xref: /linux/mm/vmscan.c (revision 42b16d3ac371a2fac9b6f08fd75f23f34ba3955a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59 
60 #include <asm/tlbflush.h>
61 #include <asm/div64.h>
62 
63 #include <linux/swapops.h>
64 #include <linux/balloon_compaction.h>
65 #include <linux/sched/sysctl.h>
66 
67 #include "internal.h"
68 #include "swap.h"
69 
70 #define CREATE_TRACE_POINTS
71 #include <trace/events/vmscan.h>
72 
73 struct scan_control {
74 	/* How many pages shrink_list() should reclaim */
75 	unsigned long nr_to_reclaim;
76 
77 	/*
78 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
79 	 * are scanned.
80 	 */
81 	nodemask_t	*nodemask;
82 
83 	/*
84 	 * The memory cgroup that hit its limit and as a result is the
85 	 * primary target of this reclaim invocation.
86 	 */
87 	struct mem_cgroup *target_mem_cgroup;
88 
89 	/*
90 	 * Scan pressure balancing between anon and file LRUs
91 	 */
92 	unsigned long	anon_cost;
93 	unsigned long	file_cost;
94 
95 #ifdef CONFIG_MEMCG
96 	/* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
97 	int *proactive_swappiness;
98 #endif
99 
100 	/* Can active folios be deactivated as part of reclaim? */
101 #define DEACTIVATE_ANON 1
102 #define DEACTIVATE_FILE 2
103 	unsigned int may_deactivate:2;
104 	unsigned int force_deactivate:1;
105 	unsigned int skipped_deactivate:1;
106 
107 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
108 	unsigned int may_writepage:1;
109 
110 	/* Can mapped folios be reclaimed? */
111 	unsigned int may_unmap:1;
112 
113 	/* Can folios be swapped as part of reclaim? */
114 	unsigned int may_swap:1;
115 
116 	/* Not allow cache_trim_mode to be turned on as part of reclaim? */
117 	unsigned int no_cache_trim_mode:1;
118 
119 	/* Has cache_trim_mode failed at least once? */
120 	unsigned int cache_trim_mode_failed:1;
121 
122 	/* Proactive reclaim invoked by userspace through memory.reclaim */
123 	unsigned int proactive:1;
124 
125 	/*
126 	 * Cgroup memory below memory.low is protected as long as we
127 	 * don't threaten to OOM. If any cgroup is reclaimed at
128 	 * reduced force or passed over entirely due to its memory.low
129 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
130 	 * result, then go back for one more cycle that reclaims the protected
131 	 * memory (memcg_low_reclaim) to avert OOM.
132 	 */
133 	unsigned int memcg_low_reclaim:1;
134 	unsigned int memcg_low_skipped:1;
135 
136 	/* Shared cgroup tree walk failed, rescan the whole tree */
137 	unsigned int memcg_full_walk:1;
138 
139 	unsigned int hibernation_mode:1;
140 
141 	/* One of the zones is ready for compaction */
142 	unsigned int compaction_ready:1;
143 
144 	/* There is easily reclaimable cold cache in the current node */
145 	unsigned int cache_trim_mode:1;
146 
147 	/* The file folios on the current node are dangerously low */
148 	unsigned int file_is_tiny:1;
149 
150 	/* Always discard instead of demoting to lower tier memory */
151 	unsigned int no_demotion:1;
152 
153 	/* Allocation order */
154 	s8 order;
155 
156 	/* Scan (total_size >> priority) pages at once */
157 	s8 priority;
158 
159 	/* The highest zone to isolate folios for reclaim from */
160 	s8 reclaim_idx;
161 
162 	/* This context's GFP mask */
163 	gfp_t gfp_mask;
164 
165 	/* Incremented by the number of inactive pages that were scanned */
166 	unsigned long nr_scanned;
167 
168 	/* Number of pages freed so far during a call to shrink_zones() */
169 	unsigned long nr_reclaimed;
170 
171 	struct {
172 		unsigned int dirty;
173 		unsigned int unqueued_dirty;
174 		unsigned int congested;
175 		unsigned int writeback;
176 		unsigned int immediate;
177 		unsigned int file_taken;
178 		unsigned int taken;
179 	} nr;
180 
181 	/* for recording the reclaimed slab by now */
182 	struct reclaim_state reclaim_state;
183 };
184 
185 #ifdef ARCH_HAS_PREFETCHW
186 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
187 	do {								\
188 		if ((_folio)->lru.prev != _base) {			\
189 			struct folio *prev;				\
190 									\
191 			prev = lru_to_folio(&(_folio->lru));		\
192 			prefetchw(&prev->_field);			\
193 		}							\
194 	} while (0)
195 #else
196 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
197 #endif
198 
199 /*
200  * From 0 .. MAX_SWAPPINESS.  Higher means more swappy.
201  */
202 int vm_swappiness = 60;
203 
204 #ifdef CONFIG_MEMCG
205 
206 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
207 static bool cgroup_reclaim(struct scan_control *sc)
208 {
209 	return sc->target_mem_cgroup;
210 }
211 
212 /*
213  * Returns true for reclaim on the root cgroup. This is true for direct
214  * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
215  */
216 static bool root_reclaim(struct scan_control *sc)
217 {
218 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
219 }
220 
221 /**
222  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
223  * @sc: scan_control in question
224  *
225  * The normal page dirty throttling mechanism in balance_dirty_pages() is
226  * completely broken with the legacy memcg and direct stalling in
227  * shrink_folio_list() is used for throttling instead, which lacks all the
228  * niceties such as fairness, adaptive pausing, bandwidth proportional
229  * allocation and configurability.
230  *
231  * This function tests whether the vmscan currently in progress can assume
232  * that the normal dirty throttling mechanism is operational.
233  */
234 static bool writeback_throttling_sane(struct scan_control *sc)
235 {
236 	if (!cgroup_reclaim(sc))
237 		return true;
238 #ifdef CONFIG_CGROUP_WRITEBACK
239 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
240 		return true;
241 #endif
242 	return false;
243 }
244 
245 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
246 {
247 	if (sc->proactive && sc->proactive_swappiness)
248 		return *sc->proactive_swappiness;
249 	return mem_cgroup_swappiness(memcg);
250 }
251 #else
252 static bool cgroup_reclaim(struct scan_control *sc)
253 {
254 	return false;
255 }
256 
257 static bool root_reclaim(struct scan_control *sc)
258 {
259 	return true;
260 }
261 
262 static bool writeback_throttling_sane(struct scan_control *sc)
263 {
264 	return true;
265 }
266 
267 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
268 {
269 	return READ_ONCE(vm_swappiness);
270 }
271 #endif
272 
273 static void set_task_reclaim_state(struct task_struct *task,
274 				   struct reclaim_state *rs)
275 {
276 	/* Check for an overwrite */
277 	WARN_ON_ONCE(rs && task->reclaim_state);
278 
279 	/* Check for the nulling of an already-nulled member */
280 	WARN_ON_ONCE(!rs && !task->reclaim_state);
281 
282 	task->reclaim_state = rs;
283 }
284 
285 /*
286  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
287  * scan_control->nr_reclaimed.
288  */
289 static void flush_reclaim_state(struct scan_control *sc)
290 {
291 	/*
292 	 * Currently, reclaim_state->reclaimed includes three types of pages
293 	 * freed outside of vmscan:
294 	 * (1) Slab pages.
295 	 * (2) Clean file pages from pruned inodes (on highmem systems).
296 	 * (3) XFS freed buffer pages.
297 	 *
298 	 * For all of these cases, we cannot universally link the pages to a
299 	 * single memcg. For example, a memcg-aware shrinker can free one object
300 	 * charged to the target memcg, causing an entire page to be freed.
301 	 * If we count the entire page as reclaimed from the memcg, we end up
302 	 * overestimating the reclaimed amount (potentially under-reclaiming).
303 	 *
304 	 * Only count such pages for global reclaim to prevent under-reclaiming
305 	 * from the target memcg; preventing unnecessary retries during memcg
306 	 * charging and false positives from proactive reclaim.
307 	 *
308 	 * For uncommon cases where the freed pages were actually mostly
309 	 * charged to the target memcg, we end up underestimating the reclaimed
310 	 * amount. This should be fine. The freed pages will be uncharged
311 	 * anyway, even if they are not counted here properly, and we will be
312 	 * able to make forward progress in charging (which is usually in a
313 	 * retry loop).
314 	 *
315 	 * We can go one step further, and report the uncharged objcg pages in
316 	 * memcg reclaim, to make reporting more accurate and reduce
317 	 * underestimation, but it's probably not worth the complexity for now.
318 	 */
319 	if (current->reclaim_state && root_reclaim(sc)) {
320 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
321 		current->reclaim_state->reclaimed = 0;
322 	}
323 }
324 
325 static bool can_demote(int nid, struct scan_control *sc)
326 {
327 	if (!numa_demotion_enabled)
328 		return false;
329 	if (sc && sc->no_demotion)
330 		return false;
331 	if (next_demotion_node(nid) == NUMA_NO_NODE)
332 		return false;
333 
334 	return true;
335 }
336 
337 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
338 					  int nid,
339 					  struct scan_control *sc)
340 {
341 	if (memcg == NULL) {
342 		/*
343 		 * For non-memcg reclaim, is there
344 		 * space in any swap device?
345 		 */
346 		if (get_nr_swap_pages() > 0)
347 			return true;
348 	} else {
349 		/* Is the memcg below its swap limit? */
350 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
351 			return true;
352 	}
353 
354 	/*
355 	 * The page can not be swapped.
356 	 *
357 	 * Can it be reclaimed from this node via demotion?
358 	 */
359 	return can_demote(nid, sc);
360 }
361 
362 /*
363  * This misses isolated folios which are not accounted for to save counters.
364  * As the data only determines if reclaim or compaction continues, it is
365  * not expected that isolated folios will be a dominating factor.
366  */
367 unsigned long zone_reclaimable_pages(struct zone *zone)
368 {
369 	unsigned long nr;
370 
371 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
372 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
373 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
374 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
375 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
376 
377 	return nr;
378 }
379 
380 /**
381  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
382  * @lruvec: lru vector
383  * @lru: lru to use
384  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
385  */
386 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
387 				     int zone_idx)
388 {
389 	unsigned long size = 0;
390 	int zid;
391 
392 	for (zid = 0; zid <= zone_idx; zid++) {
393 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
394 
395 		if (!managed_zone(zone))
396 			continue;
397 
398 		if (!mem_cgroup_disabled())
399 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
400 		else
401 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
402 	}
403 	return size;
404 }
405 
406 static unsigned long drop_slab_node(int nid)
407 {
408 	unsigned long freed = 0;
409 	struct mem_cgroup *memcg = NULL;
410 
411 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
412 	do {
413 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
414 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
415 
416 	return freed;
417 }
418 
419 void drop_slab(void)
420 {
421 	int nid;
422 	int shift = 0;
423 	unsigned long freed;
424 
425 	do {
426 		freed = 0;
427 		for_each_online_node(nid) {
428 			if (fatal_signal_pending(current))
429 				return;
430 
431 			freed += drop_slab_node(nid);
432 		}
433 	} while ((freed >> shift++) > 1);
434 }
435 
436 static int reclaimer_offset(void)
437 {
438 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
439 			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
440 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
441 			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
442 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
443 			PGSCAN_DIRECT - PGSCAN_KSWAPD);
444 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
445 			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
446 
447 	if (current_is_kswapd())
448 		return 0;
449 	if (current_is_khugepaged())
450 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
451 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
452 }
453 
454 static inline int is_page_cache_freeable(struct folio *folio)
455 {
456 	/*
457 	 * A freeable page cache folio is referenced only by the caller
458 	 * that isolated the folio, the page cache and optional filesystem
459 	 * private data at folio->private.
460 	 */
461 	return folio_ref_count(folio) - folio_test_private(folio) ==
462 		1 + folio_nr_pages(folio);
463 }
464 
465 /*
466  * We detected a synchronous write error writing a folio out.  Probably
467  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
468  * fsync(), msync() or close().
469  *
470  * The tricky part is that after writepage we cannot touch the mapping: nothing
471  * prevents it from being freed up.  But we have a ref on the folio and once
472  * that folio is locked, the mapping is pinned.
473  *
474  * We're allowed to run sleeping folio_lock() here because we know the caller has
475  * __GFP_FS.
