1501 			}
1502 		}
1503 
1504 		ClearPageActive(page);	/* we are de-activating */
1505 		list_add(&page->lru, &l_inactive);
1506 	}
1507 
1508 	/*
1509 	 * Move pages back to the lru list.
1510 	 */
1511 	spin_lock_irq(&zone->lru_lock);
1512 	/*
1513 	 * Count referenced pages from currently used mappings as rotated,
1514 	 * even though only some of them are actually re-activated.  This
1515 	 * helps balance scan pressure between file and anonymous pages in
1516 	 * get_scan_ratio.
1517 	 */
1518 	reclaim_stat->recent_rotated[file] += nr_rotated;
1519 
1520 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1521 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1522 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1523 	spin_unlock_irq(&zone->lru_lock);
1524 
1525 	free_hot_cold_page_list(&l_hold, 1);
1526 }
1527 
1528 #ifdef CONFIG_SWAP
1529 static int inactive_anon_is_low_global(struct zone *zone)
1530 {
1531 	unsigned long active, inactive;
1532 
1533 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1534 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1535 
1536 	if (inactive * zone->inactive_ratio < active)
1537 		return 1;
1538 
1539 	return 0;
1540 }
1541 
1542 /**
1543  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1544  * @lruvec: LRU vector to check
1545  *
1546  * Returns true if the zone does not have enough inactive anon pages,
1547  * meaning some active anon pages need to be deactivated.
1548  */
1549 static int inactive_anon_is_low(struct lruvec *lruvec)
1550 {
1551 	/*
1552 	 * If we don't have swap space, anonymous page deactivation
1553 	 * is pointless.
1554 	 */
1555 	if (!total_swap_pages)
1556 		return 0;
1557 
1558 	if (!mem_cgroup_disabled())
1559 		return mem_cgroup_inactive_anon_is_low(lruvec);
1560 
1561 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1562 }
1563 #else
1564 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1565 {
1566 	return 0;
1567 }
1568 #endif
1569 
1570 static int inactive_file_is_low_global(struct zone *zone)
1571 {
1572 	unsigned long active, inactive;
1573 
1574 	active = zone_page_state(zone, NR_ACTIVE_FILE);
1575 	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1576 
1577 	return (active > inactive);
1578 }
1579 
1580 /**
1581  * inactive_file_is_low - check if file pages need to be deactivated
1582  * @lruvec: LRU vector to check
1583  *
1584  * When the system is doing streaming IO, memory pressure here
1585  * ensures that active file pages get deactivated, until more
1586  * than half of the file pages are on the inactive list.
1587  *
1588  * Once we get to that situation, protect the system's working
1589  * set from being evicted by disabling active file page aging.
1590  *
1591  * This uses a different ratio than the anonymous pages, because
1592  * the page cache uses a use-once replacement algorithm.
1593  */
1594 static int inactive_file_is_low(struct lruvec *lruvec)
1595 {
1596 	if (!mem_cgroup_disabled())
1597 		return mem_cgroup_inactive_file_is_low(lruvec);
1598 
1599 	return inactive_file_is_low_global(lruvec_zone(lruvec));
1600 }
1601 
1602 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1603 {
1604 	if (is_file_lru(lru))
1605 		return inactive_file_is_low(lruvec);
1606 	else
1607 		return inactive_anon_is_low(lruvec);
1608 }
1609 
1610 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1611 				 struct lruvec *lruvec, struct scan_control *sc)
1612 {
1613 	if (is_active_lru(lru)) {
1614 		if (inactive_list_is_low(lruvec, lru))
1615 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1616 		return 0;
1617 	}
1618 
1619 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1620 }
1621 
1622 static int vmscan_swappiness(struct scan_control *sc)
1623 {
1624 	if (global_reclaim(sc))
1625 		return vm_swappiness;
1626 	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1627 }
1628 
1629 /*
1630  * Determine how aggressively the anon and file LRU lists should be
1631  * scanned.  The relative value of each set of LRU lists is determined
1632  * by looking at the fraction of the pages scanned we did rotate back
1633  * onto the active list instead of evict.
1634  *
1635  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1636  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1637  */
1638 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1639 			   unsigned long *nr)
1640 {
1641 	unsigned long anon, file, free;
1642 	unsigned long anon_prio, file_prio;
1643 	unsigned long ap, fp;
1644 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1645 	u64 fraction[2], denominator;
1646 	enum lru_list lru;
1647 	int noswap = 0;
1648 	bool force_scan = false;
1649 	struct zone *zone = lruvec_zone(lruvec);
1650 
1651 	/*
1652 	 * If the zone or memcg is small, nr[l] can be 0.  This
1653 	 * results in no scanning on this priority and a potential
1654 	 * priority drop.  Global direct reclaim can go to the next
1655 	 * zone and tends to have no problems. Global kswapd is for
1656 	 * zone balancing and it needs to scan a minimum amount. When
1657 	 * reclaiming for a memcg, a priority drop can cause high
1658 	 * latencies, so it's better to scan a minimum amount there as
1659 	 * well.
1660 	 */
1661 	if (current_is_kswapd() && zone->all_unreclaimable)
1662 		force_scan = true;
1663 	if (!global_reclaim(sc))
1664 		force_scan = true;
1665 
1666 	/* If we have no swap space, do not bother scanning anon pages. */
1667 	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1668 		noswap = 1;
1669 		fraction[0] = 0;
1670 		fraction[1] = 1;
1671 		denominator = 1;
1672 		goto out;
1673 	}
1674 
1675 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1676 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
1677 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1678 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1679 
1680 	if (global_reclaim(sc)) {
1681 		free  = zone_page_state(zone, NR_FREE_PAGES);
1682 		/* If we have very few page cache pages,
1683 		   force-scan anon pages. */
1684 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1685 			fraction[0] = 1;
1686 			fraction[1] = 0;
1687 			denominator = 1;
1688 			goto out;
1689 		}
1690 	}
1691 
1692 	/*
1693 	 * With swappiness at 100, anonymous and file have the same priority.
1694 	 * This scanning priority is essentially the inverse of IO cost.
1695 	 */
1696 	anon_prio = vmscan_swappiness(sc);
1697 	file_prio = 200 - anon_prio;
1698 
1699 	/*
1700 	 * OK, so we have swap space and a fair amount of page cache
1701 	 * pages.  We use the recently rotated / recently scanned
1702 	 * ratios to determine how valuable each cache is.
1703 	 *
1704 	 * Because workloads change over time (and to avoid overflow)
1705 	 * we keep these statistics as a floating average, which ends
1706 	 * up weighing recent references more than old ones.
1707 	 *
1708 	 * anon in [0], file in [1]
1709 	 */
1710 	spin_lock_irq(&zone->lru_lock);
1711 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1712 		reclaim_stat->recent_scanned[0] /= 2;
1713 		reclaim_stat->recent_rotated[0] /= 2;
1714 	}
1715 
1716 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1717 		reclaim_stat->recent_scanned[1] /= 2;
1718 		reclaim_stat->recent_rotated[1] /= 2;
1719 	}
1720 
1721 	/*
1722 	 * The amount of pressure on anon vs file pages is inversely
1723 	 * proportional to the fraction of recently scanned pages on
1724 	 * each list that were recently referenced and in active use.
1725 	 */
1726 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1727 	ap /= reclaim_stat->recent_rotated[0] + 1;
1728 
1729 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1730 	fp /= reclaim_stat->recent_rotated[1] + 1;
1731 	spin_unlock_irq(&zone->lru_lock);
1732 
1733 	fraction[0] = ap;
1734 	fraction[1] = fp;
1735 	denominator = ap + fp + 1;
1736 out:
1737 	for_each_evictable_lru(lru) {
1738 		int file = is_file_lru(lru);
1739 		unsigned long scan;
1740 
1741 		scan = get_lru_size(lruvec, lru);
1742 		if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1743 			scan >>= sc->priority;
1744 			if (!scan && force_scan)
1745 				scan = SWAP_CLUSTER_MAX;
1746 			scan = div64_u64(scan * fraction[file], denominator);
1747 		}
1748 		nr[lru] = scan;
1749 	}
1750 }
1751 
1752 /* Use reclaim/compaction for costly allocs or under memory pressure */
1753 static bool in_reclaim_compaction(struct scan_control *sc)
1754 {
1755 	if (COMPACTION_BUILD && sc->order &&
1756 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1757 			 sc->priority < DEF_PRIORITY - 2))
1758 		return true;
1759 
1760 	return false;
1761 }
1762 
1763 #ifdef CONFIG_COMPACTION
1764 /*
1765  * If compaction is deferred for sc->order then scale the number of pages
1766  * reclaimed based on the number of consecutive allocation failures
1767  */
1768 static unsigned long scale_for_compaction(unsigned long pages_for_compaction,
1769 			struct lruvec *lruvec, struct scan_control *sc)
1770 {
1771 	struct zone *zone = lruvec_zone(lruvec);
1772 
1773 	if (zone->compact_order_failed <= sc->order)
1774 		pages_for_compaction <<= zone->compact_defer_shift;
1775 	return pages_for_compaction;
1776 }
1777 #else
1778 static unsigned long scale_for_compaction(unsigned long pages_for_compaction,
1779 			struct lruvec *lruvec, struct scan_control *sc)
1780 {
1781 	return pages_for_compaction;
1782 }
1783 #endif
1784 
1785 /*
1786  * Reclaim/compaction is used for high-order allocation requests. It reclaims
1787  * order-0 pages before compacting the zone. should_continue_reclaim() returns
1788  * true if more pages should be reclaimed such that when the page allocator
1789  * calls try_to_compact_zone() that it will have enough free pages to succeed.
