xref: /linux/mm/vmscan.c (revision 7203ca412fc8e8a0588e9adc0f777d3163f8dff3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59 #include <linux/mmu_notifier.h>
60 #include <linux/parser.h>
61 
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 
65 #include <linux/swapops.h>
66 #include <linux/balloon_compaction.h>
67 #include <linux/sched/sysctl.h>
68 
69 #include "internal.h"
70 #include "swap.h"
71 
72 #define CREATE_TRACE_POINTS
73 #include <trace/events/vmscan.h>
74 
75 struct scan_control {
76 	/* How many pages shrink_list() should reclaim */
77 	unsigned long nr_to_reclaim;
78 
79 	/*
80 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
81 	 * are scanned.
82 	 */
83 	nodemask_t	*nodemask;
84 
85 	/*
86 	 * The memory cgroup that hit its limit and as a result is the
87 	 * primary target of this reclaim invocation.
88 	 */
89 	struct mem_cgroup *target_mem_cgroup;
90 
91 	/*
92 	 * Scan pressure balancing between anon and file LRUs
93 	 */
94 	unsigned long	anon_cost;
95 	unsigned long	file_cost;
96 
97 	/* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
98 	int *proactive_swappiness;
99 
100 	/* Can active folios be deactivated as part of reclaim? */
101 #define DEACTIVATE_ANON 1
102 #define DEACTIVATE_FILE 2
103 	unsigned int may_deactivate:2;
104 	unsigned int force_deactivate:1;
105 	unsigned int skipped_deactivate:1;
106 
107 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
108 	unsigned int may_writepage:1;
109 
110 	/* Can mapped folios be reclaimed? */
111 	unsigned int may_unmap:1;
112 
113 	/* Can folios be swapped as part of reclaim? */
114 	unsigned int may_swap:1;
115 
116 	/* Not allow cache_trim_mode to be turned on as part of reclaim? */
117 	unsigned int no_cache_trim_mode:1;
118 
119 	/* Has cache_trim_mode failed at least once? */
120 	unsigned int cache_trim_mode_failed:1;
121 
122 	/* Proactive reclaim invoked by userspace */
123 	unsigned int proactive:1;
124 
125 	/*
126 	 * Cgroup memory below memory.low is protected as long as we
127 	 * don't threaten to OOM. If any cgroup is reclaimed at
128 	 * reduced force or passed over entirely due to its memory.low
129 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
130 	 * result, then go back for one more cycle that reclaims the protected
131 	 * memory (memcg_low_reclaim) to avert OOM.
132 	 */
133 	unsigned int memcg_low_reclaim:1;
134 	unsigned int memcg_low_skipped:1;
135 
136 	/* Shared cgroup tree walk failed, rescan the whole tree */
137 	unsigned int memcg_full_walk:1;
138 
139 	unsigned int hibernation_mode:1;
140 
141 	/* One of the zones is ready for compaction */
142 	unsigned int compaction_ready:1;
143 
144 	/* There is easily reclaimable cold cache in the current node */
145 	unsigned int cache_trim_mode:1;
146 
147 	/* The file folios on the current node are dangerously low */
148 	unsigned int file_is_tiny:1;
149 
150 	/* Always discard instead of demoting to lower tier memory */
151 	unsigned int no_demotion:1;
152 
153 	/* Allocation order */
154 	s8 order;
155 
156 	/* Scan (total_size >> priority) pages at once */
157 	s8 priority;
158 
159 	/* The highest zone to isolate folios for reclaim from */
160 	s8 reclaim_idx;
161 
162 	/* This context's GFP mask */
163 	gfp_t gfp_mask;
164 
165 	/* Incremented by the number of inactive pages that were scanned */
166 	unsigned long nr_scanned;
167 
168 	/* Number of pages freed so far during a call to shrink_zones() */
169 	unsigned long nr_reclaimed;
170 
171 	struct {
172 		unsigned int dirty;
173 		unsigned int unqueued_dirty;
174 		unsigned int congested;
175 		unsigned int writeback;
176 		unsigned int immediate;
177 		unsigned int file_taken;
178 		unsigned int taken;
179 	} nr;
180 
181 	/* for recording the reclaimed slab by now */
182 	struct reclaim_state reclaim_state;
183 };
184 
185 #ifdef ARCH_HAS_PREFETCHW
186 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
187 	do {								\
188 		if ((_folio)->lru.prev != _base) {			\
189 			struct folio *prev;				\
190 									\
191 			prev = lru_to_folio(&(_folio->lru));		\
192 			prefetchw(&prev->_field);			\
193 		}							\
194 	} while (0)
195 #else
196 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
197 #endif
198 
199 /*
200  * From 0 .. MAX_SWAPPINESS.  Higher means more swappy.
201  */
202 int vm_swappiness = 60;
203 
204 #ifdef CONFIG_MEMCG
205 
206 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
cgroup_reclaim(struct scan_control * sc)207 static bool cgroup_reclaim(struct scan_control *sc)
208 {
209 	return sc->target_mem_cgroup;
210 }
211 
212 /*
213  * Returns true for reclaim on the root cgroup. This is true for direct
214  * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
215  */
root_reclaim(struct scan_control * sc)216 static bool root_reclaim(struct scan_control *sc)
217 {
218 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
219 }
220 
221 /**
222  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
223  * @sc: scan_control in question
224  *
225  * The normal page dirty throttling mechanism in balance_dirty_pages() is
226  * completely broken with the legacy memcg and direct stalling in
227  * shrink_folio_list() is used for throttling instead, which lacks all the
228  * niceties such as fairness, adaptive pausing, bandwidth proportional
229  * allocation and configurability.
230  *
231  * This function tests whether the vmscan currently in progress can assume
232  * that the normal dirty throttling mechanism is operational.
233  */
writeback_throttling_sane(struct scan_control * sc)234 static bool writeback_throttling_sane(struct scan_control *sc)
235 {
236 	if (!cgroup_reclaim(sc))
237 		return true;
238 #ifdef CONFIG_CGROUP_WRITEBACK
239 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
240 		return true;
241 #endif
242 	return false;
243 }
244 
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)245 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
246 {
247 	if (sc->proactive && sc->proactive_swappiness)
248 		return *sc->proactive_swappiness;
249 	return mem_cgroup_swappiness(memcg);
250 }
251 #else
cgroup_reclaim(struct scan_control * sc)252 static bool cgroup_reclaim(struct scan_control *sc)
253 {
254 	return false;
255 }
256 
root_reclaim(struct scan_control * sc)257 static bool root_reclaim(struct scan_control *sc)
258 {
259 	return true;
260 }
261 
writeback_throttling_sane(struct scan_control * sc)262 static bool writeback_throttling_sane(struct scan_control *sc)
263 {
264 	return true;
265 }
266 
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)267 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
268 {
269 	return READ_ONCE(vm_swappiness);
270 }
271 #endif
272 
273 /* for_each_managed_zone_pgdat - helper macro to iterate over all managed zones in a pgdat up to
274  * and including the specified highidx
275  * @zone: The current zone in the iterator
276  * @pgdat: The pgdat which node_zones are being iterated
277  * @idx: The index variable
278  * @highidx: The index of the highest zone to return
279  *
280  * This macro iterates through all managed zones up to and including the specified highidx.
281  * The zone iterator enters an invalid state after macro call and must be reinitialized
282  * before it can be used again.
283  */
284 #define for_each_managed_zone_pgdat(zone, pgdat, idx, highidx)	\
285 	for ((idx) = 0, (zone) = (pgdat)->node_zones;		\
286 	    (idx) <= (highidx);					\
287 	    (idx)++, (zone)++)					\
288 		if (!managed_zone(zone))			\
289 			continue;				\
290 		else
291 
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)292 static void set_task_reclaim_state(struct task_struct *task,
293 				   struct reclaim_state *rs)
294 {
295 	/* Check for an overwrite */
296 	WARN_ON_ONCE(rs && task->reclaim_state);
297 
298 	/* Check for the nulling of an already-nulled member */
299 	WARN_ON_ONCE(!rs && !task->reclaim_state);
300 
301 	task->reclaim_state = rs;
302 }
303 
304 /*
305  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
306  * scan_control->nr_reclaimed.
307  */
flush_reclaim_state(struct scan_control * sc)308 static void flush_reclaim_state(struct scan_control *sc)
309 {
310 	/*
311 	 * Currently, reclaim_state->reclaimed includes three types of pages
312 	 * freed outside of vmscan:
313 	 * (1) Slab pages.
314 	 * (2) Clean file pages from pruned inodes (on highmem systems).
315 	 * (3) XFS freed buffer pages.
316 	 *
317 	 * For all of these cases, we cannot universally link the pages to a
318 	 * single memcg. For example, a memcg-aware shrinker can free one object
319 	 * charged to the target memcg, causing an entire page to be freed.
320 	 * If we count the entire page as reclaimed from the memcg, we end up
321 	 * overestimating the reclaimed amount (potentially under-reclaiming).
322 	 *
323 	 * Only count such pages for global reclaim to prevent under-reclaiming
324 	 * from the target memcg; preventing unnecessary retries during memcg
325 	 * charging and false positives from proactive reclaim.
326 	 *
327 	 * For uncommon cases where the freed pages were actually mostly
328 	 * charged to the target memcg, we end up underestimating the reclaimed
329 	 * amount. This should be fine. The freed pages will be uncharged
330 	 * anyway, even if they are not counted here properly, and we will be
331 	 * able to make forward progress in charging (which is usually in a
332 	 * retry loop).
333 	 *
334 	 * We can go one step further, and report the uncharged objcg pages in
335 	 * memcg reclaim, to make reporting more accurate and reduce
336 	 * underestimation, but it's probably not worth the complexity for now.
337 	 */
338 	if (current->reclaim_state && root_reclaim(sc)) {
339 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
340 		current->reclaim_state->reclaimed = 0;
341 	}
342 }
343 
can_demote(int nid,struct scan_control * sc,struct mem_cgroup * memcg)344 static bool can_demote(int nid, struct scan_control *sc,
345 		       struct mem_cgroup *memcg)
346 {
347 	int demotion_nid;
348 
349 	if (!numa_demotion_enabled)
350 		return false;
351 	if (sc && sc->no_demotion)
352 		return false;
353 
354 	demotion_nid = next_demotion_node(nid);
355 	if (demotion_nid == NUMA_NO_NODE)
356 		return false;
357 
358 	/* If demotion node isn't in the cgroup's mems_allowed, fall back */
359 	return mem_cgroup_node_allowed(memcg, demotion_nid);
360 }
361 
can_reclaim_anon_pages(struct mem_cgroup * memcg,int nid,struct scan_control * sc)362 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
363 					  int nid,
364 					  struct scan_control *sc)
365 {
366 	if (memcg == NULL) {
367 		/*
368 		 * For non-memcg reclaim, is there
369 		 * space in any swap device?
370 		 */
371 		if (get_nr_swap_pages() > 0)
372 			return true;
373 	} else {
374 		/* Is the memcg below its swap limit? */
375 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
376 			return true;
377 	}
378 
379 	/*
380 	 * The page can not be swapped.
381 	 *
382 	 * Can it be reclaimed from this node via demotion?
383 	 */
384 	return can_demote(nid, sc, memcg);
385 }
386 
387 /*
388  * This misses isolated folios which are not accounted for to save counters.
389  * As the data only determines if reclaim or compaction continues, it is
390  * not expected that isolated folios will be a dominating factor.
391  */
zone_reclaimable_pages(struct zone * zone)392 unsigned long zone_reclaimable_pages(struct zone *zone)
393 {
394 	unsigned long nr;
395 
396 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
397 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
398 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
399 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
400 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
401 
402 	return nr;
403 }
404 
405 /**
406  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
407  * @lruvec: lru vector
408  * @lru: lru to use
409  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
410  */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)411 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
412 				     int zone_idx)
413 {
414 	unsigned long size = 0;
415 	int zid;
416 	struct zone *zone;
417 
418 	for_each_managed_zone_pgdat(zone, lruvec_pgdat(lruvec), zid, zone_idx) {
419 		if (!mem_cgroup_disabled())
420 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
421 		else
422 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
423 	}
424 	return size;
425 }
426 
drop_slab_node(int nid)427 static unsigned long drop_slab_node(int nid)
428 {
429 	unsigned long freed = 0;
430 	struct mem_cgroup *memcg = NULL;
431 
432 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
433 	do {
434 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
435 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
436 
437 	return freed;
438 }
439 
drop_slab(void)440 void drop_slab(void)
441 {
442 	int nid;
443 	int shift = 0;
444 	unsigned long freed;
445 
446 	do {
447 		freed = 0;
448 		for_each_online_node(nid) {
449 			if (fatal_signal_pending(current))
450 				return;
451 
452 			freed += drop_slab_node(nid);
453 		}
454 	} while ((freed >> shift++) > 1);
455 }
456 
457 #define CHECK_RECLAIMER_OFFSET(type)					\
458 	do {								\
459 		BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD !=		\
460 			     PGDEMOTE_##type - PGDEMOTE_KSWAPD);	\
461 		BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD !=		\
462 			     PGSCAN_##type - PGSCAN_KSWAPD);		\
463 	} while (0)
464 
reclaimer_offset(struct scan_control * sc)465 static int reclaimer_offset(struct scan_control *sc)
466 {
467 	CHECK_RECLAIMER_OFFSET(DIRECT);
468 	CHECK_RECLAIMER_OFFSET(KHUGEPAGED);
469 	CHECK_RECLAIMER_OFFSET(PROACTIVE);
470 
471 	if (current_is_kswapd())
472 		return 0;
473 	if (current_is_khugepaged())
474 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
475 	if (sc->proactive)
476 		return PGSTEAL_PROACTIVE - PGSTEAL_KSWAPD;
477 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
478 }
479 
480 /*
481  * We detected a synchronous write error writing a folio out.  Probably
482  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
483  * fsync(), msync() or close().
484  *
485  * The tricky part is that after writepage we cannot touch the mapping: nothing
486  * prevents it from being freed up.  But we have a ref on the folio and once
487  * that folio is locked, the mapping is pinned.
488  *
489  * We're allowed to run sleeping folio_lock() here because we know the caller has
490  * __GFP_FS.
491  */
handle_write_error(struct address_space * mapping,struct folio * folio,int error)492 static void handle_write_error(struct address_space *mapping,
493 				struct folio *folio, int error)
494 {
495 	folio_lock(folio);
496 	if (folio_mapping(folio) == mapping)
497 		mapping_set_error(mapping, error);
498 	folio_unlock(folio);
499 }
500 
skip_throttle_noprogress(pg_data_t * pgdat)501 static bool skip_throttle_noprogress(pg_data_t *pgdat)
502 {
503 	int reclaimable = 0, write_pending = 0;
504 	int i;
505 	struct zone *zone;
506 	/*
507 	 * If kswapd is disabled, reschedule if necessary but do not
508 	 * throttle as the system is likely near OOM.
509 	 */
510 	if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES)
511 		return true;
512 
513 	/*
514 	 * If there are a lot of dirty/writeback folios then do not
515 	 * throttle as throttling will occur when the folios cycle
516 	 * towards the end of the LRU if still under writeback.
517 	 */
518 	for_each_managed_zone_pgdat(zone, pgdat, i, MAX_NR_ZONES - 1) {
519 		reclaimable += zone_reclaimable_pages(zone);
520 		write_pending += zone_page_state_snapshot(zone,
521 						  NR_ZONE_WRITE_PENDING);
522 	}
523 	if (2 * write_pending <= reclaimable)
524 		return true;
525 
526 	return false;
527 }
528 
reclaim_throttle(pg_data_t * pgdat,enum vmscan_throttle_state reason)529 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
530 {
531 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
532 	long timeout, ret;
533 	DEFINE_WAIT(wait);
534 
535 	/*
536 	 * Do not throttle user workers, kthreads other than kswapd or
537 	 * workqueues. They may be required for reclaim to make
538 	 * forward progress (e.g. journalling workqueues or kthreads).
539 	 */
540 	if (!current_is_kswapd() &&
541 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
542 		cond_resched();
543 		return;
544 	}
545 
546 	/*
547 	 * These figures are pulled out of thin air.
548 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
549 	 * parallel reclaimers which is a short-lived event so the timeout is
550 	 * short. Failing to make progress or waiting on writeback are
551 	 * potentially long-lived events so use a longer timeout. This is shaky
552 	 * logic as a failure to make progress could be due to anything from
553 	 * writeback to a slow device to excessive referenced folios at the tail
554 	 * of the inactive LRU.
555 	 */
556 	switch(reason) {
557 	case VMSCAN_THROTTLE_WRITEBACK:
558 		timeout = HZ/10;
559 
560 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
561 			WRITE_ONCE(pgdat->nr_reclaim_start,
562 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
563 		}
564 
565 		break;
566 	case VMSCAN_THROTTLE_CONGESTED:
567 		fallthrough;
568 	case VMSCAN_THROTTLE_NOPROGRESS:
569 		if (skip_throttle_noprogress(pgdat)) {
570 			cond_resched();
571 			return;
572 		}
573 
574 		timeout = 1;
575 
576 		break;
577 	case VMSCAN_THROTTLE_ISOLATED:
578 		timeout = HZ/50;
579 		break;
580 	default:
581 		WARN_ON_ONCE(1);
582 		timeout = HZ;
583 		break;
584 	}
585 
586 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
587 	ret = schedule_timeout(timeout);
588 	finish_wait(wqh, &wait);
589 
590 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
591 		atomic_dec(&pgdat->nr_writeback_throttled);
592 
593 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
594 				jiffies_to_usecs(timeout - ret),
595 				reason);
596 }
597 
598 /*
599  * Account for folios written if tasks are throttled waiting on dirty
600  * folios to clean. If enough folios have been cleaned since throttling
601  * started then wakeup the throttled tasks.
602  */
__acct_reclaim_writeback(pg_data_t * pgdat,struct folio * folio,int nr_throttled)603 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
604 							int nr_throttled)
605 {
606 	unsigned long nr_written;
607 
608 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
609 
610 	/*
611 	 * This is an inaccurate read as the per-cpu deltas may not
612 	 * be synchronised. However, given that the system is
613 	 * writeback throttled, it is not worth taking the penalty
614 	 * of getting an accurate count. At worst, the throttle
615 	 * timeout guarantees forward progress.
616 	 */
617 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
618 		READ_ONCE(pgdat->nr_reclaim_start);
619 
620 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
621 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
622 }
623 
624 /* possible outcome of pageout() */
625 typedef enum {
626 	/* failed to write folio out, folio is locked */
627 	PAGE_KEEP,
628 	/* move folio to the active list, folio is locked */
629 	PAGE_ACTIVATE,
630 	/* folio has been sent to the disk successfully, folio is unlocked */
631 	PAGE_SUCCESS,
632 	/* folio is clean and locked */
633 	PAGE_CLEAN,
634 } pageout_t;
635 
writeout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug,struct list_head * folio_list)636 static pageout_t writeout(struct folio *folio, struct address_space *mapping,
637 		struct swap_iocb **plug, struct list_head *folio_list)
638 {
639 	int res;
640 
641 	folio_set_reclaim(folio);
642 
643 	/*
644 	 * The large shmem folio can be split if CONFIG_THP_SWAP is not enabled
645 	 * or we failed to allocate contiguous swap entries, in which case
646 	 * the split out folios get added back to folio_list.
647 	 */
648 	if (shmem_mapping(mapping))
649 		res = shmem_writeout(folio, plug, folio_list);
650 	else
651 		res = swap_writeout(folio, plug);
652 
653 	if (res < 0)
654 		handle_write_error(mapping, folio, res);
655 	if (res == AOP_WRITEPAGE_ACTIVATE) {
656 		folio_clear_reclaim(folio);
657 		return PAGE_ACTIVATE;
658 	}
659 
660 	/* synchronous write? */
661 	if (!folio_test_writeback(folio))
662 		folio_clear_reclaim(folio);
663 
664 	trace_mm_vmscan_write_folio(folio);
665 	node_stat_add_folio(folio, NR_VMSCAN_WRITE);
666 	return PAGE_SUCCESS;
667 }
668 
669 /*
670  * pageout is called by shrink_folio_list() for each dirty folio.
671  */
pageout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug,struct list_head * folio_list)672 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
673 			 struct swap_iocb **plug, struct list_head *folio_list)
674 {
675 	/*
676 	 * We no longer attempt to writeback filesystem folios here, other
677 	 * than tmpfs/shmem.  That's taken care of in page-writeback.
678 	 * If we find a dirty filesystem folio at the end of the LRU list,
679 	 * typically that means the filesystem is saturating the storage
680 	 * with contiguous writes and telling it to write a folio here
681 	 * would only make the situation worse by injecting an element
682 	 * of random access.
683 	 *
684 	 * If the folio is swapcache, write it back even if that would
685 	 * block, for some throttling. This happens by accident, because
686 	 * swap_backing_dev_info is bust: it doesn't reflect the
687 	 * congestion state of the swapdevs.  Easy to fix, if needed.
688 	 *
689 	 * A freeable shmem or swapcache folio is referenced only by the
690 	 * caller that isolated the folio and the page cache.
691 	 */
692 	if (folio_ref_count(folio) != 1 + folio_nr_pages(folio) || !mapping)
693 		return PAGE_KEEP;
694 	if (!shmem_mapping(mapping) && !folio_test_anon(folio))
695 		return PAGE_ACTIVATE;
696 	if (!folio_clear_dirty_for_io(folio))
697 		return PAGE_CLEAN;
698 	return writeout(folio, mapping, plug, folio_list);
699 }
700 
701 /*
702  * Same as remove_mapping, but if the folio is removed from the mapping, it
703  * gets returned with a refcount of 0.
704  */
__remove_mapping(struct address_space * mapping,struct folio * folio,bool reclaimed,struct mem_cgroup * target_memcg)705 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
706 			    bool reclaimed, struct mem_cgroup *target_memcg)
707 {
708 	int refcount;
709 	void *shadow = NULL;
710 	struct swap_cluster_info *ci;
711 
712 	BUG_ON(!folio_test_locked(folio));
713 	BUG_ON(mapping != folio_mapping(folio));
714 
715 	if (folio_test_swapcache(folio)) {
716 		ci = swap_cluster_get_and_lock_irq(folio);
717 	} else {
718 		spin_lock(&mapping->host->i_lock);
719 		xa_lock_irq(&mapping->i_pages);
720 	}
721 
722 	/*
723 	 * The non racy check for a busy folio.
724 	 *
725 	 * Must be careful with the order of the tests. When someone has
726 	 * a ref to the folio, it may be possible that they dirty it then
727 	 * drop the reference. So if the dirty flag is tested before the
728 	 * refcount here, then the following race may occur:
729 	 *
730 	 * get_user_pages(&page);
731 	 * [user mapping goes away]
732 	 * write_to(page);
733 	 *				!folio_test_dirty(folio)    [good]
734 	 * folio_set_dirty(folio);
735 	 * folio_put(folio);
736 	 *				!refcount(folio)   [good, discard it]
737 	 *
738 	 * [oops, our write_to data is lost]
739 	 *
740 	 * Reversing the order of the tests ensures such a situation cannot
741 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
742 	 * load is not satisfied before that of folio->_refcount.
743 	 *
744 	 * Note that if the dirty flag is always set via folio_mark_dirty,
745 	 * and thus under the i_pages lock, then this ordering is not required.
746 	 */
747 	refcount = 1 + folio_nr_pages(folio);
748 	if (!folio_ref_freeze(folio, refcount))
749 		goto cannot_free;
750 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
751 	if (unlikely(folio_test_dirty(folio))) {
752 		folio_ref_unfreeze(folio, refcount);
753 		goto cannot_free;
754 	}
755 
756 	if (folio_test_swapcache(folio)) {
757 		swp_entry_t swap = folio->swap;
758 
759 		if (reclaimed && !mapping_exiting(mapping))
760 			shadow = workingset_eviction(folio, target_memcg);
761 		__swap_cache_del_folio(ci, folio, swap, shadow);
762 		memcg1_swapout(folio, swap);
763 		swap_cluster_unlock_irq(ci);
764 		put_swap_folio(folio, swap);
765 	} else {
766 		void (*free_folio)(struct folio *);
767 
768 		free_folio = mapping->a_ops->free_folio;
769 		/*
770 		 * Remember a shadow entry for reclaimed file cache in
771 		 * order to detect refaults, thus thrashing, later on.
772 		 *
773 		 * But don't store shadows in an address space that is
774 		 * already exiting.  This is not just an optimization,
775 		 * inode reclaim needs to empty out the radix tree or
776 		 * the nodes are lost.  Don't plant shadows behind its
777 		 * back.
778 		 *
779 		 * We also don't store shadows for DAX mappings because the
780 		 * only page cache folios found in these are zero pages
781 		 * covering holes, and because we don't want to mix DAX
782 		 * exceptional entries and shadow exceptional entries in the
783 		 * same address_space.
784 		 */
785 		if (reclaimed && folio_is_file_lru(folio) &&
786 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
787 			shadow = workingset_eviction(folio, target_memcg);
788 		__filemap_remove_folio(folio, shadow);
789 		xa_unlock_irq(&mapping->i_pages);
790 		if (mapping_shrinkable(mapping))
791 			inode_lru_list_add(mapping->host);
792 		spin_unlock(&mapping->host->i_lock);
793 
794 		if (free_folio)
795 			free_folio(folio);
796 	}
797 
798 	return 1;
799 
800 cannot_free:
801 	if (folio_test_swapcache(folio)) {
802 		swap_cluster_unlock_irq(ci);
803 	} else {
804 		xa_unlock_irq(&mapping->i_pages);
805 		spin_unlock(&mapping->host->i_lock);
806 	}
807 	return 0;
808 }
809 
810 /**
811  * remove_mapping() - Attempt to remove a folio from its mapping.
812  * @mapping: The address space.
813  * @folio: The folio to remove.
814  *
815  * If the folio is dirty, under writeback or if someone else has a ref
816  * on it, removal will fail.
817  * Return: The number of pages removed from the mapping.  0 if the folio
818  * could not be removed.
819  * Context: The caller should have a single refcount on the folio and
820  * hold its lock.
821  */
remove_mapping(struct address_space * mapping,struct folio * folio)822 long remove_mapping(struct address_space *mapping, struct folio *folio)
823 {
824 	if (__remove_mapping(mapping, folio, false, NULL)) {
825 		/*
826 		 * Unfreezing the refcount with 1 effectively
827 		 * drops the pagecache ref for us without requiring another
828 		 * atomic operation.
829 		 */
830 		folio_ref_unfreeze(folio, 1);
831 		return folio_nr_pages(folio);
832 	}
833 	return 0;
834 }
835 
836 /**
837  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
838  * @folio: Folio to be returned to an LRU list.
839  *
840  * Add previously isolated @folio to appropriate LRU list.
841  * The folio may still be unevictable for other reasons.
842  *
843  * Context: lru_lock must not be held, interrupts must be enabled.
844  */
folio_putback_lru(struct folio * folio)845 void folio_putback_lru(struct folio *folio)
846 {
847 	folio_add_lru(folio);
848 	folio_put(folio);		/* drop ref from isolate */
849 }
850 
851 enum folio_references {
852 	FOLIOREF_RECLAIM,
853 	FOLIOREF_RECLAIM_CLEAN,
854 	FOLIOREF_KEEP,
855 	FOLIOREF_ACTIVATE,
856 };
857 
858 #ifdef CONFIG_LRU_GEN
859 /*
860  * Only used on a mapped folio in the eviction (rmap walk) path, where promotion
861  * needs to be done by taking the folio off the LRU list and then adding it back
862  * with PG_active set. In contrast, the aging (page table walk) path uses
863  * folio_update_gen().
864  */
lru_gen_set_refs(struct folio * folio)865 static bool lru_gen_set_refs(struct folio *folio)
866 {
867 	/* see the comment on LRU_REFS_FLAGS */
868 	if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
869 		set_mask_bits(&folio->flags.f, LRU_REFS_MASK, BIT(PG_referenced));
870 		return false;
871 	}
872 
873 	set_mask_bits(&folio->flags.f, LRU_REFS_FLAGS, BIT(PG_workingset));
874 	return true;
875 }
876 #else
lru_gen_set_refs(struct folio * folio)877 static bool lru_gen_set_refs(struct folio *folio)
878 {
879 	return false;
880 }
881 #endif /* CONFIG_LRU_GEN */
882 
folio_check_references(struct folio * folio,struct scan_control * sc)883 static enum folio_references folio_check_references(struct folio *folio,
884 						  struct scan_control *sc)
885 {
886 	int referenced_ptes, referenced_folio;
887 	vm_flags_t vm_flags;
888 
889 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
890 					   &vm_flags);
891 
892 	/*
893 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
894 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
895 	 */
896 	if (vm_flags & VM_LOCKED)
897 		return FOLIOREF_ACTIVATE;
898 
899 	/*
900 	 * There are two cases to consider.
901 	 * 1) Rmap lock contention: rotate.
902 	 * 2) Skip the non-shared swapbacked folio mapped solely by
903 	 *    the exiting or OOM-reaped process.
904 	 */
905 	if (referenced_ptes == -1)
906 		return FOLIOREF_KEEP;
907 
908 	if (lru_gen_enabled()) {
909 		if (!referenced_ptes)
910 			return FOLIOREF_RECLAIM;
911 
912 		return lru_gen_set_refs(folio) ? FOLIOREF_ACTIVATE : FOLIOREF_KEEP;
913 	}
914 
915 	referenced_folio = folio_test_clear_referenced(folio);
916 
917 	if (referenced_ptes) {
918 		/*
919 		 * All mapped folios start out with page table
920 		 * references from the instantiating fault, so we need
921 		 * to look twice if a mapped file/anon folio is used more
922 		 * than once.
923 		 *
924 		 * Mark it and spare it for another trip around the
925 		 * inactive list.  Another page table reference will
926 		 * lead to its activation.
927 		 *
928 		 * Note: the mark is set for activated folios as well
929 		 * so that recently deactivated but used folios are
930 		 * quickly recovered.
931 		 */
932 		folio_set_referenced(folio);
933 
934 		if (referenced_folio || referenced_ptes > 1)
935 			return FOLIOREF_ACTIVATE;
936 
937 		/*
938 		 * Activate file-backed executable folios after first usage.
939 		 */
940 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
941 			return FOLIOREF_ACTIVATE;
942 
943 		return FOLIOREF_KEEP;
944 	}
945 
946 	/* Reclaim if clean, defer dirty folios to writeback */
947 	if (referenced_folio && folio_is_file_lru(folio))
948 		return FOLIOREF_RECLAIM_CLEAN;
949 
950 	return FOLIOREF_RECLAIM;
951 }
952 
953 /* Check if a folio is dirty or under writeback */
folio_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)954 static void folio_check_dirty_writeback(struct folio *folio,
955 				       bool *dirty, bool *writeback)
956 {
957 	struct address_space *mapping;
958 
959 	/*
960 	 * Anonymous folios are not handled by flushers and must be written
961 	 * from reclaim context. Do not stall reclaim based on them.
962 	 * MADV_FREE anonymous folios are put into inactive file list too.
963 	 * They could be mistakenly treated as file lru. So further anon
964 	 * test is needed.
965 	 */
966 	if (!folio_is_file_lru(folio) ||
967 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
968 		*dirty = false;
969 		*writeback = false;
970 		return;
971 	}
972 
973 	/* By default assume that the folio flags are accurate */
974 	*dirty = folio_test_dirty(folio);
975 	*writeback = folio_test_writeback(folio);
976 
977 	/* Verify dirty/writeback state if the filesystem supports it */
978 	if (!folio_test_private(folio))
979 		return;
980 
981 	mapping = folio_mapping(folio);
982 	if (mapping && mapping->a_ops->is_dirty_writeback)
983 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
984 }
985 
alloc_demote_folio(struct folio * src,unsigned long private)986 static struct folio *alloc_demote_folio(struct folio *src,
987 		unsigned long private)
988 {
989 	struct folio *dst;
990 	nodemask_t *allowed_mask;
991 	struct migration_target_control *mtc;
992 
993 	mtc = (struct migration_target_control *)private;
994 
995 	allowed_mask = mtc->nmask;
996 	/*
997 	 * make sure we allocate from the target node first also trying to
998 	 * demote or reclaim pages from the target node via kswapd if we are
999 	 * low on free memory on target node. If we don't do this and if
1000 	 * we have free memory on the slower(lower) memtier, we would start
1001 	 * allocating pages from slower(lower) memory tiers without even forcing
1002 	 * a demotion of cold pages from the target memtier. This can result
1003 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1004 	 */
1005 	mtc->nmask = NULL;
1006 	mtc->gfp_mask |= __GFP_THISNODE;
1007 	dst = alloc_migration_target(src, (unsigned long)mtc);
1008 	if (dst)
1009 		return dst;
1010 
1011 	mtc->gfp_mask &= ~__GFP_THISNODE;
1012 	mtc->nmask = allowed_mask;
1013 
1014 	return alloc_migration_target(src, (unsigned long)mtc);
1015 }
1016 
1017 /*
1018  * Take folios on @demote_folios and attempt to demote them to another node.
