xref: /linux/mm/vmscan.c (revision 0686082dbf7a204ca0fab326a820779e31666639)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58 
59 #include "internal.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63 
64 struct scan_control {
65 	/* How many pages shrink_list() should reclaim */
66 	unsigned long nr_to_reclaim;
67 
68 	/*
69 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
70 	 * are scanned.
71 	 */
72 	nodemask_t	*nodemask;
73 
74 	/*
75 	 * The memory cgroup that hit its limit and as a result is the
76 	 * primary target of this reclaim invocation.
77 	 */
78 	struct mem_cgroup *target_mem_cgroup;
79 
80 	/*
81 	 * Scan pressure balancing between anon and file LRUs
82 	 */
83 	unsigned long	anon_cost;
84 	unsigned long	file_cost;
85 
86 	/* Can active pages be deactivated as part of reclaim? */
87 #define DEACTIVATE_ANON 1
88 #define DEACTIVATE_FILE 2
89 	unsigned int may_deactivate:2;
90 	unsigned int force_deactivate:1;
91 	unsigned int skipped_deactivate:1;
92 
93 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
94 	unsigned int may_writepage:1;
95 
96 	/* Can mapped pages be reclaimed? */
97 	unsigned int may_unmap:1;
98 
99 	/* Can pages be swapped as part of reclaim? */
100 	unsigned int may_swap:1;
101 
102 	/*
103 	 * Cgroup memory below memory.low is protected as long as we
104 	 * don't threaten to OOM. If any cgroup is reclaimed at
105 	 * reduced force or passed over entirely due to its memory.low
106 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
107 	 * result, then go back for one more cycle that reclaims the protected
108 	 * memory (memcg_low_reclaim) to avert OOM.
109 	 */
110 	unsigned int memcg_low_reclaim:1;
111 	unsigned int memcg_low_skipped:1;
112 
113 	unsigned int hibernation_mode:1;
114 
115 	/* One of the zones is ready for compaction */
116 	unsigned int compaction_ready:1;
117 
118 	/* There is easily reclaimable cold cache in the current node */
119 	unsigned int cache_trim_mode:1;
120 
121 	/* The file pages on the current node are dangerously low */
122 	unsigned int file_is_tiny:1;
123 
124 	/* Allocation order */
125 	s8 order;
126 
127 	/* Scan (total_size >> priority) pages at once */
128 	s8 priority;
129 
130 	/* The highest zone to isolate pages for reclaim from */
131 	s8 reclaim_idx;
132 
133 	/* This context's GFP mask */
134 	gfp_t gfp_mask;
135 
136 	/* Incremented by the number of inactive pages that were scanned */
137 	unsigned long nr_scanned;
138 
139 	/* Number of pages freed so far during a call to shrink_zones() */
140 	unsigned long nr_reclaimed;
141 
142 	struct {
143 		unsigned int dirty;
144 		unsigned int unqueued_dirty;
145 		unsigned int congested;
146 		unsigned int writeback;
147 		unsigned int immediate;
148 		unsigned int file_taken;
149 		unsigned int taken;
150 	} nr;
151 
152 	/* for recording the reclaimed slab by now */
153 	struct reclaim_state reclaim_state;
154 };
155 
156 #ifdef ARCH_HAS_PREFETCHW
157 #define prefetchw_prev_lru_page(_page, _base, _field)			\
158 	do {								\
159 		if ((_page)->lru.prev != _base) {			\
160 			struct page *prev;				\
161 									\
162 			prev = lru_to_page(&(_page->lru));		\
163 			prefetchw(&prev->_field);			\
164 		}							\
165 	} while (0)
166 #else
167 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
168 #endif
169 
170 /*
171  * From 0 .. 200.  Higher means more swappy.
172  */
173 int vm_swappiness = 60;
174 
175 static void set_task_reclaim_state(struct task_struct *task,
176 				   struct reclaim_state *rs)
177 {
178 	/* Check for an overwrite */
179 	WARN_ON_ONCE(rs && task->reclaim_state);
180 
181 	/* Check for the nulling of an already-nulled member */
182 	WARN_ON_ONCE(!rs && !task->reclaim_state);
183 
184 	task->reclaim_state = rs;
185 }
186 
187 static LIST_HEAD(shrinker_list);
188 static DECLARE_RWSEM(shrinker_rwsem);
189 
190 #ifdef CONFIG_MEMCG
191 static int shrinker_nr_max;
192 
193 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
194 static inline int shrinker_map_size(int nr_items)
195 {
196 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
197 }
198 
199 static inline int shrinker_defer_size(int nr_items)
200 {
201 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
202 }
203 
204 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
205 						     int nid)
206 {
207 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
208 					 lockdep_is_held(&shrinker_rwsem));
209 }
210 
211 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
212 				    int map_size, int defer_size,
213 				    int old_map_size, int old_defer_size)
214 {
215 	struct shrinker_info *new, *old;
216 	struct mem_cgroup_per_node *pn;
217 	int nid;
218 	int size = map_size + defer_size;
219 
220 	for_each_node(nid) {
221 		pn = memcg->nodeinfo[nid];
222 		old = shrinker_info_protected(memcg, nid);
223 		/* Not yet online memcg */
224 		if (!old)
225 			return 0;
226 
227 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
228 		if (!new)
229 			return -ENOMEM;
230 
231 		new->nr_deferred = (atomic_long_t *)(new + 1);
232 		new->map = (void *)new->nr_deferred + defer_size;
233 
234 		/* map: set all old bits, clear all new bits */
235 		memset(new->map, (int)0xff, old_map_size);
236 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
237 		/* nr_deferred: copy old values, clear all new values */
238 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
239 		memset((void *)new->nr_deferred + old_defer_size, 0,
240 		       defer_size - old_defer_size);
241 
242 		rcu_assign_pointer(pn->shrinker_info, new);
243 		kvfree_rcu(old, rcu);
244 	}
245 
246 	return 0;
247 }
248 
249 void free_shrinker_info(struct mem_cgroup *memcg)
250 {
251 	struct mem_cgroup_per_node *pn;
252 	struct shrinker_info *info;
253 	int nid;
254 
255 	for_each_node(nid) {
256 		pn = memcg->nodeinfo[nid];
257 		info = rcu_dereference_protected(pn->shrinker_info, true);
258 		kvfree(info);
259 		rcu_assign_pointer(pn->shrinker_info, NULL);
260 	}
261 }
262 
263 int alloc_shrinker_info(struct mem_cgroup *memcg)
264 {
265 	struct shrinker_info *info;
266 	int nid, size, ret = 0;
267 	int map_size, defer_size = 0;
268 
269 	down_write(&shrinker_rwsem);
270 	map_size = shrinker_map_size(shrinker_nr_max);
271 	defer_size = shrinker_defer_size(shrinker_nr_max);
272 	size = map_size + defer_size;
273 	for_each_node(nid) {
274 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
275 		if (!info) {
276 			free_shrinker_info(memcg);
277 			ret = -ENOMEM;
278 			break;
279 		}
280 		info->nr_deferred = (atomic_long_t *)(info + 1);
281 		info->map = (void *)info->nr_deferred + defer_size;
282 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
283 	}
284 	up_write(&shrinker_rwsem);
285 
286 	return ret;
287 }
288 
289 static inline bool need_expand(int nr_max)
290 {
291 	return round_up(nr_max, BITS_PER_LONG) >
292 	       round_up(shrinker_nr_max, BITS_PER_LONG);
293 }
294 
295 static int expand_shrinker_info(int new_id)
296 {
297 	int ret = 0;
298 	int new_nr_max = new_id + 1;
299 	int map_size, defer_size = 0;
300 	int old_map_size, old_defer_size = 0;
301 	struct mem_cgroup *memcg;
302 
303 	if (!need_expand(new_nr_max))
304 		goto out;
305 
306 	if (!root_mem_cgroup)
307 		goto out;
308 
309 	lockdep_assert_held(&shrinker_rwsem);
310 
311 	map_size = shrinker_map_size(new_nr_max);
312 	defer_size = shrinker_defer_size(new_nr_max);
313 	old_map_size = shrinker_map_size(shrinker_nr_max);
314 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
315 
316 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
317 	do {
318 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
319 					       old_map_size, old_defer_size);
320 		if (ret) {
321 			mem_cgroup_iter_break(NULL, memcg);
322 			goto out;
323 		}
324 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
325 out:
326 	if (!ret)
327 		shrinker_nr_max = new_nr_max;
328 
329 	return ret;
330 }
331 
332 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
333 {
334 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
335 		struct shrinker_info *info;
336 
337 		rcu_read_lock();
338 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
339 		/* Pairs with smp mb in shrink_slab() */
340 		smp_mb__before_atomic();
341 		set_bit(shrinker_id, info->map);
342 		rcu_read_unlock();
343 	}
344 }
345 
346 static DEFINE_IDR(shrinker_idr);
347 
348 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
349 {
350 	int id, ret = -ENOMEM;
351 
352 	if (mem_cgroup_disabled())
353 		return -ENOSYS;
354 
355 	down_write(&shrinker_rwsem);
356 	/* This may call shrinker, so it must use down_read_trylock() */
357 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
358 	if (id < 0)
359 		goto unlock;
360 
361 	if (id >= shrinker_nr_max) {
362 		if (expand_shrinker_info(id)) {
363 			idr_remove(&shrinker_idr, id);
364 			goto unlock;
365 		}
366 	}
367 	shrinker->id = id;
368 	ret = 0;
369 unlock:
370 	up_write(&shrinker_rwsem);
371 	return ret;
372 }
373 
374 static void unregister_memcg_shrinker(struct shrinker *shrinker)
375 {
376 	int id = shrinker->id;
377 
378 	BUG_ON(id < 0);
379 
380 	lockdep_assert_held(&shrinker_rwsem);
381 
382 	idr_remove(&shrinker_idr, id);
383 }
384 
385 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
386 				   struct mem_cgroup *memcg)
387 {
388 	struct shrinker_info *info;
389 
390 	info = shrinker_info_protected(memcg, nid);
391 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
392 }
393 
394 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
395 				  struct mem_cgroup *memcg)
396 {
397 	struct shrinker_info *info;
398 
399 	info = shrinker_info_protected(memcg, nid);
400 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
401 }
402 
403 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
404 {
405 	int i, nid;
406 	long nr;
407 	struct mem_cgroup *parent;
408 	struct shrinker_info *child_info, *parent_info;
409 
410 	parent = parent_mem_cgroup(memcg);
411 	if (!parent)
412 		parent = root_mem_cgroup;
413 
414 	/* Prevent from concurrent shrinker_info expand */
415 	down_read(&shrinker_rwsem);
416 	for_each_node(nid) {
417 		child_info = shrinker_info_protected(memcg, nid);
418 		parent_info = shrinker_info_protected(parent, nid);
419 		for (i = 0; i < shrinker_nr_max; i++) {
420 			nr = atomic_long_read(&child_info->nr_deferred[i]);
421 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
422 		}
423 	}
424 	up_read(&shrinker_rwsem);
425 }
426 
427 static bool cgroup_reclaim(struct scan_control *sc)
428 {
429 	return sc->target_mem_cgroup;
430 }
431 
432 /**
433  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
434  * @sc: scan_control in question
435  *
436  * The normal page dirty throttling mechanism in balance_dirty_pages() is
437  * completely broken with the legacy memcg and direct stalling in
438  * shrink_page_list() is used for throttling instead, which lacks all the
439  * niceties such as fairness, adaptive pausing, bandwidth proportional
440  * allocation and configurability.
441  *
442  * This function tests whether the vmscan currently in progress can assume
443  * that the normal dirty throttling mechanism is operational.
444  */
445 static bool writeback_throttling_sane(struct scan_control *sc)
446 {
447 	if (!cgroup_reclaim(sc))
448 		return true;
449 #ifdef CONFIG_CGROUP_WRITEBACK
450 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
451 		return true;
452 #endif
453 	return false;
454 }
455 #else
456 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
457 {
458 	return -ENOSYS;
459 }
460 
461 static void unregister_memcg_shrinker(struct shrinker *shrinker)
462 {
463 }
464 
465 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
466 				   struct mem_cgroup *memcg)
467 {
468 	return 0;
469 }
470 
471 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
472 				  struct mem_cgroup *memcg)
473 {
474 	return 0;
475 }
476 
477 static bool cgroup_reclaim(struct scan_control *sc)
478 {
479 	return false;
480 }
481 
482 static bool writeback_throttling_sane(struct scan_control *sc)
483 {
484 	return true;
485 }
486 #endif
487 
488 static long xchg_nr_deferred(struct shrinker *shrinker,
489 			     struct shrink_control *sc)
490 {
491 	int nid = sc->nid;
492 
493 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
494 		nid = 0;
495 
496 	if (sc->memcg &&
497 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
498 		return xchg_nr_deferred_memcg(nid, shrinker,
499 					      sc->memcg);
500 
501 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
502 }
503 
504 
505 static long add_nr_deferred(long nr, struct shrinker *shrinker,
506 			    struct shrink_control *sc)
507 {
508 	int nid = sc->nid;
509 
510 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
511 		nid = 0;
512 
513 	if (sc->memcg &&
514 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
515 		return add_nr_deferred_memcg(nr, nid, shrinker,
516 					     sc->memcg);
517 
518 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
519 }
520 
521 /*
522  * This misses isolated pages which are not accounted for to save counters.
523  * As the data only determines if reclaim or compaction continues, it is
524  * not expected that isolated pages will be a dominating factor.
525  */
526 unsigned long zone_reclaimable_pages(struct zone *zone)
527 {
528 	unsigned long nr;
529 
530 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
531 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
532 	if (get_nr_swap_pages() > 0)
533 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
534 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
535 
536 	return nr;
537 }
538 
539 /**
540  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
541  * @lruvec: lru vector
542  * @lru: lru to use
543  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
544  */
545 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
546 				     int zone_idx)
547 {
548 	unsigned long size = 0;
549 	int zid;
550 
551 	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
552 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
553 
554 		if (!managed_zone(zone))
555 			continue;
556 
557 		if (!mem_cgroup_disabled())
558 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
559 		else
560 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
561 	}
562 	return size;
563 }
564 
565 /*
566  * Add a shrinker callback to be called from the vm.
567  */
568 int prealloc_shrinker(struct shrinker *shrinker)
569 {
570 	unsigned int size;
571 	int err;
572 
573 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
574 		err = prealloc_memcg_shrinker(shrinker);
575 		if (err != -ENOSYS)
576 			return err;
577 
578 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
579 	}
580 
581 	size = sizeof(*shrinker->nr_deferred);
582 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
583 		size *= nr_node_ids;
584 
585 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
586 	if (!shrinker->nr_deferred)
587 		return -ENOMEM;
588 
589 	return 0;
590 }
591 
592 void free_prealloced_shrinker(struct shrinker *shrinker)
593 {
594 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
595 		down_write(&shrinker_rwsem);
596 		unregister_memcg_shrinker(shrinker);
597 		up_write(&shrinker_rwsem);
598 		return;
599 	}
600 
601 	kfree(shrinker->nr_deferred);
602 	shrinker->nr_deferred = NULL;
603 }
604 
605 void register_shrinker_prepared(struct shrinker *shrinker)
606 {
607 	down_write(&shrinker_rwsem);
608 	list_add_tail(&shrinker->list, &shrinker_list);
609 	shrinker->flags |= SHRINKER_REGISTERED;
610 	up_write(&shrinker_rwsem);
611 }
612 
613 int register_shrinker(struct shrinker *shrinker)
614 {
615 	int err = prealloc_shrinker(shrinker);
616 
617 	if (err)
618 		return err;
619 	register_shrinker_prepared(shrinker);
620 	return 0;
621 }
622 EXPORT_SYMBOL(register_shrinker);
623 
624 /*
625  * Remove one
626  */
627 void unregister_shrinker(struct shrinker *shrinker)
628 {
629 	if (!(shrinker->flags & SHRINKER_REGISTERED))
630 		return;
631 
632 	down_write(&shrinker_rwsem);
633 	list_del(&shrinker->list);
634 	shrinker->flags &= ~SHRINKER_REGISTERED;
635 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
636 		unregister_memcg_shrinker(shrinker);
637 	up_write(&shrinker_rwsem);
638 
639 	kfree(shrinker->nr_deferred);
640 	shrinker->nr_deferred = NULL;
641 }
642 EXPORT_SYMBOL(unregister_shrinker);
643 
644 #define SHRINK_BATCH 128
645 
646 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
647 				    struct shrinker *shrinker, int priority)
648 {
649 	unsigned long freed = 0;
650 	unsigned long long delta;
651 	long total_scan;
652 	long freeable;
653 	long nr;
654 	long new_nr;
655 	long batch_size = shrinker->batch ? shrinker->batch
656 					  : SHRINK_BATCH;
657 	long scanned = 0, next_deferred;
658 
659 	freeable = shrinker->count_objects(shrinker, shrinkctl);
660 	if (freeable == 0 || freeable == SHRINK_EMPTY)
661 		return freeable;
662 
663 	/*
664 	 * copy the current shrinker scan count into a local variable
665 	 * and zero it so that other concurrent shrinker invocations
666 	 * don't also do this scanning work.
667 	 */
668 	nr = xchg_nr_deferred(shrinker, shrinkctl);
669 
670 	if (shrinker->seeks) {
671 		delta = freeable >> priority;
672 		delta *= 4;
673 		do_div(delta, shrinker->seeks);
674 	} else {
675 		/*
676 		 * These objects don't require any IO to create. Trim
677 		 * them aggressively under memory pressure to keep
678 		 * them from causing refetches in the IO caches.
679 		 */
680 		delta = freeable / 2;
681 	}
682 
683 	total_scan = nr >> priority;
684 	total_scan += delta;
685 	total_scan = min(total_scan, (2 * freeable));
686 
687 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
688 				   freeable, delta, total_scan, priority);
689 
690 	/*
691 	 * Normally, we should not scan less than batch_size objects in one
692 	 * pass to avoid too frequent shrinker calls, but if the slab has less
693 	 * than batch_size objects in total and we are really tight on memory,
694 	 * we will try to reclaim all available objects, otherwise we can end
695 	 * up failing allocations although there are plenty of reclaimable
696 	 * objects spread over several slabs with usage less than the
697 	 * batch_size.
698 	 *
699 	 * We detect the "tight on memory" situations by looking at the total
700 	 * number of objects we want to scan (total_scan). If it is greater
701 	 * than the total number of objects on slab (freeable), we must be
702 	 * scanning at high prio and therefore should try to reclaim as much as
703 	 * possible.
