xref: /linux/mm/vmscan.c (revision 033b5650010652c069494df58424c4b98412fe3b)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46 
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49 
50 #include <linux/swapops.h>
51 
52 #include "internal.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56 
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *			page from the LRU and reclaim all pages within a
64  *			naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *			order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74 
75 struct scan_control {
76 	/* Incremented by the number of inactive pages that were scanned */
77 	unsigned long nr_scanned;
78 
79 	/* Number of pages freed so far during a call to shrink_zones() */
80 	unsigned long nr_reclaimed;
81 
82 	/* How many pages shrink_list() should reclaim */
83 	unsigned long nr_to_reclaim;
84 
85 	unsigned long hibernation_mode;
86 
87 	/* This context's GFP mask */
88 	gfp_t gfp_mask;
89 
90 	int may_writepage;
91 
92 	/* Can mapped pages be reclaimed? */
93 	int may_unmap;
94 
95 	/* Can pages be swapped as part of reclaim? */
96 	int may_swap;
97 
98 	int swappiness;
99 
100 	int order;
101 
102 	/*
103 	 * Intend to reclaim enough continuous memory rather than reclaim
104 	 * enough amount of memory. i.e, mode for high order allocation.
105 	 */
106 	reclaim_mode_t reclaim_mode;
107 
108 	/* Which cgroup do we reclaim from */
109 	struct mem_cgroup *mem_cgroup;
110 
111 	/*
112 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
113 	 * are scanned.
114 	 */
115 	nodemask_t	*nodemask;
116 };
117 
118 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
119 
120 #ifdef ARCH_HAS_PREFETCH
121 #define prefetch_prev_lru_page(_page, _base, _field)			\
122 	do {								\
123 		if ((_page)->lru.prev != _base) {			\
124 			struct page *prev;				\
125 									\
126 			prev = lru_to_page(&(_page->lru));		\
127 			prefetch(&prev->_field);			\
128 		}							\
129 	} while (0)
130 #else
131 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132 #endif
133 
134 #ifdef ARCH_HAS_PREFETCHW
135 #define prefetchw_prev_lru_page(_page, _base, _field)			\
136 	do {								\
137 		if ((_page)->lru.prev != _base) {			\
138 			struct page *prev;				\
139 									\
140 			prev = lru_to_page(&(_page->lru));		\
141 			prefetchw(&prev->_field);			\
142 		}							\
143 	} while (0)
144 #else
145 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146 #endif
147 
148 /*
149  * From 0 .. 100.  Higher means more swappy.
150  */
151 int vm_swappiness = 60;
152 long vm_total_pages;	/* The total number of pages which the VM controls */
153 
154 static LIST_HEAD(shrinker_list);
155 static DECLARE_RWSEM(shrinker_rwsem);
156 
157 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
158 #define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
159 #else
160 #define scanning_global_lru(sc)	(1)
161 #endif
162 
163 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
164 						  struct scan_control *sc)
165 {
166 	if (!scanning_global_lru(sc))
167 		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
168 
169 	return &zone->reclaim_stat;
170 }
171 
172 static unsigned long zone_nr_lru_pages(struct zone *zone,
173 				struct scan_control *sc, enum lru_list lru)
174 {
175 	if (!scanning_global_lru(sc))
176 		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup, zone, lru);
177 
178 	return zone_page_state(zone, NR_LRU_BASE + lru);
179 }
180 
181 
182 /*
183  * Add a shrinker callback to be called from the vm
184  */
185 void register_shrinker(struct shrinker *shrinker)
186 {
187 	shrinker->nr = 0;
188 	down_write(&shrinker_rwsem);
189 	list_add_tail(&shrinker->list, &shrinker_list);
190 	up_write(&shrinker_rwsem);
191 }
192 EXPORT_SYMBOL(register_shrinker);
193 
194 /*
195  * Remove one
196  */
197 void unregister_shrinker(struct shrinker *shrinker)
198 {
199 	down_write(&shrinker_rwsem);
200 	list_del(&shrinker->list);
201 	up_write(&shrinker_rwsem);
202 }
203 EXPORT_SYMBOL(unregister_shrinker);
204 
205 static inline int do_shrinker_shrink(struct shrinker *shrinker,
206 				     struct shrink_control *sc,
207 				     unsigned long nr_to_scan)
208 {
209 	sc->nr_to_scan = nr_to_scan;
210 	return (*shrinker->shrink)(shrinker, sc);
211 }
212 
213 #define SHRINK_BATCH 128
214 /*
215  * Call the shrink functions to age shrinkable caches
216  *
217  * Here we assume it costs one seek to replace a lru page and that it also
218  * takes a seek to recreate a cache object.  With this in mind we age equal
219  * percentages of the lru and ageable caches.  This should balance the seeks
220  * generated by these structures.
221  *
222  * If the vm encountered mapped pages on the LRU it increase the pressure on
223  * slab to avoid swapping.
224  *
225  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
226  *
227  * `lru_pages' represents the number of on-LRU pages in all the zones which
228  * are eligible for the caller's allocation attempt.  It is used for balancing
229  * slab reclaim versus page reclaim.
230  *
231  * Returns the number of slab objects which we shrunk.
232  */
233 unsigned long shrink_slab(struct shrink_control *shrink,
234 			  unsigned long nr_pages_scanned,
235 			  unsigned long lru_pages)
236 {
237 	struct shrinker *shrinker;
238 	unsigned long ret = 0;
239 
240 	if (nr_pages_scanned == 0)
241 		nr_pages_scanned = SWAP_CLUSTER_MAX;
242 
243 	if (!down_read_trylock(&shrinker_rwsem)) {
244 		/* Assume we'll be able to shrink next time */
245 		ret = 1;
246 		goto out;
247 	}
248 
249 	list_for_each_entry(shrinker, &shrinker_list, list) {
250 		unsigned long long delta;
251 		unsigned long total_scan;
252 		unsigned long max_pass;
253 
254 		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
255 		delta = (4 * nr_pages_scanned) / shrinker->seeks;
256 		delta *= max_pass;
257 		do_div(delta, lru_pages + 1);
258 		shrinker->nr += delta;
259 		if (shrinker->nr < 0) {
260 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
261 			       "delete nr=%ld\n",
262 			       shrinker->shrink, shrinker->nr);
263 			shrinker->nr = max_pass;
264 		}
265 
266 		/*
267 		 * Avoid risking looping forever due to too large nr value:
268 		 * never try to free more than twice the estimate number of
269 		 * freeable entries.
270 		 */
271 		if (shrinker->nr > max_pass * 2)
272 			shrinker->nr = max_pass * 2;
273 
274 		total_scan = shrinker->nr;
275 		shrinker->nr = 0;
276 
277 		while (total_scan >= SHRINK_BATCH) {
278 			long this_scan = SHRINK_BATCH;
279 			int shrink_ret;
280 			int nr_before;
281 
282 			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
283 			shrink_ret = do_shrinker_shrink(shrinker, shrink,
284 							this_scan);
285 			if (shrink_ret == -1)
286 				break;
287 			if (shrink_ret < nr_before)
288 				ret += nr_before - shrink_ret;
289 			count_vm_events(SLABS_SCANNED, this_scan);
290 			total_scan -= this_scan;
291 
292 			cond_resched();
293 		}
294 
295 		shrinker->nr += total_scan;
296 	}
297 	up_read(&shrinker_rwsem);
298 out:
299 	cond_resched();
300 	return ret;
301 }
302 
303 static void set_reclaim_mode(int priority, struct scan_control *sc,
304 				   bool sync)
305 {
306 	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
307 
308 	/*
309 	 * Initially assume we are entering either lumpy reclaim or
310 	 * reclaim/compaction.Depending on the order, we will either set the
311 	 * sync mode or just reclaim order-0 pages later.
312 	 */
313 	if (COMPACTION_BUILD)
314 		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
315 	else
316 		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
317 
318 	/*
319 	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
320 	 * restricting when its set to either costly allocations or when
321 	 * under memory pressure
322 	 */
323 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
324 		sc->reclaim_mode |= syncmode;
325 	else if (sc->order && priority < DEF_PRIORITY - 2)
326 		sc->reclaim_mode |= syncmode;
327 	else
328 		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
329 }
330 
331 static void reset_reclaim_mode(struct scan_control *sc)
332 {
333 	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
334 }
335 
336 static inline int is_page_cache_freeable(struct page *page)
337 {
338 	/*
339 	 * A freeable page cache page is referenced only by the caller
340 	 * that isolated the page, the page cache radix tree and
341 	 * optional buffer heads at page->private.
342 	 */
343 	return page_count(page) - page_has_private(page) == 2;
344 }
345 
346 static int may_write_to_queue(struct backing_dev_info *bdi,
347 			      struct scan_control *sc)
348 {
349 	if (current->flags & PF_SWAPWRITE)
350 		return 1;
351 	if (!bdi_write_congested(bdi))
352 		return 1;
353 	if (bdi == current->backing_dev_info)
354 		return 1;
355 
356 	/* lumpy reclaim for hugepage often need a lot of write */
357 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
358 		return 1;
359 	return 0;
360 }
361 
362 /*
363  * We detected a synchronous write error writing a page out.  Probably
364  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
365  * fsync(), msync() or close().
366  *
367  * The tricky part is that after writepage we cannot touch the mapping: nothing
368  * prevents it from being freed up.  But we have a ref on the page and once
369  * that page is locked, the mapping is pinned.
370  *
371  * We're allowed to run sleeping lock_page() here because we know the caller has
372  * __GFP_FS.
373  */
374 static void handle_write_error(struct address_space *mapping,
375 				struct page *page, int error)
376 {
377 	lock_page(page);
378 	if (page_mapping(page) == mapping)
379 		mapping_set_error(mapping, error);
380 	unlock_page(page);
381 }
382 
383 /* possible outcome of pageout() */
384 typedef enum {
385 	/* failed to write page out, page is locked */
386 	PAGE_KEEP,
387 	/* move page to the active list, page is locked */
388 	PAGE_ACTIVATE,
389 	/* page has been sent to the disk successfully, page is unlocked */
390 	PAGE_SUCCESS,
391 	/* page is clean and locked */
392 	PAGE_CLEAN,
393 } pageout_t;
394 
395 /*
396  * pageout is called by shrink_page_list() for each dirty page.
397  * Calls ->writepage().
398  */
399 static pageout_t pageout(struct page *page, struct address_space *mapping,
400 			 struct scan_control *sc)
401 {
402 	/*
403 	 * If the page is dirty, only perform writeback if that write
404 	 * will be non-blocking.  To prevent this allocation from being
405 	 * stalled by pagecache activity.  But note that there may be
406 	 * stalls if we need to run get_block().  We could test
407 	 * PagePrivate for that.
408 	 *
409 	 * If this process is currently in __generic_file_aio_write() against
410 	 * this page's queue, we can perform writeback even if that
411 	 * will block.
412 	 *
413 	 * If the page is swapcache, write it back even if that would
414 	 * block, for some throttling. This happens by accident, because
415 	 * swap_backing_dev_info is bust: it doesn't reflect the
416 	 * congestion state of the swapdevs.  Easy to fix, if needed.
417 	 */
418 	if (!is_page_cache_freeable(page))
419 		return PAGE_KEEP;
420 	if (!mapping) {
421 		/*
422 		 * Some data journaling orphaned pages can have
423 		 * page->mapping == NULL while being dirty with clean buffers.
424 		 */
425 		if (page_has_private(page)) {
426 			if (try_to_free_buffers(page)) {
427 				ClearPageDirty(page);
428 				printk("%s: orphaned page\n", __func__);
429 				return PAGE_CLEAN;
430 			}
431 		}
432 		return PAGE_KEEP;
433 	}
434 	if (mapping->a_ops->writepage == NULL)
435 		return PAGE_ACTIVATE;
436 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
437 		return PAGE_KEEP;
438 
439 	if (clear_page_dirty_for_io(page)) {
440 		int res;
441 		struct writeback_control wbc = {
442 			.sync_mode = WB_SYNC_NONE,
443 			.nr_to_write = SWAP_CLUSTER_MAX,
444 			.range_start = 0,
445 			.range_end = LLONG_MAX,
446 			.for_reclaim = 1,
447 		};
448 
449 		SetPageReclaim(page);
450 		res = mapping->a_ops->writepage(page, &wbc);
451 		if (res < 0)
452 			handle_write_error(mapping, page, res);
453 		if (res == AOP_WRITEPAGE_ACTIVATE) {
454 			ClearPageReclaim(page);
455 			return PAGE_ACTIVATE;
456 		}
457 
458 		/*
459 		 * Wait on writeback if requested to. This happens when
460 		 * direct reclaiming a large contiguous area and the
461 		 * first attempt to free a range of pages fails.
462 		 */
463 		if (PageWriteback(page) &&
464 		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
465 			wait_on_page_writeback(page);
466 
467 		if (!PageWriteback(page)) {
468 			/* synchronous write or broken a_ops? */
469 			ClearPageReclaim(page);
470 		}
471 		trace_mm_vmscan_writepage(page,
472 			trace_reclaim_flags(page, sc->reclaim_mode));
473 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
474 		return PAGE_SUCCESS;
475 	}
476 
477 	return PAGE_CLEAN;
478 }
479 
480 /*
481  * Same as remove_mapping, but if the page is removed from the mapping, it
482  * gets returned with a refcount of 0.
483  */
484 static int __remove_mapping(struct address_space *mapping, struct page *page)
485 {
486 	BUG_ON(!PageLocked(page));
487 	BUG_ON(mapping != page_mapping(page));
488 
489 	spin_lock_irq(&mapping->tree_lock);
490 	/*
491 	 * The non racy check for a busy page.
