1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/gfp.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmstat.h> 23 #include <linux/file.h> 24 #include <linux/writeback.h> 25 #include <linux/blkdev.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page(), 27 buffer_heads_over_limit */ 28 #include <linux/mm_inline.h> 29 #include <linux/backing-dev.h> 30 #include <linux/rmap.h> 31 #include <linux/topology.h> 32 #include <linux/cpu.h> 33 #include <linux/cpuset.h> 34 #include <linux/compaction.h> 35 #include <linux/notifier.h> 36 #include <linux/rwsem.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/freezer.h> 40 #include <linux/memcontrol.h> 41 #include <linux/delayacct.h> 42 #include <linux/sysctl.h> 43 #include <linux/oom.h> 44 #include <linux/prefetch.h> 45 46 #include <asm/tlbflush.h> 47 #include <asm/div64.h> 48 49 #include <linux/swapops.h> 50 51 #include "internal.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/vmscan.h> 55 56 struct scan_control { 57 /* Incremented by the number of inactive pages that were scanned */ 58 unsigned long nr_scanned; 59 60 /* Number of pages freed so far during a call to shrink_zones() */ 61 unsigned long nr_reclaimed; 62 63 /* How many pages shrink_list() should reclaim */ 64 unsigned long nr_to_reclaim; 65 66 unsigned long hibernation_mode; 67 68 /* This context's GFP mask */ 69 gfp_t gfp_mask; 70 71 int may_writepage; 72 73 /* Can mapped pages be reclaimed? */ 74 int may_unmap; 75 76 /* Can pages be swapped as part of reclaim? */ 77 int may_swap; 78 79 int order; 80 81 /* Scan (total_size >> priority) pages at once */ 82 int priority; 83 84 /* 85 * The memory cgroup that hit its limit and as a result is the 86 * primary target of this reclaim invocation. 87 */ 88 struct mem_cgroup *target_mem_cgroup; 89 90 /* 91 * Nodemask of nodes allowed by the caller. If NULL, all nodes 92 * are scanned. 93 */ 94 nodemask_t *nodemask; 95 }; 96 97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 98 99 #ifdef ARCH_HAS_PREFETCH 100 #define prefetch_prev_lru_page(_page, _base, _field) \ 101 do { \ 102 if ((_page)->lru.prev != _base) { \ 103 struct page *prev; \ 104 \ 105 prev = lru_to_page(&(_page->lru)); \ 106 prefetch(&prev->_field); \ 107 } \ 108 } while (0) 109 #else 110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 111 #endif 112 113 #ifdef ARCH_HAS_PREFETCHW 114 #define prefetchw_prev_lru_page(_page, _base, _field) \ 115 do { \ 116 if ((_page)->lru.prev != _base) { \ 117 struct page *prev; \ 118 \ 119 prev = lru_to_page(&(_page->lru)); \ 120 prefetchw(&prev->_field); \ 121 } \ 122 } while (0) 123 #else 124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 125 #endif 126 127 /* 128 * From 0 .. 100. Higher means more swappy. 129 */ 130 int vm_swappiness = 60; 131 long vm_total_pages; /* The total number of pages which the VM controls */ 132 133 static LIST_HEAD(shrinker_list); 134 static DECLARE_RWSEM(shrinker_rwsem); 135 136 #ifdef CONFIG_MEMCG 137 static bool global_reclaim(struct scan_control *sc) 138 { 139 return !sc->target_mem_cgroup; 140 } 141 #else 142 static bool global_reclaim(struct scan_control *sc) 143 { 144 return true; 145 } 146 #endif 147 148 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) 149 { 150 if (!mem_cgroup_disabled()) 151 return mem_cgroup_get_lru_size(lruvec, lru); 152 153 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); 154 } 155 156 /* 157 * Add a shrinker callback to be called from the vm 158 */ 159 void register_shrinker(struct shrinker *shrinker) 160 { 161 atomic_long_set(&shrinker->nr_in_batch, 0); 162 down_write(&shrinker_rwsem); 163 list_add_tail(&shrinker->list, &shrinker_list); 164 up_write(&shrinker_rwsem); 165 } 166 EXPORT_SYMBOL(register_shrinker); 167 168 /* 169 * Remove one 170 */ 171 void unregister_shrinker(struct shrinker *shrinker) 172 { 173 down_write(&shrinker_rwsem); 174 list_del(&shrinker->list); 175 up_write(&shrinker_rwsem); 176 } 177 EXPORT_SYMBOL(unregister_shrinker); 178 179 static inline int do_shrinker_shrink(struct shrinker *shrinker, 180 struct shrink_control *sc, 181 unsigned long nr_to_scan) 182 { 183 sc->nr_to_scan = nr_to_scan; 184 return (*shrinker->shrink)(shrinker, sc); 185 } 186 187 #define SHRINK_BATCH 128 188 /* 189 * Call the shrink functions to age shrinkable caches 190 * 191 * Here we assume it costs one seek to replace a lru page and that it also 192 * takes a seek to recreate a cache object. With this in mind we age equal 193 * percentages of the lru and ageable caches. This should balance the seeks 194 * generated by these structures. 195 * 196 * If the vm encountered mapped pages on the LRU it increase the pressure on 197 * slab to avoid swapping. 198 * 199 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 200 * 201 * `lru_pages' represents the number of on-LRU pages in all the zones which 202 * are eligible for the caller's allocation attempt. It is used for balancing 203 * slab reclaim versus page reclaim. 204 * 205 * Returns the number of slab objects which we shrunk. 206 */ 207 unsigned long shrink_slab(struct shrink_control *shrink, 208 unsigned long nr_pages_scanned, 209 unsigned long lru_pages) 210 { 211 struct shrinker *shrinker; 212 unsigned long ret = 0; 213 214 if (nr_pages_scanned == 0) 215 nr_pages_scanned = SWAP_CLUSTER_MAX; 216 217 if (!down_read_trylock(&shrinker_rwsem)) { 218 /* Assume we'll be able to shrink next time */ 219 ret = 1; 220 goto out; 221 } 222 223 list_for_each_entry(shrinker, &shrinker_list, list) { 224 unsigned long long delta; 225 long total_scan; 226 long max_pass; 227 int shrink_ret = 0; 228 long nr; 229 long new_nr; 230 long batch_size = shrinker->batch ? shrinker->batch 231 : SHRINK_BATCH; 232 233 max_pass = do_shrinker_shrink(shrinker, shrink, 0); 234 if (max_pass <= 0) 235 continue; 236 237 /* 238 * copy the current shrinker scan count into a local variable 239 * and zero it so that other concurrent shrinker invocations 240 * don't also do this scanning work. 241 */ 242 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0); 243 244 total_scan = nr; 245 delta = (4 * nr_pages_scanned) / shrinker->seeks; 246 delta *= max_pass; 247 do_div(delta, lru_pages + 1); 248 total_scan += delta; 249 if (total_scan < 0) { 250 printk(KERN_ERR "shrink_slab: %pF negative objects to " 251 "delete nr=%ld\n", 252 shrinker->shrink, total_scan); 253 total_scan = max_pass; 254 } 255 256 /* 257 * We need to avoid excessive windup on filesystem shrinkers 258 * due to large numbers of GFP_NOFS allocations causing the 259 * shrinkers to return -1 all the time. This results in a large 260 * nr being built up so when a shrink that can do some work 261 * comes along it empties the entire cache due to nr >>> 262 * max_pass. This is bad for sustaining a working set in 263 * memory. 264 * 265 * Hence only allow the shrinker to scan the entire cache when 266 * a large delta change is calculated directly. 267 */ 268 if (delta < max_pass / 4) 269 total_scan = min(total_scan, max_pass / 2); 270 271 /* 272 * Avoid risking looping forever due to too large nr value: 273 * never try to free more than twice the estimate number of 274 * freeable entries. 275 */ 276 if (total_scan > max_pass * 2) 277 total_scan = max_pass * 2; 278 279 trace_mm_shrink_slab_start(shrinker, shrink, nr, 280 nr_pages_scanned, lru_pages, 281 max_pass, delta, total_scan); 282 283 while (total_scan >= batch_size) { 284 int nr_before; 285 286 nr_before = do_shrinker_shrink(shrinker, shrink, 0); 287 shrink_ret = do_shrinker_shrink(shrinker, shrink, 288 batch_size); 289 if (shrink_ret == -1) 290 break; 291 if (shrink_ret < nr_before) 292 ret += nr_before - shrink_ret; 293 count_vm_events(SLABS_SCANNED, batch_size); 294 total_scan -= batch_size; 295 296 cond_resched(); 297 } 298 299 /* 300 * move the unused scan count back into the shrinker in a 301 * manner that handles concurrent updates. If we exhausted the 302 * scan, there is no need to do an update. 303 */ 304 if (total_scan > 0) 305 new_nr = atomic_long_add_return(total_scan, 306 &shrinker->nr_in_batch); 307 else 308 new_nr = atomic_long_read(&shrinker->nr_in_batch); 309 310 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr); 311 } 312 up_read(&shrinker_rwsem); 313 out: 314 cond_resched(); 315 return ret; 316 } 317 318 static inline int is_page_cache_freeable(struct page *page) 319 { 320 /* 321 * A freeable page cache page is referenced only by the caller 322 * that isolated the page, the page cache radix tree and 323 * optional buffer heads at page->private. 324 */ 325 return page_count(page) - page_has_private(page) == 2; 326 } 327 328 static int may_write_to_queue(struct backing_dev_info *bdi, 329 struct scan_control *sc) 330 { 331 if (current->flags & PF_SWAPWRITE) 332 return 1; 333 if (!bdi_write_congested(bdi)) 334 return 1; 335 if (bdi == current->backing_dev_info) 336 return 1; 337 return 0; 338 } 339 340 /* 341 * We detected a synchronous write error writing a page out. Probably 342 * -ENOSPC. We need to propagate that into the address_space for a subsequent 343 * fsync(), msync() or close(). 344 * 345 * The tricky part is that after writepage we cannot touch the mapping: nothing 346 * prevents it from being freed up. But we have a ref on the page and once 347 * that page is locked, the mapping is pinned. 348 * 349 * We're allowed to run sleeping lock_page() here because we know the caller has 350 * __GFP_FS. 351 */ 352 static void handle_write_error(struct address_space *mapping, 353 struct page *page, int error) 354 { 355 lock_page(page); 356 if (page_mapping(page) == mapping) 357 mapping_set_error(mapping, error); 358 unlock_page(page); 359 } 360 361 /* possible outcome of pageout() */ 362 typedef enum { 363 /* failed to write page out, page is locked */ 364 PAGE_KEEP, 365 /* move page to the active list, page is locked */ 366 PAGE_ACTIVATE, 367 /* page has been sent to the disk successfully, page is unlocked */ 368 PAGE_SUCCESS, 369 /* page is clean and locked */ 370 PAGE_CLEAN, 371 } pageout_t; 372 373 /* 374 * pageout is called by shrink_page_list() for each dirty page. 375 * Calls ->writepage(). 376 */ 377 static pageout_t pageout(struct page *page, struct address_space *mapping, 378 struct scan_control *sc) 379 { 380 /* 381 * If the page is dirty, only perform writeback if that write 382 * will be non-blocking. To prevent this allocation from being 383 * stalled by pagecache activity. But note that there may be 384 * stalls if we need to run get_block(). We could test 385 * PagePrivate for that. 386 * 387 * If this process is currently in __generic_file_aio_write() against 388 * this page's queue, we can perform writeback even if that 389 * will block. 390 * 391 * If the page is swapcache, write it back even if that would 392 * block, for some throttling. This happens by accident, because 393 * swap_backing_dev_info is bust: it doesn't reflect the 394 * congestion state of the swapdevs. Easy to fix, if needed. 395 */ 396 if (!is_page_cache_freeable(page)) 397 return PAGE_KEEP; 398 if (!mapping) { 399 /* 400 * Some data journaling orphaned pages can have 401 * page->mapping == NULL while being dirty with clean buffers. 402 */ 403 if (page_has_private(page)) { 404 if (try_to_free_buffers(page)) { 405 ClearPageDirty(page); 406 printk("%s: orphaned page\n", __func__); 407 return PAGE_CLEAN; 408 } 409 } 410 return PAGE_KEEP; 411 } 412 if (mapping->a_ops->writepage == NULL) 413 return PAGE_ACTIVATE; 414 if (!may_write_to_queue(mapping->backing_dev_info, sc)) 415 return PAGE_KEEP; 416 417 if (clear_page_dirty_for_io(page)) { 418 int res; 419 struct writeback_control wbc = { 420 .sync_mode = WB_SYNC_NONE, 421 .nr_to_write = SWAP_CLUSTER_MAX, 422 .range_start = 0, 423 .range_end = LLONG_MAX, 424 .for_reclaim = 1, 425 }; 426 427 SetPageReclaim(page); 428 res = mapping->a_ops->writepage(page, &wbc); 429 if (res < 0) 430 handle_write_error(mapping, page, res); 431 if (res == AOP_WRITEPAGE_ACTIVATE) { 432 ClearPageReclaim(page); 433 return PAGE_ACTIVATE; 434 } 435 436 if (!PageWriteback(page)) { 437 /* synchronous write or broken a_ops? */ 438 ClearPageReclaim(page); 439 } 440 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page)); 441 inc_zone_page_state(page, NR_VMSCAN_WRITE); 442 return PAGE_SUCCESS; 443 } 444 445 return PAGE_CLEAN; 446 } 447 448 /* 449 * Same as remove_mapping, but if the page is removed from the mapping, it 450 * gets returned with a refcount of 0. 451 */ 452 static int __remove_mapping(struct address_space *mapping, struct page *page) 453 { 454 BUG_ON(!PageLocked(page)); 455 BUG_ON(mapping != page_mapping(page)); 456 457 spin_lock_irq(&mapping->tree_lock); 458 /* 459 * The non racy check for a busy page. 460 * 461 * Must be careful with the order of the tests. When someone has 462 * a ref to the page, it may be possible that they dirty it then 463 * drop the reference. So if PageDirty is tested before page_count 464 * here, then the following race may occur: 465 * 466 * get_user_pages(&page); 467 * [user mapping goes away] 468 * write_to(page); 469 * !PageDirty(page) [good] 470 * SetPageDirty(page); 471 * put_page(page); 472 * !page_count(page) [good, discard it] 473 * 474 * [oops, our write_to data is lost] 475 * 476 * Reversing the order of the tests ensures such a situation cannot 477 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 478 * load is not satisfied before that of page->_count. 479 * 480 * Note that if SetPageDirty is always performed via set_page_dirty, 481 * and thus under tree_lock, then this ordering is not required. 