704 	 */
705 	while (total_scan >= batch_size ||
706 	       total_scan >= freeable) {
707 		unsigned long ret;
708 		unsigned long nr_to_scan = min(batch_size, total_scan);
709 
710 		shrinkctl->nr_to_scan = nr_to_scan;
711 		shrinkctl->nr_scanned = nr_to_scan;
712 		ret = shrinker->scan_objects(shrinker, shrinkctl);
713 		if (ret == SHRINK_STOP)
714 			break;
715 		freed += ret;
716 
717 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
718 		total_scan -= shrinkctl->nr_scanned;
719 		scanned += shrinkctl->nr_scanned;
720 
721 		cond_resched();
722 	}
723 
724 	/*
725 	 * The deferred work is increased by any new work (delta) that wasn't
726 	 * done, decreased by old deferred work that was done now.
727 	 *
728 	 * And it is capped to two times of the freeable items.
729 	 */
730 	next_deferred = max_t(long, (nr + delta - scanned), 0);
731 	next_deferred = min(next_deferred, (2 * freeable));
732 
733 	/*
734 	 * move the unused scan count back into the shrinker in a
735 	 * manner that handles concurrent updates.
736 	 */
737 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
738 
739 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
740 	return freed;
741 }
742 
743 #ifdef CONFIG_MEMCG
744 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
745 			struct mem_cgroup *memcg, int priority)
746 {
747 	struct shrinker_info *info;
748 	unsigned long ret, freed = 0;
749 	int i;
750 
751 	if (!mem_cgroup_online(memcg))
752 		return 0;
753 
754 	if (!down_read_trylock(&shrinker_rwsem))
755 		return 0;
756 
757 	info = shrinker_info_protected(memcg, nid);
758 	if (unlikely(!info))
759 		goto unlock;
760 
761 	for_each_set_bit(i, info->map, shrinker_nr_max) {
762 		struct shrink_control sc = {
763 			.gfp_mask = gfp_mask,
764 			.nid = nid,
765 			.memcg = memcg,
766 		};
767 		struct shrinker *shrinker;
768 
769 		shrinker = idr_find(&shrinker_idr, i);
770 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
771 			if (!shrinker)
772 				clear_bit(i, info->map);
773 			continue;
774 		}
775 
776 		/* Call non-slab shrinkers even though kmem is disabled */
777 		if (!memcg_kmem_enabled() &&
778 		    !(shrinker->flags & SHRINKER_NONSLAB))
779 			continue;
780 
781 		ret = do_shrink_slab(&sc, shrinker, priority);
782 		if (ret == SHRINK_EMPTY) {
783 			clear_bit(i, info->map);
784 			/*
785 			 * After the shrinker reported that it had no objects to
786 			 * free, but before we cleared the corresponding bit in
787 			 * the memcg shrinker map, a new object might have been
788 			 * added. To make sure, we have the bit set in this
789 			 * case, we invoke the shrinker one more time and reset
790 			 * the bit if it reports that it is not empty anymore.
791 			 * The memory barrier here pairs with the barrier in
792 			 * set_shrinker_bit():
793 			 *
794 			 * list_lru_add()     shrink_slab_memcg()
795 			 *   list_add_tail()    clear_bit()
796 			 *   <MB>               <MB>
797 			 *   set_bit()          do_shrink_slab()
798 			 */
799 			smp_mb__after_atomic();
800 			ret = do_shrink_slab(&sc, shrinker, priority);
801 			if (ret == SHRINK_EMPTY)
802 				ret = 0;
803 			else
804 				set_shrinker_bit(memcg, nid, i);
805 		}
806 		freed += ret;
807 
808 		if (rwsem_is_contended(&shrinker_rwsem)) {
809 			freed = freed ? : 1;
810 			break;
811 		}
812 	}
813 unlock:
814 	up_read(&shrinker_rwsem);
815 	return freed;
816 }
817 #else /* CONFIG_MEMCG */
818 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
819 			struct mem_cgroup *memcg, int priority)
820 {
821 	return 0;
822 }
823 #endif /* CONFIG_MEMCG */
824 
825 /**
826  * shrink_slab - shrink slab caches
827  * @gfp_mask: allocation context
828  * @nid: node whose slab caches to target
829  * @memcg: memory cgroup whose slab caches to target
830  * @priority: the reclaim priority
831  *
832  * Call the shrink functions to age shrinkable caches.
833  *
834  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
835  * unaware shrinkers will receive a node id of 0 instead.
836  *
837  * @memcg specifies the memory cgroup to target. Unaware shrinkers
838  * are called only if it is the root cgroup.
839  *
840  * @priority is sc->priority, we take the number of objects and >> by priority
841  * in order to get the scan target.
842  *
843  * Returns the number of reclaimed slab objects.
844  */
845 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
846 				 struct mem_cgroup *memcg,
847 				 int priority)
848 {
849 	unsigned long ret, freed = 0;
850 	struct shrinker *shrinker;
851 
852 	/*
853 	 * The root memcg might be allocated even though memcg is disabled
854 	 * via "cgroup_disable=memory" boot parameter.  This could make
855 	 * mem_cgroup_is_root() return false, then just run memcg slab
856 	 * shrink, but skip global shrink.  This may result in premature
857 	 * oom.
858 	 */
859 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
860 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
861 
862 	if (!down_read_trylock(&shrinker_rwsem))
863 		goto out;
864 
865 	list_for_each_entry(shrinker, &shrinker_list, list) {
866 		struct shrink_control sc = {
867 			.gfp_mask = gfp_mask,
868 			.nid = nid,
869 			.memcg = memcg,
870 		};
871 
872 		ret = do_shrink_slab(&sc, shrinker, priority);
873 		if (ret == SHRINK_EMPTY)
874 			ret = 0;
875 		freed += ret;
876 		/*
877 		 * Bail out if someone want to register a new shrinker to
878 		 * prevent the registration from being stalled for long periods
879 		 * by parallel ongoing shrinking.
880 		 */
881 		if (rwsem_is_contended(&shrinker_rwsem)) {
882 			freed = freed ? : 1;
883 			break;
884 		}
885 	}
886 
887 	up_read(&shrinker_rwsem);
888 out:
889 	cond_resched();
890 	return freed;
891 }
892 
893 void drop_slab_node(int nid)
894 {
895 	unsigned long freed;
896 
897 	do {
898 		struct mem_cgroup *memcg = NULL;
899 
900 		if (fatal_signal_pending(current))
901 			return;
902 
903 		freed = 0;
904 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
905 		do {
906 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
907 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
908 	} while (freed > 10);
909 }
910 
911 void drop_slab(void)
912 {
913 	int nid;
914 
915 	for_each_online_node(nid)
916 		drop_slab_node(nid);
917 }
918 
919 static inline int is_page_cache_freeable(struct page *page)
920 {
921 	/*
922 	 * A freeable page cache page is referenced only by the caller
923 	 * that isolated the page, the page cache and optional buffer
924 	 * heads at page->private.
925 	 */
926 	int page_cache_pins = thp_nr_pages(page);
927 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
928 }
929 
930 static int may_write_to_inode(struct inode *inode)
931 {
932 	if (current->flags & PF_SWAPWRITE)
933 		return 1;
934 	if (!inode_write_congested(inode))
935 		return 1;
936 	if (inode_to_bdi(inode) == current->backing_dev_info)
937 		return 1;
938 	return 0;
939 }
940 
941 /*
942  * We detected a synchronous write error writing a page out.  Probably
943  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
944  * fsync(), msync() or close().
945  *
946  * The tricky part is that after writepage we cannot touch the mapping: nothing
947  * prevents it from being freed up.  But we have a ref on the page and once
948  * that page is locked, the mapping is pinned.
949  *
950  * We're allowed to run sleeping lock_page() here because we know the caller has
951  * __GFP_FS.
952  */
953 static void handle_write_error(struct address_space *mapping,
954 				struct page *page, int error)
955 {
956 	lock_page(page);
957 	if (page_mapping(page) == mapping)
958 		mapping_set_error(mapping, error);
959 	unlock_page(page);
960 }
961 
962 /* possible outcome of pageout() */
963 typedef enum {
964 	/* failed to write page out, page is locked */
965 	PAGE_KEEP,
966 	/* move page to the active list, page is locked */
967 	PAGE_ACTIVATE,
968 	/* page has been sent to the disk successfully, page is unlocked */
969 	PAGE_SUCCESS,
970 	/* page is clean and locked */
971 	PAGE_CLEAN,
972 } pageout_t;
973 
974 /*
975  * pageout is called by shrink_page_list() for each dirty page.
976  * Calls ->writepage().
977  */
978 static pageout_t pageout(struct page *page, struct address_space *mapping)
979 {
980 	/*
981 	 * If the page is dirty, only perform writeback if that write
982 	 * will be non-blocking.  To prevent this allocation from being
983 	 * stalled by pagecache activity.  But note that there may be
984 	 * stalls if we need to run get_block().  We could test
985 	 * PagePrivate for that.
986 	 *
987 	 * If this process is currently in __generic_file_write_iter() against
988 	 * this page's queue, we can perform writeback even if that
989 	 * will block.
990 	 *
991 	 * If the page is swapcache, write it back even if that would
992 	 * block, for some throttling. This happens by accident, because
993 	 * swap_backing_dev_info is bust: it doesn't reflect the
994 	 * congestion state of the swapdevs.  Easy to fix, if needed.
995 	 */
996 	if (!is_page_cache_freeable(page))
997 		return PAGE_KEEP;
998 	if (!mapping) {
999 		/*
1000 		 * Some data journaling orphaned pages can have
1001 		 * page->mapping == NULL while being dirty with clean buffers.
1002 		 */
1003 		if (page_has_private(page)) {
1004 			if (try_to_free_buffers(page)) {
1005 				ClearPageDirty(page);
1006 				pr_info("%s: orphaned page\n", __func__);
1007 				return PAGE_CLEAN;
1008 			}
1009 		}
1010 		return PAGE_KEEP;
1011 	}
1012 	if (mapping->a_ops->writepage == NULL)
1013 		return PAGE_ACTIVATE;
1014 	if (!may_write_to_inode(mapping->host))
1015 		return PAGE_KEEP;
1016 
1017 	if (clear_page_dirty_for_io(page)) {
1018 		int res;
1019 		struct writeback_control wbc = {
1020 			.sync_mode = WB_SYNC_NONE,
1021 			.nr_to_write = SWAP_CLUSTER_MAX,
1022 			.range_start = 0,
1023 			.range_end = LLONG_MAX,
1024 			.for_reclaim = 1,
1025 		};
1026 
1027 		SetPageReclaim(page);
1028 		res = mapping->a_ops->writepage(page, &wbc);
1029 		if (res < 0)
1030 			handle_write_error(mapping, page, res);
1031 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1032 			ClearPageReclaim(page);
1033 			return PAGE_ACTIVATE;
1034 		}
1035 
1036 		if (!PageWriteback(page)) {
1037 			/* synchronous write or broken a_ops? */
1038 			ClearPageReclaim(page);
1039 		}
1040 		trace_mm_vmscan_writepage(page);
1041 		inc_node_page_state(page, NR_VMSCAN_WRITE);
1042 		return PAGE_SUCCESS;
1043 	}
1044 
1045 	return PAGE_CLEAN;
1046 }
1047 
1048 /*
1049  * Same as remove_mapping, but if the page is removed from the mapping, it
1050  * gets returned with a refcount of 0.
1051  */
1052 static int __remove_mapping(struct address_space *mapping, struct page *page,
1053 			    bool reclaimed, struct mem_cgroup *target_memcg)
1054 {
1055 	unsigned long flags;
1056 	int refcount;
1057 	void *shadow = NULL;
1058 
1059 	BUG_ON(!PageLocked(page));
1060 	BUG_ON(mapping != page_mapping(page));
1061 
1062 	xa_lock_irqsave(&mapping->i_pages, flags);
1063 	/*
1064 	 * The non racy check for a busy page.
1065 	 *
1066 	 * Must be careful with the order of the tests. When someone has
1067 	 * a ref to the page, it may be possible that they dirty it then
1068 	 * drop the reference. So if PageDirty is tested before page_count
1069 	 * here, then the following race may occur:
1070 	 *
1071 	 * get_user_pages(&page);
1072 	 * [user mapping goes away]
1073 	 * write_to(page);
1074 	 *				!PageDirty(page)    [good]
1075 	 * SetPageDirty(page);
1076 	 * put_page(page);
1077 	 *				!page_count(page)   [good, discard it]
1078 	 *
1079 	 * [oops, our write_to data is lost]
1080 	 *
1081 	 * Reversing the order of the tests ensures such a situation cannot
1082 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1083 	 * load is not satisfied before that of page->_refcount.
1084 	 *
1085 	 * Note that if SetPageDirty is always performed via set_page_dirty,
1086 	 * and thus under the i_pages lock, then this ordering is not required.
1087 	 */
1088 	refcount = 1 + compound_nr(page);
1089 	if (!page_ref_freeze(page, refcount))
1090 		goto cannot_free;
1091 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1092 	if (unlikely(PageDirty(page))) {
1093 		page_ref_unfreeze(page, refcount);
1094 		goto cannot_free;
1095 	}
1096 
1097 	if (PageSwapCache(page)) {
1098 		swp_entry_t swap = { .val = page_private(page) };
1099 		mem_cgroup_swapout(page, swap);
1100 		if (reclaimed && !mapping_exiting(mapping))
1101 			shadow = workingset_eviction(page, target_memcg);
1102 		__delete_from_swap_cache(page, swap, shadow);
1103 		xa_unlock_irqrestore(&mapping->i_pages, flags);
1104 		put_swap_page(page, swap);
1105 	} else {
1106 		void (*freepage)(struct page *);
1107 
1108 		freepage = mapping->a_ops->freepage;
1109 		/*
1110 		 * Remember a shadow entry for reclaimed file cache in
1111 		 * order to detect refaults, thus thrashing, later on.
1112 		 *
1113 		 * But don't store shadows in an address space that is
1114 		 * already exiting.  This is not just an optimization,
1115 		 * inode reclaim needs to empty out the radix tree or
1116 		 * the nodes are lost.  Don't plant shadows behind its
1117 		 * back.
1118 		 *
1119 		 * We also don't store shadows for DAX mappings because the
1120 		 * only page cache pages found in these are zero pages
1121 		 * covering holes, and because we don't want to mix DAX
1122 		 * exceptional entries and shadow exceptional entries in the
1123 		 * same address_space.
1124 		 */
1125 		if (reclaimed && page_is_file_lru(page) &&
1126 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1127 			shadow = workingset_eviction(page, target_memcg);
1128 		__delete_from_page_cache(page, shadow);
1129 		xa_unlock_irqrestore(&mapping->i_pages, flags);
1130 
1131 		if (freepage != NULL)
1132 			freepage(page);
1133 	}
1134 
1135 	return 1;
1136 
1137 cannot_free:
1138 	xa_unlock_irqrestore(&mapping->i_pages, flags);
1139 	return 0;
1140 }
1141 
1142 /*
1143  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
1144  * someone else has a ref on the page, abort and return 0.  If it was
1145  * successfully detached, return 1.  Assumes the caller has a single ref on
1146  * this page.
1147  */
1148 int remove_mapping(struct address_space *mapping, struct page *page)
1149 {
1150 	if (__remove_mapping(mapping, page, false, NULL)) {
1151 		/*
1152 		 * Unfreezing the refcount with 1 rather than 2 effectively
1153 		 * drops the pagecache ref for us without requiring another
1154 		 * atomic operation.
1155 		 */
1156 		page_ref_unfreeze(page, 1);
1157 		return 1;
1158 	}
1159 	return 0;
1160 }
1161 
1162 /**
1163  * putback_lru_page - put previously isolated page onto appropriate LRU list
1164  * @page: page to be put back to appropriate lru list
1165  *
1166  * Add previously isolated @page to appropriate LRU list.
1167  * Page may still be unevictable for other reasons.
1168  *
1169  * lru_lock must not be held, interrupts must be enabled.
1170  */
1171 void putback_lru_page(struct page *page)
1172 {
1173 	lru_cache_add(page);
1174 	put_page(page);		/* drop ref from isolate */
1175 }
1176 
1177 enum page_references {
1178 	PAGEREF_RECLAIM,
1179 	PAGEREF_RECLAIM_CLEAN,
1180 	PAGEREF_KEEP,
1181 	PAGEREF_ACTIVATE,
1182 };
1183 
1184 static enum page_references page_check_references(struct page *page,
1185 						  struct scan_control *sc)
1186 {
1187 	int referenced_ptes, referenced_page;
1188 	unsigned long vm_flags;
1189 
1190 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1191 					  &vm_flags);
1192 	referenced_page = TestClearPageReferenced(page);
1193 
1194 	/*
1195 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1196 	 * move the page to the unevictable list.
1197 	 */
1198 	if (vm_flags & VM_LOCKED)
1199 		return PAGEREF_RECLAIM;
1200 
1201 	if (referenced_ptes) {
1202 		/*
1203 		 * All mapped pages start out with page table
1204 		 * references from the instantiating fault, so we need
1205 		 * to look twice if a mapped file page is used more
1206 		 * than once.
1207 		 *
1208 		 * Mark it and spare it for another trip around the
1209 		 * inactive list.  Another page table reference will
1210 		 * lead to its activation.
1211 		 *
1212 		 * Note: the mark is set for activated pages as well
1213 		 * so that recently deactivated but used pages are
1214 		 * quickly recovered.
1215 		 */
1216 		SetPageReferenced(page);
1217 
1218 		if (referenced_page || referenced_ptes > 1)
1219 			return PAGEREF_ACTIVATE;
1220 
1221 		/*
1222 		 * Activate file-backed executable pages after first usage.