476  */
477 static void handle_write_error(struct address_space *mapping,
478 				struct folio *folio, int error)
479 {
480 	folio_lock(folio);
481 	if (folio_mapping(folio) == mapping)
482 		mapping_set_error(mapping, error);
483 	folio_unlock(folio);
484 }
485 
486 static bool skip_throttle_noprogress(pg_data_t *pgdat)
487 {
488 	int reclaimable = 0, write_pending = 0;
489 	int i;
490 
491 	/*
492 	 * If kswapd is disabled, reschedule if necessary but do not
493 	 * throttle as the system is likely near OOM.
494 	 */
495 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
496 		return true;
497 
498 	/*
499 	 * If there are a lot of dirty/writeback folios then do not
500 	 * throttle as throttling will occur when the folios cycle
501 	 * towards the end of the LRU if still under writeback.
502 	 */
503 	for (i = 0; i < MAX_NR_ZONES; i++) {
504 		struct zone *zone = pgdat->node_zones + i;
505 
506 		if (!managed_zone(zone))
507 			continue;
508 
509 		reclaimable += zone_reclaimable_pages(zone);
510 		write_pending += zone_page_state_snapshot(zone,
511 						  NR_ZONE_WRITE_PENDING);
512 	}
513 	if (2 * write_pending <= reclaimable)
514 		return true;
515 
516 	return false;
517 }
518 
519 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
520 {
521 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
522 	long timeout, ret;
523 	DEFINE_WAIT(wait);
524 
525 	/*
526 	 * Do not throttle user workers, kthreads other than kswapd or
527 	 * workqueues. They may be required for reclaim to make
528 	 * forward progress (e.g. journalling workqueues or kthreads).
529 	 */
530 	if (!current_is_kswapd() &&
531 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
532 		cond_resched();
533 		return;
534 	}
535 
536 	/*
537 	 * These figures are pulled out of thin air.
538 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
539 	 * parallel reclaimers which is a short-lived event so the timeout is
540 	 * short. Failing to make progress or waiting on writeback are
541 	 * potentially long-lived events so use a longer timeout. This is shaky
542 	 * logic as a failure to make progress could be due to anything from
543 	 * writeback to a slow device to excessive referenced folios at the tail
544 	 * of the inactive LRU.
545 	 */
546 	switch(reason) {
547 	case VMSCAN_THROTTLE_WRITEBACK:
548 		timeout = HZ/10;
549 
550 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
551 			WRITE_ONCE(pgdat->nr_reclaim_start,
552 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
553 		}
554 
555 		break;
556 	case VMSCAN_THROTTLE_CONGESTED:
557 		fallthrough;
558 	case VMSCAN_THROTTLE_NOPROGRESS:
559 		if (skip_throttle_noprogress(pgdat)) {
560 			cond_resched();
561 			return;
562 		}
563 
564 		timeout = 1;
565 
566 		break;
567 	case VMSCAN_THROTTLE_ISOLATED:
568 		timeout = HZ/50;
569 		break;
570 	default:
571 		WARN_ON_ONCE(1);
572 		timeout = HZ;
573 		break;
574 	}
575 
576 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
577 	ret = schedule_timeout(timeout);
578 	finish_wait(wqh, &wait);
579 
580 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
581 		atomic_dec(&pgdat->nr_writeback_throttled);
582 
583 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
584 				jiffies_to_usecs(timeout - ret),
585 				reason);
586 }
587 
588 /*
589  * Account for folios written if tasks are throttled waiting on dirty
590  * folios to clean. If enough folios have been cleaned since throttling
591  * started then wakeup the throttled tasks.
592  */
593 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
594 							int nr_throttled)
595 {
596 	unsigned long nr_written;
597 
598 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
599 
600 	/*
601 	 * This is an inaccurate read as the per-cpu deltas may not
602 	 * be synchronised. However, given that the system is
603 	 * writeback throttled, it is not worth taking the penalty
604 	 * of getting an accurate count. At worst, the throttle
605 	 * timeout guarantees forward progress.
606 	 */
607 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
608 		READ_ONCE(pgdat->nr_reclaim_start);
609 
610 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
611 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
612 }
613 
614 /* possible outcome of pageout() */
615 typedef enum {
616 	/* failed to write folio out, folio is locked */
617 	PAGE_KEEP,
618 	/* move folio to the active list, folio is locked */
619 	PAGE_ACTIVATE,
620 	/* folio has been sent to the disk successfully, folio is unlocked */
621 	PAGE_SUCCESS,
622 	/* folio is clean and locked */
623 	PAGE_CLEAN,
624 } pageout_t;
625 
626 /*
627  * pageout is called by shrink_folio_list() for each dirty folio.
628  * Calls ->writepage().
629  */
630 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
631 			 struct swap_iocb **plug)
632 {
633 	/*
634 	 * If the folio is dirty, only perform writeback if that write
635 	 * will be non-blocking.  To prevent this allocation from being
636 	 * stalled by pagecache activity.  But note that there may be
637 	 * stalls if we need to run get_block().  We could test
638 	 * PagePrivate for that.
639 	 *
640 	 * If this process is currently in __generic_file_write_iter() against
641 	 * this folio's queue, we can perform writeback even if that
642 	 * will block.
643 	 *
644 	 * If the folio is swapcache, write it back even if that would
645 	 * block, for some throttling. This happens by accident, because
646 	 * swap_backing_dev_info is bust: it doesn't reflect the
647 	 * congestion state of the swapdevs.  Easy to fix, if needed.
648 	 */
649 	if (!is_page_cache_freeable(folio))
650 		return PAGE_KEEP;
651 	if (!mapping) {
652 		/*
653 		 * Some data journaling orphaned folios can have
654 		 * folio->mapping == NULL while being dirty with clean buffers.
655 		 */
656 		if (folio_test_private(folio)) {
657 			if (try_to_free_buffers(folio)) {
658 				folio_clear_dirty(folio);
659 				pr_info("%s: orphaned folio\n", __func__);
660 				return PAGE_CLEAN;
661 			}
662 		}
663 		return PAGE_KEEP;
664 	}
665 	if (mapping->a_ops->writepage == NULL)
666 		return PAGE_ACTIVATE;
667 
668 	if (folio_clear_dirty_for_io(folio)) {
669 		int res;
670 		struct writeback_control wbc = {
671 			.sync_mode = WB_SYNC_NONE,
672 			.nr_to_write = SWAP_CLUSTER_MAX,
673 			.range_start = 0,
674 			.range_end = LLONG_MAX,
675 			.for_reclaim = 1,
676 			.swap_plug = plug,
677 		};
678 
679 		folio_set_reclaim(folio);
680 		res = mapping->a_ops->writepage(&folio->page, &wbc);
681 		if (res < 0)
682 			handle_write_error(mapping, folio, res);
683 		if (res == AOP_WRITEPAGE_ACTIVATE) {
684 			folio_clear_reclaim(folio);
685 			return PAGE_ACTIVATE;
686 		}
687 
688 		if (!folio_test_writeback(folio)) {
689 			/* synchronous write or broken a_ops? */
690 			folio_clear_reclaim(folio);
691 		}
692 		trace_mm_vmscan_write_folio(folio);
693 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
694 		return PAGE_SUCCESS;
695 	}
696 
697 	return PAGE_CLEAN;
698 }
699 
700 /*
701  * Same as remove_mapping, but if the folio is removed from the mapping, it
702  * gets returned with a refcount of 0.
703  */
704 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
705 			    bool reclaimed, struct mem_cgroup *target_memcg)
706 {
707 	int refcount;
708 	void *shadow = NULL;
709 
710 	BUG_ON(!folio_test_locked(folio));
711 	BUG_ON(mapping != folio_mapping(folio));
712 
713 	if (!folio_test_swapcache(folio))
714 		spin_lock(&mapping->host->i_lock);
715 	xa_lock_irq(&mapping->i_pages);
716 	/*
717 	 * The non racy check for a busy folio.
718 	 *
719 	 * Must be careful with the order of the tests. When someone has
720 	 * a ref to the folio, it may be possible that they dirty it then
721 	 * drop the reference. So if the dirty flag is tested before the
722 	 * refcount here, then the following race may occur:
723 	 *
724 	 * get_user_pages(&page);
725 	 * [user mapping goes away]
726 	 * write_to(page);
727 	 *				!folio_test_dirty(folio)    [good]
728 	 * folio_set_dirty(folio);
729 	 * folio_put(folio);
730 	 *				!refcount(folio)   [good, discard it]
731 	 *
732 	 * [oops, our write_to data is lost]
733 	 *
734 	 * Reversing the order of the tests ensures such a situation cannot
735 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
736 	 * load is not satisfied before that of folio->_refcount.
737 	 *
738 	 * Note that if the dirty flag is always set via folio_mark_dirty,
739 	 * and thus under the i_pages lock, then this ordering is not required.
740 	 */
741 	refcount = 1 + folio_nr_pages(folio);
742 	if (!folio_ref_freeze(folio, refcount))
743 		goto cannot_free;
744 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
745 	if (unlikely(folio_test_dirty(folio))) {
746 		folio_ref_unfreeze(folio, refcount);
747 		goto cannot_free;
748 	}
749 
750 	if (folio_test_swapcache(folio)) {
751 		swp_entry_t swap = folio->swap;
752 
753 		if (reclaimed && !mapping_exiting(mapping))
754 			shadow = workingset_eviction(folio, target_memcg);
755 		__delete_from_swap_cache(folio, swap, shadow);
756 		mem_cgroup_swapout(folio, swap);
757 		xa_unlock_irq(&mapping->i_pages);
758 		put_swap_folio(folio, swap);
759 	} else {
760 		void (*free_folio)(struct folio *);
761 
762 		free_folio = mapping->a_ops->free_folio;
763 		/*
764 		 * Remember a shadow entry for reclaimed file cache in
765 		 * order to detect refaults, thus thrashing, later on.
766 		 *
767 		 * But don't store shadows in an address space that is
768 		 * already exiting.  This is not just an optimization,
769 		 * inode reclaim needs to empty out the radix tree or
770 		 * the nodes are lost.  Don't plant shadows behind its
771 		 * back.
772 		 *
773 		 * We also don't store shadows for DAX mappings because the
774 		 * only page cache folios found in these are zero pages
775 		 * covering holes, and because we don't want to mix DAX
776 		 * exceptional entries and shadow exceptional entries in the
777 		 * same address_space.
778 		 */
779 		if (reclaimed && folio_is_file_lru(folio) &&
780 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
781 			shadow = workingset_eviction(folio, target_memcg);
782 		__filemap_remove_folio(folio, shadow);
783 		xa_unlock_irq(&mapping->i_pages);
784 		if (mapping_shrinkable(mapping))
785 			inode_add_lru(mapping->host);
786 		spin_unlock(&mapping->host->i_lock);
787 
788 		if (free_folio)
789 			free_folio(folio);
790 	}
791 
792 	return 1;
793 
794 cannot_free:
795 	xa_unlock_irq(&mapping->i_pages);
796 	if (!folio_test_swapcache(folio))
797 		spin_unlock(&mapping->host->i_lock);
798 	return 0;
799 }
800 
801 /**
802  * remove_mapping() - Attempt to remove a folio from its mapping.
803  * @mapping: The address space.
804  * @folio: The folio to remove.
805  *
806  * If the folio is dirty, under writeback or if someone else has a ref
807  * on it, removal will fail.
808  * Return: The number of pages removed from the mapping.  0 if the folio
809  * could not be removed.
810  * Context: The caller should have a single refcount on the folio and
811  * hold its lock.
812  */
813 long remove_mapping(struct address_space *mapping, struct folio *folio)
814 {
815 	if (__remove_mapping(mapping, folio, false, NULL)) {
816 		/*
817 		 * Unfreezing the refcount with 1 effectively
818 		 * drops the pagecache ref for us without requiring another
819 		 * atomic operation.
820 		 */
821 		folio_ref_unfreeze(folio, 1);
822 		return folio_nr_pages(folio);
823 	}
824 	return 0;
825 }
826 
827 /**
828  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
829  * @folio: Folio to be returned to an LRU list.
830  *
831  * Add previously isolated @folio to appropriate LRU list.
832  * The folio may still be unevictable for other reasons.
833  *
834  * Context: lru_lock must not be held, interrupts must be enabled.