1790  * It will give up earlier than that if there is difficulty reclaiming pages.
1791  */
1792 static inline bool should_continue_reclaim(struct lruvec *lruvec,
1793 					unsigned long nr_reclaimed,
1794 					unsigned long nr_scanned,
1795 					struct scan_control *sc)
1796 {
1797 	unsigned long pages_for_compaction;
1798 	unsigned long inactive_lru_pages;
1799 
1800 	/* If not in reclaim/compaction mode, stop */
1801 	if (!in_reclaim_compaction(sc))
1802 		return false;
1803 
1804 	/* Consider stopping depending on scan and reclaim activity */
1805 	if (sc->gfp_mask & __GFP_REPEAT) {
1806 		/*
1807 		 * For __GFP_REPEAT allocations, stop reclaiming if the
1808 		 * full LRU list has been scanned and we are still failing
1809 		 * to reclaim pages. This full LRU scan is potentially
1810 		 * expensive but a __GFP_REPEAT caller really wants to succeed
1811 		 */
1812 		if (!nr_reclaimed && !nr_scanned)
1813 			return false;
1814 	} else {
1815 		/*
1816 		 * For non-__GFP_REPEAT allocations which can presumably
1817 		 * fail without consequence, stop if we failed to reclaim
1818 		 * any pages from the last SWAP_CLUSTER_MAX number of
1819 		 * pages that were scanned. This will return to the
1820 		 * caller faster at the risk reclaim/compaction and
1821 		 * the resulting allocation attempt fails
1822 		 */
1823 		if (!nr_reclaimed)
1824 			return false;
1825 	}
1826 
1827 	/*
1828 	 * If we have not reclaimed enough pages for compaction and the
1829 	 * inactive lists are large enough, continue reclaiming
1830 	 */
1831 	pages_for_compaction = (2UL << sc->order);
1832 
1833 	pages_for_compaction = scale_for_compaction(pages_for_compaction,
1834 						    lruvec, sc);
1835 	inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1836 	if (nr_swap_pages > 0)
1837 		inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
1838 	if (sc->nr_reclaimed < pages_for_compaction &&
1839 			inactive_lru_pages > pages_for_compaction)
1840 		return true;
1841 
1842 	/* If compaction would go ahead or the allocation would succeed, stop */
1843 	switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1844 	case COMPACT_PARTIAL:
1845 	case COMPACT_CONTINUE:
1846 		return false;
1847 	default:
1848 		return true;
1849 	}
1850 }
1851 
1852 /*
1853  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1854  */
1855 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1856 {
1857 	unsigned long nr[NR_LRU_LISTS];
1858 	unsigned long nr_to_scan;
1859 	enum lru_list lru;
1860 	unsigned long nr_reclaimed, nr_scanned;
1861 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1862 	struct blk_plug plug;
1863 
1864 restart:
1865 	nr_reclaimed = 0;
1866 	nr_scanned = sc->nr_scanned;
1867 	get_scan_count(lruvec, sc, nr);
1868 
1869 	blk_start_plug(&plug);
1870 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1871 					nr[LRU_INACTIVE_FILE]) {
1872 		for_each_evictable_lru(lru) {
1873 			if (nr[lru]) {
1874 				nr_to_scan = min_t(unsigned long,
1875 						   nr[lru], SWAP_CLUSTER_MAX);
1876 				nr[lru] -= nr_to_scan;
1877 
1878 				nr_reclaimed += shrink_list(lru, nr_to_scan,
1879 							    lruvec, sc);
1880 			}
1881 		}
1882 		/*
1883 		 * On large memory systems, scan >> priority can become
1884 		 * really large. This is fine for the starting priority;
1885 		 * we want to put equal scanning pressure on each zone.
1886 		 * However, if the VM has a harder time of freeing pages,
1887 		 * with multiple processes reclaiming pages, the total
1888 		 * freeing target can get unreasonably large.
1889 		 */
1890 		if (nr_reclaimed >= nr_to_reclaim &&
1891 		    sc->priority < DEF_PRIORITY)
1892 			break;
1893 	}
1894 	blk_finish_plug(&plug);
1895 	sc->nr_reclaimed += nr_reclaimed;
1896 
1897 	/*
1898 	 * Even if we did not try to evict anon pages at all, we want to
1899 	 * rebalance the anon lru active/inactive ratio.
1900 	 */
1901 	if (inactive_anon_is_low(lruvec))
1902 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1903 				   sc, LRU_ACTIVE_ANON);
1904 
1905 	/* reclaim/compaction might need reclaim to continue */
1906 	if (should_continue_reclaim(lruvec, nr_reclaimed,
1907 				    sc->nr_scanned - nr_scanned, sc))
1908 		goto restart;
1909 
1910 	throttle_vm_writeout(sc->gfp_mask);
1911 }
1912 
1913 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1914 {
1915 	struct mem_cgroup *root = sc->target_mem_cgroup;
1916 	struct mem_cgroup_reclaim_cookie reclaim = {
1917 		.zone = zone,
1918 		.priority = sc->priority,
1919 	};
1920 	struct mem_cgroup *memcg;
1921 
1922 	memcg = mem_cgroup_iter(root, NULL, &reclaim);
1923 	do {
1924 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1925 
1926 		shrink_lruvec(lruvec, sc);
1927 
1928 		/*
1929 		 * Limit reclaim has historically picked one memcg and
1930 		 * scanned it with decreasing priority levels until
1931 		 * nr_to_reclaim had been reclaimed.  This priority
1932 		 * cycle is thus over after a single memcg.
1933 		 *
1934 		 * Direct reclaim and kswapd, on the other hand, have
1935 		 * to scan all memory cgroups to fulfill the overall
1936 		 * scan target for the zone.
1937 		 */
1938 		if (!global_reclaim(sc)) {
1939 			mem_cgroup_iter_break(root, memcg);
1940 			break;
1941 		}
1942 		memcg = mem_cgroup_iter(root, memcg, &reclaim);
1943 	} while (memcg);
1944 }
1945 
1946 /* Returns true if compaction should go ahead for a high-order request */
1947 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1948 {
1949 	unsigned long balance_gap, watermark;
1950 	bool watermark_ok;
1951 
1952 	/* Do not consider compaction for orders reclaim is meant to satisfy */
1953 	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1954 		return false;
1955 
1956 	/*
1957 	 * Compaction takes time to run and there are potentially other
1958 	 * callers using the pages just freed. Continue reclaiming until
1959 	 * there is a buffer of free pages available to give compaction
1960 	 * a reasonable chance of completing and allocating the page
1961 	 */
1962 	balance_gap = min(low_wmark_pages(zone),
1963 		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1964 			KSWAPD_ZONE_BALANCE_GAP_RATIO);
1965 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1966 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1967 
1968 	/*
1969 	 * If compaction is deferred, reclaim up to a point where
1970 	 * compaction will have a chance of success when re-enabled
1971 	 */
1972 	if (compaction_deferred(zone, sc->order))
1973 		return watermark_ok;
1974 
1975 	/* If compaction is not ready to start, keep reclaiming */
1976 	if (!compaction_suitable(zone, sc->order))
1977 		return false;
1978 
1979 	return watermark_ok;
1980 }
1981 
1982 /*
1983  * This is the direct reclaim path, for page-allocating processes.  We only
1984  * try to reclaim pages from zones which will satisfy the caller's allocation
1985  * request.