1223 		 */
1224 		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1225 			return PAGEREF_ACTIVATE;
1226 
1227 		return PAGEREF_KEEP;
1228 	}
1229 
1230 	/* Reclaim if clean, defer dirty pages to writeback */
1231 	if (referenced_page && !PageSwapBacked(page))
1232 		return PAGEREF_RECLAIM_CLEAN;
1233 
1234 	return PAGEREF_RECLAIM;
1235 }
1236 
1237 /* Check if a page is dirty or under writeback */
1238 static void page_check_dirty_writeback(struct page *page,
1239 				       bool *dirty, bool *writeback)
1240 {
1241 	struct address_space *mapping;
1242 
1243 	/*
1244 	 * Anonymous pages are not handled by flushers and must be written
1245 	 * from reclaim context. Do not stall reclaim based on them
1246 	 */
1247 	if (!page_is_file_lru(page) ||
1248 	    (PageAnon(page) && !PageSwapBacked(page))) {
1249 		*dirty = false;
1250 		*writeback = false;
1251 		return;
1252 	}
1253 
1254 	/* By default assume that the page flags are accurate */
1255 	*dirty = PageDirty(page);
1256 	*writeback = PageWriteback(page);
1257 
1258 	/* Verify dirty/writeback state if the filesystem supports it */
1259 	if (!page_has_private(page))
1260 		return;
1261 
1262 	mapping = page_mapping(page);
1263 	if (mapping && mapping->a_ops->is_dirty_writeback)
1264 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1265 }
1266 
1267 /*
1268  * shrink_page_list() returns the number of reclaimed pages
1269  */
1270 static unsigned int shrink_page_list(struct list_head *page_list,
1271 				     struct pglist_data *pgdat,
1272 				     struct scan_control *sc,
1273 				     struct reclaim_stat *stat,
1274 				     bool ignore_references)
1275 {
1276 	LIST_HEAD(ret_pages);
1277 	LIST_HEAD(free_pages);
1278 	unsigned int nr_reclaimed = 0;
1279 	unsigned int pgactivate = 0;
1280 
1281 	memset(stat, 0, sizeof(*stat));
1282 	cond_resched();
1283 
1284 	while (!list_empty(page_list)) {
1285 		struct address_space *mapping;
1286 		struct page *page;
1287 		enum page_references references = PAGEREF_RECLAIM;
1288 		bool dirty, writeback, may_enter_fs;
1289 		unsigned int nr_pages;
1290 
1291 		cond_resched();
1292 
1293 		page = lru_to_page(page_list);
1294 		list_del(&page->lru);
1295 
1296 		if (!trylock_page(page))
1297 			goto keep;
1298 
1299 		VM_BUG_ON_PAGE(PageActive(page), page);
1300 
1301 		nr_pages = compound_nr(page);
1302 
1303 		/* Account the number of base pages even though THP */
1304 		sc->nr_scanned += nr_pages;
1305 
1306 		if (unlikely(!page_evictable(page)))
1307 			goto activate_locked;
1308 
1309 		if (!sc->may_unmap && page_mapped(page))
1310 			goto keep_locked;
1311 
1312 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1313 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1314 
1315 		/*
1316 		 * The number of dirty pages determines if a node is marked
1317 		 * reclaim_congested which affects wait_iff_congested. kswapd
1318 		 * will stall and start writing pages if the tail of the LRU
1319 		 * is all dirty unqueued pages.
1320 		 */
1321 		page_check_dirty_writeback(page, &dirty, &writeback);
1322 		if (dirty || writeback)
1323 			stat->nr_dirty++;
1324 
1325 		if (dirty && !writeback)
1326 			stat->nr_unqueued_dirty++;
1327 
1328 		/*
1329 		 * Treat this page as congested if the underlying BDI is or if
1330 		 * pages are cycling through the LRU so quickly that the
1331 		 * pages marked for immediate reclaim are making it to the
1332 		 * end of the LRU a second time.
1333 		 */
1334 		mapping = page_mapping(page);
1335 		if (((dirty || writeback) && mapping &&
1336 		     inode_write_congested(mapping->host)) ||
1337 		    (writeback && PageReclaim(page)))
1338 			stat->nr_congested++;
1339 
1340 		/*
1341 		 * If a page at the tail of the LRU is under writeback, there
1342 		 * are three cases to consider.
1343 		 *
1344 		 * 1) If reclaim is encountering an excessive number of pages
1345 		 *    under writeback and this page is both under writeback and
1346 		 *    PageReclaim then it indicates that pages are being queued
1347 		 *    for IO but are being recycled through the LRU before the
1348 		 *    IO can complete. Waiting on the page itself risks an
1349 		 *    indefinite stall if it is impossible to writeback the
1350 		 *    page due to IO error or disconnected storage so instead
1351 		 *    note that the LRU is being scanned too quickly and the
1352 		 *    caller can stall after page list has been processed.
1353 		 *
1354 		 * 2) Global or new memcg reclaim encounters a page that is
1355 		 *    not marked for immediate reclaim, or the caller does not
1356 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1357 		 *    not to fs). In this case mark the page for immediate
1358 		 *    reclaim and continue scanning.
1359 		 *
1360 		 *    Require may_enter_fs because we would wait on fs, which
1361 		 *    may not have submitted IO yet. And the loop driver might
1362 		 *    enter reclaim, and deadlock if it waits on a page for
1363 		 *    which it is needed to do the write (loop masks off
1364 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1365 		 *    would probably show more reasons.
1366 		 *
1367 		 * 3) Legacy memcg encounters a page that is already marked
1368 		 *    PageReclaim. memcg does not have any dirty pages
1369 		 *    throttling so we could easily OOM just because too many
1370 		 *    pages are in writeback and there is nothing else to
1371 		 *    reclaim. Wait for the writeback to complete.
1372 		 *
1373 		 * In cases 1) and 2) we activate the pages to get them out of
1374 		 * the way while we continue scanning for clean pages on the
1375 		 * inactive list and refilling from the active list. The
1376 		 * observation here is that waiting for disk writes is more
1377 		 * expensive than potentially causing reloads down the line.
1378 		 * Since they're marked for immediate reclaim, they won't put
1379 		 * memory pressure on the cache working set any longer than it
1380 		 * takes to write them to disk.
1381 		 */
1382 		if (PageWriteback(page)) {
1383 			/* Case 1 above */
1384 			if (current_is_kswapd() &&
1385 			    PageReclaim(page) &&
1386 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1387 				stat->nr_immediate++;
1388 				goto activate_locked;
1389 
1390 			/* Case 2 above */
1391 			} else if (writeback_throttling_sane(sc) ||
1392 			    !PageReclaim(page) || !may_enter_fs) {
1393 				/*
1394 				 * This is slightly racy - end_page_writeback()
1395 				 * might have just cleared PageReclaim, then
1396 				 * setting PageReclaim here end up interpreted
1397 				 * as PageReadahead - but that does not matter
1398 				 * enough to care.  What we do want is for this
1399 				 * page to have PageReclaim set next time memcg
1400 				 * reclaim reaches the tests above, so it will
1401 				 * then wait_on_page_writeback() to avoid OOM;
1402 				 * and it's also appropriate in global reclaim.
1403 				 */
1404 				SetPageReclaim(page);
1405 				stat->nr_writeback++;
1406 				goto activate_locked;
1407 
1408 			/* Case 3 above */
1409 			} else {
1410 				unlock_page(page);
1411 				wait_on_page_writeback(page);
1412 				/* then go back and try same page again */
1413 				list_add_tail(&page->lru, page_list);
1414 				continue;
1415 			}
1416 		}
1417 
1418 		if (!ignore_references)
1419 			references = page_check_references(page, sc);
1420 
1421 		switch (references) {
1422 		case PAGEREF_ACTIVATE:
1423 			goto activate_locked;
1424 		case PAGEREF_KEEP:
1425 			stat->nr_ref_keep += nr_pages;
1426 			goto keep_locked;
1427 		case PAGEREF_RECLAIM:
1428 		case PAGEREF_RECLAIM_CLEAN:
1429 			; /* try to reclaim the page below */
1430 		}
1431 
1432 		/*
1433 		 * Anonymous process memory has backing store?
1434 		 * Try to allocate it some swap space here.
1435 		 * Lazyfree page could be freed directly
1436 		 */
1437 		if (PageAnon(page) && PageSwapBacked(page)) {
1438 			if (!PageSwapCache(page)) {
1439 				if (!(sc->gfp_mask & __GFP_IO))
1440 					goto keep_locked;
1441 				if (page_maybe_dma_pinned(page))
1442 					goto keep_locked;
1443 				if (PageTransHuge(page)) {
1444 					/* cannot split THP, skip it */
1445 					if (!can_split_huge_page(page, NULL))
1446 						goto activate_locked;
1447 					/*
1448 					 * Split pages without a PMD map right
1449 					 * away. Chances are some or all of the
1450 					 * tail pages can be freed without IO.
1451 					 */
1452 					if (!compound_mapcount(page) &&
1453 					    split_huge_page_to_list(page,
1454 								    page_list))
1455 						goto activate_locked;
1456 				}
1457 				if (!add_to_swap(page)) {
1458 					if (!PageTransHuge(page))
1459 						goto activate_locked_split;
1460 					/* Fallback to swap normal pages */
1461 					if (split_huge_page_to_list(page,
1462 								    page_list))
1463 						goto activate_locked;
1464 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1465 					count_vm_event(THP_SWPOUT_FALLBACK);
1466 #endif
1467 					if (!add_to_swap(page))
1468 						goto activate_locked_split;
1469 				}
1470 
1471 				may_enter_fs = true;
1472 
1473 				/* Adding to swap updated mapping */
1474 				mapping = page_mapping(page);
1475 			}
1476 		} else if (unlikely(PageTransHuge(page))) {
1477 			/* Split file THP */
1478 			if (split_huge_page_to_list(page, page_list))
1479 				goto keep_locked;
1480 		}
1481 
1482 		/*
1483 		 * THP may get split above, need minus tail pages and update
1484 		 * nr_pages to avoid accounting tail pages twice.
1485 		 *
1486 		 * The tail pages that are added into swap cache successfully
1487 		 * reach here.
1488 		 */
1489 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1490 			sc->nr_scanned -= (nr_pages - 1);
1491 			nr_pages = 1;
1492 		}
1493 
1494 		/*
1495 		 * The page is mapped into the page tables of one or more
1496 		 * processes. Try to unmap it here.
1497 		 */
1498 		if (page_mapped(page)) {
1499 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1500 			bool was_swapbacked = PageSwapBacked(page);
1501 
1502 			if (unlikely(PageTransHuge(page)))
1503 				flags |= TTU_SPLIT_HUGE_PMD;
1504 
1505 			try_to_unmap(page, flags);
1506 			if (page_mapped(page)) {
1507 				stat->nr_unmap_fail += nr_pages;
1508 				if (!was_swapbacked && PageSwapBacked(page))
1509 					stat->nr_lazyfree_fail += nr_pages;
1510 				goto activate_locked;
1511 			}
1512 		}
1513 
1514 		if (PageDirty(page)) {
1515 			/*
1516 			 * Only kswapd can writeback filesystem pages
1517 			 * to avoid risk of stack overflow. But avoid
1518 			 * injecting inefficient single-page IO into
1519 			 * flusher writeback as much as possible: only
1520 			 * write pages when we've encountered many
1521 			 * dirty pages, and when we've already scanned
1522 			 * the rest of the LRU for clean pages and see
1523 			 * the same dirty pages again (PageReclaim).
1524 			 */
1525 			if (page_is_file_lru(page) &&
1526 			    (!current_is_kswapd() || !PageReclaim(page) ||
1527 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1528 				/*
1529 				 * Immediately reclaim when written back.
1530 				 * Similar in principal to deactivate_page()
1531 				 * except we already have the page isolated
1532 				 * and know it's dirty
1533 				 */
1534 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1535 				SetPageReclaim(page);
1536 
1537 				goto activate_locked;
1538 			}
1539 
1540 			if (references == PAGEREF_RECLAIM_CLEAN)
1541 				goto keep_locked;
1542 			if (!may_enter_fs)
1543 				goto keep_locked;
1544 			if (!sc->may_writepage)
1545 				goto keep_locked;
1546 
1547 			/*
1548 			 * Page is dirty. Flush the TLB if a writable entry
1549 			 * potentially exists to avoid CPU writes after IO
1550 			 * starts and then write it out here.
1551 			 */
1552 			try_to_unmap_flush_dirty();
1553 			switch (pageout(page, mapping)) {
1554 			case PAGE_KEEP:
1555 				goto keep_locked;
1556 			case PAGE_ACTIVATE:
1557 				goto activate_locked;
1558 			case PAGE_SUCCESS:
1559 				stat->nr_pageout += thp_nr_pages(page);
1560 
1561 				if (PageWriteback(page))
1562 					goto keep;
1563 				if (PageDirty(page))
1564 					goto keep;
1565 
1566 				/*
1567 				 * A synchronous write - probably a ramdisk.  Go
1568 				 * ahead and try to reclaim the page.
1569 				 */
1570 				if (!trylock_page(page))
1571 					goto keep;
1572 				if (PageDirty(page) || PageWriteback(page))
1573 					goto keep_locked;
1574 				mapping = page_mapping(page);
1575 				fallthrough;
1576 			case PAGE_CLEAN:
1577 				; /* try to free the page below */
1578 			}
1579 		}
1580 
1581 		/*
1582 		 * If the page has buffers, try to free the buffer mappings
1583 		 * associated with this page. If we succeed we try to free
1584 		 * the page as well.
1585 		 *
1586 		 * We do this even if the page is PageDirty().
1587 		 * try_to_release_page() does not perform I/O, but it is
1588 		 * possible for a page to have PageDirty set, but it is actually
1589 		 * clean (all its buffers are clean).  This happens if the
1590 		 * buffers were written out directly, with submit_bh(). ext3
1591 		 * will do this, as well as the blockdev mapping.
1592 		 * try_to_release_page() will discover that cleanness and will
1593 		 * drop the buffers and mark the page clean - it can be freed.
1594 		 *
1595 		 * Rarely, pages can have buffers and no ->mapping.  These are
1596 		 * the pages which were not successfully invalidated in
1597 		 * truncate_cleanup_page().  We try to drop those buffers here
1598 		 * and if that worked, and the page is no longer mapped into
1599 		 * process address space (page_count == 1) it can be freed.
1600 		 * Otherwise, leave the page on the LRU so it is swappable.
1601 		 */
1602 		if (page_has_private(page)) {
1603 			if (!try_to_release_page(page, sc->gfp_mask))
1604 				goto activate_locked;
1605 			if (!mapping && page_count(page) == 1) {
1606 				unlock_page(page);
1607 				if (put_page_testzero(page))
1608 					goto free_it;
1609 				else {
1610 					/*
1611 					 * rare race with speculative reference.
1612 					 * the speculative reference will free
1613 					 * this page shortly, so we may
1614 					 * increment nr_reclaimed here (and
1615 					 * leave it off the LRU).
1616 					 */
1617 					nr_reclaimed++;
1618 					continue;
1619 				}
1620 			}
1621 		}
1622 
1623 		if (PageAnon(page) && !PageSwapBacked(page)) {
1624 			/* follow __remove_mapping for reference */
1625 			if (!page_ref_freeze(page, 1))
1626 				goto keep_locked;
1627 			if (PageDirty(page)) {
1628 				page_ref_unfreeze(page, 1);
1629 				goto keep_locked;
1630 			}
1631 
1632 			count_vm_event(PGLAZYFREED);
1633 			count_memcg_page_event(page, PGLAZYFREED);
1634 		} else if (!mapping || !__remove_mapping(mapping, page, true,
1635 							 sc->target_mem_cgroup))
1636 			goto keep_locked;
1637 
1638 		unlock_page(page);
1639 free_it:
1640 		/*
1641 		 * THP may get swapped out in a whole, need account
1642 		 * all base pages.
1643 		 */
1644 		nr_reclaimed += nr_pages;
1645 
1646 		/*
1647 		 * Is there need to periodically free_page_list? It would
1648 		 * appear not as the counts should be low
1649 		 */
1650 		if (unlikely(PageTransHuge(page)))
1651 			destroy_compound_page(page);
1652 		else
1653 			list_add(&page->lru, &free_pages);
1654 		continue;
1655 
1656 activate_locked_split:
1657 		/*
1658 		 * The tail pages that are failed to add into swap cache
1659 		 * reach here.  Fixup nr_scanned and nr_pages.
1660 		 */
1661 		if (nr_pages > 1) {
1662 			sc->nr_scanned -= (nr_pages - 1);
1663 			nr_pages = 1;
1664 		}
1665 activate_locked:
1666 		/* Not a candidate for swapping, so reclaim swap space. */
1667 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1668 						PageMlocked(page)))
1669 			try_to_free_swap(page);
1670 		VM_BUG_ON_PAGE(PageActive(page), page);
1671 		if (!PageMlocked(page)) {
1672 			int type = page_is_file_lru(page);
1673 			SetPageActive(page);
1674 			stat->nr_activate[type] += nr_pages;
1675 			count_memcg_page_event(page, PGACTIVATE);
1676 		}
1677 keep_locked:
1678 		unlock_page(page);
1679 keep:
1680 		list_add(&page->lru, &ret_pages);
1681 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1682 	}
1683 
1684 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1685 
1686 	mem_cgroup_uncharge_list(&free_pages);
1687 	try_to_unmap_flush();
1688 	free_unref_page_list(&free_pages);
1689 
1690 	list_splice(&ret_pages, page_list);
1691 	count_vm_events(PGACTIVATE, pgactivate);
1692 
1693 	return nr_reclaimed;
1694 }
1695 
1696 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1697 					    struct list_head *page_list)
1698 {
1699 	struct scan_control sc = {
1700 		.gfp_mask = GFP_KERNEL,
1701 		.priority = DEF_PRIORITY,
1702 		.may_unmap = 1,
1703 	};
1704 	struct reclaim_stat stat;
1705 	unsigned int nr_reclaimed;
1706 	struct page *page, *next;
1707 	LIST_HEAD(clean_pages);
1708 	unsigned int noreclaim_flag;
1709 
1710 	list_for_each_entry_safe(page, next, page_list, lru) {
1711 		if (!PageHuge(page) && page_is_file_lru(page) &&
1712 		    !PageDirty(page) && !__PageMovable(page) &&
1713 		    !PageUnevictable(page)) {
1714 			ClearPageActive(page);
1715 			list_move(&page->lru, &clean_pages);
1716 		}
1717 	}
1718 
1719 	/*
1720 	 * We should be safe here since we are only dealing with file pages and
1721 	 * we are not kswapd and therefore cannot write dirty file pages. But
1722 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1723 	 * change in the future.
1724 	 */
1725 	noreclaim_flag = memalloc_noreclaim_save();
1726 	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1727 					&stat, true);
1728 	memalloc_noreclaim_restore(noreclaim_flag);
1729 
1730 	list_splice(&clean_pages, page_list);
1731 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1732 			    -(long)nr_reclaimed);
1733 	/*
1734 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1735 	 * they will rotate back to anonymous LRU in the end if it failed to
1736 	 * discard so isolated count will be mismatched.