835  */
836 void folio_putback_lru(struct folio *folio)
837 {
838 	folio_add_lru(folio);
839 	folio_put(folio);		/* drop ref from isolate */
840 }
841 
842 enum folio_references {
843 	FOLIOREF_RECLAIM,
844 	FOLIOREF_RECLAIM_CLEAN,
845 	FOLIOREF_KEEP,
846 	FOLIOREF_ACTIVATE,
847 };
848 
849 static enum folio_references folio_check_references(struct folio *folio,
850 						  struct scan_control *sc)
851 {
852 	int referenced_ptes, referenced_folio;
853 	unsigned long vm_flags;
854 
855 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
856 					   &vm_flags);
857 	referenced_folio = folio_test_clear_referenced(folio);
858 
859 	/*
860 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
861 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
862 	 */
863 	if (vm_flags & VM_LOCKED)
864 		return FOLIOREF_ACTIVATE;
865 
866 	/* rmap lock contention: rotate */
867 	if (referenced_ptes == -1)
868 		return FOLIOREF_KEEP;
869 
870 	if (referenced_ptes) {
871 		/*
872 		 * All mapped folios start out with page table
873 		 * references from the instantiating fault, so we need
874 		 * to look twice if a mapped file/anon folio is used more
875 		 * than once.
876 		 *
877 		 * Mark it and spare it for another trip around the
878 		 * inactive list.  Another page table reference will
879 		 * lead to its activation.
880 		 *
881 		 * Note: the mark is set for activated folios as well
882 		 * so that recently deactivated but used folios are
883 		 * quickly recovered.
884 		 */
885 		folio_set_referenced(folio);
886 
887 		if (referenced_folio || referenced_ptes > 1)
888 			return FOLIOREF_ACTIVATE;
889 
890 		/*
891 		 * Activate file-backed executable folios after first usage.
892 		 */
893 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
894 			return FOLIOREF_ACTIVATE;
895 
896 		return FOLIOREF_KEEP;
897 	}
898 
899 	/* Reclaim if clean, defer dirty folios to writeback */
900 	if (referenced_folio && folio_is_file_lru(folio))
901 		return FOLIOREF_RECLAIM_CLEAN;
902 
903 	return FOLIOREF_RECLAIM;
904 }
905 
906 /* Check if a folio is dirty or under writeback */
907 static void folio_check_dirty_writeback(struct folio *folio,
908 				       bool *dirty, bool *writeback)
909 {
910 	struct address_space *mapping;
911 
912 	/*
913 	 * Anonymous folios are not handled by flushers and must be written
914 	 * from reclaim context. Do not stall reclaim based on them.
915 	 * MADV_FREE anonymous folios are put into inactive file list too.
916 	 * They could be mistakenly treated as file lru. So further anon
917 	 * test is needed.
918 	 */
919 	if (!folio_is_file_lru(folio) ||
920 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
921 		*dirty = false;
922 		*writeback = false;
923 		return;
924 	}
925 
926 	/* By default assume that the folio flags are accurate */
927 	*dirty = folio_test_dirty(folio);
928 	*writeback = folio_test_writeback(folio);
929 
930 	/* Verify dirty/writeback state if the filesystem supports it */
931 	if (!folio_test_private(folio))
932 		return;
933 
934 	mapping = folio_mapping(folio);
935 	if (mapping && mapping->a_ops->is_dirty_writeback)
936 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
937 }
938 
939 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private)
940 {
941 	struct folio *dst;
942 	nodemask_t *allowed_mask;
943 	struct migration_target_control *mtc;
944 
945 	mtc = (struct migration_target_control *)private;
946 
947 	allowed_mask = mtc->nmask;
948 	/*
949 	 * make sure we allocate from the target node first also trying to
950 	 * demote or reclaim pages from the target node via kswapd if we are
951 	 * low on free memory on target node. If we don't do this and if
952 	 * we have free memory on the slower(lower) memtier, we would start
953 	 * allocating pages from slower(lower) memory tiers without even forcing
954 	 * a demotion of cold pages from the target memtier. This can result
955 	 * in the kernel placing hot pages in slower(lower) memory tiers.
956 	 */
957 	mtc->nmask = NULL;
958 	mtc->gfp_mask |= __GFP_THISNODE;
959 	dst = alloc_migration_target(src, (unsigned long)mtc);
960 	if (dst)
961 		return dst;
962 
963 	mtc->gfp_mask &= ~__GFP_THISNODE;
964 	mtc->nmask = allowed_mask;
965 
966 	return alloc_migration_target(src, (unsigned long)mtc);
967 }
968 
969 /*
970  * Take folios on @demote_folios and attempt to demote them to another node.
971  * Folios which are not demoted are left on @demote_folios.
972  */
973 static unsigned int demote_folio_list(struct list_head *demote_folios,
974 				     struct pglist_data *pgdat)
975 {
976 	int target_nid = next_demotion_node(pgdat->node_id);
977 	unsigned int nr_succeeded;
978 	nodemask_t allowed_mask;
979 
980 	struct migration_target_control mtc = {
981 		/*
982 		 * Allocate from 'node', or fail quickly and quietly.
983 		 * When this happens, 'page' will likely just be discarded
984 		 * instead of migrated.
985 		 */
986 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
987 			__GFP_NOMEMALLOC | GFP_NOWAIT,
988 		.nid = target_nid,
989 		.nmask = &allowed_mask,
990 		.reason = MR_DEMOTION,
991 	};
992 
993 	if (list_empty(demote_folios))
994 		return 0;
995 
996 	if (target_nid == NUMA_NO_NODE)
997 		return 0;
998 
999 	node_get_allowed_targets(pgdat, &allowed_mask);
1000 
1001 	/* Demotion ignores all cpuset and mempolicy settings */
1002 	migrate_pages(demote_folios, alloc_migrate_folio, NULL,
1003 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1004 		      &nr_succeeded);
1005 
1006 	mod_node_page_state(pgdat, PGDEMOTE_KSWAPD + reclaimer_offset(),
1007 			    nr_succeeded);
1008 
1009 	return nr_succeeded;
1010 }
1011 
1012 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1013 {
1014 	if (gfp_mask & __GFP_FS)
1015 		return true;
1016 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1017 		return false;
1018 	/*
1019 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1020 	 * providing this isn't SWP_FS_OPS.
1021 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1022 	 * but that will never affect SWP_FS_OPS, so the data_race
1023 	 * is safe.
1024 	 */
1025 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1026 }
1027 
1028 /*
1029  * shrink_folio_list() returns the number of reclaimed pages
1030  */
1031 static unsigned int shrink_folio_list(struct list_head *folio_list,
1032 		struct pglist_data *pgdat, struct scan_control *sc,
1033 		struct reclaim_stat *stat, bool ignore_references)
1034 {
1035 	struct folio_batch free_folios;
1036 	LIST_HEAD(ret_folios);
1037 	LIST_HEAD(demote_folios);
1038 	unsigned int nr_reclaimed = 0;
1039 	unsigned int pgactivate = 0;
1040 	bool do_demote_pass;
1041 	struct swap_iocb *plug = NULL;
1042 
1043 	folio_batch_init(&free_folios);
1044 	memset(stat, 0, sizeof(*stat));
1045 	cond_resched();
1046 	do_demote_pass = can_demote(pgdat->node_id, sc);
1047 
1048 retry:
1049 	while (!list_empty(folio_list)) {
1050 		struct address_space *mapping;
1051 		struct folio *folio;
1052 		enum folio_references references = FOLIOREF_RECLAIM;
1053 		bool dirty, writeback;
1054 		unsigned int nr_pages;
1055 
1056 		cond_resched();
1057 
1058 		folio = lru_to_folio(folio_list);
1059 		list_del(&folio->lru);
1060 
1061 		if (!folio_trylock(folio))
1062 			goto keep;
1063 
1064 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1065 
1066 		nr_pages = folio_nr_pages(folio);
1067 
1068 		/* Account the number of base pages */
1069 		sc->nr_scanned += nr_pages;
1070 
1071 		if (unlikely(!folio_evictable(folio)))
1072 			goto activate_locked;
1073 
1074 		if (!sc->may_unmap && folio_mapped(folio))
1075 			goto keep_locked;
1076 
1077 		/* folio_update_gen() tried to promote this page? */
1078 		if (lru_gen_enabled() && !ignore_references &&
1079 		    folio_mapped(folio) && folio_test_referenced(folio))
1080 			goto keep_locked;
1081 
1082 		/*
1083 		 * The number of dirty pages determines if a node is marked
1084 		 * reclaim_congested. kswapd will stall and start writing
1085 		 * folios if the tail of the LRU is all dirty unqueued folios.
1086 		 */
1087 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1088 		if (dirty || writeback)
1089 			stat->nr_dirty += nr_pages;
1090 
1091 		if (dirty && !writeback)
1092 			stat->nr_unqueued_dirty += nr_pages;
1093 
1094 		/*
1095 		 * Treat this folio as congested if folios are cycling
1096 		 * through the LRU so quickly that the folios marked
1097 		 * for immediate reclaim are making it to the end of
1098 		 * the LRU a second time.
1099 		 */
1100 		if (writeback && folio_test_reclaim(folio))
1101 			stat->nr_congested += nr_pages;
1102 
1103 		/*
1104 		 * If a folio at the tail of the LRU is under writeback, there
1105 		 * are three cases to consider.
1106 		 *
1107 		 * 1) If reclaim is encountering an excessive number
1108 		 *    of folios under writeback and this folio has both
1109 		 *    the writeback and reclaim flags set, then it
1110 		 *    indicates that folios are being queued for I/O but
1111 		 *    are being recycled through the LRU before the I/O
1112 		 *    can complete. Waiting on the folio itself risks an
1113 		 *    indefinite stall if it is impossible to writeback
1114 		 *    the folio due to I/O error or disconnected storage
1115 		 *    so instead note that the LRU is being scanned too
1116 		 *    quickly and the caller can stall after the folio
1117 		 *    list has been processed.
1118 		 *
1119 		 * 2) Global or new memcg reclaim encounters a folio that is
1120 		 *    not marked for immediate reclaim, or the caller does not
1121 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1122 		 *    not to fs). In this case mark the folio for immediate
1123 		 *    reclaim and continue scanning.
1124 		 *
1125 		 *    Require may_enter_fs() because we would wait on fs, which
1126 		 *    may not have submitted I/O yet. And the loop driver might
1127 		 *    enter reclaim, and deadlock if it waits on a folio for
1128 		 *    which it is needed to do the write (loop masks off
1129 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1130 		 *    would probably show more reasons.
1131 		 *
1132 		 * 3) Legacy memcg encounters a folio that already has the
1133 		 *    reclaim flag set. memcg does not have any dirty folio
1134 		 *    throttling so we could easily OOM just because too many
1135 		 *    folios are in writeback and there is nothing else to
1136 		 *    reclaim. Wait for the writeback to complete.
1137 		 *
1138 		 * In cases 1) and 2) we activate the folios to get them out of
1139 		 * the way while we continue scanning for clean folios on the
1140 		 * inactive list and refilling from the active list. The
1141 		 * observation here is that waiting for disk writes is more
1142 		 * expensive than potentially causing reloads down the line.
1143 		 * Since they're marked for immediate reclaim, they won't put
1144 		 * memory pressure on the cache working set any longer than it
1145 		 * takes to write them to disk.
1146 		 */
1147 		if (folio_test_writeback(folio)) {
1148 			/* Case 1 above */
1149 			if (current_is_kswapd() &&
1150 			    folio_test_reclaim(folio) &&
1151 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1152 				stat->nr_immediate += nr_pages;
1153 				goto activate_locked;
1154 
1155 			/* Case 2 above */
1156 			} else if (writeback_throttling_sane(sc) ||
1157 			    !folio_test_reclaim(folio) ||
1158 			    !may_enter_fs(folio, sc->gfp_mask)) {
1159 				/*
1160 				 * This is slightly racy -
1161 				 * folio_end_writeback() might have
1162 				 * just cleared the reclaim flag, then
1163 				 * setting the reclaim flag here ends up
1164 				 * interpreted as the readahead flag - but
1165 				 * that does not matter enough to care.
1166 				 * What we do want is for this folio to
1167 				 * have the reclaim flag set next time
1168 				 * memcg reclaim reaches the tests above,
1169 				 * so it will then wait for writeback to
1170 				 * avoid OOM; and it's also appropriate
1171 				 * in global reclaim.
1172 				 */
1173 				folio_set_reclaim(folio);
1174 				stat->nr_writeback += nr_pages;
1175 				goto activate_locked;
1176 
1177 			/* Case 3 above */
1178 			} else {
1179 				folio_unlock(folio);
1180 				folio_wait_writeback(folio);
1181 				/* then go back and try same folio again */
1182 				list_add_tail(&folio->lru, folio_list);
1183 				continue;
1184 			}
1185 		}
1186 
1187 		if (!ignore_references)
1188 			references = folio_check_references(folio, sc);
1189 
1190 		switch (references) {
1191 		case FOLIOREF_ACTIVATE:
1192 			goto activate_locked;
1193 		case FOLIOREF_KEEP:
1194 			stat->nr_ref_keep += nr_pages;
1195 			goto keep_locked;
1196 		case FOLIOREF_RECLAIM:
1197 		case FOLIOREF_RECLAIM_CLEAN:
1198 			; /* try to reclaim the folio below */
1199 		}
1200 
1201 		/*
1202 		 * Before reclaiming the folio, try to relocate
1203 		 * its contents to another node.