1019  * Folios which are not demoted are left on @demote_folios.
1020  */
demote_folio_list(struct list_head * demote_folios,struct pglist_data * pgdat)1021 static unsigned int demote_folio_list(struct list_head *demote_folios,
1022 				     struct pglist_data *pgdat)
1023 {
1024 	int target_nid = next_demotion_node(pgdat->node_id);
1025 	unsigned int nr_succeeded;
1026 	nodemask_t allowed_mask;
1027 
1028 	struct migration_target_control mtc = {
1029 		/*
1030 		 * Allocate from 'node', or fail quickly and quietly.
1031 		 * When this happens, 'page' will likely just be discarded
1032 		 * instead of migrated.
1033 		 */
1034 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1035 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1036 		.nid = target_nid,
1037 		.nmask = &allowed_mask,
1038 		.reason = MR_DEMOTION,
1039 	};
1040 
1041 	if (list_empty(demote_folios))
1042 		return 0;
1043 
1044 	if (target_nid == NUMA_NO_NODE)
1045 		return 0;
1046 
1047 	node_get_allowed_targets(pgdat, &allowed_mask);
1048 
1049 	/* Demotion ignores all cpuset and mempolicy settings */
1050 	migrate_pages(demote_folios, alloc_demote_folio, NULL,
1051 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1052 		      &nr_succeeded);
1053 
1054 	return nr_succeeded;
1055 }
1056 
may_enter_fs(struct folio * folio,gfp_t gfp_mask)1057 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1058 {
1059 	if (gfp_mask & __GFP_FS)
1060 		return true;
1061 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1062 		return false;
1063 	/*
1064 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1065 	 * providing this isn't SWP_FS_OPS.
1066 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1067 	 * but that will never affect SWP_FS_OPS, so the data_race
1068 	 * is safe.
1069 	 */
1070 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1071 }
1072 
1073 /*
1074  * shrink_folio_list() returns the number of reclaimed pages
1075  */
shrink_folio_list(struct list_head * folio_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references,struct mem_cgroup * memcg)1076 static unsigned int shrink_folio_list(struct list_head *folio_list,
1077 		struct pglist_data *pgdat, struct scan_control *sc,
1078 		struct reclaim_stat *stat, bool ignore_references,
1079 		struct mem_cgroup *memcg)
1080 {
1081 	struct folio_batch free_folios;
1082 	LIST_HEAD(ret_folios);
1083 	LIST_HEAD(demote_folios);
1084 	unsigned int nr_reclaimed = 0, nr_demoted = 0;
1085 	unsigned int pgactivate = 0;
1086 	bool do_demote_pass;
1087 	struct swap_iocb *plug = NULL;
1088 
1089 	folio_batch_init(&free_folios);
1090 	memset(stat, 0, sizeof(*stat));
1091 	cond_resched();
1092 	do_demote_pass = can_demote(pgdat->node_id, sc, memcg);
1093 
1094 retry:
1095 	while (!list_empty(folio_list)) {
1096 		struct address_space *mapping;
1097 		struct folio *folio;
1098 		enum folio_references references = FOLIOREF_RECLAIM;
1099 		bool dirty, writeback;
1100 		unsigned int nr_pages;
1101 
1102 		cond_resched();
1103 
1104 		folio = lru_to_folio(folio_list);
1105 		list_del(&folio->lru);
1106 
1107 		if (!folio_trylock(folio))
1108 			goto keep;
1109 
1110 		if (folio_contain_hwpoisoned_page(folio)) {
1111 			/*
1112 			 * unmap_poisoned_folio() can't handle large
1113 			 * folio, just skip it. memory_failure() will
1114 			 * handle it if the UCE is triggered again.
1115 			 */
1116 			if (folio_test_large(folio))
1117 				goto keep_locked;
1118 
1119 			unmap_poisoned_folio(folio, folio_pfn(folio), false);
1120 			folio_unlock(folio);
1121 			folio_put(folio);
1122 			continue;
1123 		}
1124 
1125 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1126 
1127 		nr_pages = folio_nr_pages(folio);
1128 
1129 		/* Account the number of base pages */
1130 		sc->nr_scanned += nr_pages;
1131 
1132 		if (unlikely(!folio_evictable(folio)))
1133 			goto activate_locked;
1134 
1135 		if (!sc->may_unmap && folio_mapped(folio))
1136 			goto keep_locked;
1137 
1138 		/*
1139 		 * The number of dirty pages determines if a node is marked
1140 		 * reclaim_congested. kswapd will stall and start writing
1141 		 * folios if the tail of the LRU is all dirty unqueued folios.
1142 		 */
1143 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1144 		if (dirty || writeback)
1145 			stat->nr_dirty += nr_pages;
1146 
1147 		if (dirty && !writeback)
1148 			stat->nr_unqueued_dirty += nr_pages;
1149 
1150 		/*
1151 		 * Treat this folio as congested if folios are cycling
1152 		 * through the LRU so quickly that the folios marked
1153 		 * for immediate reclaim are making it to the end of
1154 		 * the LRU a second time.
1155 		 */
1156 		if (writeback && folio_test_reclaim(folio))
1157 			stat->nr_congested += nr_pages;
1158 
1159 		/*
1160 		 * If a folio at the tail of the LRU is under writeback, there
1161 		 * are three cases to consider.
1162 		 *
1163 		 * 1) If reclaim is encountering an excessive number
1164 		 *    of folios under writeback and this folio has both
1165 		 *    the writeback and reclaim flags set, then it
1166 		 *    indicates that folios are being queued for I/O but
1167 		 *    are being recycled through the LRU before the I/O
1168 		 *    can complete. Waiting on the folio itself risks an
1169 		 *    indefinite stall if it is impossible to writeback
1170 		 *    the folio due to I/O error or disconnected storage
1171 		 *    so instead note that the LRU is being scanned too
1172 		 *    quickly and the caller can stall after the folio
1173 		 *    list has been processed.
1174 		 *
1175 		 * 2) Global or new memcg reclaim encounters a folio that is
1176 		 *    not marked for immediate reclaim, or the caller does not
1177 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1178 		 *    not to fs), or the folio belongs to a mapping where
1179 		 *    waiting on writeback during reclaim may lead to a deadlock.
1180 		 *    In this case mark the folio for immediate reclaim and
1181 		 *    continue scanning.
1182 		 *
1183 		 *    Require may_enter_fs() because we would wait on fs, which
1184 		 *    may not have submitted I/O yet. And the loop driver might
1185 		 *    enter reclaim, and deadlock if it waits on a folio for
1186 		 *    which it is needed to do the write (loop masks off
1187 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1188 		 *    would probably show more reasons.
1189 		 *
1190 		 * 3) Legacy memcg encounters a folio that already has the
1191 		 *    reclaim flag set. memcg does not have any dirty folio
1192 		 *    throttling so we could easily OOM just because too many
1193 		 *    folios are in writeback and there is nothing else to
1194 		 *    reclaim. Wait for the writeback to complete.
1195 		 *
1196 		 * In cases 1) and 2) we activate the folios to get them out of
1197 		 * the way while we continue scanning for clean folios on the
1198 		 * inactive list and refilling from the active list. The
1199 		 * observation here is that waiting for disk writes is more
1200 		 * expensive than potentially causing reloads down the line.
1201 		 * Since they're marked for immediate reclaim, they won't put
1202 		 * memory pressure on the cache working set any longer than it
1203 		 * takes to write them to disk.
1204 		 */
1205 		if (folio_test_writeback(folio)) {
1206 			mapping = folio_mapping(folio);
1207 
1208 			/* Case 1 above */
1209 			if (current_is_kswapd() &&
1210 			    folio_test_reclaim(folio) &&
1211 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1212 				stat->nr_immediate += nr_pages;
1213 				goto activate_locked;
1214 
1215 			/* Case 2 above */
1216 			} else if (writeback_throttling_sane(sc) ||
1217 			    !folio_test_reclaim(folio) ||
1218 			    !may_enter_fs(folio, sc->gfp_mask) ||
1219 			    (mapping &&
1220 			     mapping_writeback_may_deadlock_on_reclaim(mapping))) {
1221 				/*
1222 				 * This is slightly racy -
1223 				 * folio_end_writeback() might have
1224 				 * just cleared the reclaim flag, then
1225 				 * setting the reclaim flag here ends up
1226 				 * interpreted as the readahead flag - but
1227 				 * that does not matter enough to care.
1228 				 * What we do want is for this folio to
1229 				 * have the reclaim flag set next time
1230 				 * memcg reclaim reaches the tests above,
1231 				 * so it will then wait for writeback to
1232 				 * avoid OOM; and it's also appropriate
1233 				 * in global reclaim.
1234 				 */
1235 				folio_set_reclaim(folio);
1236 				stat->nr_writeback += nr_pages;
1237 				goto activate_locked;
1238 
1239 			/* Case 3 above */
1240 			} else {
1241 				folio_unlock(folio);
1242 				folio_wait_writeback(folio);
1243 				/* then go back and try same folio again */
1244 				list_add_tail(&folio->lru, folio_list);
1245 				continue;
1246 			}
1247 		}
1248 
1249 		if (!ignore_references)
1250 			references = folio_check_references(folio, sc);
1251 
1252 		switch (references) {
1253 		case FOLIOREF_ACTIVATE:
1254 			goto activate_locked;
1255 		case FOLIOREF_KEEP:
1256 			stat->nr_ref_keep += nr_pages;
1257 			goto keep_locked;
1258 		case FOLIOREF_RECLAIM:
1259 		case FOLIOREF_RECLAIM_CLEAN:
1260 			; /* try to reclaim the folio below */
1261 		}
1262 
1263 		/*
1264 		 * Before reclaiming the folio, try to relocate
1265 		 * its contents to another node.
1266 		 */
1267 		if (do_demote_pass &&
1268 		    (thp_migration_supported() || !folio_test_large(folio))) {
1269 			list_add(&folio->lru, &demote_folios);
1270 			folio_unlock(folio);
1271 			continue;
1272 		}
1273 
1274 		/*
1275 		 * Anonymous process memory has backing store?
1276 		 * Try to allocate it some swap space here.
1277 		 * Lazyfree folio could be freed directly
1278 		 */
1279 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1280 			if (!folio_test_swapcache(folio)) {
1281 				if (!(sc->gfp_mask & __GFP_IO))
1282 					goto keep_locked;
1283 				if (folio_maybe_dma_pinned(folio))
1284 					goto keep_locked;
1285 				if (folio_test_large(folio)) {
1286 					/* cannot split folio, skip it */
1287 					if (!can_split_folio(folio, 1, NULL))
1288 						goto activate_locked;
1289 					/*
1290 					 * Split partially mapped folios right away.
1291 					 * We can free the unmapped pages without IO.
1292 					 */
1293 					if (data_race(!list_empty(&folio->_deferred_list) &&
1294 					    folio_test_partially_mapped(folio)) &&
1295 					    split_folio_to_list(folio, folio_list))
1296 						goto activate_locked;
1297 				}
1298 				if (folio_alloc_swap(folio)) {
1299 					int __maybe_unused order = folio_order(folio);
1300 
1301 					if (!folio_test_large(folio))
1302 						goto activate_locked_split;
1303 					/* Fallback to swap normal pages */
1304 					if (split_folio_to_list(folio, folio_list))
1305 						goto activate_locked;
1306 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1307 					if (nr_pages >= HPAGE_PMD_NR) {
1308 						count_memcg_folio_events(folio,
1309 							THP_SWPOUT_FALLBACK, 1);
1310 						count_vm_event(THP_SWPOUT_FALLBACK);
1311 					}
1312 #endif
1313 					count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
1314 					if (folio_alloc_swap(folio))
1315 						goto activate_locked_split;
1316 				}
1317 				/*
1318 				 * Normally the folio will be dirtied in unmap because its
1319 				 * pte should be dirty. A special case is MADV_FREE page. The
1320 				 * page's pte could have dirty bit cleared but the folio's
1321 				 * SwapBacked flag is still set because clearing the dirty bit
1322 				 * and SwapBacked flag has no lock protected. For such folio,
1323 				 * unmap will not set dirty bit for it, so folio reclaim will
1324 				 * not write the folio out. This can cause data corruption when
1325 				 * the folio is swapped in later. Always setting the dirty flag
1326 				 * for the folio solves the problem.
1327 				 */
1328 				folio_mark_dirty(folio);
1329 			}
1330 		}
1331 
1332 		/*
1333 		 * If the folio was split above, the tail pages will make
1334 		 * their own pass through this function and be accounted
1335 		 * then.
1336 		 */
1337 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1338 			sc->nr_scanned -= (nr_pages - 1);
1339 			nr_pages = 1;
1340 		}
1341 
1342 		/*
1343 		 * The folio is mapped into the page tables of one or more
1344 		 * processes. Try to unmap it here.
1345 		 */
1346 		if (folio_mapped(folio)) {
1347 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1348 			bool was_swapbacked = folio_test_swapbacked(folio);
1349 
1350 			if (folio_test_pmd_mappable(folio))
1351 				flags |= TTU_SPLIT_HUGE_PMD;
1352 			/*
1353 			 * Without TTU_SYNC, try_to_unmap will only begin to
1354 			 * hold PTL from the first present PTE within a large
1355 			 * folio. Some initial PTEs might be skipped due to
1356 			 * races with parallel PTE writes in which PTEs can be
1357 			 * cleared temporarily before being written new present
1358 			 * values. This will lead to a large folio is still
1359 			 * mapped while some subpages have been partially
1360 			 * unmapped after try_to_unmap; TTU_SYNC helps
1361 			 * try_to_unmap acquire PTL from the first PTE,
1362 			 * eliminating the influence of temporary PTE values.
1363 			 */
1364 			if (folio_test_large(folio))
1365 				flags |= TTU_SYNC;
1366 
1367 			try_to_unmap(folio, flags);
1368 			if (folio_mapped(folio)) {
1369 				stat->nr_unmap_fail += nr_pages;
1370 				if (!was_swapbacked &&
1371 				    folio_test_swapbacked(folio))
1372 					stat->nr_lazyfree_fail += nr_pages;
1373 				goto activate_locked;
1374 			}
1375 		}
1376 
1377 		/*
1378 		 * Folio is unmapped now so it cannot be newly pinned anymore.
1379 		 * No point in trying to reclaim folio if it is pinned.
1380 		 * Furthermore we don't want to reclaim underlying fs metadata
1381 		 * if the folio is pinned and thus potentially modified by the
1382 		 * pinning process as that may upset the filesystem.
1383 		 */
1384 		if (folio_maybe_dma_pinned(folio))
1385 			goto activate_locked;
1386 
1387 		mapping = folio_mapping(folio);
1388 		if (folio_test_dirty(folio)) {
1389 			if (folio_is_file_lru(folio)) {
1390 				/*
1391 				 * Immediately reclaim when written back.
1392 				 * Similar in principle to folio_deactivate()
1393 				 * except we already have the folio isolated
1394 				 * and know it's dirty
1395 				 */
1396 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1397 						nr_pages);
1398 				if (!folio_test_reclaim(folio))
1399 					folio_set_reclaim(folio);
1400 
1401 				goto activate_locked;
1402 			}
1403 
1404 			if (references == FOLIOREF_RECLAIM_CLEAN)
1405 				goto keep_locked;
1406 			if (!may_enter_fs(folio, sc->gfp_mask))
1407 				goto keep_locked;
1408 			if (!sc->may_writepage)
1409 				goto keep_locked;
1410 
1411 			/*
1412 			 * Folio is dirty. Flush the TLB if a writable entry
1413 			 * potentially exists to avoid CPU writes after I/O
1414 			 * starts and then write it out here.
1415 			 */
1416 			try_to_unmap_flush_dirty();
1417 			switch (pageout(folio, mapping, &plug, folio_list)) {
1418 			case PAGE_KEEP:
1419 				goto keep_locked;
1420 			case PAGE_ACTIVATE:
1421 				/*
1422 				 * If shmem folio is split when writeback to swap,
1423 				 * the tail pages will make their own pass through
1424 				 * this function and be accounted then.
1425 				 */
1426 				if (nr_pages > 1 && !folio_test_large(folio)) {
1427 					sc->nr_scanned -= (nr_pages - 1);
1428 					nr_pages = 1;
1429 				}
1430 				goto activate_locked;
1431 			case PAGE_SUCCESS:
1432 				if (nr_pages > 1 && !folio_test_large(folio)) {
1433 					sc->nr_scanned -= (nr_pages - 1);
1434 					nr_pages = 1;
1435 				}
1436 				stat->nr_pageout += nr_pages;
1437 
1438 				if (folio_test_writeback(folio))
1439 					goto keep;
1440 				if (folio_test_dirty(folio))
1441 					goto keep;
1442 
1443 				/*
1444 				 * A synchronous write - probably a ramdisk.  Go
1445 				 * ahead and try to reclaim the folio.
1446 				 */
1447 				if (!folio_trylock(folio))
1448 					goto keep;
1449 				if (folio_test_dirty(folio) ||
1450 				    folio_test_writeback(folio))
1451 					goto keep_locked;
1452 				mapping = folio_mapping(folio);
1453 				fallthrough;
1454 			case PAGE_CLEAN:
1455 				; /* try to free the folio below */
1456 			}
1457 		}
1458 
1459 		/*
1460 		 * If the folio has buffers, try to free the buffer
1461 		 * mappings associated with this folio. If we succeed
1462 		 * we try to free the folio as well.
1463 		 *
1464 		 * We do this even if the folio is dirty.
1465 		 * filemap_release_folio() does not perform I/O, but it
1466 		 * is possible for a folio to have the dirty flag set,
1467 		 * but it is actually clean (all its buffers are clean).
1468 		 * This happens if the buffers were written out directly,
1469 		 * with submit_bh(). ext3 will do this, as well as
1470 		 * the blockdev mapping.  filemap_release_folio() will
1471 		 * discover that cleanness and will drop the buffers
1472 		 * and mark the folio clean - it can be freed.
1473 		 *
1474 		 * Rarely, folios can have buffers and no ->mapping.
1475 		 * These are the folios which were not successfully
1476 		 * invalidated in truncate_cleanup_folio().  We try to
1477 		 * drop those buffers here and if that worked, and the
1478 		 * folio is no longer mapped into process address space
1479 		 * (refcount == 1) it can be freed.  Otherwise, leave
1480 		 * the folio on the LRU so it is swappable.
1481 		 */
1482 		if (folio_needs_release(folio)) {
1483 			if (!filemap_release_folio(folio, sc->gfp_mask))
1484 				goto activate_locked;
1485 			if (!mapping && folio_ref_count(folio) == 1) {
1486 				folio_unlock(folio);
1487 				if (folio_put_testzero(folio))
1488 					goto free_it;
1489 				else {
1490 					/*
1491 					 * rare race with speculative reference.
1492 					 * the speculative reference will free
1493 					 * this folio shortly, so we may
1494 					 * increment nr_reclaimed here (and
1495 					 * leave it off the LRU).
1496 					 */
1497 					nr_reclaimed += nr_pages;
1498 					continue;
1499 				}
1500 			}
1501 		}
1502 
1503 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1504 			/* follow __remove_mapping for reference */
1505 			if (!folio_ref_freeze(folio, 1))
1506 				goto keep_locked;
1507 			/*
1508 			 * The folio has only one reference left, which is
1509 			 * from the isolation. After the caller puts the
1510 			 * folio back on the lru and drops the reference, the
1511 			 * folio will be freed anyway. It doesn't matter
1512 			 * which lru it goes on. So we don't bother checking
1513 			 * the dirty flag here.
1514 			 */
1515 			count_vm_events(PGLAZYFREED, nr_pages);
1516 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1517 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1518 							 sc->target_mem_cgroup))
1519 			goto keep_locked;
1520 
1521 		folio_unlock(folio);
1522 free_it:
1523 		/*
1524 		 * Folio may get swapped out as a whole, need to account
1525 		 * all pages in it.
1526 		 */
1527 		nr_reclaimed += nr_pages;
1528 
1529 		folio_unqueue_deferred_split(folio);
1530 		if (folio_batch_add(&free_folios, folio) == 0) {
1531 			mem_cgroup_uncharge_folios(&free_folios);
1532 			try_to_unmap_flush();
1533 			free_unref_folios(&free_folios);
1534 		}
1535 		continue;
1536 
1537 activate_locked_split:
1538 		/*
1539 		 * The tail pages that are failed to add into swap cache
1540 		 * reach here.  Fixup nr_scanned and nr_pages.
1541 		 */
1542 		if (nr_pages > 1) {
1543 			sc->nr_scanned -= (nr_pages - 1);
1544 			nr_pages = 1;
1545 		}
1546 activate_locked:
1547 		/* Not a candidate for swapping, so reclaim swap space. */
1548 		if (folio_test_swapcache(folio) &&
1549 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1550 			folio_free_swap(folio);
1551 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1552 		if (!folio_test_mlocked(folio)) {
1553 			int type = folio_is_file_lru(folio);
1554 			folio_set_active(folio);
1555 			stat->nr_activate[type] += nr_pages;
1556 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1557 		}
1558 keep_locked:
1559 		folio_unlock(folio);
1560 keep:
1561 		list_add(&folio->lru, &ret_folios);
1562 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1563 				folio_test_unevictable(folio), folio);
1564 	}
1565 	/* 'folio_list' is always empty here */
1566 
1567 	/* Migrate folios selected for demotion */
1568 	nr_demoted = demote_folio_list(&demote_folios, pgdat);
1569 	nr_reclaimed += nr_demoted;
1570 	stat->nr_demoted += nr_demoted;
1571 	/* Folios that could not be demoted are still in @demote_folios */
1572 	if (!list_empty(&demote_folios)) {
1573 		/* Folios which weren't demoted go back on @folio_list */
1574 		list_splice_init(&demote_folios, folio_list);
1575 
1576 		/*
1577 		 * goto retry to reclaim the undemoted folios in folio_list if
1578 		 * desired.
1579 		 *
1580 		 * Reclaiming directly from top tier nodes is not often desired
1581 		 * due to it breaking the LRU ordering: in general memory
1582 		 * should be reclaimed from lower tier nodes and demoted from
1583 		 * top tier nodes.
1584 		 *
1585 		 * However, disabling reclaim from top tier nodes entirely
1586 		 * would cause ooms in edge scenarios where lower tier memory
1587 		 * is unreclaimable for whatever reason, eg memory being
1588 		 * mlocked or too hot to reclaim. We can disable reclaim
1589 		 * from top tier nodes in proactive reclaim though as that is
1590 		 * not real memory pressure.
1591 		 */
1592 		if (!sc->proactive) {
1593 			do_demote_pass = false;
1594 			goto retry;
1595 		}
1596 	}
1597 
1598 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1599 
1600 	mem_cgroup_uncharge_folios(&free_folios);
1601 	try_to_unmap_flush();
1602 	free_unref_folios(&free_folios);
1603 
1604 	list_splice(&ret_folios, folio_list);
1605 	count_vm_events(PGACTIVATE, pgactivate);
1606 
1607 	if (plug)
1608 		swap_write_unplug(plug);
1609 	return nr_reclaimed;
1610 }
1611 
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * folio_list)1612 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1613 					   struct list_head *folio_list)
1614 {
1615 	struct scan_control sc = {
1616 		.gfp_mask = GFP_KERNEL,
1617 		.may_unmap = 1,
1618 	};
1619 	struct reclaim_stat stat;
1620 	unsigned int nr_reclaimed;
1621 	struct folio *folio, *next;
1622 	LIST_HEAD(clean_folios);
1623 	unsigned int noreclaim_flag;
1624 
1625 	list_for_each_entry_safe(folio, next, folio_list, lru) {
1626 		/* TODO: these pages should not even appear in this list. */
1627 		if (page_has_movable_ops(&folio->page))
1628 			continue;
1629 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1630 		    !folio_test_dirty(folio) && !folio_test_unevictable(folio)) {
1631 			folio_clear_active(folio);
1632 			list_move(&folio->lru, &clean_folios);
1633 		}
1634 	}
1635 
1636 	/*
1637 	 * We should be safe here since we are only dealing with file pages and
1638 	 * we are not kswapd and therefore cannot write dirty file pages. But
1639 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1640 	 * change in the future.
1641 	 */
1642 	noreclaim_flag = memalloc_noreclaim_save();
1643 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1644 					&stat, true, NULL);
1645 	memalloc_noreclaim_restore(noreclaim_flag);
1646 
1647 	list_splice(&clean_folios, folio_list);
1648 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1649 			    -(long)nr_reclaimed);
1650 	/*
1651 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1652 	 * they will rotate back to anonymous LRU in the end if it failed to
1653 	 * discard so isolated count will be mismatched.
1654 	 * Compensate the isolated count for both LRU lists.
1655 	 */
1656 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1657 			    stat.nr_lazyfree_fail);
1658 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1659 			    -(long)stat.nr_lazyfree_fail);
1660 	return nr_reclaimed;
1661 }
1662 
1663 /*
1664  * Update LRU sizes after isolating pages. The LRU size updates must
1665  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1666  */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1667 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1668 			enum lru_list lru, unsigned long *nr_zone_taken)
1669 {
1670 	int zid;
1671 
1672 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1673 		if (!nr_zone_taken[zid])
1674 			continue;
1675 
1676 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1677 	}
1678 
1679 }
1680 
1681 /*
1682  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1683  *
1684  * lruvec->lru_lock is heavily contended.  Some of the functions that
1685  * shrink the lists perform better by taking out a batch of pages
1686  * and working on them outside the LRU lock.
1687  *
1688  * For pagecache intensive workloads, this function is the hottest
1689  * spot in the kernel (apart from copy_*_user functions).
1690  *
1691  * Lru_lock must be held before calling this function.
1692  *
1693  * @nr_to_scan:	The number of eligible pages to look through on the list.
1694  * @lruvec:	The LRU vector to pull pages from.
1695  * @dst:	The temp list to put pages on to.
1696  * @nr_scanned:	The number of pages that were scanned.
1697  * @sc:		The scan_control struct for this reclaim session
1698  * @lru:	LRU list id for isolating
1699  *
1700  * returns how many pages were moved onto *@dst.
1701  */
isolate_lru_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1702 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1703 		struct lruvec *lruvec, struct list_head *dst,
1704 		unsigned long *nr_scanned, struct scan_control *sc,
1705 		enum lru_list lru)
1706 {
1707 	struct list_head *src = &lruvec->lists[lru];
1708 	unsigned long nr_taken = 0;
1709 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1710 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1711 	unsigned long skipped = 0, total_scan = 0, scan = 0;
1712 	unsigned long nr_pages;
1713 	unsigned long max_nr_skipped = 0;
1714 	LIST_HEAD(folios_skipped);
1715 
1716 	while (scan < nr_to_scan && !list_empty(src)) {
1717 		struct list_head *move_to = src;
1718 		struct folio *folio;
1719 
1720 		folio = lru_to_folio(src);
1721 		prefetchw_prev_lru_folio(folio, src, flags);
1722 
1723 		nr_pages = folio_nr_pages(folio);
1724 		total_scan += nr_pages;
1725 
1726 		/* Using max_nr_skipped to prevent hard LOCKUP*/
1727 		if (max_nr_skipped < SWAP_CLUSTER_MAX_SKIPPED &&
1728 		    (folio_zonenum(folio) > sc->reclaim_idx)) {
1729 			nr_skipped[folio_zonenum(folio)] += nr_pages;
1730 			move_to = &folios_skipped;
1731 			max_nr_skipped++;
1732 			goto move;
1733 		}
1734 
1735 		/*
1736 		 * Do not count skipped folios because that makes the function
1737 		 * return with no isolated folios if the LRU mostly contains
1738 		 * ineligible folios.  This causes the VM to not reclaim any
1739 		 * folios, triggering a premature OOM.
1740 		 * Account all pages in a folio.
1741 		 */
1742 		scan += nr_pages;
1743 
1744 		if (!folio_test_lru(folio))
1745 			goto move;
1746 		if (!sc->may_unmap && folio_mapped(folio))
1747 			goto move;
1748 
1749 		/*
1750 		 * Be careful not to clear the lru flag until after we're
1751 		 * sure the folio is not being freed elsewhere -- the
1752 		 * folio release code relies on it.
1753 		 */
1754 		if (unlikely(!folio_try_get(folio)))
1755 			goto move;
1756 
1757 		if (!folio_test_clear_lru(folio)) {
1758 			/* Another thread is already isolating this folio */
1759 			folio_put(folio);
1760 			goto move;
1761 		}
1762 
1763 		nr_taken += nr_pages;
1764 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1765 		move_to = dst;
1766 move:
1767 		list_move(&folio->lru, move_to);
1768 	}
1769 
1770 	/*
1771 	 * Splice any skipped folios to the start of the LRU list. Note that
1772 	 * this disrupts the LRU order when reclaiming for lower zones but
1773 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1774 	 * scanning would soon rescan the same folios to skip and waste lots
1775 	 * of cpu cycles.
1776 	 */
1777 	if (!list_empty(&folios_skipped)) {
1778 		int zid;
1779 
1780 		list_splice(&folios_skipped, src);
1781 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1782 			if (!nr_skipped[zid])
1783 				continue;
1784 
1785 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1786 			skipped += nr_skipped[zid];
1787 		}
1788 	}
1789 	*nr_scanned = total_scan;
1790 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1791 				    total_scan, skipped, nr_taken, lru);
1792 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1793 	return nr_taken;
1794 }
1795 
1796 /**
1797  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1798  * @folio: Folio to isolate from its LRU list.
1799  *
1800  * Isolate a @folio from an LRU list and adjust the vmstat statistic
1801  * corresponding to whatever LRU list the folio was on.
1802  *
1803  * The folio will have its LRU flag cleared.  If it was found on the
1804  * active list, it will have the Active flag set.  If it was found on the
1805  * unevictable list, it will have the Unevictable flag set.  These flags
1806  * may need to be cleared by the caller before letting the page go.
1807  *
1808  * Context:
1809  *
1810  * (1) Must be called with an elevated refcount on the folio. This is a
1811  *     fundamental difference from isolate_lru_folios() (which is called
1812  *     without a stable reference).
1813  * (2) The lru_lock must not be held.
1814  * (3) Interrupts must be enabled.
1815  *
1816  * Return: true if the folio was removed from an LRU list.
1817  * false if the folio was not on an LRU list.
1818  */
folio_isolate_lru(struct folio * folio)1819 bool folio_isolate_lru(struct folio *folio)
1820 {
1821 	bool ret = false;
1822 
1823 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1824 
1825 	if (folio_test_clear_lru(folio)) {
1826 		struct lruvec *lruvec;
1827 
1828 		folio_get(folio);
1829 		lruvec = folio_lruvec_lock_irq(folio);
1830 		lruvec_del_folio(lruvec, folio);
1831 		unlock_page_lruvec_irq(lruvec);
1832 		ret = true;
1833 	}
1834 
1835 	return ret;
1836 }
1837 
1838 /*
1839  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1840  * then get rescheduled. When there are massive number of tasks doing page
1841  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1842  * the LRU list will go small and be scanned faster than necessary, leading to
1843  * unnecessary swapping, thrashing and OOM.