492 	 *
493 	 * Must be careful with the order of the tests. When someone has
494 	 * a ref to the page, it may be possible that they dirty it then
495 	 * drop the reference. So if PageDirty is tested before page_count
496 	 * here, then the following race may occur:
497 	 *
498 	 * get_user_pages(&page);
499 	 * [user mapping goes away]
500 	 * write_to(page);
501 	 *				!PageDirty(page)    [good]
502 	 * SetPageDirty(page);
503 	 * put_page(page);
504 	 *				!page_count(page)   [good, discard it]
505 	 *
506 	 * [oops, our write_to data is lost]
507 	 *
508 	 * Reversing the order of the tests ensures such a situation cannot
509 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
510 	 * load is not satisfied before that of page->_count.
511 	 *
512 	 * Note that if SetPageDirty is always performed via set_page_dirty,
513 	 * and thus under tree_lock, then this ordering is not required.
514 	 */
515 	if (!page_freeze_refs(page, 2))
516 		goto cannot_free;
517 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
518 	if (unlikely(PageDirty(page))) {
519 		page_unfreeze_refs(page, 2);
520 		goto cannot_free;
521 	}
522 
523 	if (PageSwapCache(page)) {
524 		swp_entry_t swap = { .val = page_private(page) };
525 		__delete_from_swap_cache(page);
526 		spin_unlock_irq(&mapping->tree_lock);
527 		swapcache_free(swap, page);
528 	} else {
529 		void (*freepage)(struct page *);
530 
531 		freepage = mapping->a_ops->freepage;
532 
533 		__delete_from_page_cache(page);
534 		spin_unlock_irq(&mapping->tree_lock);
535 		mem_cgroup_uncharge_cache_page(page);
536 
537 		if (freepage != NULL)
538 			freepage(page);
539 	}
540 
541 	return 1;
542 
543 cannot_free:
544 	spin_unlock_irq(&mapping->tree_lock);
545 	return 0;
546 }
547 
548 /*
549  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
550  * someone else has a ref on the page, abort and return 0.  If it was
551  * successfully detached, return 1.  Assumes the caller has a single ref on
552  * this page.
553  */
554 int remove_mapping(struct address_space *mapping, struct page *page)
555 {
556 	if (__remove_mapping(mapping, page)) {
557 		/*
558 		 * Unfreezing the refcount with 1 rather than 2 effectively
559 		 * drops the pagecache ref for us without requiring another
560 		 * atomic operation.
561 		 */
562 		page_unfreeze_refs(page, 1);
563 		return 1;
564 	}
565 	return 0;
566 }
567 
568 /**
569  * putback_lru_page - put previously isolated page onto appropriate LRU list
570  * @page: page to be put back to appropriate lru list
571  *
572  * Add previously isolated @page to appropriate LRU list.
573  * Page may still be unevictable for other reasons.
574  *
575  * lru_lock must not be held, interrupts must be enabled.
576  */
577 void putback_lru_page(struct page *page)
578 {
579 	int lru;
580 	int active = !!TestClearPageActive(page);
581 	int was_unevictable = PageUnevictable(page);
582 
583 	VM_BUG_ON(PageLRU(page));
584 
585 redo:
586 	ClearPageUnevictable(page);
587 
588 	if (page_evictable(page, NULL)) {
589 		/*
590 		 * For evictable pages, we can use the cache.
591 		 * In event of a race, worst case is we end up with an
592 		 * unevictable page on [in]active list.
593 		 * We know how to handle that.
594 		 */
595 		lru = active + page_lru_base_type(page);
596 		lru_cache_add_lru(page, lru);
597 	} else {
598 		/*
599 		 * Put unevictable pages directly on zone's unevictable
600 		 * list.
601 		 */
602 		lru = LRU_UNEVICTABLE;
603 		add_page_to_unevictable_list(page);
604 		/*
605 		 * When racing with an mlock clearing (page is
606 		 * unlocked), make sure that if the other thread does
607 		 * not observe our setting of PG_lru and fails
608 		 * isolation, we see PG_mlocked cleared below and move
609 		 * the page back to the evictable list.
610 		 *
611 		 * The other side is TestClearPageMlocked().
612 		 */
613 		smp_mb();
614 	}
615 
616 	/*
617 	 * page's status can change while we move it among lru. If an evictable
618 	 * page is on unevictable list, it never be freed. To avoid that,
619 	 * check after we added it to the list, again.
620 	 */
621 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
622 		if (!isolate_lru_page(page)) {
623 			put_page(page);
624 			goto redo;
625 		}
626 		/* This means someone else dropped this page from LRU
627 		 * So, it will be freed or putback to LRU again. There is
628 		 * nothing to do here.
629 		 */
630 	}
631 
632 	if (was_unevictable && lru != LRU_UNEVICTABLE)
633 		count_vm_event(UNEVICTABLE_PGRESCUED);
634 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
635 		count_vm_event(UNEVICTABLE_PGCULLED);
636 
637 	put_page(page);		/* drop ref from isolate */
638 }
639 
640 enum page_references {
641 	PAGEREF_RECLAIM,
642 	PAGEREF_RECLAIM_CLEAN,
643 	PAGEREF_KEEP,
644 	PAGEREF_ACTIVATE,
645 };
646 
647 static enum page_references page_check_references(struct page *page,
648 						  struct scan_control *sc)
649 {
650 	int referenced_ptes, referenced_page;
651 	unsigned long vm_flags;
652 
653 	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
654 	referenced_page = TestClearPageReferenced(page);
655 
656 	/* Lumpy reclaim - ignore references */
657 	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
658 		return PAGEREF_RECLAIM;
659 
660 	/*
661 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
662 	 * move the page to the unevictable list.
663 	 */
664 	if (vm_flags & VM_LOCKED)
665 		return PAGEREF_RECLAIM;
666 
667 	if (referenced_ptes) {
668 		if (PageAnon(page))
669 			return PAGEREF_ACTIVATE;
670 		/*
671 		 * All mapped pages start out with page table
672 		 * references from the instantiating fault, so we need
673 		 * to look twice if a mapped file page is used more
674 		 * than once.
675 		 *
676 		 * Mark it and spare it for another trip around the
677 		 * inactive list.  Another page table reference will
678 		 * lead to its activation.
679 		 *
680 		 * Note: the mark is set for activated pages as well
681 		 * so that recently deactivated but used pages are
682 		 * quickly recovered.
683 		 */
684 		SetPageReferenced(page);
685 
686 		if (referenced_page)
687 			return PAGEREF_ACTIVATE;
688 
689 		return PAGEREF_KEEP;
690 	}
691 
692 	/* Reclaim if clean, defer dirty pages to writeback */
693 	if (referenced_page && !PageSwapBacked(page))
694 		return PAGEREF_RECLAIM_CLEAN;
695 
696 	return PAGEREF_RECLAIM;
697 }
698 
699 static noinline_for_stack void free_page_list(struct list_head *free_pages)
700 {
701 	struct pagevec freed_pvec;
702 	struct page *page, *tmp;
703 
704 	pagevec_init(&freed_pvec, 1);
705 
706 	list_for_each_entry_safe(page, tmp, free_pages, lru) {
707 		list_del(&page->lru);
708 		if (!pagevec_add(&freed_pvec, page)) {
709 			__pagevec_free(&freed_pvec);
710 			pagevec_reinit(&freed_pvec);
711 		}
712 	}
713 
714 	pagevec_free(&freed_pvec);
715 }
716 
717 /*
718  * shrink_page_list() returns the number of reclaimed pages
719  */
720 static unsigned long shrink_page_list(struct list_head *page_list,
721 				      struct zone *zone,
722 				      struct scan_control *sc)
723 {
724 	LIST_HEAD(ret_pages);
725 	LIST_HEAD(free_pages);
726 	int pgactivate = 0;
727 	unsigned long nr_dirty = 0;
728 	unsigned long nr_congested = 0;
729 	unsigned long nr_reclaimed = 0;
730 
731 	cond_resched();
732 
733 	while (!list_empty(page_list)) {
734 		enum page_references references;
735 		struct address_space *mapping;
736 		struct page *page;
737 		int may_enter_fs;
738 
739 		cond_resched();
740 
741 		page = lru_to_page(page_list);
742 		list_del(&page->lru);
743 
744 		if (!trylock_page(page))
745 			goto keep;
746 
747 		VM_BUG_ON(PageActive(page));
748 		VM_BUG_ON(page_zone(page) != zone);
749 
750 		sc->nr_scanned++;
751 
752 		if (unlikely(!page_evictable(page, NULL)))
753 			goto cull_mlocked;
754 
755 		if (!sc->may_unmap && page_mapped(page))
756 			goto keep_locked;
757 
758 		/* Double the slab pressure for mapped and swapcache pages */
759 		if (page_mapped(page) || PageSwapCache(page))
760 			sc->nr_scanned++;
761 
762 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
763 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
764 
765 		if (PageWriteback(page)) {
766 			/*
767 			 * Synchronous reclaim is performed in two passes,
768 			 * first an asynchronous pass over the list to
769 			 * start parallel writeback, and a second synchronous
770 			 * pass to wait for the IO to complete.  Wait here
771 			 * for any page for which writeback has already
772 			 * started.
773 			 */
774 			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
775 			    may_enter_fs)
776 				wait_on_page_writeback(page);
777 			else {
778 				unlock_page(page);
779 				goto keep_lumpy;
780 			}
781 		}
782 
783 		references = page_check_references(page, sc);
784 		switch (references) {
785 		case PAGEREF_ACTIVATE:
786 			goto activate_locked;
787 		case PAGEREF_KEEP:
788 			goto keep_locked;
789 		case PAGEREF_RECLAIM:
790 		case PAGEREF_RECLAIM_CLEAN:
791 			; /* try to reclaim the page below */
792 		}
793 
794 		/*
795 		 * Anonymous process memory has backing store?
796 		 * Try to allocate it some swap space here.
797 		 */
798 		if (PageAnon(page) && !PageSwapCache(page)) {
799 			if (!(sc->gfp_mask & __GFP_IO))
800 				goto keep_locked;
801 			if (!add_to_swap(page))
802 				goto activate_locked;
803 			may_enter_fs = 1;
804 		}
805 
806 		mapping = page_mapping(page);
807 
808 		/*
809 		 * The page is mapped into the page tables of one or more
810 		 * processes. Try to unmap it here.
811 		 */
812 		if (page_mapped(page) && mapping) {
813 			switch (try_to_unmap(page, TTU_UNMAP)) {
814 			case SWAP_FAIL:
815 				goto activate_locked;
816 			case SWAP_AGAIN:
817 				goto keep_locked;
818 			case SWAP_MLOCK:
819 				goto cull_mlocked;
820 			case SWAP_SUCCESS:
821 				; /* try to free the page below */
822 			}
823 		}
824 
825 		if (PageDirty(page)) {
826 			nr_dirty++;
827 
828 			if (references == PAGEREF_RECLAIM_CLEAN)
829 				goto keep_locked;
830 			if (!may_enter_fs)
831 				goto keep_locked;
832 			if (!sc->may_writepage)
833 				goto keep_locked;
834 
835 			/* Page is dirty, try to write it out here */
836 			switch (pageout(page, mapping, sc)) {
837 			case PAGE_KEEP:
838 				nr_congested++;
839 				goto keep_locked;
840 			case PAGE_ACTIVATE:
841 				goto activate_locked;
842 			case PAGE_SUCCESS:
843 				if (PageWriteback(page))
844 					goto keep_lumpy;
845 				if (PageDirty(page))
846 					goto keep;
847 
848 				/*
849 				 * A synchronous write - probably a ramdisk.  Go
850 				 * ahead and try to reclaim the page.
851 				 */
852 				if (!trylock_page(page))
853 					goto keep;
854 				if (PageDirty(page) || PageWriteback(page))
855 					goto keep_locked;
856 				mapping = page_mapping(page);
857 			case PAGE_CLEAN:
858 				; /* try to free the page below */
859 			}
860 		}
861 
862 		/*
863 		 * If the page has buffers, try to free the buffer mappings
864 		 * associated with this page. If we succeed we try to free
865 		 * the page as well.
866 		 *
867 		 * We do this even if the page is PageDirty().
868 		 * try_to_release_page() does not perform I/O, but it is
869 		 * possible for a page to have PageDirty set, but it is actually
870 		 * clean (all its buffers are clean).  This happens if the
871 		 * buffers were written out directly, with submit_bh(). ext3
872 		 * will do this, as well as the blockdev mapping.
873 		 * try_to_release_page() will discover that cleanness and will
874 		 * drop the buffers and mark the page clean - it can be freed.
875 		 *
876 		 * Rarely, pages can have buffers and no ->mapping.  These are
877 		 * the pages which were not successfully invalidated in
878 		 * truncate_complete_page().  We try to drop those buffers here
879 		 * and if that worked, and the page is no longer mapped into
880 		 * process address space (page_count == 1) it can be freed.
881 		 * Otherwise, leave the page on the LRU so it is swappable.
882 		 */
883 		if (page_has_private(page)) {
884 			if (!try_to_release_page(page, sc->gfp_mask))
885 				goto activate_locked;
886 			if (!mapping && page_count(page) == 1) {
887 				unlock_page(page);
888 				if (put_page_testzero(page))
889 					goto free_it;
890 				else {
891 					/*
892 					 * rare race with speculative reference.
893 					 * the speculative reference will free
894 					 * this page shortly, so we may
895 					 * increment nr_reclaimed here (and
896 					 * leave it off the LRU).