1204 		 */
1205 		if (do_demote_pass &&
1206 		    (thp_migration_supported() || !folio_test_large(folio))) {
1207 			list_add(&folio->lru, &demote_folios);
1208 			folio_unlock(folio);
1209 			continue;
1210 		}
1211 
1212 		/*
1213 		 * Anonymous process memory has backing store?
1214 		 * Try to allocate it some swap space here.
1215 		 * Lazyfree folio could be freed directly
1216 		 */
1217 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1218 			if (!folio_test_swapcache(folio)) {
1219 				if (!(sc->gfp_mask & __GFP_IO))
1220 					goto keep_locked;
1221 				if (folio_maybe_dma_pinned(folio))
1222 					goto keep_locked;
1223 				if (folio_test_large(folio)) {
1224 					/* cannot split folio, skip it */
1225 					if (!can_split_folio(folio, NULL))
1226 						goto activate_locked;
1227 					/*
1228 					 * Split partially mapped folios right away.
1229 					 * We can free the unmapped pages without IO.
1230 					 */
1231 					if (data_race(!list_empty(&folio->_deferred_list)) &&
1232 					    split_folio_to_list(folio, folio_list))
1233 						goto activate_locked;
1234 				}
1235 				if (!add_to_swap(folio)) {
1236 					int __maybe_unused order = folio_order(folio);
1237 
1238 					if (!folio_test_large(folio))
1239 						goto activate_locked_split;
1240 					/* Fallback to swap normal pages */
1241 					if (split_folio_to_list(folio, folio_list))
1242 						goto activate_locked;
1243 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1244 					if (nr_pages >= HPAGE_PMD_NR) {
1245 						count_memcg_folio_events(folio,
1246 							THP_SWPOUT_FALLBACK, 1);
1247 						count_vm_event(THP_SWPOUT_FALLBACK);
1248 					}
1249 					count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
1250 #endif
1251 					if (!add_to_swap(folio))
1252 						goto activate_locked_split;
1253 				}
1254 			}
1255 		} else if (folio_test_swapbacked(folio) &&
1256 			   folio_test_large(folio)) {
1257 			/* Split shmem folio */
1258 			if (split_folio_to_list(folio, folio_list))
1259 				goto keep_locked;
1260 		}
1261 
1262 		/*
1263 		 * If the folio was split above, the tail pages will make
1264 		 * their own pass through this function and be accounted
1265 		 * then.
1266 		 */
1267 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1268 			sc->nr_scanned -= (nr_pages - 1);
1269 			nr_pages = 1;
1270 		}
1271 
1272 		/*
1273 		 * The folio is mapped into the page tables of one or more
1274 		 * processes. Try to unmap it here.
1275 		 */
1276 		if (folio_mapped(folio)) {
1277 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1278 			bool was_swapbacked = folio_test_swapbacked(folio);
1279 
1280 			if (folio_test_pmd_mappable(folio))
1281 				flags |= TTU_SPLIT_HUGE_PMD;
1282 			/*
1283 			 * Without TTU_SYNC, try_to_unmap will only begin to
1284 			 * hold PTL from the first present PTE within a large
1285 			 * folio. Some initial PTEs might be skipped due to
1286 			 * races with parallel PTE writes in which PTEs can be
1287 			 * cleared temporarily before being written new present
1288 			 * values. This will lead to a large folio is still
1289 			 * mapped while some subpages have been partially
1290 			 * unmapped after try_to_unmap; TTU_SYNC helps
1291 			 * try_to_unmap acquire PTL from the first PTE,
1292 			 * eliminating the influence of temporary PTE values.
1293 			 */
1294 			if (folio_test_large(folio))
1295 				flags |= TTU_SYNC;
1296 
1297 			try_to_unmap(folio, flags);
1298 			if (folio_mapped(folio)) {
1299 				stat->nr_unmap_fail += nr_pages;
1300 				if (!was_swapbacked &&
1301 				    folio_test_swapbacked(folio))
1302 					stat->nr_lazyfree_fail += nr_pages;
1303 				goto activate_locked;
1304 			}
1305 		}
1306 
1307 		/*
1308 		 * Folio is unmapped now so it cannot be newly pinned anymore.
1309 		 * No point in trying to reclaim folio if it is pinned.
1310 		 * Furthermore we don't want to reclaim underlying fs metadata
1311 		 * if the folio is pinned and thus potentially modified by the
1312 		 * pinning process as that may upset the filesystem.
1313 		 */
1314 		if (folio_maybe_dma_pinned(folio))
1315 			goto activate_locked;
1316 
1317 		mapping = folio_mapping(folio);
1318 		if (folio_test_dirty(folio)) {
1319 			/*
1320 			 * Only kswapd can writeback filesystem folios
1321 			 * to avoid risk of stack overflow. But avoid
1322 			 * injecting inefficient single-folio I/O into
1323 			 * flusher writeback as much as possible: only
1324 			 * write folios when we've encountered many
1325 			 * dirty folios, and when we've already scanned
1326 			 * the rest of the LRU for clean folios and see
1327 			 * the same dirty folios again (with the reclaim
1328 			 * flag set).
1329 			 */
1330 			if (folio_is_file_lru(folio) &&
1331 			    (!current_is_kswapd() ||
1332 			     !folio_test_reclaim(folio) ||
1333 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1334 				/*
1335 				 * Immediately reclaim when written back.
1336 				 * Similar in principle to folio_deactivate()
1337 				 * except we already have the folio isolated
1338 				 * and know it's dirty
1339 				 */
1340 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1341 						nr_pages);
1342 				folio_set_reclaim(folio);
1343 
1344 				goto activate_locked;
1345 			}
1346 
1347 			if (references == FOLIOREF_RECLAIM_CLEAN)
1348 				goto keep_locked;
1349 			if (!may_enter_fs(folio, sc->gfp_mask))
1350 				goto keep_locked;
1351 			if (!sc->may_writepage)
1352 				goto keep_locked;
1353 
1354 			/*
1355 			 * Folio is dirty. Flush the TLB if a writable entry
1356 			 * potentially exists to avoid CPU writes after I/O
1357 			 * starts and then write it out here.
1358 			 */
1359 			try_to_unmap_flush_dirty();
1360 			switch (pageout(folio, mapping, &plug)) {
1361 			case PAGE_KEEP:
1362 				goto keep_locked;
1363 			case PAGE_ACTIVATE:
1364 				goto activate_locked;
1365 			case PAGE_SUCCESS:
1366 				stat->nr_pageout += nr_pages;
1367 
1368 				if (folio_test_writeback(folio))
1369 					goto keep;
1370 				if (folio_test_dirty(folio))
1371 					goto keep;
1372 
1373 				/*
1374 				 * A synchronous write - probably a ramdisk.  Go
1375 				 * ahead and try to reclaim the folio.
1376 				 */
1377 				if (!folio_trylock(folio))
1378 					goto keep;
1379 				if (folio_test_dirty(folio) ||
1380 				    folio_test_writeback(folio))
1381 					goto keep_locked;
1382 				mapping = folio_mapping(folio);
1383 				fallthrough;
1384 			case PAGE_CLEAN:
1385 				; /* try to free the folio below */
1386 			}
1387 		}
1388 
1389 		/*
1390 		 * If the folio has buffers, try to free the buffer
1391 		 * mappings associated with this folio. If we succeed
1392 		 * we try to free the folio as well.
1393 		 *
1394 		 * We do this even if the folio is dirty.
1395 		 * filemap_release_folio() does not perform I/O, but it
1396 		 * is possible for a folio to have the dirty flag set,
1397 		 * but it is actually clean (all its buffers are clean).
1398 		 * This happens if the buffers were written out directly,
1399 		 * with submit_bh(). ext3 will do this, as well as
1400 		 * the blockdev mapping.  filemap_release_folio() will
1401 		 * discover that cleanness and will drop the buffers
1402 		 * and mark the folio clean - it can be freed.
1403 		 *
1404 		 * Rarely, folios can have buffers and no ->mapping.
1405 		 * These are the folios which were not successfully
1406 		 * invalidated in truncate_cleanup_folio().  We try to
1407 		 * drop those buffers here and if that worked, and the
1408 		 * folio is no longer mapped into process address space
1409 		 * (refcount == 1) it can be freed.  Otherwise, leave
1410 		 * the folio on the LRU so it is swappable.
1411 		 */
1412 		if (folio_needs_release(folio)) {
1413 			if (!filemap_release_folio(folio, sc->gfp_mask))
1414 				goto activate_locked;
1415 			if (!mapping && folio_ref_count(folio) == 1) {
1416 				folio_unlock(folio);
1417 				if (folio_put_testzero(folio))
1418 					goto free_it;
1419 				else {
1420 					/*
1421 					 * rare race with speculative reference.
1422 					 * the speculative reference will free
1423 					 * this folio shortly, so we may
1424 					 * increment nr_reclaimed here (and
1425 					 * leave it off the LRU).
1426 					 */
1427 					nr_reclaimed += nr_pages;
1428 					continue;
1429 				}
1430 			}
1431 		}
1432 
1433 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1434 			/* follow __remove_mapping for reference */
1435 			if (!folio_ref_freeze(folio, 1))
1436 				goto keep_locked;
1437 			/*
1438 			 * The folio has only one reference left, which is
1439 			 * from the isolation. After the caller puts the
1440 			 * folio back on the lru and drops the reference, the
1441 			 * folio will be freed anyway. It doesn't matter
1442 			 * which lru it goes on. So we don't bother checking
1443 			 * the dirty flag here.
1444 			 */
1445 			count_vm_events(PGLAZYFREED, nr_pages);
1446 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1447 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1448 							 sc->target_mem_cgroup))
1449 			goto keep_locked;
1450 
1451 		folio_unlock(folio);
1452 free_it:
1453 		/*
1454 		 * Folio may get swapped out as a whole, need to account
1455 		 * all pages in it.
1456 		 */
1457 		nr_reclaimed += nr_pages;
1458 
1459 		folio_undo_large_rmappable(folio);
1460 		if (folio_batch_add(&free_folios, folio) == 0) {
1461 			mem_cgroup_uncharge_folios(&free_folios);
1462 			try_to_unmap_flush();
1463 			free_unref_folios(&free_folios);
1464 		}
1465 		continue;
1466 
1467 activate_locked_split:
1468 		/*
1469 		 * The tail pages that are failed to add into swap cache
1470 		 * reach here.  Fixup nr_scanned and nr_pages.
1471 		 */
1472 		if (nr_pages > 1) {
1473 			sc->nr_scanned -= (nr_pages - 1);
1474 			nr_pages = 1;
1475 		}
1476 activate_locked:
1477 		/* Not a candidate for swapping, so reclaim swap space. */
1478 		if (folio_test_swapcache(folio) &&
1479 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1480 			folio_free_swap(folio);
1481 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1482 		if (!folio_test_mlocked(folio)) {
1483 			int type = folio_is_file_lru(folio);
1484 			folio_set_active(folio);
1485 			stat->nr_activate[type] += nr_pages;
1486 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1487 		}
1488 keep_locked:
1489 		folio_unlock(folio);
1490 keep:
1491 		list_add(&folio->lru, &ret_folios);
1492 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1493 				folio_test_unevictable(folio), folio);
1494 	}
1495 	/* 'folio_list' is always empty here */
1496 
1497 	/* Migrate folios selected for demotion */
1498 	nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
1499 	/* Folios that could not be demoted are still in @demote_folios */
1500 	if (!list_empty(&demote_folios)) {
1501 		/* Folios which weren't demoted go back on @folio_list */
1502 		list_splice_init(&demote_folios, folio_list);
1503 
1504 		/*
1505 		 * goto retry to reclaim the undemoted folios in folio_list if
1506 		 * desired.
1507 		 *
1508 		 * Reclaiming directly from top tier nodes is not often desired
1509 		 * due to it breaking the LRU ordering: in general memory
1510 		 * should be reclaimed from lower tier nodes and demoted from
1511 		 * top tier nodes.
1512 		 *
1513 		 * However, disabling reclaim from top tier nodes entirely
1514 		 * would cause ooms in edge scenarios where lower tier memory
1515 		 * is unreclaimable for whatever reason, eg memory being
1516 		 * mlocked or too hot to reclaim. We can disable reclaim
1517 		 * from top tier nodes in proactive reclaim though as that is
1518 		 * not real memory pressure.