1844  */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1845 static bool too_many_isolated(struct pglist_data *pgdat, int file,
1846 		struct scan_control *sc)
1847 {
1848 	unsigned long inactive, isolated;
1849 	bool too_many;
1850 
1851 	if (current_is_kswapd())
1852 		return false;
1853 
1854 	if (!writeback_throttling_sane(sc))
1855 		return false;
1856 
1857 	if (file) {
1858 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1859 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1860 	} else {
1861 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1862 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1863 	}
1864 
1865 	/*
1866 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1867 	 * won't get blocked by normal direct-reclaimers, forming a circular
1868 	 * deadlock.
1869 	 */
1870 	if (gfp_has_io_fs(sc->gfp_mask))
1871 		inactive >>= 3;
1872 
1873 	too_many = isolated > inactive;
1874 
1875 	/* Wake up tasks throttled due to too_many_isolated. */
1876 	if (!too_many)
1877 		wake_throttle_isolated(pgdat);
1878 
1879 	return too_many;
1880 }
1881 
1882 /*
1883  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1884  *
1885  * Returns the number of pages moved to the given lruvec.
1886  */
move_folios_to_lru(struct lruvec * lruvec,struct list_head * list)1887 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1888 		struct list_head *list)
1889 {
1890 	int nr_pages, nr_moved = 0;
1891 	struct folio_batch free_folios;
1892 
1893 	folio_batch_init(&free_folios);
1894 	while (!list_empty(list)) {
1895 		struct folio *folio = lru_to_folio(list);
1896 
1897 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1898 		list_del(&folio->lru);
1899 		if (unlikely(!folio_evictable(folio))) {
1900 			spin_unlock_irq(&lruvec->lru_lock);
1901 			folio_putback_lru(folio);
1902 			spin_lock_irq(&lruvec->lru_lock);
1903 			continue;
1904 		}
1905 
1906 		/*
1907 		 * The folio_set_lru needs to be kept here for list integrity.
1908 		 * Otherwise:
1909 		 *   #0 move_folios_to_lru             #1 release_pages
1910 		 *   if (!folio_put_testzero())
1911 		 *				      if (folio_put_testzero())
1912 		 *				        !lru //skip lru_lock
1913 		 *     folio_set_lru()
1914 		 *     list_add(&folio->lru,)
1915 		 *                                        list_add(&folio->lru,)
1916 		 */
1917 		folio_set_lru(folio);
1918 
1919 		if (unlikely(folio_put_testzero(folio))) {
1920 			__folio_clear_lru_flags(folio);
1921 
1922 			folio_unqueue_deferred_split(folio);
1923 			if (folio_batch_add(&free_folios, folio) == 0) {
1924 				spin_unlock_irq(&lruvec->lru_lock);
1925 				mem_cgroup_uncharge_folios(&free_folios);
1926 				free_unref_folios(&free_folios);
1927 				spin_lock_irq(&lruvec->lru_lock);
1928 			}
1929 
1930 			continue;
1931 		}
1932 
1933 		/*
1934 		 * All pages were isolated from the same lruvec (and isolation
1935 		 * inhibits memcg migration).
1936 		 */
1937 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1938 		lruvec_add_folio(lruvec, folio);
1939 		nr_pages = folio_nr_pages(folio);
1940 		nr_moved += nr_pages;
1941 		if (folio_test_active(folio))
1942 			workingset_age_nonresident(lruvec, nr_pages);
1943 	}
1944 
1945 	if (free_folios.nr) {
1946 		spin_unlock_irq(&lruvec->lru_lock);
1947 		mem_cgroup_uncharge_folios(&free_folios);
1948 		free_unref_folios(&free_folios);
1949 		spin_lock_irq(&lruvec->lru_lock);
1950 	}
1951 
1952 	return nr_moved;
1953 }
1954 
1955 /*
1956  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1957  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1958  * we should not throttle.  Otherwise it is safe to do so.
1959  */
current_may_throttle(void)1960 static int current_may_throttle(void)
1961 {
1962 	return !(current->flags & PF_LOCAL_THROTTLE);
1963 }
1964 
1965 /*
1966  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1967  * of reclaimed pages
1968  */
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1969 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1970 		struct lruvec *lruvec, struct scan_control *sc,
1971 		enum lru_list lru)
1972 {
1973 	LIST_HEAD(folio_list);
1974 	unsigned long nr_scanned;
1975 	unsigned int nr_reclaimed = 0;
1976 	unsigned long nr_taken;
1977 	struct reclaim_stat stat;
1978 	bool file = is_file_lru(lru);
1979 	enum vm_event_item item;
1980 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1981 	bool stalled = false;
1982 
1983 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1984 		if (stalled)
1985 			return 0;
1986 
1987 		/* wait a bit for the reclaimer. */
1988 		stalled = true;
1989 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
1990 
1991 		/* We are about to die and free our memory. Return now. */
1992 		if (fatal_signal_pending(current))
1993 			return SWAP_CLUSTER_MAX;
1994 	}
1995 
1996 	lru_add_drain();
1997 
1998 	spin_lock_irq(&lruvec->lru_lock);
1999 
2000 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2001 				     &nr_scanned, sc, lru);
2002 
2003 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2004 	item = PGSCAN_KSWAPD + reclaimer_offset(sc);
2005 	if (!cgroup_reclaim(sc))
2006 		__count_vm_events(item, nr_scanned);
2007 	count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2008 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2009 
2010 	spin_unlock_irq(&lruvec->lru_lock);
2011 
2012 	if (nr_taken == 0)
2013 		return 0;
2014 
2015 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false,
2016 					 lruvec_memcg(lruvec));
2017 
2018 	spin_lock_irq(&lruvec->lru_lock);
2019 	move_folios_to_lru(lruvec, &folio_list);
2020 
2021 	mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
2022 					stat.nr_demoted);
2023 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2024 	item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
2025 	if (!cgroup_reclaim(sc))
2026 		__count_vm_events(item, nr_reclaimed);
2027 	count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2028 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2029 
2030 	lru_note_cost_unlock_irq(lruvec, file, stat.nr_pageout,
2031 					nr_scanned - nr_reclaimed);
2032 
2033 	/*
2034 	 * If dirty folios are scanned that are not queued for IO, it
2035 	 * implies that flushers are not doing their job. This can
2036 	 * happen when memory pressure pushes dirty folios to the end of
2037 	 * the LRU before the dirty limits are breached and the dirty
2038 	 * data has expired. It can also happen when the proportion of
2039 	 * dirty folios grows not through writes but through memory
2040 	 * pressure reclaiming all the clean cache. And in some cases,
2041 	 * the flushers simply cannot keep up with the allocation
2042 	 * rate. Nudge the flusher threads in case they are asleep.
2043 	 */
2044 	if (stat.nr_unqueued_dirty == nr_taken) {
2045 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2046 		/*
2047 		 * For cgroupv1 dirty throttling is achieved by waking up
2048 		 * the kernel flusher here and later waiting on folios
2049 		 * which are in writeback to finish (see shrink_folio_list()).
2050 		 *
2051 		 * Flusher may not be able to issue writeback quickly
2052 		 * enough for cgroupv1 writeback throttling to work
2053 		 * on a large system.
2054 		 */
2055 		if (!writeback_throttling_sane(sc))
2056 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2057 	}
2058 
2059 	sc->nr.dirty += stat.nr_dirty;
2060 	sc->nr.congested += stat.nr_congested;
2061 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2062 	sc->nr.writeback += stat.nr_writeback;
2063 	sc->nr.immediate += stat.nr_immediate;
2064 	sc->nr.taken += nr_taken;
2065 	if (file)
2066 		sc->nr.file_taken += nr_taken;
2067 
2068 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2069 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2070 	return nr_reclaimed;
2071 }
2072 
2073 /*
2074  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2075  *
2076  * We move them the other way if the folio is referenced by one or more
2077  * processes.
2078  *
2079  * If the folios are mostly unmapped, the processing is fast and it is
2080  * appropriate to hold lru_lock across the whole operation.  But if
2081  * the folios are mapped, the processing is slow (folio_referenced()), so
2082  * we should drop lru_lock around each folio.  It's impossible to balance
2083  * this, so instead we remove the folios from the LRU while processing them.
2084  * It is safe to rely on the active flag against the non-LRU folios in here
2085  * because nobody will play with that bit on a non-LRU folio.
2086  *
2087  * The downside is that we have to touch folio->_refcount against each folio.
2088  * But we had to alter folio->flags anyway.
2089  */
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2090 static void shrink_active_list(unsigned long nr_to_scan,
2091 			       struct lruvec *lruvec,
2092 			       struct scan_control *sc,
2093 			       enum lru_list lru)
2094 {
2095 	unsigned long nr_taken;
2096 	unsigned long nr_scanned;
2097 	vm_flags_t vm_flags;
2098 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2099 	LIST_HEAD(l_active);
2100 	LIST_HEAD(l_inactive);
2101 	unsigned nr_deactivate, nr_activate;
2102 	unsigned nr_rotated = 0;
2103 	bool file = is_file_lru(lru);
2104 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2105 
2106 	lru_add_drain();
2107 
2108 	spin_lock_irq(&lruvec->lru_lock);
2109 
2110 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2111 				     &nr_scanned, sc, lru);
2112 
2113 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2114 
2115 	if (!cgroup_reclaim(sc))
2116 		__count_vm_events(PGREFILL, nr_scanned);
2117 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2118 
2119 	spin_unlock_irq(&lruvec->lru_lock);
2120 
2121 	while (!list_empty(&l_hold)) {
2122 		struct folio *folio;
2123 
2124 		cond_resched();
2125 		folio = lru_to_folio(&l_hold);
2126 		list_del(&folio->lru);
2127 
2128 		if (unlikely(!folio_evictable(folio))) {
2129 			folio_putback_lru(folio);
2130 			continue;
2131 		}
2132 
2133 		if (unlikely(buffer_heads_over_limit)) {
2134 			if (folio_needs_release(folio) &&
2135 			    folio_trylock(folio)) {
2136 				filemap_release_folio(folio, 0);
2137 				folio_unlock(folio);
2138 			}
2139 		}
2140 
2141 		/* Referenced or rmap lock contention: rotate */
2142 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2143 				     &vm_flags) != 0) {
2144 			/*
2145 			 * Identify referenced, file-backed active folios and
2146 			 * give them one more trip around the active list. So
2147 			 * that executable code get better chances to stay in
2148 			 * memory under moderate memory pressure.  Anon folios
2149 			 * are not likely to be evicted by use-once streaming
2150 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2151 			 * so we ignore them here.
2152 			 */
2153 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2154 				nr_rotated += folio_nr_pages(folio);
2155 				list_add(&folio->lru, &l_active);
2156 				continue;
2157 			}
2158 		}
2159 
2160 		folio_clear_active(folio);	/* we are de-activating */
2161 		folio_set_workingset(folio);
2162 		list_add(&folio->lru, &l_inactive);
2163 	}
2164 
2165 	/*
2166 	 * Move folios back to the lru list.
2167 	 */
2168 	spin_lock_irq(&lruvec->lru_lock);
2169 
2170 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2171 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2172 
2173 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2174 	count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2175 
2176 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2177 
2178 	lru_note_cost_unlock_irq(lruvec, file, 0, nr_rotated);
2179 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2180 			nr_deactivate, nr_rotated, sc->priority, file);
2181 }
2182 
reclaim_folio_list(struct list_head * folio_list,struct pglist_data * pgdat)2183 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2184 				      struct pglist_data *pgdat)
2185 {
2186 	struct reclaim_stat stat;
2187 	unsigned int nr_reclaimed;
2188 	struct folio *folio;
2189 	struct scan_control sc = {
2190 		.gfp_mask = GFP_KERNEL,
2191 		.may_writepage = 1,
2192 		.may_unmap = 1,
2193 		.may_swap = 1,
2194 		.no_demotion = 1,
2195 	};
2196 
2197 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true, NULL);
2198 	while (!list_empty(folio_list)) {
2199 		folio = lru_to_folio(folio_list);
2200 		list_del(&folio->lru);
2201 		folio_putback_lru(folio);
2202 	}
2203 	trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat);
2204 
2205 	return nr_reclaimed;
2206 }
2207 
reclaim_pages(struct list_head * folio_list)2208 unsigned long reclaim_pages(struct list_head *folio_list)
2209 {
2210 	int nid;
2211 	unsigned int nr_reclaimed = 0;
2212 	LIST_HEAD(node_folio_list);
2213 	unsigned int noreclaim_flag;
2214 
2215 	if (list_empty(folio_list))
2216 		return nr_reclaimed;
2217 
2218 	noreclaim_flag = memalloc_noreclaim_save();
2219 
2220 	nid = folio_nid(lru_to_folio(folio_list));
2221 	do {
2222 		struct folio *folio = lru_to_folio(folio_list);
2223 
2224 		if (nid == folio_nid(folio)) {
2225 			folio_clear_active(folio);
2226 			list_move(&folio->lru, &node_folio_list);
2227 			continue;
2228 		}
2229 
2230 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2231 		nid = folio_nid(lru_to_folio(folio_list));
2232 	} while (!list_empty(folio_list));
2233 
2234 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2235 
2236 	memalloc_noreclaim_restore(noreclaim_flag);
2237 
2238 	return nr_reclaimed;
2239 }
2240 
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2241 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2242 				 struct lruvec *lruvec, struct scan_control *sc)
2243 {
2244 	if (is_active_lru(lru)) {
2245 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2246 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2247 		else
2248 			sc->skipped_deactivate = 1;
2249 		return 0;
2250 	}
2251 
2252 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2253 }
2254 
2255 /*
2256  * The inactive anon list should be small enough that the VM never has
2257  * to do too much work.
2258  *
2259  * The inactive file list should be small enough to leave most memory
2260  * to the established workingset on the scan-resistant active list,
2261  * but large enough to avoid thrashing the aggregate readahead window.
2262  *
2263  * Both inactive lists should also be large enough that each inactive
2264  * folio has a chance to be referenced again before it is reclaimed.
2265  *
2266  * If that fails and refaulting is observed, the inactive list grows.
2267  *
2268  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2269  * on this LRU, maintained by the pageout code. An inactive_ratio
2270  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2271  *
2272  * total     target    max
2273  * memory    ratio     inactive
2274  * -------------------------------------
2275  *   10MB       1         5MB
2276  *  100MB       1        50MB
2277  *    1GB       3       250MB
2278  *   10GB      10       0.9GB
2279  *  100GB      31         3GB
2280  *    1TB     101        10GB
2281  *   10TB     320        32GB
2282  */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2283 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2284 {
2285 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2286 	unsigned long inactive, active;
2287 	unsigned long inactive_ratio;
2288 	unsigned long gb;
2289 
2290 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2291 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2292 
2293 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2294 	if (gb)
2295 		inactive_ratio = int_sqrt(10 * gb);
2296 	else
2297 		inactive_ratio = 1;
2298 
2299 	return inactive * inactive_ratio < active;
2300 }
2301 
2302 enum scan_balance {
2303 	SCAN_EQUAL,
2304 	SCAN_FRACT,
2305 	SCAN_ANON,
2306 	SCAN_FILE,
2307 };
2308 
prepare_scan_control(pg_data_t * pgdat,struct scan_control * sc)2309 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2310 {
2311 	unsigned long file;
2312 	struct lruvec *target_lruvec;
2313 
2314 	if (lru_gen_enabled())
2315 		return;
2316 
2317 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2318 
2319 	/*
2320 	 * Flush the memory cgroup stats in rate-limited way as we don't need
2321 	 * most accurate stats here. We may switch to regular stats flushing
2322 	 * in the future once it is cheap enough.
2323 	 */
2324 	mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup);
2325 
2326 	/*
2327 	 * Determine the scan balance between anon and file LRUs.
2328 	 */
2329 	spin_lock_irq(&target_lruvec->lru_lock);
2330 	sc->anon_cost = target_lruvec->anon_cost;
2331 	sc->file_cost = target_lruvec->file_cost;
2332 	spin_unlock_irq(&target_lruvec->lru_lock);
2333 
2334 	/*
2335 	 * Target desirable inactive:active list ratios for the anon
2336 	 * and file LRU lists.
2337 	 */
2338 	if (!sc->force_deactivate) {
2339 		unsigned long refaults;
2340 
2341 		/*
2342 		 * When refaults are being observed, it means a new
2343 		 * workingset is being established. Deactivate to get
2344 		 * rid of any stale active pages quickly.
2345 		 */
2346 		refaults = lruvec_page_state(target_lruvec,
2347 				WORKINGSET_ACTIVATE_ANON);
2348 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2349 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2350 			sc->may_deactivate |= DEACTIVATE_ANON;
2351 		else
2352 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2353 
2354 		refaults = lruvec_page_state(target_lruvec,
2355 				WORKINGSET_ACTIVATE_FILE);
2356 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2357 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2358 			sc->may_deactivate |= DEACTIVATE_FILE;
2359 		else
2360 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2361 	} else
2362 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2363 
2364 	/*
2365 	 * If we have plenty of inactive file pages that aren't
2366 	 * thrashing, try to reclaim those first before touching
2367 	 * anonymous pages.
2368 	 */
2369 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2370 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2371 	    !sc->no_cache_trim_mode)
2372 		sc->cache_trim_mode = 1;
2373 	else
2374 		sc->cache_trim_mode = 0;
2375 
2376 	/*
2377 	 * Prevent the reclaimer from falling into the cache trap: as
2378 	 * cache pages start out inactive, every cache fault will tip
2379 	 * the scan balance towards the file LRU.  And as the file LRU
2380 	 * shrinks, so does the window for rotation from references.
2381 	 * This means we have a runaway feedback loop where a tiny
2382 	 * thrashing file LRU becomes infinitely more attractive than
2383 	 * anon pages.  Try to detect this based on file LRU size.
2384 	 */
2385 	if (!cgroup_reclaim(sc)) {
2386 		unsigned long total_high_wmark = 0;
2387 		unsigned long free, anon;
2388 		int z;
2389 		struct zone *zone;
2390 
2391 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2392 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2393 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2394 
2395 		for_each_managed_zone_pgdat(zone, pgdat, z, MAX_NR_ZONES - 1) {
2396 			total_high_wmark += high_wmark_pages(zone);
2397 		}
2398 
2399 		/*
2400 		 * Consider anon: if that's low too, this isn't a
2401 		 * runaway file reclaim problem, but rather just
2402 		 * extreme pressure. Reclaim as per usual then.
2403 		 */
2404 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2405 
2406 		sc->file_is_tiny =
2407 			file + free <= total_high_wmark &&
2408 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2409 			anon >> sc->priority;
2410 	}
2411 }
2412 
calculate_pressure_balance(struct scan_control * sc,int swappiness,u64 * fraction,u64 * denominator)2413 static inline void calculate_pressure_balance(struct scan_control *sc,
2414 			int swappiness, u64 *fraction, u64 *denominator)
2415 {
2416 	unsigned long anon_cost, file_cost, total_cost;
2417 	unsigned long ap, fp;
2418 
2419 	/*
2420 	 * Calculate the pressure balance between anon and file pages.
2421 	 *
2422 	 * The amount of pressure we put on each LRU is inversely
2423 	 * proportional to the cost of reclaiming each list, as
2424 	 * determined by the share of pages that are refaulting, times
2425 	 * the relative IO cost of bringing back a swapped out
2426 	 * anonymous page vs reloading a filesystem page (swappiness).
2427 	 *
2428 	 * Although we limit that influence to ensure no list gets
2429 	 * left behind completely: at least a third of the pressure is
2430 	 * applied, before swappiness.
2431 	 *
2432 	 * With swappiness at 100, anon and file have equal IO cost.
2433 	 */
2434 	total_cost = sc->anon_cost + sc->file_cost;
2435 	anon_cost = total_cost + sc->anon_cost;
2436 	file_cost = total_cost + sc->file_cost;
2437 	total_cost = anon_cost + file_cost;
2438 
2439 	ap = swappiness * (total_cost + 1);
2440 	ap /= anon_cost + 1;
2441 
2442 	fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1);
2443 	fp /= file_cost + 1;
2444 
2445 	fraction[WORKINGSET_ANON] = ap;
2446 	fraction[WORKINGSET_FILE] = fp;
2447 	*denominator = ap + fp;
2448 }
2449 
apply_proportional_protection(struct mem_cgroup * memcg,struct scan_control * sc,unsigned long scan)2450 static unsigned long apply_proportional_protection(struct mem_cgroup *memcg,
2451 		struct scan_control *sc, unsigned long scan)
2452 {
2453 	unsigned long min, low;
2454 
2455 	mem_cgroup_protection(sc->target_mem_cgroup, memcg, &min, &low);
2456 
2457 	if (min || low) {
2458 		/*
2459 		 * Scale a cgroup's reclaim pressure by proportioning
2460 		 * its current usage to its memory.low or memory.min
2461 		 * setting.
2462 		 *
2463 		 * This is important, as otherwise scanning aggression
2464 		 * becomes extremely binary -- from nothing as we
2465 		 * approach the memory protection threshold, to totally
2466 		 * nominal as we exceed it.  This results in requiring
2467 		 * setting extremely liberal protection thresholds. It
2468 		 * also means we simply get no protection at all if we
2469 		 * set it too low, which is not ideal.
2470 		 *
2471 		 * If there is any protection in place, we reduce scan
2472 		 * pressure by how much of the total memory used is
2473 		 * within protection thresholds.
2474 		 *
2475 		 * There is one special case: in the first reclaim pass,
2476 		 * we skip over all groups that are within their low
2477 		 * protection. If that fails to reclaim enough pages to
2478 		 * satisfy the reclaim goal, we come back and override
2479 		 * the best-effort low protection. However, we still
2480 		 * ideally want to honor how well-behaved groups are in
2481 		 * that case instead of simply punishing them all
2482 		 * equally. As such, we reclaim them based on how much
2483 		 * memory they are using, reducing the scan pressure
2484 		 * again by how much of the total memory used is under
2485 		 * hard protection.
2486 		 */
2487 		unsigned long cgroup_size = mem_cgroup_size(memcg);
2488 		unsigned long protection;
2489 
2490 		/* memory.low scaling, make sure we retry before OOM */
2491 		if (!sc->memcg_low_reclaim && low > min) {
2492 			protection = low;
2493 			sc->memcg_low_skipped = 1;
2494 		} else {
2495 			protection = min;
2496 		}
2497 
2498 		/* Avoid TOCTOU with earlier protection check */
2499 		cgroup_size = max(cgroup_size, protection);
2500 
2501 		scan -= scan * protection / (cgroup_size + 1);
2502 
2503 		/*
2504 		 * Minimally target SWAP_CLUSTER_MAX pages to keep
2505 		 * reclaim moving forwards, avoiding decrementing
2506 		 * sc->priority further than desirable.
2507 		 */
2508 		scan = max(scan, SWAP_CLUSTER_MAX);
2509 	}
2510 	return scan;
2511 }
2512 
2513 /*
2514  * Determine how aggressively the anon and file LRU lists should be
2515  * scanned.
2516  *
2517  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2518  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2519  */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2520 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2521 			   unsigned long *nr)
2522 {
2523 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2524 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2525 	int swappiness = sc_swappiness(sc, memcg);
2526 	u64 fraction[ANON_AND_FILE];
2527 	u64 denominator = 0;	/* gcc */
2528 	enum scan_balance scan_balance;
2529 	enum lru_list lru;
2530 
2531 	/* If we have no swap space, do not bother scanning anon folios. */
2532 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2533 		scan_balance = SCAN_FILE;
2534 		goto out;
2535 	}
2536 
2537 	/*
2538 	 * Global reclaim will swap to prevent OOM even with no
2539 	 * swappiness, but memcg users want to use this knob to
2540 	 * disable swapping for individual groups completely when
2541 	 * using the memory controller's swap limit feature would be
2542 	 * too expensive.
2543 	 */
2544 	if (cgroup_reclaim(sc) && !swappiness) {
2545 		scan_balance = SCAN_FILE;
2546 		goto out;
2547 	}
2548 
2549 	/* Proactive reclaim initiated by userspace for anonymous memory only */
2550 	if (swappiness == SWAPPINESS_ANON_ONLY) {
2551 		WARN_ON_ONCE(!sc->proactive);
2552 		scan_balance = SCAN_ANON;
2553 		goto out;
2554 	}
2555 
2556 	/*
2557 	 * Do not apply any pressure balancing cleverness when the
2558 	 * system is close to OOM, scan both anon and file equally
2559 	 * (unless the swappiness setting disagrees with swapping).
2560 	 */
2561 	if (!sc->priority && swappiness) {
2562 		scan_balance = SCAN_EQUAL;
2563 		goto out;
2564 	}
2565 
2566 	/*
2567 	 * If the system is almost out of file pages, force-scan anon.
2568 	 */
2569 	if (sc->file_is_tiny) {
2570 		scan_balance = SCAN_ANON;
2571 		goto out;
2572 	}
2573 
2574 	/*
2575 	 * If there is enough inactive page cache, we do not reclaim
2576 	 * anything from the anonymous working right now to make sure
2577          * a streaming file access pattern doesn't cause swapping.
2578 	 */
2579 	if (sc->cache_trim_mode) {
2580 		scan_balance = SCAN_FILE;
2581 		goto out;
2582 	}
2583 
2584 	scan_balance = SCAN_FRACT;
2585 	calculate_pressure_balance(sc, swappiness, fraction, &denominator);
2586 
2587 out:
2588 	for_each_evictable_lru(lru) {
2589 		bool file = is_file_lru(lru);
2590 		unsigned long lruvec_size;
2591 		unsigned long scan;
2592 
2593 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2594 		scan = apply_proportional_protection(memcg, sc, lruvec_size);
2595 		scan >>= sc->priority;
2596 
2597 		/*
2598 		 * If the cgroup's already been deleted, make sure to
2599 		 * scrape out the remaining cache.
2600 		 */
2601 		if (!scan && !mem_cgroup_online(memcg))
2602 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2603 
2604 		switch (scan_balance) {
2605 		case SCAN_EQUAL:
2606 			/* Scan lists relative to size */
2607 			break;
2608 		case SCAN_FRACT:
2609 			/*
2610 			 * Scan types proportional to swappiness and
2611 			 * their relative recent reclaim efficiency.
2612 			 * Make sure we don't miss the last page on
2613 			 * the offlined memory cgroups because of a
2614 			 * round-off error.
2615 			 */
2616 			scan = mem_cgroup_online(memcg) ?
2617 			       div64_u64(scan * fraction[file], denominator) :
2618 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2619 						  denominator);
2620 			break;
2621 		case SCAN_FILE:
2622 		case SCAN_ANON:
2623 			/* Scan one type exclusively */
2624 			if ((scan_balance == SCAN_FILE) != file)
2625 				scan = 0;
2626 			break;
2627 		default:
2628 			/* Look ma, no brain */
2629 			BUG();
2630 		}
2631 
2632 		nr[lru] = scan;
2633 	}
2634 }
2635 
2636 /*
2637  * Anonymous LRU management is a waste if there is
2638  * ultimately no way to reclaim the memory.
2639  */
can_age_anon_pages(struct lruvec * lruvec,struct scan_control * sc)2640 static bool can_age_anon_pages(struct lruvec *lruvec,
2641 			       struct scan_control *sc)
2642 {
2643 	/* Aging the anon LRU is valuable if swap is present: */
2644 	if (total_swap_pages > 0)
2645 		return true;
2646 
2647 	/* Also valuable if anon pages can be demoted: */
2648 	return can_demote(lruvec_pgdat(lruvec)->node_id, sc,
2649 			  lruvec_memcg(lruvec));
2650 }
2651 
2652 #ifdef CONFIG_LRU_GEN
2653 
2654 #ifdef CONFIG_LRU_GEN_ENABLED
2655 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2656 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
2657 #else
2658 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2659 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
2660 #endif
2661 
should_walk_mmu(void)2662 static bool should_walk_mmu(void)
2663 {
2664 	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2665 }
2666 
should_clear_pmd_young(void)2667 static bool should_clear_pmd_young(void)
2668 {
2669 	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2670 }
2671 
2672 /******************************************************************************
2673  *                          shorthand helpers
2674  ******************************************************************************/
2675 
2676 #define DEFINE_MAX_SEQ(lruvec)						\
2677 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2678 
2679 #define DEFINE_MIN_SEQ(lruvec)						\
2680 	unsigned long min_seq[ANON_AND_FILE] = {			\
2681 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
2682 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
2683 	}
2684 
2685 /* Get the min/max evictable type based on swappiness */
2686 #define min_type(swappiness) (!(swappiness))
2687 #define max_type(swappiness) ((swappiness) < SWAPPINESS_ANON_ONLY)
2688 
2689 #define evictable_min_seq(min_seq, swappiness)				\
2690 	min((min_seq)[min_type(swappiness)], (min_seq)[max_type(swappiness)])
2691 
2692 #define for_each_gen_type_zone(gen, type, zone)				\
2693 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
2694 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
2695 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2696 
2697 #define for_each_evictable_type(type, swappiness)			\
2698 	for ((type) = min_type(swappiness); (type) <= max_type(swappiness); (type)++)
2699 
2700 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
2701 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
2702 
get_lruvec(struct mem_cgroup * memcg,int nid)2703 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2704 {
2705 	struct pglist_data *pgdat = NODE_DATA(nid);
2706 
2707 #ifdef CONFIG_MEMCG
2708 	if (memcg) {
2709 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2710 
2711 		/* see the comment in mem_cgroup_lruvec() */
2712 		if (!lruvec->pgdat)
2713 			lruvec->pgdat = pgdat;
2714 
2715 		return lruvec;
2716 	}
2717 #endif
2718 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2719 
2720 	return &pgdat->__lruvec;
2721 }
2722 
get_swappiness(struct lruvec * lruvec,struct scan_control * sc)2723 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2724 {
2725 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2726 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2727 
2728 	if (!sc->may_swap)
2729 		return 0;
2730 
2731 	if (!can_demote(pgdat->node_id, sc, memcg) &&
2732 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2733 		return 0;
2734 
2735 	return sc_swappiness(sc, memcg);
2736 }
2737 
get_nr_gens(struct lruvec * lruvec,int type)2738 static int get_nr_gens(struct lruvec *lruvec, int type)
2739 {
2740 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2741 }
2742 
seq_is_valid(struct lruvec * lruvec)2743 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2744 {
2745 	int type;
2746 
2747 	for (type = 0; type < ANON_AND_FILE; type++) {
2748 		int n = get_nr_gens(lruvec, type);
2749 
2750 		if (n < MIN_NR_GENS || n > MAX_NR_GENS)
2751 			return false;
2752 	}
2753 
2754 	return true;
2755 }
2756 
2757 /******************************************************************************
2758  *                          Bloom filters
2759  ******************************************************************************/
2760 
2761 /*
2762  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2763  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2764  * bits in a bitmap, k is the number of hash functions and n is the number of
2765  * inserted items.
2766  *
2767  * Page table walkers use one of the two filters to reduce their search space.
2768  * To get rid of non-leaf entries that no longer have enough leaf entries, the
2769  * aging uses the double-buffering technique to flip to the other filter each
2770  * time it produces a new generation. For non-leaf entries that have enough
2771  * leaf entries, the aging carries them over to the next generation in
2772  * walk_pmd_range(); the eviction also report them when walking the rmap
2773  * in lru_gen_look_around().
2774  *
2775  * For future optimizations:
2776  * 1. It's not necessary to keep both filters all the time. The spare one can be
2777  *    freed after the RCU grace period and reallocated if needed again.
2778  * 2. And when reallocating, it's worth scaling its size according to the number
2779  *    of inserted entries in the other filter, to reduce the memory overhead on
2780  *    small systems and false positives on large systems.
2781  * 3. Jenkins' hash function is an alternative to Knuth's.