897 					 */
898 					nr_reclaimed++;
899 					continue;
900 				}
901 			}
902 		}
903 
904 		if (!mapping || !__remove_mapping(mapping, page))
905 			goto keep_locked;
906 
907 		/*
908 		 * At this point, we have no other references and there is
909 		 * no way to pick any more up (removed from LRU, removed
910 		 * from pagecache). Can use non-atomic bitops now (and
911 		 * we obviously don't have to worry about waking up a process
912 		 * waiting on the page lock, because there are no references.
913 		 */
914 		__clear_page_locked(page);
915 free_it:
916 		nr_reclaimed++;
917 
918 		/*
919 		 * Is there need to periodically free_page_list? It would
920 		 * appear not as the counts should be low
921 		 */
922 		list_add(&page->lru, &free_pages);
923 		continue;
924 
925 cull_mlocked:
926 		if (PageSwapCache(page))
927 			try_to_free_swap(page);
928 		unlock_page(page);
929 		putback_lru_page(page);
930 		reset_reclaim_mode(sc);
931 		continue;
932 
933 activate_locked:
934 		/* Not a candidate for swapping, so reclaim swap space. */
935 		if (PageSwapCache(page) && vm_swap_full())
936 			try_to_free_swap(page);
937 		VM_BUG_ON(PageActive(page));
938 		SetPageActive(page);
939 		pgactivate++;
940 keep_locked:
941 		unlock_page(page);
942 keep:
943 		reset_reclaim_mode(sc);
944 keep_lumpy:
945 		list_add(&page->lru, &ret_pages);
946 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
947 	}
948 
949 	/*
950 	 * Tag a zone as congested if all the dirty pages encountered were
951 	 * backed by a congested BDI. In this case, reclaimers should just
952 	 * back off and wait for congestion to clear because further reclaim
953 	 * will encounter the same problem
954 	 */
955 	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
956 		zone_set_flag(zone, ZONE_CONGESTED);
957 
958 	free_page_list(&free_pages);
959 
960 	list_splice(&ret_pages, page_list);
961 	count_vm_events(PGACTIVATE, pgactivate);
962 	return nr_reclaimed;
963 }
964 
965 /*
966  * Attempt to remove the specified page from its LRU.  Only take this page
967  * if it is of the appropriate PageActive status.  Pages which are being
968  * freed elsewhere are also ignored.
969  *
970  * page:	page to consider
971  * mode:	one of the LRU isolation modes defined above
972  *
973  * returns 0 on success, -ve errno on failure.
974  */
975 int __isolate_lru_page(struct page *page, int mode, int file)
976 {
977 	int ret = -EINVAL;
978 
979 	/* Only take pages on the LRU. */
980 	if (!PageLRU(page))
981 		return ret;
982 
983 	/*
984 	 * When checking the active state, we need to be sure we are
985 	 * dealing with comparible boolean values.  Take the logical not
986 	 * of each.
987 	 */
988 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
989 		return ret;
990 
991 	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
992 		return ret;
993 
994 	/*
995 	 * When this function is being called for lumpy reclaim, we
996 	 * initially look into all LRU pages, active, inactive and
997 	 * unevictable; only give shrink_page_list evictable pages.
998 	 */
999 	if (PageUnevictable(page))
1000 		return ret;
1001 
1002 	ret = -EBUSY;
1003 
1004 	if (likely(get_page_unless_zero(page))) {
1005 		/*
1006 		 * Be careful not to clear PageLRU until after we're
1007 		 * sure the page is not being freed elsewhere -- the
1008 		 * page release code relies on it.
1009 		 */
1010 		ClearPageLRU(page);
1011 		ret = 0;
1012 	}
1013 
1014 	return ret;
1015 }
1016 
1017 /*
1018  * zone->lru_lock is heavily contended.  Some of the functions that
1019  * shrink the lists perform better by taking out a batch of pages
1020  * and working on them outside the LRU lock.
1021  *
1022  * For pagecache intensive workloads, this function is the hottest
1023  * spot in the kernel (apart from copy_*_user functions).
1024  *
1025  * Appropriate locks must be held before calling this function.
1026  *
1027  * @nr_to_scan:	The number of pages to look through on the list.
1028  * @src:	The LRU list to pull pages off.
1029  * @dst:	The temp list to put pages on to.
1030  * @scanned:	The number of pages that were scanned.
1031  * @order:	The caller's attempted allocation order
1032  * @mode:	One of the LRU isolation modes
1033  * @file:	True [1] if isolating file [!anon] pages
1034  *
1035  * returns how many pages were moved onto *@dst.
1036  */
1037 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1038 		struct list_head *src, struct list_head *dst,
1039 		unsigned long *scanned, int order, int mode, int file)
1040 {
1041 	unsigned long nr_taken = 0;
1042 	unsigned long nr_lumpy_taken = 0;
1043 	unsigned long nr_lumpy_dirty = 0;
1044 	unsigned long nr_lumpy_failed = 0;
1045 	unsigned long scan;
1046 
1047 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1048 		struct page *page;
1049 		unsigned long pfn;
1050 		unsigned long end_pfn;
1051 		unsigned long page_pfn;
1052 		int zone_id;
1053 
1054 		page = lru_to_page(src);
1055 		prefetchw_prev_lru_page(page, src, flags);
1056 
1057 		VM_BUG_ON(!PageLRU(page));
1058 
1059 		switch (__isolate_lru_page(page, mode, file)) {
1060 		case 0:
1061 			list_move(&page->lru, dst);
1062 			mem_cgroup_del_lru(page);
1063 			nr_taken += hpage_nr_pages(page);
1064 			break;
1065 
1066 		case -EBUSY:
1067 			/* else it is being freed elsewhere */
1068 			list_move(&page->lru, src);
1069 			mem_cgroup_rotate_lru_list(page, page_lru(page));
1070 			continue;
1071 
1072 		default:
1073 			BUG();
1074 		}
1075 
1076 		if (!order)
1077 			continue;
1078 
1079 		/*
1080 		 * Attempt to take all pages in the order aligned region
1081 		 * surrounding the tag page.  Only take those pages of
1082 		 * the same active state as that tag page.  We may safely
1083 		 * round the target page pfn down to the requested order
1084 		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1085 		 * where that page is in a different zone we will detect
1086 		 * it from its zone id and abort this block scan.
1087 		 */
1088 		zone_id = page_zone_id(page);
1089 		page_pfn = page_to_pfn(page);
1090 		pfn = page_pfn & ~((1 << order) - 1);
1091 		end_pfn = pfn + (1 << order);
1092 		for (; pfn < end_pfn; pfn++) {
1093 			struct page *cursor_page;
1094 
1095 			/* The target page is in the block, ignore it. */
1096 			if (unlikely(pfn == page_pfn))
1097 				continue;
1098 
1099 			/* Avoid holes within the zone. */
1100 			if (unlikely(!pfn_valid_within(pfn)))
1101 				break;
1102 
1103 			cursor_page = pfn_to_page(pfn);
1104 
1105 			/* Check that we have not crossed a zone boundary. */
1106 			if (unlikely(page_zone_id(cursor_page) != zone_id))
1107 				break;
1108 
1109 			/*
1110 			 * If we don't have enough swap space, reclaiming of
1111 			 * anon page which don't already have a swap slot is
1112 			 * pointless.
1113 			 */
1114 			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1115 			    !PageSwapCache(cursor_page))
1116 				break;
1117 
1118 			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1119 				list_move(&cursor_page->lru, dst);
1120 				mem_cgroup_del_lru(cursor_page);
1121 				nr_taken += hpage_nr_pages(page);
1122 				nr_lumpy_taken++;
1123 				if (PageDirty(cursor_page))
1124 					nr_lumpy_dirty++;
1125 				scan++;
1126 			} else {
1127 				/*
1128 				 * Check if the page is freed already.
1129 				 *
1130 				 * We can't use page_count() as that
1131 				 * requires compound_head and we don't
1132 				 * have a pin on the page here. If a
1133 				 * page is tail, we may or may not
1134 				 * have isolated the head, so assume
1135 				 * it's not free, it'd be tricky to
1136 				 * track the head status without a
1137 				 * page pin.
1138 				 */
1139 				if (!PageTail(cursor_page) &&
1140 				    !atomic_read(&cursor_page->_count))
1141 					continue;
1142 				break;
1143 			}
1144 		}
1145 
1146 		/* If we break out of the loop above, lumpy reclaim failed */
1147 		if (pfn < end_pfn)
1148 			nr_lumpy_failed++;
1149 	}
1150 
1151 	*scanned = scan;
1152 
1153 	trace_mm_vmscan_lru_isolate(order,
1154 			nr_to_scan, scan,
1155 			nr_taken,
1156 			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1157 			mode);
1158 	return nr_taken;
1159 }
1160 
1161 static unsigned long isolate_pages_global(unsigned long nr,
1162 					struct list_head *dst,
1163 					unsigned long *scanned, int order,
1164 					int mode, struct zone *z,
1165 					int active, int file)
1166 {
1167 	int lru = LRU_BASE;
1168 	if (active)
1169 		lru += LRU_ACTIVE;
1170 	if (file)
1171 		lru += LRU_FILE;
1172 	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1173 								mode, file);
1174 }
1175 
1176 /*
1177  * clear_active_flags() is a helper for shrink_active_list(), clearing
1178  * any active bits from the pages in the list.
1179  */
1180 static unsigned long clear_active_flags(struct list_head *page_list,
1181 					unsigned int *count)
1182 {
1183 	int nr_active = 0;
1184 	int lru;
1185 	struct page *page;
1186 
1187 	list_for_each_entry(page, page_list, lru) {
1188 		int numpages = hpage_nr_pages(page);
1189 		lru = page_lru_base_type(page);
1190 		if (PageActive(page)) {
1191 			lru += LRU_ACTIVE;
1192 			ClearPageActive(page);
1193 			nr_active += numpages;
1194 		}
1195 		if (count)
1196 			count[lru] += numpages;
1197 	}
1198 
1199 	return nr_active;
1200 }
1201 
1202 /**
1203  * isolate_lru_page - tries to isolate a page from its LRU list
1204  * @page: page to isolate from its LRU list
1205  *
1206  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1207  * vmstat statistic corresponding to whatever LRU list the page was on.
1208  *
1209  * Returns 0 if the page was removed from an LRU list.
1210  * Returns -EBUSY if the page was not on an LRU list.
1211  *
1212  * The returned page will have PageLRU() cleared.  If it was found on
1213  * the active list, it will have PageActive set.  If it was found on
1214  * the unevictable list, it will have the PageUnevictable bit set. That flag
1215  * may need to be cleared by the caller before letting the page go.
1216  *
1217  * The vmstat statistic corresponding to the list on which the page was
1218  * found will be decremented.
1219  *
1220  * Restrictions:
1221  * (1) Must be called with an elevated refcount on the page. This is a
1222  *     fundamentnal difference from isolate_lru_pages (which is called
1223  *     without a stable reference).
1224  * (2) the lru_lock must not be held.
1225  * (3) interrupts must be enabled.
1226  */
1227 int isolate_lru_page(struct page *page)
1228 {
1229 	int ret = -EBUSY;
1230 
1231 	VM_BUG_ON(!page_count(page));
1232 
1233 	if (PageLRU(page)) {
1234 		struct zone *zone = page_zone(page);
1235 
1236 		spin_lock_irq(&zone->lru_lock);
1237 		if (PageLRU(page)) {
1238 			int lru = page_lru(page);
1239 			ret = 0;
1240 			get_page(page);
1241 			ClearPageLRU(page);
1242 
1243 			del_page_from_lru_list(zone, page, lru);
1244 		}
1245 		spin_unlock_irq(&zone->lru_lock);
1246 	}
1247 	return ret;
1248 }
1249 
1250 /*
1251  * Are there way too many processes in the direct reclaim path already?
1252  */
1253 static int too_many_isolated(struct zone *zone, int file,
1254 		struct scan_control *sc)
1255 {
1256 	unsigned long inactive, isolated;
1257 
1258 	if (current_is_kswapd())
1259 		return 0;
1260 
1261 	if (!scanning_global_lru(sc))
1262 		return 0;
1263 
1264 	if (file) {
1265 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1266 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1267 	} else {
1268 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1269 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1270 	}
1271 
1272 	return isolated > inactive;
1273 }
1274 
1275 /*
1276  * TODO: Try merging with migrations version of putback_lru_pages
1277  */
1278 static noinline_for_stack void
1279 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1280 				unsigned long nr_anon, unsigned long nr_file,
1281 				struct list_head *page_list)
1282 {
1283 	struct page *page;
1284 	struct pagevec pvec;
1285 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1286 
1287 	pagevec_init(&pvec, 1);
1288 
1289 	/*
1290 	 * Put back any unfreeable pages.