1986  *
1987  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1988  * Because:
1989  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1990  *    allocation or
1991  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1992  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1993  *    zone defense algorithm.
1994  *
1995  * If a zone is deemed to be full of pinned pages then just give it a light
1996  * scan then give up on it.
1997  *
1998  * This function returns true if a zone is being reclaimed for a costly
1999  * high-order allocation and compaction is ready to begin. This indicates to
2000  * the caller that it should consider retrying the allocation instead of
2001  * further reclaim.
2002  */
2003 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2004 {
2005 	struct zoneref *z;
2006 	struct zone *zone;
2007 	unsigned long nr_soft_reclaimed;
2008 	unsigned long nr_soft_scanned;
2009 	bool aborted_reclaim = false;
2010 
2011 	/*
2012 	 * If the number of buffer_heads in the machine exceeds the maximum
2013 	 * allowed level, force direct reclaim to scan the highmem zone as
2014 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2015 	 */
2016 	if (buffer_heads_over_limit)
2017 		sc->gfp_mask |= __GFP_HIGHMEM;
2018 
2019 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2020 					gfp_zone(sc->gfp_mask), sc->nodemask) {
2021 		if (!populated_zone(zone))
2022 			continue;
2023 		/*
2024 		 * Take care memory controller reclaiming has small influence
2025 		 * to global LRU.
2026 		 */
2027 		if (global_reclaim(sc)) {
2028 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2029 				continue;
2030 			if (zone->all_unreclaimable &&
2031 					sc->priority != DEF_PRIORITY)
2032 				continue;	/* Let kswapd poll it */
2033 			if (COMPACTION_BUILD) {
2034 				/*
2035 				 * If we already have plenty of memory free for
2036 				 * compaction in this zone, don't free any more.
2037 				 * Even though compaction is invoked for any
2038 				 * non-zero order, only frequent costly order
2039 				 * reclamation is disruptive enough to become a
2040 				 * noticeable problem, like transparent huge
2041 				 * page allocations.
2042 				 */
2043 				if (compaction_ready(zone, sc)) {
2044 					aborted_reclaim = true;
2045 					continue;
2046 				}
2047 			}
2048 			/*
2049 			 * This steals pages from memory cgroups over softlimit
2050 			 * and returns the number of reclaimed pages and
2051 			 * scanned pages. This works for global memory pressure
2052 			 * and balancing, not for a memcg's limit.
2053 			 */
2054 			nr_soft_scanned = 0;
2055 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2056 						sc->order, sc->gfp_mask,
2057 						&nr_soft_scanned);
2058 			sc->nr_reclaimed += nr_soft_reclaimed;
2059 			sc->nr_scanned += nr_soft_scanned;
2060 			/* need some check for avoid more shrink_zone() */
2061 		}
2062 
2063 		shrink_zone(zone, sc);
2064 	}
2065 
2066 	return aborted_reclaim;
2067 }
2068 
2069 static bool zone_reclaimable(struct zone *zone)
2070 {
2071 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2072 }
2073 
2074 /* All zones in zonelist are unreclaimable? */
2075 static bool all_unreclaimable(struct zonelist *zonelist,
2076 		struct scan_control *sc)
2077 {
2078 	struct zoneref *z;
2079 	struct zone *zone;
2080 
2081 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2082 			gfp_zone(sc->gfp_mask), sc->nodemask) {
2083 		if (!populated_zone(zone))
2084 			continue;
2085 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2086 			continue;
2087 		if (!zone->all_unreclaimable)
2088 			return false;
2089 	}
2090 
2091 	return true;
2092 }
2093 
2094 /*
2095  * This is the main entry point to direct page reclaim.
2096  *
2097  * If a full scan of the inactive list fails to free enough memory then we
2098  * are "out of memory" and something needs to be killed.
2099  *
2100  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2101  * high - the zone may be full of dirty or under-writeback pages, which this
2102  * caller can't do much about.  We kick the writeback threads and take explicit
2103  * naps in the hope that some of these pages can be written.  But if the
2104  * allocating task holds filesystem locks which prevent writeout this might not
2105  * work, and the allocation attempt will fail.
2106  *
2107  * returns:	0, if no pages reclaimed
2108  * 		else, the number of pages reclaimed
2109  */
2110 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2111 					struct scan_control *sc,
2112 					struct shrink_control *shrink)
2113 {
2114 	unsigned long total_scanned = 0;
2115 	struct reclaim_state *reclaim_state = current->reclaim_state;
2116 	struct zoneref *z;
2117 	struct zone *zone;
2118 	unsigned long writeback_threshold;
2119 	bool aborted_reclaim;
2120 
2121 	delayacct_freepages_start();
2122 
2123 	if (global_reclaim(sc))
2124 		count_vm_event(ALLOCSTALL);
2125 
2126 	do {
2127 		sc->nr_scanned = 0;
2128 		aborted_reclaim = shrink_zones(zonelist, sc);
2129 
2130 		/*
2131 		 * Don't shrink slabs when reclaiming memory from
2132 		 * over limit cgroups
2133 		 */
2134 		if (global_reclaim(sc)) {
2135 			unsigned long lru_pages = 0;
2136 			for_each_zone_zonelist(zone, z, zonelist,
2137 					gfp_zone(sc->gfp_mask)) {
2138 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2139 					continue;
2140 
2141 				lru_pages += zone_reclaimable_pages(zone);
2142 			}
2143 
2144 			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2145 			if (reclaim_state) {
2146 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2147 				reclaim_state->reclaimed_slab = 0;
2148 			}
2149 		}
2150 		total_scanned += sc->nr_scanned;
2151 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2152 			goto out;
2153 
2154 		/*
2155 		 * Try to write back as many pages as we just scanned.  This
2156 		 * tends to cause slow streaming writers to write data to the
2157 		 * disk smoothly, at the dirtying rate, which is nice.   But
2158 		 * that's undesirable in laptop mode, where we *want* lumpy
2159 		 * writeout.  So in laptop mode, write out the whole world.
2160 		 */
2161 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2162 		if (total_scanned > writeback_threshold) {
2163 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2164 						WB_REASON_TRY_TO_FREE_PAGES);
2165 			sc->may_writepage = 1;
2166 		}
2167 
2168 		/* Take a nap, wait for some writeback to complete */
2169 		if (!sc->hibernation_mode && sc->nr_scanned &&
2170 		    sc->priority < DEF_PRIORITY - 2) {
2171 			struct zone *preferred_zone;
2172 
2173 			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2174 						&cpuset_current_mems_allowed,
2175 						&preferred_zone);
2176 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2177 		}
2178 	} while (--sc->priority >= 0);
2179 
2180 out:
2181 	delayacct_freepages_end();
2182 
2183 	if (sc->nr_reclaimed)
2184 		return sc->nr_reclaimed;
2185 
2186 	/*
2187 	 * As hibernation is going on, kswapd is freezed so that it can't mark
2188 	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2189 	 * check.
2190 	 */
2191 	if (oom_killer_disabled)
2192 		return 0;
2193 
2194 	/* Aborted reclaim to try compaction? don't OOM, then */
2195 	if (aborted_reclaim)
2196 		return 1;
2197 
2198 	/* top priority shrink_zones still had more to do? don't OOM, then */
2199 	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2200 		return 1;
2201 
2202 	return 0;
2203 }
2204 
2205 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2206 {
2207 	struct zone *zone;
2208 	unsigned long pfmemalloc_reserve = 0;
2209 	unsigned long free_pages = 0;
2210 	int i;
2211 	bool wmark_ok;
2212 
2213 	for (i = 0; i <= ZONE_NORMAL; i++) {
2214 		zone = &pgdat->node_zones[i];
2215 		pfmemalloc_reserve += min_wmark_pages(zone);
2216 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2217 	}
2218 
2219 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2220 
2221 	/* kswapd must be awake if processes are being throttled */
2222 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2223 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2224 						(enum zone_type)ZONE_NORMAL);
2225 		wake_up_interruptible(&pgdat->kswapd_wait);
2226 	}
2227 
2228 	return wmark_ok;
2229 }
2230 
2231 /*
2232  * Throttle direct reclaimers if backing storage is backed by the network
2233  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2234  * depleted. kswapd will continue to make progress and wake the processes
2235  * when the low watermark is reached
2236  */
2237 static void throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2238 					nodemask_t *nodemask)
2239 {
2240 	struct zone *zone;
2241 	int high_zoneidx = gfp_zone(gfp_mask);
2242 	pg_data_t *pgdat;
2243 
2244 	/*
2245 	 * Kernel threads should not be throttled as they may be indirectly
2246 	 * responsible for cleaning pages necessary for reclaim to make forward
2247 	 * progress. kjournald for example may enter direct reclaim while
2248 	 * committing a transaction where throttling it could forcing other
2249 	 * processes to block on log_wait_commit().