1737 	 * Compensate the isolated count for both LRU lists.
1738 	 */
1739 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1740 			    stat.nr_lazyfree_fail);
1741 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1742 			    -(long)stat.nr_lazyfree_fail);
1743 	return nr_reclaimed;
1744 }
1745 
1746 /*
1747  * Attempt to remove the specified page from its LRU.  Only take this page
1748  * if it is of the appropriate PageActive status.  Pages which are being
1749  * freed elsewhere are also ignored.
1750  *
1751  * page:	page to consider
1752  * mode:	one of the LRU isolation modes defined above
1753  *
1754  * returns true on success, false on failure.
1755  */
1756 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
1757 {
1758 	/* Only take pages on the LRU. */
1759 	if (!PageLRU(page))
1760 		return false;
1761 
1762 	/* Compaction should not handle unevictable pages but CMA can do so */
1763 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1764 		return false;
1765 
1766 	/*
1767 	 * To minimise LRU disruption, the caller can indicate that it only
1768 	 * wants to isolate pages it will be able to operate on without
1769 	 * blocking - clean pages for the most part.
1770 	 *
1771 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1772 	 * that it is possible to migrate without blocking
1773 	 */
1774 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1775 		/* All the caller can do on PageWriteback is block */
1776 		if (PageWriteback(page))
1777 			return false;
1778 
1779 		if (PageDirty(page)) {
1780 			struct address_space *mapping;
1781 			bool migrate_dirty;
1782 
1783 			/*
1784 			 * Only pages without mappings or that have a
1785 			 * ->migratepage callback are possible to migrate
1786 			 * without blocking. However, we can be racing with
1787 			 * truncation so it's necessary to lock the page
1788 			 * to stabilise the mapping as truncation holds
1789 			 * the page lock until after the page is removed
1790 			 * from the page cache.
1791 			 */
1792 			if (!trylock_page(page))
1793 				return false;
1794 
1795 			mapping = page_mapping(page);
1796 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1797 			unlock_page(page);
1798 			if (!migrate_dirty)
1799 				return false;
1800 		}
1801 	}
1802 
1803 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1804 		return false;
1805 
1806 	return true;
1807 }
1808 
1809 /*
1810  * Update LRU sizes after isolating pages. The LRU size updates must
1811  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1812  */
1813 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1814 			enum lru_list lru, unsigned long *nr_zone_taken)
1815 {
1816 	int zid;
1817 
1818 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1819 		if (!nr_zone_taken[zid])
1820 			continue;
1821 
1822 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1823 	}
1824 
1825 }
1826 
1827 /*
1828  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1829  *
1830  * lruvec->lru_lock is heavily contended.  Some of the functions that
1831  * shrink the lists perform better by taking out a batch of pages
1832  * and working on them outside the LRU lock.
1833  *
1834  * For pagecache intensive workloads, this function is the hottest
1835  * spot in the kernel (apart from copy_*_user functions).
1836  *
1837  * Lru_lock must be held before calling this function.
1838  *
1839  * @nr_to_scan:	The number of eligible pages to look through on the list.
1840  * @lruvec:	The LRU vector to pull pages from.
1841  * @dst:	The temp list to put pages on to.
1842  * @nr_scanned:	The number of pages that were scanned.
1843  * @sc:		The scan_control struct for this reclaim session
1844  * @lru:	LRU list id for isolating
1845  *
1846  * returns how many pages were moved onto *@dst.
1847  */
1848 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1849 		struct lruvec *lruvec, struct list_head *dst,
1850 		unsigned long *nr_scanned, struct scan_control *sc,
1851 		enum lru_list lru)
1852 {
1853 	struct list_head *src = &lruvec->lists[lru];
1854 	unsigned long nr_taken = 0;
1855 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1856 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1857 	unsigned long skipped = 0;
1858 	unsigned long scan, total_scan, nr_pages;
1859 	LIST_HEAD(pages_skipped);
1860 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1861 
1862 	total_scan = 0;
1863 	scan = 0;
1864 	while (scan < nr_to_scan && !list_empty(src)) {
1865 		struct page *page;
1866 
1867 		page = lru_to_page(src);
1868 		prefetchw_prev_lru_page(page, src, flags);
1869 
1870 		nr_pages = compound_nr(page);
1871 		total_scan += nr_pages;
1872 
1873 		if (page_zonenum(page) > sc->reclaim_idx) {
1874 			list_move(&page->lru, &pages_skipped);
1875 			nr_skipped[page_zonenum(page)] += nr_pages;
1876 			continue;
1877 		}
1878 
1879 		/*
1880 		 * Do not count skipped pages because that makes the function
1881 		 * return with no isolated pages if the LRU mostly contains
1882 		 * ineligible pages.  This causes the VM to not reclaim any
1883 		 * pages, triggering a premature OOM.
1884 		 *
1885 		 * Account all tail pages of THP.  This would not cause
1886 		 * premature OOM since __isolate_lru_page() returns -EBUSY
1887 		 * only when the page is being freed somewhere else.
1888 		 */
1889 		scan += nr_pages;
1890 		if (!__isolate_lru_page_prepare(page, mode)) {
1891 			/* It is being freed elsewhere */
1892 			list_move(&page->lru, src);
1893 			continue;
1894 		}
1895 		/*
1896 		 * Be careful not to clear PageLRU until after we're
1897 		 * sure the page is not being freed elsewhere -- the
1898 		 * page release code relies on it.
1899 		 */
1900 		if (unlikely(!get_page_unless_zero(page))) {
1901 			list_move(&page->lru, src);
1902 			continue;
1903 		}
1904 
1905 		if (!TestClearPageLRU(page)) {
1906 			/* Another thread is already isolating this page */
1907 			put_page(page);
1908 			list_move(&page->lru, src);
1909 			continue;
1910 		}
1911 
1912 		nr_taken += nr_pages;
1913 		nr_zone_taken[page_zonenum(page)] += nr_pages;
1914 		list_move(&page->lru, dst);
1915 	}
1916 
1917 	/*
1918 	 * Splice any skipped pages to the start of the LRU list. Note that
1919 	 * this disrupts the LRU order when reclaiming for lower zones but
1920 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1921 	 * scanning would soon rescan the same pages to skip and put the
1922 	 * system at risk of premature OOM.
1923 	 */
1924 	if (!list_empty(&pages_skipped)) {
1925 		int zid;
1926 
1927 		list_splice(&pages_skipped, src);
1928 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1929 			if (!nr_skipped[zid])
1930 				continue;
1931 
1932 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1933 			skipped += nr_skipped[zid];
1934 		}
1935 	}
1936 	*nr_scanned = total_scan;
1937 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1938 				    total_scan, skipped, nr_taken, mode, lru);
1939 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1940 	return nr_taken;
1941 }
1942 
1943 /**
1944  * isolate_lru_page - tries to isolate a page from its LRU list
1945  * @page: page to isolate from its LRU list
1946  *
1947  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1948  * vmstat statistic corresponding to whatever LRU list the page was on.
1949  *
1950  * Returns 0 if the page was removed from an LRU list.
1951  * Returns -EBUSY if the page was not on an LRU list.
1952  *
1953  * The returned page will have PageLRU() cleared.  If it was found on
1954  * the active list, it will have PageActive set.  If it was found on
1955  * the unevictable list, it will have the PageUnevictable bit set. That flag
1956  * may need to be cleared by the caller before letting the page go.
1957  *
1958  * The vmstat statistic corresponding to the list on which the page was
1959  * found will be decremented.
1960  *
1961  * Restrictions:
1962  *
1963  * (1) Must be called with an elevated refcount on the page. This is a
1964  *     fundamental difference from isolate_lru_pages (which is called
1965  *     without a stable reference).
1966  * (2) the lru_lock must not be held.
1967  * (3) interrupts must be enabled.
1968  */
1969 int isolate_lru_page(struct page *page)
1970 {
1971 	int ret = -EBUSY;
1972 
1973 	VM_BUG_ON_PAGE(!page_count(page), page);
1974 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1975 
1976 	if (TestClearPageLRU(page)) {
1977 		struct lruvec *lruvec;
1978 
1979 		get_page(page);
1980 		lruvec = lock_page_lruvec_irq(page);
1981 		del_page_from_lru_list(page, lruvec);
1982 		unlock_page_lruvec_irq(lruvec);
1983 		ret = 0;
1984 	}
1985 
1986 	return ret;
1987 }
1988 
1989 /*
1990  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1991  * then get rescheduled. When there are massive number of tasks doing page
1992  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1993  * the LRU list will go small and be scanned faster than necessary, leading to
1994  * unnecessary swapping, thrashing and OOM.
1995  */
1996 static int too_many_isolated(struct pglist_data *pgdat, int file,
1997 		struct scan_control *sc)
1998 {
1999 	unsigned long inactive, isolated;
2000 
2001 	if (current_is_kswapd())
2002 		return 0;
2003 
2004 	if (!writeback_throttling_sane(sc))
2005 		return 0;
2006 
2007 	if (file) {
2008 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2009 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2010 	} else {
2011 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2012 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2013 	}
2014 
2015 	/*
2016 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2017 	 * won't get blocked by normal direct-reclaimers, forming a circular
2018 	 * deadlock.
2019 	 */
2020 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2021 		inactive >>= 3;
2022 
2023 	return isolated > inactive;
2024 }
2025 
2026 /*
2027  * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2028  * On return, @list is reused as a list of pages to be freed by the caller.
2029  *
2030  * Returns the number of pages moved to the given lruvec.
2031  */
2032 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2033 				      struct list_head *list)
2034 {
2035 	int nr_pages, nr_moved = 0;
2036 	LIST_HEAD(pages_to_free);
2037 	struct page *page;
2038 
2039 	while (!list_empty(list)) {
2040 		page = lru_to_page(list);
2041 		VM_BUG_ON_PAGE(PageLRU(page), page);
2042 		list_del(&page->lru);
2043 		if (unlikely(!page_evictable(page))) {
2044 			spin_unlock_irq(&lruvec->lru_lock);
2045 			putback_lru_page(page);
2046 			spin_lock_irq(&lruvec->lru_lock);
2047 			continue;
2048 		}
2049 
2050 		/*
2051 		 * The SetPageLRU needs to be kept here for list integrity.
2052 		 * Otherwise:
2053 		 *   #0 move_pages_to_lru             #1 release_pages
2054 		 *   if !put_page_testzero
2055 		 *				      if (put_page_testzero())
2056 		 *				        !PageLRU //skip lru_lock
2057 		 *     SetPageLRU()
2058 		 *     list_add(&page->lru,)
2059 		 *                                        list_add(&page->lru,)
2060 		 */
2061 		SetPageLRU(page);
2062 
2063 		if (unlikely(put_page_testzero(page))) {
2064 			__clear_page_lru_flags(page);
2065 
2066 			if (unlikely(PageCompound(page))) {
2067 				spin_unlock_irq(&lruvec->lru_lock);
2068 				destroy_compound_page(page);
2069 				spin_lock_irq(&lruvec->lru_lock);
2070 			} else
2071 				list_add(&page->lru, &pages_to_free);
2072 
2073 			continue;
2074 		}
2075 
2076 		/*
2077 		 * All pages were isolated from the same lruvec (and isolation
2078 		 * inhibits memcg migration).
2079 		 */
2080 		VM_BUG_ON_PAGE(!page_matches_lruvec(page, lruvec), page);
2081 		add_page_to_lru_list(page, lruvec);
2082 		nr_pages = thp_nr_pages(page);
2083 		nr_moved += nr_pages;
2084 		if (PageActive(page))
2085 			workingset_age_nonresident(lruvec, nr_pages);
2086 	}
2087 
2088 	/*
2089 	 * To save our caller's stack, now use input list for pages to free.
2090 	 */
2091 	list_splice(&pages_to_free, list);
2092 
2093 	return nr_moved;
2094 }
2095 
2096 /*
2097  * If a kernel thread (such as nfsd for loop-back mounts) services
2098  * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2099  * In that case we should only throttle if the backing device it is
2100  * writing to is congested.  In other cases it is safe to throttle.
2101  */
2102 static int current_may_throttle(void)
2103 {
2104 	return !(current->flags & PF_LOCAL_THROTTLE) ||
2105 		current->backing_dev_info == NULL ||
2106 		bdi_write_congested(current->backing_dev_info);
2107 }
2108 
2109 /*
2110  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2111  * of reclaimed pages
2112  */
2113 static unsigned long
2114 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2115 		     struct scan_control *sc, enum lru_list lru)
2116 {
2117 	LIST_HEAD(page_list);
2118 	unsigned long nr_scanned;
2119 	unsigned int nr_reclaimed = 0;
2120 	unsigned long nr_taken;
2121 	struct reclaim_stat stat;
2122 	bool file = is_file_lru(lru);
2123 	enum vm_event_item item;
2124 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2125 	bool stalled = false;
2126 
2127 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2128 		if (stalled)
2129 			return 0;
2130 
2131 		/* wait a bit for the reclaimer. */
2132 		msleep(100);
2133 		stalled = true;
2134 
2135 		/* We are about to die and free our memory. Return now. */
2136 		if (fatal_signal_pending(current))
2137 			return SWAP_CLUSTER_MAX;
2138 	}
2139 
2140 	lru_add_drain();
2141 
2142 	spin_lock_irq(&lruvec->lru_lock);
2143 
2144 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2145 				     &nr_scanned, sc, lru);
2146 
2147 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2148 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2149 	if (!cgroup_reclaim(sc))
2150 		__count_vm_events(item, nr_scanned);
2151 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2152 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2153 
2154 	spin_unlock_irq(&lruvec->lru_lock);
2155 
2156 	if (nr_taken == 0)
2157 		return 0;
2158 
2159 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2160 
2161 	spin_lock_irq(&lruvec->lru_lock);
2162 	move_pages_to_lru(lruvec, &page_list);
2163 
2164 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2165 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2166 	if (!cgroup_reclaim(sc))
2167 		__count_vm_events(item, nr_reclaimed);
2168 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2169 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2170 	spin_unlock_irq(&lruvec->lru_lock);
2171 
2172 	lru_note_cost(lruvec, file, stat.nr_pageout);
2173 	mem_cgroup_uncharge_list(&page_list);
2174 	free_unref_page_list(&page_list);
2175 
2176 	/*
2177 	 * If dirty pages are scanned that are not queued for IO, it
2178 	 * implies that flushers are not doing their job. This can
2179 	 * happen when memory pressure pushes dirty pages to the end of
2180 	 * the LRU before the dirty limits are breached and the dirty
2181 	 * data has expired. It can also happen when the proportion of
2182 	 * dirty pages grows not through writes but through memory
2183 	 * pressure reclaiming all the clean cache. And in some cases,
2184 	 * the flushers simply cannot keep up with the allocation
2185 	 * rate. Nudge the flusher threads in case they are asleep.
2186 	 */
2187 	if (stat.nr_unqueued_dirty == nr_taken)
2188 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2189 
2190 	sc->nr.dirty += stat.nr_dirty;
2191 	sc->nr.congested += stat.nr_congested;
2192 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2193 	sc->nr.writeback += stat.nr_writeback;
2194 	sc->nr.immediate += stat.nr_immediate;
2195 	sc->nr.taken += nr_taken;
2196 	if (file)
2197 		sc->nr.file_taken += nr_taken;
2198 
2199 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2200 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2201 	return nr_reclaimed;
2202 }
2203 
2204 /*
2205  * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2206  *
2207  * We move them the other way if the page is referenced by one or more
2208  * processes.
2209  *
2210  * If the pages are mostly unmapped, the processing is fast and it is
2211  * appropriate to hold lru_lock across the whole operation.  But if
2212  * the pages are mapped, the processing is slow (page_referenced()), so
2213  * we should drop lru_lock around each page.  It's impossible to balance
2214  * this, so instead we remove the pages from the LRU while processing them.
2215  * It is safe to rely on PG_active against the non-LRU pages in here because
2216  * nobody will play with that bit on a non-LRU page.
2217  *
2218  * The downside is that we have to touch page->_refcount against each page.
2219  * But we had to alter page->flags anyway.
2220  */
2221 static void shrink_active_list(unsigned long nr_to_scan,
2222 			       struct lruvec *lruvec,
2223 			       struct scan_control *sc,
2224 			       enum lru_list lru)
2225 {
2226 	unsigned long nr_taken;
2227 	unsigned long nr_scanned;
2228 	unsigned long vm_flags;
2229 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2230 	LIST_HEAD(l_active);
2231 	LIST_HEAD(l_inactive);
2232 	struct page *page;
2233 	unsigned nr_deactivate, nr_activate;
2234 	unsigned nr_rotated = 0;
2235 	int file = is_file_lru(lru);
2236 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2237 
2238 	lru_add_drain();
2239 
2240 	spin_lock_irq(&lruvec->lru_lock);
2241 
2242 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2243 				     &nr_scanned, sc, lru);
2244 
2245 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2246 
2247 	if (!cgroup_reclaim(sc))
2248 		__count_vm_events(PGREFILL, nr_scanned);
2249 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2250 
2251 	spin_unlock_irq(&lruvec->lru_lock);
2252 
2253 	while (!list_empty(&l_hold)) {
2254 		cond_resched();
2255 		page = lru_to_page(&l_hold);
2256 		list_del(&page->lru);
2257 
2258 		if (unlikely(!page_evictable(page))) {
2259 			putback_lru_page(page);
2260 			continue;
2261 		}
2262 
2263 		if (unlikely(buffer_heads_over_limit)) {
2264 			if (page_has_private(page) && trylock_page(page)) {
2265 				if (page_has_private(page))
2266 					try_to_release_page(page, 0);
2267 				unlock_page(page);
2268 			}
2269 		}
2270 
2271 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2272 				    &vm_flags)) {
2273 			/*
2274 			 * Identify referenced, file-backed active pages and
2275 			 * give them one more trip around the active list. So
2276 			 * that executable code get better chances to stay in
2277 			 * memory under moderate memory pressure.  Anon pages
2278 			 * are not likely to be evicted by use-once streaming
2279 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2280 			 * so we ignore them here.
2281 			 */
2282 			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2283 				nr_rotated += thp_nr_pages(page);
2284 				list_add(&page->lru, &l_active);
2285 				continue;
2286 			}
2287 		}
2288 
2289 		ClearPageActive(page);	/* we are de-activating */
2290 		SetPageWorkingset(page);
2291 		list_add(&page->lru, &l_inactive);
2292 	}
2293 
2294 	/*
2295 	 * Move pages back to the lru list.