482 */ 483 if (!page_freeze_refs(page, 2)) 484 goto cannot_free; 485 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 486 if (unlikely(PageDirty(page))) { 487 page_unfreeze_refs(page, 2); 488 goto cannot_free; 489 } 490 491 if (PageSwapCache(page)) { 492 swp_entry_t swap = { .val = page_private(page) }; 493 __delete_from_swap_cache(page); 494 spin_unlock_irq(&mapping->tree_lock); 495 swapcache_free(swap, page); 496 } else { 497 void (*freepage)(struct page *); 498 499 freepage = mapping->a_ops->freepage; 500 501 __delete_from_page_cache(page); 502 spin_unlock_irq(&mapping->tree_lock); 503 mem_cgroup_uncharge_cache_page(page); 504 505 if (freepage != NULL) 506 freepage(page); 507 } 508 509 return 1; 510 511 cannot_free: 512 spin_unlock_irq(&mapping->tree_lock); 513 return 0; 514 } 515 516 /* 517 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 518 * someone else has a ref on the page, abort and return 0. If it was 519 * successfully detached, return 1. Assumes the caller has a single ref on 520 * this page. 521 */ 522 int remove_mapping(struct address_space *mapping, struct page *page) 523 { 524 if (__remove_mapping(mapping, page)) { 525 /* 526 * Unfreezing the refcount with 1 rather than 2 effectively 527 * drops the pagecache ref for us without requiring another 528 * atomic operation. 529 */ 530 page_unfreeze_refs(page, 1); 531 return 1; 532 } 533 return 0; 534 } 535 536 /** 537 * putback_lru_page - put previously isolated page onto appropriate LRU list 538 * @page: page to be put back to appropriate lru list 539 * 540 * Add previously isolated @page to appropriate LRU list. 541 * Page may still be unevictable for other reasons. 542 * 543 * lru_lock must not be held, interrupts must be enabled. 544 */ 545 void putback_lru_page(struct page *page) 546 { 547 int lru; 548 int active = !!TestClearPageActive(page); 549 int was_unevictable = PageUnevictable(page); 550 551 VM_BUG_ON(PageLRU(page)); 552 553 redo: 554 ClearPageUnevictable(page); 555 556 if (page_evictable(page)) { 557 /* 558 * For evictable pages, we can use the cache. 559 * In event of a race, worst case is we end up with an 560 * unevictable page on [in]active list. 561 * We know how to handle that. 562 */ 563 lru = active + page_lru_base_type(page); 564 lru_cache_add_lru(page, lru); 565 } else { 566 /* 567 * Put unevictable pages directly on zone's unevictable 568 * list. 569 */ 570 lru = LRU_UNEVICTABLE; 571 add_page_to_unevictable_list(page); 572 /* 573 * When racing with an mlock or AS_UNEVICTABLE clearing 574 * (page is unlocked) make sure that if the other thread 575 * does not observe our setting of PG_lru and fails 576 * isolation/check_move_unevictable_pages, 577 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 578 * the page back to the evictable list. 579 * 580 * The other side is TestClearPageMlocked() or shmem_lock(). 581 */ 582 smp_mb(); 583 } 584 585 /* 586 * page's status can change while we move it among lru. If an evictable 587 * page is on unevictable list, it never be freed. To avoid that, 588 * check after we added it to the list, again. 589 */ 590 if (lru == LRU_UNEVICTABLE && page_evictable(page)) { 591 if (!isolate_lru_page(page)) { 592 put_page(page); 593 goto redo; 594 } 595 /* This means someone else dropped this page from LRU 596 * So, it will be freed or putback to LRU again. There is 597 * nothing to do here. 598 */ 599 } 600 601 if (was_unevictable && lru != LRU_UNEVICTABLE) 602 count_vm_event(UNEVICTABLE_PGRESCUED); 603 else if (!was_unevictable && lru == LRU_UNEVICTABLE) 604 count_vm_event(UNEVICTABLE_PGCULLED); 605 606 put_page(page); /* drop ref from isolate */ 607 } 608 609 enum page_references { 610 PAGEREF_RECLAIM, 611 PAGEREF_RECLAIM_CLEAN, 612 PAGEREF_KEEP, 613 PAGEREF_ACTIVATE, 614 }; 615 616 static enum page_references page_check_references(struct page *page, 617 struct scan_control *sc) 618 { 619 int referenced_ptes, referenced_page; 620 unsigned long vm_flags; 621 622 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 623 &vm_flags); 624 referenced_page = TestClearPageReferenced(page); 625 626 /* 627 * Mlock lost the isolation race with us. Let try_to_unmap() 628 * move the page to the unevictable list. 629 */ 630 if (vm_flags & VM_LOCKED) 631 return PAGEREF_RECLAIM; 632 633 if (referenced_ptes) { 634 if (PageSwapBacked(page)) 635 return PAGEREF_ACTIVATE; 636 /* 637 * All mapped pages start out with page table 638 * references from the instantiating fault, so we need 639 * to look twice if a mapped file page is used more 640 * than once. 641 * 642 * Mark it and spare it for another trip around the 643 * inactive list. Another page table reference will 644 * lead to its activation. 645 * 646 * Note: the mark is set for activated pages as well 647 * so that recently deactivated but used pages are 648 * quickly recovered. 649 */ 650 SetPageReferenced(page); 651 652 if (referenced_page || referenced_ptes > 1) 653 return PAGEREF_ACTIVATE; 654 655 /* 656 * Activate file-backed executable pages after first usage. 657 */ 658 if (vm_flags & VM_EXEC) 659 return PAGEREF_ACTIVATE; 660 661 return PAGEREF_KEEP; 662 } 663 664 /* Reclaim if clean, defer dirty pages to writeback */ 665 if (referenced_page && !PageSwapBacked(page)) 666 return PAGEREF_RECLAIM_CLEAN; 667 668 return PAGEREF_RECLAIM; 669 } 670 671 /* 672 * shrink_page_list() returns the number of reclaimed pages 673 */ 674 static unsigned long shrink_page_list(struct list_head *page_list, 675 struct zone *zone, 676 struct scan_control *sc, 677 enum ttu_flags ttu_flags, 678 unsigned long *ret_nr_dirty, 679 unsigned long *ret_nr_writeback, 680 bool force_reclaim) 681 { 682 LIST_HEAD(ret_pages); 683 LIST_HEAD(free_pages); 684 int pgactivate = 0; 685 unsigned long nr_dirty = 0; 686 unsigned long nr_congested = 0; 687 unsigned long nr_reclaimed = 0; 688 unsigned long nr_writeback = 0; 689 690 cond_resched(); 691 692 mem_cgroup_uncharge_start(); 693 while (!list_empty(page_list)) { 694 struct address_space *mapping; 695 struct page *page; 696 int may_enter_fs; 697 enum page_references references = PAGEREF_RECLAIM_CLEAN; 698 699 cond_resched(); 700 701 page = lru_to_page(page_list); 702 list_del(&page->lru); 703 704 if (!trylock_page(page)) 705 goto keep; 706 707 VM_BUG_ON(PageActive(page)); 708 VM_BUG_ON(page_zone(page) != zone); 709 710 sc->nr_scanned++; 711 712 if (unlikely(!page_evictable(page))) 713 goto cull_mlocked; 714 715 if (!sc->may_unmap && page_mapped(page)) 716 goto keep_locked; 717 718 /* Double the slab pressure for mapped and swapcache pages */ 719 if (page_mapped(page) || PageSwapCache(page)) 720 sc->nr_scanned++; 721 722 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 723 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 724 725 if (PageWriteback(page)) { 726 /* 727 * memcg doesn't have any dirty pages throttling so we 728 * could easily OOM just because too many pages are in 729 * writeback and there is nothing else to reclaim. 730 * 731 * Check __GFP_IO, certainly because a loop driver 732 * thread might enter reclaim, and deadlock if it waits 733 * on a page for which it is needed to do the write 734 * (loop masks off __GFP_IO|__GFP_FS for this reason); 735 * but more thought would probably show more reasons. 736 * 737 * Don't require __GFP_FS, since we're not going into 738 * the FS, just waiting on its writeback completion. 739 * Worryingly, ext4 gfs2 and xfs allocate pages with 740 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so 741 * testing may_enter_fs here is liable to OOM on them. 742 */ 743 if (global_reclaim(sc) || 744 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) { 745 /* 746 * This is slightly racy - end_page_writeback() 747 * might have just cleared PageReclaim, then 748 * setting PageReclaim here end up interpreted 749 * as PageReadahead - but that does not matter 750 * enough to care. What we do want is for this 751 * page to have PageReclaim set next time memcg 752 * reclaim reaches the tests above, so it will 753 * then wait_on_page_writeback() to avoid OOM; 754 * and it's also appropriate in global reclaim. 755 */ 756 SetPageReclaim(page); 757 nr_writeback++; 758 goto keep_locked; 759 } 760 wait_on_page_writeback(page); 761 } 762 763 if (!force_reclaim) 764 references = page_check_references(page, sc); 765 766 switch (references) { 767 case PAGEREF_ACTIVATE: 768 goto activate_locked; 769 case PAGEREF_KEEP: 770 goto keep_locked; 771 case PAGEREF_RECLAIM: 772 case PAGEREF_RECLAIM_CLEAN: 773 ; /* try to reclaim the page below */ 774 } 775 776 /* 777 * Anonymous process memory has backing store? 778 * Try to allocate it some swap space here. 779 */ 780 if (PageAnon(page) && !PageSwapCache(page)) { 781 if (!(sc->gfp_mask & __GFP_IO)) 782 goto keep_locked; 783 if (!add_to_swap(page)) 784 goto activate_locked; 785 may_enter_fs = 1; 786 } 787 788 mapping = page_mapping(page); 789 790 /* 791 * The page is mapped into the page tables of one or more 792 * processes. Try to unmap it here. 793 */ 794 if (page_mapped(page) && mapping) { 795 switch (try_to_unmap(page, ttu_flags)) { 796 case SWAP_FAIL: 797 goto activate_locked; 798 case SWAP_AGAIN: 799 goto keep_locked; 800 case SWAP_MLOCK: 801 goto cull_mlocked; 802 case SWAP_SUCCESS: 803 ; /* try to free the page below */ 804 } 805 } 806 807 if (PageDirty(page)) { 808 nr_dirty++; 809 810 /* 811 * Only kswapd can writeback filesystem pages to 812 * avoid risk of stack overflow but do not writeback 813 * unless under significant pressure. 814 */ 815 if (page_is_file_cache(page) && 816 (!current_is_kswapd() || 817 sc->priority >= DEF_PRIORITY - 2)) { 818 /* 819 * Immediately reclaim when written back. 820 * Similar in principal to deactivate_page() 821 * except we already have the page isolated 822 * and know it's dirty 823 */ 824 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); 825 SetPageReclaim(page); 826 827 goto keep_locked; 828 } 829 830 if (references == PAGEREF_RECLAIM_CLEAN) 831 goto keep_locked; 832 if (!may_enter_fs) 833 goto keep_locked; 834 if (!sc->may_writepage) 835 goto keep_locked; 836 837 /* Page is dirty, try to write it out here */ 838 switch (pageout(page, mapping, sc)) { 839 case PAGE_KEEP: 840 nr_congested++; 841 goto keep_locked; 842 case PAGE_ACTIVATE: 843 goto activate_locked; 844 case PAGE_SUCCESS: 845 if (PageWriteback(page)) 846 goto keep; 847 if (PageDirty(page)) 848 goto keep; 849 850 /* 851 * A synchronous write - probably a ramdisk. Go 852 * ahead and try to reclaim the page. 853 */ 854 if (!trylock_page(page)) 855 goto keep; 856 if (PageDirty(page) || PageWriteback(page)) 857 goto keep_locked; 858 mapping = page_mapping(page); 859 case PAGE_CLEAN: 860 ; /* try to free the page below */ 861 } 862 } 863 864 /* 865 * If the page has buffers, try to free the buffer mappings 866 * associated with this page. If we succeed we try to free 867 * the page as well. 868 * 869 * We do this even if the page is PageDirty(). 870 * try_to_release_page() does not perform I/O, but it is 871 * possible for a page to have PageDirty set, but it is actually 872 * clean (all its buffers are clean). This happens if the 873 * buffers were written out directly, with submit_bh(). ext3 874 * will do this, as well as the blockdev mapping. 875 * try_to_release_page() will discover that cleanness and will 876 * drop the buffers and mark the page clean - it can be freed. 877 * 878 * Rarely, pages can have buffers and no ->mapping. These are 879 * the pages which were not successfully invalidated in 880 * truncate_complete_page(). We try to drop those buffers here 881 * and if that worked, and the page is no longer mapped into 882 * process address space (page_count == 1) it can be freed. 883 * Otherwise, leave the page on the LRU so it is swappable. 884 */ 885 if (page_has_private(page)) { 886 if (!try_to_release_page(page, sc->gfp_mask)) 887 goto activate_locked; 888 if (!mapping && page_count(page) == 1) { 889 unlock_page(page); 890 if (put_page_testzero(page)) 891 goto free_it; 892 else { 893 /* 894 * rare race with speculative reference. 895 * the speculative reference will free 896 * this page shortly, so we may 897 * increment nr_reclaimed here (and 898 * leave it off the LRU). 899 */ 900 nr_reclaimed++; 901 continue; 902 } 903 } 904 } 905 906 if (!mapping || !__remove_mapping(mapping, page)) 907 goto keep_locked; 908 909 /* 910 * At this point, we have no other references and there is 911 * no way to pick any more up (removed from LRU, removed 912 * from pagecache). Can use non-atomic bitops now (and 913 * we obviously don't have to worry about waking up a process 914 * waiting on the page lock, because there are no references. 915 */ 916 __clear_page_locked(page); 917 free_it: 918 nr_reclaimed++; 919 920 /* 921 * Is there need to periodically free_page_list? It would 922 * appear not as the counts should be low 923 */ 924 list_add(&page->lru, &free_pages); 925 continue; 926 927 cull_mlocked: 928 if (PageSwapCache(page)) 929 try_to_free_swap(page); 930 unlock_page(page); 931 putback_lru_page(page); 932 continue; 933 934 activate_locked: 935 /* Not a candidate for swapping, so reclaim swap space. */ 936 if (PageSwapCache(page) && vm_swap_full()) 937 try_to_free_swap(page); 938 VM_BUG_ON(PageActive(page)); 939 SetPageActive(page); 940 pgactivate++; 941 keep_locked: 942 unlock_page(page); 943 keep: 944 list_add(&page->lru, &ret_pages); 945 VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); 946 } 947 948 /* 949 * Tag a zone as congested if all the dirty pages encountered were 950 * backed by a congested BDI. In this case, reclaimers should just 951 * back off and wait for congestion to clear because further reclaim 952 * will encounter the same problem 953 */ 954 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc)) 955 zone_set_flag(zone, ZONE_CONGESTED); 956 957 free_hot_cold_page_list(&free_pages, 1); 958 959 list_splice(&ret_pages, page_list); 960 count_vm_events(PGACTIVATE, pgactivate); 961 mem_cgroup_uncharge_end(); 962 *ret_nr_dirty += nr_dirty; 963 *ret_nr_writeback += nr_writeback; 964 return nr_reclaimed; 965 } 966 967 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 968 struct list_head *page_list) 969 { 970 struct scan_control sc = { 971 .gfp_mask = GFP_KERNEL, 972 .priority = DEF_PRIORITY, 973 .may_unmap = 1, 974 }; 975 unsigned long ret, dummy1, dummy2; 976 struct page *page, *next; 977 LIST_HEAD(clean_pages); 978 979 list_for_each_entry_safe(page, next, page_list, lru) { 980 if (page_is_file_cache(page) && !PageDirty(page)) { 981 ClearPageActive(page); 982 list_move(&page->lru, &clean_pages); 983 } 984 } 985 986 ret = shrink_page_list(&clean_pages, zone, &sc, 987 TTU_UNMAP|TTU_IGNORE_ACCESS, 988 &dummy1, &dummy2, true); 989 list_splice(&clean_pages, page_list); 990 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); 991 return ret; 992 } 993 994 /* 995 * Attempt to remove the specified page from its LRU. Only take this page 996 * if it is of the appropriate PageActive status. Pages which are being 997 * freed elsewhere are also ignored. 