2250 	 */
2251 	if (current->flags & PF_KTHREAD)
2252 		return;
2253 
2254 	/* Check if the pfmemalloc reserves are ok */
2255 	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2256 	pgdat = zone->zone_pgdat;
2257 	if (pfmemalloc_watermark_ok(pgdat))
2258 		return;
2259 
2260 	/* Account for the throttling */
2261 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2262 
2263 	/*
2264 	 * If the caller cannot enter the filesystem, it's possible that it
2265 	 * is due to the caller holding an FS lock or performing a journal
2266 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2267 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2268 	 * blocked waiting on the same lock. Instead, throttle for up to a
2269 	 * second before continuing.
2270 	 */
2271 	if (!(gfp_mask & __GFP_FS)) {
2272 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2273 			pfmemalloc_watermark_ok(pgdat), HZ);
2274 		return;
2275 	}
2276 
2277 	/* Throttle until kswapd wakes the process */
2278 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2279 		pfmemalloc_watermark_ok(pgdat));
2280 }
2281 
2282 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2283 				gfp_t gfp_mask, nodemask_t *nodemask)
2284 {
2285 	unsigned long nr_reclaimed;
2286 	struct scan_control sc = {
2287 		.gfp_mask = gfp_mask,
2288 		.may_writepage = !laptop_mode,
2289 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2290 		.may_unmap = 1,
2291 		.may_swap = 1,
2292 		.order = order,
2293 		.priority = DEF_PRIORITY,
2294 		.target_mem_cgroup = NULL,
2295 		.nodemask = nodemask,
2296 	};
2297 	struct shrink_control shrink = {
2298 		.gfp_mask = sc.gfp_mask,
2299 	};
2300 
2301 	throttle_direct_reclaim(gfp_mask, zonelist, nodemask);
2302 
2303 	/*
2304 	 * Do not enter reclaim if fatal signal is pending. 1 is returned so
2305 	 * that the page allocator does not consider triggering OOM
2306 	 */
2307 	if (fatal_signal_pending(current))
2308 		return 1;
2309 
2310 	trace_mm_vmscan_direct_reclaim_begin(order,
2311 				sc.may_writepage,
2312 				gfp_mask);
2313 
2314 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2315 
2316 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2317 
2318 	return nr_reclaimed;
2319 }
2320 
2321 #ifdef CONFIG_MEMCG
2322 
2323 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2324 						gfp_t gfp_mask, bool noswap,
2325 						struct zone *zone,
2326 						unsigned long *nr_scanned)
2327 {
2328 	struct scan_control sc = {
2329 		.nr_scanned = 0,
2330 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2331 		.may_writepage = !laptop_mode,
2332 		.may_unmap = 1,
2333 		.may_swap = !noswap,
2334 		.order = 0,
2335 		.priority = 0,
2336 		.target_mem_cgroup = memcg,
2337 	};
2338 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2339 
2340 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2341 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2342 
2343 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2344 						      sc.may_writepage,
2345 						      sc.gfp_mask);
2346 
2347 	/*
2348 	 * NOTE: Although we can get the priority field, using it
2349 	 * here is not a good idea, since it limits the pages we can scan.
2350 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2351 	 * will pick up pages from other mem cgroup's as well. We hack
2352 	 * the priority and make it zero.
2353 	 */
2354 	shrink_lruvec(lruvec, &sc);
2355 
2356 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2357 
2358 	*nr_scanned = sc.nr_scanned;
2359 	return sc.nr_reclaimed;
2360 }
2361 
2362 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2363 					   gfp_t gfp_mask,
2364 					   bool noswap)
2365 {
2366 	struct zonelist *zonelist;
2367 	unsigned long nr_reclaimed;
2368 	int nid;
2369 	struct scan_control sc = {
2370 		.may_writepage = !laptop_mode,
2371 		.may_unmap = 1,
2372 		.may_swap = !noswap,
2373 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2374 		.order = 0,
2375 		.priority = DEF_PRIORITY,
2376 		.target_mem_cgroup = memcg,
2377 		.nodemask = NULL, /* we don't care the placement */
2378 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2379 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2380 	};
2381 	struct shrink_control shrink = {
2382 		.gfp_mask = sc.gfp_mask,
2383 	};
2384 
2385 	/*
2386 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2387 	 * take care of from where we get pages. So the node where we start the
2388 	 * scan does not need to be the current node.
2389 	 */
2390 	nid = mem_cgroup_select_victim_node(memcg);
2391 
2392 	zonelist = NODE_DATA(nid)->node_zonelists;
2393 
2394 	trace_mm_vmscan_memcg_reclaim_begin(0,
2395 					    sc.may_writepage,
2396 					    sc.gfp_mask);
2397 
2398 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2399 
2400 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2401 
2402 	return nr_reclaimed;
2403 }
2404 #endif
2405 
2406 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2407 {
2408 	struct mem_cgroup *memcg;
2409 
2410 	if (!total_swap_pages)
2411 		return;
2412 
2413 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2414 	do {
2415 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2416 
2417 		if (inactive_anon_is_low(lruvec))
2418 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2419 					   sc, LRU_ACTIVE_ANON);
2420 
2421 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2422 	} while (memcg);
2423 }
2424 
2425 /*
2426  * pgdat_balanced is used when checking if a node is balanced for high-order
2427  * allocations. Only zones that meet watermarks and are in a zone allowed
2428  * by the callers classzone_idx are added to balanced_pages. The total of
2429  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2430  * for the node to be considered balanced. Forcing all zones to be balanced
2431  * for high orders can cause excessive reclaim when there are imbalanced zones.
2432  * The choice of 25% is due to
2433  *   o a 16M DMA zone that is balanced will not balance a zone on any
2434  *     reasonable sized machine
2435  *   o On all other machines, the top zone must be at least a reasonable
2436  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2437  *     would need to be at least 256M for it to be balance a whole node.
2438  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2439  *     to balance a node on its own. These seemed like reasonable ratios.
2440  */
2441 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2442 						int classzone_idx)
2443 {
2444 	unsigned long present_pages = 0;
2445 	int i;
2446 
2447 	for (i = 0; i <= classzone_idx; i++)
2448 		present_pages += pgdat->node_zones[i].present_pages;
2449 
2450 	/* A special case here: if zone has no page, we think it's balanced */
2451 	return balanced_pages >= (present_pages >> 2);
2452 }
2453 
2454 /*
2455  * Prepare kswapd for sleeping. This verifies that there are no processes
2456  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2457  *
2458  * Returns true if kswapd is ready to sleep
2459  */
2460 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2461 					int classzone_idx)
2462 {
2463 	int i;
2464 	unsigned long balanced = 0;
2465 	bool all_zones_ok = true;
2466 
2467 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2468 	if (remaining)
2469 		return false;
2470 
2471 	/*
2472 	 * There is a potential race between when kswapd checks its watermarks
2473 	 * and a process gets throttled. There is also a potential race if
2474 	 * processes get throttled, kswapd wakes, a large process exits therby
2475 	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2476 	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2477 	 * so wake them now if necessary. If necessary, processes will wake
2478 	 * kswapd and get throttled again
2479 	 */
2480 	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2481 		wake_up(&pgdat->pfmemalloc_wait);
2482 		return false;
2483 	}
2484 
2485 	/* Check the watermark levels */
2486 	for (i = 0; i <= classzone_idx; i++) {
2487 		struct zone *zone = pgdat->node_zones + i;
2488 
2489 		if (!populated_zone(zone))
2490 			continue;
2491 
2492 		/*
2493 		 * balance_pgdat() skips over all_unreclaimable after
2494 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2495 		 * they must be considered balanced here as well if kswapd
2496 		 * is to sleep
2497 		 */
2498 		if (zone->all_unreclaimable) {
2499 			balanced += zone->present_pages;
2500 			continue;
2501 		}
2502 
2503 		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2504 							i, 0))
2505 			all_zones_ok = false;
2506 		else
2507 			balanced += zone->present_pages;
2508 	}
2509 
2510 	/*
2511 	 * For high-order requests, the balanced zones must contain at least
2512 	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2513 	 * must be balanced
2514 	 */
2515 	if (order)
2516 		return pgdat_balanced(pgdat, balanced, classzone_idx);
2517 	else
2518 		return all_zones_ok;
2519 }
2520 
2521 /*
2522  * For kswapd, balance_pgdat() will work across all this node's zones until
2523  * they are all at high_wmark_pages(zone).
