1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/pagevec.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 #include <linux/psi.h> 52 53 #include <asm/tlbflush.h> 54 #include <asm/div64.h> 55 56 #include <linux/swapops.h> 57 #include <linux/balloon_compaction.h> 58 59 #include "internal.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/vmscan.h> 63 64 struct scan_control { 65 /* How many pages shrink_list() should reclaim */ 66 unsigned long nr_to_reclaim; 67 68 /* 69 * Nodemask of nodes allowed by the caller. If NULL, all nodes 70 * are scanned. 71 */ 72 nodemask_t *nodemask; 73 74 /* 75 * The memory cgroup that hit its limit and as a result is the 76 * primary target of this reclaim invocation. 77 */ 78 struct mem_cgroup *target_mem_cgroup; 79 80 /* 81 * Scan pressure balancing between anon and file LRUs 82 */ 83 unsigned long anon_cost; 84 unsigned long file_cost; 85 86 /* Can active pages be deactivated as part of reclaim? */ 87 #define DEACTIVATE_ANON 1 88 #define DEACTIVATE_FILE 2 89 unsigned int may_deactivate:2; 90 unsigned int force_deactivate:1; 91 unsigned int skipped_deactivate:1; 92 93 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 94 unsigned int may_writepage:1; 95 96 /* Can mapped pages be reclaimed? */ 97 unsigned int may_unmap:1; 98 99 /* Can pages be swapped as part of reclaim? */ 100 unsigned int may_swap:1; 101 102 /* 103 * Cgroup memory below memory.low is protected as long as we 104 * don't threaten to OOM. If any cgroup is reclaimed at 105 * reduced force or passed over entirely due to its memory.low 106 * setting (memcg_low_skipped), and nothing is reclaimed as a 107 * result, then go back for one more cycle that reclaims the protected 108 * memory (memcg_low_reclaim) to avert OOM. 109 */ 110 unsigned int memcg_low_reclaim:1; 111 unsigned int memcg_low_skipped:1; 112 113 unsigned int hibernation_mode:1; 114 115 /* One of the zones is ready for compaction */ 116 unsigned int compaction_ready:1; 117 118 /* There is easily reclaimable cold cache in the current node */ 119 unsigned int cache_trim_mode:1; 120 121 /* The file pages on the current node are dangerously low */ 122 unsigned int file_is_tiny:1; 123 124 /* Allocation order */ 125 s8 order; 126 127 /* Scan (total_size >> priority) pages at once */ 128 s8 priority; 129 130 /* The highest zone to isolate pages for reclaim from */ 131 s8 reclaim_idx; 132 133 /* This context's GFP mask */ 134 gfp_t gfp_mask; 135 136 /* Incremented by the number of inactive pages that were scanned */ 137 unsigned long nr_scanned; 138 139 /* Number of pages freed so far during a call to shrink_zones() */ 140 unsigned long nr_reclaimed; 141 142 struct { 143 unsigned int dirty; 144 unsigned int unqueued_dirty; 145 unsigned int congested; 146 unsigned int writeback; 147 unsigned int immediate; 148 unsigned int file_taken; 149 unsigned int taken; 150 } nr; 151 152 /* for recording the reclaimed slab by now */ 153 struct reclaim_state reclaim_state; 154 }; 155 156 #ifdef ARCH_HAS_PREFETCHW 157 #define prefetchw_prev_lru_page(_page, _base, _field) \ 158 do { \ 159 if ((_page)->lru.prev != _base) { \ 160 struct page *prev; \ 161 \ 162 prev = lru_to_page(&(_page->lru)); \ 163 prefetchw(&prev->_field); \ 164 } \ 165 } while (0) 166 #else 167 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 168 #endif 169 170 /* 171 * From 0 .. 200. Higher means more swappy. 172 */ 173 int vm_swappiness = 60; 174 175 static void set_task_reclaim_state(struct task_struct *task, 176 struct reclaim_state *rs) 177 { 178 /* Check for an overwrite */ 179 WARN_ON_ONCE(rs && task->reclaim_state); 180 181 /* Check for the nulling of an already-nulled member */ 182 WARN_ON_ONCE(!rs && !task->reclaim_state); 183 184 task->reclaim_state = rs; 185 } 186 187 static LIST_HEAD(shrinker_list); 188 static DECLARE_RWSEM(shrinker_rwsem); 189 190 #ifdef CONFIG_MEMCG 191 static int shrinker_nr_max; 192 193 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 194 static inline int shrinker_map_size(int nr_items) 195 { 196 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 197 } 198 199 static inline int shrinker_defer_size(int nr_items) 200 { 201 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 202 } 203 204 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 205 int nid) 206 { 207 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, 208 lockdep_is_held(&shrinker_rwsem)); 209 } 210 211 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 212 int map_size, int defer_size, 213 int old_map_size, int old_defer_size) 214 { 215 struct shrinker_info *new, *old; 216 struct mem_cgroup_per_node *pn; 217 int nid; 218 int size = map_size + defer_size; 219 220 for_each_node(nid) { 221 pn = memcg->nodeinfo[nid]; 222 old = shrinker_info_protected(memcg, nid); 223 /* Not yet online memcg */ 224 if (!old) 225 return 0; 226 227 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 228 if (!new) 229 return -ENOMEM; 230 231 new->nr_deferred = (atomic_long_t *)(new + 1); 232 new->map = (void *)new->nr_deferred + defer_size; 233 234 /* map: set all old bits, clear all new bits */ 235 memset(new->map, (int)0xff, old_map_size); 236 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 237 /* nr_deferred: copy old values, clear all new values */ 238 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 239 memset((void *)new->nr_deferred + old_defer_size, 0, 240 defer_size - old_defer_size); 241 242 rcu_assign_pointer(pn->shrinker_info, new); 243 kvfree_rcu(old, rcu); 244 } 245 246 return 0; 247 } 248 249 void free_shrinker_info(struct mem_cgroup *memcg) 250 { 251 struct mem_cgroup_per_node *pn; 252 struct shrinker_info *info; 253 int nid; 254 255 for_each_node(nid) { 256 pn = memcg->nodeinfo[nid]; 257 info = rcu_dereference_protected(pn->shrinker_info, true); 258 kvfree(info); 259 rcu_assign_pointer(pn->shrinker_info, NULL); 260 } 261 } 262 263 int alloc_shrinker_info(struct mem_cgroup *memcg) 264 { 265 struct shrinker_info *info; 266 int nid, size, ret = 0; 267 int map_size, defer_size = 0; 268 269 down_write(&shrinker_rwsem); 270 map_size = shrinker_map_size(shrinker_nr_max); 271 defer_size = shrinker_defer_size(shrinker_nr_max); 272 size = map_size + defer_size; 273 for_each_node(nid) { 274 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 275 if (!info) { 276 free_shrinker_info(memcg); 277 ret = -ENOMEM; 278 break; 279 } 280 info->nr_deferred = (atomic_long_t *)(info + 1); 281 info->map = (void *)info->nr_deferred + defer_size; 282 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 283 } 284 up_write(&shrinker_rwsem); 285 286 return ret; 287 } 288 289 static inline bool need_expand(int nr_max) 290 { 291 return round_up(nr_max, BITS_PER_LONG) > 292 round_up(shrinker_nr_max, BITS_PER_LONG); 293 } 294 295 static int expand_shrinker_info(int new_id) 296 { 297 int ret = 0; 298 int new_nr_max = new_id + 1; 299 int map_size, defer_size = 0; 300 int old_map_size, old_defer_size = 0; 301 struct mem_cgroup *memcg; 302 303 if (!need_expand(new_nr_max)) 304 goto out; 305 306 if (!root_mem_cgroup) 307 goto out; 308 309 lockdep_assert_held(&shrinker_rwsem); 310 311 map_size = shrinker_map_size(new_nr_max); 312 defer_size = shrinker_defer_size(new_nr_max); 313 old_map_size = shrinker_map_size(shrinker_nr_max); 314 old_defer_size = shrinker_defer_size(shrinker_nr_max); 315 316 memcg = mem_cgroup_iter(NULL, NULL, NULL); 317 do { 318 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 319 old_map_size, old_defer_size); 320 if (ret) { 321 mem_cgroup_iter_break(NULL, memcg); 322 goto out; 323 } 324 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 325 out: 326 if (!ret) 327 shrinker_nr_max = new_nr_max; 328 329 return ret; 330 } 331 332 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 333 { 334 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 335 struct shrinker_info *info; 336 337 rcu_read_lock(); 338 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 339 /* Pairs with smp mb in shrink_slab() */ 340 smp_mb__before_atomic(); 341 set_bit(shrinker_id, info->map); 342 rcu_read_unlock(); 343 } 344 } 345 346 static DEFINE_IDR(shrinker_idr); 347 348 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 349 { 350 int id, ret = -ENOMEM; 351 352 if (mem_cgroup_disabled()) 353 return -ENOSYS; 354 355 down_write(&shrinker_rwsem); 356 /* This may call shrinker, so it must use down_read_trylock() */ 357 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 358 if (id < 0) 359 goto unlock; 360 361 if (id >= shrinker_nr_max) { 362 if (expand_shrinker_info(id)) { 363 idr_remove(&shrinker_idr, id); 364 goto unlock; 365 } 366 } 367 shrinker->id = id; 368 ret = 0; 369 unlock: 370 up_write(&shrinker_rwsem); 371 return ret; 372 } 373 374 static void unregister_memcg_shrinker(struct shrinker *shrinker) 375 { 376 int id = shrinker->id; 377 378 BUG_ON(id < 0); 379 380 lockdep_assert_held(&shrinker_rwsem); 381 382 idr_remove(&shrinker_idr, id); 383 } 384 385 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 386 struct mem_cgroup *memcg) 387 { 388 struct shrinker_info *info; 389 390 info = shrinker_info_protected(memcg, nid); 391 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 392 } 393 394 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 395 struct mem_cgroup *memcg) 396 { 397 struct shrinker_info *info; 398 399 info = shrinker_info_protected(memcg, nid); 400 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 401 } 402 403 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 404 { 405 int i, nid; 406 long nr; 407 struct mem_cgroup *parent; 408 struct shrinker_info *child_info, *parent_info; 409 410 parent = parent_mem_cgroup(memcg); 411 if (!parent) 412 parent = root_mem_cgroup; 413 414 /* Prevent from concurrent shrinker_info expand */ 415 down_read(&shrinker_rwsem); 416 for_each_node(nid) { 417 child_info = shrinker_info_protected(memcg, nid); 418 parent_info = shrinker_info_protected(parent, nid); 419 for (i = 0; i < shrinker_nr_max; i++) { 420 nr = atomic_long_read(&child_info->nr_deferred[i]); 421 atomic_long_add(nr, &parent_info->nr_deferred[i]); 422 } 423 } 424 up_read(&shrinker_rwsem); 425 } 426 427 static bool cgroup_reclaim(struct scan_control *sc) 428 { 429 return sc->target_mem_cgroup; 430 } 431 432 /** 433 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 434 * @sc: scan_control in question 435 * 436 * The normal page dirty throttling mechanism in balance_dirty_pages() is 437 * completely broken with the legacy memcg and direct stalling in 438 * shrink_page_list() is used for throttling instead, which lacks all the 439 * niceties such as fairness, adaptive pausing, bandwidth proportional 440 * allocation and configurability. 441 * 442 * This function tests whether the vmscan currently in progress can assume 443 * that the normal dirty throttling mechanism is operational. 444 */ 445 static bool writeback_throttling_sane(struct scan_control *sc) 446 { 447 if (!cgroup_reclaim(sc)) 448 return true; 449 #ifdef CONFIG_CGROUP_WRITEBACK 450 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 451 return true; 452 #endif 453 return false; 454 } 455 #else 456 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 457 { 458 return -ENOSYS; 459 } 460 461 static void unregister_memcg_shrinker(struct shrinker *shrinker) 462 { 463 } 464 465 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 466 struct mem_cgroup *memcg) 467 { 468 return 0; 469 } 470 471 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 472 struct mem_cgroup *memcg) 473 { 474 return 0; 475 } 476 477 static bool cgroup_reclaim(struct scan_control *sc) 478 { 479 return false; 480 } 481 482 static bool writeback_throttling_sane(struct scan_control *sc) 483 { 484 return true; 485 } 486 #endif 487 488 static long xchg_nr_deferred(struct shrinker *shrinker, 489 struct shrink_control *sc) 490 { 491 int nid = sc->nid; 492 493 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 494 nid = 0; 495 496 if (sc->memcg && 497 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 498 return xchg_nr_deferred_memcg(nid, shrinker, 499 sc->memcg); 500 501 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 502 } 503 504 505 static long add_nr_deferred(long nr, struct shrinker *shrinker, 506 struct shrink_control *sc) 507 { 508 int nid = sc->nid; 509 510 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 511 nid = 0; 512 513 if (sc->memcg && 514 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 515 return add_nr_deferred_memcg(nr, nid, shrinker, 516 sc->memcg); 517 518 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 519 } 520 521 /* 522 * This misses isolated pages which are not accounted for to save counters. 523 * As the data only determines if reclaim or compaction continues, it is 524 * not expected that isolated pages will be a dominating factor. 525 */ 526 unsigned long zone_reclaimable_pages(struct zone *zone) 527 { 528 unsigned long nr; 529 530 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 531 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 532 if (get_nr_swap_pages() > 0) 533 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 534 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 535 536 return nr; 537 } 538 539 /** 540 * lruvec_lru_size - Returns the number of pages on the given LRU list. 541 * @lruvec: lru vector 542 * @lru: lru to use 543 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 544 */ 545 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 546 int zone_idx) 547 { 548 unsigned long size = 0; 549 int zid; 550 551 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 552 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 553 554 if (!managed_zone(zone)) 555 continue; 556 557 if (!mem_cgroup_disabled()) 558 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 559 else 560 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 561 } 562 return size; 563 } 564 565 /* 566 * Add a shrinker callback to be called from the vm. 567 */ 568 int prealloc_shrinker(struct shrinker *shrinker) 569 { 570 unsigned int size; 571 int err; 572 573 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 574 err = prealloc_memcg_shrinker(shrinker); 575 if (err != -ENOSYS) 576 return err; 577 578 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 579 } 580 581 size = sizeof(*shrinker->nr_deferred); 582 if (shrinker->flags & SHRINKER_NUMA_AWARE) 583 size *= nr_node_ids; 584 585 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 586 if (!shrinker->nr_deferred) 587 return -ENOMEM; 588 589 return 0; 590 } 591 592 void free_prealloced_shrinker(struct shrinker *shrinker) 593 { 594 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 595 down_write(&shrinker_rwsem); 596 unregister_memcg_shrinker(shrinker); 597 up_write(&shrinker_rwsem); 598 return; 599 } 600 601 kfree(shrinker->nr_deferred); 602 shrinker->nr_deferred = NULL; 603 } 604 605 void register_shrinker_prepared(struct shrinker *shrinker) 606 { 607 down_write(&shrinker_rwsem); 608 list_add_tail(&shrinker->list, &shrinker_list); 609 shrinker->flags |= SHRINKER_REGISTERED; 610 up_write(&shrinker_rwsem); 611 } 612 613 int register_shrinker(struct shrinker *shrinker) 614 { 615 int err = prealloc_shrinker(shrinker); 616 617 if (err) 618 return err; 619 register_shrinker_prepared(shrinker); 620 return 0; 621 } 622 EXPORT_SYMBOL(register_shrinker); 623 624 /* 625 * Remove one 626 */ 627 void unregister_shrinker(struct shrinker *shrinker) 628 { 629 if (!(shrinker->flags & SHRINKER_REGISTERED)) 630 return; 631 632 down_write(&shrinker_rwsem); 633 list_del(&shrinker->list); 634 shrinker->flags &= ~SHRINKER_REGISTERED; 635 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 636 unregister_memcg_shrinker(shrinker); 637 up_write(&shrinker_rwsem); 638 639 kfree(shrinker->nr_deferred); 640 shrinker->nr_deferred = NULL; 641 } 642 EXPORT_SYMBOL(unregister_shrinker); 643 644 #define SHRINK_BATCH 128 645 646 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 647 struct shrinker *shrinker, int priority) 648 { 649 unsigned long freed = 0; 650 unsigned long long delta; 651 long total_scan; 652 long freeable; 653 long nr; 654 long new_nr; 655 long batch_size = shrinker->batch ? shrinker->batch 656 : SHRINK_BATCH; 657 long scanned = 0, next_deferred; 658 659 freeable = shrinker->count_objects(shrinker, shrinkctl); 660 if (freeable == 0 || freeable == SHRINK_EMPTY) 661 return freeable; 662 663 /* 664 * copy the current shrinker scan count into a local variable 665 * and zero it so that other concurrent shrinker invocations 666 * don't also do this scanning work. 667 */ 668 nr = xchg_nr_deferred(shrinker, shrinkctl); 669 670 if (shrinker->seeks) { 671 delta = freeable >> priority; 672 delta *= 4; 673 do_div(delta, shrinker->seeks); 674 } else { 675 /* 676 * These objects don't require any IO to create. Trim 677 * them aggressively under memory pressure to keep 678 * them from causing refetches in the IO caches. 679 */ 680 delta = freeable / 2; 681 } 682 683 total_scan = nr >> priority; 684 total_scan += delta; 685 total_scan = min(total_scan, (2 * freeable)); 686 687 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 688 freeable, delta, total_scan, priority); 689 690 /* 691 * Normally, we should not scan less than batch_size objects in one 692 * pass to avoid too frequent shrinker calls, but if the slab has less 693 * than batch_size objects in total and we are really tight on memory, 694 * we will try to reclaim all available objects, otherwise we can end 695 * up failing allocations although there are plenty of reclaimable 696 * objects spread over several slabs with usage less than the 697 * batch_size. 698 * 699 * We detect the "tight on memory" situations by looking at the total 700 * number of objects we want to scan (total_scan). If it is greater 701 * than the total number of objects on slab (freeable), we must be 702 * scanning at high prio and therefore should try to reclaim as much as 703 * possible. 