998 * 999 * page: page to consider 1000 * mode: one of the LRU isolation modes defined above 1001 * 1002 * returns 0 on success, -ve errno on failure. 1003 */ 1004 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1005 { 1006 int ret = -EINVAL; 1007 1008 /* Only take pages on the LRU. */ 1009 if (!PageLRU(page)) 1010 return ret; 1011 1012 /* Compaction should not handle unevictable pages but CMA can do so */ 1013 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1014 return ret; 1015 1016 ret = -EBUSY; 1017 1018 /* 1019 * To minimise LRU disruption, the caller can indicate that it only 1020 * wants to isolate pages it will be able to operate on without 1021 * blocking - clean pages for the most part. 1022 * 1023 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1024 * is used by reclaim when it is cannot write to backing storage 1025 * 1026 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1027 * that it is possible to migrate without blocking 1028 */ 1029 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1030 /* All the caller can do on PageWriteback is block */ 1031 if (PageWriteback(page)) 1032 return ret; 1033 1034 if (PageDirty(page)) { 1035 struct address_space *mapping; 1036 1037 /* ISOLATE_CLEAN means only clean pages */ 1038 if (mode & ISOLATE_CLEAN) 1039 return ret; 1040 1041 /* 1042 * Only pages without mappings or that have a 1043 * ->migratepage callback are possible to migrate 1044 * without blocking 1045 */ 1046 mapping = page_mapping(page); 1047 if (mapping && !mapping->a_ops->migratepage) 1048 return ret; 1049 } 1050 } 1051 1052 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1053 return ret; 1054 1055 if (likely(get_page_unless_zero(page))) { 1056 /* 1057 * Be careful not to clear PageLRU until after we're 1058 * sure the page is not being freed elsewhere -- the 1059 * page release code relies on it. 1060 */ 1061 ClearPageLRU(page); 1062 ret = 0; 1063 } 1064 1065 return ret; 1066 } 1067 1068 /* 1069 * zone->lru_lock is heavily contended. Some of the functions that 1070 * shrink the lists perform better by taking out a batch of pages 1071 * and working on them outside the LRU lock. 1072 * 1073 * For pagecache intensive workloads, this function is the hottest 1074 * spot in the kernel (apart from copy_*_user functions). 1075 * 1076 * Appropriate locks must be held before calling this function. 1077 * 1078 * @nr_to_scan: The number of pages to look through on the list. 1079 * @lruvec: The LRU vector to pull pages from. 1080 * @dst: The temp list to put pages on to. 1081 * @nr_scanned: The number of pages that were scanned. 1082 * @sc: The scan_control struct for this reclaim session 1083 * @mode: One of the LRU isolation modes 1084 * @lru: LRU list id for isolating 1085 * 1086 * returns how many pages were moved onto *@dst. 1087 */ 1088 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1089 struct lruvec *lruvec, struct list_head *dst, 1090 unsigned long *nr_scanned, struct scan_control *sc, 1091 isolate_mode_t mode, enum lru_list lru) 1092 { 1093 struct list_head *src = &lruvec->lists[lru]; 1094 unsigned long nr_taken = 0; 1095 unsigned long scan; 1096 1097 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 1098 struct page *page; 1099 int nr_pages; 1100 1101 page = lru_to_page(src); 1102 prefetchw_prev_lru_page(page, src, flags); 1103 1104 VM_BUG_ON(!PageLRU(page)); 1105 1106 switch (__isolate_lru_page(page, mode)) { 1107 case 0: 1108 nr_pages = hpage_nr_pages(page); 1109 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); 1110 list_move(&page->lru, dst); 1111 nr_taken += nr_pages; 1112 break; 1113 1114 case -EBUSY: 1115 /* else it is being freed elsewhere */ 1116 list_move(&page->lru, src); 1117 continue; 1118 1119 default: 1120 BUG(); 1121 } 1122 } 1123 1124 *nr_scanned = scan; 1125 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, 1126 nr_taken, mode, is_file_lru(lru)); 1127 return nr_taken; 1128 } 1129 1130 /** 1131 * isolate_lru_page - tries to isolate a page from its LRU list 1132 * @page: page to isolate from its LRU list 1133 * 1134 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1135 * vmstat statistic corresponding to whatever LRU list the page was on. 1136 * 1137 * Returns 0 if the page was removed from an LRU list. 1138 * Returns -EBUSY if the page was not on an LRU list. 1139 * 1140 * The returned page will have PageLRU() cleared. If it was found on 1141 * the active list, it will have PageActive set. If it was found on 1142 * the unevictable list, it will have the PageUnevictable bit set. That flag 1143 * may need to be cleared by the caller before letting the page go. 1144 * 1145 * The vmstat statistic corresponding to the list on which the page was 1146 * found will be decremented. 1147 * 1148 * Restrictions: 1149 * (1) Must be called with an elevated refcount on the page. This is a 1150 * fundamentnal difference from isolate_lru_pages (which is called 1151 * without a stable reference). 1152 * (2) the lru_lock must not be held. 1153 * (3) interrupts must be enabled. 1154 */ 1155 int isolate_lru_page(struct page *page) 1156 { 1157 int ret = -EBUSY; 1158 1159 VM_BUG_ON(!page_count(page)); 1160 1161 if (PageLRU(page)) { 1162 struct zone *zone = page_zone(page); 1163 struct lruvec *lruvec; 1164 1165 spin_lock_irq(&zone->lru_lock); 1166 lruvec = mem_cgroup_page_lruvec(page, zone); 1167 if (PageLRU(page)) { 1168 int lru = page_lru(page); 1169 get_page(page); 1170 ClearPageLRU(page); 1171 del_page_from_lru_list(page, lruvec, lru); 1172 ret = 0; 1173 } 1174 spin_unlock_irq(&zone->lru_lock); 1175 } 1176 return ret; 1177 } 1178 1179 /* 1180 * Are there way too many processes in the direct reclaim path already? 1181 */ 1182 static int too_many_isolated(struct zone *zone, int file, 1183 struct scan_control *sc) 1184 { 1185 unsigned long inactive, isolated; 1186 1187 if (current_is_kswapd()) 1188 return 0; 1189 1190 if (!global_reclaim(sc)) 1191 return 0; 1192 1193 if (file) { 1194 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1195 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1196 } else { 1197 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1198 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1199 } 1200 1201 return isolated > inactive; 1202 } 1203 1204 static noinline_for_stack void 1205 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1206 { 1207 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1208 struct zone *zone = lruvec_zone(lruvec); 1209 LIST_HEAD(pages_to_free); 1210 1211 /* 1212 * Put back any unfreeable pages. 1213 */ 1214 while (!list_empty(page_list)) { 1215 struct page *page = lru_to_page(page_list); 1216 int lru; 1217 1218 VM_BUG_ON(PageLRU(page)); 1219 list_del(&page->lru); 1220 if (unlikely(!page_evictable(page))) { 1221 spin_unlock_irq(&zone->lru_lock); 1222 putback_lru_page(page); 1223 spin_lock_irq(&zone->lru_lock); 1224 continue; 1225 } 1226 1227 lruvec = mem_cgroup_page_lruvec(page, zone); 1228 1229 SetPageLRU(page); 1230 lru = page_lru(page); 1231 add_page_to_lru_list(page, lruvec, lru); 1232 1233 if (is_active_lru(lru)) { 1234 int file = is_file_lru(lru); 1235 int numpages = hpage_nr_pages(page); 1236 reclaim_stat->recent_rotated[file] += numpages; 1237 } 1238 if (put_page_testzero(page)) { 1239 __ClearPageLRU(page); 1240 __ClearPageActive(page); 1241 del_page_from_lru_list(page, lruvec, lru); 1242 1243 if (unlikely(PageCompound(page))) { 1244 spin_unlock_irq(&zone->lru_lock); 1245 (*get_compound_page_dtor(page))(page); 1246 spin_lock_irq(&zone->lru_lock); 1247 } else 1248 list_add(&page->lru, &pages_to_free); 1249 } 1250 } 1251 1252 /* 1253 * To save our caller's stack, now use input list for pages to free. 1254 */ 1255 list_splice(&pages_to_free, page_list); 1256 } 1257 1258 /* 1259 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1260 * of reclaimed pages 1261 */ 1262 static noinline_for_stack unsigned long 1263 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1264 struct scan_control *sc, enum lru_list lru) 1265 { 1266 LIST_HEAD(page_list); 1267 unsigned long nr_scanned; 1268 unsigned long nr_reclaimed = 0; 1269 unsigned long nr_taken; 1270 unsigned long nr_dirty = 0; 1271 unsigned long nr_writeback = 0; 1272 isolate_mode_t isolate_mode = 0; 1273 int file = is_file_lru(lru); 1274 struct zone *zone = lruvec_zone(lruvec); 1275 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1276 1277 while (unlikely(too_many_isolated(zone, file, sc))) { 1278 congestion_wait(BLK_RW_ASYNC, HZ/10); 1279 1280 /* We are about to die and free our memory. Return now. */ 1281 if (fatal_signal_pending(current)) 1282 return SWAP_CLUSTER_MAX; 1283 } 1284 1285 lru_add_drain(); 1286 1287 if (!sc->may_unmap) 1288 isolate_mode |= ISOLATE_UNMAPPED; 1289 if (!sc->may_writepage) 1290 isolate_mode |= ISOLATE_CLEAN; 1291 1292 spin_lock_irq(&zone->lru_lock); 1293 1294 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1295 &nr_scanned, sc, isolate_mode, lru); 1296 1297 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1298 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1299 1300 if (global_reclaim(sc)) { 1301 zone->pages_scanned += nr_scanned; 1302 if (current_is_kswapd()) 1303 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); 1304 else 1305 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); 1306 } 1307 spin_unlock_irq(&zone->lru_lock); 1308 1309 if (nr_taken == 0) 1310 return 0; 1311 1312 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1313 &nr_dirty, &nr_writeback, false); 1314 1315 spin_lock_irq(&zone->lru_lock); 1316 1317 reclaim_stat->recent_scanned[file] += nr_taken; 1318 1319 if (global_reclaim(sc)) { 1320 if (current_is_kswapd()) 1321 __count_zone_vm_events(PGSTEAL_KSWAPD, zone, 1322 nr_reclaimed); 1323 else 1324 __count_zone_vm_events(PGSTEAL_DIRECT, zone, 1325 nr_reclaimed); 1326 } 1327 1328 putback_inactive_pages(lruvec, &page_list); 1329 1330 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1331 1332 spin_unlock_irq(&zone->lru_lock); 1333 1334 free_hot_cold_page_list(&page_list, 1); 1335 1336 /* 1337 * If reclaim is isolating dirty pages under writeback, it implies 1338 * that the long-lived page allocation rate is exceeding the page 1339 * laundering rate. Either the global limits are not being effective 1340 * at throttling processes due to the page distribution throughout 1341 * zones or there is heavy usage of a slow backing device. The 1342 * only option is to throttle from reclaim context which is not ideal 1343 * as there is no guarantee the dirtying process is throttled in the 1344 * same way balance_dirty_pages() manages. 1345 * 1346 * This scales the number of dirty pages that must be under writeback 1347 * before throttling depending on priority. It is a simple backoff 1348 * function that has the most effect in the range DEF_PRIORITY to 1349 * DEF_PRIORITY-2 which is the priority reclaim is considered to be 1350 * in trouble and reclaim is considered to be in trouble. 1351 * 1352 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle 1353 * DEF_PRIORITY-1 50% must be PageWriteback 1354 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble 1355 * ... 1356 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any 1357 * isolated page is PageWriteback 1358 */ 1359 if (nr_writeback && nr_writeback >= 1360 (nr_taken >> (DEF_PRIORITY - sc->priority))) 1361 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); 1362 1363 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, 1364 zone_idx(zone), 1365 nr_scanned, nr_reclaimed, 1366 sc->priority, 1367 trace_shrink_flags(file)); 1368 return nr_reclaimed; 1369 } 1370 1371 /* 1372 * This moves pages from the active list to the inactive list. 1373 * 1374 * We move them the other way if the page is referenced by one or more 1375 * processes, from rmap. 1376 * 1377 * If the pages are mostly unmapped, the processing is fast and it is 1378 * appropriate to hold zone->lru_lock across the whole operation. But if 1379 * the pages are mapped, the processing is slow (page_referenced()) so we 1380 * should drop zone->lru_lock around each page. It's impossible to balance 1381 * this, so instead we remove the pages from the LRU while processing them. 1382 * It is safe to rely on PG_active against the non-LRU pages in here because 1383 * nobody will play with that bit on a non-LRU page. 1384 * 1385 * The downside is that we have to touch page->_count against each page. 1386 * But we had to alter page->flags anyway. 