1519 		 */
1520 		if (!sc->proactive) {
1521 			do_demote_pass = false;
1522 			goto retry;
1523 		}
1524 	}
1525 
1526 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1527 
1528 	mem_cgroup_uncharge_folios(&free_folios);
1529 	try_to_unmap_flush();
1530 	free_unref_folios(&free_folios);
1531 
1532 	list_splice(&ret_folios, folio_list);
1533 	count_vm_events(PGACTIVATE, pgactivate);
1534 
1535 	if (plug)
1536 		swap_write_unplug(plug);
1537 	return nr_reclaimed;
1538 }
1539 
1540 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1541 					   struct list_head *folio_list)
1542 {
1543 	struct scan_control sc = {
1544 		.gfp_mask = GFP_KERNEL,
1545 		.may_unmap = 1,
1546 	};
1547 	struct reclaim_stat stat;
1548 	unsigned int nr_reclaimed;
1549 	struct folio *folio, *next;
1550 	LIST_HEAD(clean_folios);
1551 	unsigned int noreclaim_flag;
1552 
1553 	list_for_each_entry_safe(folio, next, folio_list, lru) {
1554 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1555 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1556 		    !folio_test_unevictable(folio)) {
1557 			folio_clear_active(folio);
1558 			list_move(&folio->lru, &clean_folios);
1559 		}
1560 	}
1561 
1562 	/*
1563 	 * We should be safe here since we are only dealing with file pages and
1564 	 * we are not kswapd and therefore cannot write dirty file pages. But
1565 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1566 	 * change in the future.
1567 	 */
1568 	noreclaim_flag = memalloc_noreclaim_save();
1569 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1570 					&stat, true);
1571 	memalloc_noreclaim_restore(noreclaim_flag);
1572 
1573 	list_splice(&clean_folios, folio_list);
1574 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1575 			    -(long)nr_reclaimed);
1576 	/*
1577 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1578 	 * they will rotate back to anonymous LRU in the end if it failed to
1579 	 * discard so isolated count will be mismatched.
1580 	 * Compensate the isolated count for both LRU lists.
1581 	 */
1582 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1583 			    stat.nr_lazyfree_fail);
1584 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1585 			    -(long)stat.nr_lazyfree_fail);
1586 	return nr_reclaimed;
1587 }
1588 
1589 /*
1590  * Update LRU sizes after isolating pages. The LRU size updates must
1591  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1592  */
1593 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1594 			enum lru_list lru, unsigned long *nr_zone_taken)
1595 {
1596 	int zid;
1597 
1598 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1599 		if (!nr_zone_taken[zid])
1600 			continue;
1601 
1602 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1603 	}
1604 
1605 }
1606 
1607 /*
1608  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1609  *
1610  * lruvec->lru_lock is heavily contended.  Some of the functions that
1611  * shrink the lists perform better by taking out a batch of pages
1612  * and working on them outside the LRU lock.
1613  *
1614  * For pagecache intensive workloads, this function is the hottest
1615  * spot in the kernel (apart from copy_*_user functions).
1616  *
1617  * Lru_lock must be held before calling this function.
1618  *
1619  * @nr_to_scan:	The number of eligible pages to look through on the list.
1620  * @lruvec:	The LRU vector to pull pages from.
1621  * @dst:	The temp list to put pages on to.
1622  * @nr_scanned:	The number of pages that were scanned.
1623  * @sc:		The scan_control struct for this reclaim session
1624  * @lru:	LRU list id for isolating
1625  *
1626  * returns how many pages were moved onto *@dst.
1627  */
1628 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1629 		struct lruvec *lruvec, struct list_head *dst,
1630 		unsigned long *nr_scanned, struct scan_control *sc,
1631 		enum lru_list lru)
1632 {
1633 	struct list_head *src = &lruvec->lists[lru];
1634 	unsigned long nr_taken = 0;
1635 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1636 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1637 	unsigned long skipped = 0;
1638 	unsigned long scan, total_scan, nr_pages;
1639 	LIST_HEAD(folios_skipped);
1640 
1641 	total_scan = 0;
1642 	scan = 0;
1643 	while (scan < nr_to_scan && !list_empty(src)) {
1644 		struct list_head *move_to = src;
1645 		struct folio *folio;
1646 
1647 		folio = lru_to_folio(src);
1648 		prefetchw_prev_lru_folio(folio, src, flags);
1649 
1650 		nr_pages = folio_nr_pages(folio);
1651 		total_scan += nr_pages;
1652 
1653 		if (folio_zonenum(folio) > sc->reclaim_idx) {
1654 			nr_skipped[folio_zonenum(folio)] += nr_pages;
1655 			move_to = &folios_skipped;
1656 			goto move;
1657 		}
1658 
1659 		/*
1660 		 * Do not count skipped folios because that makes the function
1661 		 * return with no isolated folios if the LRU mostly contains
1662 		 * ineligible folios.  This causes the VM to not reclaim any
1663 		 * folios, triggering a premature OOM.
1664 		 * Account all pages in a folio.
1665 		 */
1666 		scan += nr_pages;
1667 
1668 		if (!folio_test_lru(folio))
1669 			goto move;
1670 		if (!sc->may_unmap && folio_mapped(folio))
1671 			goto move;
1672 
1673 		/*
1674 		 * Be careful not to clear the lru flag until after we're
1675 		 * sure the folio is not being freed elsewhere -- the
1676 		 * folio release code relies on it.
1677 		 */
1678 		if (unlikely(!folio_try_get(folio)))
1679 			goto move;
1680 
1681 		if (!folio_test_clear_lru(folio)) {
1682 			/* Another thread is already isolating this folio */
1683 			folio_put(folio);
1684 			goto move;
1685 		}
1686 
1687 		nr_taken += nr_pages;
1688 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1689 		move_to = dst;
1690 move:
1691 		list_move(&folio->lru, move_to);
1692 	}
1693 
1694 	/*
1695 	 * Splice any skipped folios to the start of the LRU list. Note that
1696 	 * this disrupts the LRU order when reclaiming for lower zones but
1697 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1698 	 * scanning would soon rescan the same folios to skip and waste lots
1699 	 * of cpu cycles.
1700 	 */
1701 	if (!list_empty(&folios_skipped)) {
1702 		int zid;
1703 
1704 		list_splice(&folios_skipped, src);
1705 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1706 			if (!nr_skipped[zid])
1707 				continue;
1708 
1709 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1710 			skipped += nr_skipped[zid];
1711 		}
1712 	}
1713 	*nr_scanned = total_scan;
1714 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1715 				    total_scan, skipped, nr_taken, lru);
1716 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1717 	return nr_taken;
1718 }
1719 
1720 /**
1721  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1722  * @folio: Folio to isolate from its LRU list.
1723  *
1724  * Isolate a @folio from an LRU list and adjust the vmstat statistic
1725  * corresponding to whatever LRU list the folio was on.
1726  *
1727  * The folio will have its LRU flag cleared.  If it was found on the
1728  * active list, it will have the Active flag set.  If it was found on the
1729  * unevictable list, it will have the Unevictable flag set.  These flags
1730  * may need to be cleared by the caller before letting the page go.
1731  *
1732  * Context:
1733  *
1734  * (1) Must be called with an elevated refcount on the folio. This is a
1735  *     fundamental difference from isolate_lru_folios() (which is called
1736  *     without a stable reference).
1737  * (2) The lru_lock must not be held.
1738  * (3) Interrupts must be enabled.
1739  *
1740  * Return: true if the folio was removed from an LRU list.
1741  * false if the folio was not on an LRU list.
1742  */
1743 bool folio_isolate_lru(struct folio *folio)
1744 {
1745 	bool ret = false;
1746 
1747 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1748 
1749 	if (folio_test_clear_lru(folio)) {
1750 		struct lruvec *lruvec;
1751 
1752 		folio_get(folio);
1753 		lruvec = folio_lruvec_lock_irq(folio);
1754 		lruvec_del_folio(lruvec, folio);
1755 		unlock_page_lruvec_irq(lruvec);
1756 		ret = true;
1757 	}
1758 
1759 	return ret;
1760 }
1761 
1762 /*
1763  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1764  * then get rescheduled. When there are massive number of tasks doing page
1765  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1766  * the LRU list will go small and be scanned faster than necessary, leading to
1767  * unnecessary swapping, thrashing and OOM.
1768  */
1769 static bool too_many_isolated(struct pglist_data *pgdat, int file,
1770 		struct scan_control *sc)
1771 {
1772 	unsigned long inactive, isolated;
1773 	bool too_many;
1774 
1775 	if (current_is_kswapd())
1776 		return false;
1777 
1778 	if (!writeback_throttling_sane(sc))
1779 		return false;
1780 
1781 	if (file) {
1782 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1783 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1784 	} else {
1785 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1786 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1787 	}
1788 
1789 	/*
1790 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1791 	 * won't get blocked by normal direct-reclaimers, forming a circular
1792 	 * deadlock.
1793 	 */
1794 	if (gfp_has_io_fs(sc->gfp_mask))
1795 		inactive >>= 3;
1796 
1797 	too_many = isolated > inactive;
1798 
1799 	/* Wake up tasks throttled due to too_many_isolated. */
1800 	if (!too_many)
1801 		wake_throttle_isolated(pgdat);
1802 
1803 	return too_many;
1804 }
1805 
1806 /*
1807  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1808  *
1809  * Returns the number of pages moved to the given lruvec.
1810  */
1811 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1812 		struct list_head *list)
1813 {
1814 	int nr_pages, nr_moved = 0;
1815 	struct folio_batch free_folios;
1816 
1817 	folio_batch_init(&free_folios);
1818 	while (!list_empty(list)) {
1819 		struct folio *folio = lru_to_folio(list);
1820 
1821 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1822 		list_del(&folio->lru);
1823 		if (unlikely(!folio_evictable(folio))) {
1824 			spin_unlock_irq(&lruvec->lru_lock);
1825 			folio_putback_lru(folio);
1826 			spin_lock_irq(&lruvec->lru_lock);
1827 			continue;
1828 		}
1829 
1830 		/*
1831 		 * The folio_set_lru needs to be kept here for list integrity.
1832 		 * Otherwise:
1833 		 *   #0 move_folios_to_lru             #1 release_pages
1834 		 *   if (!folio_put_testzero())
1835 		 *				      if (folio_put_testzero())
1836 		 *				        !lru //skip lru_lock
1837 		 *     folio_set_lru()
1838 		 *     list_add(&folio->lru,)
1839 		 *                                        list_add(&folio->lru,)
1840 		 */
1841 		folio_set_lru(folio);
1842 
1843 		if (unlikely(folio_put_testzero(folio))) {
1844 			__folio_clear_lru_flags(folio);
1845 
1846 			folio_undo_large_rmappable(folio);
1847 			if (folio_batch_add(&free_folios, folio) == 0) {
1848 				spin_unlock_irq(&lruvec->lru_lock);
1849 				mem_cgroup_uncharge_folios(&free_folios);
1850 				free_unref_folios(&free_folios);
1851 				spin_lock_irq(&lruvec->lru_lock);
1852 			}
1853 
1854 			continue;
1855 		}
1856 
1857 		/*
1858 		 * All pages were isolated from the same lruvec (and isolation
1859 		 * inhibits memcg migration).
1860 		 */
1861 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1862 		lruvec_add_folio(lruvec, folio);
1863 		nr_pages = folio_nr_pages(folio);
1864 		nr_moved += nr_pages;
1865 		if (folio_test_active(folio))
1866 			workingset_age_nonresident(lruvec, nr_pages);
1867 	}
1868 
1869 	if (free_folios.nr) {
1870 		spin_unlock_irq(&lruvec->lru_lock);
1871 		mem_cgroup_uncharge_folios(&free_folios);
1872 		free_unref_folios(&free_folios);
1873 		spin_lock_irq(&lruvec->lru_lock);
1874 	}
1875 
1876 	return nr_moved;
1877 }
1878 
1879 /*
1880  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1881  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1882  * we should not throttle.  Otherwise it is safe to do so.