704 */ 705 while (total_scan >= batch_size || 706 total_scan >= freeable) { 707 unsigned long ret; 708 unsigned long nr_to_scan = min(batch_size, total_scan); 709 710 shrinkctl->nr_to_scan = nr_to_scan; 711 shrinkctl->nr_scanned = nr_to_scan; 712 ret = shrinker->scan_objects(shrinker, shrinkctl); 713 if (ret == SHRINK_STOP) 714 break; 715 freed += ret; 716 717 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 718 total_scan -= shrinkctl->nr_scanned; 719 scanned += shrinkctl->nr_scanned; 720 721 cond_resched(); 722 } 723 724 /* 725 * The deferred work is increased by any new work (delta) that wasn't 726 * done, decreased by old deferred work that was done now. 727 * 728 * And it is capped to two times of the freeable items. 729 */ 730 next_deferred = max_t(long, (nr + delta - scanned), 0); 731 next_deferred = min(next_deferred, (2 * freeable)); 732 733 /* 734 * move the unused scan count back into the shrinker in a 735 * manner that handles concurrent updates. 736 */ 737 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 738 739 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 740 return freed; 741 } 742 743 #ifdef CONFIG_MEMCG 744 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 745 struct mem_cgroup *memcg, int priority) 746 { 747 struct shrinker_info *info; 748 unsigned long ret, freed = 0; 749 int i; 750 751 if (!mem_cgroup_online(memcg)) 752 return 0; 753 754 if (!down_read_trylock(&shrinker_rwsem)) 755 return 0; 756 757 info = shrinker_info_protected(memcg, nid); 758 if (unlikely(!info)) 759 goto unlock; 760 761 for_each_set_bit(i, info->map, shrinker_nr_max) { 762 struct shrink_control sc = { 763 .gfp_mask = gfp_mask, 764 .nid = nid, 765 .memcg = memcg, 766 }; 767 struct shrinker *shrinker; 768 769 shrinker = idr_find(&shrinker_idr, i); 770 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 771 if (!shrinker) 772 clear_bit(i, info->map); 773 continue; 774 } 775 776 /* Call non-slab shrinkers even though kmem is disabled */ 777 if (!memcg_kmem_enabled() && 778 !(shrinker->flags & SHRINKER_NONSLAB)) 779 continue; 780 781 ret = do_shrink_slab(&sc, shrinker, priority); 782 if (ret == SHRINK_EMPTY) { 783 clear_bit(i, info->map); 784 /* 785 * After the shrinker reported that it had no objects to 786 * free, but before we cleared the corresponding bit in 787 * the memcg shrinker map, a new object might have been 788 * added. To make sure, we have the bit set in this 789 * case, we invoke the shrinker one more time and reset 790 * the bit if it reports that it is not empty anymore. 791 * The memory barrier here pairs with the barrier in 792 * set_shrinker_bit(): 793 * 794 * list_lru_add() shrink_slab_memcg() 795 * list_add_tail() clear_bit() 796 * <MB> <MB> 797 * set_bit() do_shrink_slab() 798 */ 799 smp_mb__after_atomic(); 800 ret = do_shrink_slab(&sc, shrinker, priority); 801 if (ret == SHRINK_EMPTY) 802 ret = 0; 803 else 804 set_shrinker_bit(memcg, nid, i); 805 } 806 freed += ret; 807 808 if (rwsem_is_contended(&shrinker_rwsem)) { 809 freed = freed ? : 1; 810 break; 811 } 812 } 813 unlock: 814 up_read(&shrinker_rwsem); 815 return freed; 816 } 817 #else /* CONFIG_MEMCG */ 818 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 819 struct mem_cgroup *memcg, int priority) 820 { 821 return 0; 822 } 823 #endif /* CONFIG_MEMCG */ 824 825 /** 826 * shrink_slab - shrink slab caches 827 * @gfp_mask: allocation context 828 * @nid: node whose slab caches to target 829 * @memcg: memory cgroup whose slab caches to target 830 * @priority: the reclaim priority 831 * 832 * Call the shrink functions to age shrinkable caches. 833 * 834 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 835 * unaware shrinkers will receive a node id of 0 instead. 836 * 837 * @memcg specifies the memory cgroup to target. Unaware shrinkers 838 * are called only if it is the root cgroup. 839 * 840 * @priority is sc->priority, we take the number of objects and >> by priority 841 * in order to get the scan target. 842 * 843 * Returns the number of reclaimed slab objects. 844 */ 845 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 846 struct mem_cgroup *memcg, 847 int priority) 848 { 849 unsigned long ret, freed = 0; 850 struct shrinker *shrinker; 851 852 /* 853 * The root memcg might be allocated even though memcg is disabled 854 * via "cgroup_disable=memory" boot parameter. This could make 855 * mem_cgroup_is_root() return false, then just run memcg slab 856 * shrink, but skip global shrink. This may result in premature 857 * oom. 858 */ 859 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 860 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 861 862 if (!down_read_trylock(&shrinker_rwsem)) 863 goto out; 864 865 list_for_each_entry(shrinker, &shrinker_list, list) { 866 struct shrink_control sc = { 867 .gfp_mask = gfp_mask, 868 .nid = nid, 869 .memcg = memcg, 870 }; 871 872 ret = do_shrink_slab(&sc, shrinker, priority); 873 if (ret == SHRINK_EMPTY) 874 ret = 0; 875 freed += ret; 876 /* 877 * Bail out if someone want to register a new shrinker to 878 * prevent the registration from being stalled for long periods 879 * by parallel ongoing shrinking. 880 */ 881 if (rwsem_is_contended(&shrinker_rwsem)) { 882 freed = freed ? : 1; 883 break; 884 } 885 } 886 887 up_read(&shrinker_rwsem); 888 out: 889 cond_resched(); 890 return freed; 891 } 892 893 void drop_slab_node(int nid) 894 { 895 unsigned long freed; 896 897 do { 898 struct mem_cgroup *memcg = NULL; 899 900 if (fatal_signal_pending(current)) 901 return; 902 903 freed = 0; 904 memcg = mem_cgroup_iter(NULL, NULL, NULL); 905 do { 906 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 907 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 908 } while (freed > 10); 909 } 910 911 void drop_slab(void) 912 { 913 int nid; 914 915 for_each_online_node(nid) 916 drop_slab_node(nid); 917 } 918 919 static inline int is_page_cache_freeable(struct page *page) 920 { 921 /* 922 * A freeable page cache page is referenced only by the caller 923 * that isolated the page, the page cache and optional buffer 924 * heads at page->private. 925 */ 926 int page_cache_pins = thp_nr_pages(page); 927 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 928 } 929 930 static int may_write_to_inode(struct inode *inode) 931 { 932 if (current->flags & PF_SWAPWRITE) 933 return 1; 934 if (!inode_write_congested(inode)) 935 return 1; 936 if (inode_to_bdi(inode) == current->backing_dev_info) 937 return 1; 938 return 0; 939 } 940 941 /* 942 * We detected a synchronous write error writing a page out. Probably 943 * -ENOSPC. We need to propagate that into the address_space for a subsequent 944 * fsync(), msync() or close(). 945 * 946 * The tricky part is that after writepage we cannot touch the mapping: nothing 947 * prevents it from being freed up. But we have a ref on the page and once 948 * that page is locked, the mapping is pinned. 949 * 950 * We're allowed to run sleeping lock_page() here because we know the caller has 951 * __GFP_FS. 952 */ 953 static void handle_write_error(struct address_space *mapping, 954 struct page *page, int error) 955 { 956 lock_page(page); 957 if (page_mapping(page) == mapping) 958 mapping_set_error(mapping, error); 959 unlock_page(page); 960 } 961 962 /* possible outcome of pageout() */ 963 typedef enum { 964 /* failed to write page out, page is locked */ 965 PAGE_KEEP, 966 /* move page to the active list, page is locked */ 967 PAGE_ACTIVATE, 968 /* page has been sent to the disk successfully, page is unlocked */ 969 PAGE_SUCCESS, 970 /* page is clean and locked */ 971 PAGE_CLEAN, 972 } pageout_t; 973 974 /* 975 * pageout is called by shrink_page_list() for each dirty page. 976 * Calls ->writepage(). 977 */ 978 static pageout_t pageout(struct page *page, struct address_space *mapping) 979 { 980 /* 981 * If the page is dirty, only perform writeback if that write 982 * will be non-blocking. To prevent this allocation from being 983 * stalled by pagecache activity. But note that there may be 984 * stalls if we need to run get_block(). We could test 985 * PagePrivate for that. 986 * 987 * If this process is currently in __generic_file_write_iter() against 988 * this page's queue, we can perform writeback even if that 989 * will block. 990 * 991 * If the page is swapcache, write it back even if that would 992 * block, for some throttling. This happens by accident, because 993 * swap_backing_dev_info is bust: it doesn't reflect the 994 * congestion state of the swapdevs. Easy to fix, if needed. 995 */ 996 if (!is_page_cache_freeable(page)) 997 return PAGE_KEEP; 998 if (!mapping) { 999 /* 1000 * Some data journaling orphaned pages can have 1001 * page->mapping == NULL while being dirty with clean buffers. 1002 */ 1003 if (page_has_private(page)) { 1004 if (try_to_free_buffers(page)) { 1005 ClearPageDirty(page); 1006 pr_info("%s: orphaned page\n", __func__); 1007 return PAGE_CLEAN; 1008 } 1009 } 1010 return PAGE_KEEP; 1011 } 1012 if (mapping->a_ops->writepage == NULL) 1013 return PAGE_ACTIVATE; 1014 if (!may_write_to_inode(mapping->host)) 1015 return PAGE_KEEP; 1016 1017 if (clear_page_dirty_for_io(page)) { 1018 int res; 1019 struct writeback_control wbc = { 1020 .sync_mode = WB_SYNC_NONE, 1021 .nr_to_write = SWAP_CLUSTER_MAX, 1022 .range_start = 0, 1023 .range_end = LLONG_MAX, 1024 .for_reclaim = 1, 1025 }; 1026 1027 SetPageReclaim(page); 1028 res = mapping->a_ops->writepage(page, &wbc); 1029 if (res < 0) 1030 handle_write_error(mapping, page, res); 1031 if (res == AOP_WRITEPAGE_ACTIVATE) { 1032 ClearPageReclaim(page); 1033 return PAGE_ACTIVATE; 1034 } 1035 1036 if (!PageWriteback(page)) { 1037 /* synchronous write or broken a_ops? */ 1038 ClearPageReclaim(page); 1039 } 1040 trace_mm_vmscan_writepage(page); 1041 inc_node_page_state(page, NR_VMSCAN_WRITE); 1042 return PAGE_SUCCESS; 1043 } 1044 1045 return PAGE_CLEAN; 1046 } 1047 1048 /* 1049 * Same as remove_mapping, but if the page is removed from the mapping, it 1050 * gets returned with a refcount of 0. 1051 */ 1052 static int __remove_mapping(struct address_space *mapping, struct page *page, 1053 bool reclaimed, struct mem_cgroup *target_memcg) 1054 { 1055 unsigned long flags; 1056 int refcount; 1057 void *shadow = NULL; 1058 1059 BUG_ON(!PageLocked(page)); 1060 BUG_ON(mapping != page_mapping(page)); 1061 1062 xa_lock_irqsave(&mapping->i_pages, flags); 1063 /* 1064 * The non racy check for a busy page. 1065 * 1066 * Must be careful with the order of the tests. When someone has 1067 * a ref to the page, it may be possible that they dirty it then 1068 * drop the reference. So if PageDirty is tested before page_count 1069 * here, then the following race may occur: 1070 * 1071 * get_user_pages(&page); 1072 * [user mapping goes away] 1073 * write_to(page); 1074 * !PageDirty(page) [good] 1075 * SetPageDirty(page); 1076 * put_page(page); 1077 * !page_count(page) [good, discard it] 1078 * 1079 * [oops, our write_to data is lost] 1080 * 1081 * Reversing the order of the tests ensures such a situation cannot 1082 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 1083 * load is not satisfied before that of page->_refcount. 1084 * 1085 * Note that if SetPageDirty is always performed via set_page_dirty, 1086 * and thus under the i_pages lock, then this ordering is not required. 1087 */ 1088 refcount = 1 + compound_nr(page); 1089 if (!page_ref_freeze(page, refcount)) 1090 goto cannot_free; 1091 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 1092 if (unlikely(PageDirty(page))) { 1093 page_ref_unfreeze(page, refcount); 1094 goto cannot_free; 1095 } 1096 1097 if (PageSwapCache(page)) { 1098 swp_entry_t swap = { .val = page_private(page) }; 1099 mem_cgroup_swapout(page, swap); 1100 if (reclaimed && !mapping_exiting(mapping)) 1101 shadow = workingset_eviction(page, target_memcg); 1102 __delete_from_swap_cache(page, swap, shadow); 1103 xa_unlock_irqrestore(&mapping->i_pages, flags); 1104 put_swap_page(page, swap); 1105 } else { 1106 void (*freepage)(struct page *); 1107 1108 freepage = mapping->a_ops->freepage; 1109 /* 1110 * Remember a shadow entry for reclaimed file cache in 1111 * order to detect refaults, thus thrashing, later on. 1112 * 1113 * But don't store shadows in an address space that is 1114 * already exiting. This is not just an optimization, 1115 * inode reclaim needs to empty out the radix tree or 1116 * the nodes are lost. Don't plant shadows behind its 1117 * back. 1118 * 1119 * We also don't store shadows for DAX mappings because the 1120 * only page cache pages found in these are zero pages 1121 * covering holes, and because we don't want to mix DAX 1122 * exceptional entries and shadow exceptional entries in the 1123 * same address_space. 1124 */ 1125 if (reclaimed && page_is_file_lru(page) && 1126 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1127 shadow = workingset_eviction(page, target_memcg); 1128 __delete_from_page_cache(page, shadow); 1129 xa_unlock_irqrestore(&mapping->i_pages, flags); 1130 1131 if (freepage != NULL) 1132 freepage(page); 1133 } 1134 1135 return 1; 1136 1137 cannot_free: 1138 xa_unlock_irqrestore(&mapping->i_pages, flags); 1139 return 0; 1140 } 1141 1142 /* 1143 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 1144 * someone else has a ref on the page, abort and return 0. If it was 1145 * successfully detached, return 1. Assumes the caller has a single ref on 1146 * this page. 1147 */ 1148 int remove_mapping(struct address_space *mapping, struct page *page) 1149 { 1150 if (__remove_mapping(mapping, page, false, NULL)) { 1151 /* 1152 * Unfreezing the refcount with 1 rather than 2 effectively 1153 * drops the pagecache ref for us without requiring another 1154 * atomic operation. 1155 */ 1156 page_ref_unfreeze(page, 1); 1157 return 1; 1158 } 1159 return 0; 1160 } 1161 1162 /** 1163 * putback_lru_page - put previously isolated page onto appropriate LRU list 1164 * @page: page to be put back to appropriate lru list 1165 * 1166 * Add previously isolated @page to appropriate LRU list. 1167 * Page may still be unevictable for other reasons. 1168 * 1169 * lru_lock must not be held, interrupts must be enabled. 1170 */ 1171 void putback_lru_page(struct page *page) 1172 { 1173 lru_cache_add(page); 1174 put_page(page); /* drop ref from isolate */ 1175 } 1176 1177 enum page_references { 1178 PAGEREF_RECLAIM, 1179 PAGEREF_RECLAIM_CLEAN, 1180 PAGEREF_KEEP, 1181 PAGEREF_ACTIVATE, 1182 }; 1183 1184 static enum page_references page_check_references(struct page *page, 1185 struct scan_control *sc) 1186 { 1187 int referenced_ptes, referenced_page; 1188 unsigned long vm_flags; 1189 1190 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1191 &vm_flags); 1192 referenced_page = TestClearPageReferenced(page); 1193 1194 /* 1195 * Mlock lost the isolation race with us. Let try_to_unmap() 1196 * move the page to the unevictable list. 1197 */ 1198 if (vm_flags & VM_LOCKED) 1199 return PAGEREF_RECLAIM; 1200 1201 if (referenced_ptes) { 1202 /* 1203 * All mapped pages start out with page table 1204 * references from the instantiating fault, so we need 1205 * to look twice if a mapped file page is used more 1206 * than once. 1207 * 1208 * Mark it and spare it for another trip around the 1209 * inactive list. Another page table reference will 1210 * lead to its activation. 1211 * 1212 * Note: the mark is set for activated pages as well 1213 * so that recently deactivated but used pages are 1214 * quickly recovered. 1215 */ 1216 SetPageReferenced(page); 1217 1218 if (referenced_page || referenced_ptes > 1) 1219 return PAGEREF_ACTIVATE; 1220 1221 /* 1222 * Activate file-backed executable pages after first usage. 1223 */ 1224 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page)) 1225 return PAGEREF_ACTIVATE; 1226 1227 return PAGEREF_KEEP; 1228 } 1229 1230 /* Reclaim if clean, defer dirty pages to writeback */ 1231 if (referenced_page && !PageSwapBacked(page)) 1232 return PAGEREF_RECLAIM_CLEAN; 1233 1234 return PAGEREF_RECLAIM; 1235 } 1236 1237 /* Check if a page is dirty or under writeback */ 1238 static void page_check_dirty_writeback(struct page *page, 1239 bool *dirty, bool *writeback) 1240 { 1241 struct address_space *mapping; 1242 1243 /* 1244 * Anonymous pages are not handled by flushers and must be written 1245 * from reclaim context. Do not stall reclaim based on them 1246 */ 1247 if (!page_is_file_lru(page) || 1248 (PageAnon(page) && !PageSwapBacked(page))) { 1249 *dirty = false; 1250 *writeback = false; 1251 return; 1252 } 1253 1254 /* By default assume that the page flags are accurate */ 1255 *dirty = PageDirty(page); 1256 *writeback = PageWriteback(page); 1257 1258 /* Verify dirty/writeback state if the filesystem supports it */ 1259 if (!page_has_private(page)) 1260 return; 1261 1262 mapping = page_mapping(page); 1263 if (mapping && mapping->a_ops->is_dirty_writeback) 1264 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1265 } 1266 1267 /* 1268 * shrink_page_list() returns the number of reclaimed pages 1269 */ 1270 static unsigned int shrink_page_list(struct list_head *page_list, 1271 struct pglist_data *pgdat, 1272 struct scan_control *sc, 1273 struct reclaim_stat *stat, 1274 bool ignore_references) 1275 { 1276 LIST_HEAD(ret_pages); 1277 LIST_HEAD(free_pages); 1278 unsigned int nr_reclaimed = 0; 1279 unsigned int pgactivate = 0; 1280 1281 memset(stat, 0, sizeof(*stat)); 1282 cond_resched(); 1283 1284 while (!list_empty(page_list)) { 1285 struct address_space *mapping; 1286 struct page *page; 1287 enum page_references references = PAGEREF_RECLAIM; 1288 bool dirty, writeback, may_enter_fs; 1289 unsigned int nr_pages; 1290 1291 cond_resched(); 1292 1293 page = lru_to_page(page_list); 1294 list_del(&page->lru); 1295 1296 if (!trylock_page(page)) 1297 goto keep; 1298 1299 VM_BUG_ON_PAGE(PageActive(page), page); 1300 1301 nr_pages = compound_nr(page); 1302 1303 /* Account the number of base pages even though THP */ 1304 sc->nr_scanned += nr_pages; 1305 1306 if (unlikely(!page_evictable(page))) 1307 goto activate_locked; 1308 1309 if (!sc->may_unmap && page_mapped(page)) 1310 goto keep_locked; 1311 1312 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1313 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1314 1315 /* 1316 * The number of dirty pages determines if a node is marked 1317 * reclaim_congested which affects wait_iff_congested. kswapd 1318 * will stall and start writing pages if the tail of the LRU 1319 * is all dirty unqueued pages. 