1387 */ 1388 1389 static void move_active_pages_to_lru(struct lruvec *lruvec, 1390 struct list_head *list, 1391 struct list_head *pages_to_free, 1392 enum lru_list lru) 1393 { 1394 struct zone *zone = lruvec_zone(lruvec); 1395 unsigned long pgmoved = 0; 1396 struct page *page; 1397 int nr_pages; 1398 1399 while (!list_empty(list)) { 1400 page = lru_to_page(list); 1401 lruvec = mem_cgroup_page_lruvec(page, zone); 1402 1403 VM_BUG_ON(PageLRU(page)); 1404 SetPageLRU(page); 1405 1406 nr_pages = hpage_nr_pages(page); 1407 mem_cgroup_update_lru_size(lruvec, lru, nr_pages); 1408 list_move(&page->lru, &lruvec->lists[lru]); 1409 pgmoved += nr_pages; 1410 1411 if (put_page_testzero(page)) { 1412 __ClearPageLRU(page); 1413 __ClearPageActive(page); 1414 del_page_from_lru_list(page, lruvec, lru); 1415 1416 if (unlikely(PageCompound(page))) { 1417 spin_unlock_irq(&zone->lru_lock); 1418 (*get_compound_page_dtor(page))(page); 1419 spin_lock_irq(&zone->lru_lock); 1420 } else 1421 list_add(&page->lru, pages_to_free); 1422 } 1423 } 1424 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1425 if (!is_active_lru(lru)) 1426 __count_vm_events(PGDEACTIVATE, pgmoved); 1427 } 1428 1429 static void shrink_active_list(unsigned long nr_to_scan, 1430 struct lruvec *lruvec, 1431 struct scan_control *sc, 1432 enum lru_list lru) 1433 { 1434 unsigned long nr_taken; 1435 unsigned long nr_scanned; 1436 unsigned long vm_flags; 1437 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1438 LIST_HEAD(l_active); 1439 LIST_HEAD(l_inactive); 1440 struct page *page; 1441 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1442 unsigned long nr_rotated = 0; 1443 isolate_mode_t isolate_mode = 0; 1444 int file = is_file_lru(lru); 1445 struct zone *zone = lruvec_zone(lruvec); 1446 1447 lru_add_drain(); 1448 1449 if (!sc->may_unmap) 1450 isolate_mode |= ISOLATE_UNMAPPED; 1451 if (!sc->may_writepage) 1452 isolate_mode |= ISOLATE_CLEAN; 1453 1454 spin_lock_irq(&zone->lru_lock); 1455 1456 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1457 &nr_scanned, sc, isolate_mode, lru); 1458 if (global_reclaim(sc)) 1459 zone->pages_scanned += nr_scanned; 1460 1461 reclaim_stat->recent_scanned[file] += nr_taken; 1462 1463 __count_zone_vm_events(PGREFILL, zone, nr_scanned); 1464 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1465 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1466 spin_unlock_irq(&zone->lru_lock); 1467 1468 while (!list_empty(&l_hold)) { 1469 cond_resched(); 1470 page = lru_to_page(&l_hold); 1471 list_del(&page->lru); 1472 1473 if (unlikely(!page_evictable(page))) { 1474 putback_lru_page(page); 1475 continue; 1476 } 1477 1478 if (unlikely(buffer_heads_over_limit)) { 1479 if (page_has_private(page) && trylock_page(page)) { 1480 if (page_has_private(page)) 1481 try_to_release_page(page, 0); 1482 unlock_page(page); 1483 } 1484 } 1485 1486 if (page_referenced(page, 0, sc->target_mem_cgroup, 1487 &vm_flags)) { 1488 nr_rotated += hpage_nr_pages(page); 1489 /* 1490 * Identify referenced, file-backed active pages and 1491 * give them one more trip around the active list. So 1492 * that executable code get better chances to stay in 1493 * memory under moderate memory pressure. Anon pages 1494 * are not likely to be evicted by use-once streaming 1495 * IO, plus JVM can create lots of anon VM_EXEC pages, 1496 * so we ignore them here. 1497 */ 1498 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1499 list_add(&page->lru, &l_active); 1500 continue; 1501 } 1502 } 1503 1504 ClearPageActive(page); /* we are de-activating */ 1505 list_add(&page->lru, &l_inactive); 1506 } 1507 1508 /* 1509 * Move pages back to the lru list. 1510 */ 1511 spin_lock_irq(&zone->lru_lock); 1512 /* 1513 * Count referenced pages from currently used mappings as rotated, 1514 * even though only some of them are actually re-activated. This 1515 * helps balance scan pressure between file and anonymous pages in 1516 * get_scan_ratio. 1517 */ 1518 reclaim_stat->recent_rotated[file] += nr_rotated; 1519 1520 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1521 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1522 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1523 spin_unlock_irq(&zone->lru_lock); 1524 1525 free_hot_cold_page_list(&l_hold, 1); 1526 } 1527 1528 #ifdef CONFIG_SWAP 1529 static int inactive_anon_is_low_global(struct zone *zone) 1530 { 1531 unsigned long active, inactive; 1532 1533 active = zone_page_state(zone, NR_ACTIVE_ANON); 1534 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1535 1536 if (inactive * zone->inactive_ratio < active) 1537 return 1; 1538 1539 return 0; 1540 } 1541 1542 /** 1543 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1544 * @lruvec: LRU vector to check 1545 * 1546 * Returns true if the zone does not have enough inactive anon pages, 1547 * meaning some active anon pages need to be deactivated. 1548 */ 1549 static int inactive_anon_is_low(struct lruvec *lruvec) 1550 { 1551 /* 1552 * If we don't have swap space, anonymous page deactivation 1553 * is pointless. 1554 */ 1555 if (!total_swap_pages) 1556 return 0; 1557 1558 if (!mem_cgroup_disabled()) 1559 return mem_cgroup_inactive_anon_is_low(lruvec); 1560 1561 return inactive_anon_is_low_global(lruvec_zone(lruvec)); 1562 } 1563 #else 1564 static inline int inactive_anon_is_low(struct lruvec *lruvec) 1565 { 1566 return 0; 1567 } 1568 #endif 1569 1570 static int inactive_file_is_low_global(struct zone *zone) 1571 { 1572 unsigned long active, inactive; 1573 1574 active = zone_page_state(zone, NR_ACTIVE_FILE); 1575 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1576 1577 return (active > inactive); 1578 } 1579 1580 /** 1581 * inactive_file_is_low - check if file pages need to be deactivated 1582 * @lruvec: LRU vector to check 1583 * 1584 * When the system is doing streaming IO, memory pressure here 1585 * ensures that active file pages get deactivated, until more 1586 * than half of the file pages are on the inactive list. 1587 * 1588 * Once we get to that situation, protect the system's working 1589 * set from being evicted by disabling active file page aging. 1590 * 1591 * This uses a different ratio than the anonymous pages, because 1592 * the page cache uses a use-once replacement algorithm. 1593 */ 1594 static int inactive_file_is_low(struct lruvec *lruvec) 1595 { 1596 if (!mem_cgroup_disabled()) 1597 return mem_cgroup_inactive_file_is_low(lruvec); 1598 1599 return inactive_file_is_low_global(lruvec_zone(lruvec)); 1600 } 1601 1602 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) 1603 { 1604 if (is_file_lru(lru)) 1605 return inactive_file_is_low(lruvec); 1606 else 1607 return inactive_anon_is_low(lruvec); 1608 } 1609 1610 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1611 struct lruvec *lruvec, struct scan_control *sc) 1612 { 1613 if (is_active_lru(lru)) { 1614 if (inactive_list_is_low(lruvec, lru)) 1615 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1616 return 0; 1617 } 1618 1619 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1620 } 1621 1622 static int vmscan_swappiness(struct scan_control *sc) 1623 { 1624 if (global_reclaim(sc)) 1625 return vm_swappiness; 1626 return mem_cgroup_swappiness(sc->target_mem_cgroup); 1627 } 1628 1629 /* 1630 * Determine how aggressively the anon and file LRU lists should be 1631 * scanned. The relative value of each set of LRU lists is determined 1632 * by looking at the fraction of the pages scanned we did rotate back 1633 * onto the active list instead of evict. 1634 * 1635 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1636 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1637 */ 1638 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 1639 unsigned long *nr) 1640 { 1641 unsigned long anon, file, free; 1642 unsigned long anon_prio, file_prio; 1643 unsigned long ap, fp; 1644 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1645 u64 fraction[2], denominator; 1646 enum lru_list lru; 1647 int noswap = 0; 1648 bool force_scan = false; 1649 struct zone *zone = lruvec_zone(lruvec); 1650 1651 /* 1652 * If the zone or memcg is small, nr[l] can be 0. This 1653 * results in no scanning on this priority and a potential 1654 * priority drop. Global direct reclaim can go to the next 1655 * zone and tends to have no problems. Global kswapd is for 1656 * zone balancing and it needs to scan a minimum amount. When 1657 * reclaiming for a memcg, a priority drop can cause high 1658 * latencies, so it's better to scan a minimum amount there as 1659 * well. 1660 */ 1661 if (current_is_kswapd() && zone->all_unreclaimable) 1662 force_scan = true; 1663 if (!global_reclaim(sc)) 1664 force_scan = true; 1665 1666 /* If we have no swap space, do not bother scanning anon pages. */ 1667 if (!sc->may_swap || (nr_swap_pages <= 0)) { 1668 noswap = 1; 1669 fraction[0] = 0; 1670 fraction[1] = 1; 1671 denominator = 1; 1672 goto out; 1673 } 1674 1675 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + 1676 get_lru_size(lruvec, LRU_INACTIVE_ANON); 1677 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + 1678 get_lru_size(lruvec, LRU_INACTIVE_FILE); 1679 1680 if (global_reclaim(sc)) { 1681 free = zone_page_state(zone, NR_FREE_PAGES); 1682 /* If we have very few page cache pages, 1683 force-scan anon pages. */ 1684 if (unlikely(file + free <= high_wmark_pages(zone))) { 1685 fraction[0] = 1; 1686 fraction[1] = 0; 1687 denominator = 1; 1688 goto out; 1689 } 1690 } 1691 1692 /* 1693 * With swappiness at 100, anonymous and file have the same priority. 1694 * This scanning priority is essentially the inverse of IO cost. 1695 */ 1696 anon_prio = vmscan_swappiness(sc); 1697 file_prio = 200 - anon_prio; 1698 1699 /* 1700 * OK, so we have swap space and a fair amount of page cache 1701 * pages. We use the recently rotated / recently scanned 1702 * ratios to determine how valuable each cache is. 1703 * 1704 * Because workloads change over time (and to avoid overflow) 1705 * we keep these statistics as a floating average, which ends 1706 * up weighing recent references more than old ones. 1707 * 1708 * anon in [0], file in [1] 1709 */ 1710 spin_lock_irq(&zone->lru_lock); 1711 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1712 reclaim_stat->recent_scanned[0] /= 2; 1713 reclaim_stat->recent_rotated[0] /= 2; 1714 } 1715 1716 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 1717 reclaim_stat->recent_scanned[1] /= 2; 1718 reclaim_stat->recent_rotated[1] /= 2; 1719 } 1720 1721 /* 1722 * The amount of pressure on anon vs file pages is inversely 1723 * proportional to the fraction of recently scanned pages on 1724 * each list that were recently referenced and in active use. 1725 */ 1726 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 1727 ap /= reclaim_stat->recent_rotated[0] + 1; 1728 1729 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 1730 fp /= reclaim_stat->recent_rotated[1] + 1; 1731 spin_unlock_irq(&zone->lru_lock); 1732 1733 fraction[0] = ap; 1734 fraction[1] = fp; 1735 denominator = ap + fp + 1; 1736 out: 1737 for_each_evictable_lru(lru) { 1738 int file = is_file_lru(lru); 1739 unsigned long scan; 1740 1741 scan = get_lru_size(lruvec, lru); 1742 if (sc->priority || noswap || !vmscan_swappiness(sc)) { 1743 scan >>= sc->priority; 1744 if (!scan && force_scan) 1745 scan = SWAP_CLUSTER_MAX; 1746 scan = div64_u64(scan * fraction[file], denominator); 1747 } 1748 nr[lru] = scan; 1749 } 1750 } 1751 1752 /* Use reclaim/compaction for costly allocs or under memory pressure */ 1753 static bool in_reclaim_compaction(struct scan_control *sc) 1754 { 1755 if (COMPACTION_BUILD && sc->order && 1756 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 1757 sc->priority < DEF_PRIORITY - 2)) 1758 return true; 1759 1760 return false; 1761 } 1762 1763 #ifdef CONFIG_COMPACTION 1764 /* 1765 * If compaction is deferred for sc->order then scale the number of pages 1766 * reclaimed based on the number of consecutive allocation failures 1767 */ 1768 static unsigned long scale_for_compaction(unsigned long pages_for_compaction, 1769 struct lruvec *lruvec, struct scan_control *sc) 1770 { 1771 struct zone *zone = lruvec_zone(lruvec); 1772 1773 if (zone->compact_order_failed <= sc->order) 1774 pages_for_compaction <<= zone->compact_defer_shift; 1775 return pages_for_compaction; 1776 } 1777 #else 1778 static unsigned long scale_for_compaction(unsigned long pages_for_compaction, 1779 struct lruvec *lruvec, struct scan_control *sc) 1780 { 1781 return pages_for_compaction; 1782 } 1783 #endif 1784 1785 /* 1786 * Reclaim/compaction is used for high-order allocation requests. It reclaims 1787 * order-0 pages before compacting the zone. should_continue_reclaim() returns 1788 * true if more pages should be reclaimed such that when the page allocator 1789 * calls try_to_compact_zone() that it will have enough free pages to succeed. 1790 * It will give up earlier than that if there is difficulty reclaiming pages. 