2782  */
2783 #define BLOOM_FILTER_SHIFT	15
2784 
filter_gen_from_seq(unsigned long seq)2785 static inline int filter_gen_from_seq(unsigned long seq)
2786 {
2787 	return seq % NR_BLOOM_FILTERS;
2788 }
2789 
get_item_key(void * item,int * key)2790 static void get_item_key(void *item, int *key)
2791 {
2792 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2793 
2794 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2795 
2796 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2797 	key[1] = hash >> BLOOM_FILTER_SHIFT;
2798 }
2799 
test_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2800 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2801 			      void *item)
2802 {
2803 	int key[2];
2804 	unsigned long *filter;
2805 	int gen = filter_gen_from_seq(seq);
2806 
2807 	filter = READ_ONCE(mm_state->filters[gen]);
2808 	if (!filter)
2809 		return true;
2810 
2811 	get_item_key(item, key);
2812 
2813 	return test_bit(key[0], filter) && test_bit(key[1], filter);
2814 }
2815 
update_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2816 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2817 				void *item)
2818 {
2819 	int key[2];
2820 	unsigned long *filter;
2821 	int gen = filter_gen_from_seq(seq);
2822 
2823 	filter = READ_ONCE(mm_state->filters[gen]);
2824 	if (!filter)
2825 		return;
2826 
2827 	get_item_key(item, key);
2828 
2829 	if (!test_bit(key[0], filter))
2830 		set_bit(key[0], filter);
2831 	if (!test_bit(key[1], filter))
2832 		set_bit(key[1], filter);
2833 }
2834 
reset_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq)2835 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2836 {
2837 	unsigned long *filter;
2838 	int gen = filter_gen_from_seq(seq);
2839 
2840 	filter = mm_state->filters[gen];
2841 	if (filter) {
2842 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2843 		return;
2844 	}
2845 
2846 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2847 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2848 	WRITE_ONCE(mm_state->filters[gen], filter);
2849 }
2850 
2851 /******************************************************************************
2852  *                          mm_struct list
2853  ******************************************************************************/
2854 
2855 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2856 
get_mm_list(struct mem_cgroup * memcg)2857 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2858 {
2859 	static struct lru_gen_mm_list mm_list = {
2860 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
2861 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2862 	};
2863 
2864 #ifdef CONFIG_MEMCG
2865 	if (memcg)
2866 		return &memcg->mm_list;
2867 #endif
2868 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2869 
2870 	return &mm_list;
2871 }
2872 
get_mm_state(struct lruvec * lruvec)2873 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2874 {
2875 	return &lruvec->mm_state;
2876 }
2877 
get_next_mm(struct lru_gen_mm_walk * walk)2878 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2879 {
2880 	int key;
2881 	struct mm_struct *mm;
2882 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2883 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2884 
2885 	mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2886 	key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2887 
2888 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2889 		return NULL;
2890 
2891 	clear_bit(key, &mm->lru_gen.bitmap);
2892 
2893 	return mmget_not_zero(mm) ? mm : NULL;
2894 }
2895 
lru_gen_add_mm(struct mm_struct * mm)2896 void lru_gen_add_mm(struct mm_struct *mm)
2897 {
2898 	int nid;
2899 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2900 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2901 
2902 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2903 #ifdef CONFIG_MEMCG
2904 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2905 	mm->lru_gen.memcg = memcg;
2906 #endif
2907 	spin_lock(&mm_list->lock);
2908 
2909 	for_each_node_state(nid, N_MEMORY) {
2910 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2911 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2912 
2913 		/* the first addition since the last iteration */
2914 		if (mm_state->tail == &mm_list->fifo)
2915 			mm_state->tail = &mm->lru_gen.list;
2916 	}
2917 
2918 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2919 
2920 	spin_unlock(&mm_list->lock);
2921 }
2922 
lru_gen_del_mm(struct mm_struct * mm)2923 void lru_gen_del_mm(struct mm_struct *mm)
2924 {
2925 	int nid;
2926 	struct lru_gen_mm_list *mm_list;
2927 	struct mem_cgroup *memcg = NULL;
2928 
2929 	if (list_empty(&mm->lru_gen.list))
2930 		return;
2931 
2932 #ifdef CONFIG_MEMCG
2933 	memcg = mm->lru_gen.memcg;
2934 #endif
2935 	mm_list = get_mm_list(memcg);
2936 
2937 	spin_lock(&mm_list->lock);
2938 
2939 	for_each_node(nid) {
2940 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2941 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2942 
2943 		/* where the current iteration continues after */
2944 		if (mm_state->head == &mm->lru_gen.list)
2945 			mm_state->head = mm_state->head->prev;
2946 
2947 		/* where the last iteration ended before */
2948 		if (mm_state->tail == &mm->lru_gen.list)
2949 			mm_state->tail = mm_state->tail->next;
2950 	}
2951 
2952 	list_del_init(&mm->lru_gen.list);
2953 
2954 	spin_unlock(&mm_list->lock);
2955 
2956 #ifdef CONFIG_MEMCG
2957 	mem_cgroup_put(mm->lru_gen.memcg);
2958 	mm->lru_gen.memcg = NULL;
2959 #endif
2960 }
2961 
2962 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)2963 void lru_gen_migrate_mm(struct mm_struct *mm)
2964 {
2965 	struct mem_cgroup *memcg;
2966 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2967 
2968 	VM_WARN_ON_ONCE(task->mm != mm);
2969 	lockdep_assert_held(&task->alloc_lock);
2970 
2971 	/* for mm_update_next_owner() */
2972 	if (mem_cgroup_disabled())
2973 		return;
2974 
2975 	/* migration can happen before addition */
2976 	if (!mm->lru_gen.memcg)
2977 		return;
2978 
2979 	rcu_read_lock();
2980 	memcg = mem_cgroup_from_task(task);
2981 	rcu_read_unlock();
2982 	if (memcg == mm->lru_gen.memcg)
2983 		return;
2984 
2985 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2986 
2987 	lru_gen_del_mm(mm);
2988 	lru_gen_add_mm(mm);
2989 }
2990 #endif
2991 
2992 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
2993 
get_mm_list(struct mem_cgroup * memcg)2994 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2995 {
2996 	return NULL;
2997 }
2998 
get_mm_state(struct lruvec * lruvec)2999 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
3000 {
3001 	return NULL;
3002 }
3003 
get_next_mm(struct lru_gen_mm_walk * walk)3004 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
3005 {
3006 	return NULL;
3007 }
3008 
3009 #endif
3010 
reset_mm_stats(struct lru_gen_mm_walk * walk,bool last)3011 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
3012 {
3013 	int i;
3014 	int hist;
3015 	struct lruvec *lruvec = walk->lruvec;
3016 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3017 
3018 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3019 
3020 	hist = lru_hist_from_seq(walk->seq);
3021 
3022 	for (i = 0; i < NR_MM_STATS; i++) {
3023 		WRITE_ONCE(mm_state->stats[hist][i],
3024 			   mm_state->stats[hist][i] + walk->mm_stats[i]);
3025 		walk->mm_stats[i] = 0;
3026 	}
3027 
3028 	if (NR_HIST_GENS > 1 && last) {
3029 		hist = lru_hist_from_seq(walk->seq + 1);
3030 
3031 		for (i = 0; i < NR_MM_STATS; i++)
3032 			WRITE_ONCE(mm_state->stats[hist][i], 0);
3033 	}
3034 }
3035 
iterate_mm_list(struct lru_gen_mm_walk * walk,struct mm_struct ** iter)3036 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
3037 {
3038 	bool first = false;
3039 	bool last = false;
3040 	struct mm_struct *mm = NULL;
3041 	struct lruvec *lruvec = walk->lruvec;
3042 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3043 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3044 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3045 
3046 	/*
3047 	 * mm_state->seq is incremented after each iteration of mm_list. There
3048 	 * are three interesting cases for this page table walker:
3049 	 * 1. It tries to start a new iteration with a stale max_seq: there is
3050 	 *    nothing left to do.
3051 	 * 2. It started the next iteration: it needs to reset the Bloom filter
3052 	 *    so that a fresh set of PTE tables can be recorded.
3053 	 * 3. It ended the current iteration: it needs to reset the mm stats
3054 	 *    counters and tell its caller to increment max_seq.
3055 	 */
3056 	spin_lock(&mm_list->lock);
3057 
3058 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
3059 
3060 	if (walk->seq <= mm_state->seq)
3061 		goto done;
3062 
3063 	if (!mm_state->head)
3064 		mm_state->head = &mm_list->fifo;
3065 
3066 	if (mm_state->head == &mm_list->fifo)
3067 		first = true;
3068 
3069 	do {
3070 		mm_state->head = mm_state->head->next;
3071 		if (mm_state->head == &mm_list->fifo) {
3072 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3073 			last = true;
3074 			break;
3075 		}
3076 
3077 		/* force scan for those added after the last iteration */
3078 		if (!mm_state->tail || mm_state->tail == mm_state->head) {
3079 			mm_state->tail = mm_state->head->next;
3080 			walk->force_scan = true;
3081 		}
3082 	} while (!(mm = get_next_mm(walk)));
3083 done:
3084 	if (*iter || last)
3085 		reset_mm_stats(walk, last);
3086 
3087 	spin_unlock(&mm_list->lock);
3088 
3089 	if (mm && first)
3090 		reset_bloom_filter(mm_state, walk->seq + 1);
3091 
3092 	if (*iter)
3093 		mmput_async(*iter);
3094 
3095 	*iter = mm;
3096 
3097 	return last;
3098 }
3099 
iterate_mm_list_nowalk(struct lruvec * lruvec,unsigned long seq)3100 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
3101 {
3102 	bool success = false;
3103 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3104 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3105 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3106 
3107 	spin_lock(&mm_list->lock);
3108 
3109 	VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
3110 
3111 	if (seq > mm_state->seq) {
3112 		mm_state->head = NULL;
3113 		mm_state->tail = NULL;
3114 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3115 		success = true;
3116 	}
3117 
3118 	spin_unlock(&mm_list->lock);
3119 
3120 	return success;
3121 }
3122 
3123 /******************************************************************************
3124  *                          PID controller
3125  ******************************************************************************/
3126 
3127 /*
3128  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3129  *
3130  * The P term is refaulted/(evicted+protected) from a tier in the generation
3131  * currently being evicted; the I term is the exponential moving average of the
3132  * P term over the generations previously evicted, using the smoothing factor
3133  * 1/2; the D term isn't supported.
3134  *
3135  * The setpoint (SP) is always the first tier of one type; the process variable
3136  * (PV) is either any tier of the other type or any other tier of the same
3137  * type.
3138  *
3139  * The error is the difference between the SP and the PV; the correction is to
3140  * turn off protection when SP>PV or turn on protection when SP<PV.
3141  *
3142  * For future optimizations:
3143  * 1. The D term may discount the other two terms over time so that long-lived
3144  *    generations can resist stale information.
3145  */
3146 struct ctrl_pos {
3147 	unsigned long refaulted;
3148 	unsigned long total;
3149 	int gain;
3150 };
3151 
read_ctrl_pos(struct lruvec * lruvec,int type,int tier,int gain,struct ctrl_pos * pos)3152 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3153 			  struct ctrl_pos *pos)
3154 {
3155 	int i;
3156 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3157 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3158 
3159 	pos->gain = gain;
3160 	pos->refaulted = pos->total = 0;
3161 
3162 	for (i = tier % MAX_NR_TIERS; i <= min(tier, MAX_NR_TIERS - 1); i++) {
3163 		pos->refaulted += lrugen->avg_refaulted[type][i] +
3164 				  atomic_long_read(&lrugen->refaulted[hist][type][i]);
3165 		pos->total += lrugen->avg_total[type][i] +
3166 			      lrugen->protected[hist][type][i] +
3167 			      atomic_long_read(&lrugen->evicted[hist][type][i]);
3168 	}
3169 }
3170 
reset_ctrl_pos(struct lruvec * lruvec,int type,bool carryover)3171 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3172 {
3173 	int hist, tier;
3174 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3175 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3176 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3177 
3178 	lockdep_assert_held(&lruvec->lru_lock);
3179 
3180 	if (!carryover && !clear)
3181 		return;
3182 
3183 	hist = lru_hist_from_seq(seq);
3184 
3185 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3186 		if (carryover) {
3187 			unsigned long sum;
3188 
3189 			sum = lrugen->avg_refaulted[type][tier] +
3190 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3191 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3192 
3193 			sum = lrugen->avg_total[type][tier] +
3194 			      lrugen->protected[hist][type][tier] +
3195 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3196 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3197 		}
3198 
3199 		if (clear) {
3200 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3201 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3202 			WRITE_ONCE(lrugen->protected[hist][type][tier], 0);
3203 		}
3204 	}
3205 }
3206 
positive_ctrl_err(struct ctrl_pos * sp,struct ctrl_pos * pv)3207 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3208 {
3209 	/*
3210 	 * Return true if the PV has a limited number of refaults or a lower
3211 	 * refaulted/total than the SP.
3212 	 */
3213 	return pv->refaulted < MIN_LRU_BATCH ||
3214 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3215 	       (sp->refaulted + 1) * pv->total * pv->gain;
3216 }
3217 
3218 /******************************************************************************
3219  *                          the aging
3220  ******************************************************************************/
3221 
3222 /* promote pages accessed through page tables */
folio_update_gen(struct folio * folio,int gen)3223 static int folio_update_gen(struct folio *folio, int gen)
3224 {
3225 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags.f);
3226 
3227 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3228 
3229 	/* see the comment on LRU_REFS_FLAGS */
3230 	if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
3231 		set_mask_bits(&folio->flags.f, LRU_REFS_MASK, BIT(PG_referenced));
3232 		return -1;
3233 	}
3234 
3235 	do {
3236 		/* lru_gen_del_folio() has isolated this page? */
3237 		if (!(old_flags & LRU_GEN_MASK))
3238 			return -1;
3239 
3240 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3241 		new_flags |= ((gen + 1UL) << LRU_GEN_PGOFF) | BIT(PG_workingset);
3242 	} while (!try_cmpxchg(&folio->flags.f, &old_flags, new_flags));
3243 
3244 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3245 }
3246 
3247 /* protect pages accessed multiple times through file descriptors */
folio_inc_gen(struct lruvec * lruvec,struct folio * folio,bool reclaiming)3248 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3249 {
3250 	int type = folio_is_file_lru(folio);
3251 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3252 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3253 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags.f);
3254 
3255 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3256 
3257 	do {
3258 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3259 		/* folio_update_gen() has promoted this page? */
3260 		if (new_gen >= 0 && new_gen != old_gen)
3261 			return new_gen;
3262 
3263 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3264 
3265 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3266 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3267 		/* for folio_end_writeback() */
3268 		if (reclaiming)
3269 			new_flags |= BIT(PG_reclaim);
3270 	} while (!try_cmpxchg(&folio->flags.f, &old_flags, new_flags));
3271 
3272 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3273 
3274 	return new_gen;
3275 }
3276 
update_batch_size(struct lru_gen_mm_walk * walk,struct folio * folio,int old_gen,int new_gen)3277 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3278 			      int old_gen, int new_gen)
3279 {
3280 	int type = folio_is_file_lru(folio);
3281 	int zone = folio_zonenum(folio);
3282 	int delta = folio_nr_pages(folio);
3283 
3284 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3285 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3286 
3287 	walk->batched++;
3288 
3289 	walk->nr_pages[old_gen][type][zone] -= delta;
3290 	walk->nr_pages[new_gen][type][zone] += delta;
3291 }
3292 
reset_batch_size(struct lru_gen_mm_walk * walk)3293 static void reset_batch_size(struct lru_gen_mm_walk *walk)
3294 {
3295 	int gen, type, zone;
3296 	struct lruvec *lruvec = walk->lruvec;
3297 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3298 
3299 	walk->batched = 0;
3300 
3301 	for_each_gen_type_zone(gen, type, zone) {
3302 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3303 		int delta = walk->nr_pages[gen][type][zone];
3304 
3305 		if (!delta)
3306 			continue;
3307 
3308 		walk->nr_pages[gen][type][zone] = 0;
3309 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3310 			   lrugen->nr_pages[gen][type][zone] + delta);
3311 
3312 		if (lru_gen_is_active(lruvec, gen))
3313 			lru += LRU_ACTIVE;
3314 		__update_lru_size(lruvec, lru, zone, delta);
3315 	}
3316 }
3317 
should_skip_vma(unsigned long start,unsigned long end,struct mm_walk * args)3318 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3319 {
3320 	struct address_space *mapping;
3321 	struct vm_area_struct *vma = args->vma;
3322 	struct lru_gen_mm_walk *walk = args->private;
3323 
3324 	if (!vma_is_accessible(vma))
3325 		return true;
3326 
3327 	if (is_vm_hugetlb_page(vma))
3328 		return true;
3329 
3330 	if (!vma_has_recency(vma))
3331 		return true;
3332 
3333 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3334 		return true;
3335 
3336 	if (vma == get_gate_vma(vma->vm_mm))
3337 		return true;
3338 
3339 	if (vma_is_anonymous(vma))
3340 		return !walk->swappiness;
3341 
3342 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3343 		return true;
3344 
3345 	mapping = vma->vm_file->f_mapping;
3346 	if (mapping_unevictable(mapping))
3347 		return true;
3348 
3349 	if (shmem_mapping(mapping))
3350 		return !walk->swappiness;
3351 
3352 	if (walk->swappiness > MAX_SWAPPINESS)
3353 		return true;
3354 
3355 	/* to exclude special mappings like dax, etc. */
3356 	return !mapping->a_ops->read_folio;
3357 }
3358 
3359 /*
3360  * Some userspace memory allocators map many single-page VMAs. Instead of
3361  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3362  * table to reduce zigzags and improve cache performance.
3363  */
get_next_vma(unsigned long mask,unsigned long size,struct mm_walk * args,unsigned long * vm_start,unsigned long * vm_end)3364 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3365 			 unsigned long *vm_start, unsigned long *vm_end)
3366 {
3367 	unsigned long start = round_up(*vm_end, size);
3368 	unsigned long end = (start | ~mask) + 1;
3369 	VMA_ITERATOR(vmi, args->mm, start);
3370 
3371 	VM_WARN_ON_ONCE(mask & size);
3372 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3373 
3374 	for_each_vma(vmi, args->vma) {
3375 		if (end && end <= args->vma->vm_start)
3376 			return false;
3377 
3378 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3379 			continue;
3380 
3381 		*vm_start = max(start, args->vma->vm_start);
3382 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3383 
3384 		return true;
3385 	}
3386 
3387 	return false;
3388 }
3389 
get_pte_pfn(pte_t pte,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3390 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr,
3391 				 struct pglist_data *pgdat)
3392 {
3393 	unsigned long pfn = pte_pfn(pte);
3394 
3395 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3396 
3397 	if (!pte_present(pte) || is_zero_pfn(pfn))
3398 		return -1;
3399 
3400 	if (WARN_ON_ONCE(pte_special(pte)))
3401 		return -1;
3402 
3403 	if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm))
3404 		return -1;
3405 
3406 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3407 		return -1;
3408 
3409 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3410 		return -1;
3411 
3412 	return pfn;
3413 }
3414 
get_pmd_pfn(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3415 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr,
3416 				 struct pglist_data *pgdat)
3417 {
3418 	unsigned long pfn = pmd_pfn(pmd);
3419 
3420 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3421 
3422 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3423 		return -1;
3424 
3425 	if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm))
3426 		return -1;
3427 
3428 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3429 		return -1;
3430 
3431 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3432 		return -1;
3433 
3434 	return pfn;
3435 }
3436 
get_pfn_folio(unsigned long pfn,struct mem_cgroup * memcg,struct pglist_data * pgdat)3437 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3438 				   struct pglist_data *pgdat)
3439 {
3440 	struct folio *folio = pfn_folio(pfn);
3441 
3442 	if (folio_lru_gen(folio) < 0)
3443 		return NULL;
3444 
3445 	if (folio_nid(folio) != pgdat->node_id)
3446 		return NULL;
3447 
3448 	if (folio_memcg(folio) != memcg)
3449 		return NULL;
3450 
3451 	return folio;
3452 }
3453 
suitable_to_scan(int total,int young)3454 static bool suitable_to_scan(int total, int young)
3455 {
3456 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3457 
3458 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3459 	return young * n >= total;
3460 }
3461 
walk_update_folio(struct lru_gen_mm_walk * walk,struct folio * folio,int new_gen,bool dirty)3462 static void walk_update_folio(struct lru_gen_mm_walk *walk, struct folio *folio,
3463 			      int new_gen, bool dirty)
3464 {
3465 	int old_gen;
3466 
3467 	if (!folio)
3468 		return;
3469 
3470 	if (dirty && !folio_test_dirty(folio) &&
3471 	    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3472 	      !folio_test_swapcache(folio)))
3473 		folio_mark_dirty(folio);
3474 
3475 	if (walk) {
3476 		old_gen = folio_update_gen(folio, new_gen);
3477 		if (old_gen >= 0 && old_gen != new_gen)
3478 			update_batch_size(walk, folio, old_gen, new_gen);
3479 	} else if (lru_gen_set_refs(folio)) {
3480 		old_gen = folio_lru_gen(folio);
3481 		if (old_gen >= 0 && old_gen != new_gen)
3482 			folio_activate(folio);
3483 	}
3484 }
3485 
walk_pte_range(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * args)3486 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3487 			   struct mm_walk *args)
3488 {
3489 	int i;
3490 	bool dirty;
3491 	pte_t *pte;
3492 	spinlock_t *ptl;
3493 	unsigned long addr;
3494 	int total = 0;
3495 	int young = 0;
3496 	struct folio *last = NULL;
3497 	struct lru_gen_mm_walk *walk = args->private;
3498 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3499 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3500 	DEFINE_MAX_SEQ(walk->lruvec);
3501 	int gen = lru_gen_from_seq(max_seq);
3502 	pmd_t pmdval;
3503 
3504 	pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval, &ptl);
3505 	if (!pte)
3506 		return false;
3507 
3508 	if (!spin_trylock(ptl)) {
3509 		pte_unmap(pte);
3510 		return true;
3511 	}
3512 
3513 	if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
3514 		pte_unmap_unlock(pte, ptl);
3515 		return false;
3516 	}
3517 
3518 	arch_enter_lazy_mmu_mode();
3519 restart:
3520 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3521 		unsigned long pfn;
3522 		struct folio *folio;
3523 		pte_t ptent = ptep_get(pte + i);
3524 
3525 		total++;
3526 		walk->mm_stats[MM_LEAF_TOTAL]++;
3527 
3528 		pfn = get_pte_pfn(ptent, args->vma, addr, pgdat);
3529 		if (pfn == -1)
3530 			continue;
3531 
3532 		folio = get_pfn_folio(pfn, memcg, pgdat);
3533 		if (!folio)
3534 			continue;
3535 
3536 		if (!ptep_clear_young_notify(args->vma, addr, pte + i))
3537 			continue;
3538 
3539 		if (last != folio) {
3540 			walk_update_folio(walk, last, gen, dirty);
3541 
3542 			last = folio;
3543 			dirty = false;
3544 		}
3545 
3546 		if (pte_dirty(ptent))
3547 			dirty = true;
3548 
3549 		young++;
3550 		walk->mm_stats[MM_LEAF_YOUNG]++;
3551 	}
3552 
3553 	walk_update_folio(walk, last, gen, dirty);
3554 	last = NULL;
3555 
3556 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3557 		goto restart;
3558 
3559 	arch_leave_lazy_mmu_mode();
3560 	pte_unmap_unlock(pte, ptl);
3561 
3562 	return suitable_to_scan(total, young);
3563 }
3564 
walk_pmd_range_locked(pud_t * pud,unsigned long addr,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * first)3565 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3566 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3567 {
3568 	int i;
3569 	bool dirty;
3570 	pmd_t *pmd;
3571 	spinlock_t *ptl;
3572 	struct folio *last = NULL;
3573 	struct lru_gen_mm_walk *walk = args->private;
3574 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3575 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3576 	DEFINE_MAX_SEQ(walk->lruvec);
3577 	int gen = lru_gen_from_seq(max_seq);
3578 
3579 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3580 
3581 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3582 	if (*first == -1) {
3583 		*first = addr;
3584 		bitmap_zero(bitmap, MIN_LRU_BATCH);
3585 		return;
3586 	}
3587 
3588 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3589 	if (i && i <= MIN_LRU_BATCH) {
3590 		__set_bit(i - 1, bitmap);
3591 		return;
3592 	}
3593 
3594 	pmd = pmd_offset(pud, *first);
3595 
3596 	ptl = pmd_lockptr(args->mm, pmd);
3597 	if (!spin_trylock(ptl))
3598 		goto done;
3599 
3600 	arch_enter_lazy_mmu_mode();
3601 
3602 	do {
3603 		unsigned long pfn;
3604 		struct folio *folio;
3605 
3606 		/* don't round down the first address */
3607 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3608 
3609 		if (!pmd_present(pmd[i]))
3610 			goto next;
3611 
3612 		if (!pmd_trans_huge(pmd[i])) {
3613 			if (!walk->force_scan && should_clear_pmd_young() &&
3614 			    !mm_has_notifiers(args->mm))
3615 				pmdp_test_and_clear_young(vma, addr, pmd + i);
3616 			goto next;
3617 		}
3618 
3619 		pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat);
3620 		if (pfn == -1)
3621 			goto next;
3622 
3623 		folio = get_pfn_folio(pfn, memcg, pgdat);
3624 		if (!folio)
3625 			goto next;
3626 
3627 		if (!pmdp_clear_young_notify(vma, addr, pmd + i))
3628 			goto next;
3629 
3630 		if (last != folio) {
3631 			walk_update_folio(walk, last, gen, dirty);
3632 
3633 			last = folio;
3634 			dirty = false;
3635 		}
3636 
3637 		if (pmd_dirty(pmd[i]))
3638 			dirty = true;
3639 
3640 		walk->mm_stats[MM_LEAF_YOUNG]++;
3641 next:
3642 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3643 	} while (i <= MIN_LRU_BATCH);
3644 
3645 	walk_update_folio(walk, last, gen, dirty);
3646 
3647 	arch_leave_lazy_mmu_mode();
3648 	spin_unlock(ptl);
3649 done:
3650 	*first = -1;
3651 }
3652 
walk_pmd_range(pud_t * pud,unsigned long start,unsigned long end,struct mm_walk * args)3653 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3654 			   struct mm_walk *args)
3655 {
3656 	int i;
3657 	pmd_t *pmd;
3658 	unsigned long next;
3659 	unsigned long addr;
3660 	struct vm_area_struct *vma;
3661 	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3662 	unsigned long first = -1;
3663 	struct lru_gen_mm_walk *walk = args->private;
3664 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3665 
3666 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3667 
3668 	/*
3669 	 * Finish an entire PMD in two passes: the first only reaches to PTE
3670 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
3671 	 * the PMD lock to clear the accessed bit in PMD entries.
3672 	 */
3673 	pmd = pmd_offset(pud, start & PUD_MASK);
3674 restart:
3675 	/* walk_pte_range() may call get_next_vma() */
3676 	vma = args->vma;
3677 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3678 		pmd_t val = pmdp_get_lockless(pmd + i);
3679 
3680 		next = pmd_addr_end(addr, end);
3681 
3682 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3683 			walk->mm_stats[MM_LEAF_TOTAL]++;
3684 			continue;
3685 		}
3686 
3687 		if (pmd_trans_huge(val)) {
3688 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3689 			unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat);
3690 
3691 			walk->mm_stats[MM_LEAF_TOTAL]++;
3692 
3693 			if (pfn != -1)
3694 				walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3695 			continue;
3696 		}
3697 
3698 		if (!walk->force_scan && should_clear_pmd_young() &&
3699 		    !mm_has_notifiers(args->mm)) {
3700 			if (!pmd_young(val))
3701 				continue;
3702 
3703 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3704 		}
3705 
3706 		if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3707 			continue;
3708 
3709 		walk->mm_stats[MM_NONLEAF_FOUND]++;
3710 
3711 		if (!walk_pte_range(&val, addr, next, args))
3712 			continue;
3713 
3714 		walk->mm_stats[MM_NONLEAF_ADDED]++;
3715 
3716 		/* carry over to the next generation */
3717 		update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3718 	}
3719 
3720 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3721 
3722 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3723 		goto restart;
3724 }
3725 
walk_pud_range(p4d_t * p4d,unsigned long start,unsigned long end,struct mm_walk * args)3726 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3727 			  struct mm_walk *args)
3728 {
3729 	int i;
3730 	pud_t *pud;
3731 	unsigned long addr;
3732 	unsigned long next;
3733 	struct lru_gen_mm_walk *walk = args->private;
3734 
3735 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3736 
3737 	pud = pud_offset(p4d, start & P4D_MASK);
3738 restart:
3739 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3740 		pud_t val = pudp_get(pud + i);
3741 
3742 		next = pud_addr_end(addr, end);
3743 
3744 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3745 			continue;
3746 
3747 		walk_pmd_range(&val, addr, next, args);
3748 
3749 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3750 			end = (addr | ~PUD_MASK) + 1;
3751 			goto done;
3752 		}
3753 	}
3754 
3755 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3756 		goto restart;
3757 
3758 	end = round_up(end, P4D_SIZE);
3759 done:
3760 	if (!end || !args->vma)
3761 		return 1;
3762 
3763 	walk->next_addr = max(end, args->vma->vm_start);
3764 
3765 	return -EAGAIN;
3766 }
3767 
walk_mm(struct mm_struct * mm,struct lru_gen_mm_walk * walk)3768 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3769 {
3770 	static const struct mm_walk_ops mm_walk_ops = {
3771 		.test_walk = should_skip_vma,
3772 		.p4d_entry = walk_pud_range,
3773 		.walk_lock = PGWALK_RDLOCK,
3774 	};
3775 	int err;
3776 	struct lruvec *lruvec = walk->lruvec;
3777 
3778 	walk->next_addr = FIRST_USER_ADDRESS;
3779 
3780 	do {
3781 		DEFINE_MAX_SEQ(lruvec);
3782 
3783 		err = -EBUSY;
3784 
3785 		/* another thread might have called inc_max_seq() */
3786 		if (walk->seq != max_seq)
3787 			break;
3788 
3789 		/* the caller might be holding the lock for write */
3790 		if (mmap_read_trylock(mm)) {
3791 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3792 
3793 			mmap_read_unlock(mm);
3794 		}
3795 
3796 		if (walk->batched) {
3797 			spin_lock_irq(&lruvec->lru_lock);
3798 			reset_batch_size(walk);
3799 			spin_unlock_irq(&lruvec->lru_lock);
3800 		}
3801 
3802 		cond_resched();
3803 	} while (err == -EAGAIN);
3804 }
3805 
set_mm_walk(struct pglist_data * pgdat,bool force_alloc)3806 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3807 {
3808 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3809 
3810 	if (pgdat && current_is_kswapd()) {
3811 		VM_WARN_ON_ONCE(walk);
3812 
3813 		walk = &pgdat->mm_walk;
3814 	} else if (!walk && force_alloc) {
3815 		VM_WARN_ON_ONCE(current_is_kswapd());
3816 
3817 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3818 	}
3819 
3820 	current->reclaim_state->mm_walk = walk;
3821 
3822 	return walk;
3823 }
3824 
clear_mm_walk(void)3825 static void clear_mm_walk(void)
3826 {
3827 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3828 
3829 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3830 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3831 
3832 	current->reclaim_state->mm_walk = NULL;
3833 
3834 	if (!current_is_kswapd())
3835 		kfree(walk);
3836 }
3837 
inc_min_seq(struct lruvec * lruvec,int type,int swappiness)3838 static bool inc_min_seq(struct lruvec *lruvec, int type, int swappiness)
3839 {
3840 	int zone;
3841 	int remaining = MAX_LRU_BATCH;
3842 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3843 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3844 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3845 
3846 	/* For file type, skip the check if swappiness is anon only */
3847 	if (type && (swappiness == SWAPPINESS_ANON_ONLY))
3848 		goto done;
3849 
3850 	/* For anon type, skip the check if swappiness is zero (file only) */
3851 	if (!type && !swappiness)
3852 		goto done;
3853 
3854 	/* prevent cold/hot inversion if the type is evictable */
3855 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3856 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
3857 
3858 		while (!list_empty(head)) {
3859 			struct folio *folio = lru_to_folio(head);
3860 			int refs = folio_lru_refs(folio);
3861 			bool workingset = folio_test_workingset(folio);
3862 
3863 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3864 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3865 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3866 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3867 
3868 			new_gen = folio_inc_gen(lruvec, folio, false);
3869 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3870 
3871 			/* don't count the workingset being lazily promoted */
3872 			if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
3873 				int tier = lru_tier_from_refs(refs, workingset);
3874 				int delta = folio_nr_pages(folio);
3875 
3876 				WRITE_ONCE(lrugen->protected[hist][type][tier],
3877 					   lrugen->protected[hist][type][tier] + delta);
3878 			}
3879 
3880 			if (!--remaining)
3881 				return false;
3882 		}
3883 	}
3884 done:
3885 	reset_ctrl_pos(lruvec, type, true);
3886 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3887 
3888 	return true;
3889 }
3890 
try_to_inc_min_seq(struct lruvec * lruvec,int swappiness)3891 static bool try_to_inc_min_seq(struct lruvec *lruvec, int swappiness)
3892 {
3893 	int gen, type, zone;
3894 	bool success = false;
3895 	bool seq_inc_flag = false;
3896 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3897 	DEFINE_MIN_SEQ(lruvec);
3898 
3899 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3900 
3901 	/* find the oldest populated generation */
3902 	for_each_evictable_type(type, swappiness) {
3903 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3904 			gen = lru_gen_from_seq(min_seq[type]);
3905 
3906 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3907 				if (!list_empty(&lrugen->folios[gen][type][zone]))
3908 					goto next;
3909 			}
3910 
3911 			min_seq[type]++;
3912 			seq_inc_flag = true;
3913 		}
3914 next:
3915 		;
3916 	}
3917 
3918 	/*
3919 	 * If min_seq[type] of both anonymous and file is not increased,
3920 	 * we can directly return false to avoid unnecessary checking
3921 	 * overhead later.