1320 */ 1321 page_check_dirty_writeback(page, &dirty, &writeback); 1322 if (dirty || writeback) 1323 stat->nr_dirty++; 1324 1325 if (dirty && !writeback) 1326 stat->nr_unqueued_dirty++; 1327 1328 /* 1329 * Treat this page as congested if the underlying BDI is or if 1330 * pages are cycling through the LRU so quickly that the 1331 * pages marked for immediate reclaim are making it to the 1332 * end of the LRU a second time. 1333 */ 1334 mapping = page_mapping(page); 1335 if (((dirty || writeback) && mapping && 1336 inode_write_congested(mapping->host)) || 1337 (writeback && PageReclaim(page))) 1338 stat->nr_congested++; 1339 1340 /* 1341 * If a page at the tail of the LRU is under writeback, there 1342 * are three cases to consider. 1343 * 1344 * 1) If reclaim is encountering an excessive number of pages 1345 * under writeback and this page is both under writeback and 1346 * PageReclaim then it indicates that pages are being queued 1347 * for IO but are being recycled through the LRU before the 1348 * IO can complete. Waiting on the page itself risks an 1349 * indefinite stall if it is impossible to writeback the 1350 * page due to IO error or disconnected storage so instead 1351 * note that the LRU is being scanned too quickly and the 1352 * caller can stall after page list has been processed. 1353 * 1354 * 2) Global or new memcg reclaim encounters a page that is 1355 * not marked for immediate reclaim, or the caller does not 1356 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1357 * not to fs). In this case mark the page for immediate 1358 * reclaim and continue scanning. 1359 * 1360 * Require may_enter_fs because we would wait on fs, which 1361 * may not have submitted IO yet. And the loop driver might 1362 * enter reclaim, and deadlock if it waits on a page for 1363 * which it is needed to do the write (loop masks off 1364 * __GFP_IO|__GFP_FS for this reason); but more thought 1365 * would probably show more reasons. 1366 * 1367 * 3) Legacy memcg encounters a page that is already marked 1368 * PageReclaim. memcg does not have any dirty pages 1369 * throttling so we could easily OOM just because too many 1370 * pages are in writeback and there is nothing else to 1371 * reclaim. Wait for the writeback to complete. 1372 * 1373 * In cases 1) and 2) we activate the pages to get them out of 1374 * the way while we continue scanning for clean pages on the 1375 * inactive list and refilling from the active list. The 1376 * observation here is that waiting for disk writes is more 1377 * expensive than potentially causing reloads down the line. 1378 * Since they're marked for immediate reclaim, they won't put 1379 * memory pressure on the cache working set any longer than it 1380 * takes to write them to disk. 1381 */ 1382 if (PageWriteback(page)) { 1383 /* Case 1 above */ 1384 if (current_is_kswapd() && 1385 PageReclaim(page) && 1386 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1387 stat->nr_immediate++; 1388 goto activate_locked; 1389 1390 /* Case 2 above */ 1391 } else if (writeback_throttling_sane(sc) || 1392 !PageReclaim(page) || !may_enter_fs) { 1393 /* 1394 * This is slightly racy - end_page_writeback() 1395 * might have just cleared PageReclaim, then 1396 * setting PageReclaim here end up interpreted 1397 * as PageReadahead - but that does not matter 1398 * enough to care. What we do want is for this 1399 * page to have PageReclaim set next time memcg 1400 * reclaim reaches the tests above, so it will 1401 * then wait_on_page_writeback() to avoid OOM; 1402 * and it's also appropriate in global reclaim. 1403 */ 1404 SetPageReclaim(page); 1405 stat->nr_writeback++; 1406 goto activate_locked; 1407 1408 /* Case 3 above */ 1409 } else { 1410 unlock_page(page); 1411 wait_on_page_writeback(page); 1412 /* then go back and try same page again */ 1413 list_add_tail(&page->lru, page_list); 1414 continue; 1415 } 1416 } 1417 1418 if (!ignore_references) 1419 references = page_check_references(page, sc); 1420 1421 switch (references) { 1422 case PAGEREF_ACTIVATE: 1423 goto activate_locked; 1424 case PAGEREF_KEEP: 1425 stat->nr_ref_keep += nr_pages; 1426 goto keep_locked; 1427 case PAGEREF_RECLAIM: 1428 case PAGEREF_RECLAIM_CLEAN: 1429 ; /* try to reclaim the page below */ 1430 } 1431 1432 /* 1433 * Anonymous process memory has backing store? 1434 * Try to allocate it some swap space here. 1435 * Lazyfree page could be freed directly 1436 */ 1437 if (PageAnon(page) && PageSwapBacked(page)) { 1438 if (!PageSwapCache(page)) { 1439 if (!(sc->gfp_mask & __GFP_IO)) 1440 goto keep_locked; 1441 if (page_maybe_dma_pinned(page)) 1442 goto keep_locked; 1443 if (PageTransHuge(page)) { 1444 /* cannot split THP, skip it */ 1445 if (!can_split_huge_page(page, NULL)) 1446 goto activate_locked; 1447 /* 1448 * Split pages without a PMD map right 1449 * away. Chances are some or all of the 1450 * tail pages can be freed without IO. 1451 */ 1452 if (!compound_mapcount(page) && 1453 split_huge_page_to_list(page, 1454 page_list)) 1455 goto activate_locked; 1456 } 1457 if (!add_to_swap(page)) { 1458 if (!PageTransHuge(page)) 1459 goto activate_locked_split; 1460 /* Fallback to swap normal pages */ 1461 if (split_huge_page_to_list(page, 1462 page_list)) 1463 goto activate_locked; 1464 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1465 count_vm_event(THP_SWPOUT_FALLBACK); 1466 #endif 1467 if (!add_to_swap(page)) 1468 goto activate_locked_split; 1469 } 1470 1471 may_enter_fs = true; 1472 1473 /* Adding to swap updated mapping */ 1474 mapping = page_mapping(page); 1475 } 1476 } else if (unlikely(PageTransHuge(page))) { 1477 /* Split file THP */ 1478 if (split_huge_page_to_list(page, page_list)) 1479 goto keep_locked; 1480 } 1481 1482 /* 1483 * THP may get split above, need minus tail pages and update 1484 * nr_pages to avoid accounting tail pages twice. 1485 * 1486 * The tail pages that are added into swap cache successfully 1487 * reach here. 1488 */ 1489 if ((nr_pages > 1) && !PageTransHuge(page)) { 1490 sc->nr_scanned -= (nr_pages - 1); 1491 nr_pages = 1; 1492 } 1493 1494 /* 1495 * The page is mapped into the page tables of one or more 1496 * processes. Try to unmap it here. 1497 */ 1498 if (page_mapped(page)) { 1499 enum ttu_flags flags = TTU_BATCH_FLUSH; 1500 bool was_swapbacked = PageSwapBacked(page); 1501 1502 if (unlikely(PageTransHuge(page))) 1503 flags |= TTU_SPLIT_HUGE_PMD; 1504 1505 try_to_unmap(page, flags); 1506 if (page_mapped(page)) { 1507 stat->nr_unmap_fail += nr_pages; 1508 if (!was_swapbacked && PageSwapBacked(page)) 1509 stat->nr_lazyfree_fail += nr_pages; 1510 goto activate_locked; 1511 } 1512 } 1513 1514 if (PageDirty(page)) { 1515 /* 1516 * Only kswapd can writeback filesystem pages 1517 * to avoid risk of stack overflow. But avoid 1518 * injecting inefficient single-page IO into 1519 * flusher writeback as much as possible: only 1520 * write pages when we've encountered many 1521 * dirty pages, and when we've already scanned 1522 * the rest of the LRU for clean pages and see 1523 * the same dirty pages again (PageReclaim). 1524 */ 1525 if (page_is_file_lru(page) && 1526 (!current_is_kswapd() || !PageReclaim(page) || 1527 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1528 /* 1529 * Immediately reclaim when written back. 1530 * Similar in principal to deactivate_page() 1531 * except we already have the page isolated 1532 * and know it's dirty 1533 */ 1534 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1535 SetPageReclaim(page); 1536 1537 goto activate_locked; 1538 } 1539 1540 if (references == PAGEREF_RECLAIM_CLEAN) 1541 goto keep_locked; 1542 if (!may_enter_fs) 1543 goto keep_locked; 1544 if (!sc->may_writepage) 1545 goto keep_locked; 1546 1547 /* 1548 * Page is dirty. Flush the TLB if a writable entry 1549 * potentially exists to avoid CPU writes after IO 1550 * starts and then write it out here. 1551 */ 1552 try_to_unmap_flush_dirty(); 1553 switch (pageout(page, mapping)) { 1554 case PAGE_KEEP: 1555 goto keep_locked; 1556 case PAGE_ACTIVATE: 1557 goto activate_locked; 1558 case PAGE_SUCCESS: 1559 stat->nr_pageout += thp_nr_pages(page); 1560 1561 if (PageWriteback(page)) 1562 goto keep; 1563 if (PageDirty(page)) 1564 goto keep; 1565 1566 /* 1567 * A synchronous write - probably a ramdisk. Go 1568 * ahead and try to reclaim the page. 1569 */ 1570 if (!trylock_page(page)) 1571 goto keep; 1572 if (PageDirty(page) || PageWriteback(page)) 1573 goto keep_locked; 1574 mapping = page_mapping(page); 1575 fallthrough; 1576 case PAGE_CLEAN: 1577 ; /* try to free the page below */ 1578 } 1579 } 1580 1581 /* 1582 * If the page has buffers, try to free the buffer mappings 1583 * associated with this page. If we succeed we try to free 1584 * the page as well. 1585 * 1586 * We do this even if the page is PageDirty(). 1587 * try_to_release_page() does not perform I/O, but it is 1588 * possible for a page to have PageDirty set, but it is actually 1589 * clean (all its buffers are clean). This happens if the 1590 * buffers were written out directly, with submit_bh(). ext3 1591 * will do this, as well as the blockdev mapping. 1592 * try_to_release_page() will discover that cleanness and will 1593 * drop the buffers and mark the page clean - it can be freed. 1594 * 1595 * Rarely, pages can have buffers and no ->mapping. These are 1596 * the pages which were not successfully invalidated in 1597 * truncate_cleanup_page(). We try to drop those buffers here 1598 * and if that worked, and the page is no longer mapped into 1599 * process address space (page_count == 1) it can be freed. 1600 * Otherwise, leave the page on the LRU so it is swappable. 1601 */ 1602 if (page_has_private(page)) { 1603 if (!try_to_release_page(page, sc->gfp_mask)) 1604 goto activate_locked; 1605 if (!mapping && page_count(page) == 1) { 1606 unlock_page(page); 1607 if (put_page_testzero(page)) 1608 goto free_it; 1609 else { 1610 /* 1611 * rare race with speculative reference. 1612 * the speculative reference will free 1613 * this page shortly, so we may 1614 * increment nr_reclaimed here (and 1615 * leave it off the LRU). 1616 */ 1617 nr_reclaimed++; 1618 continue; 1619 } 1620 } 1621 } 1622 1623 if (PageAnon(page) && !PageSwapBacked(page)) { 1624 /* follow __remove_mapping for reference */ 1625 if (!page_ref_freeze(page, 1)) 1626 goto keep_locked; 1627 if (PageDirty(page)) { 1628 page_ref_unfreeze(page, 1); 1629 goto keep_locked; 1630 } 1631 1632 count_vm_event(PGLAZYFREED); 1633 count_memcg_page_event(page, PGLAZYFREED); 1634 } else if (!mapping || !__remove_mapping(mapping, page, true, 1635 sc->target_mem_cgroup)) 1636 goto keep_locked; 1637 1638 unlock_page(page); 1639 free_it: 1640 /* 1641 * THP may get swapped out in a whole, need account 1642 * all base pages. 1643 */ 1644 nr_reclaimed += nr_pages; 1645 1646 /* 1647 * Is there need to periodically free_page_list? It would 1648 * appear not as the counts should be low 1649 */ 1650 if (unlikely(PageTransHuge(page))) 1651 destroy_compound_page(page); 1652 else 1653 list_add(&page->lru, &free_pages); 1654 continue; 1655 1656 activate_locked_split: 1657 /* 1658 * The tail pages that are failed to add into swap cache 1659 * reach here. Fixup nr_scanned and nr_pages. 1660 */ 1661 if (nr_pages > 1) { 1662 sc->nr_scanned -= (nr_pages - 1); 1663 nr_pages = 1; 1664 } 1665 activate_locked: 1666 /* Not a candidate for swapping, so reclaim swap space. */ 1667 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1668 PageMlocked(page))) 1669 try_to_free_swap(page); 1670 VM_BUG_ON_PAGE(PageActive(page), page); 1671 if (!PageMlocked(page)) { 1672 int type = page_is_file_lru(page); 1673 SetPageActive(page); 1674 stat->nr_activate[type] += nr_pages; 1675 count_memcg_page_event(page, PGACTIVATE); 1676 } 1677 keep_locked: 1678 unlock_page(page); 1679 keep: 1680 list_add(&page->lru, &ret_pages); 1681 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1682 } 1683 1684 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1685 1686 mem_cgroup_uncharge_list(&free_pages); 1687 try_to_unmap_flush(); 1688 free_unref_page_list(&free_pages); 1689 1690 list_splice(&ret_pages, page_list); 1691 count_vm_events(PGACTIVATE, pgactivate); 1692 1693 return nr_reclaimed; 1694 } 1695 1696 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1697 struct list_head *page_list) 1698 { 1699 struct scan_control sc = { 1700 .gfp_mask = GFP_KERNEL, 1701 .priority = DEF_PRIORITY, 1702 .may_unmap = 1, 1703 }; 1704 struct reclaim_stat stat; 1705 unsigned int nr_reclaimed; 1706 struct page *page, *next; 1707 LIST_HEAD(clean_pages); 1708 unsigned int noreclaim_flag; 1709 1710 list_for_each_entry_safe(page, next, page_list, lru) { 1711 if (!PageHuge(page) && page_is_file_lru(page) && 1712 !PageDirty(page) && !__PageMovable(page) && 1713 !PageUnevictable(page)) { 1714 ClearPageActive(page); 1715 list_move(&page->lru, &clean_pages); 1716 } 1717 } 1718 1719 /* 1720 * We should be safe here since we are only dealing with file pages and 1721 * we are not kswapd and therefore cannot write dirty file pages. But 1722 * call memalloc_noreclaim_save() anyway, just in case these conditions 1723 * change in the future. 1724 */ 1725 noreclaim_flag = memalloc_noreclaim_save(); 1726 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1727 &stat, true); 1728 memalloc_noreclaim_restore(noreclaim_flag); 1729 1730 list_splice(&clean_pages, page_list); 1731 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1732 -(long)nr_reclaimed); 1733 /* 1734 * Since lazyfree pages are isolated from file LRU from the beginning, 1735 * they will rotate back to anonymous LRU in the end if it failed to 1736 * discard so isolated count will be mismatched. 1737 * Compensate the isolated count for both LRU lists. 1738 */ 1739 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1740 stat.nr_lazyfree_fail); 1741 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1742 -(long)stat.nr_lazyfree_fail); 1743 return nr_reclaimed; 1744 } 1745 1746 /* 1747 * Attempt to remove the specified page from its LRU. Only take this page 1748 * if it is of the appropriate PageActive status. Pages which are being 1749 * freed elsewhere are also ignored. 1750 * 1751 * page: page to consider 1752 * mode: one of the LRU isolation modes defined above 1753 * 1754 * returns true on success, false on failure. 1755 */ 1756 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode) 1757 { 1758 /* Only take pages on the LRU. */ 1759 if (!PageLRU(page)) 1760 return false; 1761 1762 /* Compaction should not handle unevictable pages but CMA can do so */ 1763 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1764 return false; 1765 1766 /* 1767 * To minimise LRU disruption, the caller can indicate that it only 1768 * wants to isolate pages it will be able to operate on without 1769 * blocking - clean pages for the most part. 1770 * 1771 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1772 * that it is possible to migrate without blocking 1773 */ 1774 if (mode & ISOLATE_ASYNC_MIGRATE) { 1775 /* All the caller can do on PageWriteback is block */ 1776 if (PageWriteback(page)) 1777 return false; 1778 1779 if (PageDirty(page)) { 1780 struct address_space *mapping; 1781 bool migrate_dirty; 1782 1783 /* 1784 * Only pages without mappings or that have a 1785 * ->migratepage callback are possible to migrate 1786 * without blocking. However, we can be racing with 1787 * truncation so it's necessary to lock the page 1788 * to stabilise the mapping as truncation holds 1789 * the page lock until after the page is removed 1790 * from the page cache. 1791 */ 1792 if (!trylock_page(page)) 1793 return false; 1794 1795 mapping = page_mapping(page); 1796 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1797 unlock_page(page); 1798 if (!migrate_dirty) 1799 return false; 1800 } 1801 } 1802 1803 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1804 return false; 1805 1806 return true; 1807 } 1808 1809 /* 1810 * Update LRU sizes after isolating pages. The LRU size updates must 1811 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1812 */ 1813 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1814 enum lru_list lru, unsigned long *nr_zone_taken) 1815 { 1816 int zid; 1817 1818 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1819 if (!nr_zone_taken[zid]) 1820 continue; 1821 1822 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1823 } 1824 1825 } 1826 1827 /* 1828 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1829 * 1830 * lruvec->lru_lock is heavily contended. Some of the functions that 1831 * shrink the lists perform better by taking out a batch of pages 1832 * and working on them outside the LRU lock. 1833 * 1834 * For pagecache intensive workloads, this function is the hottest 1835 * spot in the kernel (apart from copy_*_user functions). 1836 * 1837 * Lru_lock must be held before calling this function. 