1291 	 */
1292 	spin_lock(&zone->lru_lock);
1293 	while (!list_empty(page_list)) {
1294 		int lru;
1295 		page = lru_to_page(page_list);
1296 		VM_BUG_ON(PageLRU(page));
1297 		list_del(&page->lru);
1298 		if (unlikely(!page_evictable(page, NULL))) {
1299 			spin_unlock_irq(&zone->lru_lock);
1300 			putback_lru_page(page);
1301 			spin_lock_irq(&zone->lru_lock);
1302 			continue;
1303 		}
1304 		SetPageLRU(page);
1305 		lru = page_lru(page);
1306 		add_page_to_lru_list(zone, page, lru);
1307 		if (is_active_lru(lru)) {
1308 			int file = is_file_lru(lru);
1309 			int numpages = hpage_nr_pages(page);
1310 			reclaim_stat->recent_rotated[file] += numpages;
1311 		}
1312 		if (!pagevec_add(&pvec, page)) {
1313 			spin_unlock_irq(&zone->lru_lock);
1314 			__pagevec_release(&pvec);
1315 			spin_lock_irq(&zone->lru_lock);
1316 		}
1317 	}
1318 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1319 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1320 
1321 	spin_unlock_irq(&zone->lru_lock);
1322 	pagevec_release(&pvec);
1323 }
1324 
1325 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1326 					struct scan_control *sc,
1327 					unsigned long *nr_anon,
1328 					unsigned long *nr_file,
1329 					struct list_head *isolated_list)
1330 {
1331 	unsigned long nr_active;
1332 	unsigned int count[NR_LRU_LISTS] = { 0, };
1333 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1334 
1335 	nr_active = clear_active_flags(isolated_list, count);
1336 	__count_vm_events(PGDEACTIVATE, nr_active);
1337 
1338 	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1339 			      -count[LRU_ACTIVE_FILE]);
1340 	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1341 			      -count[LRU_INACTIVE_FILE]);
1342 	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1343 			      -count[LRU_ACTIVE_ANON]);
1344 	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1345 			      -count[LRU_INACTIVE_ANON]);
1346 
1347 	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1348 	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1349 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1350 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1351 
1352 	reclaim_stat->recent_scanned[0] += *nr_anon;
1353 	reclaim_stat->recent_scanned[1] += *nr_file;
1354 }
1355 
1356 /*
1357  * Returns true if the caller should wait to clean dirty/writeback pages.
1358  *
1359  * If we are direct reclaiming for contiguous pages and we do not reclaim
1360  * everything in the list, try again and wait for writeback IO to complete.
1361  * This will stall high-order allocations noticeably. Only do that when really
1362  * need to free the pages under high memory pressure.
1363  */
1364 static inline bool should_reclaim_stall(unsigned long nr_taken,
1365 					unsigned long nr_freed,
1366 					int priority,
1367 					struct scan_control *sc)
1368 {
1369 	int lumpy_stall_priority;
1370 
1371 	/* kswapd should not stall on sync IO */
1372 	if (current_is_kswapd())
1373 		return false;
1374 
1375 	/* Only stall on lumpy reclaim */
1376 	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1377 		return false;
1378 
1379 	/* If we have relaimed everything on the isolated list, no stall */
1380 	if (nr_freed == nr_taken)
1381 		return false;
1382 
1383 	/*
1384 	 * For high-order allocations, there are two stall thresholds.
1385 	 * High-cost allocations stall immediately where as lower
1386 	 * order allocations such as stacks require the scanning
1387 	 * priority to be much higher before stalling.
1388 	 */
1389 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1390 		lumpy_stall_priority = DEF_PRIORITY;
1391 	else
1392 		lumpy_stall_priority = DEF_PRIORITY / 3;
1393 
1394 	return priority <= lumpy_stall_priority;
1395 }
1396 
1397 /*
1398  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1399  * of reclaimed pages
1400  */
1401 static noinline_for_stack unsigned long
1402 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1403 			struct scan_control *sc, int priority, int file)
1404 {
1405 	LIST_HEAD(page_list);
1406 	unsigned long nr_scanned;
1407 	unsigned long nr_reclaimed = 0;
1408 	unsigned long nr_taken;
1409 	unsigned long nr_anon;
1410 	unsigned long nr_file;
1411 
1412 	while (unlikely(too_many_isolated(zone, file, sc))) {
1413 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1414 
1415 		/* We are about to die and free our memory. Return now. */
1416 		if (fatal_signal_pending(current))
1417 			return SWAP_CLUSTER_MAX;
1418 	}
1419 
1420 	set_reclaim_mode(priority, sc, false);
1421 	lru_add_drain();
1422 	spin_lock_irq(&zone->lru_lock);
1423 
1424 	if (scanning_global_lru(sc)) {
1425 		nr_taken = isolate_pages_global(nr_to_scan,
1426 			&page_list, &nr_scanned, sc->order,
1427 			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1428 					ISOLATE_BOTH : ISOLATE_INACTIVE,
1429 			zone, 0, file);
1430 		zone->pages_scanned += nr_scanned;
1431 		if (current_is_kswapd())
1432 			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1433 					       nr_scanned);
1434 		else
1435 			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1436 					       nr_scanned);
1437 	} else {
1438 		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1439 			&page_list, &nr_scanned, sc->order,
1440 			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1441 					ISOLATE_BOTH : ISOLATE_INACTIVE,
1442 			zone, sc->mem_cgroup,
1443 			0, file);
1444 		/*
1445 		 * mem_cgroup_isolate_pages() keeps track of
1446 		 * scanned pages on its own.
1447 		 */
1448 	}
1449 
1450 	if (nr_taken == 0) {
1451 		spin_unlock_irq(&zone->lru_lock);
1452 		return 0;
1453 	}
1454 
1455 	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1456 
1457 	spin_unlock_irq(&zone->lru_lock);
1458 
1459 	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1460 
1461 	/* Check if we should syncronously wait for writeback */
1462 	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1463 		set_reclaim_mode(priority, sc, true);
1464 		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1465 	}
1466 
1467 	local_irq_disable();
1468 	if (current_is_kswapd())
1469 		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1470 	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1471 
1472 	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1473 
1474 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1475 		zone_idx(zone),
1476 		nr_scanned, nr_reclaimed,
1477 		priority,
1478 		trace_shrink_flags(file, sc->reclaim_mode));
1479 	return nr_reclaimed;
1480 }
1481 
1482 /*
1483  * This moves pages from the active list to the inactive list.
1484  *
1485  * We move them the other way if the page is referenced by one or more
1486  * processes, from rmap.
1487  *
1488  * If the pages are mostly unmapped, the processing is fast and it is
1489  * appropriate to hold zone->lru_lock across the whole operation.  But if
1490  * the pages are mapped, the processing is slow (page_referenced()) so we
1491  * should drop zone->lru_lock around each page.  It's impossible to balance
1492  * this, so instead we remove the pages from the LRU while processing them.
1493  * It is safe to rely on PG_active against the non-LRU pages in here because
1494  * nobody will play with that bit on a non-LRU page.
1495  *
1496  * The downside is that we have to touch page->_count against each page.
1497  * But we had to alter page->flags anyway.
1498  */
1499 
1500 static void move_active_pages_to_lru(struct zone *zone,
1501 				     struct list_head *list,
1502 				     enum lru_list lru)
1503 {
1504 	unsigned long pgmoved = 0;
1505 	struct pagevec pvec;
1506 	struct page *page;
1507 
1508 	pagevec_init(&pvec, 1);
1509 
1510 	while (!list_empty(list)) {
1511 		page = lru_to_page(list);
1512 
1513 		VM_BUG_ON(PageLRU(page));
1514 		SetPageLRU(page);
1515 
1516 		list_move(&page->lru, &zone->lru[lru].list);
1517 		mem_cgroup_add_lru_list(page, lru);
1518 		pgmoved += hpage_nr_pages(page);
1519 
1520 		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1521 			spin_unlock_irq(&zone->lru_lock);
1522 			if (buffer_heads_over_limit)
1523 				pagevec_strip(&pvec);
1524 			__pagevec_release(&pvec);
1525 			spin_lock_irq(&zone->lru_lock);
1526 		}
1527 	}
1528 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1529 	if (!is_active_lru(lru))
1530 		__count_vm_events(PGDEACTIVATE, pgmoved);
1531 }
1532 
1533 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1534 			struct scan_control *sc, int priority, int file)
1535 {
1536 	unsigned long nr_taken;
1537 	unsigned long pgscanned;
1538 	unsigned long vm_flags;
1539 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1540 	LIST_HEAD(l_active);
1541 	LIST_HEAD(l_inactive);
1542 	struct page *page;
1543 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1544 	unsigned long nr_rotated = 0;
1545 
1546 	lru_add_drain();
1547 	spin_lock_irq(&zone->lru_lock);
1548 	if (scanning_global_lru(sc)) {
1549 		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1550 						&pgscanned, sc->order,
1551 						ISOLATE_ACTIVE, zone,
1552 						1, file);
1553 		zone->pages_scanned += pgscanned;
1554 	} else {
1555 		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1556 						&pgscanned, sc->order,
1557 						ISOLATE_ACTIVE, zone,
1558 						sc->mem_cgroup, 1, file);
1559 		/*
1560 		 * mem_cgroup_isolate_pages() keeps track of
1561 		 * scanned pages on its own.
1562 		 */
1563 	}
1564 
1565 	reclaim_stat->recent_scanned[file] += nr_taken;
1566 
1567 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1568 	if (file)
1569 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1570 	else
1571 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1572 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1573 	spin_unlock_irq(&zone->lru_lock);
1574 
1575 	while (!list_empty(&l_hold)) {
1576 		cond_resched();
1577 		page = lru_to_page(&l_hold);
1578 		list_del(&page->lru);
1579 
1580 		if (unlikely(!page_evictable(page, NULL))) {
1581 			putback_lru_page(page);
1582 			continue;
1583 		}
1584 
1585 		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1586 			nr_rotated += hpage_nr_pages(page);
1587 			/*
1588 			 * Identify referenced, file-backed active pages and
1589 			 * give them one more trip around the active list. So
1590 			 * that executable code get better chances to stay in
1591 			 * memory under moderate memory pressure.  Anon pages
1592 			 * are not likely to be evicted by use-once streaming
1593 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1594 			 * so we ignore them here.
1595 			 */
1596 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1597 				list_add(&page->lru, &l_active);
1598 				continue;
1599 			}
1600 		}
1601 
1602 		ClearPageActive(page);	/* we are de-activating */
1603 		list_add(&page->lru, &l_inactive);
1604 	}
1605 
1606 	/*
1607 	 * Move pages back to the lru list.
1608 	 */
1609 	spin_lock_irq(&zone->lru_lock);
1610 	/*
1611 	 * Count referenced pages from currently used mappings as rotated,
1612 	 * even though only some of them are actually re-activated.  This
1613 	 * helps balance scan pressure between file and anonymous pages in
1614 	 * get_scan_ratio.
1615 	 */
1616 	reclaim_stat->recent_rotated[file] += nr_rotated;
1617 
1618 	move_active_pages_to_lru(zone, &l_active,
1619 						LRU_ACTIVE + file * LRU_FILE);
1620 	move_active_pages_to_lru(zone, &l_inactive,
1621 						LRU_BASE   + file * LRU_FILE);
1622 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1623 	spin_unlock_irq(&zone->lru_lock);
1624 }
1625 
1626 #ifdef CONFIG_SWAP
1627 static int inactive_anon_is_low_global(struct zone *zone)
1628 {
1629 	unsigned long active, inactive;
1630 
1631 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1632 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1633 
1634 	if (inactive * zone->inactive_ratio < active)
1635 		return 1;
1636 
1637 	return 0;
1638 }
1639 
1640 /**
1641  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1642  * @zone: zone to check
1643  * @sc:   scan control of this context
1644  *
1645  * Returns true if the zone does not have enough inactive anon pages,
1646  * meaning some active anon pages need to be deactivated.
1647  */
1648 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1649 {
1650 	int low;
1651 
1652 	/*
1653 	 * If we don't have swap space, anonymous page deactivation
1654 	 * is pointless.
1655 	 */
1656 	if (!total_swap_pages)
1657 		return 0;
1658 
1659 	if (scanning_global_lru(sc))
1660 		low = inactive_anon_is_low_global(zone);
1661 	else
1662 		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1663 	return low;
1664 }
1665 #else
1666 static inline int inactive_anon_is_low(struct zone *zone,
1667 					struct scan_control *sc)
1668 {
1669 	return 0;
1670 }
1671 #endif
1672 
1673 static int inactive_file_is_low_global(struct zone *zone)
1674 {
1675 	unsigned long active, inactive;
1676 
1677 	active = zone_page_state(zone, NR_ACTIVE_FILE);
1678 	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1679 
1680 	return (active > inactive);
1681 }
1682 
1683 /**
1684  * inactive_file_is_low - check if file pages need to be deactivated
1685  * @zone: zone to check
1686  * @sc:   scan control of this context
1687  *
1688  * When the system is doing streaming IO, memory pressure here
1689  * ensures that active file pages get deactivated, until more
1690  * than half of the file pages are on the inactive list.
1691  *
1692  * Once we get to that situation, protect the system's working
1693  * set from being evicted by disabling active file page aging.
1694  *
1695  * This uses a different ratio than the anonymous pages, because
1696  * the page cache uses a use-once replacement algorithm.
1697  */
1698 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1699 {
1700 	int low;
1701 
1702 	if (scanning_global_lru(sc))
1703 		low = inactive_file_is_low_global(zone);
1704 	else
1705 		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1706 	return low;
1707 }
1708 
1709 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1710 				int file)
1711 {
1712 	if (file)
1713 		return inactive_file_is_low(zone, sc);
1714 	else
1715 		return inactive_anon_is_low(zone, sc);
1716 }
1717 
1718 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1719 	struct zone *zone, struct scan_control *sc, int priority)
1720 {
1721 	int file = is_file_lru(lru);
1722 
1723 	if (is_active_lru(lru)) {
1724 		if (inactive_list_is_low(zone, sc, file))
1725 		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1726 		return 0;
1727 	}
1728 
1729 	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1730 }
1731 
1732 /*
1733  * Determine how aggressively the anon and file LRU lists should be
1734  * scanned.  The relative value of each set of LRU lists is determined
1735  * by looking at the fraction of the pages scanned we did rotate back
1736  * onto the active list instead of evict.