2524  *
2525  * Returns the final order kswapd was reclaiming at
2526  *
2527  * There is special handling here for zones which are full of pinned pages.
2528  * This can happen if the pages are all mlocked, or if they are all used by
2529  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2530  * What we do is to detect the case where all pages in the zone have been
2531  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2532  * dead and from now on, only perform a short scan.  Basically we're polling
2533  * the zone for when the problem goes away.
2534  *
2535  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2536  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2537  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2538  * lower zones regardless of the number of free pages in the lower zones. This
2539  * interoperates with the page allocator fallback scheme to ensure that aging
2540  * of pages is balanced across the zones.
2541  */
2542 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2543 							int *classzone_idx)
2544 {
2545 	int all_zones_ok;
2546 	unsigned long balanced;
2547 	int i;
2548 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2549 	unsigned long total_scanned;
2550 	struct reclaim_state *reclaim_state = current->reclaim_state;
2551 	unsigned long nr_soft_reclaimed;
2552 	unsigned long nr_soft_scanned;
2553 	struct scan_control sc = {
2554 		.gfp_mask = GFP_KERNEL,
2555 		.may_unmap = 1,
2556 		.may_swap = 1,
2557 		/*
2558 		 * kswapd doesn't want to be bailed out while reclaim. because
2559 		 * we want to put equal scanning pressure on each zone.
2560 		 */
2561 		.nr_to_reclaim = ULONG_MAX,
2562 		.order = order,
2563 		.target_mem_cgroup = NULL,
2564 	};
2565 	struct shrink_control shrink = {
2566 		.gfp_mask = sc.gfp_mask,
2567 	};
2568 loop_again:
2569 	total_scanned = 0;
2570 	sc.priority = DEF_PRIORITY;
2571 	sc.nr_reclaimed = 0;
2572 	sc.may_writepage = !laptop_mode;
2573 	count_vm_event(PAGEOUTRUN);
2574 
2575 	do {
2576 		unsigned long lru_pages = 0;
2577 		int has_under_min_watermark_zone = 0;
2578 
2579 		all_zones_ok = 1;
2580 		balanced = 0;
2581 
2582 		/*
2583 		 * Scan in the highmem->dma direction for the highest
2584 		 * zone which needs scanning
2585 		 */
2586 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2587 			struct zone *zone = pgdat->node_zones + i;
2588 
2589 			if (!populated_zone(zone))
2590 				continue;
2591 
2592 			if (zone->all_unreclaimable &&
2593 			    sc.priority != DEF_PRIORITY)
2594 				continue;
2595 
2596 			/*
2597 			 * Do some background aging of the anon list, to give
2598 			 * pages a chance to be referenced before reclaiming.
2599 			 */
2600 			age_active_anon(zone, &sc);
2601 
2602 			/*
2603 			 * If the number of buffer_heads in the machine
2604 			 * exceeds the maximum allowed level and this node
2605 			 * has a highmem zone, force kswapd to reclaim from
2606 			 * it to relieve lowmem pressure.
2607 			 */
2608 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
2609 				end_zone = i;
2610 				break;
2611 			}
2612 
2613 			if (!zone_watermark_ok_safe(zone, order,
2614 					high_wmark_pages(zone), 0, 0)) {
2615 				end_zone = i;
2616 				break;
2617 			} else {
2618 				/* If balanced, clear the congested flag */
2619 				zone_clear_flag(zone, ZONE_CONGESTED);
2620 			}
2621 		}
2622 		if (i < 0)
2623 			goto out;
2624 
2625 		for (i = 0; i <= end_zone; i++) {
2626 			struct zone *zone = pgdat->node_zones + i;
2627 
2628 			lru_pages += zone_reclaimable_pages(zone);
2629 		}
2630 
2631 		/*
2632 		 * Now scan the zone in the dma->highmem direction, stopping
2633 		 * at the last zone which needs scanning.
2634 		 *
2635 		 * We do this because the page allocator works in the opposite
2636 		 * direction.  This prevents the page allocator from allocating
2637 		 * pages behind kswapd's direction of progress, which would
2638 		 * cause too much scanning of the lower zones.
2639 		 */
2640 		for (i = 0; i <= end_zone; i++) {
2641 			struct zone *zone = pgdat->node_zones + i;
2642 			int nr_slab, testorder;
2643 			unsigned long balance_gap;
2644 
2645 			if (!populated_zone(zone))
2646 				continue;
2647 
2648 			if (zone->all_unreclaimable &&
2649 			    sc.priority != DEF_PRIORITY)
2650 				continue;
2651 
2652 			sc.nr_scanned = 0;
2653 
2654 			nr_soft_scanned = 0;
2655 			/*
2656 			 * Call soft limit reclaim before calling shrink_zone.
2657 			 */
2658 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2659 							order, sc.gfp_mask,
2660 							&nr_soft_scanned);
2661 			sc.nr_reclaimed += nr_soft_reclaimed;
2662 			total_scanned += nr_soft_scanned;
2663 
2664 			/*
2665 			 * We put equal pressure on every zone, unless
2666 			 * one zone has way too many pages free
2667 			 * already. The "too many pages" is defined
2668 			 * as the high wmark plus a "gap" where the
2669 			 * gap is either the low watermark or 1%
2670 			 * of the zone, whichever is smaller.
2671 			 */
2672 			balance_gap = min(low_wmark_pages(zone),
2673 				(zone->present_pages +
2674 					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2675 				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2676 			/*
2677 			 * Kswapd reclaims only single pages with compaction
2678 			 * enabled. Trying too hard to reclaim until contiguous
2679 			 * free pages have become available can hurt performance
2680 			 * by evicting too much useful data from memory.
2681 			 * Do not reclaim more than needed for compaction.
2682 			 */
2683 			testorder = order;
2684 			if (COMPACTION_BUILD && order &&
2685 					compaction_suitable(zone, order) !=
2686 						COMPACT_SKIPPED)
2687 				testorder = 0;
2688 
2689 			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2690 				    !zone_watermark_ok_safe(zone, testorder,
2691 					high_wmark_pages(zone) + balance_gap,
2692 					end_zone, 0)) {
2693 				shrink_zone(zone, &sc);
2694 
2695 				reclaim_state->reclaimed_slab = 0;
2696 				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2697 				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2698 				total_scanned += sc.nr_scanned;
2699 
2700 				if (nr_slab == 0 && !zone_reclaimable(zone))
2701 					zone->all_unreclaimable = 1;
2702 			}
2703 
2704 			/*
2705 			 * If we've done a decent amount of scanning and
2706 			 * the reclaim ratio is low, start doing writepage
2707 			 * even in laptop mode
2708 			 */
2709 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2710 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2711 				sc.may_writepage = 1;
2712 
2713 			if (zone->all_unreclaimable) {
2714 				if (end_zone && end_zone == i)
2715 					end_zone--;
2716 				continue;
2717 			}
2718 
2719 			if (!zone_watermark_ok_safe(zone, testorder,
2720 					high_wmark_pages(zone), end_zone, 0)) {
2721 				all_zones_ok = 0;
2722 				/*
2723 				 * We are still under min water mark.  This
2724 				 * means that we have a GFP_ATOMIC allocation
2725 				 * failure risk. Hurry up!
2726 				 */
2727 				if (!zone_watermark_ok_safe(zone, order,
2728 					    min_wmark_pages(zone), end_zone, 0))
2729 					has_under_min_watermark_zone = 1;
2730 			} else {
2731 				/*
2732 				 * If a zone reaches its high watermark,
2733 				 * consider it to be no longer congested. It's
2734 				 * possible there are dirty pages backed by
2735 				 * congested BDIs but as pressure is relieved,
2736 				 * speculatively avoid congestion waits
2737 				 */
2738 				zone_clear_flag(zone, ZONE_CONGESTED);
2739 				if (i <= *classzone_idx)
2740 					balanced += zone->present_pages;
2741 			}
2742 
2743 		}
2744 
2745 		/*
2746 		 * If the low watermark is met there is no need for processes
2747 		 * to be throttled on pfmemalloc_wait as they should not be
2748 		 * able to safely make forward progress. Wake them
2749 		 */
2750 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2751 				pfmemalloc_watermark_ok(pgdat))
2752 			wake_up(&pgdat->pfmemalloc_wait);
2753 
2754 		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2755 			break;		/* kswapd: all done */
2756 		/*
2757 		 * OK, kswapd is getting into trouble.  Take a nap, then take
2758 		 * another pass across the zones.