3922 	 */
3923 	if (!seq_inc_flag)
3924 		return success;
3925 
3926 	/* see the comment on lru_gen_folio */
3927 	if (swappiness && swappiness <= MAX_SWAPPINESS) {
3928 		unsigned long seq = lrugen->max_seq - MIN_NR_GENS;
3929 
3930 		if (min_seq[LRU_GEN_ANON] > seq && min_seq[LRU_GEN_FILE] < seq)
3931 			min_seq[LRU_GEN_ANON] = seq;
3932 		else if (min_seq[LRU_GEN_FILE] > seq && min_seq[LRU_GEN_ANON] < seq)
3933 			min_seq[LRU_GEN_FILE] = seq;
3934 	}
3935 
3936 	for_each_evictable_type(type, swappiness) {
3937 		if (min_seq[type] <= lrugen->min_seq[type])
3938 			continue;
3939 
3940 		reset_ctrl_pos(lruvec, type, true);
3941 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3942 		success = true;
3943 	}
3944 
3945 	return success;
3946 }
3947 
inc_max_seq(struct lruvec * lruvec,unsigned long seq,int swappiness)3948 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness)
3949 {
3950 	bool success;
3951 	int prev, next;
3952 	int type, zone;
3953 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3954 restart:
3955 	if (seq < READ_ONCE(lrugen->max_seq))
3956 		return false;
3957 
3958 	spin_lock_irq(&lruvec->lru_lock);
3959 
3960 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3961 
3962 	success = seq == lrugen->max_seq;
3963 	if (!success)
3964 		goto unlock;
3965 
3966 	for (type = 0; type < ANON_AND_FILE; type++) {
3967 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3968 			continue;
3969 
3970 		if (inc_min_seq(lruvec, type, swappiness))
3971 			continue;
3972 
3973 		spin_unlock_irq(&lruvec->lru_lock);
3974 		cond_resched();
3975 		goto restart;
3976 	}
3977 
3978 	/*
3979 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
3980 	 * the current max_seq need to be covered, since max_seq+1 can overlap
3981 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3982 	 * overlap, cold/hot inversion happens.
3983 	 */
3984 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
3985 	next = lru_gen_from_seq(lrugen->max_seq + 1);
3986 
3987 	for (type = 0; type < ANON_AND_FILE; type++) {
3988 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3989 			enum lru_list lru = type * LRU_INACTIVE_FILE;
3990 			long delta = lrugen->nr_pages[prev][type][zone] -
3991 				     lrugen->nr_pages[next][type][zone];
3992 
3993 			if (!delta)
3994 				continue;
3995 
3996 			__update_lru_size(lruvec, lru, zone, delta);
3997 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3998 		}
3999 	}
4000 
4001 	for (type = 0; type < ANON_AND_FILE; type++)
4002 		reset_ctrl_pos(lruvec, type, false);
4003 
4004 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4005 	/* make sure preceding modifications appear */
4006 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4007 unlock:
4008 	spin_unlock_irq(&lruvec->lru_lock);
4009 
4010 	return success;
4011 }
4012 
try_to_inc_max_seq(struct lruvec * lruvec,unsigned long seq,int swappiness,bool force_scan)4013 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
4014 			       int swappiness, bool force_scan)
4015 {
4016 	bool success;
4017 	struct lru_gen_mm_walk *walk;
4018 	struct mm_struct *mm = NULL;
4019 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4020 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4021 
4022 	VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
4023 
4024 	if (!mm_state)
4025 		return inc_max_seq(lruvec, seq, swappiness);
4026 
4027 	/* see the comment in iterate_mm_list() */
4028 	if (seq <= READ_ONCE(mm_state->seq))
4029 		return false;
4030 
4031 	/*
4032 	 * If the hardware doesn't automatically set the accessed bit, fallback
4033 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4034 	 * handful of PTEs. Spreading the work out over a period of time usually
4035 	 * is less efficient, but it avoids bursty page faults.
4036 	 */
4037 	if (!should_walk_mmu()) {
4038 		success = iterate_mm_list_nowalk(lruvec, seq);
4039 		goto done;
4040 	}
4041 
4042 	walk = set_mm_walk(NULL, true);
4043 	if (!walk) {
4044 		success = iterate_mm_list_nowalk(lruvec, seq);
4045 		goto done;
4046 	}
4047 
4048 	walk->lruvec = lruvec;
4049 	walk->seq = seq;
4050 	walk->swappiness = swappiness;
4051 	walk->force_scan = force_scan;
4052 
4053 	do {
4054 		success = iterate_mm_list(walk, &mm);
4055 		if (mm)
4056 			walk_mm(mm, walk);
4057 	} while (mm);
4058 done:
4059 	if (success) {
4060 		success = inc_max_seq(lruvec, seq, swappiness);
4061 		WARN_ON_ONCE(!success);
4062 	}
4063 
4064 	return success;
4065 }
4066 
4067 /******************************************************************************
4068  *                          working set protection
4069  ******************************************************************************/
4070 
set_initial_priority(struct pglist_data * pgdat,struct scan_control * sc)4071 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4072 {
4073 	int priority;
4074 	unsigned long reclaimable;
4075 
4076 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4077 		return;
4078 	/*
4079 	 * Determine the initial priority based on
4080 	 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4081 	 * where reclaimed_to_scanned_ratio = inactive / total.
4082 	 */
4083 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4084 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
4085 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4086 
4087 	/* round down reclaimable and round up sc->nr_to_reclaim */
4088 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4089 
4090 	/*
4091 	 * The estimation is based on LRU pages only, so cap it to prevent
4092 	 * overshoots of shrinker objects by large margins.
4093 	 */
4094 	sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
4095 }
4096 
lruvec_is_sizable(struct lruvec * lruvec,struct scan_control * sc)4097 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4098 {
4099 	int gen, type, zone;
4100 	unsigned long total = 0;
4101 	int swappiness = get_swappiness(lruvec, sc);
4102 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4103 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4104 	DEFINE_MAX_SEQ(lruvec);
4105 	DEFINE_MIN_SEQ(lruvec);
4106 
4107 	for_each_evictable_type(type, swappiness) {
4108 		unsigned long seq;
4109 
4110 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4111 			gen = lru_gen_from_seq(seq);
4112 
4113 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4114 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4115 		}
4116 	}
4117 
4118 	/* whether the size is big enough to be helpful */
4119 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4120 }
4121 
lruvec_is_reclaimable(struct lruvec * lruvec,struct scan_control * sc,unsigned long min_ttl)4122 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4123 				  unsigned long min_ttl)
4124 {
4125 	int gen;
4126 	unsigned long birth;
4127 	int swappiness = get_swappiness(lruvec, sc);
4128 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4129 	DEFINE_MIN_SEQ(lruvec);
4130 
4131 	if (mem_cgroup_below_min(NULL, memcg))
4132 		return false;
4133 
4134 	if (!lruvec_is_sizable(lruvec, sc))
4135 		return false;
4136 
4137 	gen = lru_gen_from_seq(evictable_min_seq(min_seq, swappiness));
4138 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4139 
4140 	return time_is_before_jiffies(birth + min_ttl);
4141 }
4142 
4143 /* to protect the working set of the last N jiffies */
4144 static unsigned long lru_gen_min_ttl __read_mostly;
4145 
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)4146 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4147 {
4148 	struct mem_cgroup *memcg;
4149 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4150 	bool reclaimable = !min_ttl;
4151 
4152 	VM_WARN_ON_ONCE(!current_is_kswapd());
4153 
4154 	set_initial_priority(pgdat, sc);
4155 
4156 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4157 	do {
4158 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4159 
4160 		mem_cgroup_calculate_protection(NULL, memcg);
4161 
4162 		if (!reclaimable)
4163 			reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4164 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4165 
4166 	/*
4167 	 * The main goal is to OOM kill if every generation from all memcgs is
4168 	 * younger than min_ttl. However, another possibility is all memcgs are
4169 	 * either too small or below min.
4170 	 */
4171 	if (!reclaimable && mutex_trylock(&oom_lock)) {
4172 		struct oom_control oc = {
4173 			.gfp_mask = sc->gfp_mask,
4174 		};
4175 
4176 		out_of_memory(&oc);
4177 
4178 		mutex_unlock(&oom_lock);
4179 	}
4180 }
4181 
4182 /******************************************************************************
4183  *                          rmap/PT walk feedback
4184  ******************************************************************************/
4185 
4186 /*
4187  * This function exploits spatial locality when shrink_folio_list() walks the
4188  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4189  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4190  * the PTE table to the Bloom filter. This forms a feedback loop between the
4191  * eviction and the aging.
4192  */
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)4193 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4194 {
4195 	int i;
4196 	bool dirty;
4197 	unsigned long start;
4198 	unsigned long end;
4199 	struct lru_gen_mm_walk *walk;
4200 	struct folio *last = NULL;
4201 	int young = 1;
4202 	pte_t *pte = pvmw->pte;
4203 	unsigned long addr = pvmw->address;
4204 	struct vm_area_struct *vma = pvmw->vma;
4205 	struct folio *folio = pfn_folio(pvmw->pfn);
4206 	struct mem_cgroup *memcg = folio_memcg(folio);
4207 	struct pglist_data *pgdat = folio_pgdat(folio);
4208 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4209 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4210 	DEFINE_MAX_SEQ(lruvec);
4211 	int gen = lru_gen_from_seq(max_seq);
4212 
4213 	lockdep_assert_held(pvmw->ptl);
4214 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4215 
4216 	if (!ptep_clear_young_notify(vma, addr, pte))
4217 		return false;
4218 
4219 	if (spin_is_contended(pvmw->ptl))
4220 		return true;
4221 
4222 	/* exclude special VMAs containing anon pages from COW */
4223 	if (vma->vm_flags & VM_SPECIAL)
4224 		return true;
4225 
4226 	/* avoid taking the LRU lock under the PTL when possible */
4227 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4228 
4229 	start = max(addr & PMD_MASK, vma->vm_start);
4230 	end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4231 
4232 	if (end - start == PAGE_SIZE)
4233 		return true;
4234 
4235 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4236 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4237 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4238 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4239 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4240 		else {
4241 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4242 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4243 		}
4244 	}
4245 
4246 	arch_enter_lazy_mmu_mode();
4247 
4248 	pte -= (addr - start) / PAGE_SIZE;
4249 
4250 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4251 		unsigned long pfn;
4252 		pte_t ptent = ptep_get(pte + i);
4253 
4254 		pfn = get_pte_pfn(ptent, vma, addr, pgdat);
4255 		if (pfn == -1)
4256 			continue;
4257 
4258 		folio = get_pfn_folio(pfn, memcg, pgdat);
4259 		if (!folio)
4260 			continue;
4261 
4262 		if (!ptep_clear_young_notify(vma, addr, pte + i))
4263 			continue;
4264 
4265 		if (last != folio) {
4266 			walk_update_folio(walk, last, gen, dirty);
4267 
4268 			last = folio;
4269 			dirty = false;
4270 		}
4271 
4272 		if (pte_dirty(ptent))
4273 			dirty = true;
4274 
4275 		young++;
4276 	}
4277 
4278 	walk_update_folio(walk, last, gen, dirty);
4279 
4280 	arch_leave_lazy_mmu_mode();
4281 
4282 	/* feedback from rmap walkers to page table walkers */
4283 	if (mm_state && suitable_to_scan(i, young))
4284 		update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4285 
4286 	return true;
4287 }
4288 
4289 /******************************************************************************
4290  *                          memcg LRU
4291  ******************************************************************************/
4292 
4293 /* see the comment on MEMCG_NR_GENS */
4294 enum {
4295 	MEMCG_LRU_NOP,
4296 	MEMCG_LRU_HEAD,
4297 	MEMCG_LRU_TAIL,
4298 	MEMCG_LRU_OLD,
4299 	MEMCG_LRU_YOUNG,
4300 };
4301 
lru_gen_rotate_memcg(struct lruvec * lruvec,int op)4302 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4303 {
4304 	int seg;
4305 	int old, new;
4306 	unsigned long flags;
4307 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4308 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4309 
4310 	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4311 
4312 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4313 
4314 	seg = 0;
4315 	new = old = lruvec->lrugen.gen;
4316 
4317 	/* see the comment on MEMCG_NR_GENS */
4318 	if (op == MEMCG_LRU_HEAD)
4319 		seg = MEMCG_LRU_HEAD;
4320 	else if (op == MEMCG_LRU_TAIL)
4321 		seg = MEMCG_LRU_TAIL;
4322 	else if (op == MEMCG_LRU_OLD)
4323 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4324 	else if (op == MEMCG_LRU_YOUNG)
4325 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4326 	else
4327 		VM_WARN_ON_ONCE(true);
4328 
4329 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4330 	WRITE_ONCE(lruvec->lrugen.gen, new);
4331 
4332 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4333 
4334 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4335 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4336 	else
4337 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4338 
4339 	pgdat->memcg_lru.nr_memcgs[old]--;
4340 	pgdat->memcg_lru.nr_memcgs[new]++;
4341 
4342 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4343 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4344 
4345 	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4346 }
4347 
4348 #ifdef CONFIG_MEMCG
4349 
lru_gen_online_memcg(struct mem_cgroup * memcg)4350 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4351 {
4352 	int gen;
4353 	int nid;
4354 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4355 
4356 	for_each_node(nid) {
4357 		struct pglist_data *pgdat = NODE_DATA(nid);
4358 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4359 
4360 		spin_lock_irq(&pgdat->memcg_lru.lock);
4361 
4362 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4363 
4364 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4365 
4366 		lruvec->lrugen.gen = gen;
4367 
4368 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4369 		pgdat->memcg_lru.nr_memcgs[gen]++;
4370 
4371 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4372 	}
4373 }
4374 
lru_gen_offline_memcg(struct mem_cgroup * memcg)4375 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4376 {
4377 	int nid;
4378 
4379 	for_each_node(nid) {
4380 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4381 
4382 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4383 	}
4384 }
4385 
lru_gen_release_memcg(struct mem_cgroup * memcg)4386 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4387 {
4388 	int gen;
4389 	int nid;
4390 
4391 	for_each_node(nid) {
4392 		struct pglist_data *pgdat = NODE_DATA(nid);
4393 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4394 
4395 		spin_lock_irq(&pgdat->memcg_lru.lock);
4396 
4397 		if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4398 			goto unlock;
4399 
4400 		gen = lruvec->lrugen.gen;
4401 
4402 		hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4403 		pgdat->memcg_lru.nr_memcgs[gen]--;
4404 
4405 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4406 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4407 unlock:
4408 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4409 	}
4410 }
4411 
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)4412 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4413 {
4414 	struct lruvec *lruvec = get_lruvec(memcg, nid);
4415 
4416 	/* see the comment on MEMCG_NR_GENS */
4417 	if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4418 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4419 }
4420 
4421 #endif /* CONFIG_MEMCG */
4422 
4423 /******************************************************************************
4424  *                          the eviction
4425  ******************************************************************************/
4426 
sort_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc,int tier_idx)4427 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4428 		       int tier_idx)
4429 {
4430 	bool success;
4431 	bool dirty, writeback;
4432 	int gen = folio_lru_gen(folio);
4433 	int type = folio_is_file_lru(folio);
4434 	int zone = folio_zonenum(folio);
4435 	int delta = folio_nr_pages(folio);
4436 	int refs = folio_lru_refs(folio);
4437 	bool workingset = folio_test_workingset(folio);
4438 	int tier = lru_tier_from_refs(refs, workingset);
4439 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4440 
4441 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4442 
4443 	/* unevictable */
4444 	if (!folio_evictable(folio)) {
4445 		success = lru_gen_del_folio(lruvec, folio, true);
4446 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4447 		folio_set_unevictable(folio);
4448 		lruvec_add_folio(lruvec, folio);
4449 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4450 		return true;
4451 	}
4452 
4453 	/* promoted */
4454 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4455 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4456 		return true;
4457 	}
4458 
4459 	/* protected */
4460 	if (tier > tier_idx || refs + workingset == BIT(LRU_REFS_WIDTH) + 1) {
4461 		gen = folio_inc_gen(lruvec, folio, false);
4462 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4463 
4464 		/* don't count the workingset being lazily promoted */
4465 		if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
4466 			int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4467 
4468 			WRITE_ONCE(lrugen->protected[hist][type][tier],
4469 				   lrugen->protected[hist][type][tier] + delta);
4470 		}
4471 		return true;
4472 	}
4473 
4474 	/* ineligible */
4475 	if (zone > sc->reclaim_idx) {
4476 		gen = folio_inc_gen(lruvec, folio, false);
4477 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4478 		return true;
4479 	}
4480 
4481 	dirty = folio_test_dirty(folio);
4482 	writeback = folio_test_writeback(folio);
4483 	if (type == LRU_GEN_FILE && dirty) {
4484 		sc->nr.file_taken += delta;
4485 		if (!writeback)
4486 			sc->nr.unqueued_dirty += delta;
4487 	}
4488 
4489 	/* waiting for writeback */
4490 	if (writeback || (type == LRU_GEN_FILE && dirty)) {
4491 		gen = folio_inc_gen(lruvec, folio, true);
4492 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4493 		return true;
4494 	}
4495 
4496 	return false;
4497 }
4498 
isolate_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc)4499 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4500 {
4501 	bool success;
4502 
4503 	/* swap constrained */
4504 	if (!(sc->gfp_mask & __GFP_IO) &&
4505 	    (folio_test_dirty(folio) ||
4506 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4507 		return false;
4508 
4509 	/* raced with release_pages() */
4510 	if (!folio_try_get(folio))
4511 		return false;
4512 
4513 	/* raced with another isolation */
4514 	if (!folio_test_clear_lru(folio)) {
4515 		folio_put(folio);
4516 		return false;
4517 	}
4518 
4519 	/* see the comment on LRU_REFS_FLAGS */
4520 	if (!folio_test_referenced(folio))
4521 		set_mask_bits(&folio->flags.f, LRU_REFS_MASK, 0);
4522 
4523 	/* for shrink_folio_list() */
4524 	folio_clear_reclaim(folio);
4525 
4526 	success = lru_gen_del_folio(lruvec, folio, true);
4527 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4528 
4529 	return true;
4530 }
4531 
scan_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,int type,int tier,struct list_head * list)4532 static int scan_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
4533 		       struct scan_control *sc, int type, int tier,
4534 		       struct list_head *list)
4535 {
4536 	int i;
4537 	int gen;
4538 	enum vm_event_item item;
4539 	int sorted = 0;
4540 	int scanned = 0;
4541 	int isolated = 0;
4542 	int skipped = 0;
4543 	int remaining = min(nr_to_scan, MAX_LRU_BATCH);
4544 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4545 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4546 
4547 	VM_WARN_ON_ONCE(!list_empty(list));
4548 
4549 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4550 		return 0;
4551 
4552 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4553 
4554 	for (i = MAX_NR_ZONES; i > 0; i--) {
4555 		LIST_HEAD(moved);
4556 		int skipped_zone = 0;
4557 		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4558 		struct list_head *head = &lrugen->folios[gen][type][zone];
4559 
4560 		while (!list_empty(head)) {
4561 			struct folio *folio = lru_to_folio(head);
4562 			int delta = folio_nr_pages(folio);
4563 
4564 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4565 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4566 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4567 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4568 
4569 			scanned += delta;
4570 
4571 			if (sort_folio(lruvec, folio, sc, tier))
4572 				sorted += delta;
4573 			else if (isolate_folio(lruvec, folio, sc)) {
4574 				list_add(&folio->lru, list);
4575 				isolated += delta;
4576 			} else {
4577 				list_move(&folio->lru, &moved);
4578 				skipped_zone += delta;
4579 			}
4580 
4581 			if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4582 				break;
4583 		}
4584 
4585 		if (skipped_zone) {
4586 			list_splice(&moved, head);
4587 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4588 			skipped += skipped_zone;
4589 		}
4590 
4591 		if (!remaining || isolated >= MIN_LRU_BATCH)
4592 			break;
4593 	}
4594 
4595 	item = PGSCAN_KSWAPD + reclaimer_offset(sc);
4596 	if (!cgroup_reclaim(sc)) {
4597 		__count_vm_events(item, isolated);
4598 		__count_vm_events(PGREFILL, sorted);
4599 	}
4600 	count_memcg_events(memcg, item, isolated);
4601 	count_memcg_events(memcg, PGREFILL, sorted);
4602 	__count_vm_events(PGSCAN_ANON + type, isolated);
4603 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4604 				scanned, skipped, isolated,
4605 				type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4606 	if (type == LRU_GEN_FILE)
4607 		sc->nr.file_taken += isolated;
4608 	/*
4609 	 * There might not be eligible folios due to reclaim_idx. Check the
4610 	 * remaining to prevent livelock if it's not making progress.
4611 	 */
4612 	return isolated || !remaining ? scanned : 0;
4613 }
4614 
get_tier_idx(struct lruvec * lruvec,int type)4615 static int get_tier_idx(struct lruvec *lruvec, int type)
4616 {
4617 	int tier;
4618 	struct ctrl_pos sp, pv;
4619 
4620 	/*
4621 	 * To leave a margin for fluctuations, use a larger gain factor (2:3).
4622 	 * This value is chosen because any other tier would have at least twice
4623 	 * as many refaults as the first tier.
4624 	 */
4625 	read_ctrl_pos(lruvec, type, 0, 2, &sp);
4626 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4627 		read_ctrl_pos(lruvec, type, tier, 3, &pv);
4628 		if (!positive_ctrl_err(&sp, &pv))
4629 			break;
4630 	}
4631 
4632 	return tier - 1;
4633 }
4634 
get_type_to_scan(struct lruvec * lruvec,int swappiness)4635 static int get_type_to_scan(struct lruvec *lruvec, int swappiness)
4636 {
4637 	struct ctrl_pos sp, pv;
4638 
4639 	if (swappiness <= MIN_SWAPPINESS + 1)
4640 		return LRU_GEN_FILE;
4641 
4642 	if (swappiness >= MAX_SWAPPINESS)
4643 		return LRU_GEN_ANON;
4644 	/*
4645 	 * Compare the sum of all tiers of anon with that of file to determine
4646 	 * which type to scan.
4647 	 */
4648 	read_ctrl_pos(lruvec, LRU_GEN_ANON, MAX_NR_TIERS, swappiness, &sp);
4649 	read_ctrl_pos(lruvec, LRU_GEN_FILE, MAX_NR_TIERS, MAX_SWAPPINESS - swappiness, &pv);
4650 
4651 	return positive_ctrl_err(&sp, &pv);
4652 }
4653 
isolate_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,int swappiness,int * type_scanned,struct list_head * list)4654 static int isolate_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
4655 			  struct scan_control *sc, int swappiness,
4656 			  int *type_scanned, struct list_head *list)
4657 {
4658 	int i;
4659 	int type = get_type_to_scan(lruvec, swappiness);
4660 
4661 	for_each_evictable_type(i, swappiness) {
4662 		int scanned;
4663 		int tier = get_tier_idx(lruvec, type);
4664 
4665 		*type_scanned = type;
4666 
4667 		scanned = scan_folios(nr_to_scan, lruvec, sc, type, tier, list);
4668 		if (scanned)
4669 			return scanned;
4670 
4671 		type = !type;
4672 	}
4673 
4674 	return 0;
4675 }
4676 
evict_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,int swappiness)4677 static int evict_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
4678 			struct scan_control *sc, int swappiness)
4679 {
4680 	int type;
4681 	int scanned;
4682 	int reclaimed;
4683 	LIST_HEAD(list);
4684 	LIST_HEAD(clean);
4685 	struct folio *folio;
4686 	struct folio *next;
4687 	enum vm_event_item item;
4688 	struct reclaim_stat stat;
4689 	struct lru_gen_mm_walk *walk;
4690 	bool skip_retry = false;
4691 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4692 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4693 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4694 
4695 	spin_lock_irq(&lruvec->lru_lock);
4696 
4697 	scanned = isolate_folios(nr_to_scan, lruvec, sc, swappiness, &type, &list);
4698 
4699 	scanned += try_to_inc_min_seq(lruvec, swappiness);
4700 
4701 	if (evictable_min_seq(lrugen->min_seq, swappiness) + MIN_NR_GENS > lrugen->max_seq)
4702 		scanned = 0;
4703 
4704 	spin_unlock_irq(&lruvec->lru_lock);
4705 
4706 	if (list_empty(&list))
4707 		return scanned;
4708 retry:
4709 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false, memcg);
4710 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
4711 	sc->nr_reclaimed += reclaimed;
4712 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4713 			scanned, reclaimed, &stat, sc->priority,
4714 			type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4715 
4716 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4717 		DEFINE_MIN_SEQ(lruvec);
4718 
4719 		if (!folio_evictable(folio)) {
4720 			list_del(&folio->lru);
4721 			folio_putback_lru(folio);
4722 			continue;
4723 		}
4724 
4725 		/* retry folios that may have missed folio_rotate_reclaimable() */
4726 		if (!skip_retry && !folio_test_active(folio) && !folio_mapped(folio) &&
4727 		    !folio_test_dirty(folio) && !folio_test_writeback(folio)) {
4728 			list_move(&folio->lru, &clean);
4729 			continue;
4730 		}
4731 
4732 		/* don't add rejected folios to the oldest generation */
4733 		if (lru_gen_folio_seq(lruvec, folio, false) == min_seq[type])
4734 			set_mask_bits(&folio->flags.f, LRU_REFS_FLAGS, BIT(PG_active));
4735 	}
4736 
4737 	spin_lock_irq(&lruvec->lru_lock);
4738 
4739 	move_folios_to_lru(lruvec, &list);
4740 
4741 	walk = current->reclaim_state->mm_walk;
4742 	if (walk && walk->batched) {
4743 		walk->lruvec = lruvec;
4744 		reset_batch_size(walk);
4745 	}
4746 
4747 	mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
4748 					stat.nr_demoted);
4749 
4750 	item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
4751 	if (!cgroup_reclaim(sc))
4752 		__count_vm_events(item, reclaimed);
4753 	count_memcg_events(memcg, item, reclaimed);
4754 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
4755 
4756 	spin_unlock_irq(&lruvec->lru_lock);
4757 
4758 	list_splice_init(&clean, &list);
4759 
4760 	if (!list_empty(&list)) {
4761 		skip_retry = true;
4762 		goto retry;
4763 	}
4764 
4765 	return scanned;
4766 }
4767 
should_run_aging(struct lruvec * lruvec,unsigned long max_seq,int swappiness,unsigned long * nr_to_scan)4768 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4769 			     int swappiness, unsigned long *nr_to_scan)
4770 {
4771 	int gen, type, zone;
4772 	unsigned long size = 0;
4773 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4774 	DEFINE_MIN_SEQ(lruvec);
4775 
4776 	*nr_to_scan = 0;
4777 	/* have to run aging, since eviction is not possible anymore */
4778 	if (evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS > max_seq)
4779 		return true;
4780 
4781 	for_each_evictable_type(type, swappiness) {
4782 		unsigned long seq;
4783 
4784 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4785 			gen = lru_gen_from_seq(seq);
4786 
4787 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4788 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4789 		}
4790 	}
4791 
4792 	*nr_to_scan = size;
4793 	/* better to run aging even though eviction is still possible */
4794 	return evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS == max_seq;
4795 }
4796 
4797 /*
4798  * For future optimizations:
4799  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4800  *    reclaim.
4801  */
get_nr_to_scan(struct lruvec * lruvec,struct scan_control * sc,int swappiness)4802 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4803 {
4804 	bool success;
4805 	unsigned long nr_to_scan;
4806 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4807 	DEFINE_MAX_SEQ(lruvec);
4808 
4809 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4810 		return -1;
4811 
4812 	success = should_run_aging(lruvec, max_seq, swappiness, &nr_to_scan);
4813 
4814 	/* try to scrape all its memory if this memcg was deleted */
4815 	if (nr_to_scan && !mem_cgroup_online(memcg))
4816 		return nr_to_scan;
4817 
4818 	nr_to_scan = apply_proportional_protection(memcg, sc, nr_to_scan);
4819 
4820 	/* try to get away with not aging at the default priority */
4821 	if (!success || sc->priority == DEF_PRIORITY)
4822 		return nr_to_scan >> sc->priority;
4823 
4824 	/* stop scanning this lruvec as it's low on cold folios */
4825 	return try_to_inc_max_seq(lruvec, max_seq, swappiness, false) ? -1 : 0;
4826 }
4827 
should_abort_scan(struct lruvec * lruvec,struct scan_control * sc)4828 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4829 {
4830 	int i;
4831 	enum zone_watermarks mark;
4832 
4833 	/* don't abort memcg reclaim to ensure fairness */
4834 	if (!root_reclaim(sc))
4835 		return false;
4836 
4837 	if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4838 		return true;
4839 
4840 	/* check the order to exclude compaction-induced reclaim */
4841 	if (!current_is_kswapd() || sc->order)
4842 		return false;
4843 
4844 	mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4845 	       WMARK_PROMO : WMARK_HIGH;
4846 
4847 	for (i = 0; i <= sc->reclaim_idx; i++) {
4848 		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4849 		unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4850 
4851 		if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4852 			return false;
4853 	}
4854 
4855 	/* kswapd should abort if all eligible zones are safe */
4856 	return true;
4857 }
4858 
try_to_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)4859 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4860 {
4861 	long nr_to_scan;
4862 	unsigned long scanned = 0;
4863 	int swappiness = get_swappiness(lruvec, sc);
4864 
4865 	while (true) {
4866 		int delta;
4867 
4868 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4869 		if (nr_to_scan <= 0)
4870 			break;
4871 
4872 		delta = evict_folios(nr_to_scan, lruvec, sc, swappiness);
4873 		if (!delta)
4874 			break;
4875 
4876 		scanned += delta;
4877 		if (scanned >= nr_to_scan)
4878 			break;
4879 
4880 		if (should_abort_scan(lruvec, sc))
4881 			break;
4882 
4883 		cond_resched();
4884 	}
4885 
4886 	/*
4887 	 * If too many file cache in the coldest generation can't be evicted
4888 	 * due to being dirty, wake up the flusher.