1838 * 1839 * @nr_to_scan: The number of eligible pages to look through on the list. 1840 * @lruvec: The LRU vector to pull pages from. 1841 * @dst: The temp list to put pages on to. 1842 * @nr_scanned: The number of pages that were scanned. 1843 * @sc: The scan_control struct for this reclaim session 1844 * @lru: LRU list id for isolating 1845 * 1846 * returns how many pages were moved onto *@dst. 1847 */ 1848 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1849 struct lruvec *lruvec, struct list_head *dst, 1850 unsigned long *nr_scanned, struct scan_control *sc, 1851 enum lru_list lru) 1852 { 1853 struct list_head *src = &lruvec->lists[lru]; 1854 unsigned long nr_taken = 0; 1855 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1856 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1857 unsigned long skipped = 0; 1858 unsigned long scan, total_scan, nr_pages; 1859 LIST_HEAD(pages_skipped); 1860 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1861 1862 total_scan = 0; 1863 scan = 0; 1864 while (scan < nr_to_scan && !list_empty(src)) { 1865 struct page *page; 1866 1867 page = lru_to_page(src); 1868 prefetchw_prev_lru_page(page, src, flags); 1869 1870 nr_pages = compound_nr(page); 1871 total_scan += nr_pages; 1872 1873 if (page_zonenum(page) > sc->reclaim_idx) { 1874 list_move(&page->lru, &pages_skipped); 1875 nr_skipped[page_zonenum(page)] += nr_pages; 1876 continue; 1877 } 1878 1879 /* 1880 * Do not count skipped pages because that makes the function 1881 * return with no isolated pages if the LRU mostly contains 1882 * ineligible pages. This causes the VM to not reclaim any 1883 * pages, triggering a premature OOM. 1884 * 1885 * Account all tail pages of THP. This would not cause 1886 * premature OOM since __isolate_lru_page() returns -EBUSY 1887 * only when the page is being freed somewhere else. 1888 */ 1889 scan += nr_pages; 1890 if (!__isolate_lru_page_prepare(page, mode)) { 1891 /* It is being freed elsewhere */ 1892 list_move(&page->lru, src); 1893 continue; 1894 } 1895 /* 1896 * Be careful not to clear PageLRU until after we're 1897 * sure the page is not being freed elsewhere -- the 1898 * page release code relies on it. 1899 */ 1900 if (unlikely(!get_page_unless_zero(page))) { 1901 list_move(&page->lru, src); 1902 continue; 1903 } 1904 1905 if (!TestClearPageLRU(page)) { 1906 /* Another thread is already isolating this page */ 1907 put_page(page); 1908 list_move(&page->lru, src); 1909 continue; 1910 } 1911 1912 nr_taken += nr_pages; 1913 nr_zone_taken[page_zonenum(page)] += nr_pages; 1914 list_move(&page->lru, dst); 1915 } 1916 1917 /* 1918 * Splice any skipped pages to the start of the LRU list. Note that 1919 * this disrupts the LRU order when reclaiming for lower zones but 1920 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1921 * scanning would soon rescan the same pages to skip and put the 1922 * system at risk of premature OOM. 1923 */ 1924 if (!list_empty(&pages_skipped)) { 1925 int zid; 1926 1927 list_splice(&pages_skipped, src); 1928 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1929 if (!nr_skipped[zid]) 1930 continue; 1931 1932 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1933 skipped += nr_skipped[zid]; 1934 } 1935 } 1936 *nr_scanned = total_scan; 1937 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1938 total_scan, skipped, nr_taken, mode, lru); 1939 update_lru_sizes(lruvec, lru, nr_zone_taken); 1940 return nr_taken; 1941 } 1942 1943 /** 1944 * isolate_lru_page - tries to isolate a page from its LRU list 1945 * @page: page to isolate from its LRU list 1946 * 1947 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1948 * vmstat statistic corresponding to whatever LRU list the page was on. 1949 * 1950 * Returns 0 if the page was removed from an LRU list. 1951 * Returns -EBUSY if the page was not on an LRU list. 1952 * 1953 * The returned page will have PageLRU() cleared. If it was found on 1954 * the active list, it will have PageActive set. If it was found on 1955 * the unevictable list, it will have the PageUnevictable bit set. That flag 1956 * may need to be cleared by the caller before letting the page go. 1957 * 1958 * The vmstat statistic corresponding to the list on which the page was 1959 * found will be decremented. 1960 * 1961 * Restrictions: 1962 * 1963 * (1) Must be called with an elevated refcount on the page. This is a 1964 * fundamental difference from isolate_lru_pages (which is called 1965 * without a stable reference). 1966 * (2) the lru_lock must not be held. 1967 * (3) interrupts must be enabled. 1968 */ 1969 int isolate_lru_page(struct page *page) 1970 { 1971 int ret = -EBUSY; 1972 1973 VM_BUG_ON_PAGE(!page_count(page), page); 1974 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1975 1976 if (TestClearPageLRU(page)) { 1977 struct lruvec *lruvec; 1978 1979 get_page(page); 1980 lruvec = lock_page_lruvec_irq(page); 1981 del_page_from_lru_list(page, lruvec); 1982 unlock_page_lruvec_irq(lruvec); 1983 ret = 0; 1984 } 1985 1986 return ret; 1987 } 1988 1989 /* 1990 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1991 * then get rescheduled. When there are massive number of tasks doing page 1992 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1993 * the LRU list will go small and be scanned faster than necessary, leading to 1994 * unnecessary swapping, thrashing and OOM. 1995 */ 1996 static int too_many_isolated(struct pglist_data *pgdat, int file, 1997 struct scan_control *sc) 1998 { 1999 unsigned long inactive, isolated; 2000 2001 if (current_is_kswapd()) 2002 return 0; 2003 2004 if (!writeback_throttling_sane(sc)) 2005 return 0; 2006 2007 if (file) { 2008 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2009 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2010 } else { 2011 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2012 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2013 } 2014 2015 /* 2016 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2017 * won't get blocked by normal direct-reclaimers, forming a circular 2018 * deadlock. 2019 */ 2020 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2021 inactive >>= 3; 2022 2023 return isolated > inactive; 2024 } 2025 2026 /* 2027 * move_pages_to_lru() moves pages from private @list to appropriate LRU list. 2028 * On return, @list is reused as a list of pages to be freed by the caller. 2029 * 2030 * Returns the number of pages moved to the given lruvec. 2031 */ 2032 static unsigned int move_pages_to_lru(struct lruvec *lruvec, 2033 struct list_head *list) 2034 { 2035 int nr_pages, nr_moved = 0; 2036 LIST_HEAD(pages_to_free); 2037 struct page *page; 2038 2039 while (!list_empty(list)) { 2040 page = lru_to_page(list); 2041 VM_BUG_ON_PAGE(PageLRU(page), page); 2042 list_del(&page->lru); 2043 if (unlikely(!page_evictable(page))) { 2044 spin_unlock_irq(&lruvec->lru_lock); 2045 putback_lru_page(page); 2046 spin_lock_irq(&lruvec->lru_lock); 2047 continue; 2048 } 2049 2050 /* 2051 * The SetPageLRU needs to be kept here for list integrity. 2052 * Otherwise: 2053 * #0 move_pages_to_lru #1 release_pages 2054 * if !put_page_testzero 2055 * if (put_page_testzero()) 2056 * !PageLRU //skip lru_lock 2057 * SetPageLRU() 2058 * list_add(&page->lru,) 2059 * list_add(&page->lru,) 2060 */ 2061 SetPageLRU(page); 2062 2063 if (unlikely(put_page_testzero(page))) { 2064 __clear_page_lru_flags(page); 2065 2066 if (unlikely(PageCompound(page))) { 2067 spin_unlock_irq(&lruvec->lru_lock); 2068 destroy_compound_page(page); 2069 spin_lock_irq(&lruvec->lru_lock); 2070 } else 2071 list_add(&page->lru, &pages_to_free); 2072 2073 continue; 2074 } 2075 2076 /* 2077 * All pages were isolated from the same lruvec (and isolation 2078 * inhibits memcg migration). 2079 */ 2080 VM_BUG_ON_PAGE(!page_matches_lruvec(page, lruvec), page); 2081 add_page_to_lru_list(page, lruvec); 2082 nr_pages = thp_nr_pages(page); 2083 nr_moved += nr_pages; 2084 if (PageActive(page)) 2085 workingset_age_nonresident(lruvec, nr_pages); 2086 } 2087 2088 /* 2089 * To save our caller's stack, now use input list for pages to free. 2090 */ 2091 list_splice(&pages_to_free, list); 2092 2093 return nr_moved; 2094 } 2095 2096 /* 2097 * If a kernel thread (such as nfsd for loop-back mounts) services 2098 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE. 2099 * In that case we should only throttle if the backing device it is 2100 * writing to is congested. In other cases it is safe to throttle. 2101 */ 2102 static int current_may_throttle(void) 2103 { 2104 return !(current->flags & PF_LOCAL_THROTTLE) || 2105 current->backing_dev_info == NULL || 2106 bdi_write_congested(current->backing_dev_info); 2107 } 2108 2109 /* 2110 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2111 * of reclaimed pages 2112 */ 2113 static unsigned long 2114 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 2115 struct scan_control *sc, enum lru_list lru) 2116 { 2117 LIST_HEAD(page_list); 2118 unsigned long nr_scanned; 2119 unsigned int nr_reclaimed = 0; 2120 unsigned long nr_taken; 2121 struct reclaim_stat stat; 2122 bool file = is_file_lru(lru); 2123 enum vm_event_item item; 2124 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2125 bool stalled = false; 2126 2127 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2128 if (stalled) 2129 return 0; 2130 2131 /* wait a bit for the reclaimer. */ 2132 msleep(100); 2133 stalled = true; 2134 2135 /* We are about to die and free our memory. Return now. */ 2136 if (fatal_signal_pending(current)) 2137 return SWAP_CLUSTER_MAX; 2138 } 2139 2140 lru_add_drain(); 2141 2142 spin_lock_irq(&lruvec->lru_lock); 2143 2144 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 2145 &nr_scanned, sc, lru); 2146 2147 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2148 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 2149 if (!cgroup_reclaim(sc)) 2150 __count_vm_events(item, nr_scanned); 2151 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2152 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2153 2154 spin_unlock_irq(&lruvec->lru_lock); 2155 2156 if (nr_taken == 0) 2157 return 0; 2158 2159 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false); 2160 2161 spin_lock_irq(&lruvec->lru_lock); 2162 move_pages_to_lru(lruvec, &page_list); 2163 2164 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2165 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 2166 if (!cgroup_reclaim(sc)) 2167 __count_vm_events(item, nr_reclaimed); 2168 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2169 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2170 spin_unlock_irq(&lruvec->lru_lock); 2171 2172 lru_note_cost(lruvec, file, stat.nr_pageout); 2173 mem_cgroup_uncharge_list(&page_list); 2174 free_unref_page_list(&page_list); 2175 2176 /* 2177 * If dirty pages are scanned that are not queued for IO, it 2178 * implies that flushers are not doing their job. This can 2179 * happen when memory pressure pushes dirty pages to the end of 2180 * the LRU before the dirty limits are breached and the dirty 2181 * data has expired. It can also happen when the proportion of 2182 * dirty pages grows not through writes but through memory 2183 * pressure reclaiming all the clean cache. And in some cases, 2184 * the flushers simply cannot keep up with the allocation 2185 * rate. Nudge the flusher threads in case they are asleep. 2186 */ 2187 if (stat.nr_unqueued_dirty == nr_taken) 2188 wakeup_flusher_threads(WB_REASON_VMSCAN); 2189 2190 sc->nr.dirty += stat.nr_dirty; 2191 sc->nr.congested += stat.nr_congested; 2192 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2193 sc->nr.writeback += stat.nr_writeback; 2194 sc->nr.immediate += stat.nr_immediate; 2195 sc->nr.taken += nr_taken; 2196 if (file) 2197 sc->nr.file_taken += nr_taken; 2198 2199 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2200 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2201 return nr_reclaimed; 2202 } 2203 2204 /* 2205 * shrink_active_list() moves pages from the active LRU to the inactive LRU. 2206 * 2207 * We move them the other way if the page is referenced by one or more 2208 * processes. 2209 * 2210 * If the pages are mostly unmapped, the processing is fast and it is 2211 * appropriate to hold lru_lock across the whole operation. But if 2212 * the pages are mapped, the processing is slow (page_referenced()), so 2213 * we should drop lru_lock around each page. It's impossible to balance 2214 * this, so instead we remove the pages from the LRU while processing them. 2215 * It is safe to rely on PG_active against the non-LRU pages in here because 2216 * nobody will play with that bit on a non-LRU page. 2217 * 2218 * The downside is that we have to touch page->_refcount against each page. 2219 * But we had to alter page->flags anyway. 2220 */ 2221 static void shrink_active_list(unsigned long nr_to_scan, 2222 struct lruvec *lruvec, 2223 struct scan_control *sc, 2224 enum lru_list lru) 2225 { 2226 unsigned long nr_taken; 2227 unsigned long nr_scanned; 2228 unsigned long vm_flags; 2229 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2230 LIST_HEAD(l_active); 2231 LIST_HEAD(l_inactive); 2232 struct page *page; 2233 unsigned nr_deactivate, nr_activate; 2234 unsigned nr_rotated = 0; 2235 int file = is_file_lru(lru); 2236 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2237 2238 lru_add_drain(); 2239 2240 spin_lock_irq(&lruvec->lru_lock); 2241 2242 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2243 &nr_scanned, sc, lru); 2244 2245 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2246 2247 if (!cgroup_reclaim(sc)) 2248 __count_vm_events(PGREFILL, nr_scanned); 2249 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2250 2251 spin_unlock_irq(&lruvec->lru_lock); 2252 2253 while (!list_empty(&l_hold)) { 2254 cond_resched(); 2255 page = lru_to_page(&l_hold); 2256 list_del(&page->lru); 2257 2258 if (unlikely(!page_evictable(page))) { 2259 putback_lru_page(page); 2260 continue; 2261 } 2262 2263 if (unlikely(buffer_heads_over_limit)) { 2264 if (page_has_private(page) && trylock_page(page)) { 2265 if (page_has_private(page)) 2266 try_to_release_page(page, 0); 2267 unlock_page(page); 2268 } 2269 } 2270 2271 if (page_referenced(page, 0, sc->target_mem_cgroup, 2272 &vm_flags)) { 2273 /* 2274 * Identify referenced, file-backed active pages and 2275 * give them one more trip around the active list. So 2276 * that executable code get better chances to stay in 2277 * memory under moderate memory pressure. Anon pages 2278 * are not likely to be evicted by use-once streaming 2279 * IO, plus JVM can create lots of anon VM_EXEC pages, 2280 * so we ignore them here. 2281 */ 2282 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2283 nr_rotated += thp_nr_pages(page); 2284 list_add(&page->lru, &l_active); 2285 continue; 2286 } 2287 } 2288 2289 ClearPageActive(page); /* we are de-activating */ 2290 SetPageWorkingset(page); 2291 list_add(&page->lru, &l_inactive); 2292 } 2293 2294 /* 2295 * Move pages back to the lru list. 2296 */ 2297 spin_lock_irq(&lruvec->lru_lock); 2298 2299 nr_activate = move_pages_to_lru(lruvec, &l_active); 2300 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2301 /* Keep all free pages in l_active list */ 2302 list_splice(&l_inactive, &l_active); 2303 2304 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2305 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2306 2307 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2308 spin_unlock_irq(&lruvec->lru_lock); 2309 2310 mem_cgroup_uncharge_list(&l_active); 2311 free_unref_page_list(&l_active); 2312 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2313 nr_deactivate, nr_rotated, sc->priority, file); 2314 } 2315 2316 unsigned long reclaim_pages(struct list_head *page_list) 2317 { 2318 int nid = NUMA_NO_NODE; 2319 unsigned int nr_reclaimed = 0; 2320 LIST_HEAD(node_page_list); 2321 struct reclaim_stat dummy_stat; 2322 struct page *page; 2323 unsigned int noreclaim_flag; 2324 struct scan_control sc = { 2325 .gfp_mask = GFP_KERNEL, 2326 .priority = DEF_PRIORITY, 2327 .may_writepage = 1, 2328 .may_unmap = 1, 2329 .may_swap = 1, 2330 }; 2331 2332 noreclaim_flag = memalloc_noreclaim_save(); 2333 2334 while (!list_empty(page_list)) { 2335 page = lru_to_page(page_list); 2336 if (nid == NUMA_NO_NODE) { 2337 nid = page_to_nid(page); 2338 INIT_LIST_HEAD(&node_page_list); 2339 } 2340 2341 if (nid == page_to_nid(page)) { 2342 ClearPageActive(page); 2343 list_move(&page->lru, &node_page_list); 2344 continue; 2345 } 2346 2347 nr_reclaimed += shrink_page_list(&node_page_list, 2348 NODE_DATA(nid), 2349 &sc, &dummy_stat, false); 2350 while (!list_empty(&node_page_list)) { 2351 page = lru_to_page(&node_page_list); 2352 list_del(&page->lru); 2353 putback_lru_page(page); 2354 } 2355 2356 nid = NUMA_NO_NODE; 2357 } 2358 2359 if (!list_empty(&node_page_list)) { 2360 nr_reclaimed += shrink_page_list(&node_page_list, 2361 NODE_DATA(nid), 2362 &sc, &dummy_stat, false); 2363 while (!list_empty(&node_page_list)) { 2364 page = lru_to_page(&node_page_list); 2365 list_del(&page->lru); 2366 putback_lru_page(page); 2367 } 2368 } 2369 2370 memalloc_noreclaim_restore(noreclaim_flag); 2371 2372 return nr_reclaimed; 2373 } 2374 2375 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2376 struct lruvec *lruvec, struct scan_control *sc) 2377 { 2378 if (is_active_lru(lru)) { 2379 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2380 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2381 else 2382 sc->skipped_deactivate = 1; 2383 return 0; 2384 } 2385 2386 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2387 } 2388 2389 /* 2390 * The inactive anon list should be small enough that the VM never has 2391 * to do too much work. 2392 * 2393 * The inactive file list should be small enough to leave most memory 2394 * to the established workingset on the scan-resistant active list, 2395 * but large enough to avoid thrashing the aggregate readahead window. 