1883  */
1884 static int current_may_throttle(void)
1885 {
1886 	return !(current->flags & PF_LOCAL_THROTTLE);
1887 }
1888 
1889 /*
1890  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1891  * of reclaimed pages
1892  */
1893 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1894 		struct lruvec *lruvec, struct scan_control *sc,
1895 		enum lru_list lru)
1896 {
1897 	LIST_HEAD(folio_list);
1898 	unsigned long nr_scanned;
1899 	unsigned int nr_reclaimed = 0;
1900 	unsigned long nr_taken;
1901 	struct reclaim_stat stat;
1902 	bool file = is_file_lru(lru);
1903 	enum vm_event_item item;
1904 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1905 	bool stalled = false;
1906 
1907 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1908 		if (stalled)
1909 			return 0;
1910 
1911 		/* wait a bit for the reclaimer. */
1912 		stalled = true;
1913 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
1914 
1915 		/* We are about to die and free our memory. Return now. */
1916 		if (fatal_signal_pending(current))
1917 			return SWAP_CLUSTER_MAX;
1918 	}
1919 
1920 	lru_add_drain();
1921 
1922 	spin_lock_irq(&lruvec->lru_lock);
1923 
1924 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
1925 				     &nr_scanned, sc, lru);
1926 
1927 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1928 	item = PGSCAN_KSWAPD + reclaimer_offset();
1929 	if (!cgroup_reclaim(sc))
1930 		__count_vm_events(item, nr_scanned);
1931 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1932 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
1933 
1934 	spin_unlock_irq(&lruvec->lru_lock);
1935 
1936 	if (nr_taken == 0)
1937 		return 0;
1938 
1939 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
1940 
1941 	spin_lock_irq(&lruvec->lru_lock);
1942 	move_folios_to_lru(lruvec, &folio_list);
1943 
1944 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1945 	item = PGSTEAL_KSWAPD + reclaimer_offset();
1946 	if (!cgroup_reclaim(sc))
1947 		__count_vm_events(item, nr_reclaimed);
1948 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1949 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1950 	spin_unlock_irq(&lruvec->lru_lock);
1951 
1952 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
1953 
1954 	/*
1955 	 * If dirty folios are scanned that are not queued for IO, it
1956 	 * implies that flushers are not doing their job. This can
1957 	 * happen when memory pressure pushes dirty folios to the end of
1958 	 * the LRU before the dirty limits are breached and the dirty
1959 	 * data has expired. It can also happen when the proportion of
1960 	 * dirty folios grows not through writes but through memory
1961 	 * pressure reclaiming all the clean cache. And in some cases,
1962 	 * the flushers simply cannot keep up with the allocation
1963 	 * rate. Nudge the flusher threads in case they are asleep.
1964 	 */
1965 	if (stat.nr_unqueued_dirty == nr_taken) {
1966 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1967 		/*
1968 		 * For cgroupv1 dirty throttling is achieved by waking up
1969 		 * the kernel flusher here and later waiting on folios
1970 		 * which are in writeback to finish (see shrink_folio_list()).
1971 		 *
1972 		 * Flusher may not be able to issue writeback quickly
1973 		 * enough for cgroupv1 writeback throttling to work
1974 		 * on a large system.
1975 		 */
1976 		if (!writeback_throttling_sane(sc))
1977 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
1978 	}
1979 
1980 	sc->nr.dirty += stat.nr_dirty;
1981 	sc->nr.congested += stat.nr_congested;
1982 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1983 	sc->nr.writeback += stat.nr_writeback;
1984 	sc->nr.immediate += stat.nr_immediate;
1985 	sc->nr.taken += nr_taken;
1986 	if (file)
1987 		sc->nr.file_taken += nr_taken;
1988 
1989 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1990 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1991 	return nr_reclaimed;
1992 }
1993 
1994 /*
1995  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
1996  *
1997  * We move them the other way if the folio is referenced by one or more
1998  * processes.
1999  *
2000  * If the folios are mostly unmapped, the processing is fast and it is
2001  * appropriate to hold lru_lock across the whole operation.  But if
2002  * the folios are mapped, the processing is slow (folio_referenced()), so
2003  * we should drop lru_lock around each folio.  It's impossible to balance
2004  * this, so instead we remove the folios from the LRU while processing them.
2005  * It is safe to rely on the active flag against the non-LRU folios in here
2006  * because nobody will play with that bit on a non-LRU folio.
2007  *
2008  * The downside is that we have to touch folio->_refcount against each folio.
2009  * But we had to alter folio->flags anyway.
2010  */
2011 static void shrink_active_list(unsigned long nr_to_scan,
2012 			       struct lruvec *lruvec,
2013 			       struct scan_control *sc,
2014 			       enum lru_list lru)
2015 {
2016 	unsigned long nr_taken;
2017 	unsigned long nr_scanned;
2018 	unsigned long vm_flags;
2019 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2020 	LIST_HEAD(l_active);
2021 	LIST_HEAD(l_inactive);
2022 	unsigned nr_deactivate, nr_activate;
2023 	unsigned nr_rotated = 0;
2024 	bool file = is_file_lru(lru);
2025 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2026 
2027 	lru_add_drain();
2028 
2029 	spin_lock_irq(&lruvec->lru_lock);
2030 
2031 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2032 				     &nr_scanned, sc, lru);
2033 
2034 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2035 
2036 	if (!cgroup_reclaim(sc))
2037 		__count_vm_events(PGREFILL, nr_scanned);
2038 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2039 
2040 	spin_unlock_irq(&lruvec->lru_lock);
2041 
2042 	while (!list_empty(&l_hold)) {
2043 		struct folio *folio;
2044 
2045 		cond_resched();
2046 		folio = lru_to_folio(&l_hold);
2047 		list_del(&folio->lru);
2048 
2049 		if (unlikely(!folio_evictable(folio))) {
2050 			folio_putback_lru(folio);
2051 			continue;
2052 		}
2053 
2054 		if (unlikely(buffer_heads_over_limit)) {
2055 			if (folio_needs_release(folio) &&
2056 			    folio_trylock(folio)) {
2057 				filemap_release_folio(folio, 0);
2058 				folio_unlock(folio);
2059 			}
2060 		}
2061 
2062 		/* Referenced or rmap lock contention: rotate */
2063 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2064 				     &vm_flags) != 0) {
2065 			/*
2066 			 * Identify referenced, file-backed active folios and
2067 			 * give them one more trip around the active list. So
2068 			 * that executable code get better chances to stay in
2069 			 * memory under moderate memory pressure.  Anon folios
2070 			 * are not likely to be evicted by use-once streaming
2071 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2072 			 * so we ignore them here.
2073 			 */
2074 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2075 				nr_rotated += folio_nr_pages(folio);
2076 				list_add(&folio->lru, &l_active);
2077 				continue;
2078 			}
2079 		}
2080 
2081 		folio_clear_active(folio);	/* we are de-activating */
2082 		folio_set_workingset(folio);
2083 		list_add(&folio->lru, &l_inactive);
2084 	}
2085 
2086 	/*
2087 	 * Move folios back to the lru list.
2088 	 */
2089 	spin_lock_irq(&lruvec->lru_lock);
2090 
2091 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2092 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2093 
2094 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2095 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2096 
2097 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2098 	spin_unlock_irq(&lruvec->lru_lock);
2099 
2100 	if (nr_rotated)
2101 		lru_note_cost(lruvec, file, 0, nr_rotated);
2102 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2103 			nr_deactivate, nr_rotated, sc->priority, file);
2104 }
2105 
2106 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2107 				      struct pglist_data *pgdat)
2108 {
2109 	struct reclaim_stat dummy_stat;
2110 	unsigned int nr_reclaimed;
2111 	struct folio *folio;
2112 	struct scan_control sc = {
2113 		.gfp_mask = GFP_KERNEL,
2114 		.may_writepage = 1,
2115 		.may_unmap = 1,
2116 		.may_swap = 1,
2117 		.no_demotion = 1,
2118 	};
2119 
2120 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, true);
2121 	while (!list_empty(folio_list)) {
2122 		folio = lru_to_folio(folio_list);
2123 		list_del(&folio->lru);
2124 		folio_putback_lru(folio);
2125 	}
2126 
2127 	return nr_reclaimed;
2128 }
2129 
2130 unsigned long reclaim_pages(struct list_head *folio_list)
2131 {
2132 	int nid;
2133 	unsigned int nr_reclaimed = 0;
2134 	LIST_HEAD(node_folio_list);
2135 	unsigned int noreclaim_flag;
2136 
2137 	if (list_empty(folio_list))
2138 		return nr_reclaimed;
2139 
2140 	noreclaim_flag = memalloc_noreclaim_save();
2141 
2142 	nid = folio_nid(lru_to_folio(folio_list));
2143 	do {
2144 		struct folio *folio = lru_to_folio(folio_list);
2145 
2146 		if (nid == folio_nid(folio)) {
2147 			folio_clear_active(folio);
2148 			list_move(&folio->lru, &node_folio_list);
2149 			continue;
2150 		}
2151 
2152 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2153 		nid = folio_nid(lru_to_folio(folio_list));
2154 	} while (!list_empty(folio_list));
2155 
2156 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2157 
2158 	memalloc_noreclaim_restore(noreclaim_flag);
2159 
2160 	return nr_reclaimed;
2161 }
2162 
2163 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2164 				 struct lruvec *lruvec, struct scan_control *sc)
2165 {
2166 	if (is_active_lru(lru)) {
2167 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2168 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2169 		else
2170 			sc->skipped_deactivate = 1;
2171 		return 0;
2172 	}
2173 
2174 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2175 }
2176 
2177 /*
2178  * The inactive anon list should be small enough that the VM never has
2179  * to do too much work.
2180  *
2181  * The inactive file list should be small enough to leave most memory
2182  * to the established workingset on the scan-resistant active list,
2183  * but large enough to avoid thrashing the aggregate readahead window.
2184  *
2185  * Both inactive lists should also be large enough that each inactive
2186  * folio has a chance to be referenced again before it is reclaimed.
2187  *
2188  * If that fails and refaulting is observed, the inactive list grows.
2189  *
2190  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2191  * on this LRU, maintained by the pageout code. An inactive_ratio
2192  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2193  *
2194  * total     target    max
2195  * memory    ratio     inactive
2196  * -------------------------------------
2197  *   10MB       1         5MB
2198  *  100MB       1        50MB
2199  *    1GB       3       250MB
2200  *   10GB      10       0.9GB
2201  *  100GB      31         3GB
2202  *    1TB     101        10GB
2203  *   10TB     320        32GB
2204  */
2205 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2206 {
2207 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2208 	unsigned long inactive, active;
2209 	unsigned long inactive_ratio;
2210 	unsigned long gb;
2211 
2212 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2213 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2214 
2215 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2216 	if (gb)
2217 		inactive_ratio = int_sqrt(10 * gb);
2218 	else
2219 		inactive_ratio = 1;
2220 
2221 	return inactive * inactive_ratio < active;
2222 }
2223 
2224 enum scan_balance {
2225 	SCAN_EQUAL,
2226 	SCAN_FRACT,
2227 	SCAN_ANON,
2228 	SCAN_FILE,
2229 };
2230 
2231 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2232 {
2233 	unsigned long file;
2234 	struct lruvec *target_lruvec;
2235 
2236 	if (lru_gen_enabled())
2237 		return;
2238 
2239 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2240 
2241 	/*
2242 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2243 	 * lruvec stats for heuristics.
2244 	 */
2245 	mem_cgroup_flush_stats(sc->target_mem_cgroup);
2246 
2247 	/*
2248 	 * Determine the scan balance between anon and file LRUs.
2249 	 */
2250 	spin_lock_irq(&target_lruvec->lru_lock);
2251 	sc->anon_cost = target_lruvec->anon_cost;
2252 	sc->file_cost = target_lruvec->file_cost;
2253 	spin_unlock_irq(&target_lruvec->lru_lock);
2254 
2255 	/*
2256 	 * Target desirable inactive:active list ratios for the anon
2257 	 * and file LRU lists.
2258 	 */
2259 	if (!sc->force_deactivate) {
2260 		unsigned long refaults;
2261 
2262 		/*
2263 		 * When refaults are being observed, it means a new
2264 		 * workingset is being established. Deactivate to get
2265 		 * rid of any stale active pages quickly.
2266 		 */
2267 		refaults = lruvec_page_state(target_lruvec,
2268 				WORKINGSET_ACTIVATE_ANON);
2269 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2270 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2271 			sc->may_deactivate |= DEACTIVATE_ANON;
2272 		else
2273 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2274 
2275 		refaults = lruvec_page_state(target_lruvec,
2276 				WORKINGSET_ACTIVATE_FILE);
2277 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2278 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2279 			sc->may_deactivate |= DEACTIVATE_FILE;
2280 		else
2281 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2282 	} else
2283 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2284 
2285 	/*
2286 	 * If we have plenty of inactive file pages that aren't
2287 	 * thrashing, try to reclaim those first before touching
2288 	 * anonymous pages.