4889 	 */
4890 	if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken)
4891 		wakeup_flusher_threads(WB_REASON_VMSCAN);
4892 
4893 	/* whether this lruvec should be rotated */
4894 	return nr_to_scan < 0;
4895 }
4896 
shrink_one(struct lruvec * lruvec,struct scan_control * sc)4897 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4898 {
4899 	bool success;
4900 	unsigned long scanned = sc->nr_scanned;
4901 	unsigned long reclaimed = sc->nr_reclaimed;
4902 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4903 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4904 
4905 	/* lru_gen_age_node() called mem_cgroup_calculate_protection() */
4906 	if (mem_cgroup_below_min(NULL, memcg))
4907 		return MEMCG_LRU_YOUNG;
4908 
4909 	if (mem_cgroup_below_low(NULL, memcg)) {
4910 		/* see the comment on MEMCG_NR_GENS */
4911 		if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4912 			return MEMCG_LRU_TAIL;
4913 
4914 		memcg_memory_event(memcg, MEMCG_LOW);
4915 	}
4916 
4917 	success = try_to_shrink_lruvec(lruvec, sc);
4918 
4919 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4920 
4921 	if (!sc->proactive)
4922 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4923 			   sc->nr_reclaimed - reclaimed);
4924 
4925 	flush_reclaim_state(sc);
4926 
4927 	if (success && mem_cgroup_online(memcg))
4928 		return MEMCG_LRU_YOUNG;
4929 
4930 	if (!success && lruvec_is_sizable(lruvec, sc))
4931 		return 0;
4932 
4933 	/* one retry if offlined or too small */
4934 	return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4935 	       MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4936 }
4937 
shrink_many(struct pglist_data * pgdat,struct scan_control * sc)4938 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4939 {
4940 	int op;
4941 	int gen;
4942 	int bin;
4943 	int first_bin;
4944 	struct lruvec *lruvec;
4945 	struct lru_gen_folio *lrugen;
4946 	struct mem_cgroup *memcg;
4947 	struct hlist_nulls_node *pos;
4948 
4949 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4950 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4951 restart:
4952 	op = 0;
4953 	memcg = NULL;
4954 
4955 	rcu_read_lock();
4956 
4957 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4958 		if (op) {
4959 			lru_gen_rotate_memcg(lruvec, op);
4960 			op = 0;
4961 		}
4962 
4963 		mem_cgroup_put(memcg);
4964 		memcg = NULL;
4965 
4966 		if (gen != READ_ONCE(lrugen->gen))
4967 			continue;
4968 
4969 		lruvec = container_of(lrugen, struct lruvec, lrugen);
4970 		memcg = lruvec_memcg(lruvec);
4971 
4972 		if (!mem_cgroup_tryget(memcg)) {
4973 			lru_gen_release_memcg(memcg);
4974 			memcg = NULL;
4975 			continue;
4976 		}
4977 
4978 		rcu_read_unlock();
4979 
4980 		op = shrink_one(lruvec, sc);
4981 
4982 		rcu_read_lock();
4983 
4984 		if (should_abort_scan(lruvec, sc))
4985 			break;
4986 	}
4987 
4988 	rcu_read_unlock();
4989 
4990 	if (op)
4991 		lru_gen_rotate_memcg(lruvec, op);
4992 
4993 	mem_cgroup_put(memcg);
4994 
4995 	if (!is_a_nulls(pos))
4996 		return;
4997 
4998 	/* restart if raced with lru_gen_rotate_memcg() */
4999 	if (gen != get_nulls_value(pos))
5000 		goto restart;
5001 
5002 	/* try the rest of the bins of the current generation */
5003 	bin = get_memcg_bin(bin + 1);
5004 	if (bin != first_bin)
5005 		goto restart;
5006 }
5007 
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5008 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5009 {
5010 	struct blk_plug plug;
5011 
5012 	VM_WARN_ON_ONCE(root_reclaim(sc));
5013 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5014 
5015 	lru_add_drain();
5016 
5017 	blk_start_plug(&plug);
5018 
5019 	set_mm_walk(NULL, sc->proactive);
5020 
5021 	if (try_to_shrink_lruvec(lruvec, sc))
5022 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5023 
5024 	clear_mm_walk();
5025 
5026 	blk_finish_plug(&plug);
5027 }
5028 
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5029 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5030 {
5031 	struct blk_plug plug;
5032 	unsigned long reclaimed = sc->nr_reclaimed;
5033 
5034 	VM_WARN_ON_ONCE(!root_reclaim(sc));
5035 
5036 	/*
5037 	 * Unmapped clean folios are already prioritized. Scanning for more of
5038 	 * them is likely futile and can cause high reclaim latency when there
5039 	 * is a large number of memcgs.
5040 	 */
5041 	if (!sc->may_writepage || !sc->may_unmap)
5042 		goto done;
5043 
5044 	lru_add_drain();
5045 
5046 	blk_start_plug(&plug);
5047 
5048 	set_mm_walk(pgdat, sc->proactive);
5049 
5050 	set_initial_priority(pgdat, sc);
5051 
5052 	if (current_is_kswapd())
5053 		sc->nr_reclaimed = 0;
5054 
5055 	if (mem_cgroup_disabled())
5056 		shrink_one(&pgdat->__lruvec, sc);
5057 	else
5058 		shrink_many(pgdat, sc);
5059 
5060 	if (current_is_kswapd())
5061 		sc->nr_reclaimed += reclaimed;
5062 
5063 	clear_mm_walk();
5064 
5065 	blk_finish_plug(&plug);
5066 done:
5067 	if (sc->nr_reclaimed > reclaimed)
5068 		atomic_set(&pgdat->kswapd_failures, 0);
5069 }
5070 
5071 /******************************************************************************
5072  *                          state change
5073  ******************************************************************************/
5074 
state_is_valid(struct lruvec * lruvec)5075 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5076 {
5077 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5078 
5079 	if (lrugen->enabled) {
5080 		enum lru_list lru;
5081 
5082 		for_each_evictable_lru(lru) {
5083 			if (!list_empty(&lruvec->lists[lru]))
5084 				return false;
5085 		}
5086 	} else {
5087 		int gen, type, zone;
5088 
5089 		for_each_gen_type_zone(gen, type, zone) {
5090 			if (!list_empty(&lrugen->folios[gen][type][zone]))
5091 				return false;
5092 		}
5093 	}
5094 
5095 	return true;
5096 }
5097 
fill_evictable(struct lruvec * lruvec)5098 static bool fill_evictable(struct lruvec *lruvec)
5099 {
5100 	enum lru_list lru;
5101 	int remaining = MAX_LRU_BATCH;
5102 
5103 	for_each_evictable_lru(lru) {
5104 		int type = is_file_lru(lru);
5105 		bool active = is_active_lru(lru);
5106 		struct list_head *head = &lruvec->lists[lru];
5107 
5108 		while (!list_empty(head)) {
5109 			bool success;
5110 			struct folio *folio = lru_to_folio(head);
5111 
5112 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5113 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5114 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5115 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5116 
5117 			lruvec_del_folio(lruvec, folio);
5118 			success = lru_gen_add_folio(lruvec, folio, false);
5119 			VM_WARN_ON_ONCE(!success);
5120 
5121 			if (!--remaining)
5122 				return false;
5123 		}
5124 	}
5125 
5126 	return true;
5127 }
5128 
drain_evictable(struct lruvec * lruvec)5129 static bool drain_evictable(struct lruvec *lruvec)
5130 {
5131 	int gen, type, zone;
5132 	int remaining = MAX_LRU_BATCH;
5133 
5134 	for_each_gen_type_zone(gen, type, zone) {
5135 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5136 
5137 		while (!list_empty(head)) {
5138 			bool success;
5139 			struct folio *folio = lru_to_folio(head);
5140 
5141 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5142 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5143 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5144 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5145 
5146 			success = lru_gen_del_folio(lruvec, folio, false);
5147 			VM_WARN_ON_ONCE(!success);
5148 			lruvec_add_folio(lruvec, folio);
5149 
5150 			if (!--remaining)
5151 				return false;
5152 		}
5153 	}
5154 
5155 	return true;
5156 }
5157 
lru_gen_change_state(bool enabled)5158 static void lru_gen_change_state(bool enabled)
5159 {
5160 	static DEFINE_MUTEX(state_mutex);
5161 
5162 	struct mem_cgroup *memcg;
5163 
5164 	cgroup_lock();
5165 	cpus_read_lock();
5166 	get_online_mems();
5167 	mutex_lock(&state_mutex);
5168 
5169 	if (enabled == lru_gen_enabled())
5170 		goto unlock;
5171 
5172 	if (enabled)
5173 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5174 	else
5175 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5176 
5177 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5178 	do {
5179 		int nid;
5180 
5181 		for_each_node(nid) {
5182 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5183 
5184 			spin_lock_irq(&lruvec->lru_lock);
5185 
5186 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5187 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5188 
5189 			lruvec->lrugen.enabled = enabled;
5190 
5191 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5192 				spin_unlock_irq(&lruvec->lru_lock);
5193 				cond_resched();
5194 				spin_lock_irq(&lruvec->lru_lock);
5195 			}
5196 
5197 			spin_unlock_irq(&lruvec->lru_lock);
5198 		}
5199 
5200 		cond_resched();
5201 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5202 unlock:
5203 	mutex_unlock(&state_mutex);
5204 	put_online_mems();
5205 	cpus_read_unlock();
5206 	cgroup_unlock();
5207 }
5208 
5209 /******************************************************************************
5210  *                          sysfs interface
5211  ******************************************************************************/
5212 
min_ttl_ms_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5213 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5214 {
5215 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5216 }
5217 
5218 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
min_ttl_ms_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5219 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5220 				const char *buf, size_t len)
5221 {
5222 	unsigned int msecs;
5223 
5224 	if (kstrtouint(buf, 0, &msecs))
5225 		return -EINVAL;
5226 
5227 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5228 
5229 	return len;
5230 }
5231 
5232 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5233 
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5234 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5235 {
5236 	unsigned int caps = 0;
5237 
5238 	if (get_cap(LRU_GEN_CORE))
5239 		caps |= BIT(LRU_GEN_CORE);
5240 
5241 	if (should_walk_mmu())
5242 		caps |= BIT(LRU_GEN_MM_WALK);
5243 
5244 	if (should_clear_pmd_young())
5245 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5246 
5247 	return sysfs_emit(buf, "0x%04x\n", caps);
5248 }
5249 
5250 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5251 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5252 			     const char *buf, size_t len)
5253 {
5254 	int i;
5255 	unsigned int caps;
5256 
5257 	if (tolower(*buf) == 'n')
5258 		caps = 0;
5259 	else if (tolower(*buf) == 'y')
5260 		caps = -1;
5261 	else if (kstrtouint(buf, 0, &caps))
5262 		return -EINVAL;
5263 
5264 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5265 		bool enabled = caps & BIT(i);
5266 
5267 		if (i == LRU_GEN_CORE)
5268 			lru_gen_change_state(enabled);
5269 		else if (enabled)
5270 			static_branch_enable(&lru_gen_caps[i]);
5271 		else
5272 			static_branch_disable(&lru_gen_caps[i]);
5273 	}
5274 
5275 	return len;
5276 }
5277 
5278 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5279 
5280 static struct attribute *lru_gen_attrs[] = {
5281 	&lru_gen_min_ttl_attr.attr,
5282 	&lru_gen_enabled_attr.attr,
5283 	NULL
5284 };
5285 
5286 static const struct attribute_group lru_gen_attr_group = {
5287 	.name = "lru_gen",
5288 	.attrs = lru_gen_attrs,
5289 };
5290 
5291 /******************************************************************************
5292  *                          debugfs interface
5293  ******************************************************************************/
5294 
lru_gen_seq_start(struct seq_file * m,loff_t * pos)5295 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5296 {
5297 	struct mem_cgroup *memcg;
5298 	loff_t nr_to_skip = *pos;
5299 
5300 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5301 	if (!m->private)
5302 		return ERR_PTR(-ENOMEM);
5303 
5304 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5305 	do {
5306 		int nid;
5307 
5308 		for_each_node_state(nid, N_MEMORY) {
5309 			if (!nr_to_skip--)
5310 				return get_lruvec(memcg, nid);
5311 		}
5312 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5313 
5314 	return NULL;
5315 }
5316 
lru_gen_seq_stop(struct seq_file * m,void * v)5317 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5318 {
5319 	if (!IS_ERR_OR_NULL(v))
5320 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5321 
5322 	kvfree(m->private);
5323 	m->private = NULL;
5324 }
5325 
lru_gen_seq_next(struct seq_file * m,void * v,loff_t * pos)5326 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5327 {
5328 	int nid = lruvec_pgdat(v)->node_id;
5329 	struct mem_cgroup *memcg = lruvec_memcg(v);
5330 
5331 	++*pos;
5332 
5333 	nid = next_memory_node(nid);
5334 	if (nid == MAX_NUMNODES) {
5335 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5336 		if (!memcg)
5337 			return NULL;
5338 
5339 		nid = first_memory_node;
5340 	}
5341 
5342 	return get_lruvec(memcg, nid);
5343 }
5344 
lru_gen_seq_show_full(struct seq_file * m,struct lruvec * lruvec,unsigned long max_seq,unsigned long * min_seq,unsigned long seq)5345 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5346 				  unsigned long max_seq, unsigned long *min_seq,
5347 				  unsigned long seq)
5348 {
5349 	int i;
5350 	int type, tier;
5351 	int hist = lru_hist_from_seq(seq);
5352 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5353 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5354 
5355 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5356 		seq_printf(m, "            %10d", tier);
5357 		for (type = 0; type < ANON_AND_FILE; type++) {
5358 			const char *s = "xxx";
5359 			unsigned long n[3] = {};
5360 
5361 			if (seq == max_seq) {
5362 				s = "RTx";
5363 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5364 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5365 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5366 				s = "rep";
5367 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5368 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5369 				n[2] = READ_ONCE(lrugen->protected[hist][type][tier]);
5370 			}
5371 
5372 			for (i = 0; i < 3; i++)
5373 				seq_printf(m, " %10lu%c", n[i], s[i]);
5374 		}
5375 		seq_putc(m, '\n');
5376 	}
5377 
5378 	if (!mm_state)
5379 		return;
5380 
5381 	seq_puts(m, "                      ");
5382 	for (i = 0; i < NR_MM_STATS; i++) {
5383 		const char *s = "xxxx";
5384 		unsigned long n = 0;
5385 
5386 		if (seq == max_seq && NR_HIST_GENS == 1) {
5387 			s = "TYFA";
5388 			n = READ_ONCE(mm_state->stats[hist][i]);
5389 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5390 			s = "tyfa";
5391 			n = READ_ONCE(mm_state->stats[hist][i]);
5392 		}
5393 
5394 		seq_printf(m, " %10lu%c", n, s[i]);
5395 	}
5396 	seq_putc(m, '\n');
5397 }
5398 
5399 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_show(struct seq_file * m,void * v)5400 static int lru_gen_seq_show(struct seq_file *m, void *v)
5401 {
5402 	unsigned long seq;
5403 	bool full = debugfs_get_aux_num(m->file);
5404 	struct lruvec *lruvec = v;
5405 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5406 	int nid = lruvec_pgdat(lruvec)->node_id;
5407 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5408 	DEFINE_MAX_SEQ(lruvec);
5409 	DEFINE_MIN_SEQ(lruvec);
5410 
5411 	if (nid == first_memory_node) {
5412 		const char *path = memcg ? m->private : "";
5413 
5414 #ifdef CONFIG_MEMCG
5415 		if (memcg)
5416 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5417 #endif
5418 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5419 	}
5420 
5421 	seq_printf(m, " node %5d\n", nid);
5422 
5423 	if (!full)
5424 		seq = evictable_min_seq(min_seq, MAX_SWAPPINESS / 2);
5425 	else if (max_seq >= MAX_NR_GENS)
5426 		seq = max_seq - MAX_NR_GENS + 1;
5427 	else
5428 		seq = 0;
5429 
5430 	for (; seq <= max_seq; seq++) {
5431 		int type, zone;
5432 		int gen = lru_gen_from_seq(seq);
5433 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5434 
5435 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5436 
5437 		for (type = 0; type < ANON_AND_FILE; type++) {
5438 			unsigned long size = 0;
5439 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5440 
5441 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5442 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5443 
5444 			seq_printf(m, " %10lu%c", size, mark);
5445 		}
5446 
5447 		seq_putc(m, '\n');
5448 
5449 		if (full)
5450 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5451 	}
5452 
5453 	return 0;
5454 }
5455 
5456 static const struct seq_operations lru_gen_seq_ops = {
5457 	.start = lru_gen_seq_start,
5458 	.stop = lru_gen_seq_stop,
5459 	.next = lru_gen_seq_next,
5460 	.show = lru_gen_seq_show,
5461 };
5462 
run_aging(struct lruvec * lruvec,unsigned long seq,int swappiness,bool force_scan)5463 static int run_aging(struct lruvec *lruvec, unsigned long seq,
5464 		     int swappiness, bool force_scan)
5465 {
5466 	DEFINE_MAX_SEQ(lruvec);
5467 
5468 	if (seq > max_seq)
5469 		return -EINVAL;
5470 
5471 	return try_to_inc_max_seq(lruvec, max_seq, swappiness, force_scan) ? 0 : -EEXIST;
5472 }
5473 
run_eviction(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long nr_to_reclaim)5474 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5475 			int swappiness, unsigned long nr_to_reclaim)
5476 {
5477 	DEFINE_MAX_SEQ(lruvec);
5478 
5479 	if (seq + MIN_NR_GENS > max_seq)
5480 		return -EINVAL;
5481 
5482 	sc->nr_reclaimed = 0;
5483 
5484 	while (!signal_pending(current)) {
5485 		DEFINE_MIN_SEQ(lruvec);
5486 
5487 		if (seq < evictable_min_seq(min_seq, swappiness))
5488 			return 0;
5489 
5490 		if (sc->nr_reclaimed >= nr_to_reclaim)
5491 			return 0;
5492 
5493 		if (!evict_folios(nr_to_reclaim - sc->nr_reclaimed, lruvec, sc,
5494 				  swappiness))
5495 			return 0;
5496 
5497 		cond_resched();
5498 	}
5499 
5500 	return -EINTR;
5501 }
5502 
run_cmd(char cmd,int memcg_id,int nid,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long opt)5503 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5504 		   struct scan_control *sc, int swappiness, unsigned long opt)
5505 {
5506 	struct lruvec *lruvec;
5507 	int err = -EINVAL;
5508 	struct mem_cgroup *memcg = NULL;
5509 
5510 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5511 		return -EINVAL;
5512 
5513 	if (!mem_cgroup_disabled()) {
5514 		rcu_read_lock();
5515 
5516 		memcg = mem_cgroup_from_id(memcg_id);
5517 		if (!mem_cgroup_tryget(memcg))
5518 			memcg = NULL;
5519 
5520 		rcu_read_unlock();
5521 
5522 		if (!memcg)
5523 			return -EINVAL;
5524 	}
5525 
5526 	if (memcg_id != mem_cgroup_id(memcg))
5527 		goto done;
5528 
5529 	sc->target_mem_cgroup = memcg;
5530 	lruvec = get_lruvec(memcg, nid);
5531 
5532 	if (swappiness < MIN_SWAPPINESS)
5533 		swappiness = get_swappiness(lruvec, sc);
5534 	else if (swappiness > SWAPPINESS_ANON_ONLY)
5535 		goto done;
5536 
5537 	switch (cmd) {
5538 	case '+':
5539 		err = run_aging(lruvec, seq, swappiness, opt);
5540 		break;
5541 	case '-':
5542 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5543 		break;
5544 	}
5545 done:
5546 	mem_cgroup_put(memcg);
5547 
5548 	return err;
5549 }
5550 
5551 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_write(struct file * file,const char __user * src,size_t len,loff_t * pos)5552 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5553 				 size_t len, loff_t *pos)
5554 {
5555 	void *buf;
5556 	char *cur, *next;
5557 	unsigned int flags;
5558 	struct blk_plug plug;
5559 	int err = -EINVAL;
5560 	struct scan_control sc = {
5561 		.may_writepage = true,
5562 		.may_unmap = true,
5563 		.may_swap = true,
5564 		.reclaim_idx = MAX_NR_ZONES - 1,
5565 		.gfp_mask = GFP_KERNEL,
5566 		.proactive = true,
5567 	};
5568 
5569 	buf = kvmalloc(len + 1, GFP_KERNEL);
5570 	if (!buf)
5571 		return -ENOMEM;
5572 
5573 	if (copy_from_user(buf, src, len)) {
5574 		kvfree(buf);
5575 		return -EFAULT;
5576 	}
5577 
5578 	set_task_reclaim_state(current, &sc.reclaim_state);
5579 	flags = memalloc_noreclaim_save();
5580 	blk_start_plug(&plug);
5581 	if (!set_mm_walk(NULL, true)) {
5582 		err = -ENOMEM;
5583 		goto done;
5584 	}
5585 
5586 	next = buf;
5587 	next[len] = '\0';
5588 
5589 	while ((cur = strsep(&next, ",;\n"))) {
5590 		int n;
5591 		int end;
5592 		char cmd, swap_string[5];
5593 		unsigned int memcg_id;
5594 		unsigned int nid;
5595 		unsigned long seq;
5596 		unsigned int swappiness;
5597 		unsigned long opt = -1;
5598 
5599 		cur = skip_spaces(cur);
5600 		if (!*cur)
5601 			continue;
5602 
5603 		n = sscanf(cur, "%c %u %u %lu %n %4s %n %lu %n", &cmd, &memcg_id, &nid,
5604 			   &seq, &end, swap_string, &end, &opt, &end);
5605 		if (n < 4 || cur[end]) {
5606 			err = -EINVAL;
5607 			break;
5608 		}
5609 
5610 		if (n == 4) {
5611 			swappiness = -1;
5612 		} else if (!strcmp("max", swap_string)) {
5613 			/* set by userspace for anonymous memory only */
5614 			swappiness = SWAPPINESS_ANON_ONLY;
5615 		} else {
5616 			err = kstrtouint(swap_string, 0, &swappiness);
5617 			if (err)
5618 				break;
5619 		}
5620 
5621 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5622 		if (err)
5623 			break;
5624 	}
5625 done:
5626 	clear_mm_walk();
5627 	blk_finish_plug(&plug);
5628 	memalloc_noreclaim_restore(flags);
5629 	set_task_reclaim_state(current, NULL);
5630 
5631 	kvfree(buf);
5632 
5633 	return err ? : len;
5634 }
5635 
lru_gen_seq_open(struct inode * inode,struct file * file)5636 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5637 {
5638 	return seq_open(file, &lru_gen_seq_ops);
5639 }
5640 
5641 static const struct file_operations lru_gen_rw_fops = {
5642 	.open = lru_gen_seq_open,
5643 	.read = seq_read,
5644 	.write = lru_gen_seq_write,
5645 	.llseek = seq_lseek,
5646 	.release = seq_release,
5647 };
5648 
5649 static const struct file_operations lru_gen_ro_fops = {
5650 	.open = lru_gen_seq_open,
5651 	.read = seq_read,
5652 	.llseek = seq_lseek,
5653 	.release = seq_release,
5654 };
5655 
5656 /******************************************************************************
5657  *                          initialization
5658  ******************************************************************************/
5659 
lru_gen_init_pgdat(struct pglist_data * pgdat)5660 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5661 {
5662 	int i, j;
5663 
5664 	spin_lock_init(&pgdat->memcg_lru.lock);
5665 
5666 	for (i = 0; i < MEMCG_NR_GENS; i++) {
5667 		for (j = 0; j < MEMCG_NR_BINS; j++)
5668 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5669 	}
5670 }
5671 
lru_gen_init_lruvec(struct lruvec * lruvec)5672 void lru_gen_init_lruvec(struct lruvec *lruvec)
5673 {
5674 	int i;
5675 	int gen, type, zone;
5676 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5677 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5678 
5679 	lrugen->max_seq = MIN_NR_GENS + 1;
5680 	lrugen->enabled = lru_gen_enabled();
5681 
5682 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5683 		lrugen->timestamps[i] = jiffies;
5684 
5685 	for_each_gen_type_zone(gen, type, zone)
5686 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5687 
5688 	if (mm_state)
5689 		mm_state->seq = MIN_NR_GENS;
5690 }
5691 
5692 #ifdef CONFIG_MEMCG
5693 
lru_gen_init_memcg(struct mem_cgroup * memcg)5694 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5695 {
5696 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5697 
5698 	if (!mm_list)
5699 		return;
5700 
5701 	INIT_LIST_HEAD(&mm_list->fifo);
5702 	spin_lock_init(&mm_list->lock);
5703 }
5704 
lru_gen_exit_memcg(struct mem_cgroup * memcg)5705 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5706 {
5707 	int i;
5708 	int nid;
5709 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5710 
5711 	VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5712 
5713 	for_each_node(nid) {
5714 		struct lruvec *lruvec = get_lruvec(memcg, nid);
5715 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5716 
5717 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5718 					   sizeof(lruvec->lrugen.nr_pages)));
5719 
5720 		lruvec->lrugen.list.next = LIST_POISON1;
5721 
5722 		if (!mm_state)
5723 			continue;
5724 
5725 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5726 			bitmap_free(mm_state->filters[i]);
5727 			mm_state->filters[i] = NULL;
5728 		}
5729 	}
5730 }
5731 
5732 #endif /* CONFIG_MEMCG */
5733 
init_lru_gen(void)5734 static int __init init_lru_gen(void)
5735 {
5736 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5737 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5738 
5739 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5740 		pr_err("lru_gen: failed to create sysfs group\n");
5741 
5742 	debugfs_create_file_aux_num("lru_gen", 0644, NULL, NULL, false,
5743 				    &lru_gen_rw_fops);
5744 	debugfs_create_file_aux_num("lru_gen_full", 0444, NULL, NULL, true,
5745 				    &lru_gen_ro_fops);
5746 
5747 	return 0;
5748 };
5749 late_initcall(init_lru_gen);
5750 
5751 #else /* !CONFIG_LRU_GEN */
5752 
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)5753 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5754 {
5755 	BUILD_BUG();
5756 }
5757 
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5758 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5759 {
5760 	BUILD_BUG();
5761 }
5762 
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5763 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5764 {
5765 	BUILD_BUG();
5766 }
5767 
5768 #endif /* CONFIG_LRU_GEN */
5769 
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5770 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5771 {
5772 	unsigned long nr[NR_LRU_LISTS];
5773 	unsigned long targets[NR_LRU_LISTS];
5774 	unsigned long nr_to_scan;
5775 	enum lru_list lru;
5776 	unsigned long nr_reclaimed = 0;
5777 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5778 	bool proportional_reclaim;
5779 	struct blk_plug plug;
5780 
5781 	if (lru_gen_enabled() && !root_reclaim(sc)) {
5782 		lru_gen_shrink_lruvec(lruvec, sc);
5783 		return;
5784 	}
5785 
5786 	get_scan_count(lruvec, sc, nr);
5787 
5788 	/* Record the original scan target for proportional adjustments later */
5789 	memcpy(targets, nr, sizeof(nr));
5790 
5791 	/*
5792 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5793 	 * event that can occur when there is little memory pressure e.g.
5794 	 * multiple streaming readers/writers. Hence, we do not abort scanning
5795 	 * when the requested number of pages are reclaimed when scanning at
5796 	 * DEF_PRIORITY on the assumption that the fact we are direct
5797 	 * reclaiming implies that kswapd is not keeping up and it is best to
5798 	 * do a batch of work at once. For memcg reclaim one check is made to
5799 	 * abort proportional reclaim if either the file or anon lru has already
5800 	 * dropped to zero at the first pass.
5801 	 */
5802 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5803 				sc->priority == DEF_PRIORITY);
5804 
5805 	blk_start_plug(&plug);
5806 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5807 					nr[LRU_INACTIVE_FILE]) {
5808 		unsigned long nr_anon, nr_file, percentage;
5809 		unsigned long nr_scanned;
5810 
5811 		for_each_evictable_lru(lru) {
5812 			if (nr[lru]) {
5813 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5814 				nr[lru] -= nr_to_scan;
5815 
5816 				nr_reclaimed += shrink_list(lru, nr_to_scan,
5817 							    lruvec, sc);
5818 			}
5819 		}
5820 
5821 		cond_resched();
5822 
5823 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5824 			continue;
5825 
5826 		/*
5827 		 * For kswapd and memcg, reclaim at least the number of pages
5828 		 * requested. Ensure that the anon and file LRUs are scanned
5829 		 * proportionally what was requested by get_scan_count(). We
5830 		 * stop reclaiming one LRU and reduce the amount scanning
5831 		 * proportional to the original scan target.
5832 		 */
5833 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5834 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5835 
5836 		/*
5837 		 * It's just vindictive to attack the larger once the smaller
5838 		 * has gone to zero.  And given the way we stop scanning the
5839 		 * smaller below, this makes sure that we only make one nudge
5840 		 * towards proportionality once we've got nr_to_reclaim.
5841 		 */
5842 		if (!nr_file || !nr_anon)
5843 			break;
5844 
5845 		if (nr_file > nr_anon) {
5846 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5847 						targets[LRU_ACTIVE_ANON] + 1;
5848 			lru = LRU_BASE;
5849 			percentage = nr_anon * 100 / scan_target;
5850 		} else {
5851 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5852 						targets[LRU_ACTIVE_FILE] + 1;
5853 			lru = LRU_FILE;
5854 			percentage = nr_file * 100 / scan_target;
5855 		}
5856 
5857 		/* Stop scanning the smaller of the LRU */
5858 		nr[lru] = 0;
5859 		nr[lru + LRU_ACTIVE] = 0;
5860 
5861 		/*
5862 		 * Recalculate the other LRU scan count based on its original
5863 		 * scan target and the percentage scanning already complete
5864 		 */
5865 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5866 		nr_scanned = targets[lru] - nr[lru];
5867 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5868 		nr[lru] -= min(nr[lru], nr_scanned);
5869 
5870 		lru += LRU_ACTIVE;
5871 		nr_scanned = targets[lru] - nr[lru];
5872 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5873 		nr[lru] -= min(nr[lru], nr_scanned);
5874 	}
5875 	blk_finish_plug(&plug);
5876 	sc->nr_reclaimed += nr_reclaimed;
5877 
5878 	/*
5879 	 * Even if we did not try to evict anon pages at all, we want to
5880 	 * rebalance the anon lru active/inactive ratio.
5881 	 */
5882 	if (can_age_anon_pages(lruvec, sc) &&
5883 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5884 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5885 				   sc, LRU_ACTIVE_ANON);
5886 }
5887 
5888 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)5889 static bool in_reclaim_compaction(struct scan_control *sc)
5890 {
5891 	if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5892 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5893 			 sc->priority < DEF_PRIORITY - 2))
5894 		return true;
5895 
5896 	return false;
5897 }
5898 
5899 /*
5900  * Reclaim/compaction is used for high-order allocation requests. It reclaims
5901  * order-0 pages before compacting the zone. should_continue_reclaim() returns
5902  * true if more pages should be reclaimed such that when the page allocator
5903  * calls try_to_compact_pages() that it will have enough free pages to succeed.
5904  * It will give up earlier than that if there is difficulty reclaiming pages.
5905  */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)5906 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5907 					unsigned long nr_reclaimed,
5908 					struct scan_control *sc)
5909 {
5910 	unsigned long pages_for_compaction;
5911 	unsigned long inactive_lru_pages;
5912 	int z;
5913 	struct zone *zone;
5914 
5915 	/* If not in reclaim/compaction mode, stop */
5916 	if (!in_reclaim_compaction(sc))
5917 		return false;
5918 
5919 	/*
5920 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5921 	 * number of pages that were scanned. This will return to the caller
5922 	 * with the risk reclaim/compaction and the resulting allocation attempt
5923 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5924 	 * allocations through requiring that the full LRU list has been scanned
5925 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5926 	 * scan, but that approximation was wrong, and there were corner cases
5927 	 * where always a non-zero amount of pages were scanned.
5928 	 */
5929 	if (!nr_reclaimed)
5930 		return false;
5931 
5932 	/* If compaction would go ahead or the allocation would succeed, stop */
5933 	for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
5934 		unsigned long watermark = min_wmark_pages(zone);
5935 
5936 		/* Allocation can already succeed, nothing to do */
5937 		if (zone_watermark_ok(zone, sc->order, watermark,
5938 				      sc->reclaim_idx, 0))
5939 			return false;
5940 
5941 		if (compaction_suitable(zone, sc->order, watermark,
5942 					sc->reclaim_idx))
5943 			return false;
5944 	}
5945 
5946 	/*
5947 	 * If we have not reclaimed enough pages for compaction and the
5948 	 * inactive lists are large enough, continue reclaiming
5949 	 */
5950 	pages_for_compaction = compact_gap(sc->order);
5951 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5952 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5953 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5954 
5955 	return inactive_lru_pages > pages_for_compaction;
5956 }
5957 
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)5958 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5959 {
5960 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5961 	struct mem_cgroup_reclaim_cookie reclaim = {
5962 		.pgdat = pgdat,
5963 	};
5964 	struct mem_cgroup_reclaim_cookie *partial = &reclaim;
5965 	struct mem_cgroup *memcg;
5966 
5967 	/*
5968 	 * In most cases, direct reclaimers can do partial walks
5969 	 * through the cgroup tree, using an iterator state that
5970 	 * persists across invocations. This strikes a balance between
5971 	 * fairness and allocation latency.