2396 * 2397 * Both inactive lists should also be large enough that each inactive 2398 * page has a chance to be referenced again before it is reclaimed. 2399 * 2400 * If that fails and refaulting is observed, the inactive list grows. 2401 * 2402 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2403 * on this LRU, maintained by the pageout code. An inactive_ratio 2404 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2405 * 2406 * total target max 2407 * memory ratio inactive 2408 * ------------------------------------- 2409 * 10MB 1 5MB 2410 * 100MB 1 50MB 2411 * 1GB 3 250MB 2412 * 10GB 10 0.9GB 2413 * 100GB 31 3GB 2414 * 1TB 101 10GB 2415 * 10TB 320 32GB 2416 */ 2417 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2418 { 2419 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2420 unsigned long inactive, active; 2421 unsigned long inactive_ratio; 2422 unsigned long gb; 2423 2424 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2425 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2426 2427 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2428 if (gb) 2429 inactive_ratio = int_sqrt(10 * gb); 2430 else 2431 inactive_ratio = 1; 2432 2433 return inactive * inactive_ratio < active; 2434 } 2435 2436 enum scan_balance { 2437 SCAN_EQUAL, 2438 SCAN_FRACT, 2439 SCAN_ANON, 2440 SCAN_FILE, 2441 }; 2442 2443 /* 2444 * Determine how aggressively the anon and file LRU lists should be 2445 * scanned. The relative value of each set of LRU lists is determined 2446 * by looking at the fraction of the pages scanned we did rotate back 2447 * onto the active list instead of evict. 2448 * 2449 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2450 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2451 */ 2452 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2453 unsigned long *nr) 2454 { 2455 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2456 unsigned long anon_cost, file_cost, total_cost; 2457 int swappiness = mem_cgroup_swappiness(memcg); 2458 u64 fraction[ANON_AND_FILE]; 2459 u64 denominator = 0; /* gcc */ 2460 enum scan_balance scan_balance; 2461 unsigned long ap, fp; 2462 enum lru_list lru; 2463 2464 /* If we have no swap space, do not bother scanning anon pages. */ 2465 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2466 scan_balance = SCAN_FILE; 2467 goto out; 2468 } 2469 2470 /* 2471 * Global reclaim will swap to prevent OOM even with no 2472 * swappiness, but memcg users want to use this knob to 2473 * disable swapping for individual groups completely when 2474 * using the memory controller's swap limit feature would be 2475 * too expensive. 2476 */ 2477 if (cgroup_reclaim(sc) && !swappiness) { 2478 scan_balance = SCAN_FILE; 2479 goto out; 2480 } 2481 2482 /* 2483 * Do not apply any pressure balancing cleverness when the 2484 * system is close to OOM, scan both anon and file equally 2485 * (unless the swappiness setting disagrees with swapping). 2486 */ 2487 if (!sc->priority && swappiness) { 2488 scan_balance = SCAN_EQUAL; 2489 goto out; 2490 } 2491 2492 /* 2493 * If the system is almost out of file pages, force-scan anon. 2494 */ 2495 if (sc->file_is_tiny) { 2496 scan_balance = SCAN_ANON; 2497 goto out; 2498 } 2499 2500 /* 2501 * If there is enough inactive page cache, we do not reclaim 2502 * anything from the anonymous working right now. 2503 */ 2504 if (sc->cache_trim_mode) { 2505 scan_balance = SCAN_FILE; 2506 goto out; 2507 } 2508 2509 scan_balance = SCAN_FRACT; 2510 /* 2511 * Calculate the pressure balance between anon and file pages. 2512 * 2513 * The amount of pressure we put on each LRU is inversely 2514 * proportional to the cost of reclaiming each list, as 2515 * determined by the share of pages that are refaulting, times 2516 * the relative IO cost of bringing back a swapped out 2517 * anonymous page vs reloading a filesystem page (swappiness). 2518 * 2519 * Although we limit that influence to ensure no list gets 2520 * left behind completely: at least a third of the pressure is 2521 * applied, before swappiness. 2522 * 2523 * With swappiness at 100, anon and file have equal IO cost. 2524 */ 2525 total_cost = sc->anon_cost + sc->file_cost; 2526 anon_cost = total_cost + sc->anon_cost; 2527 file_cost = total_cost + sc->file_cost; 2528 total_cost = anon_cost + file_cost; 2529 2530 ap = swappiness * (total_cost + 1); 2531 ap /= anon_cost + 1; 2532 2533 fp = (200 - swappiness) * (total_cost + 1); 2534 fp /= file_cost + 1; 2535 2536 fraction[0] = ap; 2537 fraction[1] = fp; 2538 denominator = ap + fp; 2539 out: 2540 for_each_evictable_lru(lru) { 2541 int file = is_file_lru(lru); 2542 unsigned long lruvec_size; 2543 unsigned long low, min; 2544 unsigned long scan; 2545 2546 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2547 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2548 &min, &low); 2549 2550 if (min || low) { 2551 /* 2552 * Scale a cgroup's reclaim pressure by proportioning 2553 * its current usage to its memory.low or memory.min 2554 * setting. 2555 * 2556 * This is important, as otherwise scanning aggression 2557 * becomes extremely binary -- from nothing as we 2558 * approach the memory protection threshold, to totally 2559 * nominal as we exceed it. This results in requiring 2560 * setting extremely liberal protection thresholds. It 2561 * also means we simply get no protection at all if we 2562 * set it too low, which is not ideal. 2563 * 2564 * If there is any protection in place, we reduce scan 2565 * pressure by how much of the total memory used is 2566 * within protection thresholds. 2567 * 2568 * There is one special case: in the first reclaim pass, 2569 * we skip over all groups that are within their low 2570 * protection. If that fails to reclaim enough pages to 2571 * satisfy the reclaim goal, we come back and override 2572 * the best-effort low protection. However, we still 2573 * ideally want to honor how well-behaved groups are in 2574 * that case instead of simply punishing them all 2575 * equally. As such, we reclaim them based on how much 2576 * memory they are using, reducing the scan pressure 2577 * again by how much of the total memory used is under 2578 * hard protection. 2579 */ 2580 unsigned long cgroup_size = mem_cgroup_size(memcg); 2581 unsigned long protection; 2582 2583 /* memory.low scaling, make sure we retry before OOM */ 2584 if (!sc->memcg_low_reclaim && low > min) { 2585 protection = low; 2586 sc->memcg_low_skipped = 1; 2587 } else { 2588 protection = min; 2589 } 2590 2591 /* Avoid TOCTOU with earlier protection check */ 2592 cgroup_size = max(cgroup_size, protection); 2593 2594 scan = lruvec_size - lruvec_size * protection / 2595 cgroup_size; 2596 2597 /* 2598 * Minimally target SWAP_CLUSTER_MAX pages to keep 2599 * reclaim moving forwards, avoiding decrementing 2600 * sc->priority further than desirable. 2601 */ 2602 scan = max(scan, SWAP_CLUSTER_MAX); 2603 } else { 2604 scan = lruvec_size; 2605 } 2606 2607 scan >>= sc->priority; 2608 2609 /* 2610 * If the cgroup's already been deleted, make sure to 2611 * scrape out the remaining cache. 2612 */ 2613 if (!scan && !mem_cgroup_online(memcg)) 2614 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2615 2616 switch (scan_balance) { 2617 case SCAN_EQUAL: 2618 /* Scan lists relative to size */ 2619 break; 2620 case SCAN_FRACT: 2621 /* 2622 * Scan types proportional to swappiness and 2623 * their relative recent reclaim efficiency. 2624 * Make sure we don't miss the last page on 2625 * the offlined memory cgroups because of a 2626 * round-off error. 2627 */ 2628 scan = mem_cgroup_online(memcg) ? 2629 div64_u64(scan * fraction[file], denominator) : 2630 DIV64_U64_ROUND_UP(scan * fraction[file], 2631 denominator); 2632 break; 2633 case SCAN_FILE: 2634 case SCAN_ANON: 2635 /* Scan one type exclusively */ 2636 if ((scan_balance == SCAN_FILE) != file) 2637 scan = 0; 2638 break; 2639 default: 2640 /* Look ma, no brain */ 2641 BUG(); 2642 } 2643 2644 nr[lru] = scan; 2645 } 2646 } 2647 2648 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2649 { 2650 unsigned long nr[NR_LRU_LISTS]; 2651 unsigned long targets[NR_LRU_LISTS]; 2652 unsigned long nr_to_scan; 2653 enum lru_list lru; 2654 unsigned long nr_reclaimed = 0; 2655 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2656 struct blk_plug plug; 2657 bool scan_adjusted; 2658 2659 get_scan_count(lruvec, sc, nr); 2660 2661 /* Record the original scan target for proportional adjustments later */ 2662 memcpy(targets, nr, sizeof(nr)); 2663 2664 /* 2665 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2666 * event that can occur when there is little memory pressure e.g. 2667 * multiple streaming readers/writers. Hence, we do not abort scanning 2668 * when the requested number of pages are reclaimed when scanning at 2669 * DEF_PRIORITY on the assumption that the fact we are direct 2670 * reclaiming implies that kswapd is not keeping up and it is best to 2671 * do a batch of work at once. For memcg reclaim one check is made to 2672 * abort proportional reclaim if either the file or anon lru has already 2673 * dropped to zero at the first pass. 2674 */ 2675 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2676 sc->priority == DEF_PRIORITY); 2677 2678 blk_start_plug(&plug); 2679 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2680 nr[LRU_INACTIVE_FILE]) { 2681 unsigned long nr_anon, nr_file, percentage; 2682 unsigned long nr_scanned; 2683 2684 for_each_evictable_lru(lru) { 2685 if (nr[lru]) { 2686 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2687 nr[lru] -= nr_to_scan; 2688 2689 nr_reclaimed += shrink_list(lru, nr_to_scan, 2690 lruvec, sc); 2691 } 2692 } 2693 2694 cond_resched(); 2695 2696 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2697 continue; 2698 2699 /* 2700 * For kswapd and memcg, reclaim at least the number of pages 2701 * requested. Ensure that the anon and file LRUs are scanned 2702 * proportionally what was requested by get_scan_count(). We 2703 * stop reclaiming one LRU and reduce the amount scanning 2704 * proportional to the original scan target. 2705 */ 2706 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2707 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2708 2709 /* 2710 * It's just vindictive to attack the larger once the smaller 2711 * has gone to zero. And given the way we stop scanning the 2712 * smaller below, this makes sure that we only make one nudge 2713 * towards proportionality once we've got nr_to_reclaim. 2714 */ 2715 if (!nr_file || !nr_anon) 2716 break; 2717 2718 if (nr_file > nr_anon) { 2719 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2720 targets[LRU_ACTIVE_ANON] + 1; 2721 lru = LRU_BASE; 2722 percentage = nr_anon * 100 / scan_target; 2723 } else { 2724 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2725 targets[LRU_ACTIVE_FILE] + 1; 2726 lru = LRU_FILE; 2727 percentage = nr_file * 100 / scan_target; 2728 } 2729 2730 /* Stop scanning the smaller of the LRU */ 2731 nr[lru] = 0; 2732 nr[lru + LRU_ACTIVE] = 0; 2733 2734 /* 2735 * Recalculate the other LRU scan count based on its original 2736 * scan target and the percentage scanning already complete 2737 */ 2738 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2739 nr_scanned = targets[lru] - nr[lru]; 2740 nr[lru] = targets[lru] * (100 - percentage) / 100; 2741 nr[lru] -= min(nr[lru], nr_scanned); 2742 2743 lru += LRU_ACTIVE; 2744 nr_scanned = targets[lru] - nr[lru]; 2745 nr[lru] = targets[lru] * (100 - percentage) / 100; 2746 nr[lru] -= min(nr[lru], nr_scanned); 2747 2748 scan_adjusted = true; 2749 } 2750 blk_finish_plug(&plug); 2751 sc->nr_reclaimed += nr_reclaimed; 2752 2753 /* 2754 * Even if we did not try to evict anon pages at all, we want to 2755 * rebalance the anon lru active/inactive ratio. 2756 */ 2757 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 2758 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2759 sc, LRU_ACTIVE_ANON); 2760 } 2761 2762 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2763 static bool in_reclaim_compaction(struct scan_control *sc) 2764 { 2765 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2766 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2767 sc->priority < DEF_PRIORITY - 2)) 2768 return true; 2769 2770 return false; 2771 } 2772 2773 /* 2774 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2775 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2776 * true if more pages should be reclaimed such that when the page allocator 2777 * calls try_to_compact_pages() that it will have enough free pages to succeed. 2778 * It will give up earlier than that if there is difficulty reclaiming pages. 2779 */ 2780 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2781 unsigned long nr_reclaimed, 2782 struct scan_control *sc) 2783 { 2784 unsigned long pages_for_compaction; 2785 unsigned long inactive_lru_pages; 2786 int z; 2787 2788 /* If not in reclaim/compaction mode, stop */ 2789 if (!in_reclaim_compaction(sc)) 2790 return false; 2791 2792 /* 2793 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 2794 * number of pages that were scanned. This will return to the caller 2795 * with the risk reclaim/compaction and the resulting allocation attempt 2796 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 2797 * allocations through requiring that the full LRU list has been scanned 2798 * first, by assuming that zero delta of sc->nr_scanned means full LRU 2799 * scan, but that approximation was wrong, and there were corner cases 2800 * where always a non-zero amount of pages were scanned. 2801 */ 2802 if (!nr_reclaimed) 2803 return false; 2804 2805 /* If compaction would go ahead or the allocation would succeed, stop */ 2806 for (z = 0; z <= sc->reclaim_idx; z++) { 2807 struct zone *zone = &pgdat->node_zones[z]; 2808 if (!managed_zone(zone)) 2809 continue; 2810 2811 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2812 case COMPACT_SUCCESS: 2813 case COMPACT_CONTINUE: 2814 return false; 2815 default: 2816 /* check next zone */ 2817 ; 2818 } 2819 } 2820 2821 /* 2822 * If we have not reclaimed enough pages for compaction and the 2823 * inactive lists are large enough, continue reclaiming 2824 */ 2825 pages_for_compaction = compact_gap(sc->order); 2826 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2827 if (get_nr_swap_pages() > 0) 2828 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2829 2830 return inactive_lru_pages > pages_for_compaction; 2831 } 2832 2833 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 2834 { 2835 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 2836 struct mem_cgroup *memcg; 2837 2838 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 2839 do { 2840 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2841 unsigned long reclaimed; 2842 unsigned long scanned; 2843 2844 /* 2845 * This loop can become CPU-bound when target memcgs 2846 * aren't eligible for reclaim - either because they 2847 * don't have any reclaimable pages, or because their 2848 * memory is explicitly protected. Avoid soft lockups. 2849 */ 2850 cond_resched(); 2851 2852 mem_cgroup_calculate_protection(target_memcg, memcg); 2853 2854 if (mem_cgroup_below_min(memcg)) { 2855 /* 2856 * Hard protection. 2857 * If there is no reclaimable memory, OOM. 2858 */ 2859 continue; 2860 } else if (mem_cgroup_below_low(memcg)) { 2861 /* 2862 * Soft protection. 2863 * Respect the protection only as long as 2864 * there is an unprotected supply 2865 * of reclaimable memory from other cgroups. 2866 */ 2867 if (!sc->memcg_low_reclaim) { 2868 sc->memcg_low_skipped = 1; 2869 continue; 2870 } 2871 memcg_memory_event(memcg, MEMCG_LOW); 2872 } 2873 2874 reclaimed = sc->nr_reclaimed; 2875 scanned = sc->nr_scanned; 2876 2877 shrink_lruvec(lruvec, sc); 2878 2879 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 2880 sc->priority); 2881 2882 /* Record the group's reclaim efficiency */ 2883 vmpressure(sc->gfp_mask, memcg, false, 2884 sc->nr_scanned - scanned, 2885 sc->nr_reclaimed - reclaimed); 2886 2887 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 2888 } 2889 2890 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2891 { 2892 struct reclaim_state *reclaim_state = current->reclaim_state; 2893 unsigned long nr_reclaimed, nr_scanned; 2894 struct lruvec *target_lruvec; 2895 bool reclaimable = false; 2896 unsigned long file; 2897 2898 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2899 2900 again: 2901 memset(&sc->nr, 0, sizeof(sc->nr)); 2902 2903 nr_reclaimed = sc->nr_reclaimed; 2904 nr_scanned = sc->nr_scanned; 2905 2906 /* 2907 * Determine the scan balance between anon and file LRUs. 2908 */ 2909 spin_lock_irq(&target_lruvec->lru_lock); 2910 sc->anon_cost = target_lruvec->anon_cost; 2911 sc->file_cost = target_lruvec->file_cost; 2912 spin_unlock_irq(&target_lruvec->lru_lock); 2913 2914 /* 2915 * Target desirable inactive:active list ratios for the anon 2916 * and file LRU lists. 2917 */ 2918 if (!sc->force_deactivate) { 2919 unsigned long refaults; 2920 2921 refaults = lruvec_page_state(target_lruvec, 2922 WORKINGSET_ACTIVATE_ANON); 2923 if (refaults != target_lruvec->refaults[0] || 2924 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2925 sc->may_deactivate |= DEACTIVATE_ANON; 2926 else 2927 sc->may_deactivate &= ~DEACTIVATE_ANON; 2928 2929 /* 2930 * When refaults are being observed, it means a new 2931 * workingset is being established. Deactivate to get 2932 * rid of any stale active pages quickly. 