1791 */ 1792 static inline bool should_continue_reclaim(struct lruvec *lruvec, 1793 unsigned long nr_reclaimed, 1794 unsigned long nr_scanned, 1795 struct scan_control *sc) 1796 { 1797 unsigned long pages_for_compaction; 1798 unsigned long inactive_lru_pages; 1799 1800 /* If not in reclaim/compaction mode, stop */ 1801 if (!in_reclaim_compaction(sc)) 1802 return false; 1803 1804 /* Consider stopping depending on scan and reclaim activity */ 1805 if (sc->gfp_mask & __GFP_REPEAT) { 1806 /* 1807 * For __GFP_REPEAT allocations, stop reclaiming if the 1808 * full LRU list has been scanned and we are still failing 1809 * to reclaim pages. This full LRU scan is potentially 1810 * expensive but a __GFP_REPEAT caller really wants to succeed 1811 */ 1812 if (!nr_reclaimed && !nr_scanned) 1813 return false; 1814 } else { 1815 /* 1816 * For non-__GFP_REPEAT allocations which can presumably 1817 * fail without consequence, stop if we failed to reclaim 1818 * any pages from the last SWAP_CLUSTER_MAX number of 1819 * pages that were scanned. This will return to the 1820 * caller faster at the risk reclaim/compaction and 1821 * the resulting allocation attempt fails 1822 */ 1823 if (!nr_reclaimed) 1824 return false; 1825 } 1826 1827 /* 1828 * If we have not reclaimed enough pages for compaction and the 1829 * inactive lists are large enough, continue reclaiming 1830 */ 1831 pages_for_compaction = (2UL << sc->order); 1832 1833 pages_for_compaction = scale_for_compaction(pages_for_compaction, 1834 lruvec, sc); 1835 inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE); 1836 if (nr_swap_pages > 0) 1837 inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON); 1838 if (sc->nr_reclaimed < pages_for_compaction && 1839 inactive_lru_pages > pages_for_compaction) 1840 return true; 1841 1842 /* If compaction would go ahead or the allocation would succeed, stop */ 1843 switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) { 1844 case COMPACT_PARTIAL: 1845 case COMPACT_CONTINUE: 1846 return false; 1847 default: 1848 return true; 1849 } 1850 } 1851 1852 /* 1853 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1854 */ 1855 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 1856 { 1857 unsigned long nr[NR_LRU_LISTS]; 1858 unsigned long nr_to_scan; 1859 enum lru_list lru; 1860 unsigned long nr_reclaimed, nr_scanned; 1861 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 1862 struct blk_plug plug; 1863 1864 restart: 1865 nr_reclaimed = 0; 1866 nr_scanned = sc->nr_scanned; 1867 get_scan_count(lruvec, sc, nr); 1868 1869 blk_start_plug(&plug); 1870 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 1871 nr[LRU_INACTIVE_FILE]) { 1872 for_each_evictable_lru(lru) { 1873 if (nr[lru]) { 1874 nr_to_scan = min_t(unsigned long, 1875 nr[lru], SWAP_CLUSTER_MAX); 1876 nr[lru] -= nr_to_scan; 1877 1878 nr_reclaimed += shrink_list(lru, nr_to_scan, 1879 lruvec, sc); 1880 } 1881 } 1882 /* 1883 * On large memory systems, scan >> priority can become 1884 * really large. This is fine for the starting priority; 1885 * we want to put equal scanning pressure on each zone. 1886 * However, if the VM has a harder time of freeing pages, 1887 * with multiple processes reclaiming pages, the total 1888 * freeing target can get unreasonably large. 1889 */ 1890 if (nr_reclaimed >= nr_to_reclaim && 1891 sc->priority < DEF_PRIORITY) 1892 break; 1893 } 1894 blk_finish_plug(&plug); 1895 sc->nr_reclaimed += nr_reclaimed; 1896 1897 /* 1898 * Even if we did not try to evict anon pages at all, we want to 1899 * rebalance the anon lru active/inactive ratio. 1900 */ 1901 if (inactive_anon_is_low(lruvec)) 1902 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 1903 sc, LRU_ACTIVE_ANON); 1904 1905 /* reclaim/compaction might need reclaim to continue */ 1906 if (should_continue_reclaim(lruvec, nr_reclaimed, 1907 sc->nr_scanned - nr_scanned, sc)) 1908 goto restart; 1909 1910 throttle_vm_writeout(sc->gfp_mask); 1911 } 1912 1913 static void shrink_zone(struct zone *zone, struct scan_control *sc) 1914 { 1915 struct mem_cgroup *root = sc->target_mem_cgroup; 1916 struct mem_cgroup_reclaim_cookie reclaim = { 1917 .zone = zone, 1918 .priority = sc->priority, 1919 }; 1920 struct mem_cgroup *memcg; 1921 1922 memcg = mem_cgroup_iter(root, NULL, &reclaim); 1923 do { 1924 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 1925 1926 shrink_lruvec(lruvec, sc); 1927 1928 /* 1929 * Limit reclaim has historically picked one memcg and 1930 * scanned it with decreasing priority levels until 1931 * nr_to_reclaim had been reclaimed. This priority 1932 * cycle is thus over after a single memcg. 1933 * 1934 * Direct reclaim and kswapd, on the other hand, have 1935 * to scan all memory cgroups to fulfill the overall 1936 * scan target for the zone. 1937 */ 1938 if (!global_reclaim(sc)) { 1939 mem_cgroup_iter_break(root, memcg); 1940 break; 1941 } 1942 memcg = mem_cgroup_iter(root, memcg, &reclaim); 1943 } while (memcg); 1944 } 1945 1946 /* Returns true if compaction should go ahead for a high-order request */ 1947 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 1948 { 1949 unsigned long balance_gap, watermark; 1950 bool watermark_ok; 1951 1952 /* Do not consider compaction for orders reclaim is meant to satisfy */ 1953 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER) 1954 return false; 1955 1956 /* 1957 * Compaction takes time to run and there are potentially other 1958 * callers using the pages just freed. Continue reclaiming until 1959 * there is a buffer of free pages available to give compaction 1960 * a reasonable chance of completing and allocating the page 1961 */ 1962 balance_gap = min(low_wmark_pages(zone), 1963 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / 1964 KSWAPD_ZONE_BALANCE_GAP_RATIO); 1965 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order); 1966 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); 1967 1968 /* 1969 * If compaction is deferred, reclaim up to a point where 1970 * compaction will have a chance of success when re-enabled 1971 */ 1972 if (compaction_deferred(zone, sc->order)) 1973 return watermark_ok; 1974 1975 /* If compaction is not ready to start, keep reclaiming */ 1976 if (!compaction_suitable(zone, sc->order)) 1977 return false; 1978 1979 return watermark_ok; 1980 } 1981 1982 /* 1983 * This is the direct reclaim path, for page-allocating processes. We only 1984 * try to reclaim pages from zones which will satisfy the caller's allocation 1985 * request. 1986 * 1987 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 1988 * Because: 1989 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 1990 * allocation or 1991 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 1992 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 1993 * zone defense algorithm. 1994 * 1995 * If a zone is deemed to be full of pinned pages then just give it a light 1996 * scan then give up on it. 1997 * 1998 * This function returns true if a zone is being reclaimed for a costly 1999 * high-order allocation and compaction is ready to begin. This indicates to 2000 * the caller that it should consider retrying the allocation instead of 2001 * further reclaim. 2002 */ 2003 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2004 { 2005 struct zoneref *z; 2006 struct zone *zone; 2007 unsigned long nr_soft_reclaimed; 2008 unsigned long nr_soft_scanned; 2009 bool aborted_reclaim = false; 2010 2011 /* 2012 * If the number of buffer_heads in the machine exceeds the maximum 2013 * allowed level, force direct reclaim to scan the highmem zone as 2014 * highmem pages could be pinning lowmem pages storing buffer_heads 2015 */ 2016 if (buffer_heads_over_limit) 2017 sc->gfp_mask |= __GFP_HIGHMEM; 2018 2019 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2020 gfp_zone(sc->gfp_mask), sc->nodemask) { 2021 if (!populated_zone(zone)) 2022 continue; 2023 /* 2024 * Take care memory controller reclaiming has small influence 2025 * to global LRU. 2026 */ 2027 if (global_reclaim(sc)) { 2028 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2029 continue; 2030 if (zone->all_unreclaimable && 2031 sc->priority != DEF_PRIORITY) 2032 continue; /* Let kswapd poll it */ 2033 if (COMPACTION_BUILD) { 2034 /* 2035 * If we already have plenty of memory free for 2036 * compaction in this zone, don't free any more. 2037 * Even though compaction is invoked for any 2038 * non-zero order, only frequent costly order 2039 * reclamation is disruptive enough to become a 2040 * noticeable problem, like transparent huge 2041 * page allocations. 2042 */ 2043 if (compaction_ready(zone, sc)) { 2044 aborted_reclaim = true; 2045 continue; 2046 } 2047 } 2048 /* 2049 * This steals pages from memory cgroups over softlimit 2050 * and returns the number of reclaimed pages and 2051 * scanned pages. This works for global memory pressure 2052 * and balancing, not for a memcg's limit. 2053 */ 2054 nr_soft_scanned = 0; 2055 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2056 sc->order, sc->gfp_mask, 2057 &nr_soft_scanned); 2058 sc->nr_reclaimed += nr_soft_reclaimed; 2059 sc->nr_scanned += nr_soft_scanned; 2060 /* need some check for avoid more shrink_zone() */ 2061 } 2062 2063 shrink_zone(zone, sc); 2064 } 2065 2066 return aborted_reclaim; 2067 } 2068 2069 static bool zone_reclaimable(struct zone *zone) 2070 { 2071 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; 2072 } 2073 2074 /* All zones in zonelist are unreclaimable? */ 2075 static bool all_unreclaimable(struct zonelist *zonelist, 2076 struct scan_control *sc) 2077 { 2078 struct zoneref *z; 2079 struct zone *zone; 2080 2081 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2082 gfp_zone(sc->gfp_mask), sc->nodemask) { 2083 if (!populated_zone(zone)) 2084 continue; 2085 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2086 continue; 2087 if (!zone->all_unreclaimable) 2088 return false; 2089 } 2090 2091 return true; 2092 } 2093 2094 /* 2095 * This is the main entry point to direct page reclaim. 2096 * 2097 * If a full scan of the inactive list fails to free enough memory then we 2098 * are "out of memory" and something needs to be killed. 2099 * 2100 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2101 * high - the zone may be full of dirty or under-writeback pages, which this 2102 * caller can't do much about. We kick the writeback threads and take explicit 2103 * naps in the hope that some of these pages can be written. But if the 2104 * allocating task holds filesystem locks which prevent writeout this might not 2105 * work, and the allocation attempt will fail. 2106 * 2107 * returns: 0, if no pages reclaimed 2108 * else, the number of pages reclaimed 2109 */ 2110 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2111 struct scan_control *sc, 2112 struct shrink_control *shrink) 2113 { 2114 unsigned long total_scanned = 0; 2115 struct reclaim_state *reclaim_state = current->reclaim_state; 2116 struct zoneref *z; 2117 struct zone *zone; 2118 unsigned long writeback_threshold; 2119 bool aborted_reclaim; 2120 2121 delayacct_freepages_start(); 2122 2123 if (global_reclaim(sc)) 2124 count_vm_event(ALLOCSTALL); 2125 2126 do { 2127 sc->nr_scanned = 0; 2128 aborted_reclaim = shrink_zones(zonelist, sc); 2129 2130 /* 2131 * Don't shrink slabs when reclaiming memory from 2132 * over limit cgroups 2133 */ 2134 if (global_reclaim(sc)) { 2135 unsigned long lru_pages = 0; 2136 for_each_zone_zonelist(zone, z, zonelist, 2137 gfp_zone(sc->gfp_mask)) { 2138 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2139 continue; 2140 2141 lru_pages += zone_reclaimable_pages(zone); 2142 } 2143 2144 shrink_slab(shrink, sc->nr_scanned, lru_pages); 2145 if (reclaim_state) { 2146 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2147 reclaim_state->reclaimed_slab = 0; 2148 } 2149 } 2150 total_scanned += sc->nr_scanned; 2151 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2152 goto out; 2153 2154 /* 2155 * Try to write back as many pages as we just scanned. This 2156 * tends to cause slow streaming writers to write data to the 2157 * disk smoothly, at the dirtying rate, which is nice. But 2158 * that's undesirable in laptop mode, where we *want* lumpy 2159 * writeout. So in laptop mode, write out the whole world. 2160 */ 2161 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2162 if (total_scanned > writeback_threshold) { 2163 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2164 WB_REASON_TRY_TO_FREE_PAGES); 2165 sc->may_writepage = 1; 2166 } 2167 2168 /* Take a nap, wait for some writeback to complete */ 2169 if (!sc->hibernation_mode && sc->nr_scanned && 2170 sc->priority < DEF_PRIORITY - 2) { 2171 struct zone *preferred_zone; 2172 2173 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask), 2174 &cpuset_current_mems_allowed, 2175 &preferred_zone); 2176 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10); 2177 } 2178 } while (--sc->priority >= 0); 2179 2180 out: 2181 delayacct_freepages_end(); 2182 2183 if (sc->nr_reclaimed) 2184 return sc->nr_reclaimed; 2185 2186 /* 2187 * As hibernation is going on, kswapd is freezed so that it can't mark 2188 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable 2189 * check. 2190 */ 2191 if (oom_killer_disabled) 2192 return 0; 2193 2194 /* Aborted reclaim to try compaction? don't OOM, then */ 2195 if (aborted_reclaim) 2196 return 1; 2197 2198 /* top priority shrink_zones still had more to do? don't OOM, then */ 2199 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc)) 2200 return 1; 2201 2202 return 0; 2203 } 2204 2205 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2206 { 2207 struct zone *zone; 2208 unsigned long pfmemalloc_reserve = 0; 2209 unsigned long free_pages = 0; 2210 int i; 2211 bool wmark_ok; 2212 2213 for (i = 0; i <= ZONE_NORMAL; i++) { 2214 zone = &pgdat->node_zones[i]; 2215 pfmemalloc_reserve += min_wmark_pages(zone); 2216 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2217 } 2218 2219 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2220 2221 /* kswapd must be awake if processes are being throttled */ 2222 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2223 pgdat->classzone_idx = min(pgdat->classzone_idx, 2224 (enum zone_type)ZONE_NORMAL); 2225 wake_up_interruptible(&pgdat->kswapd_wait); 2226 } 2227 2228 return wmark_ok; 2229 } 2230 2231 /* 2232 * Throttle direct reclaimers if backing storage is backed by the network 2233 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2234 * depleted. kswapd will continue to make progress and wake the processes 2235 * when the low watermark is reached 2236 */ 2237 static void throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2238 nodemask_t *nodemask) 2239 { 2240 struct zone *zone; 2241 int high_zoneidx = gfp_zone(gfp_mask); 2242 pg_data_t *pgdat; 2243 2244 /* 2245 * Kernel threads should not be throttled as they may be indirectly 2246 * responsible for cleaning pages necessary for reclaim to make forward 2247 * progress. kjournald for example may enter direct reclaim while 2248 * committing a transaction where throttling it could forcing other 2249 * processes to block on log_wait_commit(). 