5972 	 *
5973 	 * For kswapd, reliable forward progress is more important
5974 	 * than a quick return to idle. Always do full walks.
5975 	 */
5976 	if (current_is_kswapd() || sc->memcg_full_walk)
5977 		partial = NULL;
5978 
5979 	memcg = mem_cgroup_iter(target_memcg, NULL, partial);
5980 	do {
5981 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5982 		unsigned long reclaimed;
5983 		unsigned long scanned;
5984 
5985 		/*
5986 		 * This loop can become CPU-bound when target memcgs
5987 		 * aren't eligible for reclaim - either because they
5988 		 * don't have any reclaimable pages, or because their
5989 		 * memory is explicitly protected. Avoid soft lockups.
5990 		 */
5991 		cond_resched();
5992 
5993 		mem_cgroup_calculate_protection(target_memcg, memcg);
5994 
5995 		if (mem_cgroup_below_min(target_memcg, memcg)) {
5996 			/*
5997 			 * Hard protection.
5998 			 * If there is no reclaimable memory, OOM.
5999 			 */
6000 			continue;
6001 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
6002 			/*
6003 			 * Soft protection.
6004 			 * Respect the protection only as long as
6005 			 * there is an unprotected supply
6006 			 * of reclaimable memory from other cgroups.
6007 			 */
6008 			if (!sc->memcg_low_reclaim) {
6009 				sc->memcg_low_skipped = 1;
6010 				continue;
6011 			}
6012 			memcg_memory_event(memcg, MEMCG_LOW);
6013 		}
6014 
6015 		reclaimed = sc->nr_reclaimed;
6016 		scanned = sc->nr_scanned;
6017 
6018 		shrink_lruvec(lruvec, sc);
6019 
6020 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6021 			    sc->priority);
6022 
6023 		/* Record the group's reclaim efficiency */
6024 		if (!sc->proactive)
6025 			vmpressure(sc->gfp_mask, memcg, false,
6026 				   sc->nr_scanned - scanned,
6027 				   sc->nr_reclaimed - reclaimed);
6028 
6029 		/* If partial walks are allowed, bail once goal is reached */
6030 		if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) {
6031 			mem_cgroup_iter_break(target_memcg, memcg);
6032 			break;
6033 		}
6034 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial)));
6035 }
6036 
shrink_node(pg_data_t * pgdat,struct scan_control * sc)6037 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6038 {
6039 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6040 	struct lruvec *target_lruvec;
6041 	bool reclaimable = false;
6042 
6043 	if (lru_gen_enabled() && root_reclaim(sc)) {
6044 		memset(&sc->nr, 0, sizeof(sc->nr));
6045 		lru_gen_shrink_node(pgdat, sc);
6046 		return;
6047 	}
6048 
6049 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6050 
6051 again:
6052 	memset(&sc->nr, 0, sizeof(sc->nr));
6053 
6054 	nr_reclaimed = sc->nr_reclaimed;
6055 	nr_scanned = sc->nr_scanned;
6056 
6057 	prepare_scan_control(pgdat, sc);
6058 
6059 	shrink_node_memcgs(pgdat, sc);
6060 
6061 	flush_reclaim_state(sc);
6062 
6063 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6064 
6065 	/* Record the subtree's reclaim efficiency */
6066 	if (!sc->proactive)
6067 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6068 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6069 
6070 	if (nr_node_reclaimed)
6071 		reclaimable = true;
6072 
6073 	if (current_is_kswapd()) {
6074 		/*
6075 		 * If reclaim is isolating dirty pages under writeback,
6076 		 * it implies that the long-lived page allocation rate
6077 		 * is exceeding the page laundering rate. Either the
6078 		 * global limits are not being effective at throttling
6079 		 * processes due to the page distribution throughout
6080 		 * zones or there is heavy usage of a slow backing
6081 		 * device. The only option is to throttle from reclaim
6082 		 * context which is not ideal as there is no guarantee
6083 		 * the dirtying process is throttled in the same way
6084 		 * balance_dirty_pages() manages.
6085 		 *
6086 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6087 		 * count the number of pages under pages flagged for
6088 		 * immediate reclaim and stall if any are encountered
6089 		 * in the nr_immediate check below.
6090 		 */
6091 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6092 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6093 
6094 		/*
6095 		 * If kswapd scans pages marked for immediate
6096 		 * reclaim and under writeback (nr_immediate), it
6097 		 * implies that pages are cycling through the LRU
6098 		 * faster than they are written so forcibly stall
6099 		 * until some pages complete writeback.
6100 		 */
6101 		if (sc->nr.immediate)
6102 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6103 	}
6104 
6105 	/*
6106 	 * Tag a node/memcg as congested if all the dirty pages were marked
6107 	 * for writeback and immediate reclaim (counted in nr.congested).
6108 	 *
6109 	 * Legacy memcg will stall in page writeback so avoid forcibly
6110 	 * stalling in reclaim_throttle().
6111 	 */
6112 	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6113 		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6114 			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6115 
6116 		if (current_is_kswapd())
6117 			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6118 	}
6119 
6120 	/*
6121 	 * Stall direct reclaim for IO completions if the lruvec is
6122 	 * node is congested. Allow kswapd to continue until it
6123 	 * starts encountering unqueued dirty pages or cycling through
6124 	 * the LRU too quickly.
6125 	 */
6126 	if (!current_is_kswapd() && current_may_throttle() &&
6127 	    !sc->hibernation_mode &&
6128 	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6129 	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6130 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6131 
6132 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6133 		goto again;
6134 
6135 	/*
6136 	 * Kswapd gives up on balancing particular nodes after too
6137 	 * many failures to reclaim anything from them and goes to
6138 	 * sleep. On reclaim progress, reset the failure counter. A
6139 	 * successful direct reclaim run will revive a dormant kswapd.
6140 	 */
6141 	if (reclaimable)
6142 		atomic_set(&pgdat->kswapd_failures, 0);
6143 	else if (sc->cache_trim_mode)
6144 		sc->cache_trim_mode_failed = 1;
6145 }
6146 
6147 /*
6148  * Returns true if compaction should go ahead for a costly-order request, or
6149  * the allocation would already succeed without compaction. Return false if we
6150  * should reclaim first.
6151  */
compaction_ready(struct zone * zone,struct scan_control * sc)6152 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6153 {
6154 	unsigned long watermark;
6155 
6156 	if (!gfp_compaction_allowed(sc->gfp_mask))
6157 		return false;
6158 
6159 	/* Allocation can already succeed, nothing to do */
6160 	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6161 			      sc->reclaim_idx, 0))
6162 		return true;
6163 
6164 	/*
6165 	 * Direct reclaim usually targets the min watermark, but compaction
6166 	 * takes time to run and there are potentially other callers using the
6167 	 * pages just freed. So target a higher buffer to give compaction a
6168 	 * reasonable chance of completing and allocating the pages.
6169 	 *
6170 	 * Note that we won't actually reclaim the whole buffer in one attempt
6171 	 * as the target watermark in should_continue_reclaim() is lower. But if
6172 	 * we are already above the high+gap watermark, don't reclaim at all.
6173 	 */
6174 	watermark = high_wmark_pages(zone);
6175 	if (compaction_suitable(zone, sc->order, watermark, sc->reclaim_idx))
6176 		return true;
6177 
6178 	return false;
6179 }
6180 
consider_reclaim_throttle(pg_data_t * pgdat,struct scan_control * sc)6181 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6182 {
6183 	/*
6184 	 * If reclaim is making progress greater than 12% efficiency then
6185 	 * wake all the NOPROGRESS throttled tasks.
6186 	 */
6187 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6188 		wait_queue_head_t *wqh;
6189 
6190 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6191 		if (waitqueue_active(wqh))
6192 			wake_up(wqh);
6193 
6194 		return;
6195 	}
6196 
6197 	/*
6198 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6199 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6200 	 * under writeback and marked for immediate reclaim at the tail of the
6201 	 * LRU.
6202 	 */
6203 	if (current_is_kswapd() || cgroup_reclaim(sc))
6204 		return;
6205 
6206 	/* Throttle if making no progress at high prioities. */
6207 	if (sc->priority == 1 && !sc->nr_reclaimed)
6208 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6209 }
6210 
6211 /*
6212  * This is the direct reclaim path, for page-allocating processes.  We only
6213  * try to reclaim pages from zones which will satisfy the caller's allocation
6214  * request.
6215  *
6216  * If a zone is deemed to be full of pinned pages then just give it a light
6217  * scan then give up on it.
6218  */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)6219 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6220 {
6221 	struct zoneref *z;
6222 	struct zone *zone;
6223 	unsigned long nr_soft_reclaimed;
6224 	unsigned long nr_soft_scanned;
6225 	gfp_t orig_mask;
6226 	pg_data_t *last_pgdat = NULL;
6227 	pg_data_t *first_pgdat = NULL;
6228 
6229 	/*
6230 	 * If the number of buffer_heads in the machine exceeds the maximum
6231 	 * allowed level, force direct reclaim to scan the highmem zone as
6232 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6233 	 */
6234 	orig_mask = sc->gfp_mask;
6235 	if (buffer_heads_over_limit) {
6236 		sc->gfp_mask |= __GFP_HIGHMEM;
6237 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6238 	}
6239 
6240 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6241 					sc->reclaim_idx, sc->nodemask) {
6242 		/*
6243 		 * Take care memory controller reclaiming has small influence
6244 		 * to global LRU.
6245 		 */
6246 		if (!cgroup_reclaim(sc)) {
6247 			if (!cpuset_zone_allowed(zone,
6248 						 GFP_KERNEL | __GFP_HARDWALL))
6249 				continue;
6250 
6251 			/*
6252 			 * If we already have plenty of memory free for
6253 			 * compaction in this zone, don't free any more.
6254 			 * Even though compaction is invoked for any
6255 			 * non-zero order, only frequent costly order
6256 			 * reclamation is disruptive enough to become a
6257 			 * noticeable problem, like transparent huge
6258 			 * page allocations.
6259 			 */
6260 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6261 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6262 			    compaction_ready(zone, sc)) {
6263 				sc->compaction_ready = true;
6264 				continue;
6265 			}
6266 
6267 			/*
6268 			 * Shrink each node in the zonelist once. If the
6269 			 * zonelist is ordered by zone (not the default) then a
6270 			 * node may be shrunk multiple times but in that case
6271 			 * the user prefers lower zones being preserved.
6272 			 */
6273 			if (zone->zone_pgdat == last_pgdat)
6274 				continue;
6275 
6276 			/*
6277 			 * This steals pages from memory cgroups over softlimit
6278 			 * and returns the number of reclaimed pages and
6279 			 * scanned pages. This works for global memory pressure
6280 			 * and balancing, not for a memcg's limit.
6281 			 */
6282 			nr_soft_scanned = 0;
6283 			nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat,
6284 								      sc->order, sc->gfp_mask,
6285 								      &nr_soft_scanned);
6286 			sc->nr_reclaimed += nr_soft_reclaimed;
6287 			sc->nr_scanned += nr_soft_scanned;
6288 			/* need some check for avoid more shrink_zone() */
6289 		}
6290 
6291 		if (!first_pgdat)
6292 			first_pgdat = zone->zone_pgdat;
6293 
6294 		/* See comment about same check for global reclaim above */
6295 		if (zone->zone_pgdat == last_pgdat)
6296 			continue;
6297 		last_pgdat = zone->zone_pgdat;
6298 		shrink_node(zone->zone_pgdat, sc);
6299 	}
6300 
6301 	if (first_pgdat)
6302 		consider_reclaim_throttle(first_pgdat, sc);
6303 
6304 	/*
6305 	 * Restore to original mask to avoid the impact on the caller if we
6306 	 * promoted it to __GFP_HIGHMEM.
6307 	 */
6308 	sc->gfp_mask = orig_mask;
6309 }
6310 
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)6311 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6312 {
6313 	struct lruvec *target_lruvec;
6314 	unsigned long refaults;
6315 
6316 	if (lru_gen_enabled())
6317 		return;
6318 
6319 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6320 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6321 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6322 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6323 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6324 }
6325 
6326 /*
6327  * This is the main entry point to direct page reclaim.
6328  *
6329  * If a full scan of the inactive list fails to free enough memory then we
6330  * are "out of memory" and something needs to be killed.
6331  *
6332  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6333  * high - the zone may be full of dirty or under-writeback pages, which this
6334  * caller can't do much about.  We kick the writeback threads and take explicit
6335  * naps in the hope that some of these pages can be written.  But if the
6336  * allocating task holds filesystem locks which prevent writeout this might not
6337  * work, and the allocation attempt will fail.
6338  *
6339  * returns:	0, if no pages reclaimed
6340  * 		else, the number of pages reclaimed
6341  */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)6342 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6343 					  struct scan_control *sc)
6344 {
6345 	int initial_priority = sc->priority;
6346 	pg_data_t *last_pgdat;
6347 	struct zoneref *z;
6348 	struct zone *zone;
6349 retry:
6350 	delayacct_freepages_start();
6351 
6352 	if (!cgroup_reclaim(sc))
6353 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6354 
6355 	do {
6356 		if (!sc->proactive)
6357 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6358 					sc->priority);
6359 		sc->nr_scanned = 0;
6360 		shrink_zones(zonelist, sc);
6361 
6362 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6363 			break;
6364 
6365 		if (sc->compaction_ready)
6366 			break;
6367 
6368 		/*
6369 		 * If we're getting trouble reclaiming, start doing
6370 		 * writepage even in laptop mode.
6371 		 */
6372 		if (sc->priority < DEF_PRIORITY - 2)
6373 			sc->may_writepage = 1;
6374 	} while (--sc->priority >= 0);
6375 
6376 	last_pgdat = NULL;
6377 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6378 					sc->nodemask) {
6379 		if (zone->zone_pgdat == last_pgdat)
6380 			continue;
6381 		last_pgdat = zone->zone_pgdat;
6382 
6383 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6384 
6385 		if (cgroup_reclaim(sc)) {
6386 			struct lruvec *lruvec;
6387 
6388 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6389 						   zone->zone_pgdat);
6390 			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6391 		}
6392 	}
6393 
6394 	delayacct_freepages_end();
6395 
6396 	if (sc->nr_reclaimed)
6397 		return sc->nr_reclaimed;
6398 
6399 	/* Aborted reclaim to try compaction? don't OOM, then */
6400 	if (sc->compaction_ready)
6401 		return 1;
6402 
6403 	/*
6404 	 * In most cases, direct reclaimers can do partial walks
6405 	 * through the cgroup tree to meet the reclaim goal while
6406 	 * keeping latency low. Since the iterator state is shared
6407 	 * among all direct reclaim invocations (to retain fairness
6408 	 * among cgroups), though, high concurrency can result in
6409 	 * individual threads not seeing enough cgroups to make
6410 	 * meaningful forward progress. Avoid false OOMs in this case.
6411 	 */
6412 	if (!sc->memcg_full_walk) {
6413 		sc->priority = initial_priority;
6414 		sc->memcg_full_walk = 1;
6415 		goto retry;
6416 	}
6417 
6418 	/*
6419 	 * We make inactive:active ratio decisions based on the node's
6420 	 * composition of memory, but a restrictive reclaim_idx or a
6421 	 * memory.low cgroup setting can exempt large amounts of
6422 	 * memory from reclaim. Neither of which are very common, so
6423 	 * instead of doing costly eligibility calculations of the
6424 	 * entire cgroup subtree up front, we assume the estimates are
6425 	 * good, and retry with forcible deactivation if that fails.
6426 	 */
6427 	if (sc->skipped_deactivate) {
6428 		sc->priority = initial_priority;
6429 		sc->force_deactivate = 1;
6430 		sc->skipped_deactivate = 0;
6431 		goto retry;
6432 	}
6433 
6434 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6435 	if (sc->memcg_low_skipped) {
6436 		sc->priority = initial_priority;
6437 		sc->force_deactivate = 0;
6438 		sc->memcg_low_reclaim = 1;
6439 		sc->memcg_low_skipped = 0;
6440 		goto retry;
6441 	}
6442 
6443 	return 0;
6444 }
6445 
allow_direct_reclaim(pg_data_t * pgdat)6446 static bool allow_direct_reclaim(pg_data_t *pgdat)
6447 {
6448 	struct zone *zone;
6449 	unsigned long pfmemalloc_reserve = 0;
6450 	unsigned long free_pages = 0;
6451 	int i;
6452 	bool wmark_ok;
6453 
6454 	if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES)
6455 		return true;
6456 
6457 	for_each_managed_zone_pgdat(zone, pgdat, i, ZONE_NORMAL) {
6458 		if (!zone_reclaimable_pages(zone) && zone_page_state_snapshot(zone, NR_FREE_PAGES))
6459 			continue;
6460 
6461 		pfmemalloc_reserve += min_wmark_pages(zone);
6462 		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6463 	}
6464 
6465 	/* If there are no reserves (unexpected config) then do not throttle */
6466 	if (!pfmemalloc_reserve)
6467 		return true;
6468 
6469 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6470 
6471 	/* kswapd must be awake if processes are being throttled */
6472 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6473 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6474 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6475 
6476 		wake_up_interruptible(&pgdat->kswapd_wait);
6477 	}
6478 
6479 	return wmark_ok;
6480 }
6481 
6482 /*
6483  * Throttle direct reclaimers if backing storage is backed by the network
6484  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6485  * depleted. kswapd will continue to make progress and wake the processes
6486  * when the low watermark is reached.
6487  *
6488  * Returns true if a fatal signal was delivered during throttling. If this
6489  * happens, the page allocator should not consider triggering the OOM killer.
6490  */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)6491 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6492 					nodemask_t *nodemask)
6493 {
6494 	struct zoneref *z;
6495 	struct zone *zone;
6496 	pg_data_t *pgdat = NULL;
6497 
6498 	/*
6499 	 * Kernel threads should not be throttled as they may be indirectly
6500 	 * responsible for cleaning pages necessary for reclaim to make forward
6501 	 * progress. kjournald for example may enter direct reclaim while
6502 	 * committing a transaction where throttling it could forcing other
6503 	 * processes to block on log_wait_commit().
6504 	 */
6505 	if (current->flags & PF_KTHREAD)
6506 		goto out;
6507 
6508 	/*
6509 	 * If a fatal signal is pending, this process should not throttle.
6510 	 * It should return quickly so it can exit and free its memory
6511 	 */
6512 	if (fatal_signal_pending(current))
6513 		goto out;
6514 
6515 	/*
6516 	 * Check if the pfmemalloc reserves are ok by finding the first node
6517 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6518 	 * GFP_KERNEL will be required for allocating network buffers when
6519 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6520 	 *
6521 	 * Throttling is based on the first usable node and throttled processes
6522 	 * wait on a queue until kswapd makes progress and wakes them. There
6523 	 * is an affinity then between processes waking up and where reclaim
6524 	 * progress has been made assuming the process wakes on the same node.
6525 	 * More importantly, processes running on remote nodes will not compete
6526 	 * for remote pfmemalloc reserves and processes on different nodes
6527 	 * should make reasonable progress.
6528 	 */
6529 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6530 					gfp_zone(gfp_mask), nodemask) {
6531 		if (zone_idx(zone) > ZONE_NORMAL)
6532 			continue;
6533 
6534 		/* Throttle based on the first usable node */
6535 		pgdat = zone->zone_pgdat;
6536 		if (allow_direct_reclaim(pgdat))
6537 			goto out;
6538 		break;
6539 	}
6540 
6541 	/* If no zone was usable by the allocation flags then do not throttle */
6542 	if (!pgdat)
6543 		goto out;
6544 
6545 	/* Account for the throttling */
6546 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6547 
6548 	/*
6549 	 * If the caller cannot enter the filesystem, it's possible that it
6550 	 * is due to the caller holding an FS lock or performing a journal
6551 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6552 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6553 	 * blocked waiting on the same lock. Instead, throttle for up to a
6554 	 * second before continuing.
6555 	 */
6556 	if (!(gfp_mask & __GFP_FS))
6557 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6558 			allow_direct_reclaim(pgdat), HZ);
6559 	else
6560 		/* Throttle until kswapd wakes the process */
6561 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6562 			allow_direct_reclaim(pgdat));
6563 
6564 	if (fatal_signal_pending(current))
6565 		return true;
6566 
6567 out:
6568 	return false;
6569 }
6570 
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)6571 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6572 				gfp_t gfp_mask, nodemask_t *nodemask)
6573 {
6574 	unsigned long nr_reclaimed;
6575 	struct scan_control sc = {
6576 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6577 		.gfp_mask = current_gfp_context(gfp_mask),
6578 		.reclaim_idx = gfp_zone(gfp_mask),
6579 		.order = order,
6580 		.nodemask = nodemask,
6581 		.priority = DEF_PRIORITY,
6582 		.may_writepage = !laptop_mode,
6583 		.may_unmap = 1,
6584 		.may_swap = 1,
6585 	};
6586 
6587 	/*
6588 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6589 	 * Confirm they are large enough for max values.
6590 	 */
6591 	BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6592 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6593 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6594 
6595 	/*
6596 	 * Do not enter reclaim if fatal signal was delivered while throttled.
6597 	 * 1 is returned so that the page allocator does not OOM kill at this
6598 	 * point.
6599 	 */
6600 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6601 		return 1;
6602 
6603 	set_task_reclaim_state(current, &sc.reclaim_state);
6604 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6605 
6606 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6607 
6608 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6609 	set_task_reclaim_state(current, NULL);
6610 
6611 	return nr_reclaimed;
6612 }
6613 
6614 #ifdef CONFIG_MEMCG
6615 
6616 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)6617 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6618 						gfp_t gfp_mask, bool noswap,
6619 						pg_data_t *pgdat,
6620 						unsigned long *nr_scanned)
6621 {
6622 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6623 	struct scan_control sc = {
6624 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6625 		.target_mem_cgroup = memcg,
6626 		.may_writepage = !laptop_mode,
6627 		.may_unmap = 1,
6628 		.reclaim_idx = MAX_NR_ZONES - 1,
6629 		.may_swap = !noswap,
6630 	};
6631 
6632 	WARN_ON_ONCE(!current->reclaim_state);
6633 
6634 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6635 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6636 
6637 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6638 						      sc.gfp_mask);
6639 
6640 	/*
6641 	 * NOTE: Although we can get the priority field, using it
6642 	 * here is not a good idea, since it limits the pages we can scan.
6643 	 * if we don't reclaim here, the shrink_node from balance_pgdat
6644 	 * will pick up pages from other mem cgroup's as well. We hack
6645 	 * the priority and make it zero.
6646 	 */
6647 	shrink_lruvec(lruvec, &sc);
6648 
6649 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6650 
6651 	*nr_scanned = sc.nr_scanned;
6652 
6653 	return sc.nr_reclaimed;
6654 }
6655 
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options,int * swappiness)6656 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6657 					   unsigned long nr_pages,
6658 					   gfp_t gfp_mask,
6659 					   unsigned int reclaim_options,
6660 					   int *swappiness)
6661 {
6662 	unsigned long nr_reclaimed;
6663 	unsigned int noreclaim_flag;
6664 	struct scan_control sc = {
6665 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6666 		.proactive_swappiness = swappiness,
6667 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6668 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6669 		.reclaim_idx = MAX_NR_ZONES - 1,
6670 		.target_mem_cgroup = memcg,
6671 		.priority = DEF_PRIORITY,
6672 		.may_writepage = !laptop_mode,
6673 		.may_unmap = 1,
6674 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6675 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6676 	};
6677 	/*
6678 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6679 	 * equal pressure on all the nodes. This is based on the assumption that
6680 	 * the reclaim does not bail out early.
6681 	 */
6682 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6683 
6684 	set_task_reclaim_state(current, &sc.reclaim_state);
6685 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6686 	noreclaim_flag = memalloc_noreclaim_save();
6687 
6688 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6689 
6690 	memalloc_noreclaim_restore(noreclaim_flag);
6691 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6692 	set_task_reclaim_state(current, NULL);
6693 
6694 	return nr_reclaimed;
6695 }
6696 #else
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options,int * swappiness)6697 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6698 					   unsigned long nr_pages,
6699 					   gfp_t gfp_mask,
6700 					   unsigned int reclaim_options,
6701 					   int *swappiness)
6702 {
6703 	return 0;
6704 }
6705 #endif
6706 
kswapd_age_node(struct pglist_data * pgdat,struct scan_control * sc)6707 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6708 {
6709 	struct mem_cgroup *memcg;
6710 	struct lruvec *lruvec;
6711 
6712 	if (lru_gen_enabled()) {
6713 		lru_gen_age_node(pgdat, sc);
6714 		return;
6715 	}
6716 
6717 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6718 	if (!can_age_anon_pages(lruvec, sc))
6719 		return;
6720 
6721 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6722 		return;
6723 
6724 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6725 	do {
6726 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6727 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6728 				   sc, LRU_ACTIVE_ANON);
6729 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6730 	} while (memcg);
6731 }
6732 
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)6733 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6734 {
6735 	int i;
6736 	struct zone *zone;
6737 
6738 	/*
6739 	 * Check for watermark boosts top-down as the higher zones
6740 	 * are more likely to be boosted. Both watermarks and boosts
6741 	 * should not be checked at the same time as reclaim would
6742 	 * start prematurely when there is no boosting and a lower
6743 	 * zone is balanced.
6744 	 */
6745 	for (i = highest_zoneidx; i >= 0; i--) {
6746 		zone = pgdat->node_zones + i;
6747 		if (!managed_zone(zone))
6748 			continue;
6749 
6750 		if (zone->watermark_boost)
6751 			return true;
6752 	}
6753 
6754 	return false;
6755 }
6756 
6757 /*
6758  * Returns true if there is an eligible zone balanced for the request order
6759  * and highest_zoneidx
6760  */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)6761 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6762 {
6763 	int i;
6764 	unsigned long mark = -1;
6765 	struct zone *zone;
6766 
6767 	/*
6768 	 * Check watermarks bottom-up as lower zones are more likely to
6769 	 * meet watermarks.
6770 	 */
6771 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6772 		enum zone_stat_item item;
6773 		unsigned long free_pages;
6774 
6775 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6776 			mark = promo_wmark_pages(zone);
6777 		else
6778 			mark = high_wmark_pages(zone);
6779 
6780 		/*
6781 		 * In defrag_mode, watermarks must be met in whole
6782 		 * blocks to avoid polluting allocator fallbacks.
6783 		 *
6784 		 * However, kswapd usually cannot accomplish this on
6785 		 * its own and needs kcompactd support. Once it's
6786 		 * reclaimed a compaction gap, and kswapd_shrink_node
6787 		 * has dropped order, simply ensure there are enough
6788 		 * base pages for compaction, wake kcompactd & sleep.
6789 		 */
6790 		if (defrag_mode && order)
6791 			item = NR_FREE_PAGES_BLOCKS;
6792 		else
6793 			item = NR_FREE_PAGES;
6794 
6795 		/*
6796 		 * When there is a high number of CPUs in the system,
6797 		 * the cumulative error from the vmstat per-cpu cache
6798 		 * can blur the line between the watermarks. In that
6799 		 * case, be safe and get an accurate snapshot.
6800 		 *
6801 		 * TODO: NR_FREE_PAGES_BLOCKS moves in steps of
6802 		 * pageblock_nr_pages, while the vmstat pcp threshold
6803 		 * is limited to 125. On many configurations that
6804 		 * counter won't actually be per-cpu cached. But keep
6805 		 * things simple for now; revisit when somebody cares.
6806 		 */
6807 		free_pages = zone_page_state(zone, item);
6808 		if (zone->percpu_drift_mark && free_pages < zone->percpu_drift_mark)
6809 			free_pages = zone_page_state_snapshot(zone, item);
6810 
6811 		if (__zone_watermark_ok(zone, order, mark, highest_zoneidx,
6812 					0, free_pages))
6813 			return true;
6814 	}
6815 
6816 	/*
6817 	 * If a node has no managed zone within highest_zoneidx, it does not
6818 	 * need balancing by definition. This can happen if a zone-restricted
6819 	 * allocation tries to wake a remote kswapd.
6820 	 */
6821 	if (mark == -1)
6822 		return true;
6823 
6824 	return false;
6825 }
6826 
6827 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)6828 static void clear_pgdat_congested(pg_data_t *pgdat)
6829 {
6830 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6831 
6832 	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6833 	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6834 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6835 }
6836 
6837 /*
6838  * Prepare kswapd for sleeping. This verifies that there are no processes
6839  * waiting in throttle_direct_reclaim() and that watermarks have been met.
6840  *
6841  * Returns true if kswapd is ready to sleep
6842  */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)6843 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6844 				int highest_zoneidx)
6845 {
6846 	/*
6847 	 * The throttled processes are normally woken up in balance_pgdat() as
6848 	 * soon as allow_direct_reclaim() is true. But there is a potential
6849 	 * race between when kswapd checks the watermarks and a process gets
6850 	 * throttled. There is also a potential race if processes get
6851 	 * throttled, kswapd wakes, a large process exits thereby balancing the
6852 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6853 	 * the wake up checks. If kswapd is going to sleep, no process should
6854 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6855 	 * the wake up is premature, processes will wake kswapd and get
6856 	 * throttled again. The difference from wake ups in balance_pgdat() is
6857 	 * that here we are under prepare_to_wait().
6858 	 */
6859 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6860 		wake_up_all(&pgdat->pfmemalloc_wait);
6861 
6862 	/* Hopeless node, leave it to direct reclaim */
6863 	if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES)
6864 		return true;
6865 
6866 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6867 		clear_pgdat_congested(pgdat);
6868 		return true;
6869 	}
6870 
6871 	return false;
6872 }
6873 
6874 /*
6875  * kswapd shrinks a node of pages that are at or below the highest usable
6876  * zone that is currently unbalanced.
6877  *
6878  * Returns true if kswapd scanned at least the requested number of pages to
6879  * reclaim or if the lack of progress was due to pages under writeback.
6880  * This is used to determine if the scanning priority needs to be raised.
6881  */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)6882 static bool kswapd_shrink_node(pg_data_t *pgdat,
6883 			       struct scan_control *sc)
6884 {
6885 	struct zone *zone;
6886 	int z;
6887 	unsigned long nr_reclaimed = sc->nr_reclaimed;
6888 
6889 	/* Reclaim a number of pages proportional to the number of zones */
6890 	sc->nr_to_reclaim = 0;
6891 	for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
6892 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6893 	}
6894 
6895 	/*
6896 	 * Historically care was taken to put equal pressure on all zones but
6897 	 * now pressure is applied based on node LRU order.
6898 	 */
6899 	shrink_node(pgdat, sc);
6900 
6901 	/*
6902 	 * Fragmentation may mean that the system cannot be rebalanced for
6903 	 * high-order allocations. If twice the allocation size has been
6904 	 * reclaimed then recheck watermarks only at order-0 to prevent
6905 	 * excessive reclaim. Assume that a process requested a high-order
6906 	 * can direct reclaim/compact.
6907 	 */
6908 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6909 		sc->order = 0;
6910 
6911 	/* account for progress from mm_account_reclaimed_pages() */
6912 	return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
6913 }
6914 
6915 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6916 static inline void
update_reclaim_active(pg_data_t * pgdat,int highest_zoneidx,bool active)6917 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6918 {
6919 	int i;
6920 	struct zone *zone;
6921 
6922 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6923 		if (active)
6924 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6925 		else
6926 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6927 	}
6928 }
6929 
6930 static inline void
set_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6931 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6932 {
6933 	update_reclaim_active(pgdat, highest_zoneidx, true);
6934 }
6935 
6936 static inline void
clear_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6937 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6938 {
6939 	update_reclaim_active(pgdat, highest_zoneidx, false);
6940 }
6941 
6942 /*
6943  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6944  * that are eligible for use by the caller until at least one zone is
6945  * balanced.