2933 */ 2934 refaults = lruvec_page_state(target_lruvec, 2935 WORKINGSET_ACTIVATE_FILE); 2936 if (refaults != target_lruvec->refaults[1] || 2937 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2938 sc->may_deactivate |= DEACTIVATE_FILE; 2939 else 2940 sc->may_deactivate &= ~DEACTIVATE_FILE; 2941 } else 2942 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2943 2944 /* 2945 * If we have plenty of inactive file pages that aren't 2946 * thrashing, try to reclaim those first before touching 2947 * anonymous pages. 2948 */ 2949 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2950 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2951 sc->cache_trim_mode = 1; 2952 else 2953 sc->cache_trim_mode = 0; 2954 2955 /* 2956 * Prevent the reclaimer from falling into the cache trap: as 2957 * cache pages start out inactive, every cache fault will tip 2958 * the scan balance towards the file LRU. And as the file LRU 2959 * shrinks, so does the window for rotation from references. 2960 * This means we have a runaway feedback loop where a tiny 2961 * thrashing file LRU becomes infinitely more attractive than 2962 * anon pages. Try to detect this based on file LRU size. 2963 */ 2964 if (!cgroup_reclaim(sc)) { 2965 unsigned long total_high_wmark = 0; 2966 unsigned long free, anon; 2967 int z; 2968 2969 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2970 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2971 node_page_state(pgdat, NR_INACTIVE_FILE); 2972 2973 for (z = 0; z < MAX_NR_ZONES; z++) { 2974 struct zone *zone = &pgdat->node_zones[z]; 2975 if (!managed_zone(zone)) 2976 continue; 2977 2978 total_high_wmark += high_wmark_pages(zone); 2979 } 2980 2981 /* 2982 * Consider anon: if that's low too, this isn't a 2983 * runaway file reclaim problem, but rather just 2984 * extreme pressure. Reclaim as per usual then. 2985 */ 2986 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2987 2988 sc->file_is_tiny = 2989 file + free <= total_high_wmark && 2990 !(sc->may_deactivate & DEACTIVATE_ANON) && 2991 anon >> sc->priority; 2992 } 2993 2994 shrink_node_memcgs(pgdat, sc); 2995 2996 if (reclaim_state) { 2997 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2998 reclaim_state->reclaimed_slab = 0; 2999 } 3000 3001 /* Record the subtree's reclaim efficiency */ 3002 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 3003 sc->nr_scanned - nr_scanned, 3004 sc->nr_reclaimed - nr_reclaimed); 3005 3006 if (sc->nr_reclaimed - nr_reclaimed) 3007 reclaimable = true; 3008 3009 if (current_is_kswapd()) { 3010 /* 3011 * If reclaim is isolating dirty pages under writeback, 3012 * it implies that the long-lived page allocation rate 3013 * is exceeding the page laundering rate. Either the 3014 * global limits are not being effective at throttling 3015 * processes due to the page distribution throughout 3016 * zones or there is heavy usage of a slow backing 3017 * device. The only option is to throttle from reclaim 3018 * context which is not ideal as there is no guarantee 3019 * the dirtying process is throttled in the same way 3020 * balance_dirty_pages() manages. 3021 * 3022 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 3023 * count the number of pages under pages flagged for 3024 * immediate reclaim and stall if any are encountered 3025 * in the nr_immediate check below. 3026 */ 3027 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 3028 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 3029 3030 /* Allow kswapd to start writing pages during reclaim.*/ 3031 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 3032 set_bit(PGDAT_DIRTY, &pgdat->flags); 3033 3034 /* 3035 * If kswapd scans pages marked for immediate 3036 * reclaim and under writeback (nr_immediate), it 3037 * implies that pages are cycling through the LRU 3038 * faster than they are written so also forcibly stall. 3039 */ 3040 if (sc->nr.immediate) 3041 congestion_wait(BLK_RW_ASYNC, HZ/10); 3042 } 3043 3044 /* 3045 * Tag a node/memcg as congested if all the dirty pages 3046 * scanned were backed by a congested BDI and 3047 * wait_iff_congested will stall. 3048 * 3049 * Legacy memcg will stall in page writeback so avoid forcibly 3050 * stalling in wait_iff_congested(). 3051 */ 3052 if ((current_is_kswapd() || 3053 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 3054 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 3055 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 3056 3057 /* 3058 * Stall direct reclaim for IO completions if underlying BDIs 3059 * and node is congested. Allow kswapd to continue until it 3060 * starts encountering unqueued dirty pages or cycling through 3061 * the LRU too quickly. 3062 */ 3063 if (!current_is_kswapd() && current_may_throttle() && 3064 !sc->hibernation_mode && 3065 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 3066 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 3067 3068 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 3069 sc)) 3070 goto again; 3071 3072 /* 3073 * Kswapd gives up on balancing particular nodes after too 3074 * many failures to reclaim anything from them and goes to 3075 * sleep. On reclaim progress, reset the failure counter. A 3076 * successful direct reclaim run will revive a dormant kswapd. 3077 */ 3078 if (reclaimable) 3079 pgdat->kswapd_failures = 0; 3080 } 3081 3082 /* 3083 * Returns true if compaction should go ahead for a costly-order request, or 3084 * the allocation would already succeed without compaction. Return false if we 3085 * should reclaim first. 3086 */ 3087 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 3088 { 3089 unsigned long watermark; 3090 enum compact_result suitable; 3091 3092 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 3093 if (suitable == COMPACT_SUCCESS) 3094 /* Allocation should succeed already. Don't reclaim. */ 3095 return true; 3096 if (suitable == COMPACT_SKIPPED) 3097 /* Compaction cannot yet proceed. Do reclaim. */ 3098 return false; 3099 3100 /* 3101 * Compaction is already possible, but it takes time to run and there 3102 * are potentially other callers using the pages just freed. So proceed 3103 * with reclaim to make a buffer of free pages available to give 3104 * compaction a reasonable chance of completing and allocating the page. 3105 * Note that we won't actually reclaim the whole buffer in one attempt 3106 * as the target watermark in should_continue_reclaim() is lower. But if 3107 * we are already above the high+gap watermark, don't reclaim at all. 3108 */ 3109 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 3110 3111 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 3112 } 3113 3114 /* 3115 * This is the direct reclaim path, for page-allocating processes. We only 3116 * try to reclaim pages from zones which will satisfy the caller's allocation 3117 * request. 3118 * 3119 * If a zone is deemed to be full of pinned pages then just give it a light 3120 * scan then give up on it. 3121 */ 3122 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 3123 { 3124 struct zoneref *z; 3125 struct zone *zone; 3126 unsigned long nr_soft_reclaimed; 3127 unsigned long nr_soft_scanned; 3128 gfp_t orig_mask; 3129 pg_data_t *last_pgdat = NULL; 3130 3131 /* 3132 * If the number of buffer_heads in the machine exceeds the maximum 3133 * allowed level, force direct reclaim to scan the highmem zone as 3134 * highmem pages could be pinning lowmem pages storing buffer_heads 3135 */ 3136 orig_mask = sc->gfp_mask; 3137 if (buffer_heads_over_limit) { 3138 sc->gfp_mask |= __GFP_HIGHMEM; 3139 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 3140 } 3141 3142 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3143 sc->reclaim_idx, sc->nodemask) { 3144 /* 3145 * Take care memory controller reclaiming has small influence 3146 * to global LRU. 3147 */ 3148 if (!cgroup_reclaim(sc)) { 3149 if (!cpuset_zone_allowed(zone, 3150 GFP_KERNEL | __GFP_HARDWALL)) 3151 continue; 3152 3153 /* 3154 * If we already have plenty of memory free for 3155 * compaction in this zone, don't free any more. 3156 * Even though compaction is invoked for any 3157 * non-zero order, only frequent costly order 3158 * reclamation is disruptive enough to become a 3159 * noticeable problem, like transparent huge 3160 * page allocations. 3161 */ 3162 if (IS_ENABLED(CONFIG_COMPACTION) && 3163 sc->order > PAGE_ALLOC_COSTLY_ORDER && 3164 compaction_ready(zone, sc)) { 3165 sc->compaction_ready = true; 3166 continue; 3167 } 3168 3169 /* 3170 * Shrink each node in the zonelist once. If the 3171 * zonelist is ordered by zone (not the default) then a 3172 * node may be shrunk multiple times but in that case 3173 * the user prefers lower zones being preserved. 3174 */ 3175 if (zone->zone_pgdat == last_pgdat) 3176 continue; 3177 3178 /* 3179 * This steals pages from memory cgroups over softlimit 3180 * and returns the number of reclaimed pages and 3181 * scanned pages. This works for global memory pressure 3182 * and balancing, not for a memcg's limit. 3183 */ 3184 nr_soft_scanned = 0; 3185 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 3186 sc->order, sc->gfp_mask, 3187 &nr_soft_scanned); 3188 sc->nr_reclaimed += nr_soft_reclaimed; 3189 sc->nr_scanned += nr_soft_scanned; 3190 /* need some check for avoid more shrink_zone() */ 3191 } 3192 3193 /* See comment about same check for global reclaim above */ 3194 if (zone->zone_pgdat == last_pgdat) 3195 continue; 3196 last_pgdat = zone->zone_pgdat; 3197 shrink_node(zone->zone_pgdat, sc); 3198 } 3199 3200 /* 3201 * Restore to original mask to avoid the impact on the caller if we 3202 * promoted it to __GFP_HIGHMEM. 3203 */ 3204 sc->gfp_mask = orig_mask; 3205 } 3206 3207 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 3208 { 3209 struct lruvec *target_lruvec; 3210 unsigned long refaults; 3211 3212 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 3213 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 3214 target_lruvec->refaults[0] = refaults; 3215 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 3216 target_lruvec->refaults[1] = refaults; 3217 } 3218 3219 /* 3220 * This is the main entry point to direct page reclaim. 3221 * 3222 * If a full scan of the inactive list fails to free enough memory then we 3223 * are "out of memory" and something needs to be killed. 3224 * 3225 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3226 * high - the zone may be full of dirty or under-writeback pages, which this 3227 * caller can't do much about. We kick the writeback threads and take explicit 3228 * naps in the hope that some of these pages can be written. But if the 3229 * allocating task holds filesystem locks which prevent writeout this might not 3230 * work, and the allocation attempt will fail. 3231 * 3232 * returns: 0, if no pages reclaimed 3233 * else, the number of pages reclaimed 3234 */ 3235 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3236 struct scan_control *sc) 3237 { 3238 int initial_priority = sc->priority; 3239 pg_data_t *last_pgdat; 3240 struct zoneref *z; 3241 struct zone *zone; 3242 retry: 3243 delayacct_freepages_start(); 3244 3245 if (!cgroup_reclaim(sc)) 3246 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3247 3248 do { 3249 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3250 sc->priority); 3251 sc->nr_scanned = 0; 3252 shrink_zones(zonelist, sc); 3253 3254 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3255 break; 3256 3257 if (sc->compaction_ready) 3258 break; 3259 3260 /* 3261 * If we're getting trouble reclaiming, start doing 3262 * writepage even in laptop mode. 3263 */ 3264 if (sc->priority < DEF_PRIORITY - 2) 3265 sc->may_writepage = 1; 3266 } while (--sc->priority >= 0); 3267 3268 last_pgdat = NULL; 3269 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3270 sc->nodemask) { 3271 if (zone->zone_pgdat == last_pgdat) 3272 continue; 3273 last_pgdat = zone->zone_pgdat; 3274 3275 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3276 3277 if (cgroup_reclaim(sc)) { 3278 struct lruvec *lruvec; 3279 3280 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3281 zone->zone_pgdat); 3282 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3283 } 3284 } 3285 3286 delayacct_freepages_end(); 3287 3288 if (sc->nr_reclaimed) 3289 return sc->nr_reclaimed; 3290 3291 /* Aborted reclaim to try compaction? don't OOM, then */ 3292 if (sc->compaction_ready) 3293 return 1; 3294 3295 /* 3296 * We make inactive:active ratio decisions based on the node's 3297 * composition of memory, but a restrictive reclaim_idx or a 3298 * memory.low cgroup setting can exempt large amounts of 3299 * memory from reclaim. Neither of which are very common, so 3300 * instead of doing costly eligibility calculations of the 3301 * entire cgroup subtree up front, we assume the estimates are 3302 * good, and retry with forcible deactivation if that fails. 3303 */ 3304 if (sc->skipped_deactivate) { 3305 sc->priority = initial_priority; 3306 sc->force_deactivate = 1; 3307 sc->skipped_deactivate = 0; 3308 goto retry; 3309 } 3310 3311 /* Untapped cgroup reserves? Don't OOM, retry. */ 3312 if (sc->memcg_low_skipped) { 3313 sc->priority = initial_priority; 3314 sc->force_deactivate = 0; 3315 sc->memcg_low_reclaim = 1; 3316 sc->memcg_low_skipped = 0; 3317 goto retry; 3318 } 3319 3320 return 0; 3321 } 3322 3323 static bool allow_direct_reclaim(pg_data_t *pgdat) 3324 { 3325 struct zone *zone; 3326 unsigned long pfmemalloc_reserve = 0; 3327 unsigned long free_pages = 0; 3328 int i; 3329 bool wmark_ok; 3330 3331 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3332 return true; 3333 3334 for (i = 0; i <= ZONE_NORMAL; i++) { 3335 zone = &pgdat->node_zones[i]; 3336 if (!managed_zone(zone)) 3337 continue; 3338 3339 if (!zone_reclaimable_pages(zone)) 3340 continue; 3341 3342 pfmemalloc_reserve += min_wmark_pages(zone); 3343 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3344 } 3345 3346 /* If there are no reserves (unexpected config) then do not throttle */ 3347 if (!pfmemalloc_reserve) 3348 return true; 3349 3350 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3351 3352 /* kswapd must be awake if processes are being throttled */ 3353 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3354 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 3355 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 3356 3357 wake_up_interruptible(&pgdat->kswapd_wait); 3358 } 3359 3360 return wmark_ok; 3361 } 3362 3363 /* 3364 * Throttle direct reclaimers if backing storage is backed by the network 3365 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3366 * depleted. kswapd will continue to make progress and wake the processes 3367 * when the low watermark is reached. 3368 * 3369 * Returns true if a fatal signal was delivered during throttling. If this 3370 * happens, the page allocator should not consider triggering the OOM killer. 3371 */ 3372 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3373 nodemask_t *nodemask) 3374 { 3375 struct zoneref *z; 3376 struct zone *zone; 3377 pg_data_t *pgdat = NULL; 3378 3379 /* 3380 * Kernel threads should not be throttled as they may be indirectly 3381 * responsible for cleaning pages necessary for reclaim to make forward 3382 * progress. kjournald for example may enter direct reclaim while 3383 * committing a transaction where throttling it could forcing other 3384 * processes to block on log_wait_commit(). 3385 */ 3386 if (current->flags & PF_KTHREAD) 3387 goto out; 3388 3389 /* 3390 * If a fatal signal is pending, this process should not throttle. 3391 * It should return quickly so it can exit and free its memory 3392 */ 3393 if (fatal_signal_pending(current)) 3394 goto out; 3395 3396 /* 3397 * Check if the pfmemalloc reserves are ok by finding the first node 3398 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3399 * GFP_KERNEL will be required for allocating network buffers when 3400 * swapping over the network so ZONE_HIGHMEM is unusable. 3401 * 3402 * Throttling is based on the first usable node and throttled processes 3403 * wait on a queue until kswapd makes progress and wakes them. There 3404 * is an affinity then between processes waking up and where reclaim 3405 * progress has been made assuming the process wakes on the same node. 3406 * More importantly, processes running on remote nodes will not compete 3407 * for remote pfmemalloc reserves and processes on different nodes 3408 * should make reasonable progress. 3409 */ 3410 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3411 gfp_zone(gfp_mask), nodemask) { 3412 if (zone_idx(zone) > ZONE_NORMAL) 3413 continue; 3414 3415 /* Throttle based on the first usable node */ 3416 pgdat = zone->zone_pgdat; 3417 if (allow_direct_reclaim(pgdat)) 3418 goto out; 3419 break; 3420 } 3421 3422 /* If no zone was usable by the allocation flags then do not throttle */ 3423 if (!pgdat) 3424 goto out; 3425 3426 /* Account for the throttling */ 3427 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3428 3429 /* 3430 * If the caller cannot enter the filesystem, it's possible that it 3431 * is due to the caller holding an FS lock or performing a journal 3432 * transaction in the case of a filesystem like ext[3|4]. In this case, 3433 * it is not safe to block on pfmemalloc_wait as kswapd could be 3434 * blocked waiting on the same lock. Instead, throttle for up to a 3435 * second before continuing. 3436 */ 3437 if (!(gfp_mask & __GFP_FS)) { 3438 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3439 allow_direct_reclaim(pgdat), HZ); 3440 3441 goto check_pending; 3442 } 3443 3444 /* Throttle until kswapd wakes the process */ 3445 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3446 allow_direct_reclaim(pgdat)); 3447 3448 check_pending: 3449 if (fatal_signal_pending(current)) 3450 return true; 3451 3452 out: 3453 return false; 3454 } 3455 3456 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3457 gfp_t gfp_mask, nodemask_t *nodemask) 3458 { 3459 unsigned long nr_reclaimed; 3460 struct scan_control sc = { 3461 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3462 .gfp_mask = current_gfp_context(gfp_mask), 3463 .reclaim_idx = gfp_zone(gfp_mask), 3464 .order = order, 3465 .nodemask = nodemask, 3466 .priority = DEF_PRIORITY, 3467 .may_writepage = !laptop_mode, 3468 .may_unmap = 1, 3469 .may_swap = 1, 3470 }; 3471 3472 /* 3473 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3474 * Confirm they are large enough for max values. 