2296 	 */
2297 	spin_lock_irq(&lruvec->lru_lock);
2298 
2299 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2300 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2301 	/* Keep all free pages in l_active list */
2302 	list_splice(&l_inactive, &l_active);
2303 
2304 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2305 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2306 
2307 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2308 	spin_unlock_irq(&lruvec->lru_lock);
2309 
2310 	mem_cgroup_uncharge_list(&l_active);
2311 	free_unref_page_list(&l_active);
2312 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2313 			nr_deactivate, nr_rotated, sc->priority, file);
2314 }
2315 
2316 unsigned long reclaim_pages(struct list_head *page_list)
2317 {
2318 	int nid = NUMA_NO_NODE;
2319 	unsigned int nr_reclaimed = 0;
2320 	LIST_HEAD(node_page_list);
2321 	struct reclaim_stat dummy_stat;
2322 	struct page *page;
2323 	unsigned int noreclaim_flag;
2324 	struct scan_control sc = {
2325 		.gfp_mask = GFP_KERNEL,
2326 		.priority = DEF_PRIORITY,
2327 		.may_writepage = 1,
2328 		.may_unmap = 1,
2329 		.may_swap = 1,
2330 	};
2331 
2332 	noreclaim_flag = memalloc_noreclaim_save();
2333 
2334 	while (!list_empty(page_list)) {
2335 		page = lru_to_page(page_list);
2336 		if (nid == NUMA_NO_NODE) {
2337 			nid = page_to_nid(page);
2338 			INIT_LIST_HEAD(&node_page_list);
2339 		}
2340 
2341 		if (nid == page_to_nid(page)) {
2342 			ClearPageActive(page);
2343 			list_move(&page->lru, &node_page_list);
2344 			continue;
2345 		}
2346 
2347 		nr_reclaimed += shrink_page_list(&node_page_list,
2348 						NODE_DATA(nid),
2349 						&sc, &dummy_stat, false);
2350 		while (!list_empty(&node_page_list)) {
2351 			page = lru_to_page(&node_page_list);
2352 			list_del(&page->lru);
2353 			putback_lru_page(page);
2354 		}
2355 
2356 		nid = NUMA_NO_NODE;
2357 	}
2358 
2359 	if (!list_empty(&node_page_list)) {
2360 		nr_reclaimed += shrink_page_list(&node_page_list,
2361 						NODE_DATA(nid),
2362 						&sc, &dummy_stat, false);
2363 		while (!list_empty(&node_page_list)) {
2364 			page = lru_to_page(&node_page_list);
2365 			list_del(&page->lru);
2366 			putback_lru_page(page);
2367 		}
2368 	}
2369 
2370 	memalloc_noreclaim_restore(noreclaim_flag);
2371 
2372 	return nr_reclaimed;
2373 }
2374 
2375 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2376 				 struct lruvec *lruvec, struct scan_control *sc)
2377 {
2378 	if (is_active_lru(lru)) {
2379 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2380 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2381 		else
2382 			sc->skipped_deactivate = 1;
2383 		return 0;
2384 	}
2385 
2386 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2387 }
2388 
2389 /*
2390  * The inactive anon list should be small enough that the VM never has
2391  * to do too much work.
2392  *
2393  * The inactive file list should be small enough to leave most memory
2394  * to the established workingset on the scan-resistant active list,
2395  * but large enough to avoid thrashing the aggregate readahead window.
2396  *
2397  * Both inactive lists should also be large enough that each inactive
2398  * page has a chance to be referenced again before it is reclaimed.
2399  *
2400  * If that fails and refaulting is observed, the inactive list grows.
2401  *
2402  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2403  * on this LRU, maintained by the pageout code. An inactive_ratio
2404  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2405  *
2406  * total     target    max
2407  * memory    ratio     inactive
2408  * -------------------------------------
2409  *   10MB       1         5MB
2410  *  100MB       1        50MB
2411  *    1GB       3       250MB
2412  *   10GB      10       0.9GB
2413  *  100GB      31         3GB
2414  *    1TB     101        10GB
2415  *   10TB     320        32GB
2416  */
2417 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2418 {
2419 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2420 	unsigned long inactive, active;
2421 	unsigned long inactive_ratio;
2422 	unsigned long gb;
2423 
2424 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2425 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2426 
2427 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2428 	if (gb)
2429 		inactive_ratio = int_sqrt(10 * gb);
2430 	else
2431 		inactive_ratio = 1;
2432 
2433 	return inactive * inactive_ratio < active;
2434 }
2435 
2436 enum scan_balance {
2437 	SCAN_EQUAL,
2438 	SCAN_FRACT,
2439 	SCAN_ANON,
2440 	SCAN_FILE,
2441 };
2442 
2443 /*
2444  * Determine how aggressively the anon and file LRU lists should be
2445  * scanned.  The relative value of each set of LRU lists is determined
2446  * by looking at the fraction of the pages scanned we did rotate back
2447  * onto the active list instead of evict.
2448  *
2449  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2450  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2451  */
2452 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2453 			   unsigned long *nr)
2454 {
2455 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2456 	unsigned long anon_cost, file_cost, total_cost;
2457 	int swappiness = mem_cgroup_swappiness(memcg);
2458 	u64 fraction[ANON_AND_FILE];
2459 	u64 denominator = 0;	/* gcc */
2460 	enum scan_balance scan_balance;
2461 	unsigned long ap, fp;
2462 	enum lru_list lru;
2463 
2464 	/* If we have no swap space, do not bother scanning anon pages. */
2465 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2466 		scan_balance = SCAN_FILE;
2467 		goto out;
2468 	}
2469 
2470 	/*
2471 	 * Global reclaim will swap to prevent OOM even with no
2472 	 * swappiness, but memcg users want to use this knob to
2473 	 * disable swapping for individual groups completely when
2474 	 * using the memory controller's swap limit feature would be
2475 	 * too expensive.
2476 	 */
2477 	if (cgroup_reclaim(sc) && !swappiness) {
2478 		scan_balance = SCAN_FILE;
2479 		goto out;
2480 	}
2481 
2482 	/*
2483 	 * Do not apply any pressure balancing cleverness when the
2484 	 * system is close to OOM, scan both anon and file equally
2485 	 * (unless the swappiness setting disagrees with swapping).
2486 	 */
2487 	if (!sc->priority && swappiness) {
2488 		scan_balance = SCAN_EQUAL;
2489 		goto out;
2490 	}
2491 
2492 	/*
2493 	 * If the system is almost out of file pages, force-scan anon.
2494 	 */
2495 	if (sc->file_is_tiny) {
2496 		scan_balance = SCAN_ANON;
2497 		goto out;
2498 	}
2499 
2500 	/*
2501 	 * If there is enough inactive page cache, we do not reclaim
2502 	 * anything from the anonymous working right now.
2503 	 */
2504 	if (sc->cache_trim_mode) {
2505 		scan_balance = SCAN_FILE;
2506 		goto out;
2507 	}
2508 
2509 	scan_balance = SCAN_FRACT;
2510 	/*
2511 	 * Calculate the pressure balance between anon and file pages.
2512 	 *
2513 	 * The amount of pressure we put on each LRU is inversely
2514 	 * proportional to the cost of reclaiming each list, as
2515 	 * determined by the share of pages that are refaulting, times
2516 	 * the relative IO cost of bringing back a swapped out
2517 	 * anonymous page vs reloading a filesystem page (swappiness).
2518 	 *
2519 	 * Although we limit that influence to ensure no list gets
2520 	 * left behind completely: at least a third of the pressure is
2521 	 * applied, before swappiness.
2522 	 *
2523 	 * With swappiness at 100, anon and file have equal IO cost.
2524 	 */
2525 	total_cost = sc->anon_cost + sc->file_cost;
2526 	anon_cost = total_cost + sc->anon_cost;
2527 	file_cost = total_cost + sc->file_cost;
2528 	total_cost = anon_cost + file_cost;
2529 
2530 	ap = swappiness * (total_cost + 1);
2531 	ap /= anon_cost + 1;
2532 
2533 	fp = (200 - swappiness) * (total_cost + 1);
2534 	fp /= file_cost + 1;
2535 
2536 	fraction[0] = ap;
2537 	fraction[1] = fp;
2538 	denominator = ap + fp;
2539 out:
2540 	for_each_evictable_lru(lru) {
2541 		int file = is_file_lru(lru);
2542 		unsigned long lruvec_size;
2543 		unsigned long low, min;
2544 		unsigned long scan;
2545 
2546 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2547 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2548 				      &min, &low);
2549 
2550 		if (min || low) {
2551 			/*
2552 			 * Scale a cgroup's reclaim pressure by proportioning
2553 			 * its current usage to its memory.low or memory.min
2554 			 * setting.
2555 			 *
2556 			 * This is important, as otherwise scanning aggression
2557 			 * becomes extremely binary -- from nothing as we
2558 			 * approach the memory protection threshold, to totally
2559 			 * nominal as we exceed it.  This results in requiring
2560 			 * setting extremely liberal protection thresholds. It
2561 			 * also means we simply get no protection at all if we
2562 			 * set it too low, which is not ideal.
2563 			 *
2564 			 * If there is any protection in place, we reduce scan
2565 			 * pressure by how much of the total memory used is
2566 			 * within protection thresholds.
2567 			 *
2568 			 * There is one special case: in the first reclaim pass,
2569 			 * we skip over all groups that are within their low
2570 			 * protection. If that fails to reclaim enough pages to
2571 			 * satisfy the reclaim goal, we come back and override
2572 			 * the best-effort low protection. However, we still
2573 			 * ideally want to honor how well-behaved groups are in
2574 			 * that case instead of simply punishing them all
2575 			 * equally. As such, we reclaim them based on how much
2576 			 * memory they are using, reducing the scan pressure
2577 			 * again by how much of the total memory used is under
2578 			 * hard protection.
2579 			 */
2580 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2581 			unsigned long protection;
2582 
2583 			/* memory.low scaling, make sure we retry before OOM */
2584 			if (!sc->memcg_low_reclaim && low > min) {
2585 				protection = low;
2586 				sc->memcg_low_skipped = 1;
2587 			} else {
2588 				protection = min;
2589 			}
2590 
2591 			/* Avoid TOCTOU with earlier protection check */
2592 			cgroup_size = max(cgroup_size, protection);
2593 
2594 			scan = lruvec_size - lruvec_size * protection /
2595 				cgroup_size;
2596 
2597 			/*
2598 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2599 			 * reclaim moving forwards, avoiding decrementing
2600 			 * sc->priority further than desirable.
2601 			 */
2602 			scan = max(scan, SWAP_CLUSTER_MAX);
2603 		} else {
2604 			scan = lruvec_size;
2605 		}
2606 
2607 		scan >>= sc->priority;
2608 
2609 		/*
2610 		 * If the cgroup's already been deleted, make sure to
2611 		 * scrape out the remaining cache.
2612 		 */
2613 		if (!scan && !mem_cgroup_online(memcg))
2614 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2615 
2616 		switch (scan_balance) {
2617 		case SCAN_EQUAL:
2618 			/* Scan lists relative to size */
2619 			break;
2620 		case SCAN_FRACT:
2621 			/*
2622 			 * Scan types proportional to swappiness and
2623 			 * their relative recent reclaim efficiency.
2624 			 * Make sure we don't miss the last page on
2625 			 * the offlined memory cgroups because of a
2626 			 * round-off error.
2627 			 */
2628 			scan = mem_cgroup_online(memcg) ?
2629 			       div64_u64(scan * fraction[file], denominator) :
2630 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2631 						  denominator);
2632 			break;
2633 		case SCAN_FILE:
2634 		case SCAN_ANON:
2635 			/* Scan one type exclusively */
2636 			if ((scan_balance == SCAN_FILE) != file)
2637 				scan = 0;
2638 			break;
2639 		default:
2640 			/* Look ma, no brain */
2641 			BUG();
2642 		}
2643 
2644 		nr[lru] = scan;
2645 	}
2646 }
2647 
2648 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2649 {
2650 	unsigned long nr[NR_LRU_LISTS];
2651 	unsigned long targets[NR_LRU_LISTS];
2652 	unsigned long nr_to_scan;
2653 	enum lru_list lru;
2654 	unsigned long nr_reclaimed = 0;
2655 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2656 	struct blk_plug plug;
2657 	bool scan_adjusted;
2658 
2659 	get_scan_count(lruvec, sc, nr);
2660 
2661 	/* Record the original scan target for proportional adjustments later */
2662 	memcpy(targets, nr, sizeof(nr));
2663 
2664 	/*
2665 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2666 	 * event that can occur when there is little memory pressure e.g.
2667 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2668 	 * when the requested number of pages are reclaimed when scanning at
2669 	 * DEF_PRIORITY on the assumption that the fact we are direct
2670 	 * reclaiming implies that kswapd is not keeping up and it is best to
2671 	 * do a batch of work at once. For memcg reclaim one check is made to
2672 	 * abort proportional reclaim if either the file or anon lru has already
2673 	 * dropped to zero at the first pass.
2674 	 */
2675 	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2676 			 sc->priority == DEF_PRIORITY);
2677 
2678 	blk_start_plug(&plug);
2679 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2680 					nr[LRU_INACTIVE_FILE]) {
2681 		unsigned long nr_anon, nr_file, percentage;
2682 		unsigned long nr_scanned;
2683 
2684 		for_each_evictable_lru(lru) {
2685 			if (nr[lru]) {
2686 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2687 				nr[lru] -= nr_to_scan;
2688 
2689 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2690 							    lruvec, sc);
2691 			}
2692 		}
2693 
2694 		cond_resched();
2695 
2696 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2697 			continue;
2698 
2699 		/*
2700 		 * For kswapd and memcg, reclaim at least the number of pages
2701 		 * requested. Ensure that the anon and file LRUs are scanned
2702 		 * proportionally what was requested by get_scan_count(). We
2703 		 * stop reclaiming one LRU and reduce the amount scanning
2704 		 * proportional to the original scan target.
2705 		 */
2706 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2707 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2708 
2709 		/*
2710 		 * It's just vindictive to attack the larger once the smaller
2711 		 * has gone to zero.  And given the way we stop scanning the
2712 		 * smaller below, this makes sure that we only make one nudge
2713 		 * towards proportionality once we've got nr_to_reclaim.
2714 		 */
2715 		if (!nr_file || !nr_anon)
2716 			break;
2717 
2718 		if (nr_file > nr_anon) {
2719 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2720 						targets[LRU_ACTIVE_ANON] + 1;
2721 			lru = LRU_BASE;
2722 			percentage = nr_anon * 100 / scan_target;
2723 		} else {
2724 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2725 						targets[LRU_ACTIVE_FILE] + 1;
2726 			lru = LRU_FILE;
2727 			percentage = nr_file * 100 / scan_target;
2728 		}
2729 
2730 		/* Stop scanning the smaller of the LRU */
2731 		nr[lru] = 0;
2732 		nr[lru + LRU_ACTIVE] = 0;
2733 
2734 		/*
2735 		 * Recalculate the other LRU scan count based on its original
2736 		 * scan target and the percentage scanning already complete
2737 		 */
2738 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2739 		nr_scanned = targets[lru] - nr[lru];
2740 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2741 		nr[lru] -= min(nr[lru], nr_scanned);
2742 
2743 		lru += LRU_ACTIVE;
2744 		nr_scanned = targets[lru] - nr[lru];
2745 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2746 		nr[lru] -= min(nr[lru], nr_scanned);
2747 
2748 		scan_adjusted = true;
2749 	}
2750 	blk_finish_plug(&plug);
2751 	sc->nr_reclaimed += nr_reclaimed;
2752 
2753 	/*
2754 	 * Even if we did not try to evict anon pages at all, we want to
2755 	 * rebalance the anon lru active/inactive ratio.
2756 	 */
2757 	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2758 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2759 				   sc, LRU_ACTIVE_ANON);
2760 }
2761 
2762 /* Use reclaim/compaction for costly allocs or under memory pressure */
2763 static bool in_reclaim_compaction(struct scan_control *sc)
2764 {
2765 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2766 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2767 			 sc->priority < DEF_PRIORITY - 2))
2768 		return true;
2769 
2770 	return false;
2771 }
2772 
2773 /*
2774  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2775  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2776  * true if more pages should be reclaimed such that when the page allocator
2777  * calls try_to_compact_pages() that it will have enough free pages to succeed.
2778  * It will give up earlier than that if there is difficulty reclaiming pages.
2779  */
2780 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2781 					unsigned long nr_reclaimed,
2782 					struct scan_control *sc)
2783 {
2784 	unsigned long pages_for_compaction;
2785 	unsigned long inactive_lru_pages;
2786 	int z;
2787 
2788 	/* If not in reclaim/compaction mode, stop */
2789 	if (!in_reclaim_compaction(sc))
2790 		return false;
2791 
2792 	/*
2793 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2794 	 * number of pages that were scanned. This will return to the caller
2795 	 * with the risk reclaim/compaction and the resulting allocation attempt
2796 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2797 	 * allocations through requiring that the full LRU list has been scanned
2798 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2799 	 * scan, but that approximation was wrong, and there were corner cases
2800 	 * where always a non-zero amount of pages were scanned.
2801 	 */
2802 	if (!nr_reclaimed)
2803 		return false;
2804 
2805 	/* If compaction would go ahead or the allocation would succeed, stop */
2806 	for (z = 0; z <= sc->reclaim_idx; z++) {
2807 		struct zone *zone = &pgdat->node_zones[z];
2808 		if (!managed_zone(zone))
2809 			continue;
2810 
2811 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2812 		case COMPACT_SUCCESS:
2813 		case COMPACT_CONTINUE:
2814 			return false;
2815 		default:
2816 			/* check next zone */
2817 			;
2818 		}
2819 	}
2820 
2821 	/*
2822 	 * If we have not reclaimed enough pages for compaction and the
2823 	 * inactive lists are large enough, continue reclaiming
2824 	 */
2825 	pages_for_compaction = compact_gap(sc->order);
2826 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2827 	if (get_nr_swap_pages() > 0)
2828 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2829 
2830 	return inactive_lru_pages > pages_for_compaction;
2831 }
2832 
2833 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2834 {
2835 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2836 	struct mem_cgroup *memcg;
2837 
2838 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2839 	do {
2840 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2841 		unsigned long reclaimed;
2842 		unsigned long scanned;
2843 
2844 		/*
2845 		 * This loop can become CPU-bound when target memcgs
2846 		 * aren't eligible for reclaim - either because they
2847 		 * don't have any reclaimable pages, or because their
2848 		 * memory is explicitly protected. Avoid soft lockups.