6946  *
6947  * Returns the order kswapd finished reclaiming at.
6948  *
6949  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
6950  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6951  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6952  * or lower is eligible for reclaim until at least one usable zone is
6953  * balanced.
6954  */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)6955 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6956 {
6957 	int i;
6958 	unsigned long nr_soft_reclaimed;
6959 	unsigned long nr_soft_scanned;
6960 	unsigned long pflags;
6961 	unsigned long nr_boost_reclaim;
6962 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6963 	bool boosted;
6964 	struct zone *zone;
6965 	struct scan_control sc = {
6966 		.gfp_mask = GFP_KERNEL,
6967 		.order = order,
6968 		.may_unmap = 1,
6969 	};
6970 
6971 	set_task_reclaim_state(current, &sc.reclaim_state);
6972 	psi_memstall_enter(&pflags);
6973 	__fs_reclaim_acquire(_THIS_IP_);
6974 
6975 	count_vm_event(PAGEOUTRUN);
6976 
6977 	/*
6978 	 * Account for the reclaim boost. Note that the zone boost is left in
6979 	 * place so that parallel allocations that are near the watermark will
6980 	 * stall or direct reclaim until kswapd is finished.
6981 	 */
6982 	nr_boost_reclaim = 0;
6983 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6984 		nr_boost_reclaim += zone->watermark_boost;
6985 		zone_boosts[i] = zone->watermark_boost;
6986 	}
6987 	boosted = nr_boost_reclaim;
6988 
6989 restart:
6990 	set_reclaim_active(pgdat, highest_zoneidx);
6991 	sc.priority = DEF_PRIORITY;
6992 	do {
6993 		unsigned long nr_reclaimed = sc.nr_reclaimed;
6994 		bool raise_priority = true;
6995 		bool balanced;
6996 		bool ret;
6997 		bool was_frozen;
6998 
6999 		sc.reclaim_idx = highest_zoneidx;
7000 
7001 		/*
7002 		 * If the number of buffer_heads exceeds the maximum allowed
7003 		 * then consider reclaiming from all zones. This has a dual
7004 		 * purpose -- on 64-bit systems it is expected that
7005 		 * buffer_heads are stripped during active rotation. On 32-bit
7006 		 * systems, highmem pages can pin lowmem memory and shrinking
7007 		 * buffers can relieve lowmem pressure. Reclaim may still not
7008 		 * go ahead if all eligible zones for the original allocation
7009 		 * request are balanced to avoid excessive reclaim from kswapd.
7010 		 */
7011 		if (buffer_heads_over_limit) {
7012 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7013 				zone = pgdat->node_zones + i;
7014 				if (!managed_zone(zone))
7015 					continue;
7016 
7017 				sc.reclaim_idx = i;
7018 				break;
7019 			}
7020 		}
7021 
7022 		/*
7023 		 * If the pgdat is imbalanced then ignore boosting and preserve
7024 		 * the watermarks for a later time and restart. Note that the
7025 		 * zone watermarks will be still reset at the end of balancing
7026 		 * on the grounds that the normal reclaim should be enough to
7027 		 * re-evaluate if boosting is required when kswapd next wakes.
7028 		 */
7029 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7030 		if (!balanced && nr_boost_reclaim) {
7031 			nr_boost_reclaim = 0;
7032 			goto restart;
7033 		}
7034 
7035 		/*
7036 		 * If boosting is not active then only reclaim if there are no
7037 		 * eligible zones. Note that sc.reclaim_idx is not used as
7038 		 * buffer_heads_over_limit may have adjusted it.
7039 		 */
7040 		if (!nr_boost_reclaim && balanced)
7041 			goto out;
7042 
7043 		/* Limit the priority of boosting to avoid reclaim writeback */
7044 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7045 			raise_priority = false;
7046 
7047 		/*
7048 		 * Do not writeback or swap pages for boosted reclaim. The
7049 		 * intent is to relieve pressure not issue sub-optimal IO
7050 		 * from reclaim context. If no pages are reclaimed, the
7051 		 * reclaim will be aborted.
7052 		 */
7053 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7054 		sc.may_swap = !nr_boost_reclaim;
7055 
7056 		/*
7057 		 * Do some background aging, to give pages a chance to be
7058 		 * referenced before reclaiming. All pages are rotated
7059 		 * regardless of classzone as this is about consistent aging.
7060 		 */
7061 		kswapd_age_node(pgdat, &sc);
7062 
7063 		/*
7064 		 * If we're getting trouble reclaiming, start doing writepage
7065 		 * even in laptop mode.
7066 		 */
7067 		if (sc.priority < DEF_PRIORITY - 2)
7068 			sc.may_writepage = 1;
7069 
7070 		/* Call soft limit reclaim before calling shrink_node. */
7071 		sc.nr_scanned = 0;
7072 		nr_soft_scanned = 0;
7073 		nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order,
7074 							      sc.gfp_mask, &nr_soft_scanned);
7075 		sc.nr_reclaimed += nr_soft_reclaimed;
7076 
7077 		/*
7078 		 * There should be no need to raise the scanning priority if
7079 		 * enough pages are already being scanned that that high
7080 		 * watermark would be met at 100% efficiency.
7081 		 */
7082 		if (kswapd_shrink_node(pgdat, &sc))
7083 			raise_priority = false;
7084 
7085 		/*
7086 		 * If the low watermark is met there is no need for processes
7087 		 * to be throttled on pfmemalloc_wait as they should not be
7088 		 * able to safely make forward progress. Wake them
7089 		 */
7090 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7091 				allow_direct_reclaim(pgdat))
7092 			wake_up_all(&pgdat->pfmemalloc_wait);
7093 
7094 		/* Check if kswapd should be suspending */
7095 		__fs_reclaim_release(_THIS_IP_);
7096 		ret = kthread_freezable_should_stop(&was_frozen);
7097 		__fs_reclaim_acquire(_THIS_IP_);
7098 		if (was_frozen || ret)
7099 			break;
7100 
7101 		/*
7102 		 * Raise priority if scanning rate is too low or there was no
7103 		 * progress in reclaiming pages
7104 		 */
7105 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7106 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7107 
7108 		/*
7109 		 * If reclaim made no progress for a boost, stop reclaim as
7110 		 * IO cannot be queued and it could be an infinite loop in
7111 		 * extreme circumstances.
7112 		 */
7113 		if (nr_boost_reclaim && !nr_reclaimed)
7114 			break;
7115 
7116 		if (raise_priority || !nr_reclaimed)
7117 			sc.priority--;
7118 	} while (sc.priority >= 1);
7119 
7120 	/*
7121 	 * Restart only if it went through the priority loop all the way,
7122 	 * but cache_trim_mode didn't work.
7123 	 */
7124 	if (!sc.nr_reclaimed && sc.priority < 1 &&
7125 	    !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
7126 		sc.no_cache_trim_mode = 1;
7127 		goto restart;
7128 	}
7129 
7130 	/*
7131 	 * If the reclaim was boosted, we might still be far from the
7132 	 * watermark_high at this point. We need to avoid increasing the
7133 	 * failure count to prevent the kswapd thread from stopping.
7134 	 */
7135 	if (!sc.nr_reclaimed && !boosted)
7136 		atomic_inc(&pgdat->kswapd_failures);
7137 
7138 out:
7139 	clear_reclaim_active(pgdat, highest_zoneidx);
7140 
7141 	/* If reclaim was boosted, account for the reclaim done in this pass */
7142 	if (boosted) {
7143 		unsigned long flags;
7144 
7145 		for (i = 0; i <= highest_zoneidx; i++) {
7146 			if (!zone_boosts[i])
7147 				continue;
7148 
7149 			/* Increments are under the zone lock */
7150 			zone = pgdat->node_zones + i;
7151 			spin_lock_irqsave(&zone->lock, flags);
7152 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7153 			spin_unlock_irqrestore(&zone->lock, flags);
7154 		}
7155 
7156 		/*
7157 		 * As there is now likely space, wakeup kcompact to defragment
7158 		 * pageblocks.
7159 		 */
7160 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7161 	}
7162 
7163 	snapshot_refaults(NULL, pgdat);
7164 	__fs_reclaim_release(_THIS_IP_);
7165 	psi_memstall_leave(&pflags);
7166 	set_task_reclaim_state(current, NULL);
7167 
7168 	/*
7169 	 * Return the order kswapd stopped reclaiming at as
7170 	 * prepare_kswapd_sleep() takes it into account. If another caller
7171 	 * entered the allocator slow path while kswapd was awake, order will
7172 	 * remain at the higher level.
7173 	 */
7174 	return sc.order;
7175 }
7176 
7177 /*
7178  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7179  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7180  * not a valid index then either kswapd runs for first time or kswapd couldn't
7181  * sleep after previous reclaim attempt (node is still unbalanced). In that
7182  * case return the zone index of the previous kswapd reclaim cycle.
7183  */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)7184 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7185 					   enum zone_type prev_highest_zoneidx)
7186 {
7187 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7188 
7189 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7190 }
7191 
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)7192 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7193 				unsigned int highest_zoneidx)
7194 {
7195 	long remaining = 0;
7196 	DEFINE_WAIT(wait);
7197 
7198 	if (freezing(current) || kthread_should_stop())
7199 		return;
7200 
7201 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7202 
7203 	/*
7204 	 * Try to sleep for a short interval. Note that kcompactd will only be
7205 	 * woken if it is possible to sleep for a short interval. This is
7206 	 * deliberate on the assumption that if reclaim cannot keep an
7207 	 * eligible zone balanced that it's also unlikely that compaction will
7208 	 * succeed.
7209 	 */
7210 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7211 		/*
7212 		 * Compaction records what page blocks it recently failed to
7213 		 * isolate pages from and skips them in the future scanning.
7214 		 * When kswapd is going to sleep, it is reasonable to assume
7215 		 * that pages and compaction may succeed so reset the cache.
7216 		 */
7217 		reset_isolation_suitable(pgdat);
7218 
7219 		/*
7220 		 * We have freed the memory, now we should compact it to make
7221 		 * allocation of the requested order possible.
7222 		 */
7223 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7224 
7225 		remaining = schedule_timeout(HZ/10);
7226 
7227 		/*
7228 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7229 		 * order. The values will either be from a wakeup request or
7230 		 * the previous request that slept prematurely.
7231 		 */
7232 		if (remaining) {
7233 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7234 					kswapd_highest_zoneidx(pgdat,
7235 							highest_zoneidx));
7236 
7237 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7238 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7239 		}
7240 
7241 		finish_wait(&pgdat->kswapd_wait, &wait);
7242 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7243 	}
7244 
7245 	/*
7246 	 * After a short sleep, check if it was a premature sleep. If not, then
7247 	 * go fully to sleep until explicitly woken up.
7248 	 */
7249 	if (!remaining &&
7250 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7251 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7252 
7253 		/*
7254 		 * vmstat counters are not perfectly accurate and the estimated
7255 		 * value for counters such as NR_FREE_PAGES can deviate from the
7256 		 * true value by nr_online_cpus * threshold. To avoid the zone
7257 		 * watermarks being breached while under pressure, we reduce the
7258 		 * per-cpu vmstat threshold while kswapd is awake and restore
7259 		 * them before going back to sleep.
7260 		 */
7261 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7262 
7263 		if (!kthread_should_stop())
7264 			schedule();
7265 
7266 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7267 	} else {
7268 		if (remaining)
7269 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7270 		else
7271 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7272 	}
7273 	finish_wait(&pgdat->kswapd_wait, &wait);
7274 }
7275 
7276 /*
7277  * The background pageout daemon, started as a kernel thread
7278  * from the init process.
7279  *
7280  * This basically trickles out pages so that we have _some_
7281  * free memory available even if there is no other activity
7282  * that frees anything up. This is needed for things like routing
7283  * etc, where we otherwise might have all activity going on in
7284  * asynchronous contexts that cannot page things out.
7285  *
7286  * If there are applications that are active memory-allocators
7287  * (most normal use), this basically shouldn't matter.
7288  */
kswapd(void * p)7289 static int kswapd(void *p)
7290 {
7291 	unsigned int alloc_order, reclaim_order;
7292 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7293 	pg_data_t *pgdat = (pg_data_t *)p;
7294 	struct task_struct *tsk = current;
7295 
7296 	/*
7297 	 * Tell the memory management that we're a "memory allocator",
7298 	 * and that if we need more memory we should get access to it
7299 	 * regardless (see "__alloc_pages()"). "kswapd" should
7300 	 * never get caught in the normal page freeing logic.
7301 	 *
7302 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7303 	 * you need a small amount of memory in order to be able to
7304 	 * page out something else, and this flag essentially protects
7305 	 * us from recursively trying to free more memory as we're
7306 	 * trying to free the first piece of memory in the first place).
7307 	 */
7308 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7309 	set_freezable();
7310 
7311 	WRITE_ONCE(pgdat->kswapd_order, 0);
7312 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7313 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7314 	for ( ; ; ) {
7315 		bool was_frozen;
7316 
7317 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7318 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7319 							highest_zoneidx);
7320 
7321 kswapd_try_sleep:
7322 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7323 					highest_zoneidx);
7324 
7325 		/* Read the new order and highest_zoneidx */
7326 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7327 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7328 							highest_zoneidx);
7329 		WRITE_ONCE(pgdat->kswapd_order, 0);
7330 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7331 
7332 		if (kthread_freezable_should_stop(&was_frozen))
7333 			break;
7334 
7335 		/*
7336 		 * We can speed up thawing tasks if we don't call balance_pgdat
7337 		 * after returning from the refrigerator
7338 		 */
7339 		if (was_frozen)
7340 			continue;
7341 
7342 		/*
7343 		 * Reclaim begins at the requested order but if a high-order
7344 		 * reclaim fails then kswapd falls back to reclaiming for
7345 		 * order-0. If that happens, kswapd will consider sleeping
7346 		 * for the order it finished reclaiming at (reclaim_order)
7347 		 * but kcompactd is woken to compact for the original
7348 		 * request (alloc_order).
7349 		 */
7350 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7351 						alloc_order);
7352 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7353 						highest_zoneidx);
7354 		if (reclaim_order < alloc_order)
7355 			goto kswapd_try_sleep;
7356 	}
7357 
7358 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7359 
7360 	return 0;
7361 }
7362 
7363 /*
7364  * A zone is low on free memory or too fragmented for high-order memory.  If
7365  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7366  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7367  * has failed or is not needed, still wake up kcompactd if only compaction is
7368  * needed.
7369  */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)7370 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7371 		   enum zone_type highest_zoneidx)
7372 {
7373 	pg_data_t *pgdat;
7374 	enum zone_type curr_idx;
7375 
7376 	if (!managed_zone(zone))
7377 		return;
7378 
7379 	if (!cpuset_zone_allowed(zone, gfp_flags))
7380 		return;
7381 
7382 	pgdat = zone->zone_pgdat;
7383 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7384 
7385 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7386 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7387 
7388 	if (READ_ONCE(pgdat->kswapd_order) < order)
7389 		WRITE_ONCE(pgdat->kswapd_order, order);
7390 
7391 	if (!waitqueue_active(&pgdat->kswapd_wait))
7392 		return;
7393 
7394 	/* Hopeless node, leave it to direct reclaim if possible */
7395 	if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES ||
7396 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7397 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7398 		/*
7399 		 * There may be plenty of free memory available, but it's too
7400 		 * fragmented for high-order allocations.  Wake up kcompactd
7401 		 * and rely on compaction_suitable() to determine if it's
7402 		 * needed.  If it fails, it will defer subsequent attempts to
7403 		 * ratelimit its work.
7404 		 */
7405 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7406 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7407 		return;
7408 	}
7409 
7410 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7411 				      gfp_flags);
7412 	wake_up_interruptible(&pgdat->kswapd_wait);
7413 }
7414 
7415 #ifdef CONFIG_HIBERNATION
7416 /*
7417  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7418  * freed pages.
7419  *
7420  * Rather than trying to age LRUs the aim is to preserve the overall
7421  * LRU order by reclaiming preferentially
7422  * inactive > active > active referenced > active mapped
7423  */
shrink_all_memory(unsigned long nr_to_reclaim)7424 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7425 {
7426 	struct scan_control sc = {
7427 		.nr_to_reclaim = nr_to_reclaim,
7428 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7429 		.reclaim_idx = MAX_NR_ZONES - 1,
7430 		.priority = DEF_PRIORITY,
7431 		.may_writepage = 1,
7432 		.may_unmap = 1,
7433 		.may_swap = 1,
7434 		.hibernation_mode = 1,
7435 	};
7436 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7437 	unsigned long nr_reclaimed;
7438 	unsigned int noreclaim_flag;
7439 
7440 	fs_reclaim_acquire(sc.gfp_mask);
7441 	noreclaim_flag = memalloc_noreclaim_save();
7442 	set_task_reclaim_state(current, &sc.reclaim_state);
7443 
7444 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7445 
7446 	set_task_reclaim_state(current, NULL);
7447 	memalloc_noreclaim_restore(noreclaim_flag);
7448 	fs_reclaim_release(sc.gfp_mask);
7449 
7450 	return nr_reclaimed;
7451 }
7452 #endif /* CONFIG_HIBERNATION */
7453 
7454 /*
7455  * This kswapd start function will be called by init and node-hot-add.
7456  */
kswapd_run(int nid)7457 void __meminit kswapd_run(int nid)
7458 {
7459 	pg_data_t *pgdat = NODE_DATA(nid);
7460 
7461 	pgdat_kswapd_lock(pgdat);
7462 	if (!pgdat->kswapd) {
7463 		pgdat->kswapd = kthread_create_on_node(kswapd, pgdat, nid, "kswapd%d", nid);
7464 		if (IS_ERR(pgdat->kswapd)) {
7465 			/* failure at boot is fatal */
7466 			pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7467 				   nid, PTR_ERR(pgdat->kswapd));
7468 			BUG_ON(system_state < SYSTEM_RUNNING);
7469 			pgdat->kswapd = NULL;
7470 		} else {
7471 			wake_up_process(pgdat->kswapd);
7472 		}
7473 	}
7474 	pgdat_kswapd_unlock(pgdat);
7475 }
7476 
7477 /*
7478  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7479  * be holding mem_hotplug_begin/done().
7480  */
kswapd_stop(int nid)7481 void __meminit kswapd_stop(int nid)
7482 {
7483 	pg_data_t *pgdat = NODE_DATA(nid);
7484 	struct task_struct *kswapd;
7485 
7486 	pgdat_kswapd_lock(pgdat);
7487 	kswapd = pgdat->kswapd;
7488 	if (kswapd) {
7489 		kthread_stop(kswapd);
7490 		pgdat->kswapd = NULL;
7491 	}
7492 	pgdat_kswapd_unlock(pgdat);
7493 }
7494 
7495 static const struct ctl_table vmscan_sysctl_table[] = {
7496 	{
7497 		.procname	= "swappiness",
7498 		.data		= &vm_swappiness,
7499 		.maxlen		= sizeof(vm_swappiness),
7500 		.mode		= 0644,
7501 		.proc_handler	= proc_dointvec_minmax,
7502 		.extra1		= SYSCTL_ZERO,
7503 		.extra2		= SYSCTL_TWO_HUNDRED,
7504 	},
7505 #ifdef CONFIG_NUMA
7506 	{
7507 		.procname	= "zone_reclaim_mode",
7508 		.data		= &node_reclaim_mode,
7509 		.maxlen		= sizeof(node_reclaim_mode),
7510 		.mode		= 0644,
7511 		.proc_handler	= proc_dointvec_minmax,
7512 		.extra1		= SYSCTL_ZERO,
7513 	}
7514 #endif
7515 };
7516 
kswapd_init(void)7517 static int __init kswapd_init(void)
7518 {
7519 	int nid;
7520 
7521 	swap_setup();
7522 	for_each_node_state(nid, N_MEMORY)
7523  		kswapd_run(nid);
7524 	register_sysctl_init("vm", vmscan_sysctl_table);
7525 	return 0;
7526 }
7527 
7528 module_init(kswapd_init)
7529 
7530 #ifdef CONFIG_NUMA
7531 /*
7532  * Node reclaim mode
7533  *
7534  * If non-zero call node_reclaim when the number of free pages falls below
7535  * the watermarks.
7536  */
7537 int node_reclaim_mode __read_mostly;
7538 
7539 /*
7540  * Priority for NODE_RECLAIM. This determines the fraction of pages
7541  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7542  * a zone.
7543  */
7544 #define NODE_RECLAIM_PRIORITY 4
7545 
7546 /*
7547  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7548  * occur.
7549  */
7550 int sysctl_min_unmapped_ratio = 1;
7551 
7552 /*
7553  * If the number of slab pages in a zone grows beyond this percentage then
7554  * slab reclaim needs to occur.
7555  */
7556 int sysctl_min_slab_ratio = 5;
7557 
node_unmapped_file_pages(struct pglist_data * pgdat)7558 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7559 {
7560 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7561 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7562 		node_page_state(pgdat, NR_ACTIVE_FILE);
7563 
7564 	/*
7565 	 * It's possible for there to be more file mapped pages than
7566 	 * accounted for by the pages on the file LRU lists because
7567 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7568 	 */
7569 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7570 }
7571 
7572 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)7573 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7574 {
7575 	unsigned long nr_pagecache_reclaimable;
7576 	unsigned long delta = 0;
7577 
7578 	/*
7579 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7580 	 * potentially reclaimable. Otherwise, we have to worry about
7581 	 * pages like swapcache and node_unmapped_file_pages() provides
7582 	 * a better estimate
7583 	 */
7584 	if (node_reclaim_mode & RECLAIM_UNMAP)
7585 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7586 	else
7587 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7588 
7589 	/*
7590 	 * Since we can't clean folios through reclaim, remove dirty file
7591 	 * folios from consideration.
7592 	 */
7593 	delta += node_page_state(pgdat, NR_FILE_DIRTY);
7594 
7595 	/* Watch for any possible underflows due to delta */
7596 	if (unlikely(delta > nr_pagecache_reclaimable))
7597 		delta = nr_pagecache_reclaimable;
7598 
7599 	return nr_pagecache_reclaimable - delta;
7600 }
7601 
7602 /*
7603  * Try to free up some pages from this node through reclaim.
7604  */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned long nr_pages,struct scan_control * sc)7605 static unsigned long __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask,
7606 				    unsigned long nr_pages,
7607 				    struct scan_control *sc)
7608 {
7609 	struct task_struct *p = current;
7610 	unsigned int noreclaim_flag;
7611 	unsigned long pflags;
7612 
7613 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, sc->order,
7614 					   sc->gfp_mask);
7615 
7616 	cond_resched();
7617 	psi_memstall_enter(&pflags);
7618 	delayacct_freepages_start();
7619 	fs_reclaim_acquire(sc->gfp_mask);
7620 	/*
7621 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7622 	 */
7623 	noreclaim_flag = memalloc_noreclaim_save();
7624 	set_task_reclaim_state(p, &sc->reclaim_state);
7625 
7626 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7627 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7628 		/*
7629 		 * Free memory by calling shrink node with increasing
7630 		 * priorities until we have enough memory freed.
7631 		 */
7632 		do {
7633 			shrink_node(pgdat, sc);
7634 		} while (sc->nr_reclaimed < nr_pages && --sc->priority >= 0);
7635 	}
7636 
7637 	set_task_reclaim_state(p, NULL);
7638 	memalloc_noreclaim_restore(noreclaim_flag);
7639 	fs_reclaim_release(sc->gfp_mask);
7640 	delayacct_freepages_end();
7641 	psi_memstall_leave(&pflags);
7642 
7643 	trace_mm_vmscan_node_reclaim_end(sc->nr_reclaimed);
7644 
7645 	return sc->nr_reclaimed;
7646 }
7647 
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7648 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7649 {
7650 	int ret;
7651 	/* Minimum pages needed in order to stay on node */
7652 	const unsigned long nr_pages = 1 << order;
7653 	struct scan_control sc = {
7654 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7655 		.gfp_mask = current_gfp_context(gfp_mask),
7656 		.order = order,
7657 		.priority = NODE_RECLAIM_PRIORITY,
7658 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7659 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7660 		.may_swap = 1,
7661 		.reclaim_idx = gfp_zone(gfp_mask),
7662 	};
7663 
7664 	/*
7665 	 * Node reclaim reclaims unmapped file backed pages and
7666 	 * slab pages if we are over the defined limits.
7667 	 *
7668 	 * A small portion of unmapped file backed pages is needed for
7669 	 * file I/O otherwise pages read by file I/O will be immediately
7670 	 * thrown out if the node is overallocated. So we do not reclaim
7671 	 * if less than a specified percentage of the node is used by
7672 	 * unmapped file backed pages.
7673 	 */
7674 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7675 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7676 	    pgdat->min_slab_pages)
7677 		return NODE_RECLAIM_FULL;
7678 
7679 	/*
7680 	 * Do not scan if the allocation should not be delayed.
7681 	 */
7682 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7683 		return NODE_RECLAIM_NOSCAN;
7684 
7685 	/*
7686 	 * Only run node reclaim on the local node or on nodes that do not
7687 	 * have associated processors. This will favor the local processor
7688 	 * over remote processors and spread off node memory allocations
7689 	 * as wide as possible.
7690 	 */
7691 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7692 		return NODE_RECLAIM_NOSCAN;
7693 
7694 	if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7695 		return NODE_RECLAIM_NOSCAN;
7696 
7697 	ret = __node_reclaim(pgdat, gfp_mask, nr_pages, &sc) >= nr_pages;
7698 	clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7699 
7700 	if (ret)
7701 		count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS);
7702 	else
7703 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7704 
7705 	return ret;
7706 }
7707 
7708 enum {
7709 	MEMORY_RECLAIM_SWAPPINESS = 0,
7710 	MEMORY_RECLAIM_SWAPPINESS_MAX,
7711 	MEMORY_RECLAIM_NULL,
7712 };
7713 static const match_table_t tokens = {
7714 	{ MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
7715 	{ MEMORY_RECLAIM_SWAPPINESS_MAX, "swappiness=max"},
7716 	{ MEMORY_RECLAIM_NULL, NULL },
7717 };
7718 
user_proactive_reclaim(char * buf,struct mem_cgroup * memcg,pg_data_t * pgdat)7719 int user_proactive_reclaim(char *buf,
7720 			   struct mem_cgroup *memcg, pg_data_t *pgdat)
7721 {
7722 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
7723 	unsigned long nr_to_reclaim, nr_reclaimed = 0;
7724 	int swappiness = -1;
7725 	char *old_buf, *start;
7726 	substring_t args[MAX_OPT_ARGS];
7727 	gfp_t gfp_mask = GFP_KERNEL;
7728 
7729 	if (!buf || (!memcg && !pgdat) || (memcg && pgdat))
7730 		return -EINVAL;
7731 
7732 	buf = strstrip(buf);
7733 
7734 	old_buf = buf;
7735 	nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
7736 	if (buf == old_buf)
7737 		return -EINVAL;
7738 
7739 	buf = strstrip(buf);
7740 
7741 	while ((start = strsep(&buf, " ")) != NULL) {
7742 		if (!strlen(start))
7743 			continue;
7744 		switch (match_token(start, tokens, args)) {
7745 		case MEMORY_RECLAIM_SWAPPINESS:
7746 			if (match_int(&args[0], &swappiness))
7747 				return -EINVAL;
7748 			if (swappiness < MIN_SWAPPINESS ||
7749 			    swappiness > MAX_SWAPPINESS)
7750 				return -EINVAL;
7751 			break;
7752 		case MEMORY_RECLAIM_SWAPPINESS_MAX:
7753 			swappiness = SWAPPINESS_ANON_ONLY;
7754 			break;
7755 		default:
7756 			return -EINVAL;
7757 		}
7758 	}
7759 
7760 	while (nr_reclaimed < nr_to_reclaim) {
7761 		/* Will converge on zero, but reclaim enforces a minimum */
7762 		unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
7763 		unsigned long reclaimed;
7764 
7765 		if (signal_pending(current))
7766 			return -EINTR;
7767 
7768 		/*
7769 		 * This is the final attempt, drain percpu lru caches in the
7770 		 * hope of introducing more evictable pages.
7771 		 */
7772 		if (!nr_retries)
7773 			lru_add_drain_all();
7774 
7775 		if (memcg) {
7776 			unsigned int reclaim_options;
7777 
7778 			reclaim_options = MEMCG_RECLAIM_MAY_SWAP |
7779 					  MEMCG_RECLAIM_PROACTIVE;
7780 			reclaimed = try_to_free_mem_cgroup_pages(memcg,
7781 						 batch_size, gfp_mask,
7782 						 reclaim_options,
7783 						 swappiness == -1 ? NULL : &swappiness);
7784 		} else {
7785 			struct scan_control sc = {
7786 				.gfp_mask = current_gfp_context(gfp_mask),
7787 				.reclaim_idx = gfp_zone(gfp_mask),
7788 				.proactive_swappiness = swappiness == -1 ? NULL : &swappiness,
7789 				.priority = DEF_PRIORITY,
7790 				.may_writepage = !laptop_mode,
7791 				.nr_to_reclaim = max(batch_size, SWAP_CLUSTER_MAX),
7792 				.may_unmap = 1,
7793 				.may_swap = 1,
7794 				.proactive = 1,
7795 			};
7796 
7797 			if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED,
7798 						  &pgdat->flags))
7799 				return -EBUSY;
7800 
7801 			reclaimed = __node_reclaim(pgdat, gfp_mask,
7802 						   batch_size, &sc);
7803 			clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7804 		}
7805 
7806 		if (!reclaimed && !nr_retries--)
7807 			return -EAGAIN;
7808 
7809 		nr_reclaimed += reclaimed;
7810 	}
7811 
7812 	return 0;
7813 }
7814 
7815 #endif
7816 
7817 /**
7818  * check_move_unevictable_folios - Move evictable folios to appropriate zone
7819  * lru list
7820  * @fbatch: Batch of lru folios to check.
7821  *
7822  * Checks folios for evictability, if an evictable folio is in the unevictable
7823  * lru list, moves it to the appropriate evictable lru list. This function
7824  * should be only used for lru folios.
7825  */
check_move_unevictable_folios(struct folio_batch * fbatch)7826 void check_move_unevictable_folios(struct folio_batch *fbatch)
7827 {
7828 	struct lruvec *lruvec = NULL;
7829 	int pgscanned = 0;
7830 	int pgrescued = 0;
7831 	int i;
7832 
7833 	for (i = 0; i < fbatch->nr; i++) {
7834 		struct folio *folio = fbatch->folios[i];
7835 		int nr_pages = folio_nr_pages(folio);
7836 
7837 		pgscanned += nr_pages;
7838 
7839 		/* block memcg migration while the folio moves between lrus */
7840 		if (!folio_test_clear_lru(folio))
7841 			continue;
7842 
7843 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7844 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7845 			lruvec_del_folio(lruvec, folio);
7846 			folio_clear_unevictable(folio);
7847 			lruvec_add_folio(lruvec, folio);
7848 			pgrescued += nr_pages;
7849 		}
7850 		folio_set_lru(folio);
7851 	}
7852 
7853 	if (lruvec) {
7854 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7855 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7856 		unlock_page_lruvec_irq(lruvec);
7857 	} else if (pgscanned) {
7858 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7859 	}
7860 }
7861 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7862 
7863 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
reclaim_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7864 static ssize_t reclaim_store(struct device *dev,
7865 			     struct device_attribute *attr,
7866 			     const char *buf, size_t count)
7867 {
7868 	int ret, nid = dev->id;
7869 
7870 	ret = user_proactive_reclaim((char *)buf, NULL, NODE_DATA(nid));
7871 	return ret ? -EAGAIN : count;
7872 }
7873 
7874 static DEVICE_ATTR_WO(reclaim);
reclaim_register_node(struct node * node)7875 int reclaim_register_node(struct node *node)
7876 {
7877 	return device_create_file(&node->dev, &dev_attr_reclaim);
7878 }
7879 
reclaim_unregister_node(struct node * node)7880 void reclaim_unregister_node(struct node *node)
7881 {
7882 	return device_remove_file(&node->dev, &dev_attr_reclaim);
7883 }
7884 #endif
7885