3475 */ 3476 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3477 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3478 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3479 3480 /* 3481 * Do not enter reclaim if fatal signal was delivered while throttled. 3482 * 1 is returned so that the page allocator does not OOM kill at this 3483 * point. 3484 */ 3485 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3486 return 1; 3487 3488 set_task_reclaim_state(current, &sc.reclaim_state); 3489 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3490 3491 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3492 3493 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3494 set_task_reclaim_state(current, NULL); 3495 3496 return nr_reclaimed; 3497 } 3498 3499 #ifdef CONFIG_MEMCG 3500 3501 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3502 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3503 gfp_t gfp_mask, bool noswap, 3504 pg_data_t *pgdat, 3505 unsigned long *nr_scanned) 3506 { 3507 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3508 struct scan_control sc = { 3509 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3510 .target_mem_cgroup = memcg, 3511 .may_writepage = !laptop_mode, 3512 .may_unmap = 1, 3513 .reclaim_idx = MAX_NR_ZONES - 1, 3514 .may_swap = !noswap, 3515 }; 3516 3517 WARN_ON_ONCE(!current->reclaim_state); 3518 3519 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3520 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3521 3522 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3523 sc.gfp_mask); 3524 3525 /* 3526 * NOTE: Although we can get the priority field, using it 3527 * here is not a good idea, since it limits the pages we can scan. 3528 * if we don't reclaim here, the shrink_node from balance_pgdat 3529 * will pick up pages from other mem cgroup's as well. We hack 3530 * the priority and make it zero. 3531 */ 3532 shrink_lruvec(lruvec, &sc); 3533 3534 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3535 3536 *nr_scanned = sc.nr_scanned; 3537 3538 return sc.nr_reclaimed; 3539 } 3540 3541 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3542 unsigned long nr_pages, 3543 gfp_t gfp_mask, 3544 bool may_swap) 3545 { 3546 unsigned long nr_reclaimed; 3547 unsigned int noreclaim_flag; 3548 struct scan_control sc = { 3549 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3550 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3551 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3552 .reclaim_idx = MAX_NR_ZONES - 1, 3553 .target_mem_cgroup = memcg, 3554 .priority = DEF_PRIORITY, 3555 .may_writepage = !laptop_mode, 3556 .may_unmap = 1, 3557 .may_swap = may_swap, 3558 }; 3559 /* 3560 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3561 * equal pressure on all the nodes. This is based on the assumption that 3562 * the reclaim does not bail out early. 3563 */ 3564 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3565 3566 set_task_reclaim_state(current, &sc.reclaim_state); 3567 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3568 noreclaim_flag = memalloc_noreclaim_save(); 3569 3570 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3571 3572 memalloc_noreclaim_restore(noreclaim_flag); 3573 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3574 set_task_reclaim_state(current, NULL); 3575 3576 return nr_reclaimed; 3577 } 3578 #endif 3579 3580 static void age_active_anon(struct pglist_data *pgdat, 3581 struct scan_control *sc) 3582 { 3583 struct mem_cgroup *memcg; 3584 struct lruvec *lruvec; 3585 3586 if (!total_swap_pages) 3587 return; 3588 3589 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3590 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3591 return; 3592 3593 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3594 do { 3595 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3596 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3597 sc, LRU_ACTIVE_ANON); 3598 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3599 } while (memcg); 3600 } 3601 3602 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 3603 { 3604 int i; 3605 struct zone *zone; 3606 3607 /* 3608 * Check for watermark boosts top-down as the higher zones 3609 * are more likely to be boosted. Both watermarks and boosts 3610 * should not be checked at the same time as reclaim would 3611 * start prematurely when there is no boosting and a lower 3612 * zone is balanced. 3613 */ 3614 for (i = highest_zoneidx; i >= 0; i--) { 3615 zone = pgdat->node_zones + i; 3616 if (!managed_zone(zone)) 3617 continue; 3618 3619 if (zone->watermark_boost) 3620 return true; 3621 } 3622 3623 return false; 3624 } 3625 3626 /* 3627 * Returns true if there is an eligible zone balanced for the request order 3628 * and highest_zoneidx 3629 */ 3630 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 3631 { 3632 int i; 3633 unsigned long mark = -1; 3634 struct zone *zone; 3635 3636 /* 3637 * Check watermarks bottom-up as lower zones are more likely to 3638 * meet watermarks. 3639 */ 3640 for (i = 0; i <= highest_zoneidx; i++) { 3641 zone = pgdat->node_zones + i; 3642 3643 if (!managed_zone(zone)) 3644 continue; 3645 3646 mark = high_wmark_pages(zone); 3647 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 3648 return true; 3649 } 3650 3651 /* 3652 * If a node has no populated zone within highest_zoneidx, it does not 3653 * need balancing by definition. This can happen if a zone-restricted 3654 * allocation tries to wake a remote kswapd. 3655 */ 3656 if (mark == -1) 3657 return true; 3658 3659 return false; 3660 } 3661 3662 /* Clear pgdat state for congested, dirty or under writeback. */ 3663 static void clear_pgdat_congested(pg_data_t *pgdat) 3664 { 3665 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3666 3667 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3668 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3669 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3670 } 3671 3672 /* 3673 * Prepare kswapd for sleeping. This verifies that there are no processes 3674 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3675 * 3676 * Returns true if kswapd is ready to sleep 3677 */ 3678 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 3679 int highest_zoneidx) 3680 { 3681 /* 3682 * The throttled processes are normally woken up in balance_pgdat() as 3683 * soon as allow_direct_reclaim() is true. But there is a potential 3684 * race between when kswapd checks the watermarks and a process gets 3685 * throttled. There is also a potential race if processes get 3686 * throttled, kswapd wakes, a large process exits thereby balancing the 3687 * zones, which causes kswapd to exit balance_pgdat() before reaching 3688 * the wake up checks. If kswapd is going to sleep, no process should 3689 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3690 * the wake up is premature, processes will wake kswapd and get 3691 * throttled again. The difference from wake ups in balance_pgdat() is 3692 * that here we are under prepare_to_wait(). 3693 */ 3694 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3695 wake_up_all(&pgdat->pfmemalloc_wait); 3696 3697 /* Hopeless node, leave it to direct reclaim */ 3698 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3699 return true; 3700 3701 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 3702 clear_pgdat_congested(pgdat); 3703 return true; 3704 } 3705 3706 return false; 3707 } 3708 3709 /* 3710 * kswapd shrinks a node of pages that are at or below the highest usable 3711 * zone that is currently unbalanced. 3712 * 3713 * Returns true if kswapd scanned at least the requested number of pages to 3714 * reclaim or if the lack of progress was due to pages under writeback. 3715 * This is used to determine if the scanning priority needs to be raised. 3716 */ 3717 static bool kswapd_shrink_node(pg_data_t *pgdat, 3718 struct scan_control *sc) 3719 { 3720 struct zone *zone; 3721 int z; 3722 3723 /* Reclaim a number of pages proportional to the number of zones */ 3724 sc->nr_to_reclaim = 0; 3725 for (z = 0; z <= sc->reclaim_idx; z++) { 3726 zone = pgdat->node_zones + z; 3727 if (!managed_zone(zone)) 3728 continue; 3729 3730 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3731 } 3732 3733 /* 3734 * Historically care was taken to put equal pressure on all zones but 3735 * now pressure is applied based on node LRU order. 3736 */ 3737 shrink_node(pgdat, sc); 3738 3739 /* 3740 * Fragmentation may mean that the system cannot be rebalanced for 3741 * high-order allocations. If twice the allocation size has been 3742 * reclaimed then recheck watermarks only at order-0 to prevent 3743 * excessive reclaim. Assume that a process requested a high-order 3744 * can direct reclaim/compact. 3745 */ 3746 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3747 sc->order = 0; 3748 3749 return sc->nr_scanned >= sc->nr_to_reclaim; 3750 } 3751 3752 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 3753 static inline void 3754 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 3755 { 3756 int i; 3757 struct zone *zone; 3758 3759 for (i = 0; i <= highest_zoneidx; i++) { 3760 zone = pgdat->node_zones + i; 3761 3762 if (!managed_zone(zone)) 3763 continue; 3764 3765 if (active) 3766 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 3767 else 3768 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 3769 } 3770 } 3771 3772 static inline void 3773 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 3774 { 3775 update_reclaim_active(pgdat, highest_zoneidx, true); 3776 } 3777 3778 static inline void 3779 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 3780 { 3781 update_reclaim_active(pgdat, highest_zoneidx, false); 3782 } 3783 3784 /* 3785 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3786 * that are eligible for use by the caller until at least one zone is 3787 * balanced. 3788 * 3789 * Returns the order kswapd finished reclaiming at. 3790 * 3791 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3792 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3793 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3794 * or lower is eligible for reclaim until at least one usable zone is 3795 * balanced. 3796 */ 3797 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 3798 { 3799 int i; 3800 unsigned long nr_soft_reclaimed; 3801 unsigned long nr_soft_scanned; 3802 unsigned long pflags; 3803 unsigned long nr_boost_reclaim; 3804 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3805 bool boosted; 3806 struct zone *zone; 3807 struct scan_control sc = { 3808 .gfp_mask = GFP_KERNEL, 3809 .order = order, 3810 .may_unmap = 1, 3811 }; 3812 3813 set_task_reclaim_state(current, &sc.reclaim_state); 3814 psi_memstall_enter(&pflags); 3815 __fs_reclaim_acquire(); 3816 3817 count_vm_event(PAGEOUTRUN); 3818 3819 /* 3820 * Account for the reclaim boost. Note that the zone boost is left in 3821 * place so that parallel allocations that are near the watermark will 3822 * stall or direct reclaim until kswapd is finished. 3823 */ 3824 nr_boost_reclaim = 0; 3825 for (i = 0; i <= highest_zoneidx; i++) { 3826 zone = pgdat->node_zones + i; 3827 if (!managed_zone(zone)) 3828 continue; 3829 3830 nr_boost_reclaim += zone->watermark_boost; 3831 zone_boosts[i] = zone->watermark_boost; 3832 } 3833 boosted = nr_boost_reclaim; 3834 3835 restart: 3836 set_reclaim_active(pgdat, highest_zoneidx); 3837 sc.priority = DEF_PRIORITY; 3838 do { 3839 unsigned long nr_reclaimed = sc.nr_reclaimed; 3840 bool raise_priority = true; 3841 bool balanced; 3842 bool ret; 3843 3844 sc.reclaim_idx = highest_zoneidx; 3845 3846 /* 3847 * If the number of buffer_heads exceeds the maximum allowed 3848 * then consider reclaiming from all zones. This has a dual 3849 * purpose -- on 64-bit systems it is expected that 3850 * buffer_heads are stripped during active rotation. On 32-bit 3851 * systems, highmem pages can pin lowmem memory and shrinking 3852 * buffers can relieve lowmem pressure. Reclaim may still not 3853 * go ahead if all eligible zones for the original allocation 3854 * request are balanced to avoid excessive reclaim from kswapd. 3855 */ 3856 if (buffer_heads_over_limit) { 3857 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3858 zone = pgdat->node_zones + i; 3859 if (!managed_zone(zone)) 3860 continue; 3861 3862 sc.reclaim_idx = i; 3863 break; 3864 } 3865 } 3866 3867 /* 3868 * If the pgdat is imbalanced then ignore boosting and preserve 3869 * the watermarks for a later time and restart. Note that the 3870 * zone watermarks will be still reset at the end of balancing 3871 * on the grounds that the normal reclaim should be enough to 3872 * re-evaluate if boosting is required when kswapd next wakes. 3873 */ 3874 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 3875 if (!balanced && nr_boost_reclaim) { 3876 nr_boost_reclaim = 0; 3877 goto restart; 3878 } 3879 3880 /* 3881 * If boosting is not active then only reclaim if there are no 3882 * eligible zones. Note that sc.reclaim_idx is not used as 3883 * buffer_heads_over_limit may have adjusted it. 3884 */ 3885 if (!nr_boost_reclaim && balanced) 3886 goto out; 3887 3888 /* Limit the priority of boosting to avoid reclaim writeback */ 3889 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3890 raise_priority = false; 3891 3892 /* 3893 * Do not writeback or swap pages for boosted reclaim. The 3894 * intent is to relieve pressure not issue sub-optimal IO 3895 * from reclaim context. If no pages are reclaimed, the 3896 * reclaim will be aborted. 3897 */ 3898 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3899 sc.may_swap = !nr_boost_reclaim; 3900 3901 /* 3902 * Do some background aging of the anon list, to give 3903 * pages a chance to be referenced before reclaiming. All 3904 * pages are rotated regardless of classzone as this is 3905 * about consistent aging. 3906 */ 3907 age_active_anon(pgdat, &sc); 3908 3909 /* 3910 * If we're getting trouble reclaiming, start doing writepage 3911 * even in laptop mode. 3912 */ 3913 if (sc.priority < DEF_PRIORITY - 2) 3914 sc.may_writepage = 1; 3915 3916 /* Call soft limit reclaim before calling shrink_node. */ 3917 sc.nr_scanned = 0; 3918 nr_soft_scanned = 0; 3919 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3920 sc.gfp_mask, &nr_soft_scanned); 3921 sc.nr_reclaimed += nr_soft_reclaimed; 3922 3923 /* 3924 * There should be no need to raise the scanning priority if 3925 * enough pages are already being scanned that that high 3926 * watermark would be met at 100% efficiency. 3927 */ 3928 if (kswapd_shrink_node(pgdat, &sc)) 3929 raise_priority = false; 3930 3931 /* 3932 * If the low watermark is met there is no need for processes 3933 * to be throttled on pfmemalloc_wait as they should not be 3934 * able to safely make forward progress. Wake them 3935 */ 3936 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3937 allow_direct_reclaim(pgdat)) 3938 wake_up_all(&pgdat->pfmemalloc_wait); 3939 3940 /* Check if kswapd should be suspending */ 3941 __fs_reclaim_release(); 3942 ret = try_to_freeze(); 3943 __fs_reclaim_acquire(); 3944 if (ret || kthread_should_stop()) 3945 break; 3946 3947 /* 3948 * Raise priority if scanning rate is too low or there was no 3949 * progress in reclaiming pages 3950 */ 3951 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3952 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3953 3954 /* 3955 * If reclaim made no progress for a boost, stop reclaim as 3956 * IO cannot be queued and it could be an infinite loop in 3957 * extreme circumstances. 3958 */ 3959 if (nr_boost_reclaim && !nr_reclaimed) 3960 break; 3961 3962 if (raise_priority || !nr_reclaimed) 3963 sc.priority--; 3964 } while (sc.priority >= 1); 3965 3966 if (!sc.nr_reclaimed) 3967 pgdat->kswapd_failures++; 3968 3969 out: 3970 clear_reclaim_active(pgdat, highest_zoneidx); 3971 3972 /* If reclaim was boosted, account for the reclaim done in this pass */ 3973 if (boosted) { 3974 unsigned long flags; 3975 3976 for (i = 0; i <= highest_zoneidx; i++) { 3977 if (!zone_boosts[i]) 3978 continue; 3979 3980 /* Increments are under the zone lock */ 3981 zone = pgdat->node_zones + i; 3982 spin_lock_irqsave(&zone->lock, flags); 3983 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3984 spin_unlock_irqrestore(&zone->lock, flags); 3985 } 3986 3987 /* 3988 * As there is now likely space, wakeup kcompact to defragment 3989 * pageblocks. 3990 */ 3991 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 3992 } 3993 3994 snapshot_refaults(NULL, pgdat); 3995 __fs_reclaim_release(); 3996 psi_memstall_leave(&pflags); 3997 set_task_reclaim_state(current, NULL); 3998 3999 /* 4000 * Return the order kswapd stopped reclaiming at as 4001 * prepare_kswapd_sleep() takes it into account. If another caller 4002 * entered the allocator slow path while kswapd was awake, order will 4003 * remain at the higher level. 4004 */ 4005 return sc.order; 4006 } 4007 4008 /* 4009 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 4010 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 4011 * not a valid index then either kswapd runs for first time or kswapd couldn't 4012 * sleep after previous reclaim attempt (node is still unbalanced). In that 4013 * case return the zone index of the previous kswapd reclaim cycle. 