1737  *
1738  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1739  */
1740 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1741 					unsigned long *nr, int priority)
1742 {
1743 	unsigned long anon, file, free;
1744 	unsigned long anon_prio, file_prio;
1745 	unsigned long ap, fp;
1746 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1747 	u64 fraction[2], denominator;
1748 	enum lru_list l;
1749 	int noswap = 0;
1750 	int force_scan = 0;
1751 
1752 
1753 	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1754 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1755 	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1756 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1757 
1758 	if (((anon + file) >> priority) < SWAP_CLUSTER_MAX) {
1759 		/* kswapd does zone balancing and need to scan this zone */
1760 		if (scanning_global_lru(sc) && current_is_kswapd())
1761 			force_scan = 1;
1762 		/* memcg may have small limit and need to avoid priority drop */
1763 		if (!scanning_global_lru(sc))
1764 			force_scan = 1;
1765 	}
1766 
1767 	/* If we have no swap space, do not bother scanning anon pages. */
1768 	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1769 		noswap = 1;
1770 		fraction[0] = 0;
1771 		fraction[1] = 1;
1772 		denominator = 1;
1773 		goto out;
1774 	}
1775 
1776 	if (scanning_global_lru(sc)) {
1777 		free  = zone_page_state(zone, NR_FREE_PAGES);
1778 		/* If we have very few page cache pages,
1779 		   force-scan anon pages. */
1780 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1781 			fraction[0] = 1;
1782 			fraction[1] = 0;
1783 			denominator = 1;
1784 			goto out;
1785 		}
1786 	}
1787 
1788 	/*
1789 	 * With swappiness at 100, anonymous and file have the same priority.
1790 	 * This scanning priority is essentially the inverse of IO cost.
1791 	 */
1792 	anon_prio = sc->swappiness;
1793 	file_prio = 200 - sc->swappiness;
1794 
1795 	/*
1796 	 * OK, so we have swap space and a fair amount of page cache
1797 	 * pages.  We use the recently rotated / recently scanned
1798 	 * ratios to determine how valuable each cache is.
1799 	 *
1800 	 * Because workloads change over time (and to avoid overflow)
1801 	 * we keep these statistics as a floating average, which ends
1802 	 * up weighing recent references more than old ones.
1803 	 *
1804 	 * anon in [0], file in [1]
1805 	 */
1806 	spin_lock_irq(&zone->lru_lock);
1807 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1808 		reclaim_stat->recent_scanned[0] /= 2;
1809 		reclaim_stat->recent_rotated[0] /= 2;
1810 	}
1811 
1812 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1813 		reclaim_stat->recent_scanned[1] /= 2;
1814 		reclaim_stat->recent_rotated[1] /= 2;
1815 	}
1816 
1817 	/*
1818 	 * The amount of pressure on anon vs file pages is inversely
1819 	 * proportional to the fraction of recently scanned pages on
1820 	 * each list that were recently referenced and in active use.
1821 	 */
1822 	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1823 	ap /= reclaim_stat->recent_rotated[0] + 1;
1824 
1825 	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1826 	fp /= reclaim_stat->recent_rotated[1] + 1;
1827 	spin_unlock_irq(&zone->lru_lock);
1828 
1829 	fraction[0] = ap;
1830 	fraction[1] = fp;
1831 	denominator = ap + fp + 1;
1832 out:
1833 	for_each_evictable_lru(l) {
1834 		int file = is_file_lru(l);
1835 		unsigned long scan;
1836 
1837 		scan = zone_nr_lru_pages(zone, sc, l);
1838 		if (priority || noswap) {
1839 			scan >>= priority;
1840 			scan = div64_u64(scan * fraction[file], denominator);
1841 		}
1842 
1843 		/*
1844 		 * If zone is small or memcg is small, nr[l] can be 0.
1845 		 * This results no-scan on this priority and priority drop down.
1846 		 * For global direct reclaim, it can visit next zone and tend
1847 		 * not to have problems. For global kswapd, it's for zone
1848 		 * balancing and it need to scan a small amounts. When using
1849 		 * memcg, priority drop can cause big latency. So, it's better
1850 		 * to scan small amount. See may_noscan above.
1851 		 */
1852 		if (!scan && force_scan) {
1853 			if (file)
1854 				scan = SWAP_CLUSTER_MAX;
1855 			else if (!noswap)
1856 				scan = SWAP_CLUSTER_MAX;
1857 		}
1858 		nr[l] = scan;
1859 	}
1860 }
1861 
1862 /*
1863  * Reclaim/compaction depends on a number of pages being freed. To avoid
1864  * disruption to the system, a small number of order-0 pages continue to be
1865  * rotated and reclaimed in the normal fashion. However, by the time we get
1866  * back to the allocator and call try_to_compact_zone(), we ensure that
1867  * there are enough free pages for it to be likely successful
1868  */
1869 static inline bool should_continue_reclaim(struct zone *zone,
1870 					unsigned long nr_reclaimed,
1871 					unsigned long nr_scanned,
1872 					struct scan_control *sc)
1873 {
1874 	unsigned long pages_for_compaction;
1875 	unsigned long inactive_lru_pages;
1876 
1877 	/* If not in reclaim/compaction mode, stop */
1878 	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1879 		return false;
1880 
1881 	/* Consider stopping depending on scan and reclaim activity */
1882 	if (sc->gfp_mask & __GFP_REPEAT) {
1883 		/*
1884 		 * For __GFP_REPEAT allocations, stop reclaiming if the
1885 		 * full LRU list has been scanned and we are still failing
1886 		 * to reclaim pages. This full LRU scan is potentially
1887 		 * expensive but a __GFP_REPEAT caller really wants to succeed
1888 		 */
1889 		if (!nr_reclaimed && !nr_scanned)
1890 			return false;
1891 	} else {
1892 		/*
1893 		 * For non-__GFP_REPEAT allocations which can presumably
1894 		 * fail without consequence, stop if we failed to reclaim
1895 		 * any pages from the last SWAP_CLUSTER_MAX number of
1896 		 * pages that were scanned. This will return to the
1897 		 * caller faster at the risk reclaim/compaction and
1898 		 * the resulting allocation attempt fails
1899 		 */
1900 		if (!nr_reclaimed)
1901 			return false;
1902 	}
1903 
1904 	/*
1905 	 * If we have not reclaimed enough pages for compaction and the
1906 	 * inactive lists are large enough, continue reclaiming
1907 	 */
1908 	pages_for_compaction = (2UL << sc->order);
1909 	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1910 				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1911 	if (sc->nr_reclaimed < pages_for_compaction &&
1912 			inactive_lru_pages > pages_for_compaction)
1913 		return true;
1914 
1915 	/* If compaction would go ahead or the allocation would succeed, stop */
1916 	switch (compaction_suitable(zone, sc->order)) {
1917 	case COMPACT_PARTIAL:
1918 	case COMPACT_CONTINUE:
1919 		return false;
1920 	default:
1921 		return true;
1922 	}
1923 }
1924 
1925 /*
1926  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1927  */
1928 static void shrink_zone(int priority, struct zone *zone,
1929 				struct scan_control *sc)
1930 {
1931 	unsigned long nr[NR_LRU_LISTS];
1932 	unsigned long nr_to_scan;
1933 	enum lru_list l;
1934 	unsigned long nr_reclaimed, nr_scanned;
1935 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1936 
1937 restart:
1938 	nr_reclaimed = 0;
1939 	nr_scanned = sc->nr_scanned;
1940 	get_scan_count(zone, sc, nr, priority);
1941 
1942 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1943 					nr[LRU_INACTIVE_FILE]) {
1944 		for_each_evictable_lru(l) {
1945 			if (nr[l]) {
1946 				nr_to_scan = min_t(unsigned long,
1947 						   nr[l], SWAP_CLUSTER_MAX);
1948 				nr[l] -= nr_to_scan;
1949 
1950 				nr_reclaimed += shrink_list(l, nr_to_scan,
1951 							    zone, sc, priority);
1952 			}
1953 		}
1954 		/*
1955 		 * On large memory systems, scan >> priority can become
1956 		 * really large. This is fine for the starting priority;
1957 		 * we want to put equal scanning pressure on each zone.
1958 		 * However, if the VM has a harder time of freeing pages,
1959 		 * with multiple processes reclaiming pages, the total
1960 		 * freeing target can get unreasonably large.
1961 		 */
1962 		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1963 			break;
1964 	}
1965 	sc->nr_reclaimed += nr_reclaimed;
1966 
1967 	/*
1968 	 * Even if we did not try to evict anon pages at all, we want to
1969 	 * rebalance the anon lru active/inactive ratio.
1970 	 */
1971 	if (inactive_anon_is_low(zone, sc))
1972 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1973 
1974 	/* reclaim/compaction might need reclaim to continue */
1975 	if (should_continue_reclaim(zone, nr_reclaimed,
1976 					sc->nr_scanned - nr_scanned, sc))
1977 		goto restart;
1978 
1979 	throttle_vm_writeout(sc->gfp_mask);
1980 }
1981 
1982 /*
1983  * This is the direct reclaim path, for page-allocating processes.  We only
1984  * try to reclaim pages from zones which will satisfy the caller's allocation
1985  * request.
1986  *
1987  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1988  * Because:
1989  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1990  *    allocation or
1991  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1992  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1993  *    zone defense algorithm.
1994  *
1995  * If a zone is deemed to be full of pinned pages then just give it a light
1996  * scan then give up on it.
1997  */
1998 static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
1999 					struct scan_control *sc)
2000 {
2001 	struct zoneref *z;
2002 	struct zone *zone;
2003 	unsigned long nr_soft_reclaimed;
2004 	unsigned long nr_soft_scanned;
2005 	unsigned long total_scanned = 0;
2006 
2007 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2008 					gfp_zone(sc->gfp_mask), sc->nodemask) {
2009 		if (!populated_zone(zone))
2010 			continue;
2011 		/*
2012 		 * Take care memory controller reclaiming has small influence
2013 		 * to global LRU.
2014 		 */
2015 		if (scanning_global_lru(sc)) {
2016 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2017 				continue;
2018 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2019 				continue;	/* Let kswapd poll it */
2020 		}
2021 
2022 		nr_soft_scanned = 0;
2023 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2024 							sc->order, sc->gfp_mask,
2025 							&nr_soft_scanned);
2026 		sc->nr_reclaimed += nr_soft_reclaimed;
2027 		total_scanned += nr_soft_scanned;
2028 
2029 		shrink_zone(priority, zone, sc);
2030 	}
2031 
2032 	return total_scanned;
2033 }
2034 
2035 static bool zone_reclaimable(struct zone *zone)
2036 {
2037 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2038 }
2039 
2040 /* All zones in zonelist are unreclaimable? */
2041 static bool all_unreclaimable(struct zonelist *zonelist,
2042 		struct scan_control *sc)
2043 {
2044 	struct zoneref *z;
2045 	struct zone *zone;
2046 
2047 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2048 			gfp_zone(sc->gfp_mask), sc->nodemask) {
2049 		if (!populated_zone(zone))
2050 			continue;
2051 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2052 			continue;
2053 		if (!zone->all_unreclaimable)
2054 			return false;
2055 	}
2056 
2057 	return true;
2058 }
2059 
2060 /*
2061  * This is the main entry point to direct page reclaim.
2062  *
2063  * If a full scan of the inactive list fails to free enough memory then we
2064  * are "out of memory" and something needs to be killed.
2065  *
2066  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2067  * high - the zone may be full of dirty or under-writeback pages, which this
2068  * caller can't do much about.  We kick the writeback threads and take explicit
2069  * naps in the hope that some of these pages can be written.  But if the
2070  * allocating task holds filesystem locks which prevent writeout this might not
2071  * work, and the allocation attempt will fail.
2072  *
2073  * returns:	0, if no pages reclaimed
2074  * 		else, the number of pages reclaimed
2075  */
2076 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2077 					struct scan_control *sc,
2078 					struct shrink_control *shrink)
2079 {
2080 	int priority;
2081 	unsigned long total_scanned = 0;
2082 	struct reclaim_state *reclaim_state = current->reclaim_state;
2083 	struct zoneref *z;
2084 	struct zone *zone;
2085 	unsigned long writeback_threshold;
2086 
2087 	get_mems_allowed();
2088 	delayacct_freepages_start();
2089 
2090 	if (scanning_global_lru(sc))
2091 		count_vm_event(ALLOCSTALL);
2092 
2093 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2094 		sc->nr_scanned = 0;
2095 		if (!priority)
2096 			disable_swap_token(sc->mem_cgroup);
2097 		total_scanned += shrink_zones(priority, zonelist, sc);
2098 		/*
2099 		 * Don't shrink slabs when reclaiming memory from
2100 		 * over limit cgroups
2101 		 */
2102 		if (scanning_global_lru(sc)) {
2103 			unsigned long lru_pages = 0;
2104 			for_each_zone_zonelist(zone, z, zonelist,
2105 					gfp_zone(sc->gfp_mask)) {
2106 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2107 					continue;
2108 
2109 				lru_pages += zone_reclaimable_pages(zone);
2110 			}
2111 
2112 			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2113 			if (reclaim_state) {
2114 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2115 				reclaim_state->reclaimed_slab = 0;
2116 			}
2117 		}
2118 		total_scanned += sc->nr_scanned;
2119 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2120 			goto out;
2121 
2122 		/*
2123 		 * Try to write back as many pages as we just scanned.  This
2124 		 * tends to cause slow streaming writers to write data to the
2125 		 * disk smoothly, at the dirtying rate, which is nice.   But
2126 		 * that's undesirable in laptop mode, where we *want* lumpy
2127 		 * writeout.  So in laptop mode, write out the whole world.