2759 		 */
2760 		if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2761 			if (has_under_min_watermark_zone)
2762 				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2763 			else
2764 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2765 		}
2766 
2767 		/*
2768 		 * We do this so kswapd doesn't build up large priorities for
2769 		 * example when it is freeing in parallel with allocators. It
2770 		 * matches the direct reclaim path behaviour in terms of impact
2771 		 * on zone->*_priority.
2772 		 */
2773 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2774 			break;
2775 	} while (--sc.priority >= 0);
2776 out:
2777 
2778 	/*
2779 	 * order-0: All zones must meet high watermark for a balanced node
2780 	 * high-order: Balanced zones must make up at least 25% of the node
2781 	 *             for the node to be balanced
2782 	 */
2783 	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2784 		cond_resched();
2785 
2786 		try_to_freeze();
2787 
2788 		/*
2789 		 * Fragmentation may mean that the system cannot be
2790 		 * rebalanced for high-order allocations in all zones.
2791 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2792 		 * it means the zones have been fully scanned and are still
2793 		 * not balanced. For high-order allocations, there is
2794 		 * little point trying all over again as kswapd may
2795 		 * infinite loop.
2796 		 *
2797 		 * Instead, recheck all watermarks at order-0 as they
2798 		 * are the most important. If watermarks are ok, kswapd will go
2799 		 * back to sleep. High-order users can still perform direct
2800 		 * reclaim if they wish.
2801 		 */
2802 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2803 			order = sc.order = 0;
2804 
2805 		goto loop_again;
2806 	}
2807 
2808 	/*
2809 	 * If kswapd was reclaiming at a higher order, it has the option of
2810 	 * sleeping without all zones being balanced. Before it does, it must
2811 	 * ensure that the watermarks for order-0 on *all* zones are met and
2812 	 * that the congestion flags are cleared. The congestion flag must
2813 	 * be cleared as kswapd is the only mechanism that clears the flag
2814 	 * and it is potentially going to sleep here.
2815 	 */
2816 	if (order) {
2817 		int zones_need_compaction = 1;
2818 
2819 		for (i = 0; i <= end_zone; i++) {
2820 			struct zone *zone = pgdat->node_zones + i;
2821 
2822 			if (!populated_zone(zone))
2823 				continue;
2824 
2825 			if (zone->all_unreclaimable &&
2826 			    sc.priority != DEF_PRIORITY)
2827 				continue;
2828 
2829 			/* Would compaction fail due to lack of free memory? */
2830 			if (COMPACTION_BUILD &&
2831 			    compaction_suitable(zone, order) == COMPACT_SKIPPED)
2832 				goto loop_again;
2833 
2834 			/* Confirm the zone is balanced for order-0 */
2835 			if (!zone_watermark_ok(zone, 0,
2836 					high_wmark_pages(zone), 0, 0)) {
2837 				order = sc.order = 0;
2838 				goto loop_again;
2839 			}
2840 
2841 			/* Check if the memory needs to be defragmented. */
2842 			if (zone_watermark_ok(zone, order,
2843 				    low_wmark_pages(zone), *classzone_idx, 0))
2844 				zones_need_compaction = 0;
2845 
2846 			/* If balanced, clear the congested flag */
2847 			zone_clear_flag(zone, ZONE_CONGESTED);
2848 		}
2849 
2850 		if (zones_need_compaction)
2851 			compact_pgdat(pgdat, order);
2852 	}
2853 
2854 	/*
2855 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2856 	 * makes a decision on the order we were last reclaiming at. However,
2857 	 * if another caller entered the allocator slow path while kswapd
2858 	 * was awake, order will remain at the higher level
2859 	 */
2860 	*classzone_idx = end_zone;
2861 	return order;
2862 }
2863 
2864 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2865 {
2866 	long remaining = 0;
2867 	DEFINE_WAIT(wait);
2868 
2869 	if (freezing(current) || kthread_should_stop())
2870 		return;
2871 
2872 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2873 
2874 	/* Try to sleep for a short interval */
2875 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2876 		remaining = schedule_timeout(HZ/10);
2877 		finish_wait(&pgdat->kswapd_wait, &wait);
2878 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2879 	}
2880 
2881 	/*
2882 	 * After a short sleep, check if it was a premature sleep. If not, then
2883 	 * go fully to sleep until explicitly woken up.
2884 	 */
2885 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2886 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2887 
2888 		/*
2889 		 * vmstat counters are not perfectly accurate and the estimated
2890 		 * value for counters such as NR_FREE_PAGES can deviate from the
2891 		 * true value by nr_online_cpus * threshold. To avoid the zone
2892 		 * watermarks being breached while under pressure, we reduce the
2893 		 * per-cpu vmstat threshold while kswapd is awake and restore
2894 		 * them before going back to sleep.
2895 		 */
2896 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2897 
2898 		/*
2899 		 * Compaction records what page blocks it recently failed to
2900 		 * isolate pages from and skips them in the future scanning.
2901 		 * When kswapd is going to sleep, it is reasonable to assume
2902 		 * that pages and compaction may succeed so reset the cache.
2903 		 */
2904 		reset_isolation_suitable(pgdat);
2905 
2906 		if (!kthread_should_stop())
2907 			schedule();
2908 
2909 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2910 	} else {
2911 		if (remaining)
2912 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2913 		else
2914 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2915 	}
2916 	finish_wait(&pgdat->kswapd_wait, &wait);
2917 }
2918 
2919 /*
2920  * The background pageout daemon, started as a kernel thread
2921  * from the init process.
2922  *
2923  * This basically trickles out pages so that we have _some_
2924  * free memory available even if there is no other activity
2925  * that frees anything up. This is needed for things like routing
2926  * etc, where we otherwise might have all activity going on in
2927  * asynchronous contexts that cannot page things out.
2928  *
2929  * If there are applications that are active memory-allocators
2930  * (most normal use), this basically shouldn't matter.
2931  */
2932 static int kswapd(void *p)
2933 {
2934 	unsigned long order, new_order;
2935 	unsigned balanced_order;
2936 	int classzone_idx, new_classzone_idx;
2937 	int balanced_classzone_idx;
2938 	pg_data_t *pgdat = (pg_data_t*)p;
2939 	struct task_struct *tsk = current;
2940 
2941 	struct reclaim_state reclaim_state = {
2942 		.reclaimed_slab = 0,
2943 	};
2944 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2945 
2946 	lockdep_set_current_reclaim_state(GFP_KERNEL);
2947 
2948 	if (!cpumask_empty(cpumask))
2949 		set_cpus_allowed_ptr(tsk, cpumask);
2950 	current->reclaim_state = &reclaim_state;
2951 
2952 	/*
2953 	 * Tell the memory management that we're a "memory allocator",
2954 	 * and that if we need more memory we should get access to it
2955 	 * regardless (see "__alloc_pages()"). "kswapd" should
2956 	 * never get caught in the normal page freeing logic.
2957 	 *
2958 	 * (Kswapd normally doesn't need memory anyway, but sometimes
2959 	 * you need a small amount of memory in order to be able to
2960 	 * page out something else, and this flag essentially protects
2961 	 * us from recursively trying to free more memory as we're
2962 	 * trying to free the first piece of memory in the first place).