2289 	 */
2290 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2291 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2292 	    !sc->no_cache_trim_mode)
2293 		sc->cache_trim_mode = 1;
2294 	else
2295 		sc->cache_trim_mode = 0;
2296 
2297 	/*
2298 	 * Prevent the reclaimer from falling into the cache trap: as
2299 	 * cache pages start out inactive, every cache fault will tip
2300 	 * the scan balance towards the file LRU.  And as the file LRU
2301 	 * shrinks, so does the window for rotation from references.
2302 	 * This means we have a runaway feedback loop where a tiny
2303 	 * thrashing file LRU becomes infinitely more attractive than
2304 	 * anon pages.  Try to detect this based on file LRU size.
2305 	 */
2306 	if (!cgroup_reclaim(sc)) {
2307 		unsigned long total_high_wmark = 0;
2308 		unsigned long free, anon;
2309 		int z;
2310 
2311 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2312 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2313 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2314 
2315 		for (z = 0; z < MAX_NR_ZONES; z++) {
2316 			struct zone *zone = &pgdat->node_zones[z];
2317 
2318 			if (!managed_zone(zone))
2319 				continue;
2320 
2321 			total_high_wmark += high_wmark_pages(zone);
2322 		}
2323 
2324 		/*
2325 		 * Consider anon: if that's low too, this isn't a
2326 		 * runaway file reclaim problem, but rather just
2327 		 * extreme pressure. Reclaim as per usual then.
2328 		 */
2329 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2330 
2331 		sc->file_is_tiny =
2332 			file + free <= total_high_wmark &&
2333 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2334 			anon >> sc->priority;
2335 	}
2336 }
2337 
2338 /*
2339  * Determine how aggressively the anon and file LRU lists should be
2340  * scanned.
2341  *
2342  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2343  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2344  */
2345 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2346 			   unsigned long *nr)
2347 {
2348 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2349 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2350 	unsigned long anon_cost, file_cost, total_cost;
2351 	int swappiness = sc_swappiness(sc, memcg);
2352 	u64 fraction[ANON_AND_FILE];
2353 	u64 denominator = 0;	/* gcc */
2354 	enum scan_balance scan_balance;
2355 	unsigned long ap, fp;
2356 	enum lru_list lru;
2357 
2358 	/* If we have no swap space, do not bother scanning anon folios. */
2359 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2360 		scan_balance = SCAN_FILE;
2361 		goto out;
2362 	}
2363 
2364 	/*
2365 	 * Global reclaim will swap to prevent OOM even with no
2366 	 * swappiness, but memcg users want to use this knob to
2367 	 * disable swapping for individual groups completely when
2368 	 * using the memory controller's swap limit feature would be
2369 	 * too expensive.
2370 	 */
2371 	if (cgroup_reclaim(sc) && !swappiness) {
2372 		scan_balance = SCAN_FILE;
2373 		goto out;
2374 	}
2375 
2376 	/*
2377 	 * Do not apply any pressure balancing cleverness when the
2378 	 * system is close to OOM, scan both anon and file equally
2379 	 * (unless the swappiness setting disagrees with swapping).
2380 	 */
2381 	if (!sc->priority && swappiness) {
2382 		scan_balance = SCAN_EQUAL;
2383 		goto out;
2384 	}
2385 
2386 	/*
2387 	 * If the system is almost out of file pages, force-scan anon.
2388 	 */
2389 	if (sc->file_is_tiny) {
2390 		scan_balance = SCAN_ANON;
2391 		goto out;
2392 	}
2393 
2394 	/*
2395 	 * If there is enough inactive page cache, we do not reclaim
2396 	 * anything from the anonymous working right now.
2397 	 */
2398 	if (sc->cache_trim_mode) {
2399 		scan_balance = SCAN_FILE;
2400 		goto out;
2401 	}
2402 
2403 	scan_balance = SCAN_FRACT;
2404 	/*
2405 	 * Calculate the pressure balance between anon and file pages.
2406 	 *
2407 	 * The amount of pressure we put on each LRU is inversely
2408 	 * proportional to the cost of reclaiming each list, as
2409 	 * determined by the share of pages that are refaulting, times
2410 	 * the relative IO cost of bringing back a swapped out
2411 	 * anonymous page vs reloading a filesystem page (swappiness).
2412 	 *
2413 	 * Although we limit that influence to ensure no list gets
2414 	 * left behind completely: at least a third of the pressure is
2415 	 * applied, before swappiness.
2416 	 *
2417 	 * With swappiness at 100, anon and file have equal IO cost.
2418 	 */
2419 	total_cost = sc->anon_cost + sc->file_cost;
2420 	anon_cost = total_cost + sc->anon_cost;
2421 	file_cost = total_cost + sc->file_cost;
2422 	total_cost = anon_cost + file_cost;
2423 
2424 	ap = swappiness * (total_cost + 1);
2425 	ap /= anon_cost + 1;
2426 
2427 	fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1);
2428 	fp /= file_cost + 1;
2429 
2430 	fraction[0] = ap;
2431 	fraction[1] = fp;
2432 	denominator = ap + fp;
2433 out:
2434 	for_each_evictable_lru(lru) {
2435 		bool file = is_file_lru(lru);
2436 		unsigned long lruvec_size;
2437 		unsigned long low, min;
2438 		unsigned long scan;
2439 
2440 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2441 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2442 				      &min, &low);
2443 
2444 		if (min || low) {
2445 			/*
2446 			 * Scale a cgroup's reclaim pressure by proportioning
2447 			 * its current usage to its memory.low or memory.min
2448 			 * setting.
2449 			 *
2450 			 * This is important, as otherwise scanning aggression
2451 			 * becomes extremely binary -- from nothing as we
2452 			 * approach the memory protection threshold, to totally
2453 			 * nominal as we exceed it.  This results in requiring
2454 			 * setting extremely liberal protection thresholds. It
2455 			 * also means we simply get no protection at all if we
2456 			 * set it too low, which is not ideal.
2457 			 *
2458 			 * If there is any protection in place, we reduce scan
2459 			 * pressure by how much of the total memory used is
2460 			 * within protection thresholds.
2461 			 *
2462 			 * There is one special case: in the first reclaim pass,
2463 			 * we skip over all groups that are within their low
2464 			 * protection. If that fails to reclaim enough pages to
2465 			 * satisfy the reclaim goal, we come back and override
2466 			 * the best-effort low protection. However, we still
2467 			 * ideally want to honor how well-behaved groups are in
2468 			 * that case instead of simply punishing them all
2469 			 * equally. As such, we reclaim them based on how much
2470 			 * memory they are using, reducing the scan pressure
2471 			 * again by how much of the total memory used is under
2472 			 * hard protection.
2473 			 */
2474 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2475 			unsigned long protection;
2476 
2477 			/* memory.low scaling, make sure we retry before OOM */
2478 			if (!sc->memcg_low_reclaim && low > min) {
2479 				protection = low;
2480 				sc->memcg_low_skipped = 1;
2481 			} else {
2482 				protection = min;
2483 			}
2484 
2485 			/* Avoid TOCTOU with earlier protection check */
2486 			cgroup_size = max(cgroup_size, protection);
2487 
2488 			scan = lruvec_size - lruvec_size * protection /
2489 				(cgroup_size + 1);
2490 
2491 			/*
2492 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2493 			 * reclaim moving forwards, avoiding decrementing
2494 			 * sc->priority further than desirable.
2495 			 */
2496 			scan = max(scan, SWAP_CLUSTER_MAX);
2497 		} else {
2498 			scan = lruvec_size;
2499 		}
2500 
2501 		scan >>= sc->priority;
2502 
2503 		/*
2504 		 * If the cgroup's already been deleted, make sure to
2505 		 * scrape out the remaining cache.
2506 		 */
2507 		if (!scan && !mem_cgroup_online(memcg))
2508 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2509 
2510 		switch (scan_balance) {
2511 		case SCAN_EQUAL:
2512 			/* Scan lists relative to size */
2513 			break;
2514 		case SCAN_FRACT:
2515 			/*
2516 			 * Scan types proportional to swappiness and
2517 			 * their relative recent reclaim efficiency.
2518 			 * Make sure we don't miss the last page on
2519 			 * the offlined memory cgroups because of a
2520 			 * round-off error.
2521 			 */
2522 			scan = mem_cgroup_online(memcg) ?
2523 			       div64_u64(scan * fraction[file], denominator) :
2524 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2525 						  denominator);
2526 			break;
2527 		case SCAN_FILE:
2528 		case SCAN_ANON:
2529 			/* Scan one type exclusively */
2530 			if ((scan_balance == SCAN_FILE) != file)
2531 				scan = 0;
2532 			break;
2533 		default:
2534 			/* Look ma, no brain */
2535 			BUG();
2536 		}
2537 
2538 		nr[lru] = scan;
2539 	}
2540 }
2541 
2542 /*
2543  * Anonymous LRU management is a waste if there is
2544  * ultimately no way to reclaim the memory.
2545  */
2546 static bool can_age_anon_pages(struct pglist_data *pgdat,
2547 			       struct scan_control *sc)
2548 {
2549 	/* Aging the anon LRU is valuable if swap is present: */
2550 	if (total_swap_pages > 0)
2551 		return true;
2552 
2553 	/* Also valuable if anon pages can be demoted: */
2554 	return can_demote(pgdat->node_id, sc);
2555 }
2556 
2557 #ifdef CONFIG_LRU_GEN
2558 
2559 #ifdef CONFIG_LRU_GEN_ENABLED
2560 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2561 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
2562 #else
2563 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2564 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
2565 #endif
2566 
2567 static bool should_walk_mmu(void)
2568 {
2569 	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2570 }
2571 
2572 static bool should_clear_pmd_young(void)
2573 {
2574 	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2575 }
2576 
2577 /******************************************************************************
2578  *                          shorthand helpers
2579  ******************************************************************************/
2580 
2581 #define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
2582 
2583 #define DEFINE_MAX_SEQ(lruvec)						\
2584 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2585 
2586 #define DEFINE_MIN_SEQ(lruvec)						\
2587 	unsigned long min_seq[ANON_AND_FILE] = {			\
2588 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
2589 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
2590 	}
2591 
2592 #define for_each_gen_type_zone(gen, type, zone)				\
2593 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
2594 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
2595 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2596 
2597 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
2598 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
2599 
2600 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2601 {
2602 	struct pglist_data *pgdat = NODE_DATA(nid);
2603 
2604 #ifdef CONFIG_MEMCG
2605 	if (memcg) {
2606 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2607 
2608 		/* see the comment in mem_cgroup_lruvec() */
2609 		if (!lruvec->pgdat)
2610 			lruvec->pgdat = pgdat;
2611 
2612 		return lruvec;
2613 	}
2614 #endif
2615 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2616 
2617 	return &pgdat->__lruvec;
2618 }
2619 
2620 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2621 {
2622 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2623 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2624 
2625 	if (!sc->may_swap)
2626 		return 0;
2627 
2628 	if (!can_demote(pgdat->node_id, sc) &&
2629 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2630 		return 0;
2631 
2632 	return sc_swappiness(sc, memcg);
2633 }
2634 
2635 static int get_nr_gens(struct lruvec *lruvec, int type)
2636 {
2637 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2638 }
2639 
2640 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2641 {
2642 	/* see the comment on lru_gen_folio */
2643 	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
2644 	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
2645 	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
2646 }
2647 
2648 /******************************************************************************
2649  *                          Bloom filters
2650  ******************************************************************************/
2651 
2652 /*
2653  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2654  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2655  * bits in a bitmap, k is the number of hash functions and n is the number of
2656  * inserted items.
2657  *
2658  * Page table walkers use one of the two filters to reduce their search space.
2659  * To get rid of non-leaf entries that no longer have enough leaf entries, the
2660  * aging uses the double-buffering technique to flip to the other filter each
2661  * time it produces a new generation. For non-leaf entries that have enough
2662  * leaf entries, the aging carries them over to the next generation in
2663  * walk_pmd_range(); the eviction also report them when walking the rmap
2664  * in lru_gen_look_around().
2665  *
2666  * For future optimizations:
2667  * 1. It's not necessary to keep both filters all the time. The spare one can be
2668  *    freed after the RCU grace period and reallocated if needed again.
2669  * 2. And when reallocating, it's worth scaling its size according to the number
2670  *    of inserted entries in the other filter, to reduce the memory overhead on
2671  *    small systems and false positives on large systems.
2672  * 3. Jenkins' hash function is an alternative to Knuth's.