2128 		 */
2129 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2130 		if (total_scanned > writeback_threshold) {
2131 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2132 			sc->may_writepage = 1;
2133 		}
2134 
2135 		/* Take a nap, wait for some writeback to complete */
2136 		if (!sc->hibernation_mode && sc->nr_scanned &&
2137 		    priority < DEF_PRIORITY - 2) {
2138 			struct zone *preferred_zone;
2139 
2140 			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2141 						&cpuset_current_mems_allowed,
2142 						&preferred_zone);
2143 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2144 		}
2145 	}
2146 
2147 out:
2148 	delayacct_freepages_end();
2149 	put_mems_allowed();
2150 
2151 	if (sc->nr_reclaimed)
2152 		return sc->nr_reclaimed;
2153 
2154 	/*
2155 	 * As hibernation is going on, kswapd is freezed so that it can't mark
2156 	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2157 	 * check.
2158 	 */
2159 	if (oom_killer_disabled)
2160 		return 0;
2161 
2162 	/* top priority shrink_zones still had more to do? don't OOM, then */
2163 	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2164 		return 1;
2165 
2166 	return 0;
2167 }
2168 
2169 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2170 				gfp_t gfp_mask, nodemask_t *nodemask)
2171 {
2172 	unsigned long nr_reclaimed;
2173 	struct scan_control sc = {
2174 		.gfp_mask = gfp_mask,
2175 		.may_writepage = !laptop_mode,
2176 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2177 		.may_unmap = 1,
2178 		.may_swap = 1,
2179 		.swappiness = vm_swappiness,
2180 		.order = order,
2181 		.mem_cgroup = NULL,
2182 		.nodemask = nodemask,
2183 	};
2184 	struct shrink_control shrink = {
2185 		.gfp_mask = sc.gfp_mask,
2186 	};
2187 
2188 	trace_mm_vmscan_direct_reclaim_begin(order,
2189 				sc.may_writepage,
2190 				gfp_mask);
2191 
2192 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2193 
2194 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2195 
2196 	return nr_reclaimed;
2197 }
2198 
2199 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2200 
2201 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2202 						gfp_t gfp_mask, bool noswap,
2203 						unsigned int swappiness,
2204 						struct zone *zone,
2205 						unsigned long *nr_scanned)
2206 {
2207 	struct scan_control sc = {
2208 		.nr_scanned = 0,
2209 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2210 		.may_writepage = !laptop_mode,
2211 		.may_unmap = 1,
2212 		.may_swap = !noswap,
2213 		.swappiness = swappiness,
2214 		.order = 0,
2215 		.mem_cgroup = mem,
2216 	};
2217 
2218 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2219 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2220 
2221 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2222 						      sc.may_writepage,
2223 						      sc.gfp_mask);
2224 
2225 	/*
2226 	 * NOTE: Although we can get the priority field, using it
2227 	 * here is not a good idea, since it limits the pages we can scan.
2228 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2229 	 * will pick up pages from other mem cgroup's as well. We hack
2230 	 * the priority and make it zero.
2231 	 */
2232 	shrink_zone(0, zone, &sc);
2233 
2234 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2235 
2236 	*nr_scanned = sc.nr_scanned;
2237 	return sc.nr_reclaimed;
2238 }
2239 
2240 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2241 					   gfp_t gfp_mask,
2242 					   bool noswap,
2243 					   unsigned int swappiness)
2244 {
2245 	struct zonelist *zonelist;
2246 	unsigned long nr_reclaimed;
2247 	int nid;
2248 	struct scan_control sc = {
2249 		.may_writepage = !laptop_mode,
2250 		.may_unmap = 1,
2251 		.may_swap = !noswap,
2252 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2253 		.swappiness = swappiness,
2254 		.order = 0,
2255 		.mem_cgroup = mem_cont,
2256 		.nodemask = NULL, /* we don't care the placement */
2257 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2258 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2259 	};
2260 	struct shrink_control shrink = {
2261 		.gfp_mask = sc.gfp_mask,
2262 	};
2263 
2264 	/*
2265 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2266 	 * take care of from where we get pages. So the node where we start the
2267 	 * scan does not need to be the current node.
2268 	 */
2269 	nid = mem_cgroup_select_victim_node(mem_cont);
2270 
2271 	zonelist = NODE_DATA(nid)->node_zonelists;
2272 
2273 	trace_mm_vmscan_memcg_reclaim_begin(0,
2274 					    sc.may_writepage,
2275 					    sc.gfp_mask);
2276 
2277 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2278 
2279 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2280 
2281 	return nr_reclaimed;
2282 }
2283 #endif
2284 
2285 /*
2286  * pgdat_balanced is used when checking if a node is balanced for high-order
2287  * allocations. Only zones that meet watermarks and are in a zone allowed
2288  * by the callers classzone_idx are added to balanced_pages. The total of
2289  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2290  * for the node to be considered balanced. Forcing all zones to be balanced
2291  * for high orders can cause excessive reclaim when there are imbalanced zones.
2292  * The choice of 25% is due to
2293  *   o a 16M DMA zone that is balanced will not balance a zone on any
2294  *     reasonable sized machine
2295  *   o On all other machines, the top zone must be at least a reasonable
2296  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2297  *     would need to be at least 256M for it to be balance a whole node.
2298  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2299  *     to balance a node on its own. These seemed like reasonable ratios.
2300  */
2301 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2302 						int classzone_idx)
2303 {
2304 	unsigned long present_pages = 0;
2305 	int i;
2306 
2307 	for (i = 0; i <= classzone_idx; i++)
2308 		present_pages += pgdat->node_zones[i].present_pages;
2309 
2310 	return balanced_pages > (present_pages >> 2);
2311 }
2312 
2313 /* is kswapd sleeping prematurely? */
2314 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2315 					int classzone_idx)
2316 {
2317 	int i;
2318 	unsigned long balanced = 0;
2319 	bool all_zones_ok = true;
2320 
2321 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2322 	if (remaining)
2323 		return true;
2324 
2325 	/* Check the watermark levels */
2326 	for (i = 0; i < pgdat->nr_zones; i++) {
2327 		struct zone *zone = pgdat->node_zones + i;
2328 
2329 		if (!populated_zone(zone))
2330 			continue;
2331 
2332 		/*
2333 		 * balance_pgdat() skips over all_unreclaimable after
2334 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2335 		 * they must be considered balanced here as well if kswapd
2336 		 * is to sleep
2337 		 */
2338 		if (zone->all_unreclaimable) {
2339 			balanced += zone->present_pages;
2340 			continue;
2341 		}
2342 
2343 		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2344 							classzone_idx, 0))
2345 			all_zones_ok = false;
2346 		else
2347 			balanced += zone->present_pages;
2348 	}
2349 
2350 	/*
2351 	 * For high-order requests, the balanced zones must contain at least
2352 	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2353 	 * must be balanced
2354 	 */
2355 	if (order)
2356 		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2357 	else
2358 		return !all_zones_ok;
2359 }
2360 
2361 /*
2362  * For kswapd, balance_pgdat() will work across all this node's zones until
2363  * they are all at high_wmark_pages(zone).
2364  *
2365  * Returns the final order kswapd was reclaiming at
2366  *
2367  * There is special handling here for zones which are full of pinned pages.
2368  * This can happen if the pages are all mlocked, or if they are all used by
2369  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2370  * What we do is to detect the case where all pages in the zone have been
2371  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2372  * dead and from now on, only perform a short scan.  Basically we're polling
2373  * the zone for when the problem goes away.
2374  *
2375  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2376  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2377  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2378  * lower zones regardless of the number of free pages in the lower zones. This
2379  * interoperates with the page allocator fallback scheme to ensure that aging
2380  * of pages is balanced across the zones.
2381  */
2382 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2383 							int *classzone_idx)
2384 {
2385 	int all_zones_ok;
2386 	unsigned long balanced;
2387 	int priority;
2388 	int i;
2389 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2390 	unsigned long total_scanned;
2391 	struct reclaim_state *reclaim_state = current->reclaim_state;
2392 	unsigned long nr_soft_reclaimed;
2393 	unsigned long nr_soft_scanned;
2394 	struct scan_control sc = {
2395 		.gfp_mask = GFP_KERNEL,
2396 		.may_unmap = 1,
2397 		.may_swap = 1,
2398 		/*
2399 		 * kswapd doesn't want to be bailed out while reclaim. because
2400 		 * we want to put equal scanning pressure on each zone.
2401 		 */
2402 		.nr_to_reclaim = ULONG_MAX,
2403 		.swappiness = vm_swappiness,
2404 		.order = order,
2405 		.mem_cgroup = NULL,
2406 	};
2407 	struct shrink_control shrink = {
2408 		.gfp_mask = sc.gfp_mask,
2409 	};
2410 loop_again:
2411 	total_scanned = 0;
2412 	sc.nr_reclaimed = 0;
2413 	sc.may_writepage = !laptop_mode;
2414 	count_vm_event(PAGEOUTRUN);
2415 
2416 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2417 		unsigned long lru_pages = 0;
2418 		int has_under_min_watermark_zone = 0;
2419 
2420 		/* The swap token gets in the way of swapout... */
2421 		if (!priority)
2422 			disable_swap_token(NULL);
2423 
2424 		all_zones_ok = 1;
2425 		balanced = 0;
2426 
2427 		/*
2428 		 * Scan in the highmem->dma direction for the highest
2429 		 * zone which needs scanning
2430 		 */
2431 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2432 			struct zone *zone = pgdat->node_zones + i;
2433 
2434 			if (!populated_zone(zone))
2435 				continue;
2436 
2437 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2438 				continue;
2439 
2440 			/*
2441 			 * Do some background aging of the anon list, to give
2442 			 * pages a chance to be referenced before reclaiming.
2443 			 */
2444 			if (inactive_anon_is_low(zone, &sc))
2445 				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2446 							&sc, priority, 0);
2447 
2448 			if (!zone_watermark_ok_safe(zone, order,
2449 					high_wmark_pages(zone), 0, 0)) {
2450 				end_zone = i;
2451 				*classzone_idx = i;
2452 				break;
2453 			}
2454 		}
2455 		if (i < 0)
2456 			goto out;
2457 
2458 		for (i = 0; i <= end_zone; i++) {
2459 			struct zone *zone = pgdat->node_zones + i;
2460 
2461 			lru_pages += zone_reclaimable_pages(zone);
2462 		}
2463 
2464 		/*
2465 		 * Now scan the zone in the dma->highmem direction, stopping
2466 		 * at the last zone which needs scanning.
2467 		 *
2468 		 * We do this because the page allocator works in the opposite
2469 		 * direction.  This prevents the page allocator from allocating
2470 		 * pages behind kswapd's direction of progress, which would
2471 		 * cause too much scanning of the lower zones.
2472 		 */
2473 		for (i = 0; i <= end_zone; i++) {
2474 			struct zone *zone = pgdat->node_zones + i;
2475 			int nr_slab;
2476 			unsigned long balance_gap;
2477 
2478 			if (!populated_zone(zone))
2479 				continue;
2480 
2481 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2482 				continue;
2483 
2484 			sc.nr_scanned = 0;
2485 
2486 			nr_soft_scanned = 0;
2487 			/*
2488 			 * Call soft limit reclaim before calling shrink_zone.
2489 			 */
2490 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2491 							order, sc.gfp_mask,
2492 							&nr_soft_scanned);
2493 			sc.nr_reclaimed += nr_soft_reclaimed;
2494 			total_scanned += nr_soft_scanned;
2495 
2496 			/*
2497 			 * We put equal pressure on every zone, unless
2498 			 * one zone has way too many pages free
2499 			 * already. The "too many pages" is defined
2500 			 * as the high wmark plus a "gap" where the
2501 			 * gap is either the low watermark or 1%
2502 			 * of the zone, whichever is smaller.
2503 			 */
2504 			balance_gap = min(low_wmark_pages(zone),
2505 				(zone->present_pages +
2506 					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2507 				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2508 			if (!zone_watermark_ok_safe(zone, order,
2509 					high_wmark_pages(zone) + balance_gap,
2510 					end_zone, 0))
2511 				shrink_zone(priority, zone, &sc);
2512 			reclaim_state->reclaimed_slab = 0;
2513 			nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2514 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2515 			total_scanned += sc.nr_scanned;
2516 
2517 			if (zone->all_unreclaimable)
2518 				continue;
2519 			if (nr_slab == 0 &&
2520 			    !zone_reclaimable(zone))
2521 				zone->all_unreclaimable = 1;
2522 			/*
2523 			 * If we've done a decent amount of scanning and
2524 			 * the reclaim ratio is low, start doing writepage
2525 			 * even in laptop mode
2526 			 */
2527 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2528 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2529 				sc.may_writepage = 1;
2530 
2531 			if (!zone_watermark_ok_safe(zone, order,
2532 					high_wmark_pages(zone), end_zone, 0)) {
2533 				all_zones_ok = 0;
2534 				/*
2535 				 * We are still under min water mark.  This
2536 				 * means that we have a GFP_ATOMIC allocation
2537 				 * failure risk. Hurry up!
2538 				 */
2539 				if (!zone_watermark_ok_safe(zone, order,
2540 					    min_wmark_pages(zone), end_zone, 0))
2541 					has_under_min_watermark_zone = 1;
2542 			} else {
2543 				/*
2544 				 * If a zone reaches its high watermark,
2545 				 * consider it to be no longer congested. It's
2546 				 * possible there are dirty pages backed by
2547 				 * congested BDIs but as pressure is relieved,
2548 				 * spectulatively avoid congestion waits
2549 				 */
2550 				zone_clear_flag(zone, ZONE_CONGESTED);
2551 				if (i <= *classzone_idx)
2552 					balanced += zone->present_pages;
2553 			}
2554 
2555 		}
2556 		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2557 			break;		/* kswapd: all done */
2558 		/*
2559 		 * OK, kswapd is getting into trouble.  Take a nap, then take
2560 		 * another pass across the zones.