2849 		 */
2850 		cond_resched();
2851 
2852 		mem_cgroup_calculate_protection(target_memcg, memcg);
2853 
2854 		if (mem_cgroup_below_min(memcg)) {
2855 			/*
2856 			 * Hard protection.
2857 			 * If there is no reclaimable memory, OOM.
2858 			 */
2859 			continue;
2860 		} else if (mem_cgroup_below_low(memcg)) {
2861 			/*
2862 			 * Soft protection.
2863 			 * Respect the protection only as long as
2864 			 * there is an unprotected supply
2865 			 * of reclaimable memory from other cgroups.
2866 			 */
2867 			if (!sc->memcg_low_reclaim) {
2868 				sc->memcg_low_skipped = 1;
2869 				continue;
2870 			}
2871 			memcg_memory_event(memcg, MEMCG_LOW);
2872 		}
2873 
2874 		reclaimed = sc->nr_reclaimed;
2875 		scanned = sc->nr_scanned;
2876 
2877 		shrink_lruvec(lruvec, sc);
2878 
2879 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2880 			    sc->priority);
2881 
2882 		/* Record the group's reclaim efficiency */
2883 		vmpressure(sc->gfp_mask, memcg, false,
2884 			   sc->nr_scanned - scanned,
2885 			   sc->nr_reclaimed - reclaimed);
2886 
2887 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2888 }
2889 
2890 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2891 {
2892 	struct reclaim_state *reclaim_state = current->reclaim_state;
2893 	unsigned long nr_reclaimed, nr_scanned;
2894 	struct lruvec *target_lruvec;
2895 	bool reclaimable = false;
2896 	unsigned long file;
2897 
2898 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2899 
2900 again:
2901 	memset(&sc->nr, 0, sizeof(sc->nr));
2902 
2903 	nr_reclaimed = sc->nr_reclaimed;
2904 	nr_scanned = sc->nr_scanned;
2905 
2906 	/*
2907 	 * Determine the scan balance between anon and file LRUs.
2908 	 */
2909 	spin_lock_irq(&target_lruvec->lru_lock);
2910 	sc->anon_cost = target_lruvec->anon_cost;
2911 	sc->file_cost = target_lruvec->file_cost;
2912 	spin_unlock_irq(&target_lruvec->lru_lock);
2913 
2914 	/*
2915 	 * Target desirable inactive:active list ratios for the anon
2916 	 * and file LRU lists.
2917 	 */
2918 	if (!sc->force_deactivate) {
2919 		unsigned long refaults;
2920 
2921 		refaults = lruvec_page_state(target_lruvec,
2922 				WORKINGSET_ACTIVATE_ANON);
2923 		if (refaults != target_lruvec->refaults[0] ||
2924 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2925 			sc->may_deactivate |= DEACTIVATE_ANON;
2926 		else
2927 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2928 
2929 		/*
2930 		 * When refaults are being observed, it means a new
2931 		 * workingset is being established. Deactivate to get
2932 		 * rid of any stale active pages quickly.
2933 		 */
2934 		refaults = lruvec_page_state(target_lruvec,
2935 				WORKINGSET_ACTIVATE_FILE);
2936 		if (refaults != target_lruvec->refaults[1] ||
2937 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2938 			sc->may_deactivate |= DEACTIVATE_FILE;
2939 		else
2940 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2941 	} else
2942 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2943 
2944 	/*
2945 	 * If we have plenty of inactive file pages that aren't
2946 	 * thrashing, try to reclaim those first before touching
2947 	 * anonymous pages.
2948 	 */
2949 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2950 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2951 		sc->cache_trim_mode = 1;
2952 	else
2953 		sc->cache_trim_mode = 0;
2954 
2955 	/*
2956 	 * Prevent the reclaimer from falling into the cache trap: as
2957 	 * cache pages start out inactive, every cache fault will tip
2958 	 * the scan balance towards the file LRU.  And as the file LRU
2959 	 * shrinks, so does the window for rotation from references.
2960 	 * This means we have a runaway feedback loop where a tiny
2961 	 * thrashing file LRU becomes infinitely more attractive than
2962 	 * anon pages.  Try to detect this based on file LRU size.
2963 	 */
2964 	if (!cgroup_reclaim(sc)) {
2965 		unsigned long total_high_wmark = 0;
2966 		unsigned long free, anon;
2967 		int z;
2968 
2969 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2970 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2971 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2972 
2973 		for (z = 0; z < MAX_NR_ZONES; z++) {
2974 			struct zone *zone = &pgdat->node_zones[z];
2975 			if (!managed_zone(zone))
2976 				continue;
2977 
2978 			total_high_wmark += high_wmark_pages(zone);
2979 		}
2980 
2981 		/*
2982 		 * Consider anon: if that's low too, this isn't a
2983 		 * runaway file reclaim problem, but rather just
2984 		 * extreme pressure. Reclaim as per usual then.
2985 		 */
2986 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2987 
2988 		sc->file_is_tiny =
2989 			file + free <= total_high_wmark &&
2990 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2991 			anon >> sc->priority;
2992 	}
2993 
2994 	shrink_node_memcgs(pgdat, sc);
2995 
2996 	if (reclaim_state) {
2997 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2998 		reclaim_state->reclaimed_slab = 0;
2999 	}
3000 
3001 	/* Record the subtree's reclaim efficiency */
3002 	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3003 		   sc->nr_scanned - nr_scanned,
3004 		   sc->nr_reclaimed - nr_reclaimed);
3005 
3006 	if (sc->nr_reclaimed - nr_reclaimed)
3007 		reclaimable = true;
3008 
3009 	if (current_is_kswapd()) {
3010 		/*
3011 		 * If reclaim is isolating dirty pages under writeback,
3012 		 * it implies that the long-lived page allocation rate
3013 		 * is exceeding the page laundering rate. Either the
3014 		 * global limits are not being effective at throttling
3015 		 * processes due to the page distribution throughout
3016 		 * zones or there is heavy usage of a slow backing
3017 		 * device. The only option is to throttle from reclaim
3018 		 * context which is not ideal as there is no guarantee
3019 		 * the dirtying process is throttled in the same way
3020 		 * balance_dirty_pages() manages.
3021 		 *
3022 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3023 		 * count the number of pages under pages flagged for
3024 		 * immediate reclaim and stall if any are encountered
3025 		 * in the nr_immediate check below.
3026 		 */
3027 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3028 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3029 
3030 		/* Allow kswapd to start writing pages during reclaim.*/
3031 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3032 			set_bit(PGDAT_DIRTY, &pgdat->flags);
3033 
3034 		/*
3035 		 * If kswapd scans pages marked for immediate
3036 		 * reclaim and under writeback (nr_immediate), it
3037 		 * implies that pages are cycling through the LRU
3038 		 * faster than they are written so also forcibly stall.
3039 		 */
3040 		if (sc->nr.immediate)
3041 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3042 	}
3043 
3044 	/*
3045 	 * Tag a node/memcg as congested if all the dirty pages
3046 	 * scanned were backed by a congested BDI and
3047 	 * wait_iff_congested will stall.
3048 	 *
3049 	 * Legacy memcg will stall in page writeback so avoid forcibly
3050 	 * stalling in wait_iff_congested().
3051 	 */
3052 	if ((current_is_kswapd() ||
3053 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3054 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3055 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3056 
3057 	/*
3058 	 * Stall direct reclaim for IO completions if underlying BDIs
3059 	 * and node is congested. Allow kswapd to continue until it
3060 	 * starts encountering unqueued dirty pages or cycling through
3061 	 * the LRU too quickly.
3062 	 */
3063 	if (!current_is_kswapd() && current_may_throttle() &&
3064 	    !sc->hibernation_mode &&
3065 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3066 		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
3067 
3068 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3069 				    sc))
3070 		goto again;
3071 
3072 	/*
3073 	 * Kswapd gives up on balancing particular nodes after too
3074 	 * many failures to reclaim anything from them and goes to
3075 	 * sleep. On reclaim progress, reset the failure counter. A
3076 	 * successful direct reclaim run will revive a dormant kswapd.
3077 	 */
3078 	if (reclaimable)
3079 		pgdat->kswapd_failures = 0;
3080 }
3081 
3082 /*
3083  * Returns true if compaction should go ahead for a costly-order request, or
3084  * the allocation would already succeed without compaction. Return false if we
3085  * should reclaim first.
3086  */
3087 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3088 {
3089 	unsigned long watermark;
3090 	enum compact_result suitable;
3091 
3092 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3093 	if (suitable == COMPACT_SUCCESS)
3094 		/* Allocation should succeed already. Don't reclaim. */
3095 		return true;
3096 	if (suitable == COMPACT_SKIPPED)
3097 		/* Compaction cannot yet proceed. Do reclaim. */
3098 		return false;
3099 
3100 	/*
3101 	 * Compaction is already possible, but it takes time to run and there
3102 	 * are potentially other callers using the pages just freed. So proceed
3103 	 * with reclaim to make a buffer of free pages available to give
3104 	 * compaction a reasonable chance of completing and allocating the page.
3105 	 * Note that we won't actually reclaim the whole buffer in one attempt
3106 	 * as the target watermark in should_continue_reclaim() is lower. But if
3107 	 * we are already above the high+gap watermark, don't reclaim at all.
3108 	 */
3109 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3110 
3111 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3112 }
3113 
3114 /*
3115  * This is the direct reclaim path, for page-allocating processes.  We only
3116  * try to reclaim pages from zones which will satisfy the caller's allocation
3117  * request.
3118  *
3119  * If a zone is deemed to be full of pinned pages then just give it a light
3120  * scan then give up on it.
3121  */
3122 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3123 {
3124 	struct zoneref *z;
3125 	struct zone *zone;
3126 	unsigned long nr_soft_reclaimed;
3127 	unsigned long nr_soft_scanned;
3128 	gfp_t orig_mask;
3129 	pg_data_t *last_pgdat = NULL;
3130 
3131 	/*
3132 	 * If the number of buffer_heads in the machine exceeds the maximum
3133 	 * allowed level, force direct reclaim to scan the highmem zone as
3134 	 * highmem pages could be pinning lowmem pages storing buffer_heads
3135 	 */
3136 	orig_mask = sc->gfp_mask;
3137 	if (buffer_heads_over_limit) {
3138 		sc->gfp_mask |= __GFP_HIGHMEM;
3139 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3140 	}
3141 
3142 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3143 					sc->reclaim_idx, sc->nodemask) {
3144 		/*
3145 		 * Take care memory controller reclaiming has small influence
3146 		 * to global LRU.
3147 		 */
3148 		if (!cgroup_reclaim(sc)) {
3149 			if (!cpuset_zone_allowed(zone,
3150 						 GFP_KERNEL | __GFP_HARDWALL))
3151 				continue;
3152 
3153 			/*
3154 			 * If we already have plenty of memory free for
3155 			 * compaction in this zone, don't free any more.
3156 			 * Even though compaction is invoked for any
3157 			 * non-zero order, only frequent costly order
3158 			 * reclamation is disruptive enough to become a
3159 			 * noticeable problem, like transparent huge
3160 			 * page allocations.
3161 			 */
3162 			if (IS_ENABLED(CONFIG_COMPACTION) &&
3163 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3164 			    compaction_ready(zone, sc)) {
3165 				sc->compaction_ready = true;
3166 				continue;
3167 			}
3168 
3169 			/*
3170 			 * Shrink each node in the zonelist once. If the
3171 			 * zonelist is ordered by zone (not the default) then a
3172 			 * node may be shrunk multiple times but in that case
3173 			 * the user prefers lower zones being preserved.
3174 			 */
3175 			if (zone->zone_pgdat == last_pgdat)
3176 				continue;
3177 
3178 			/*
3179 			 * This steals pages from memory cgroups over softlimit
3180 			 * and returns the number of reclaimed pages and
3181 			 * scanned pages. This works for global memory pressure
3182 			 * and balancing, not for a memcg's limit.
3183 			 */
3184 			nr_soft_scanned = 0;
3185 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3186 						sc->order, sc->gfp_mask,
3187 						&nr_soft_scanned);
3188 			sc->nr_reclaimed += nr_soft_reclaimed;
3189 			sc->nr_scanned += nr_soft_scanned;
3190 			/* need some check for avoid more shrink_zone() */
3191 		}
3192 
3193 		/* See comment about same check for global reclaim above */
3194 		if (zone->zone_pgdat == last_pgdat)
3195 			continue;
3196 		last_pgdat = zone->zone_pgdat;
3197 		shrink_node(zone->zone_pgdat, sc);
3198 	}
3199 
3200 	/*
3201 	 * Restore to original mask to avoid the impact on the caller if we
3202 	 * promoted it to __GFP_HIGHMEM.
3203 	 */
3204 	sc->gfp_mask = orig_mask;
3205 }
3206 
3207 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3208 {
3209 	struct lruvec *target_lruvec;
3210 	unsigned long refaults;
3211 
3212 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3213 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3214 	target_lruvec->refaults[0] = refaults;
3215 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3216 	target_lruvec->refaults[1] = refaults;
3217 }
3218 
3219 /*
3220  * This is the main entry point to direct page reclaim.
3221  *
3222  * If a full scan of the inactive list fails to free enough memory then we
3223  * are "out of memory" and something needs to be killed.
3224  *
3225  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3226  * high - the zone may be full of dirty or under-writeback pages, which this
3227  * caller can't do much about.  We kick the writeback threads and take explicit
3228  * naps in the hope that some of these pages can be written.  But if the
3229  * allocating task holds filesystem locks which prevent writeout this might not
3230  * work, and the allocation attempt will fail.
3231  *
3232  * returns:	0, if no pages reclaimed
3233  * 		else, the number of pages reclaimed
3234  */
3235 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3236 					  struct scan_control *sc)
3237 {
3238 	int initial_priority = sc->priority;
3239 	pg_data_t *last_pgdat;
3240 	struct zoneref *z;
3241 	struct zone *zone;
3242 retry:
3243 	delayacct_freepages_start();
3244 
3245 	if (!cgroup_reclaim(sc))
3246 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3247 
3248 	do {
3249 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3250 				sc->priority);
3251 		sc->nr_scanned = 0;
3252 		shrink_zones(zonelist, sc);
3253 
3254 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3255 			break;
3256 
3257 		if (sc->compaction_ready)
3258 			break;
3259 
3260 		/*
3261 		 * If we're getting trouble reclaiming, start doing
3262 		 * writepage even in laptop mode.
3263 		 */
3264 		if (sc->priority < DEF_PRIORITY - 2)
3265 			sc->may_writepage = 1;
3266 	} while (--sc->priority >= 0);
3267 
3268 	last_pgdat = NULL;
3269 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3270 					sc->nodemask) {
3271 		if (zone->zone_pgdat == last_pgdat)
3272 			continue;
3273 		last_pgdat = zone->zone_pgdat;
3274 
3275 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3276 
3277 		if (cgroup_reclaim(sc)) {
3278 			struct lruvec *lruvec;
3279 
3280 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3281 						   zone->zone_pgdat);
3282 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3283 		}
3284 	}
3285 
3286 	delayacct_freepages_end();
3287 
3288 	if (sc->nr_reclaimed)
3289 		return sc->nr_reclaimed;
3290 
3291 	/* Aborted reclaim to try compaction? don't OOM, then */
3292 	if (sc->compaction_ready)
3293 		return 1;
3294 
3295 	/*
3296 	 * We make inactive:active ratio decisions based on the node's
3297 	 * composition of memory, but a restrictive reclaim_idx or a
3298 	 * memory.low cgroup setting can exempt large amounts of
3299 	 * memory from reclaim. Neither of which are very common, so
3300 	 * instead of doing costly eligibility calculations of the
3301 	 * entire cgroup subtree up front, we assume the estimates are
3302 	 * good, and retry with forcible deactivation if that fails.
3303 	 */
3304 	if (sc->skipped_deactivate) {
3305 		sc->priority = initial_priority;
3306 		sc->force_deactivate = 1;
3307 		sc->skipped_deactivate = 0;
3308 		goto retry;
3309 	}
3310 
3311 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3312 	if (sc->memcg_low_skipped) {
3313 		sc->priority = initial_priority;
3314 		sc->force_deactivate = 0;
3315 		sc->memcg_low_reclaim = 1;
3316 		sc->memcg_low_skipped = 0;
3317 		goto retry;
3318 	}
3319 
3320 	return 0;
3321 }
3322 
3323 static bool allow_direct_reclaim(pg_data_t *pgdat)
3324 {
3325 	struct zone *zone;
3326 	unsigned long pfmemalloc_reserve = 0;
3327 	unsigned long free_pages = 0;
3328 	int i;
3329 	bool wmark_ok;
3330 
3331 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3332 		return true;
3333 
3334 	for (i = 0; i <= ZONE_NORMAL; i++) {
3335 		zone = &pgdat->node_zones[i];
3336 		if (!managed_zone(zone))
3337 			continue;
3338 
3339 		if (!zone_reclaimable_pages(zone))
3340 			continue;
3341 
3342 		pfmemalloc_reserve += min_wmark_pages(zone);
3343 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3344 	}
3345 
3346 	/* If there are no reserves (unexpected config) then do not throttle */
3347 	if (!pfmemalloc_reserve)
3348 		return true;
3349 
3350 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3351 
3352 	/* kswapd must be awake if processes are being throttled */
3353 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3354 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3355 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3356 
3357 		wake_up_interruptible(&pgdat->kswapd_wait);
3358 	}
3359 
3360 	return wmark_ok;
3361 }
3362 
3363 /*
3364  * Throttle direct reclaimers if backing storage is backed by the network
3365  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3366  * depleted. kswapd will continue to make progress and wake the processes
3367  * when the low watermark is reached.
3368  *
3369  * Returns true if a fatal signal was delivered during throttling. If this
3370  * happens, the page allocator should not consider triggering the OOM killer.
3371  */
3372 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3373 					nodemask_t *nodemask)
3374 {
3375 	struct zoneref *z;
3376 	struct zone *zone;
3377 	pg_data_t *pgdat = NULL;
3378 
3379 	/*
3380 	 * Kernel threads should not be throttled as they may be indirectly
3381 	 * responsible for cleaning pages necessary for reclaim to make forward
3382 	 * progress. kjournald for example may enter direct reclaim while
3383 	 * committing a transaction where throttling it could forcing other
3384 	 * processes to block on log_wait_commit().