2963 	 */
2964 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2965 	set_freezable();
2966 
2967 	order = new_order = 0;
2968 	balanced_order = 0;
2969 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2970 	balanced_classzone_idx = classzone_idx;
2971 	for ( ; ; ) {
2972 		int ret;
2973 
2974 		/*
2975 		 * If the last balance_pgdat was unsuccessful it's unlikely a
2976 		 * new request of a similar or harder type will succeed soon
2977 		 * so consider going to sleep on the basis we reclaimed at
2978 		 */
2979 		if (balanced_classzone_idx >= new_classzone_idx &&
2980 					balanced_order == new_order) {
2981 			new_order = pgdat->kswapd_max_order;
2982 			new_classzone_idx = pgdat->classzone_idx;
2983 			pgdat->kswapd_max_order =  0;
2984 			pgdat->classzone_idx = pgdat->nr_zones - 1;
2985 		}
2986 
2987 		if (order < new_order || classzone_idx > new_classzone_idx) {
2988 			/*
2989 			 * Don't sleep if someone wants a larger 'order'
2990 			 * allocation or has tigher zone constraints
2991 			 */
2992 			order = new_order;
2993 			classzone_idx = new_classzone_idx;
2994 		} else {
2995 			kswapd_try_to_sleep(pgdat, balanced_order,
2996 						balanced_classzone_idx);
2997 			order = pgdat->kswapd_max_order;
2998 			classzone_idx = pgdat->classzone_idx;
2999 			new_order = order;
3000 			new_classzone_idx = classzone_idx;
3001 			pgdat->kswapd_max_order = 0;
3002 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3003 		}
3004 
3005 		ret = try_to_freeze();
3006 		if (kthread_should_stop())
3007 			break;
3008 
3009 		/*
3010 		 * We can speed up thawing tasks if we don't call balance_pgdat
3011 		 * after returning from the refrigerator
3012 		 */
3013 		if (!ret) {
3014 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3015 			balanced_classzone_idx = classzone_idx;
3016 			balanced_order = balance_pgdat(pgdat, order,
3017 						&balanced_classzone_idx);
3018 		}
3019 	}
3020 	return 0;
3021 }
3022 
3023 /*
3024  * A zone is low on free memory, so wake its kswapd task to service it.
3025  */
3026 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3027 {
3028 	pg_data_t *pgdat;
3029 
3030 	if (!populated_zone(zone))
3031 		return;
3032 
3033 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3034 		return;
3035 	pgdat = zone->zone_pgdat;
3036 	if (pgdat->kswapd_max_order < order) {
3037 		pgdat->kswapd_max_order = order;
3038 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3039 	}
3040 	if (!waitqueue_active(&pgdat->kswapd_wait))
3041 		return;
3042 	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3043 		return;
3044 
3045 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3046 	wake_up_interruptible(&pgdat->kswapd_wait);
3047 }
3048 
3049 /*
3050  * The reclaimable count would be mostly accurate.
3051  * The less reclaimable pages may be
3052  * - mlocked pages, which will be moved to unevictable list when encountered
3053  * - mapped pages, which may require several travels to be reclaimed
3054  * - dirty pages, which is not "instantly" reclaimable
3055  */
3056 unsigned long global_reclaimable_pages(void)
3057 {
3058 	int nr;
3059 
3060 	nr = global_page_state(NR_ACTIVE_FILE) +
3061 	     global_page_state(NR_INACTIVE_FILE);
3062 
3063 	if (nr_swap_pages > 0)
3064 		nr += global_page_state(NR_ACTIVE_ANON) +
3065 		      global_page_state(NR_INACTIVE_ANON);
3066 
3067 	return nr;
3068 }
3069 
3070 unsigned long zone_reclaimable_pages(struct zone *zone)
3071 {
3072 	int nr;
3073 
3074 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3075 	     zone_page_state(zone, NR_INACTIVE_FILE);
3076 
3077 	if (nr_swap_pages > 0)
3078 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3079 		      zone_page_state(zone, NR_INACTIVE_ANON);
3080 
3081 	return nr;
3082 }
3083 
3084 #ifdef CONFIG_HIBERNATION
3085 /*
3086  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3087  * freed pages.
3088  *
3089  * Rather than trying to age LRUs the aim is to preserve the overall
3090  * LRU order by reclaiming preferentially
3091  * inactive > active > active referenced > active mapped
3092  */
3093 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3094 {
3095 	struct reclaim_state reclaim_state;
3096 	struct scan_control sc = {
3097 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3098 		.may_swap = 1,
3099 		.may_unmap = 1,
3100 		.may_writepage = 1,
3101 		.nr_to_reclaim = nr_to_reclaim,
3102 		.hibernation_mode = 1,
3103 		.order = 0,
3104 		.priority = DEF_PRIORITY,
3105 	};
3106 	struct shrink_control shrink = {
3107 		.gfp_mask = sc.gfp_mask,
3108 	};
3109 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3110 	struct task_struct *p = current;
3111 	unsigned long nr_reclaimed;
3112 
3113 	p->flags |= PF_MEMALLOC;
3114 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3115 	reclaim_state.reclaimed_slab = 0;
3116 	p->reclaim_state = &reclaim_state;
3117 
3118 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3119 
3120 	p->reclaim_state = NULL;
3121 	lockdep_clear_current_reclaim_state();
3122 	p->flags &= ~PF_MEMALLOC;
3123 
3124 	return nr_reclaimed;
3125 }
3126 #endif /* CONFIG_HIBERNATION */
3127 
3128 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3129    not required for correctness.  So if the last cpu in a node goes
3130    away, we get changed to run anywhere: as the first one comes back,
3131    restore their cpu bindings. */
3132 static int __devinit cpu_callback(struct notifier_block *nfb,
3133 				  unsigned long action, void *hcpu)
3134 {
3135 	int nid;
3136 
3137 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3138 		for_each_node_state(nid, N_HIGH_MEMORY) {
3139 			pg_data_t *pgdat = NODE_DATA(nid);
3140 			const struct cpumask *mask;
3141 
3142 			mask = cpumask_of_node(pgdat->node_id);
3143 
3144 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3145 				/* One of our CPUs online: restore mask */
3146 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3147 		}
3148 	}
3149 	return NOTIFY_OK;
3150 }
3151 
3152 /*
3153  * This kswapd start function will be called by init and node-hot-add.
3154  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3155  */
3156 int kswapd_run(int nid)
3157 {
3158 	pg_data_t *pgdat = NODE_DATA(nid);
3159 	int ret = 0;
3160 
3161 	if (pgdat->kswapd)
3162 		return 0;
3163 
3164 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3165 	if (IS_ERR(pgdat->kswapd)) {
3166 		/* failure at boot is fatal */
3167 		BUG_ON(system_state == SYSTEM_BOOTING);
3168 		pgdat->kswapd = NULL;
3169 		pr_err("Failed to start kswapd on node %d\n", nid);
3170 		ret = PTR_ERR(pgdat->kswapd);
3171 	}
3172 	return ret;
3173 }
3174 
3175 /*
3176  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3177  * hold lock_memory_hotplug().
3178  */
3179 void kswapd_stop(int nid)
3180 {
3181 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3182 
3183 	if (kswapd) {
3184 		kthread_stop(kswapd);
3185 		NODE_DATA(nid)->kswapd = NULL;
3186 	}
3187 }
3188 
3189 static int __init kswapd_init(void)
3190 {
3191 	int nid;
3192 
3193 	swap_setup();
3194 	for_each_node_state(nid, N_HIGH_MEMORY)
3195  		kswapd_run(nid);
3196 	hotcpu_notifier(cpu_callback, 0);
3197 	return 0;
3198 }
3199 
3200 module_init(kswapd_init)
3201 
3202 #ifdef CONFIG_NUMA
3203 /*
3204  * Zone reclaim mode
3205  *
3206  * If non-zero call zone_reclaim when the number of free pages falls below
3207  * the watermarks.
3208  */
3209 int zone_reclaim_mode __read_mostly;
3210 
3211 #define RECLAIM_OFF 0
3212 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3213 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3214 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3215 
3216 /*
3217  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3218  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3219  * a zone.
3220  */
3221 #define ZONE_RECLAIM_PRIORITY 4
3222 
3223 /*
3224  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3225  * occur.
3226  */
3227 int sysctl_min_unmapped_ratio = 1;
3228 
3229 /*
3230  * If the number of slab pages in a zone grows beyond this percentage then
3231  * slab reclaim needs to occur.
3232  */
3233 int sysctl_min_slab_ratio = 5;
3234 
3235 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3236 {
3237 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3238 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3239 		zone_page_state(zone, NR_ACTIVE_FILE);
3240 
3241 	/*
3242 	 * It's possible for there to be more file mapped pages than
3243 	 * accounted for by the pages on the file LRU lists because
3244 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3245 	 */
3246 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3247 }
3248 
3249 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3250 static long zone_pagecache_reclaimable(struct zone *zone)
3251 {
3252 	long nr_pagecache_reclaimable;
3253 	long delta = 0;
3254 
3255 	/*
3256 	 * If RECLAIM_SWAP is set, then all file pages are considered
3257 	 * potentially reclaimable. Otherwise, we have to worry about
3258 	 * pages like swapcache and zone_unmapped_file_pages() provides
3259 	 * a better estimate
3260 	 */
3261 	if (zone_reclaim_mode & RECLAIM_SWAP)
3262 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3263 	else
3264 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3265 
3266 	/* If we can't clean pages, remove dirty pages from consideration */
3267 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3268 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3269 
3270 	/* Watch for any possible underflows due to delta */
3271 	if (unlikely(delta > nr_pagecache_reclaimable))
3272 		delta = nr_pagecache_reclaimable;
3273 
3274 	return nr_pagecache_reclaimable - delta;
3275 }
3276 
3277 /*
3278  * Try to free up some pages from this zone through reclaim.