2561 		 */
2562 		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2563 			if (has_under_min_watermark_zone)
2564 				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2565 			else
2566 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2567 		}
2568 
2569 		/*
2570 		 * We do this so kswapd doesn't build up large priorities for
2571 		 * example when it is freeing in parallel with allocators. It
2572 		 * matches the direct reclaim path behaviour in terms of impact
2573 		 * on zone->*_priority.
2574 		 */
2575 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2576 			break;
2577 	}
2578 out:
2579 
2580 	/*
2581 	 * order-0: All zones must meet high watermark for a balanced node
2582 	 * high-order: Balanced zones must make up at least 25% of the node
2583 	 *             for the node to be balanced
2584 	 */
2585 	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2586 		cond_resched();
2587 
2588 		try_to_freeze();
2589 
2590 		/*
2591 		 * Fragmentation may mean that the system cannot be
2592 		 * rebalanced for high-order allocations in all zones.
2593 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2594 		 * it means the zones have been fully scanned and are still
2595 		 * not balanced. For high-order allocations, there is
2596 		 * little point trying all over again as kswapd may
2597 		 * infinite loop.
2598 		 *
2599 		 * Instead, recheck all watermarks at order-0 as they
2600 		 * are the most important. If watermarks are ok, kswapd will go
2601 		 * back to sleep. High-order users can still perform direct
2602 		 * reclaim if they wish.
2603 		 */
2604 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2605 			order = sc.order = 0;
2606 
2607 		goto loop_again;
2608 	}
2609 
2610 	/*
2611 	 * If kswapd was reclaiming at a higher order, it has the option of
2612 	 * sleeping without all zones being balanced. Before it does, it must
2613 	 * ensure that the watermarks for order-0 on *all* zones are met and
2614 	 * that the congestion flags are cleared. The congestion flag must
2615 	 * be cleared as kswapd is the only mechanism that clears the flag
2616 	 * and it is potentially going to sleep here.
2617 	 */
2618 	if (order) {
2619 		for (i = 0; i <= end_zone; i++) {
2620 			struct zone *zone = pgdat->node_zones + i;
2621 
2622 			if (!populated_zone(zone))
2623 				continue;
2624 
2625 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2626 				continue;
2627 
2628 			/* Confirm the zone is balanced for order-0 */
2629 			if (!zone_watermark_ok(zone, 0,
2630 					high_wmark_pages(zone), 0, 0)) {
2631 				order = sc.order = 0;
2632 				goto loop_again;
2633 			}
2634 
2635 			/* If balanced, clear the congested flag */
2636 			zone_clear_flag(zone, ZONE_CONGESTED);
2637 		}
2638 	}
2639 
2640 	/*
2641 	 * Return the order we were reclaiming at so sleeping_prematurely()
2642 	 * makes a decision on the order we were last reclaiming at. However,
2643 	 * if another caller entered the allocator slow path while kswapd
2644 	 * was awake, order will remain at the higher level
2645 	 */
2646 	*classzone_idx = end_zone;
2647 	return order;
2648 }
2649 
2650 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2651 {
2652 	long remaining = 0;
2653 	DEFINE_WAIT(wait);
2654 
2655 	if (freezing(current) || kthread_should_stop())
2656 		return;
2657 
2658 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2659 
2660 	/* Try to sleep for a short interval */
2661 	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2662 		remaining = schedule_timeout(HZ/10);
2663 		finish_wait(&pgdat->kswapd_wait, &wait);
2664 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2665 	}
2666 
2667 	/*
2668 	 * After a short sleep, check if it was a premature sleep. If not, then
2669 	 * go fully to sleep until explicitly woken up.
2670 	 */
2671 	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2672 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2673 
2674 		/*
2675 		 * vmstat counters are not perfectly accurate and the estimated
2676 		 * value for counters such as NR_FREE_PAGES can deviate from the
2677 		 * true value by nr_online_cpus * threshold. To avoid the zone
2678 		 * watermarks being breached while under pressure, we reduce the
2679 		 * per-cpu vmstat threshold while kswapd is awake and restore
2680 		 * them before going back to sleep.
2681 		 */
2682 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2683 		schedule();
2684 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2685 	} else {
2686 		if (remaining)
2687 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2688 		else
2689 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2690 	}
2691 	finish_wait(&pgdat->kswapd_wait, &wait);
2692 }
2693 
2694 /*
2695  * The background pageout daemon, started as a kernel thread
2696  * from the init process.
2697  *
2698  * This basically trickles out pages so that we have _some_
2699  * free memory available even if there is no other activity
2700  * that frees anything up. This is needed for things like routing
2701  * etc, where we otherwise might have all activity going on in
2702  * asynchronous contexts that cannot page things out.
2703  *
2704  * If there are applications that are active memory-allocators
2705  * (most normal use), this basically shouldn't matter.
2706  */
2707 static int kswapd(void *p)
2708 {
2709 	unsigned long order;
2710 	int classzone_idx;
2711 	pg_data_t *pgdat = (pg_data_t*)p;
2712 	struct task_struct *tsk = current;
2713 
2714 	struct reclaim_state reclaim_state = {
2715 		.reclaimed_slab = 0,
2716 	};
2717 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2718 
2719 	lockdep_set_current_reclaim_state(GFP_KERNEL);
2720 
2721 	if (!cpumask_empty(cpumask))
2722 		set_cpus_allowed_ptr(tsk, cpumask);
2723 	current->reclaim_state = &reclaim_state;
2724 
2725 	/*
2726 	 * Tell the memory management that we're a "memory allocator",
2727 	 * and that if we need more memory we should get access to it
2728 	 * regardless (see "__alloc_pages()"). "kswapd" should
2729 	 * never get caught in the normal page freeing logic.
2730 	 *
2731 	 * (Kswapd normally doesn't need memory anyway, but sometimes
2732 	 * you need a small amount of memory in order to be able to
2733 	 * page out something else, and this flag essentially protects
2734 	 * us from recursively trying to free more memory as we're
2735 	 * trying to free the first piece of memory in the first place).
2736 	 */
2737 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2738 	set_freezable();
2739 
2740 	order = 0;
2741 	classzone_idx = MAX_NR_ZONES - 1;
2742 	for ( ; ; ) {
2743 		unsigned long new_order;
2744 		int new_classzone_idx;
2745 		int ret;
2746 
2747 		new_order = pgdat->kswapd_max_order;
2748 		new_classzone_idx = pgdat->classzone_idx;
2749 		pgdat->kswapd_max_order = 0;
2750 		pgdat->classzone_idx = MAX_NR_ZONES - 1;
2751 		if (order < new_order || classzone_idx > new_classzone_idx) {
2752 			/*
2753 			 * Don't sleep if someone wants a larger 'order'
2754 			 * allocation or has tigher zone constraints
2755 			 */
2756 			order = new_order;
2757 			classzone_idx = new_classzone_idx;
2758 		} else {
2759 			kswapd_try_to_sleep(pgdat, order, classzone_idx);
2760 			order = pgdat->kswapd_max_order;
2761 			classzone_idx = pgdat->classzone_idx;
2762 			pgdat->kswapd_max_order = 0;
2763 			pgdat->classzone_idx = MAX_NR_ZONES - 1;
2764 		}
2765 
2766 		ret = try_to_freeze();
2767 		if (kthread_should_stop())
2768 			break;
2769 
2770 		/*
2771 		 * We can speed up thawing tasks if we don't call balance_pgdat
2772 		 * after returning from the refrigerator
2773 		 */
2774 		if (!ret) {
2775 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2776 			order = balance_pgdat(pgdat, order, &classzone_idx);
2777 		}
2778 	}
2779 	return 0;
2780 }
2781 
2782 /*
2783  * A zone is low on free memory, so wake its kswapd task to service it.
2784  */
2785 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2786 {
2787 	pg_data_t *pgdat;
2788 
2789 	if (!populated_zone(zone))
2790 		return;
2791 
2792 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2793 		return;
2794 	pgdat = zone->zone_pgdat;
2795 	if (pgdat->kswapd_max_order < order) {
2796 		pgdat->kswapd_max_order = order;
2797 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2798 	}
2799 	if (!waitqueue_active(&pgdat->kswapd_wait))
2800 		return;
2801 	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2802 		return;
2803 
2804 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2805 	wake_up_interruptible(&pgdat->kswapd_wait);
2806 }
2807 
2808 /*
2809  * The reclaimable count would be mostly accurate.
2810  * The less reclaimable pages may be
2811  * - mlocked pages, which will be moved to unevictable list when encountered
2812  * - mapped pages, which may require several travels to be reclaimed
2813  * - dirty pages, which is not "instantly" reclaimable
2814  */
2815 unsigned long global_reclaimable_pages(void)
2816 {
2817 	int nr;
2818 
2819 	nr = global_page_state(NR_ACTIVE_FILE) +
2820 	     global_page_state(NR_INACTIVE_FILE);
2821 
2822 	if (nr_swap_pages > 0)
2823 		nr += global_page_state(NR_ACTIVE_ANON) +
2824 		      global_page_state(NR_INACTIVE_ANON);
2825 
2826 	return nr;
2827 }
2828 
2829 unsigned long zone_reclaimable_pages(struct zone *zone)
2830 {
2831 	int nr;
2832 
2833 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2834 	     zone_page_state(zone, NR_INACTIVE_FILE);
2835 
2836 	if (nr_swap_pages > 0)
2837 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2838 		      zone_page_state(zone, NR_INACTIVE_ANON);
2839 
2840 	return nr;
2841 }
2842 
2843 #ifdef CONFIG_HIBERNATION
2844 /*
2845  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2846  * freed pages.
2847  *
2848  * Rather than trying to age LRUs the aim is to preserve the overall
2849  * LRU order by reclaiming preferentially
2850  * inactive > active > active referenced > active mapped
2851  */
2852 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2853 {
2854 	struct reclaim_state reclaim_state;
2855 	struct scan_control sc = {
2856 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2857 		.may_swap = 1,
2858 		.may_unmap = 1,
2859 		.may_writepage = 1,
2860 		.nr_to_reclaim = nr_to_reclaim,
2861 		.hibernation_mode = 1,
2862 		.swappiness = vm_swappiness,
2863 		.order = 0,
2864 	};
2865 	struct shrink_control shrink = {
2866 		.gfp_mask = sc.gfp_mask,
2867 	};
2868 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2869 	struct task_struct *p = current;
2870 	unsigned long nr_reclaimed;
2871 
2872 	p->flags |= PF_MEMALLOC;
2873 	lockdep_set_current_reclaim_state(sc.gfp_mask);
2874 	reclaim_state.reclaimed_slab = 0;
2875 	p->reclaim_state = &reclaim_state;
2876 
2877 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2878 
2879 	p->reclaim_state = NULL;
2880 	lockdep_clear_current_reclaim_state();
2881 	p->flags &= ~PF_MEMALLOC;
2882 
2883 	return nr_reclaimed;
2884 }
2885 #endif /* CONFIG_HIBERNATION */
2886 
2887 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2888    not required for correctness.  So if the last cpu in a node goes
2889    away, we get changed to run anywhere: as the first one comes back,
2890    restore their cpu bindings. */
2891 static int __devinit cpu_callback(struct notifier_block *nfb,
2892 				  unsigned long action, void *hcpu)
2893 {
2894 	int nid;
2895 
2896 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2897 		for_each_node_state(nid, N_HIGH_MEMORY) {
2898 			pg_data_t *pgdat = NODE_DATA(nid);
2899 			const struct cpumask *mask;
2900 
2901 			mask = cpumask_of_node(pgdat->node_id);
2902 
2903 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2904 				/* One of our CPUs online: restore mask */
2905 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2906 		}
2907 	}
2908 	return NOTIFY_OK;
2909 }
2910 
2911 /*
2912  * This kswapd start function will be called by init and node-hot-add.
2913  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2914  */
2915 int kswapd_run(int nid)
2916 {
2917 	pg_data_t *pgdat = NODE_DATA(nid);
2918 	int ret = 0;
2919 
2920 	if (pgdat->kswapd)
2921 		return 0;
2922 
2923 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2924 	if (IS_ERR(pgdat->kswapd)) {
2925 		/* failure at boot is fatal */
2926 		BUG_ON(system_state == SYSTEM_BOOTING);
2927 		printk("Failed to start kswapd on node %d\n",nid);
2928 		ret = -1;
2929 	}
2930 	return ret;
2931 }
2932 
2933 /*
2934  * Called by memory hotplug when all memory in a node is offlined.
2935  */
2936 void kswapd_stop(int nid)
2937 {
2938 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2939 
2940 	if (kswapd)
2941 		kthread_stop(kswapd);
2942 }
2943 
2944 static int __init kswapd_init(void)
2945 {
2946 	int nid;
2947 
2948 	swap_setup();
2949 	for_each_node_state(nid, N_HIGH_MEMORY)
2950  		kswapd_run(nid);
2951 	hotcpu_notifier(cpu_callback, 0);
2952 	return 0;
2953 }
2954 
2955 module_init(kswapd_init)
2956 
2957 #ifdef CONFIG_NUMA
2958 /*
2959  * Zone reclaim mode
2960  *
2961  * If non-zero call zone_reclaim when the number of free pages falls below
2962  * the watermarks.