3385 	 */
3386 	if (current->flags & PF_KTHREAD)
3387 		goto out;
3388 
3389 	/*
3390 	 * If a fatal signal is pending, this process should not throttle.
3391 	 * It should return quickly so it can exit and free its memory
3392 	 */
3393 	if (fatal_signal_pending(current))
3394 		goto out;
3395 
3396 	/*
3397 	 * Check if the pfmemalloc reserves are ok by finding the first node
3398 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3399 	 * GFP_KERNEL will be required for allocating network buffers when
3400 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3401 	 *
3402 	 * Throttling is based on the first usable node and throttled processes
3403 	 * wait on a queue until kswapd makes progress and wakes them. There
3404 	 * is an affinity then between processes waking up and where reclaim
3405 	 * progress has been made assuming the process wakes on the same node.
3406 	 * More importantly, processes running on remote nodes will not compete
3407 	 * for remote pfmemalloc reserves and processes on different nodes
3408 	 * should make reasonable progress.
3409 	 */
3410 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3411 					gfp_zone(gfp_mask), nodemask) {
3412 		if (zone_idx(zone) > ZONE_NORMAL)
3413 			continue;
3414 
3415 		/* Throttle based on the first usable node */
3416 		pgdat = zone->zone_pgdat;
3417 		if (allow_direct_reclaim(pgdat))
3418 			goto out;
3419 		break;
3420 	}
3421 
3422 	/* If no zone was usable by the allocation flags then do not throttle */
3423 	if (!pgdat)
3424 		goto out;
3425 
3426 	/* Account for the throttling */
3427 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3428 
3429 	/*
3430 	 * If the caller cannot enter the filesystem, it's possible that it
3431 	 * is due to the caller holding an FS lock or performing a journal
3432 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3433 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3434 	 * blocked waiting on the same lock. Instead, throttle for up to a
3435 	 * second before continuing.
3436 	 */
3437 	if (!(gfp_mask & __GFP_FS)) {
3438 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3439 			allow_direct_reclaim(pgdat), HZ);
3440 
3441 		goto check_pending;
3442 	}
3443 
3444 	/* Throttle until kswapd wakes the process */
3445 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3446 		allow_direct_reclaim(pgdat));
3447 
3448 check_pending:
3449 	if (fatal_signal_pending(current))
3450 		return true;
3451 
3452 out:
3453 	return false;
3454 }
3455 
3456 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3457 				gfp_t gfp_mask, nodemask_t *nodemask)
3458 {
3459 	unsigned long nr_reclaimed;
3460 	struct scan_control sc = {
3461 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3462 		.gfp_mask = current_gfp_context(gfp_mask),
3463 		.reclaim_idx = gfp_zone(gfp_mask),
3464 		.order = order,
3465 		.nodemask = nodemask,
3466 		.priority = DEF_PRIORITY,
3467 		.may_writepage = !laptop_mode,
3468 		.may_unmap = 1,
3469 		.may_swap = 1,
3470 	};
3471 
3472 	/*
3473 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3474 	 * Confirm they are large enough for max values.
3475 	 */
3476 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3477 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3478 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3479 
3480 	/*
3481 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3482 	 * 1 is returned so that the page allocator does not OOM kill at this
3483 	 * point.
3484 	 */
3485 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3486 		return 1;
3487 
3488 	set_task_reclaim_state(current, &sc.reclaim_state);
3489 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3490 
3491 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3492 
3493 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3494 	set_task_reclaim_state(current, NULL);
3495 
3496 	return nr_reclaimed;
3497 }
3498 
3499 #ifdef CONFIG_MEMCG
3500 
3501 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3502 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3503 						gfp_t gfp_mask, bool noswap,
3504 						pg_data_t *pgdat,
3505 						unsigned long *nr_scanned)
3506 {
3507 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3508 	struct scan_control sc = {
3509 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3510 		.target_mem_cgroup = memcg,
3511 		.may_writepage = !laptop_mode,
3512 		.may_unmap = 1,
3513 		.reclaim_idx = MAX_NR_ZONES - 1,
3514 		.may_swap = !noswap,
3515 	};
3516 
3517 	WARN_ON_ONCE(!current->reclaim_state);
3518 
3519 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3520 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3521 
3522 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3523 						      sc.gfp_mask);
3524 
3525 	/*
3526 	 * NOTE: Although we can get the priority field, using it
3527 	 * here is not a good idea, since it limits the pages we can scan.
3528 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3529 	 * will pick up pages from other mem cgroup's as well. We hack
3530 	 * the priority and make it zero.
3531 	 */
3532 	shrink_lruvec(lruvec, &sc);
3533 
3534 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3535 
3536 	*nr_scanned = sc.nr_scanned;
3537 
3538 	return sc.nr_reclaimed;
3539 }
3540 
3541 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3542 					   unsigned long nr_pages,
3543 					   gfp_t gfp_mask,
3544 					   bool may_swap)
3545 {
3546 	unsigned long nr_reclaimed;
3547 	unsigned int noreclaim_flag;
3548 	struct scan_control sc = {
3549 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3550 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3551 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3552 		.reclaim_idx = MAX_NR_ZONES - 1,
3553 		.target_mem_cgroup = memcg,
3554 		.priority = DEF_PRIORITY,
3555 		.may_writepage = !laptop_mode,
3556 		.may_unmap = 1,
3557 		.may_swap = may_swap,
3558 	};
3559 	/*
3560 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3561 	 * equal pressure on all the nodes. This is based on the assumption that
3562 	 * the reclaim does not bail out early.
3563 	 */
3564 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3565 
3566 	set_task_reclaim_state(current, &sc.reclaim_state);
3567 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3568 	noreclaim_flag = memalloc_noreclaim_save();
3569 
3570 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3571 
3572 	memalloc_noreclaim_restore(noreclaim_flag);
3573 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3574 	set_task_reclaim_state(current, NULL);
3575 
3576 	return nr_reclaimed;
3577 }
3578 #endif
3579 
3580 static void age_active_anon(struct pglist_data *pgdat,
3581 				struct scan_control *sc)
3582 {
3583 	struct mem_cgroup *memcg;
3584 	struct lruvec *lruvec;
3585 
3586 	if (!total_swap_pages)
3587 		return;
3588 
3589 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3590 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3591 		return;
3592 
3593 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3594 	do {
3595 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3596 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3597 				   sc, LRU_ACTIVE_ANON);
3598 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3599 	} while (memcg);
3600 }
3601 
3602 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3603 {
3604 	int i;
3605 	struct zone *zone;
3606 
3607 	/*
3608 	 * Check for watermark boosts top-down as the higher zones
3609 	 * are more likely to be boosted. Both watermarks and boosts
3610 	 * should not be checked at the same time as reclaim would
3611 	 * start prematurely when there is no boosting and a lower
3612 	 * zone is balanced.
3613 	 */
3614 	for (i = highest_zoneidx; i >= 0; i--) {
3615 		zone = pgdat->node_zones + i;
3616 		if (!managed_zone(zone))
3617 			continue;
3618 
3619 		if (zone->watermark_boost)
3620 			return true;
3621 	}
3622 
3623 	return false;
3624 }
3625 
3626 /*
3627  * Returns true if there is an eligible zone balanced for the request order
3628  * and highest_zoneidx
3629  */
3630 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3631 {
3632 	int i;
3633 	unsigned long mark = -1;
3634 	struct zone *zone;
3635 
3636 	/*
3637 	 * Check watermarks bottom-up as lower zones are more likely to
3638 	 * meet watermarks.
3639 	 */
3640 	for (i = 0; i <= highest_zoneidx; i++) {
3641 		zone = pgdat->node_zones + i;
3642 
3643 		if (!managed_zone(zone))
3644 			continue;
3645 
3646 		mark = high_wmark_pages(zone);
3647 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3648 			return true;
3649 	}
3650 
3651 	/*
3652 	 * If a node has no populated zone within highest_zoneidx, it does not
3653 	 * need balancing by definition. This can happen if a zone-restricted
3654 	 * allocation tries to wake a remote kswapd.
3655 	 */
3656 	if (mark == -1)
3657 		return true;
3658 
3659 	return false;
3660 }
3661 
3662 /* Clear pgdat state for congested, dirty or under writeback. */
3663 static void clear_pgdat_congested(pg_data_t *pgdat)
3664 {
3665 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3666 
3667 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3668 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3669 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3670 }
3671 
3672 /*
3673  * Prepare kswapd for sleeping. This verifies that there are no processes
3674  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3675  *
3676  * Returns true if kswapd is ready to sleep
3677  */
3678 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3679 				int highest_zoneidx)
3680 {
3681 	/*
3682 	 * The throttled processes are normally woken up in balance_pgdat() as
3683 	 * soon as allow_direct_reclaim() is true. But there is a potential
3684 	 * race between when kswapd checks the watermarks and a process gets
3685 	 * throttled. There is also a potential race if processes get
3686 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3687 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3688 	 * the wake up checks. If kswapd is going to sleep, no process should
3689 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3690 	 * the wake up is premature, processes will wake kswapd and get
3691 	 * throttled again. The difference from wake ups in balance_pgdat() is
3692 	 * that here we are under prepare_to_wait().
3693 	 */
3694 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3695 		wake_up_all(&pgdat->pfmemalloc_wait);
3696 
3697 	/* Hopeless node, leave it to direct reclaim */
3698 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3699 		return true;
3700 
3701 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3702 		clear_pgdat_congested(pgdat);
3703 		return true;
3704 	}
3705 
3706 	return false;
3707 }
3708 
3709 /*
3710  * kswapd shrinks a node of pages that are at or below the highest usable
3711  * zone that is currently unbalanced.
3712  *
3713  * Returns true if kswapd scanned at least the requested number of pages to
3714  * reclaim or if the lack of progress was due to pages under writeback.
3715  * This is used to determine if the scanning priority needs to be raised.
3716  */
3717 static bool kswapd_shrink_node(pg_data_t *pgdat,
3718 			       struct scan_control *sc)
3719 {
3720 	struct zone *zone;
3721 	int z;
3722 
3723 	/* Reclaim a number of pages proportional to the number of zones */
3724 	sc->nr_to_reclaim = 0;
3725 	for (z = 0; z <= sc->reclaim_idx; z++) {
3726 		zone = pgdat->node_zones + z;
3727 		if (!managed_zone(zone))
3728 			continue;
3729 
3730 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3731 	}
3732 
3733 	/*
3734 	 * Historically care was taken to put equal pressure on all zones but
3735 	 * now pressure is applied based on node LRU order.
3736 	 */
3737 	shrink_node(pgdat, sc);
3738 
3739 	/*
3740 	 * Fragmentation may mean that the system cannot be rebalanced for
3741 	 * high-order allocations. If twice the allocation size has been
3742 	 * reclaimed then recheck watermarks only at order-0 to prevent
3743 	 * excessive reclaim. Assume that a process requested a high-order
3744 	 * can direct reclaim/compact.
3745 	 */
3746 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3747 		sc->order = 0;
3748 
3749 	return sc->nr_scanned >= sc->nr_to_reclaim;
3750 }
3751 
3752 /* Page allocator PCP high watermark is lowered if reclaim is active. */
3753 static inline void
3754 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
3755 {
3756 	int i;
3757 	struct zone *zone;
3758 
3759 	for (i = 0; i <= highest_zoneidx; i++) {
3760 		zone = pgdat->node_zones + i;
3761 
3762 		if (!managed_zone(zone))
3763 			continue;
3764 
3765 		if (active)
3766 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3767 		else
3768 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3769 	}
3770 }
3771 
3772 static inline void
3773 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3774 {
3775 	update_reclaim_active(pgdat, highest_zoneidx, true);
3776 }
3777 
3778 static inline void
3779 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3780 {
3781 	update_reclaim_active(pgdat, highest_zoneidx, false);
3782 }
3783 
3784 /*
3785  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3786  * that are eligible for use by the caller until at least one zone is
3787  * balanced.
3788  *
3789  * Returns the order kswapd finished reclaiming at.
3790  *
3791  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3792  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3793  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3794  * or lower is eligible for reclaim until at least one usable zone is
3795  * balanced.
3796  */
3797 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3798 {
3799 	int i;
3800 	unsigned long nr_soft_reclaimed;
3801 	unsigned long nr_soft_scanned;
3802 	unsigned long pflags;
3803 	unsigned long nr_boost_reclaim;
3804 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3805 	bool boosted;
3806 	struct zone *zone;
3807 	struct scan_control sc = {
3808 		.gfp_mask = GFP_KERNEL,
3809 		.order = order,
3810 		.may_unmap = 1,
3811 	};
3812 
3813 	set_task_reclaim_state(current, &sc.reclaim_state);
3814 	psi_memstall_enter(&pflags);
3815 	__fs_reclaim_acquire();
3816 
3817 	count_vm_event(PAGEOUTRUN);
3818 
3819 	/*
3820 	 * Account for the reclaim boost. Note that the zone boost is left in
3821 	 * place so that parallel allocations that are near the watermark will
3822 	 * stall or direct reclaim until kswapd is finished.
3823 	 */
3824 	nr_boost_reclaim = 0;
3825 	for (i = 0; i <= highest_zoneidx; i++) {
3826 		zone = pgdat->node_zones + i;
3827 		if (!managed_zone(zone))
3828 			continue;
3829 
3830 		nr_boost_reclaim += zone->watermark_boost;
3831 		zone_boosts[i] = zone->watermark_boost;
3832 	}
3833 	boosted = nr_boost_reclaim;
3834 
3835 restart:
3836 	set_reclaim_active(pgdat, highest_zoneidx);
3837 	sc.priority = DEF_PRIORITY;
3838 	do {
3839 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3840 		bool raise_priority = true;
3841 		bool balanced;
3842 		bool ret;
3843 
3844 		sc.reclaim_idx = highest_zoneidx;
3845 
3846 		/*
3847 		 * If the number of buffer_heads exceeds the maximum allowed
3848 		 * then consider reclaiming from all zones. This has a dual
3849 		 * purpose -- on 64-bit systems it is expected that
3850 		 * buffer_heads are stripped during active rotation. On 32-bit
3851 		 * systems, highmem pages can pin lowmem memory and shrinking
3852 		 * buffers can relieve lowmem pressure. Reclaim may still not
3853 		 * go ahead if all eligible zones for the original allocation
3854 		 * request are balanced to avoid excessive reclaim from kswapd.
3855 		 */
3856 		if (buffer_heads_over_limit) {
3857 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3858 				zone = pgdat->node_zones + i;
3859 				if (!managed_zone(zone))
3860 					continue;
3861 
3862 				sc.reclaim_idx = i;
3863 				break;
3864 			}
3865 		}
3866 
3867 		/*
3868 		 * If the pgdat is imbalanced then ignore boosting and preserve
3869 		 * the watermarks for a later time and restart. Note that the
3870 		 * zone watermarks will be still reset at the end of balancing
3871 		 * on the grounds that the normal reclaim should be enough to
3872 		 * re-evaluate if boosting is required when kswapd next wakes.
3873 		 */
3874 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3875 		if (!balanced && nr_boost_reclaim) {
3876 			nr_boost_reclaim = 0;
3877 			goto restart;
3878 		}
3879 
3880 		/*
3881 		 * If boosting is not active then only reclaim if there are no
3882 		 * eligible zones. Note that sc.reclaim_idx is not used as
3883 		 * buffer_heads_over_limit may have adjusted it.
3884 		 */
3885 		if (!nr_boost_reclaim && balanced)
3886 			goto out;
3887 
3888 		/* Limit the priority of boosting to avoid reclaim writeback */
3889 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3890 			raise_priority = false;
3891 
3892 		/*
3893 		 * Do not writeback or swap pages for boosted reclaim. The
3894 		 * intent is to relieve pressure not issue sub-optimal IO
3895 		 * from reclaim context. If no pages are reclaimed, the
3896 		 * reclaim will be aborted.
3897 		 */
3898 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3899 		sc.may_swap = !nr_boost_reclaim;
3900 
3901 		/*
3902 		 * Do some background aging of the anon list, to give
3903 		 * pages a chance to be referenced before reclaiming. All
3904 		 * pages are rotated regardless of classzone as this is
3905 		 * about consistent aging.
3906 		 */
3907 		age_active_anon(pgdat, &sc);
3908 
3909 		/*
3910 		 * If we're getting trouble reclaiming, start doing writepage
3911 		 * even in laptop mode.
3912 		 */
3913 		if (sc.priority < DEF_PRIORITY - 2)
3914 			sc.may_writepage = 1;
3915 
3916 		/* Call soft limit reclaim before calling shrink_node. */
3917 		sc.nr_scanned = 0;
3918 		nr_soft_scanned = 0;
3919 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3920 						sc.gfp_mask, &nr_soft_scanned);
3921 		sc.nr_reclaimed += nr_soft_reclaimed;
3922 
3923 		/*
3924 		 * There should be no need to raise the scanning priority if
3925 		 * enough pages are already being scanned that that high
3926 		 * watermark would be met at 100% efficiency.
3927 		 */
3928 		if (kswapd_shrink_node(pgdat, &sc))
3929 			raise_priority = false;
3930 
3931 		/*
3932 		 * If the low watermark is met there is no need for processes
3933 		 * to be throttled on pfmemalloc_wait as they should not be
3934 		 * able to safely make forward progress. Wake them
3935 		 */
3936 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3937 				allow_direct_reclaim(pgdat))
3938 			wake_up_all(&pgdat->pfmemalloc_wait);
3939 
3940 		/* Check if kswapd should be suspending */
3941 		__fs_reclaim_release();
3942 		ret = try_to_freeze();
3943 		__fs_reclaim_acquire();
3944 		if (ret || kthread_should_stop())
3945 			break;
3946 
3947 		/*
3948 		 * Raise priority if scanning rate is too low or there was no
3949 		 * progress in reclaiming pages
3950 		 */
3951 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3952 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3953 
3954 		/*
3955 		 * If reclaim made no progress for a boost, stop reclaim as
3956 		 * IO cannot be queued and it could be an infinite loop in
3957 		 * extreme circumstances.