4014 */ 4015 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 4016 enum zone_type prev_highest_zoneidx) 4017 { 4018 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4019 4020 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 4021 } 4022 4023 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 4024 unsigned int highest_zoneidx) 4025 { 4026 long remaining = 0; 4027 DEFINE_WAIT(wait); 4028 4029 if (freezing(current) || kthread_should_stop()) 4030 return; 4031 4032 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4033 4034 /* 4035 * Try to sleep for a short interval. Note that kcompactd will only be 4036 * woken if it is possible to sleep for a short interval. This is 4037 * deliberate on the assumption that if reclaim cannot keep an 4038 * eligible zone balanced that it's also unlikely that compaction will 4039 * succeed. 4040 */ 4041 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4042 /* 4043 * Compaction records what page blocks it recently failed to 4044 * isolate pages from and skips them in the future scanning. 4045 * When kswapd is going to sleep, it is reasonable to assume 4046 * that pages and compaction may succeed so reset the cache. 4047 */ 4048 reset_isolation_suitable(pgdat); 4049 4050 /* 4051 * We have freed the memory, now we should compact it to make 4052 * allocation of the requested order possible. 4053 */ 4054 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 4055 4056 remaining = schedule_timeout(HZ/10); 4057 4058 /* 4059 * If woken prematurely then reset kswapd_highest_zoneidx and 4060 * order. The values will either be from a wakeup request or 4061 * the previous request that slept prematurely. 4062 */ 4063 if (remaining) { 4064 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 4065 kswapd_highest_zoneidx(pgdat, 4066 highest_zoneidx)); 4067 4068 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 4069 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 4070 } 4071 4072 finish_wait(&pgdat->kswapd_wait, &wait); 4073 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4074 } 4075 4076 /* 4077 * After a short sleep, check if it was a premature sleep. If not, then 4078 * go fully to sleep until explicitly woken up. 4079 */ 4080 if (!remaining && 4081 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4082 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 4083 4084 /* 4085 * vmstat counters are not perfectly accurate and the estimated 4086 * value for counters such as NR_FREE_PAGES can deviate from the 4087 * true value by nr_online_cpus * threshold. To avoid the zone 4088 * watermarks being breached while under pressure, we reduce the 4089 * per-cpu vmstat threshold while kswapd is awake and restore 4090 * them before going back to sleep. 4091 */ 4092 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 4093 4094 if (!kthread_should_stop()) 4095 schedule(); 4096 4097 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 4098 } else { 4099 if (remaining) 4100 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 4101 else 4102 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 4103 } 4104 finish_wait(&pgdat->kswapd_wait, &wait); 4105 } 4106 4107 /* 4108 * The background pageout daemon, started as a kernel thread 4109 * from the init process. 4110 * 4111 * This basically trickles out pages so that we have _some_ 4112 * free memory available even if there is no other activity 4113 * that frees anything up. This is needed for things like routing 4114 * etc, where we otherwise might have all activity going on in 4115 * asynchronous contexts that cannot page things out. 4116 * 4117 * If there are applications that are active memory-allocators 4118 * (most normal use), this basically shouldn't matter. 4119 */ 4120 static int kswapd(void *p) 4121 { 4122 unsigned int alloc_order, reclaim_order; 4123 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 4124 pg_data_t *pgdat = (pg_data_t *)p; 4125 struct task_struct *tsk = current; 4126 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 4127 4128 if (!cpumask_empty(cpumask)) 4129 set_cpus_allowed_ptr(tsk, cpumask); 4130 4131 /* 4132 * Tell the memory management that we're a "memory allocator", 4133 * and that if we need more memory we should get access to it 4134 * regardless (see "__alloc_pages()"). "kswapd" should 4135 * never get caught in the normal page freeing logic. 4136 * 4137 * (Kswapd normally doesn't need memory anyway, but sometimes 4138 * you need a small amount of memory in order to be able to 4139 * page out something else, and this flag essentially protects 4140 * us from recursively trying to free more memory as we're 4141 * trying to free the first piece of memory in the first place). 4142 */ 4143 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 4144 set_freezable(); 4145 4146 WRITE_ONCE(pgdat->kswapd_order, 0); 4147 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4148 for ( ; ; ) { 4149 bool ret; 4150 4151 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 4152 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4153 highest_zoneidx); 4154 4155 kswapd_try_sleep: 4156 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 4157 highest_zoneidx); 4158 4159 /* Read the new order and highest_zoneidx */ 4160 alloc_order = READ_ONCE(pgdat->kswapd_order); 4161 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4162 highest_zoneidx); 4163 WRITE_ONCE(pgdat->kswapd_order, 0); 4164 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4165 4166 ret = try_to_freeze(); 4167 if (kthread_should_stop()) 4168 break; 4169 4170 /* 4171 * We can speed up thawing tasks if we don't call balance_pgdat 4172 * after returning from the refrigerator 4173 */ 4174 if (ret) 4175 continue; 4176 4177 /* 4178 * Reclaim begins at the requested order but if a high-order 4179 * reclaim fails then kswapd falls back to reclaiming for 4180 * order-0. If that happens, kswapd will consider sleeping 4181 * for the order it finished reclaiming at (reclaim_order) 4182 * but kcompactd is woken to compact for the original 4183 * request (alloc_order). 4184 */ 4185 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 4186 alloc_order); 4187 reclaim_order = balance_pgdat(pgdat, alloc_order, 4188 highest_zoneidx); 4189 if (reclaim_order < alloc_order) 4190 goto kswapd_try_sleep; 4191 } 4192 4193 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 4194 4195 return 0; 4196 } 4197 4198 /* 4199 * A zone is low on free memory or too fragmented for high-order memory. If 4200 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 4201 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 4202 * has failed or is not needed, still wake up kcompactd if only compaction is 4203 * needed. 4204 */ 4205 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 4206 enum zone_type highest_zoneidx) 4207 { 4208 pg_data_t *pgdat; 4209 enum zone_type curr_idx; 4210 4211 if (!managed_zone(zone)) 4212 return; 4213 4214 if (!cpuset_zone_allowed(zone, gfp_flags)) 4215 return; 4216 4217 pgdat = zone->zone_pgdat; 4218 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4219 4220 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 4221 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 4222 4223 if (READ_ONCE(pgdat->kswapd_order) < order) 4224 WRITE_ONCE(pgdat->kswapd_order, order); 4225 4226 if (!waitqueue_active(&pgdat->kswapd_wait)) 4227 return; 4228 4229 /* Hopeless node, leave it to direct reclaim if possible */ 4230 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 4231 (pgdat_balanced(pgdat, order, highest_zoneidx) && 4232 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 4233 /* 4234 * There may be plenty of free memory available, but it's too 4235 * fragmented for high-order allocations. Wake up kcompactd 4236 * and rely on compaction_suitable() to determine if it's 4237 * needed. If it fails, it will defer subsequent attempts to 4238 * ratelimit its work. 4239 */ 4240 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 4241 wakeup_kcompactd(pgdat, order, highest_zoneidx); 4242 return; 4243 } 4244 4245 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 4246 gfp_flags); 4247 wake_up_interruptible(&pgdat->kswapd_wait); 4248 } 4249 4250 #ifdef CONFIG_HIBERNATION 4251 /* 4252 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 4253 * freed pages. 4254 * 4255 * Rather than trying to age LRUs the aim is to preserve the overall 4256 * LRU order by reclaiming preferentially 4257 * inactive > active > active referenced > active mapped 4258 */ 4259 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4260 { 4261 struct scan_control sc = { 4262 .nr_to_reclaim = nr_to_reclaim, 4263 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4264 .reclaim_idx = MAX_NR_ZONES - 1, 4265 .priority = DEF_PRIORITY, 4266 .may_writepage = 1, 4267 .may_unmap = 1, 4268 .may_swap = 1, 4269 .hibernation_mode = 1, 4270 }; 4271 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4272 unsigned long nr_reclaimed; 4273 unsigned int noreclaim_flag; 4274 4275 fs_reclaim_acquire(sc.gfp_mask); 4276 noreclaim_flag = memalloc_noreclaim_save(); 4277 set_task_reclaim_state(current, &sc.reclaim_state); 4278 4279 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4280 4281 set_task_reclaim_state(current, NULL); 4282 memalloc_noreclaim_restore(noreclaim_flag); 4283 fs_reclaim_release(sc.gfp_mask); 4284 4285 return nr_reclaimed; 4286 } 4287 #endif /* CONFIG_HIBERNATION */ 4288 4289 /* 4290 * This kswapd start function will be called by init and node-hot-add. 4291 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4292 */ 4293 int kswapd_run(int nid) 4294 { 4295 pg_data_t *pgdat = NODE_DATA(nid); 4296 int ret = 0; 4297 4298 if (pgdat->kswapd) 4299 return 0; 4300 4301 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4302 if (IS_ERR(pgdat->kswapd)) { 4303 /* failure at boot is fatal */ 4304 BUG_ON(system_state < SYSTEM_RUNNING); 4305 pr_err("Failed to start kswapd on node %d\n", nid); 4306 ret = PTR_ERR(pgdat->kswapd); 4307 pgdat->kswapd = NULL; 4308 } 4309 return ret; 4310 } 4311 4312 /* 4313 * Called by memory hotplug when all memory in a node is offlined. Caller must 4314 * hold mem_hotplug_begin/end(). 4315 */ 4316 void kswapd_stop(int nid) 4317 { 4318 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4319 4320 if (kswapd) { 4321 kthread_stop(kswapd); 4322 NODE_DATA(nid)->kswapd = NULL; 4323 } 4324 } 4325 4326 static int __init kswapd_init(void) 4327 { 4328 int nid; 4329 4330 swap_setup(); 4331 for_each_node_state(nid, N_MEMORY) 4332 kswapd_run(nid); 4333 return 0; 4334 } 4335 4336 module_init(kswapd_init) 4337 4338 #ifdef CONFIG_NUMA 4339 /* 4340 * Node reclaim mode 4341 * 4342 * If non-zero call node_reclaim when the number of free pages falls below 4343 * the watermarks. 4344 */ 4345 int node_reclaim_mode __read_mostly; 4346 4347 /* 4348 * Priority for NODE_RECLAIM. This determines the fraction of pages 4349 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4350 * a zone. 4351 */ 4352 #define NODE_RECLAIM_PRIORITY 4 4353 4354 /* 4355 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4356 * occur. 4357 */ 4358 int sysctl_min_unmapped_ratio = 1; 4359 4360 /* 4361 * If the number of slab pages in a zone grows beyond this percentage then 4362 * slab reclaim needs to occur. 4363 */ 4364 int sysctl_min_slab_ratio = 5; 4365 4366 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4367 { 4368 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4369 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4370 node_page_state(pgdat, NR_ACTIVE_FILE); 4371 4372 /* 4373 * It's possible for there to be more file mapped pages than 4374 * accounted for by the pages on the file LRU lists because 4375 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4376 */ 4377 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4378 } 4379 4380 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4381 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4382 { 4383 unsigned long nr_pagecache_reclaimable; 4384 unsigned long delta = 0; 4385 4386 /* 4387 * If RECLAIM_UNMAP is set, then all file pages are considered 4388 * potentially reclaimable. Otherwise, we have to worry about 4389 * pages like swapcache and node_unmapped_file_pages() provides 4390 * a better estimate 4391 */ 4392 if (node_reclaim_mode & RECLAIM_UNMAP) 4393 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4394 else 4395 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4396 4397 /* If we can't clean pages, remove dirty pages from consideration */ 4398 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4399 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4400 4401 /* Watch for any possible underflows due to delta */ 4402 if (unlikely(delta > nr_pagecache_reclaimable)) 4403 delta = nr_pagecache_reclaimable; 4404 4405 return nr_pagecache_reclaimable - delta; 4406 } 4407 4408 /* 4409 * Try to free up some pages from this node through reclaim. 4410 */ 4411 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4412 { 4413 /* Minimum pages needed in order to stay on node */ 4414 const unsigned long nr_pages = 1 << order; 4415 struct task_struct *p = current; 4416 unsigned int noreclaim_flag; 4417 struct scan_control sc = { 4418 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4419 .gfp_mask = current_gfp_context(gfp_mask), 4420 .order = order, 4421 .priority = NODE_RECLAIM_PRIORITY, 4422 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4423 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4424 .may_swap = 1, 4425 .reclaim_idx = gfp_zone(gfp_mask), 4426 }; 4427 unsigned long pflags; 4428 4429 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4430 sc.gfp_mask); 4431 4432 cond_resched(); 4433 psi_memstall_enter(&pflags); 4434 fs_reclaim_acquire(sc.gfp_mask); 4435 /* 4436 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4437 * and we also need to be able to write out pages for RECLAIM_WRITE 4438 * and RECLAIM_UNMAP. 4439 */ 4440 noreclaim_flag = memalloc_noreclaim_save(); 4441 p->flags |= PF_SWAPWRITE; 4442 set_task_reclaim_state(p, &sc.reclaim_state); 4443 4444 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4445 /* 4446 * Free memory by calling shrink node with increasing 4447 * priorities until we have enough memory freed. 4448 */ 4449 do { 4450 shrink_node(pgdat, &sc); 4451 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4452 } 4453 4454 set_task_reclaim_state(p, NULL); 4455 current->flags &= ~PF_SWAPWRITE; 4456 memalloc_noreclaim_restore(noreclaim_flag); 4457 fs_reclaim_release(sc.gfp_mask); 4458 psi_memstall_leave(&pflags); 4459 4460 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4461 4462 return sc.nr_reclaimed >= nr_pages; 4463 } 4464 4465 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4466 { 4467 int ret; 4468 4469 /* 4470 * Node reclaim reclaims unmapped file backed pages and 4471 * slab pages if we are over the defined limits. 4472 * 4473 * A small portion of unmapped file backed pages is needed for 4474 * file I/O otherwise pages read by file I/O will be immediately 4475 * thrown out if the node is overallocated. So we do not reclaim 4476 * if less than a specified percentage of the node is used by 4477 * unmapped file backed pages. 4478 */ 4479 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4480 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 4481 pgdat->min_slab_pages) 4482 return NODE_RECLAIM_FULL; 4483 4484 /* 4485 * Do not scan if the allocation should not be delayed. 4486 */ 4487 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4488 return NODE_RECLAIM_NOSCAN; 4489 4490 /* 4491 * Only run node reclaim on the local node or on nodes that do not 4492 * have associated processors. This will favor the local processor 4493 * over remote processors and spread off node memory allocations 4494 * as wide as possible. 4495 */ 4496 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4497 return NODE_RECLAIM_NOSCAN; 4498 4499 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4500 return NODE_RECLAIM_NOSCAN; 4501 4502 ret = __node_reclaim(pgdat, gfp_mask, order); 4503 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4504 4505 if (!ret) 4506 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4507 4508 return ret; 4509 } 4510 #endif 4511 4512 /** 4513 * check_move_unevictable_pages - check pages for evictability and move to 4514 * appropriate zone lru list 4515 * @pvec: pagevec with lru pages to check 4516 * 4517 * Checks pages for evictability, if an evictable page is in the unevictable 4518 * lru list, moves it to the appropriate evictable lru list. This function 4519 * should be only used for lru pages. 4520 */ 4521 void check_move_unevictable_pages(struct pagevec *pvec) 4522 { 4523 struct lruvec *lruvec = NULL; 4524 int pgscanned = 0; 4525 int pgrescued = 0; 4526 int i; 4527 4528 for (i = 0; i < pvec->nr; i++) { 4529 struct page *page = pvec->pages[i]; 4530 int nr_pages; 4531 4532 if (PageTransTail(page)) 4533 continue; 4534 4535 nr_pages = thp_nr_pages(page); 4536 pgscanned += nr_pages; 4537 4538 /* block memcg migration during page moving between lru */ 4539 if (!TestClearPageLRU(page)) 4540 continue; 4541 4542 lruvec = relock_page_lruvec_irq(page, lruvec); 4543 if (page_evictable(page) && PageUnevictable(page)) { 4544 del_page_from_lru_list(page, lruvec); 4545 ClearPageUnevictable(page); 4546 add_page_to_lru_list(page, lruvec); 4547 pgrescued += nr_pages; 4548 } 4549 SetPageLRU(page); 4550 } 4551 4552 if (lruvec) { 4553 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4554 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4555 unlock_page_lruvec_irq(lruvec); 4556 } else if (pgscanned) { 4557 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4558 } 4559 } 4560 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4561