2250 */ 2251 if (current->flags & PF_KTHREAD) 2252 return; 2253 2254 /* Check if the pfmemalloc reserves are ok */ 2255 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone); 2256 pgdat = zone->zone_pgdat; 2257 if (pfmemalloc_watermark_ok(pgdat)) 2258 return; 2259 2260 /* Account for the throttling */ 2261 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2262 2263 /* 2264 * If the caller cannot enter the filesystem, it's possible that it 2265 * is due to the caller holding an FS lock or performing a journal 2266 * transaction in the case of a filesystem like ext[3|4]. In this case, 2267 * it is not safe to block on pfmemalloc_wait as kswapd could be 2268 * blocked waiting on the same lock. Instead, throttle for up to a 2269 * second before continuing. 2270 */ 2271 if (!(gfp_mask & __GFP_FS)) { 2272 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2273 pfmemalloc_watermark_ok(pgdat), HZ); 2274 return; 2275 } 2276 2277 /* Throttle until kswapd wakes the process */ 2278 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2279 pfmemalloc_watermark_ok(pgdat)); 2280 } 2281 2282 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2283 gfp_t gfp_mask, nodemask_t *nodemask) 2284 { 2285 unsigned long nr_reclaimed; 2286 struct scan_control sc = { 2287 .gfp_mask = gfp_mask, 2288 .may_writepage = !laptop_mode, 2289 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2290 .may_unmap = 1, 2291 .may_swap = 1, 2292 .order = order, 2293 .priority = DEF_PRIORITY, 2294 .target_mem_cgroup = NULL, 2295 .nodemask = nodemask, 2296 }; 2297 struct shrink_control shrink = { 2298 .gfp_mask = sc.gfp_mask, 2299 }; 2300 2301 throttle_direct_reclaim(gfp_mask, zonelist, nodemask); 2302 2303 /* 2304 * Do not enter reclaim if fatal signal is pending. 1 is returned so 2305 * that the page allocator does not consider triggering OOM 2306 */ 2307 if (fatal_signal_pending(current)) 2308 return 1; 2309 2310 trace_mm_vmscan_direct_reclaim_begin(order, 2311 sc.may_writepage, 2312 gfp_mask); 2313 2314 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 2315 2316 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2317 2318 return nr_reclaimed; 2319 } 2320 2321 #ifdef CONFIG_MEMCG 2322 2323 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, 2324 gfp_t gfp_mask, bool noswap, 2325 struct zone *zone, 2326 unsigned long *nr_scanned) 2327 { 2328 struct scan_control sc = { 2329 .nr_scanned = 0, 2330 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2331 .may_writepage = !laptop_mode, 2332 .may_unmap = 1, 2333 .may_swap = !noswap, 2334 .order = 0, 2335 .priority = 0, 2336 .target_mem_cgroup = memcg, 2337 }; 2338 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2339 2340 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2341 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2342 2343 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2344 sc.may_writepage, 2345 sc.gfp_mask); 2346 2347 /* 2348 * NOTE: Although we can get the priority field, using it 2349 * here is not a good idea, since it limits the pages we can scan. 2350 * if we don't reclaim here, the shrink_zone from balance_pgdat 2351 * will pick up pages from other mem cgroup's as well. We hack 2352 * the priority and make it zero. 2353 */ 2354 shrink_lruvec(lruvec, &sc); 2355 2356 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2357 2358 *nr_scanned = sc.nr_scanned; 2359 return sc.nr_reclaimed; 2360 } 2361 2362 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2363 gfp_t gfp_mask, 2364 bool noswap) 2365 { 2366 struct zonelist *zonelist; 2367 unsigned long nr_reclaimed; 2368 int nid; 2369 struct scan_control sc = { 2370 .may_writepage = !laptop_mode, 2371 .may_unmap = 1, 2372 .may_swap = !noswap, 2373 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2374 .order = 0, 2375 .priority = DEF_PRIORITY, 2376 .target_mem_cgroup = memcg, 2377 .nodemask = NULL, /* we don't care the placement */ 2378 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2379 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2380 }; 2381 struct shrink_control shrink = { 2382 .gfp_mask = sc.gfp_mask, 2383 }; 2384 2385 /* 2386 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2387 * take care of from where we get pages. So the node where we start the 2388 * scan does not need to be the current node. 2389 */ 2390 nid = mem_cgroup_select_victim_node(memcg); 2391 2392 zonelist = NODE_DATA(nid)->node_zonelists; 2393 2394 trace_mm_vmscan_memcg_reclaim_begin(0, 2395 sc.may_writepage, 2396 sc.gfp_mask); 2397 2398 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 2399 2400 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2401 2402 return nr_reclaimed; 2403 } 2404 #endif 2405 2406 static void age_active_anon(struct zone *zone, struct scan_control *sc) 2407 { 2408 struct mem_cgroup *memcg; 2409 2410 if (!total_swap_pages) 2411 return; 2412 2413 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2414 do { 2415 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2416 2417 if (inactive_anon_is_low(lruvec)) 2418 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2419 sc, LRU_ACTIVE_ANON); 2420 2421 memcg = mem_cgroup_iter(NULL, memcg, NULL); 2422 } while (memcg); 2423 } 2424 2425 /* 2426 * pgdat_balanced is used when checking if a node is balanced for high-order 2427 * allocations. Only zones that meet watermarks and are in a zone allowed 2428 * by the callers classzone_idx are added to balanced_pages. The total of 2429 * balanced pages must be at least 25% of the zones allowed by classzone_idx 2430 * for the node to be considered balanced. Forcing all zones to be balanced 2431 * for high orders can cause excessive reclaim when there are imbalanced zones. 2432 * The choice of 25% is due to 2433 * o a 16M DMA zone that is balanced will not balance a zone on any 2434 * reasonable sized machine 2435 * o On all other machines, the top zone must be at least a reasonable 2436 * percentage of the middle zones. For example, on 32-bit x86, highmem 2437 * would need to be at least 256M for it to be balance a whole node. 2438 * Similarly, on x86-64 the Normal zone would need to be at least 1G 2439 * to balance a node on its own. These seemed like reasonable ratios. 2440 */ 2441 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages, 2442 int classzone_idx) 2443 { 2444 unsigned long present_pages = 0; 2445 int i; 2446 2447 for (i = 0; i <= classzone_idx; i++) 2448 present_pages += pgdat->node_zones[i].present_pages; 2449 2450 /* A special case here: if zone has no page, we think it's balanced */ 2451 return balanced_pages >= (present_pages >> 2); 2452 } 2453 2454 /* 2455 * Prepare kswapd for sleeping. This verifies that there are no processes 2456 * waiting in throttle_direct_reclaim() and that watermarks have been met. 2457 * 2458 * Returns true if kswapd is ready to sleep 2459 */ 2460 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, 2461 int classzone_idx) 2462 { 2463 int i; 2464 unsigned long balanced = 0; 2465 bool all_zones_ok = true; 2466 2467 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 2468 if (remaining) 2469 return false; 2470 2471 /* 2472 * There is a potential race between when kswapd checks its watermarks 2473 * and a process gets throttled. There is also a potential race if 2474 * processes get throttled, kswapd wakes, a large process exits therby 2475 * balancing the zones that causes kswapd to miss a wakeup. If kswapd 2476 * is going to sleep, no process should be sleeping on pfmemalloc_wait 2477 * so wake them now if necessary. If necessary, processes will wake 2478 * kswapd and get throttled again 2479 */ 2480 if (waitqueue_active(&pgdat->pfmemalloc_wait)) { 2481 wake_up(&pgdat->pfmemalloc_wait); 2482 return false; 2483 } 2484 2485 /* Check the watermark levels */ 2486 for (i = 0; i <= classzone_idx; i++) { 2487 struct zone *zone = pgdat->node_zones + i; 2488 2489 if (!populated_zone(zone)) 2490 continue; 2491 2492 /* 2493 * balance_pgdat() skips over all_unreclaimable after 2494 * DEF_PRIORITY. Effectively, it considers them balanced so 2495 * they must be considered balanced here as well if kswapd 2496 * is to sleep 2497 */ 2498 if (zone->all_unreclaimable) { 2499 balanced += zone->present_pages; 2500 continue; 2501 } 2502 2503 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone), 2504 i, 0)) 2505 all_zones_ok = false; 2506 else 2507 balanced += zone->present_pages; 2508 } 2509 2510 /* 2511 * For high-order requests, the balanced zones must contain at least 2512 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones 2513 * must be balanced 2514 */ 2515 if (order) 2516 return pgdat_balanced(pgdat, balanced, classzone_idx); 2517 else 2518 return all_zones_ok; 2519 } 2520 2521 /* 2522 * For kswapd, balance_pgdat() will work across all this node's zones until 2523 * they are all at high_wmark_pages(zone). 2524 * 2525 * Returns the final order kswapd was reclaiming at 2526 * 2527 * There is special handling here for zones which are full of pinned pages. 2528 * This can happen if the pages are all mlocked, or if they are all used by 2529 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 2530 * What we do is to detect the case where all pages in the zone have been 2531 * scanned twice and there has been zero successful reclaim. Mark the zone as 2532 * dead and from now on, only perform a short scan. Basically we're polling 2533 * the zone for when the problem goes away. 2534 * 2535 * kswapd scans the zones in the highmem->normal->dma direction. It skips 2536 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 2537 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 2538 * lower zones regardless of the number of free pages in the lower zones. This 2539 * interoperates with the page allocator fallback scheme to ensure that aging 2540 * of pages is balanced across the zones. 2541 */ 2542 static unsigned long balance_pgdat(pg_data_t *pgdat, int order, 2543 int *classzone_idx) 2544 { 2545 int all_zones_ok; 2546 unsigned long balanced; 2547 int i; 2548 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 2549 unsigned long total_scanned; 2550 struct reclaim_state *reclaim_state = current->reclaim_state; 2551 unsigned long nr_soft_reclaimed; 2552 unsigned long nr_soft_scanned; 2553 struct scan_control sc = { 2554 .gfp_mask = GFP_KERNEL, 2555 .may_unmap = 1, 2556 .may_swap = 1, 2557 /* 2558 * kswapd doesn't want to be bailed out while reclaim. because 2559 * we want to put equal scanning pressure on each zone. 2560 */ 2561 .nr_to_reclaim = ULONG_MAX, 2562 .order = order, 2563 .target_mem_cgroup = NULL, 2564 }; 2565 struct shrink_control shrink = { 2566 .gfp_mask = sc.gfp_mask, 2567 }; 2568 loop_again: 2569 total_scanned = 0; 2570 sc.priority = DEF_PRIORITY; 2571 sc.nr_reclaimed = 0; 2572 sc.may_writepage = !laptop_mode; 2573 count_vm_event(PAGEOUTRUN); 2574 2575 do { 2576 unsigned long lru_pages = 0; 2577 int has_under_min_watermark_zone = 0; 2578 2579 all_zones_ok = 1; 2580 balanced = 0; 2581 2582 /* 2583 * Scan in the highmem->dma direction for the highest 2584 * zone which needs scanning 2585 */ 2586 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 2587 struct zone *zone = pgdat->node_zones + i; 2588 2589 if (!populated_zone(zone)) 2590 continue; 2591 2592 if (zone->all_unreclaimable && 2593 sc.priority != DEF_PRIORITY) 2594 continue; 2595 2596 /* 2597 * Do some background aging of the anon list, to give 2598 * pages a chance to be referenced before reclaiming. 2599 */ 2600 age_active_anon(zone, &sc); 2601 2602 /* 2603 * If the number of buffer_heads in the machine 2604 * exceeds the maximum allowed level and this node 2605 * has a highmem zone, force kswapd to reclaim from 2606 * it to relieve lowmem pressure. 2607 */ 2608 if (buffer_heads_over_limit && is_highmem_idx(i)) { 2609 end_zone = i; 2610 break; 2611 } 2612 2613 if (!zone_watermark_ok_safe(zone, order, 2614 high_wmark_pages(zone), 0, 0)) { 2615 end_zone = i; 2616 break; 2617 } else { 2618 /* If balanced, clear the congested flag */ 2619 zone_clear_flag(zone, ZONE_CONGESTED); 2620 } 2621 } 2622 if (i < 0) 2623 goto out; 2624 2625 for (i = 0; i <= end_zone; i++) { 2626 struct zone *zone = pgdat->node_zones + i; 2627 2628 lru_pages += zone_reclaimable_pages(zone); 2629 } 2630 2631 /* 2632 * Now scan the zone in the dma->highmem direction, stopping 2633 * at the last zone which needs scanning. 2634 * 2635 * We do this because the page allocator works in the opposite 2636 * direction. This prevents the page allocator from allocating 2637 * pages behind kswapd's direction of progress, which would 2638 * cause too much scanning of the lower zones. 2639 */ 2640 for (i = 0; i <= end_zone; i++) { 2641 struct zone *zone = pgdat->node_zones + i; 2642 int nr_slab, testorder; 2643 unsigned long balance_gap; 2644 2645 if (!populated_zone(zone)) 2646 continue; 2647 2648 if (zone->all_unreclaimable && 2649 sc.priority != DEF_PRIORITY) 2650 continue; 2651 2652 sc.nr_scanned = 0; 2653 2654 nr_soft_scanned = 0; 2655 /* 2656 * Call soft limit reclaim before calling shrink_zone. 2657 */ 2658 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2659 order, sc.gfp_mask, 2660 &nr_soft_scanned); 2661 sc.nr_reclaimed += nr_soft_reclaimed; 2662 total_scanned += nr_soft_scanned; 2663 2664 /* 2665 * We put equal pressure on every zone, unless 2666 * one zone has way too many pages free 2667 * already. The "too many pages" is defined 2668 * as the high wmark plus a "gap" where the 2669 * gap is either the low watermark or 1% 2670 * of the zone, whichever is smaller. 