3958 		 */
3959 		if (nr_boost_reclaim && !nr_reclaimed)
3960 			break;
3961 
3962 		if (raise_priority || !nr_reclaimed)
3963 			sc.priority--;
3964 	} while (sc.priority >= 1);
3965 
3966 	if (!sc.nr_reclaimed)
3967 		pgdat->kswapd_failures++;
3968 
3969 out:
3970 	clear_reclaim_active(pgdat, highest_zoneidx);
3971 
3972 	/* If reclaim was boosted, account for the reclaim done in this pass */
3973 	if (boosted) {
3974 		unsigned long flags;
3975 
3976 		for (i = 0; i <= highest_zoneidx; i++) {
3977 			if (!zone_boosts[i])
3978 				continue;
3979 
3980 			/* Increments are under the zone lock */
3981 			zone = pgdat->node_zones + i;
3982 			spin_lock_irqsave(&zone->lock, flags);
3983 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3984 			spin_unlock_irqrestore(&zone->lock, flags);
3985 		}
3986 
3987 		/*
3988 		 * As there is now likely space, wakeup kcompact to defragment
3989 		 * pageblocks.
3990 		 */
3991 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3992 	}
3993 
3994 	snapshot_refaults(NULL, pgdat);
3995 	__fs_reclaim_release();
3996 	psi_memstall_leave(&pflags);
3997 	set_task_reclaim_state(current, NULL);
3998 
3999 	/*
4000 	 * Return the order kswapd stopped reclaiming at as
4001 	 * prepare_kswapd_sleep() takes it into account. If another caller
4002 	 * entered the allocator slow path while kswapd was awake, order will
4003 	 * remain at the higher level.
4004 	 */
4005 	return sc.order;
4006 }
4007 
4008 /*
4009  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4010  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4011  * not a valid index then either kswapd runs for first time or kswapd couldn't
4012  * sleep after previous reclaim attempt (node is still unbalanced). In that
4013  * case return the zone index of the previous kswapd reclaim cycle.
4014  */
4015 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4016 					   enum zone_type prev_highest_zoneidx)
4017 {
4018 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4019 
4020 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4021 }
4022 
4023 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4024 				unsigned int highest_zoneidx)
4025 {
4026 	long remaining = 0;
4027 	DEFINE_WAIT(wait);
4028 
4029 	if (freezing(current) || kthread_should_stop())
4030 		return;
4031 
4032 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4033 
4034 	/*
4035 	 * Try to sleep for a short interval. Note that kcompactd will only be
4036 	 * woken if it is possible to sleep for a short interval. This is
4037 	 * deliberate on the assumption that if reclaim cannot keep an
4038 	 * eligible zone balanced that it's also unlikely that compaction will
4039 	 * succeed.
4040 	 */
4041 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4042 		/*
4043 		 * Compaction records what page blocks it recently failed to
4044 		 * isolate pages from and skips them in the future scanning.
4045 		 * When kswapd is going to sleep, it is reasonable to assume
4046 		 * that pages and compaction may succeed so reset the cache.
4047 		 */
4048 		reset_isolation_suitable(pgdat);
4049 
4050 		/*
4051 		 * We have freed the memory, now we should compact it to make
4052 		 * allocation of the requested order possible.
4053 		 */
4054 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4055 
4056 		remaining = schedule_timeout(HZ/10);
4057 
4058 		/*
4059 		 * If woken prematurely then reset kswapd_highest_zoneidx and
4060 		 * order. The values will either be from a wakeup request or
4061 		 * the previous request that slept prematurely.
4062 		 */
4063 		if (remaining) {
4064 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4065 					kswapd_highest_zoneidx(pgdat,
4066 							highest_zoneidx));
4067 
4068 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4069 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4070 		}
4071 
4072 		finish_wait(&pgdat->kswapd_wait, &wait);
4073 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4074 	}
4075 
4076 	/*
4077 	 * After a short sleep, check if it was a premature sleep. If not, then
4078 	 * go fully to sleep until explicitly woken up.
4079 	 */
4080 	if (!remaining &&
4081 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4082 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4083 
4084 		/*
4085 		 * vmstat counters are not perfectly accurate and the estimated
4086 		 * value for counters such as NR_FREE_PAGES can deviate from the
4087 		 * true value by nr_online_cpus * threshold. To avoid the zone
4088 		 * watermarks being breached while under pressure, we reduce the
4089 		 * per-cpu vmstat threshold while kswapd is awake and restore
4090 		 * them before going back to sleep.
4091 		 */
4092 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4093 
4094 		if (!kthread_should_stop())
4095 			schedule();
4096 
4097 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4098 	} else {
4099 		if (remaining)
4100 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4101 		else
4102 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4103 	}
4104 	finish_wait(&pgdat->kswapd_wait, &wait);
4105 }
4106 
4107 /*
4108  * The background pageout daemon, started as a kernel thread
4109  * from the init process.
4110  *
4111  * This basically trickles out pages so that we have _some_
4112  * free memory available even if there is no other activity
4113  * that frees anything up. This is needed for things like routing
4114  * etc, where we otherwise might have all activity going on in
4115  * asynchronous contexts that cannot page things out.
4116  *
4117  * If there are applications that are active memory-allocators
4118  * (most normal use), this basically shouldn't matter.
4119  */
4120 static int kswapd(void *p)
4121 {
4122 	unsigned int alloc_order, reclaim_order;
4123 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4124 	pg_data_t *pgdat = (pg_data_t *)p;
4125 	struct task_struct *tsk = current;
4126 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4127 
4128 	if (!cpumask_empty(cpumask))
4129 		set_cpus_allowed_ptr(tsk, cpumask);
4130 
4131 	/*
4132 	 * Tell the memory management that we're a "memory allocator",
4133 	 * and that if we need more memory we should get access to it
4134 	 * regardless (see "__alloc_pages()"). "kswapd" should
4135 	 * never get caught in the normal page freeing logic.
4136 	 *
4137 	 * (Kswapd normally doesn't need memory anyway, but sometimes
4138 	 * you need a small amount of memory in order to be able to
4139 	 * page out something else, and this flag essentially protects
4140 	 * us from recursively trying to free more memory as we're
4141 	 * trying to free the first piece of memory in the first place).
4142 	 */
4143 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
4144 	set_freezable();
4145 
4146 	WRITE_ONCE(pgdat->kswapd_order, 0);
4147 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4148 	for ( ; ; ) {
4149 		bool ret;
4150 
4151 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4152 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4153 							highest_zoneidx);
4154 
4155 kswapd_try_sleep:
4156 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4157 					highest_zoneidx);
4158 
4159 		/* Read the new order and highest_zoneidx */
4160 		alloc_order = READ_ONCE(pgdat->kswapd_order);
4161 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4162 							highest_zoneidx);
4163 		WRITE_ONCE(pgdat->kswapd_order, 0);
4164 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4165 
4166 		ret = try_to_freeze();
4167 		if (kthread_should_stop())
4168 			break;
4169 
4170 		/*
4171 		 * We can speed up thawing tasks if we don't call balance_pgdat
4172 		 * after returning from the refrigerator
4173 		 */
4174 		if (ret)
4175 			continue;
4176 
4177 		/*
4178 		 * Reclaim begins at the requested order but if a high-order
4179 		 * reclaim fails then kswapd falls back to reclaiming for
4180 		 * order-0. If that happens, kswapd will consider sleeping
4181 		 * for the order it finished reclaiming at (reclaim_order)
4182 		 * but kcompactd is woken to compact for the original
4183 		 * request (alloc_order).
4184 		 */
4185 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4186 						alloc_order);
4187 		reclaim_order = balance_pgdat(pgdat, alloc_order,
4188 						highest_zoneidx);
4189 		if (reclaim_order < alloc_order)
4190 			goto kswapd_try_sleep;
4191 	}
4192 
4193 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
4194 
4195 	return 0;
4196 }
4197 
4198 /*
4199  * A zone is low on free memory or too fragmented for high-order memory.  If
4200  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4201  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
4202  * has failed or is not needed, still wake up kcompactd if only compaction is
4203  * needed.
4204  */
4205 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4206 		   enum zone_type highest_zoneidx)
4207 {
4208 	pg_data_t *pgdat;
4209 	enum zone_type curr_idx;
4210 
4211 	if (!managed_zone(zone))
4212 		return;
4213 
4214 	if (!cpuset_zone_allowed(zone, gfp_flags))
4215 		return;
4216 
4217 	pgdat = zone->zone_pgdat;
4218 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4219 
4220 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4221 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4222 
4223 	if (READ_ONCE(pgdat->kswapd_order) < order)
4224 		WRITE_ONCE(pgdat->kswapd_order, order);
4225 
4226 	if (!waitqueue_active(&pgdat->kswapd_wait))
4227 		return;
4228 
4229 	/* Hopeless node, leave it to direct reclaim if possible */
4230 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4231 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4232 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4233 		/*
4234 		 * There may be plenty of free memory available, but it's too
4235 		 * fragmented for high-order allocations.  Wake up kcompactd
4236 		 * and rely on compaction_suitable() to determine if it's
4237 		 * needed.  If it fails, it will defer subsequent attempts to
4238 		 * ratelimit its work.
4239 		 */
4240 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4241 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
4242 		return;
4243 	}
4244 
4245 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4246 				      gfp_flags);
4247 	wake_up_interruptible(&pgdat->kswapd_wait);
4248 }
4249 
4250 #ifdef CONFIG_HIBERNATION
4251 /*
4252  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4253  * freed pages.
4254  *
4255  * Rather than trying to age LRUs the aim is to preserve the overall
4256  * LRU order by reclaiming preferentially
4257  * inactive > active > active referenced > active mapped
4258  */
4259 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4260 {
4261 	struct scan_control sc = {
4262 		.nr_to_reclaim = nr_to_reclaim,
4263 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4264 		.reclaim_idx = MAX_NR_ZONES - 1,
4265 		.priority = DEF_PRIORITY,
4266 		.may_writepage = 1,
4267 		.may_unmap = 1,
4268 		.may_swap = 1,
4269 		.hibernation_mode = 1,
4270 	};
4271 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4272 	unsigned long nr_reclaimed;
4273 	unsigned int noreclaim_flag;
4274 
4275 	fs_reclaim_acquire(sc.gfp_mask);
4276 	noreclaim_flag = memalloc_noreclaim_save();
4277 	set_task_reclaim_state(current, &sc.reclaim_state);
4278 
4279 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4280 
4281 	set_task_reclaim_state(current, NULL);
4282 	memalloc_noreclaim_restore(noreclaim_flag);
4283 	fs_reclaim_release(sc.gfp_mask);
4284 
4285 	return nr_reclaimed;
4286 }
4287 #endif /* CONFIG_HIBERNATION */
4288 
4289 /*
4290  * This kswapd start function will be called by init and node-hot-add.
4291  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4292  */
4293 int kswapd_run(int nid)
4294 {
4295 	pg_data_t *pgdat = NODE_DATA(nid);
4296 	int ret = 0;
4297 
4298 	if (pgdat->kswapd)
4299 		return 0;
4300 
4301 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4302 	if (IS_ERR(pgdat->kswapd)) {
4303 		/* failure at boot is fatal */
4304 		BUG_ON(system_state < SYSTEM_RUNNING);
4305 		pr_err("Failed to start kswapd on node %d\n", nid);
4306 		ret = PTR_ERR(pgdat->kswapd);
4307 		pgdat->kswapd = NULL;
4308 	}
4309 	return ret;
4310 }
4311 
4312 /*
4313  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4314  * hold mem_hotplug_begin/end().
4315  */
4316 void kswapd_stop(int nid)
4317 {
4318 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4319 
4320 	if (kswapd) {
4321 		kthread_stop(kswapd);
4322 		NODE_DATA(nid)->kswapd = NULL;
4323 	}
4324 }
4325 
4326 static int __init kswapd_init(void)
4327 {
4328 	int nid;
4329 
4330 	swap_setup();
4331 	for_each_node_state(nid, N_MEMORY)
4332  		kswapd_run(nid);
4333 	return 0;
4334 }
4335 
4336 module_init(kswapd_init)
4337 
4338 #ifdef CONFIG_NUMA
4339 /*
4340  * Node reclaim mode
4341  *
4342  * If non-zero call node_reclaim when the number of free pages falls below
4343  * the watermarks.
4344  */
4345 int node_reclaim_mode __read_mostly;
4346 
4347 /*
4348  * Priority for NODE_RECLAIM. This determines the fraction of pages
4349  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4350  * a zone.
4351  */
4352 #define NODE_RECLAIM_PRIORITY 4
4353 
4354 /*
4355  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4356  * occur.
4357  */
4358 int sysctl_min_unmapped_ratio = 1;
4359 
4360 /*
4361  * If the number of slab pages in a zone grows beyond this percentage then
4362  * slab reclaim needs to occur.
4363  */
4364 int sysctl_min_slab_ratio = 5;
4365 
4366 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4367 {
4368 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4369 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4370 		node_page_state(pgdat, NR_ACTIVE_FILE);
4371 
4372 	/*
4373 	 * It's possible for there to be more file mapped pages than
4374 	 * accounted for by the pages on the file LRU lists because
4375 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4376 	 */
4377 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4378 }
4379 
4380 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4381 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4382 {
4383 	unsigned long nr_pagecache_reclaimable;
4384 	unsigned long delta = 0;
4385 
4386 	/*
4387 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4388 	 * potentially reclaimable. Otherwise, we have to worry about
4389 	 * pages like swapcache and node_unmapped_file_pages() provides
4390 	 * a better estimate
4391 	 */
4392 	if (node_reclaim_mode & RECLAIM_UNMAP)
4393 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4394 	else
4395 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4396 
4397 	/* If we can't clean pages, remove dirty pages from consideration */
4398 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4399 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4400 
4401 	/* Watch for any possible underflows due to delta */
4402 	if (unlikely(delta > nr_pagecache_reclaimable))
4403 		delta = nr_pagecache_reclaimable;
4404 
4405 	return nr_pagecache_reclaimable - delta;
4406 }
4407 
4408 /*
4409  * Try to free up some pages from this node through reclaim.
4410  */
4411 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4412 {
4413 	/* Minimum pages needed in order to stay on node */
4414 	const unsigned long nr_pages = 1 << order;
4415 	struct task_struct *p = current;
4416 	unsigned int noreclaim_flag;
4417 	struct scan_control sc = {
4418 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4419 		.gfp_mask = current_gfp_context(gfp_mask),
4420 		.order = order,
4421 		.priority = NODE_RECLAIM_PRIORITY,
4422 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4423 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4424 		.may_swap = 1,
4425 		.reclaim_idx = gfp_zone(gfp_mask),
4426 	};
4427 	unsigned long pflags;
4428 
4429 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4430 					   sc.gfp_mask);
4431 
4432 	cond_resched();
4433 	psi_memstall_enter(&pflags);
4434 	fs_reclaim_acquire(sc.gfp_mask);
4435 	/*
4436 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4437 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4438 	 * and RECLAIM_UNMAP.
4439 	 */
4440 	noreclaim_flag = memalloc_noreclaim_save();
4441 	p->flags |= PF_SWAPWRITE;
4442 	set_task_reclaim_state(p, &sc.reclaim_state);
4443 
4444 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4445 		/*
4446 		 * Free memory by calling shrink node with increasing
4447 		 * priorities until we have enough memory freed.
4448 		 */
4449 		do {
4450 			shrink_node(pgdat, &sc);
4451 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4452 	}
4453 
4454 	set_task_reclaim_state(p, NULL);
4455 	current->flags &= ~PF_SWAPWRITE;
4456 	memalloc_noreclaim_restore(noreclaim_flag);
4457 	fs_reclaim_release(sc.gfp_mask);
4458 	psi_memstall_leave(&pflags);
4459 
4460 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4461 
4462 	return sc.nr_reclaimed >= nr_pages;
4463 }
4464 
4465 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4466 {
4467 	int ret;
4468 
4469 	/*
4470 	 * Node reclaim reclaims unmapped file backed pages and
4471 	 * slab pages if we are over the defined limits.
4472 	 *
4473 	 * A small portion of unmapped file backed pages is needed for
4474 	 * file I/O otherwise pages read by file I/O will be immediately
4475 	 * thrown out if the node is overallocated. So we do not reclaim
4476 	 * if less than a specified percentage of the node is used by
4477 	 * unmapped file backed pages.
4478 	 */
4479 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4480 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4481 	    pgdat->min_slab_pages)
4482 		return NODE_RECLAIM_FULL;
4483 
4484 	/*
4485 	 * Do not scan if the allocation should not be delayed.
4486 	 */
4487 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4488 		return NODE_RECLAIM_NOSCAN;
4489 
4490 	/*
4491 	 * Only run node reclaim on the local node or on nodes that do not
4492 	 * have associated processors. This will favor the local processor
4493 	 * over remote processors and spread off node memory allocations
4494 	 * as wide as possible.
4495 	 */
4496 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4497 		return NODE_RECLAIM_NOSCAN;
4498 
4499 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4500 		return NODE_RECLAIM_NOSCAN;
4501 
4502 	ret = __node_reclaim(pgdat, gfp_mask, order);
4503 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4504 
4505 	if (!ret)
4506 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4507 
4508 	return ret;
4509 }
4510 #endif
4511 
4512 /**
4513  * check_move_unevictable_pages - check pages for evictability and move to
4514  * appropriate zone lru list
4515  * @pvec: pagevec with lru pages to check
4516  *
4517  * Checks pages for evictability, if an evictable page is in the unevictable
4518  * lru list, moves it to the appropriate evictable lru list. This function
4519  * should be only used for lru pages.
4520  */
4521 void check_move_unevictable_pages(struct pagevec *pvec)
4522 {
4523 	struct lruvec *lruvec = NULL;
4524 	int pgscanned = 0;
4525 	int pgrescued = 0;
4526 	int i;
4527 
4528 	for (i = 0; i < pvec->nr; i++) {
4529 		struct page *page = pvec->pages[i];
4530 		int nr_pages;
4531 
4532 		if (PageTransTail(page))
4533 			continue;
4534 
4535 		nr_pages = thp_nr_pages(page);
4536 		pgscanned += nr_pages;
4537 
4538 		/* block memcg migration during page moving between lru */
4539 		if (!TestClearPageLRU(page))
4540 			continue;
4541 
4542 		lruvec = relock_page_lruvec_irq(page, lruvec);
4543 		if (page_evictable(page) && PageUnevictable(page)) {
4544 			del_page_from_lru_list(page, lruvec);
4545 			ClearPageUnevictable(page);
4546 			add_page_to_lru_list(page, lruvec);
4547 			pgrescued += nr_pages;
4548 		}
4549 		SetPageLRU(page);
4550 	}
4551 
4552 	if (lruvec) {
4553 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4554 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4555 		unlock_page_lruvec_irq(lruvec);
4556 	} else if (pgscanned) {
4557 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4558 	}
4559 }
4560 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4561