3279  */
3280 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3281 {
3282 	/* Minimum pages needed in order to stay on node */
3283 	const unsigned long nr_pages = 1 << order;
3284 	struct task_struct *p = current;
3285 	struct reclaim_state reclaim_state;
3286 	struct scan_control sc = {
3287 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3288 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3289 		.may_swap = 1,
3290 		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3291 				       SWAP_CLUSTER_MAX),
3292 		.gfp_mask = gfp_mask,
3293 		.order = order,
3294 		.priority = ZONE_RECLAIM_PRIORITY,
3295 	};
3296 	struct shrink_control shrink = {
3297 		.gfp_mask = sc.gfp_mask,
3298 	};
3299 	unsigned long nr_slab_pages0, nr_slab_pages1;
3300 
3301 	cond_resched();
3302 	/*
3303 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3304 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3305 	 * and RECLAIM_SWAP.
3306 	 */
3307 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3308 	lockdep_set_current_reclaim_state(gfp_mask);
3309 	reclaim_state.reclaimed_slab = 0;
3310 	p->reclaim_state = &reclaim_state;
3311 
3312 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3313 		/*
3314 		 * Free memory by calling shrink zone with increasing
3315 		 * priorities until we have enough memory freed.
3316 		 */
3317 		do {
3318 			shrink_zone(zone, &sc);
3319 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3320 	}
3321 
3322 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3323 	if (nr_slab_pages0 > zone->min_slab_pages) {
3324 		/*
3325 		 * shrink_slab() does not currently allow us to determine how
3326 		 * many pages were freed in this zone. So we take the current
3327 		 * number of slab pages and shake the slab until it is reduced
3328 		 * by the same nr_pages that we used for reclaiming unmapped
3329 		 * pages.
3330 		 *
3331 		 * Note that shrink_slab will free memory on all zones and may
3332 		 * take a long time.
3333 		 */
3334 		for (;;) {
3335 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3336 
3337 			/* No reclaimable slab or very low memory pressure */
3338 			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3339 				break;
3340 
3341 			/* Freed enough memory */
3342 			nr_slab_pages1 = zone_page_state(zone,
3343 							NR_SLAB_RECLAIMABLE);
3344 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3345 				break;
3346 		}
3347 
3348 		/*
3349 		 * Update nr_reclaimed by the number of slab pages we
3350 		 * reclaimed from this zone.
3351 		 */
3352 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3353 		if (nr_slab_pages1 < nr_slab_pages0)
3354 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3355 	}
3356 
3357 	p->reclaim_state = NULL;
3358 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3359 	lockdep_clear_current_reclaim_state();
3360 	return sc.nr_reclaimed >= nr_pages;
3361 }
3362 
3363 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3364 {
3365 	int node_id;
3366 	int ret;
3367 
3368 	/*
3369 	 * Zone reclaim reclaims unmapped file backed pages and
3370 	 * slab pages if we are over the defined limits.
3371 	 *
3372 	 * A small portion of unmapped file backed pages is needed for
3373 	 * file I/O otherwise pages read by file I/O will be immediately
3374 	 * thrown out if the zone is overallocated. So we do not reclaim
3375 	 * if less than a specified percentage of the zone is used by
3376 	 * unmapped file backed pages.
3377 	 */
3378 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3379 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3380 		return ZONE_RECLAIM_FULL;
3381 
3382 	if (zone->all_unreclaimable)
3383 		return ZONE_RECLAIM_FULL;
3384 
3385 	/*
3386 	 * Do not scan if the allocation should not be delayed.
3387 	 */
3388 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3389 		return ZONE_RECLAIM_NOSCAN;
3390 
3391 	/*
3392 	 * Only run zone reclaim on the local zone or on zones that do not
3393 	 * have associated processors. This will favor the local processor
3394 	 * over remote processors and spread off node memory allocations
3395 	 * as wide as possible.
3396 	 */
3397 	node_id = zone_to_nid(zone);
3398 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3399 		return ZONE_RECLAIM_NOSCAN;
3400 
3401 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3402 		return ZONE_RECLAIM_NOSCAN;
3403 
3404 	ret = __zone_reclaim(zone, gfp_mask, order);
3405 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3406 
3407 	if (!ret)
3408 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3409 
3410 	return ret;
3411 }
3412 #endif
3413 
3414 /*
3415  * page_evictable - test whether a page is evictable
3416  * @page: the page to test
3417  *
3418  * Test whether page is evictable--i.e., should be placed on active/inactive
3419  * lists vs unevictable list.
3420  *
3421  * Reasons page might not be evictable:
3422  * (1) page's mapping marked unevictable
3423  * (2) page is part of an mlocked VMA
3424  *
3425  */
3426 int page_evictable(struct page *page)
3427 {
3428 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3429 }
3430 
3431 #ifdef CONFIG_SHMEM
3432 /**
3433  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3434  * @pages:	array of pages to check
3435  * @nr_pages:	number of pages to check
3436  *
3437  * Checks pages for evictability and moves them to the appropriate lru list.
3438  *
3439  * This function is only used for SysV IPC SHM_UNLOCK.
3440  */
3441 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3442 {
3443 	struct lruvec *lruvec;
3444 	struct zone *zone = NULL;
3445 	int pgscanned = 0;
3446 	int pgrescued = 0;
3447 	int i;
3448 
3449 	for (i = 0; i < nr_pages; i++) {
3450 		struct page *page = pages[i];
3451 		struct zone *pagezone;
3452 
3453 		pgscanned++;
3454 		pagezone = page_zone(page);
3455 		if (pagezone != zone) {
3456 			if (zone)
3457 				spin_unlock_irq(&zone->lru_lock);
3458 			zone = pagezone;
3459 			spin_lock_irq(&zone->lru_lock);
3460 		}
3461 		lruvec = mem_cgroup_page_lruvec(page, zone);
3462 
3463 		if (!PageLRU(page) || !PageUnevictable(page))
3464 			continue;
3465 
3466 		if (page_evictable(page)) {
3467 			enum lru_list lru = page_lru_base_type(page);
3468 
3469 			VM_BUG_ON(PageActive(page));
3470 			ClearPageUnevictable(page);
3471 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3472 			add_page_to_lru_list(page, lruvec, lru);
3473 			pgrescued++;
3474 		}
3475 	}
3476 
3477 	if (zone) {
3478 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3479 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3480 		spin_unlock_irq(&zone->lru_lock);
3481 	}
3482 }
3483 #endif /* CONFIG_SHMEM */
3484 
3485 static void warn_scan_unevictable_pages(void)
3486 {
3487 	printk_once(KERN_WARNING
3488 		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3489 		    "disabled for lack of a legitimate use case.  If you have "
3490 		    "one, please send an email to linux-mm@kvack.org.\n",
3491 		    current->comm);
3492 }
3493 
3494 /*
3495  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3496  * all nodes' unevictable lists for evictable pages
3497  */
3498 unsigned long scan_unevictable_pages;
3499 
3500 int scan_unevictable_handler(struct ctl_table *table, int write,
3501 			   void __user *buffer,
3502 			   size_t *length, loff_t *ppos)
3503 {
3504 	warn_scan_unevictable_pages();
3505 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3506 	scan_unevictable_pages = 0;
3507 	return 0;
3508 }
3509 
3510 #ifdef CONFIG_NUMA
3511 /*
3512  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3513  * a specified node's per zone unevictable lists for evictable pages.
3514  */
3515 
3516 static ssize_t read_scan_unevictable_node(struct device *dev,
3517 					  struct device_attribute *attr,
3518 					  char *buf)
3519 {
3520 	warn_scan_unevictable_pages();
3521 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3522 }
3523 
3524 static ssize_t write_scan_unevictable_node(struct device *dev,
3525 					   struct device_attribute *attr,
3526 					const char *buf, size_t count)
3527 {
3528 	warn_scan_unevictable_pages();
3529 	return 1;
3530 }
3531 
3532 
3533 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3534 			read_scan_unevictable_node,
3535 			write_scan_unevictable_node);
3536 
3537 int scan_unevictable_register_node(struct node *node)
3538 {
3539 	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3540 }
3541 
3542 void scan_unevictable_unregister_node(struct node *node)
3543 {
3544 	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3545 }
3546 #endif
3547