2671 */ 2672 balance_gap = min(low_wmark_pages(zone), 2673 (zone->present_pages + 2674 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / 2675 KSWAPD_ZONE_BALANCE_GAP_RATIO); 2676 /* 2677 * Kswapd reclaims only single pages with compaction 2678 * enabled. Trying too hard to reclaim until contiguous 2679 * free pages have become available can hurt performance 2680 * by evicting too much useful data from memory. 2681 * Do not reclaim more than needed for compaction. 2682 */ 2683 testorder = order; 2684 if (COMPACTION_BUILD && order && 2685 compaction_suitable(zone, order) != 2686 COMPACT_SKIPPED) 2687 testorder = 0; 2688 2689 if ((buffer_heads_over_limit && is_highmem_idx(i)) || 2690 !zone_watermark_ok_safe(zone, testorder, 2691 high_wmark_pages(zone) + balance_gap, 2692 end_zone, 0)) { 2693 shrink_zone(zone, &sc); 2694 2695 reclaim_state->reclaimed_slab = 0; 2696 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages); 2697 sc.nr_reclaimed += reclaim_state->reclaimed_slab; 2698 total_scanned += sc.nr_scanned; 2699 2700 if (nr_slab == 0 && !zone_reclaimable(zone)) 2701 zone->all_unreclaimable = 1; 2702 } 2703 2704 /* 2705 * If we've done a decent amount of scanning and 2706 * the reclaim ratio is low, start doing writepage 2707 * even in laptop mode 2708 */ 2709 if (total_scanned > SWAP_CLUSTER_MAX * 2 && 2710 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2) 2711 sc.may_writepage = 1; 2712 2713 if (zone->all_unreclaimable) { 2714 if (end_zone && end_zone == i) 2715 end_zone--; 2716 continue; 2717 } 2718 2719 if (!zone_watermark_ok_safe(zone, testorder, 2720 high_wmark_pages(zone), end_zone, 0)) { 2721 all_zones_ok = 0; 2722 /* 2723 * We are still under min water mark. This 2724 * means that we have a GFP_ATOMIC allocation 2725 * failure risk. Hurry up! 2726 */ 2727 if (!zone_watermark_ok_safe(zone, order, 2728 min_wmark_pages(zone), end_zone, 0)) 2729 has_under_min_watermark_zone = 1; 2730 } else { 2731 /* 2732 * If a zone reaches its high watermark, 2733 * consider it to be no longer congested. It's 2734 * possible there are dirty pages backed by 2735 * congested BDIs but as pressure is relieved, 2736 * speculatively avoid congestion waits 2737 */ 2738 zone_clear_flag(zone, ZONE_CONGESTED); 2739 if (i <= *classzone_idx) 2740 balanced += zone->present_pages; 2741 } 2742 2743 } 2744 2745 /* 2746 * If the low watermark is met there is no need for processes 2747 * to be throttled on pfmemalloc_wait as they should not be 2748 * able to safely make forward progress. Wake them 2749 */ 2750 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 2751 pfmemalloc_watermark_ok(pgdat)) 2752 wake_up(&pgdat->pfmemalloc_wait); 2753 2754 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx))) 2755 break; /* kswapd: all done */ 2756 /* 2757 * OK, kswapd is getting into trouble. Take a nap, then take 2758 * another pass across the zones. 2759 */ 2760 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) { 2761 if (has_under_min_watermark_zone) 2762 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT); 2763 else 2764 congestion_wait(BLK_RW_ASYNC, HZ/10); 2765 } 2766 2767 /* 2768 * We do this so kswapd doesn't build up large priorities for 2769 * example when it is freeing in parallel with allocators. It 2770 * matches the direct reclaim path behaviour in terms of impact 2771 * on zone->*_priority. 2772 */ 2773 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) 2774 break; 2775 } while (--sc.priority >= 0); 2776 out: 2777 2778 /* 2779 * order-0: All zones must meet high watermark for a balanced node 2780 * high-order: Balanced zones must make up at least 25% of the node 2781 * for the node to be balanced 2782 */ 2783 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) { 2784 cond_resched(); 2785 2786 try_to_freeze(); 2787 2788 /* 2789 * Fragmentation may mean that the system cannot be 2790 * rebalanced for high-order allocations in all zones. 2791 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX, 2792 * it means the zones have been fully scanned and are still 2793 * not balanced. For high-order allocations, there is 2794 * little point trying all over again as kswapd may 2795 * infinite loop. 2796 * 2797 * Instead, recheck all watermarks at order-0 as they 2798 * are the most important. If watermarks are ok, kswapd will go 2799 * back to sleep. High-order users can still perform direct 2800 * reclaim if they wish. 2801 */ 2802 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX) 2803 order = sc.order = 0; 2804 2805 goto loop_again; 2806 } 2807 2808 /* 2809 * If kswapd was reclaiming at a higher order, it has the option of 2810 * sleeping without all zones being balanced. Before it does, it must 2811 * ensure that the watermarks for order-0 on *all* zones are met and 2812 * that the congestion flags are cleared. The congestion flag must 2813 * be cleared as kswapd is the only mechanism that clears the flag 2814 * and it is potentially going to sleep here. 2815 */ 2816 if (order) { 2817 int zones_need_compaction = 1; 2818 2819 for (i = 0; i <= end_zone; i++) { 2820 struct zone *zone = pgdat->node_zones + i; 2821 2822 if (!populated_zone(zone)) 2823 continue; 2824 2825 if (zone->all_unreclaimable && 2826 sc.priority != DEF_PRIORITY) 2827 continue; 2828 2829 /* Would compaction fail due to lack of free memory? */ 2830 if (COMPACTION_BUILD && 2831 compaction_suitable(zone, order) == COMPACT_SKIPPED) 2832 goto loop_again; 2833 2834 /* Confirm the zone is balanced for order-0 */ 2835 if (!zone_watermark_ok(zone, 0, 2836 high_wmark_pages(zone), 0, 0)) { 2837 order = sc.order = 0; 2838 goto loop_again; 2839 } 2840 2841 /* Check if the memory needs to be defragmented. */ 2842 if (zone_watermark_ok(zone, order, 2843 low_wmark_pages(zone), *classzone_idx, 0)) 2844 zones_need_compaction = 0; 2845 2846 /* If balanced, clear the congested flag */ 2847 zone_clear_flag(zone, ZONE_CONGESTED); 2848 } 2849 2850 if (zones_need_compaction) 2851 compact_pgdat(pgdat, order); 2852 } 2853 2854 /* 2855 * Return the order we were reclaiming at so prepare_kswapd_sleep() 2856 * makes a decision on the order we were last reclaiming at. However, 2857 * if another caller entered the allocator slow path while kswapd 2858 * was awake, order will remain at the higher level 2859 */ 2860 *classzone_idx = end_zone; 2861 return order; 2862 } 2863 2864 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) 2865 { 2866 long remaining = 0; 2867 DEFINE_WAIT(wait); 2868 2869 if (freezing(current) || kthread_should_stop()) 2870 return; 2871 2872 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 2873 2874 /* Try to sleep for a short interval */ 2875 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 2876 remaining = schedule_timeout(HZ/10); 2877 finish_wait(&pgdat->kswapd_wait, &wait); 2878 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 2879 } 2880 2881 /* 2882 * After a short sleep, check if it was a premature sleep. If not, then 2883 * go fully to sleep until explicitly woken up. 2884 */ 2885 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 2886 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 2887 2888 /* 2889 * vmstat counters are not perfectly accurate and the estimated 2890 * value for counters such as NR_FREE_PAGES can deviate from the 2891 * true value by nr_online_cpus * threshold. To avoid the zone 2892 * watermarks being breached while under pressure, we reduce the 2893 * per-cpu vmstat threshold while kswapd is awake and restore 2894 * them before going back to sleep. 2895 */ 2896 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 2897 2898 /* 2899 * Compaction records what page blocks it recently failed to 2900 * isolate pages from and skips them in the future scanning. 2901 * When kswapd is going to sleep, it is reasonable to assume 2902 * that pages and compaction may succeed so reset the cache. 2903 */ 2904 reset_isolation_suitable(pgdat); 2905 2906 if (!kthread_should_stop()) 2907 schedule(); 2908 2909 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 2910 } else { 2911 if (remaining) 2912 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 2913 else 2914 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 2915 } 2916 finish_wait(&pgdat->kswapd_wait, &wait); 2917 } 2918 2919 /* 2920 * The background pageout daemon, started as a kernel thread 2921 * from the init process. 2922 * 2923 * This basically trickles out pages so that we have _some_ 2924 * free memory available even if there is no other activity 2925 * that frees anything up. This is needed for things like routing 2926 * etc, where we otherwise might have all activity going on in 2927 * asynchronous contexts that cannot page things out. 2928 * 2929 * If there are applications that are active memory-allocators 2930 * (most normal use), this basically shouldn't matter. 2931 */ 2932 static int kswapd(void *p) 2933 { 2934 unsigned long order, new_order; 2935 unsigned balanced_order; 2936 int classzone_idx, new_classzone_idx; 2937 int balanced_classzone_idx; 2938 pg_data_t *pgdat = (pg_data_t*)p; 2939 struct task_struct *tsk = current; 2940 2941 struct reclaim_state reclaim_state = { 2942 .reclaimed_slab = 0, 2943 }; 2944 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2945 2946 lockdep_set_current_reclaim_state(GFP_KERNEL); 2947 2948 if (!cpumask_empty(cpumask)) 2949 set_cpus_allowed_ptr(tsk, cpumask); 2950 current->reclaim_state = &reclaim_state; 2951 2952 /* 2953 * Tell the memory management that we're a "memory allocator", 2954 * and that if we need more memory we should get access to it 2955 * regardless (see "__alloc_pages()"). "kswapd" should 2956 * never get caught in the normal page freeing logic. 2957 * 2958 * (Kswapd normally doesn't need memory anyway, but sometimes 2959 * you need a small amount of memory in order to be able to 2960 * page out something else, and this flag essentially protects 2961 * us from recursively trying to free more memory as we're 2962 * trying to free the first piece of memory in the first place). 2963 */ 2964 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 2965 set_freezable(); 2966 2967 order = new_order = 0; 2968 balanced_order = 0; 2969 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; 2970 balanced_classzone_idx = classzone_idx; 2971 for ( ; ; ) { 2972 int ret; 2973 2974 /* 2975 * If the last balance_pgdat was unsuccessful it's unlikely a 2976 * new request of a similar or harder type will succeed soon 2977 * so consider going to sleep on the basis we reclaimed at 2978 */ 2979 if (balanced_classzone_idx >= new_classzone_idx && 2980 balanced_order == new_order) { 2981 new_order = pgdat->kswapd_max_order; 2982 new_classzone_idx = pgdat->classzone_idx; 2983 pgdat->kswapd_max_order = 0; 2984 pgdat->classzone_idx = pgdat->nr_zones - 1; 2985 } 2986 2987 if (order < new_order || classzone_idx > new_classzone_idx) { 2988 /* 2989 * Don't sleep if someone wants a larger 'order' 2990 * allocation or has tigher zone constraints 2991 */ 2992 order = new_order; 2993 classzone_idx = new_classzone_idx; 2994 } else { 2995 kswapd_try_to_sleep(pgdat, balanced_order, 2996 balanced_classzone_idx); 2997 order = pgdat->kswapd_max_order; 2998 classzone_idx = pgdat->classzone_idx; 2999 new_order = order; 3000 new_classzone_idx = classzone_idx; 3001 pgdat->kswapd_max_order = 0; 3002 pgdat->classzone_idx = pgdat->nr_zones - 1; 3003 } 3004 3005 ret = try_to_freeze(); 3006 if (kthread_should_stop()) 3007 break; 3008 3009 /* 3010 * We can speed up thawing tasks if we don't call balance_pgdat 3011 * after returning from the refrigerator 3012 */ 3013 if (!ret) { 3014 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 3015 balanced_classzone_idx = classzone_idx; 3016 balanced_order = balance_pgdat(pgdat, order, 3017 &balanced_classzone_idx); 3018 } 3019 } 3020 return 0; 3021 } 3022 3023 /* 3024 * A zone is low on free memory, so wake its kswapd task to service it. 3025 */ 3026 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3027 { 3028 pg_data_t *pgdat; 3029 3030 if (!populated_zone(zone)) 3031 return; 3032 3033 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 3034 return; 3035 pgdat = zone->zone_pgdat; 3036 if (pgdat->kswapd_max_order < order) { 3037 pgdat->kswapd_max_order = order; 3038 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 3039 } 3040 if (!waitqueue_active(&pgdat->kswapd_wait)) 3041 return; 3042 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0)) 3043 return; 3044 3045 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3046 wake_up_interruptible(&pgdat->kswapd_wait); 3047 } 3048 3049 /* 3050 * The reclaimable count would be mostly accurate. 3051 * The less reclaimable pages may be 3052 * - mlocked pages, which will be moved to unevictable list when encountered 3053 * - mapped pages, which may require several travels to be reclaimed 3054 * - dirty pages, which is not "instantly" reclaimable 3055 */ 3056 unsigned long global_reclaimable_pages(void) 3057 { 3058 int nr; 3059 3060 nr = global_page_state(NR_ACTIVE_FILE) + 3061 global_page_state(NR_INACTIVE_FILE); 3062 3063 if (nr_swap_pages > 0) 3064 nr += global_page_state(NR_ACTIVE_ANON) + 3065 global_page_state(NR_INACTIVE_ANON); 3066 3067 return nr; 3068 } 3069 3070 unsigned long zone_reclaimable_pages(struct zone *zone) 3071 { 3072 int nr; 3073 3074 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 3075 zone_page_state(zone, NR_INACTIVE_FILE); 3076 3077 if (nr_swap_pages > 0) 3078 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 3079 zone_page_state(zone, NR_INACTIVE_ANON); 3080 3081 return nr; 3082 } 3083 3084 #ifdef CONFIG_HIBERNATION 3085 /* 3086 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3087 * freed pages. 