2963  */
2964 int zone_reclaim_mode __read_mostly;
2965 
2966 #define RECLAIM_OFF 0
2967 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2968 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2969 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2970 
2971 /*
2972  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2973  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2974  * a zone.
2975  */
2976 #define ZONE_RECLAIM_PRIORITY 4
2977 
2978 /*
2979  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2980  * occur.
2981  */
2982 int sysctl_min_unmapped_ratio = 1;
2983 
2984 /*
2985  * If the number of slab pages in a zone grows beyond this percentage then
2986  * slab reclaim needs to occur.
2987  */
2988 int sysctl_min_slab_ratio = 5;
2989 
2990 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2991 {
2992 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2993 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2994 		zone_page_state(zone, NR_ACTIVE_FILE);
2995 
2996 	/*
2997 	 * It's possible for there to be more file mapped pages than
2998 	 * accounted for by the pages on the file LRU lists because
2999 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3000 	 */
3001 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3002 }
3003 
3004 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3005 static long zone_pagecache_reclaimable(struct zone *zone)
3006 {
3007 	long nr_pagecache_reclaimable;
3008 	long delta = 0;
3009 
3010 	/*
3011 	 * If RECLAIM_SWAP is set, then all file pages are considered
3012 	 * potentially reclaimable. Otherwise, we have to worry about
3013 	 * pages like swapcache and zone_unmapped_file_pages() provides
3014 	 * a better estimate
3015 	 */
3016 	if (zone_reclaim_mode & RECLAIM_SWAP)
3017 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3018 	else
3019 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3020 
3021 	/* If we can't clean pages, remove dirty pages from consideration */
3022 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3023 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3024 
3025 	/* Watch for any possible underflows due to delta */
3026 	if (unlikely(delta > nr_pagecache_reclaimable))
3027 		delta = nr_pagecache_reclaimable;
3028 
3029 	return nr_pagecache_reclaimable - delta;
3030 }
3031 
3032 /*
3033  * Try to free up some pages from this zone through reclaim.
3034  */
3035 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3036 {
3037 	/* Minimum pages needed in order to stay on node */
3038 	const unsigned long nr_pages = 1 << order;
3039 	struct task_struct *p = current;
3040 	struct reclaim_state reclaim_state;
3041 	int priority;
3042 	struct scan_control sc = {
3043 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3044 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3045 		.may_swap = 1,
3046 		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3047 				       SWAP_CLUSTER_MAX),
3048 		.gfp_mask = gfp_mask,
3049 		.swappiness = vm_swappiness,
3050 		.order = order,
3051 	};
3052 	struct shrink_control shrink = {
3053 		.gfp_mask = sc.gfp_mask,
3054 	};
3055 	unsigned long nr_slab_pages0, nr_slab_pages1;
3056 
3057 	cond_resched();
3058 	/*
3059 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3060 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3061 	 * and RECLAIM_SWAP.
3062 	 */
3063 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3064 	lockdep_set_current_reclaim_state(gfp_mask);
3065 	reclaim_state.reclaimed_slab = 0;
3066 	p->reclaim_state = &reclaim_state;
3067 
3068 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3069 		/*
3070 		 * Free memory by calling shrink zone with increasing
3071 		 * priorities until we have enough memory freed.
3072 		 */
3073 		priority = ZONE_RECLAIM_PRIORITY;
3074 		do {
3075 			shrink_zone(priority, zone, &sc);
3076 			priority--;
3077 		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3078 	}
3079 
3080 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3081 	if (nr_slab_pages0 > zone->min_slab_pages) {
3082 		/*
3083 		 * shrink_slab() does not currently allow us to determine how
3084 		 * many pages were freed in this zone. So we take the current
3085 		 * number of slab pages and shake the slab until it is reduced
3086 		 * by the same nr_pages that we used for reclaiming unmapped
3087 		 * pages.
3088 		 *
3089 		 * Note that shrink_slab will free memory on all zones and may
3090 		 * take a long time.
3091 		 */
3092 		for (;;) {
3093 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3094 
3095 			/* No reclaimable slab or very low memory pressure */
3096 			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3097 				break;
3098 
3099 			/* Freed enough memory */
3100 			nr_slab_pages1 = zone_page_state(zone,
3101 							NR_SLAB_RECLAIMABLE);
3102 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3103 				break;
3104 		}
3105 
3106 		/*
3107 		 * Update nr_reclaimed by the number of slab pages we
3108 		 * reclaimed from this zone.
3109 		 */
3110 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3111 		if (nr_slab_pages1 < nr_slab_pages0)
3112 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3113 	}
3114 
3115 	p->reclaim_state = NULL;
3116 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3117 	lockdep_clear_current_reclaim_state();
3118 	return sc.nr_reclaimed >= nr_pages;
3119 }
3120 
3121 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3122 {
3123 	int node_id;
3124 	int ret;
3125 
3126 	/*
3127 	 * Zone reclaim reclaims unmapped file backed pages and
3128 	 * slab pages if we are over the defined limits.
3129 	 *
3130 	 * A small portion of unmapped file backed pages is needed for
3131 	 * file I/O otherwise pages read by file I/O will be immediately
3132 	 * thrown out if the zone is overallocated. So we do not reclaim
3133 	 * if less than a specified percentage of the zone is used by
3134 	 * unmapped file backed pages.
3135 	 */
3136 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3137 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3138 		return ZONE_RECLAIM_FULL;
3139 
3140 	if (zone->all_unreclaimable)
3141 		return ZONE_RECLAIM_FULL;
3142 
3143 	/*
3144 	 * Do not scan if the allocation should not be delayed.
3145 	 */
3146 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3147 		return ZONE_RECLAIM_NOSCAN;
3148 
3149 	/*
3150 	 * Only run zone reclaim on the local zone or on zones that do not
3151 	 * have associated processors. This will favor the local processor
3152 	 * over remote processors and spread off node memory allocations
3153 	 * as wide as possible.
3154 	 */
3155 	node_id = zone_to_nid(zone);
3156 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3157 		return ZONE_RECLAIM_NOSCAN;
3158 
3159 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3160 		return ZONE_RECLAIM_NOSCAN;
3161 
3162 	ret = __zone_reclaim(zone, gfp_mask, order);
3163 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3164 
3165 	if (!ret)
3166 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3167 
3168 	return ret;
3169 }
3170 #endif
3171 
3172 /*
3173  * page_evictable - test whether a page is evictable
3174  * @page: the page to test
3175  * @vma: the VMA in which the page is or will be mapped, may be NULL
3176  *
3177  * Test whether page is evictable--i.e., should be placed on active/inactive
3178  * lists vs unevictable list.  The vma argument is !NULL when called from the
3179  * fault path to determine how to instantate a new page.
3180  *
3181  * Reasons page might not be evictable:
3182  * (1) page's mapping marked unevictable
3183  * (2) page is part of an mlocked VMA
3184  *
3185  */
3186 int page_evictable(struct page *page, struct vm_area_struct *vma)
3187 {
3188 
3189 	if (mapping_unevictable(page_mapping(page)))
3190 		return 0;
3191 
3192 	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3193 		return 0;
3194 
3195 	return 1;
3196 }
3197 
3198 /**
3199  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3200  * @page: page to check evictability and move to appropriate lru list
3201  * @zone: zone page is in
3202  *
3203  * Checks a page for evictability and moves the page to the appropriate
3204  * zone lru list.
3205  *
3206  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3207  * have PageUnevictable set.
3208  */
3209 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3210 {
3211 	VM_BUG_ON(PageActive(page));
3212 
3213 retry:
3214 	ClearPageUnevictable(page);
3215 	if (page_evictable(page, NULL)) {
3216 		enum lru_list l = page_lru_base_type(page);
3217 
3218 		__dec_zone_state(zone, NR_UNEVICTABLE);
3219 		list_move(&page->lru, &zone->lru[l].list);
3220 		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3221 		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3222 		__count_vm_event(UNEVICTABLE_PGRESCUED);
3223 	} else {
3224 		/*
3225 		 * rotate unevictable list
3226 		 */
3227 		SetPageUnevictable(page);
3228 		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3229 		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3230 		if (page_evictable(page, NULL))
3231 			goto retry;
3232 	}
3233 }
3234 
3235 /**
3236  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3237  * @mapping: struct address_space to scan for evictable pages
3238  *
3239  * Scan all pages in mapping.  Check unevictable pages for
3240  * evictability and move them to the appropriate zone lru list.
3241  */
3242 void scan_mapping_unevictable_pages(struct address_space *mapping)
3243 {
3244 	pgoff_t next = 0;
3245 	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3246 			 PAGE_CACHE_SHIFT;
3247 	struct zone *zone;
3248 	struct pagevec pvec;
3249 
3250 	if (mapping->nrpages == 0)
3251 		return;
3252 
3253 	pagevec_init(&pvec, 0);
3254 	while (next < end &&
3255 		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3256 		int i;
3257 		int pg_scanned = 0;
3258 
3259 		zone = NULL;
3260 
3261 		for (i = 0; i < pagevec_count(&pvec); i++) {
3262 			struct page *page = pvec.pages[i];
3263 			pgoff_t page_index = page->index;
3264 			struct zone *pagezone = page_zone(page);
3265 
3266 			pg_scanned++;
3267 			if (page_index > next)
3268 				next = page_index;
3269 			next++;
3270 
3271 			if (pagezone != zone) {
3272 				if (zone)
3273 					spin_unlock_irq(&zone->lru_lock);
3274 				zone = pagezone;
3275 				spin_lock_irq(&zone->lru_lock);
3276 			}
3277 
3278 			if (PageLRU(page) && PageUnevictable(page))
3279 				check_move_unevictable_page(page, zone);
3280 		}
3281 		if (zone)
3282 			spin_unlock_irq(&zone->lru_lock);
3283 		pagevec_release(&pvec);
3284 
3285 		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3286 	}
3287 
3288 }
3289 
3290 /**
3291  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3292  * @zone - zone of which to scan the unevictable list
3293  *
3294  * Scan @zone's unevictable LRU lists to check for pages that have become
3295  * evictable.  Move those that have to @zone's inactive list where they
3296  * become candidates for reclaim, unless shrink_inactive_zone() decides
3297  * to reactivate them.  Pages that are still unevictable are rotated
3298  * back onto @zone's unevictable list.
3299  */
3300 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3301 static void scan_zone_unevictable_pages(struct zone *zone)
3302 {
3303 	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3304 	unsigned long scan;
3305 	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3306 
3307 	while (nr_to_scan > 0) {
3308 		unsigned long batch_size = min(nr_to_scan,
3309 						SCAN_UNEVICTABLE_BATCH_SIZE);
3310 
3311 		spin_lock_irq(&zone->lru_lock);
3312 		for (scan = 0;  scan < batch_size; scan++) {
3313 			struct page *page = lru_to_page(l_unevictable);
3314 
3315 			if (!trylock_page(page))
3316 				continue;
3317 
3318 			prefetchw_prev_lru_page(page, l_unevictable, flags);
3319 
3320 			if (likely(PageLRU(page) && PageUnevictable(page)))
3321 				check_move_unevictable_page(page, zone);
3322 
3323 			unlock_page(page);
3324 		}
3325 		spin_unlock_irq(&zone->lru_lock);
3326 
3327 		nr_to_scan -= batch_size;
3328 	}
3329 }
3330 
3331 
3332 /**
3333  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3334  *
3335  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3336  * pages that have become evictable.  Move those back to the zones'
3337  * inactive list where they become candidates for reclaim.
3338  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3339  * and we add swap to the system.  As such, it runs in the context of a task
3340  * that has possibly/probably made some previously unevictable pages
3341  * evictable.
3342  */
3343 static void scan_all_zones_unevictable_pages(void)
3344 {
3345 	struct zone *zone;
3346 
3347 	for_each_zone(zone) {
3348 		scan_zone_unevictable_pages(zone);
3349 	}
3350 }
3351 
3352 /*
3353  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3354  * all nodes' unevictable lists for evictable pages
3355  */
3356 unsigned long scan_unevictable_pages;
3357 
3358 int scan_unevictable_handler(struct ctl_table *table, int write,
3359 			   void __user *buffer,
3360 			   size_t *length, loff_t *ppos)
3361 {
3362 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3363 
3364 	if (write && *(unsigned long *)table->data)
3365 		scan_all_zones_unevictable_pages();
3366 
3367 	scan_unevictable_pages = 0;
3368 	return 0;
3369 }
3370 
3371 #ifdef CONFIG_NUMA
3372 /*
3373  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3374  * a specified node's per zone unevictable lists for evictable pages.
3375  */
3376 
3377 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3378 					  struct sysdev_attribute *attr,
3379 					  char *buf)
3380 {
3381 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3382 }
3383 
3384 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3385 					   struct sysdev_attribute *attr,
3386 					const char *buf, size_t count)
3387 {
3388 	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3389 	struct zone *zone;
3390 	unsigned long res;
3391 	unsigned long req = strict_strtoul(buf, 10, &res);
3392 
3393 	if (!req)
3394 		return 1;	/* zero is no-op */
3395 
3396 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3397 		if (!populated_zone(zone))
3398 			continue;
3399 		scan_zone_unevictable_pages(zone);
3400 	}
3401 	return 1;
3402 }
3403 
3404 
3405 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3406 			read_scan_unevictable_node,
3407 			write_scan_unevictable_node);
3408 
3409 int scan_unevictable_register_node(struct node *node)
3410 {
3411 	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3412 }
3413 
3414 void scan_unevictable_unregister_node(struct node *node)
3415 {
3416 	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3417 }
3418 #endif
3419