3088 * 3089 * Rather than trying to age LRUs the aim is to preserve the overall 3090 * LRU order by reclaiming preferentially 3091 * inactive > active > active referenced > active mapped 3092 */ 3093 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3094 { 3095 struct reclaim_state reclaim_state; 3096 struct scan_control sc = { 3097 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3098 .may_swap = 1, 3099 .may_unmap = 1, 3100 .may_writepage = 1, 3101 .nr_to_reclaim = nr_to_reclaim, 3102 .hibernation_mode = 1, 3103 .order = 0, 3104 .priority = DEF_PRIORITY, 3105 }; 3106 struct shrink_control shrink = { 3107 .gfp_mask = sc.gfp_mask, 3108 }; 3109 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3110 struct task_struct *p = current; 3111 unsigned long nr_reclaimed; 3112 3113 p->flags |= PF_MEMALLOC; 3114 lockdep_set_current_reclaim_state(sc.gfp_mask); 3115 reclaim_state.reclaimed_slab = 0; 3116 p->reclaim_state = &reclaim_state; 3117 3118 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 3119 3120 p->reclaim_state = NULL; 3121 lockdep_clear_current_reclaim_state(); 3122 p->flags &= ~PF_MEMALLOC; 3123 3124 return nr_reclaimed; 3125 } 3126 #endif /* CONFIG_HIBERNATION */ 3127 3128 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3129 not required for correctness. So if the last cpu in a node goes 3130 away, we get changed to run anywhere: as the first one comes back, 3131 restore their cpu bindings. */ 3132 static int __devinit cpu_callback(struct notifier_block *nfb, 3133 unsigned long action, void *hcpu) 3134 { 3135 int nid; 3136 3137 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3138 for_each_node_state(nid, N_HIGH_MEMORY) { 3139 pg_data_t *pgdat = NODE_DATA(nid); 3140 const struct cpumask *mask; 3141 3142 mask = cpumask_of_node(pgdat->node_id); 3143 3144 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3145 /* One of our CPUs online: restore mask */ 3146 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3147 } 3148 } 3149 return NOTIFY_OK; 3150 } 3151 3152 /* 3153 * This kswapd start function will be called by init and node-hot-add. 3154 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3155 */ 3156 int kswapd_run(int nid) 3157 { 3158 pg_data_t *pgdat = NODE_DATA(nid); 3159 int ret = 0; 3160 3161 if (pgdat->kswapd) 3162 return 0; 3163 3164 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3165 if (IS_ERR(pgdat->kswapd)) { 3166 /* failure at boot is fatal */ 3167 BUG_ON(system_state == SYSTEM_BOOTING); 3168 pgdat->kswapd = NULL; 3169 pr_err("Failed to start kswapd on node %d\n", nid); 3170 ret = PTR_ERR(pgdat->kswapd); 3171 } 3172 return ret; 3173 } 3174 3175 /* 3176 * Called by memory hotplug when all memory in a node is offlined. Caller must 3177 * hold lock_memory_hotplug(). 3178 */ 3179 void kswapd_stop(int nid) 3180 { 3181 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3182 3183 if (kswapd) { 3184 kthread_stop(kswapd); 3185 NODE_DATA(nid)->kswapd = NULL; 3186 } 3187 } 3188 3189 static int __init kswapd_init(void) 3190 { 3191 int nid; 3192 3193 swap_setup(); 3194 for_each_node_state(nid, N_HIGH_MEMORY) 3195 kswapd_run(nid); 3196 hotcpu_notifier(cpu_callback, 0); 3197 return 0; 3198 } 3199 3200 module_init(kswapd_init) 3201 3202 #ifdef CONFIG_NUMA 3203 /* 3204 * Zone reclaim mode 3205 * 3206 * If non-zero call zone_reclaim when the number of free pages falls below 3207 * the watermarks. 3208 */ 3209 int zone_reclaim_mode __read_mostly; 3210 3211 #define RECLAIM_OFF 0 3212 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3213 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3214 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 3215 3216 /* 3217 * Priority for ZONE_RECLAIM. This determines the fraction of pages 3218 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3219 * a zone. 3220 */ 3221 #define ZONE_RECLAIM_PRIORITY 4 3222 3223 /* 3224 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 3225 * occur. 3226 */ 3227 int sysctl_min_unmapped_ratio = 1; 3228 3229 /* 3230 * If the number of slab pages in a zone grows beyond this percentage then 3231 * slab reclaim needs to occur. 3232 */ 3233 int sysctl_min_slab_ratio = 5; 3234 3235 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 3236 { 3237 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 3238 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 3239 zone_page_state(zone, NR_ACTIVE_FILE); 3240 3241 /* 3242 * It's possible for there to be more file mapped pages than 3243 * accounted for by the pages on the file LRU lists because 3244 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3245 */ 3246 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3247 } 3248 3249 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3250 static long zone_pagecache_reclaimable(struct zone *zone) 3251 { 3252 long nr_pagecache_reclaimable; 3253 long delta = 0; 3254 3255 /* 3256 * If RECLAIM_SWAP is set, then all file pages are considered 3257 * potentially reclaimable. Otherwise, we have to worry about 3258 * pages like swapcache and zone_unmapped_file_pages() provides 3259 * a better estimate 3260 */ 3261 if (zone_reclaim_mode & RECLAIM_SWAP) 3262 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 3263 else 3264 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 3265 3266 /* If we can't clean pages, remove dirty pages from consideration */ 3267 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 3268 delta += zone_page_state(zone, NR_FILE_DIRTY); 3269 3270 /* Watch for any possible underflows due to delta */ 3271 if (unlikely(delta > nr_pagecache_reclaimable)) 3272 delta = nr_pagecache_reclaimable; 3273 3274 return nr_pagecache_reclaimable - delta; 3275 } 3276 3277 /* 3278 * Try to free up some pages from this zone through reclaim. 3279 */ 3280 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3281 { 3282 /* Minimum pages needed in order to stay on node */ 3283 const unsigned long nr_pages = 1 << order; 3284 struct task_struct *p = current; 3285 struct reclaim_state reclaim_state; 3286 struct scan_control sc = { 3287 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 3288 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 3289 .may_swap = 1, 3290 .nr_to_reclaim = max_t(unsigned long, nr_pages, 3291 SWAP_CLUSTER_MAX), 3292 .gfp_mask = gfp_mask, 3293 .order = order, 3294 .priority = ZONE_RECLAIM_PRIORITY, 3295 }; 3296 struct shrink_control shrink = { 3297 .gfp_mask = sc.gfp_mask, 3298 }; 3299 unsigned long nr_slab_pages0, nr_slab_pages1; 3300 3301 cond_resched(); 3302 /* 3303 * We need to be able to allocate from the reserves for RECLAIM_SWAP 3304 * and we also need to be able to write out pages for RECLAIM_WRITE 3305 * and RECLAIM_SWAP. 3306 */ 3307 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3308 lockdep_set_current_reclaim_state(gfp_mask); 3309 reclaim_state.reclaimed_slab = 0; 3310 p->reclaim_state = &reclaim_state; 3311 3312 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 3313 /* 3314 * Free memory by calling shrink zone with increasing 3315 * priorities until we have enough memory freed. 3316 */ 3317 do { 3318 shrink_zone(zone, &sc); 3319 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3320 } 3321 3322 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3323 if (nr_slab_pages0 > zone->min_slab_pages) { 3324 /* 3325 * shrink_slab() does not currently allow us to determine how 3326 * many pages were freed in this zone. So we take the current 3327 * number of slab pages and shake the slab until it is reduced 3328 * by the same nr_pages that we used for reclaiming unmapped 3329 * pages. 3330 * 3331 * Note that shrink_slab will free memory on all zones and may 3332 * take a long time. 3333 */ 3334 for (;;) { 3335 unsigned long lru_pages = zone_reclaimable_pages(zone); 3336 3337 /* No reclaimable slab or very low memory pressure */ 3338 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages)) 3339 break; 3340 3341 /* Freed enough memory */ 3342 nr_slab_pages1 = zone_page_state(zone, 3343 NR_SLAB_RECLAIMABLE); 3344 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) 3345 break; 3346 } 3347 3348 /* 3349 * Update nr_reclaimed by the number of slab pages we 3350 * reclaimed from this zone. 3351 */ 3352 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3353 if (nr_slab_pages1 < nr_slab_pages0) 3354 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; 3355 } 3356 3357 p->reclaim_state = NULL; 3358 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3359 lockdep_clear_current_reclaim_state(); 3360 return sc.nr_reclaimed >= nr_pages; 3361 } 3362 3363 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3364 { 3365 int node_id; 3366 int ret; 3367 3368 /* 3369 * Zone reclaim reclaims unmapped file backed pages and 3370 * slab pages if we are over the defined limits. 3371 * 3372 * A small portion of unmapped file backed pages is needed for 3373 * file I/O otherwise pages read by file I/O will be immediately 3374 * thrown out if the zone is overallocated. So we do not reclaim 3375 * if less than a specified percentage of the zone is used by 3376 * unmapped file backed pages. 3377 */ 3378 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3379 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3380 return ZONE_RECLAIM_FULL; 3381 3382 if (zone->all_unreclaimable) 3383 return ZONE_RECLAIM_FULL; 3384 3385 /* 3386 * Do not scan if the allocation should not be delayed. 3387 */ 3388 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 3389 return ZONE_RECLAIM_NOSCAN; 3390 3391 /* 3392 * Only run zone reclaim on the local zone or on zones that do not 3393 * have associated processors. This will favor the local processor 3394 * over remote processors and spread off node memory allocations 3395 * as wide as possible. 3396 */ 3397 node_id = zone_to_nid(zone); 3398 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3399 return ZONE_RECLAIM_NOSCAN; 3400 3401 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 3402 return ZONE_RECLAIM_NOSCAN; 3403 3404 ret = __zone_reclaim(zone, gfp_mask, order); 3405 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 3406 3407 if (!ret) 3408 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3409 3410 return ret; 3411 } 3412 #endif 3413 3414 /* 3415 * page_evictable - test whether a page is evictable 3416 * @page: the page to test 3417 * 3418 * Test whether page is evictable--i.e., should be placed on active/inactive 3419 * lists vs unevictable list. 3420 * 3421 * Reasons page might not be evictable: 3422 * (1) page's mapping marked unevictable 3423 * (2) page is part of an mlocked VMA 3424 * 3425 */ 3426 int page_evictable(struct page *page) 3427 { 3428 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3429 } 3430 3431 #ifdef CONFIG_SHMEM 3432 /** 3433 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3434 * @pages: array of pages to check 3435 * @nr_pages: number of pages to check 3436 * 3437 * Checks pages for evictability and moves them to the appropriate lru list. 3438 * 3439 * This function is only used for SysV IPC SHM_UNLOCK. 3440 */ 3441 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3442 { 3443 struct lruvec *lruvec; 3444 struct zone *zone = NULL; 3445 int pgscanned = 0; 3446 int pgrescued = 0; 3447 int i; 3448 3449 for (i = 0; i < nr_pages; i++) { 3450 struct page *page = pages[i]; 3451 struct zone *pagezone; 3452 3453 pgscanned++; 3454 pagezone = page_zone(page); 3455 if (pagezone != zone) { 3456 if (zone) 3457 spin_unlock_irq(&zone->lru_lock); 3458 zone = pagezone; 3459 spin_lock_irq(&zone->lru_lock); 3460 } 3461 lruvec = mem_cgroup_page_lruvec(page, zone); 3462 3463 if (!PageLRU(page) || !PageUnevictable(page)) 3464 continue; 3465 3466 if (page_evictable(page)) { 3467 enum lru_list lru = page_lru_base_type(page); 3468 3469 VM_BUG_ON(PageActive(page)); 3470 ClearPageUnevictable(page); 3471 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3472 add_page_to_lru_list(page, lruvec, lru); 3473 pgrescued++; 3474 } 3475 } 3476 3477 if (zone) { 3478 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3479 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3480 spin_unlock_irq(&zone->lru_lock); 3481 } 3482 } 3483 #endif /* CONFIG_SHMEM */ 3484 3485 static void warn_scan_unevictable_pages(void) 3486 { 3487 printk_once(KERN_WARNING 3488 "%s: The scan_unevictable_pages sysctl/node-interface has been " 3489 "disabled for lack of a legitimate use case. If you have " 3490 "one, please send an email to linux-mm@kvack.org.\n", 3491 current->comm); 3492 } 3493 3494 /* 3495 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 3496 * all nodes' unevictable lists for evictable pages 3497 */ 3498 unsigned long scan_unevictable_pages; 3499 3500 int scan_unevictable_handler(struct ctl_table *table, int write, 3501 void __user *buffer, 3502 size_t *length, loff_t *ppos) 3503 { 3504 warn_scan_unevictable_pages(); 3505 proc_doulongvec_minmax(table, write, buffer, length, ppos); 3506 scan_unevictable_pages = 0; 3507 return 0; 3508 } 3509 3510 #ifdef CONFIG_NUMA 3511 /* 3512 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 3513 * a specified node's per zone unevictable lists for evictable pages. 3514 */ 3515 3516 static ssize_t read_scan_unevictable_node(struct device *dev, 3517 struct device_attribute *attr, 3518 char *buf) 3519 { 3520 warn_scan_unevictable_pages(); 3521 return sprintf(buf, "0\n"); /* always zero; should fit... */ 3522 } 3523 3524 static ssize_t write_scan_unevictable_node(struct device *dev, 3525 struct device_attribute *attr, 3526 const char *buf, size_t count) 3527 { 3528 warn_scan_unevictable_pages(); 3529 return 1; 3530 } 3531 3532 3533 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 3534 read_scan_unevictable_node, 3535 write_scan_unevictable_node); 3536 3537 int scan_unevictable_register_node(struct node *node) 3538 { 3539 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages); 3540 } 3541 3542 void scan_unevictable_unregister_node(struct node *node) 3543 { 3544 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages); 3545 } 3546 #endif 3547