2673  */
2674 #define BLOOM_FILTER_SHIFT	15
2675 
2676 static inline int filter_gen_from_seq(unsigned long seq)
2677 {
2678 	return seq % NR_BLOOM_FILTERS;
2679 }
2680 
2681 static void get_item_key(void *item, int *key)
2682 {
2683 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2684 
2685 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2686 
2687 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2688 	key[1] = hash >> BLOOM_FILTER_SHIFT;
2689 }
2690 
2691 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2692 			      void *item)
2693 {
2694 	int key[2];
2695 	unsigned long *filter;
2696 	int gen = filter_gen_from_seq(seq);
2697 
2698 	filter = READ_ONCE(mm_state->filters[gen]);
2699 	if (!filter)
2700 		return true;
2701 
2702 	get_item_key(item, key);
2703 
2704 	return test_bit(key[0], filter) && test_bit(key[1], filter);
2705 }
2706 
2707 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2708 				void *item)
2709 {
2710 	int key[2];
2711 	unsigned long *filter;
2712 	int gen = filter_gen_from_seq(seq);
2713 
2714 	filter = READ_ONCE(mm_state->filters[gen]);
2715 	if (!filter)
2716 		return;
2717 
2718 	get_item_key(item, key);
2719 
2720 	if (!test_bit(key[0], filter))
2721 		set_bit(key[0], filter);
2722 	if (!test_bit(key[1], filter))
2723 		set_bit(key[1], filter);
2724 }
2725 
2726 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2727 {
2728 	unsigned long *filter;
2729 	int gen = filter_gen_from_seq(seq);
2730 
2731 	filter = mm_state->filters[gen];
2732 	if (filter) {
2733 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2734 		return;
2735 	}
2736 
2737 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2738 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2739 	WRITE_ONCE(mm_state->filters[gen], filter);
2740 }
2741 
2742 /******************************************************************************
2743  *                          mm_struct list
2744  ******************************************************************************/
2745 
2746 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2747 
2748 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2749 {
2750 	static struct lru_gen_mm_list mm_list = {
2751 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
2752 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2753 	};
2754 
2755 #ifdef CONFIG_MEMCG
2756 	if (memcg)
2757 		return &memcg->mm_list;
2758 #endif
2759 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2760 
2761 	return &mm_list;
2762 }
2763 
2764 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2765 {
2766 	return &lruvec->mm_state;
2767 }
2768 
2769 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2770 {
2771 	int key;
2772 	struct mm_struct *mm;
2773 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2774 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2775 
2776 	mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2777 	key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2778 
2779 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2780 		return NULL;
2781 
2782 	clear_bit(key, &mm->lru_gen.bitmap);
2783 
2784 	return mmget_not_zero(mm) ? mm : NULL;
2785 }
2786 
2787 void lru_gen_add_mm(struct mm_struct *mm)
2788 {
2789 	int nid;
2790 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2791 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2792 
2793 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2794 #ifdef CONFIG_MEMCG
2795 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2796 	mm->lru_gen.memcg = memcg;
2797 #endif
2798 	spin_lock(&mm_list->lock);
2799 
2800 	for_each_node_state(nid, N_MEMORY) {
2801 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2802 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2803 
2804 		/* the first addition since the last iteration */
2805 		if (mm_state->tail == &mm_list->fifo)
2806 			mm_state->tail = &mm->lru_gen.list;
2807 	}
2808 
2809 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2810 
2811 	spin_unlock(&mm_list->lock);
2812 }
2813 
2814 void lru_gen_del_mm(struct mm_struct *mm)
2815 {
2816 	int nid;
2817 	struct lru_gen_mm_list *mm_list;
2818 	struct mem_cgroup *memcg = NULL;
2819 
2820 	if (list_empty(&mm->lru_gen.list))
2821 		return;
2822 
2823 #ifdef CONFIG_MEMCG
2824 	memcg = mm->lru_gen.memcg;
2825 #endif
2826 	mm_list = get_mm_list(memcg);
2827 
2828 	spin_lock(&mm_list->lock);
2829 
2830 	for_each_node(nid) {
2831 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2832 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2833 
2834 		/* where the current iteration continues after */
2835 		if (mm_state->head == &mm->lru_gen.list)
2836 			mm_state->head = mm_state->head->prev;
2837 
2838 		/* where the last iteration ended before */
2839 		if (mm_state->tail == &mm->lru_gen.list)
2840 			mm_state->tail = mm_state->tail->next;
2841 	}
2842 
2843 	list_del_init(&mm->lru_gen.list);
2844 
2845 	spin_unlock(&mm_list->lock);
2846 
2847 #ifdef CONFIG_MEMCG
2848 	mem_cgroup_put(mm->lru_gen.memcg);
2849 	mm->lru_gen.memcg = NULL;
2850 #endif
2851 }
2852 
2853 #ifdef CONFIG_MEMCG
2854 void lru_gen_migrate_mm(struct mm_struct *mm)
2855 {
2856 	struct mem_cgroup *memcg;
2857 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2858 
2859 	VM_WARN_ON_ONCE(task->mm != mm);
2860 	lockdep_assert_held(&task->alloc_lock);
2861 
2862 	/* for mm_update_next_owner() */
2863 	if (mem_cgroup_disabled())
2864 		return;
2865 
2866 	/* migration can happen before addition */
2867 	if (!mm->lru_gen.memcg)
2868 		return;
2869 
2870 	rcu_read_lock();
2871 	memcg = mem_cgroup_from_task(task);
2872 	rcu_read_unlock();
2873 	if (memcg == mm->lru_gen.memcg)
2874 		return;
2875 
2876 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2877 
2878 	lru_gen_del_mm(mm);
2879 	lru_gen_add_mm(mm);
2880 }
2881 #endif
2882 
2883 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
2884 
2885 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2886 {
2887 	return NULL;
2888 }
2889 
2890 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2891 {
2892 	return NULL;
2893 }
2894 
2895 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2896 {
2897 	return NULL;
2898 }
2899 
2900 #endif
2901 
2902 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
2903 {
2904 	int i;
2905 	int hist;
2906 	struct lruvec *lruvec = walk->lruvec;
2907 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2908 
2909 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
2910 
2911 	hist = lru_hist_from_seq(walk->seq);
2912 
2913 	for (i = 0; i < NR_MM_STATS; i++) {
2914 		WRITE_ONCE(mm_state->stats[hist][i],
2915 			   mm_state->stats[hist][i] + walk->mm_stats[i]);
2916 		walk->mm_stats[i] = 0;
2917 	}
2918 
2919 	if (NR_HIST_GENS > 1 && last) {
2920 		hist = lru_hist_from_seq(walk->seq + 1);
2921 
2922 		for (i = 0; i < NR_MM_STATS; i++)
2923 			WRITE_ONCE(mm_state->stats[hist][i], 0);
2924 	}
2925 }
2926 
2927 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
2928 {
2929 	bool first = false;
2930 	bool last = false;
2931 	struct mm_struct *mm = NULL;
2932 	struct lruvec *lruvec = walk->lruvec;
2933 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2934 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2935 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2936 
2937 	/*
2938 	 * mm_state->seq is incremented after each iteration of mm_list. There
2939 	 * are three interesting cases for this page table walker:
2940 	 * 1. It tries to start a new iteration with a stale max_seq: there is
2941 	 *    nothing left to do.
2942 	 * 2. It started the next iteration: it needs to reset the Bloom filter
2943 	 *    so that a fresh set of PTE tables can be recorded.
2944 	 * 3. It ended the current iteration: it needs to reset the mm stats
2945 	 *    counters and tell its caller to increment max_seq.
2946 	 */
2947 	spin_lock(&mm_list->lock);
2948 
2949 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
2950 
2951 	if (walk->seq <= mm_state->seq)
2952 		goto done;
2953 
2954 	if (!mm_state->head)
2955 		mm_state->head = &mm_list->fifo;
2956 
2957 	if (mm_state->head == &mm_list->fifo)
2958 		first = true;
2959 
2960 	do {
2961 		mm_state->head = mm_state->head->next;
2962 		if (mm_state->head == &mm_list->fifo) {
2963 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2964 			last = true;
2965 			break;
2966 		}
2967 
2968 		/* force scan for those added after the last iteration */
2969 		if (!mm_state->tail || mm_state->tail == mm_state->head) {
2970 			mm_state->tail = mm_state->head->next;
2971 			walk->force_scan = true;
2972 		}
2973 	} while (!(mm = get_next_mm(walk)));
2974 done:
2975 	if (*iter || last)
2976 		reset_mm_stats(walk, last);
2977 
2978 	spin_unlock(&mm_list->lock);
2979 
2980 	if (mm && first)
2981 		reset_bloom_filter(mm_state, walk->seq + 1);
2982 
2983 	if (*iter)
2984 		mmput_async(*iter);
2985 
2986 	*iter = mm;
2987 
2988 	return last;
2989 }
2990 
2991 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
2992 {
2993 	bool success = false;
2994 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2995 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2996 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2997 
2998 	spin_lock(&mm_list->lock);
2999 
3000 	VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
3001 
3002 	if (seq > mm_state->seq) {
3003 		mm_state->head = NULL;
3004 		mm_state->tail = NULL;
3005 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3006 		success = true;
3007 	}
3008 
3009 	spin_unlock(&mm_list->lock);
3010 
3011 	return success;
3012 }
3013 
3014 /******************************************************************************
3015  *                          PID controller
3016  ******************************************************************************/
3017 
3018 /*
3019  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3020  *
3021  * The P term is refaulted/(evicted+protected) from a tier in the generation
3022  * currently being evicted; the I term is the exponential moving average of the
3023  * P term over the generations previously evicted, using the smoothing factor
3024  * 1/2; the D term isn't supported.
3025  *
3026  * The setpoint (SP) is always the first tier of one type; the process variable
3027  * (PV) is either any tier of the other type or any other tier of the same
3028  * type.
3029  *
3030  * The error is the difference between the SP and the PV; the correction is to
3031  * turn off protection when SP>PV or turn on protection when SP<PV.
3032  *
3033  * For future optimizations:
3034  * 1. The D term may discount the other two terms over time so that long-lived
3035  *    generations can resist stale information.
3036  */
3037 struct ctrl_pos {
3038 	unsigned long refaulted;
3039 	unsigned long total;
3040 	int gain;
3041 };
3042 
3043 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3044 			  struct ctrl_pos *pos)
3045 {
3046 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3047 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3048 
3049 	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3050 			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3051 	pos->total = lrugen->avg_total[type][tier] +
3052 		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3053 	if (tier)
3054 		pos->total += lrugen->protected[hist][type][tier - 1];
3055 	pos->gain = gain;
3056 }
3057 
3058 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3059 {
3060 	int hist, tier;
3061 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3062 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3063 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3064 
3065 	lockdep_assert_held(&lruvec->lru_lock);
3066 
3067 	if (!carryover && !clear)
3068 		return;
3069 
3070 	hist = lru_hist_from_seq(seq);
3071 
3072 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3073 		if (carryover) {
3074 			unsigned long sum;
3075 
3076 			sum = lrugen->avg_refaulted[type][tier] +
3077 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3078 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3079 
3080 			sum = lrugen->avg_total[type][tier] +
3081 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3082 			if (tier)
3083 				sum += lrugen->protected[hist][type][tier - 1];
3084 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3085 		}
3086 
3087 		if (clear) {
3088 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3089 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3090 			if (tier)
3091 				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3092 		}
3093 	}
3094 }
3095 
3096 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3097 {
3098 	/*
3099 	 * Return true if the PV has a limited number of refaults or a lower
3100 	 * refaulted/total than the SP.
3101 	 */
3102 	return pv->refaulted < MIN_LRU_BATCH ||
3103 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3104 	       (sp->refaulted + 1) * pv->total * pv->gain;
3105 }
3106 
3107 /******************************************************************************
3108  *                          the aging
3109  ******************************************************************************/
3110 
3111 /* promote pages accessed through page tables */
3112 static int folio_update_gen(struct folio *folio, int gen)
3113 {
3114 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3115 
3116 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3117 	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3118 
3119 	do {
3120 		/* lru_gen_del_folio() has isolated this page? */
3121 		if (!(old_flags & LRU_GEN_MASK)) {
3122 			/* for shrink_folio_list() */
3123 			new_flags = old_flags | BIT(PG_referenced);
3124 			continue;
3125 		}
3126 
3127 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3128 		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3129 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3130 
3131 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3132 }
3133 
3134 /* protect pages accessed multiple times through file descriptors */
3135 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3136 {
3137 	int type = folio_is_file_lru(folio);
3138 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3139 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3140 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3141 
3142 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3143 
3144 	do {
3145 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3146 		/* folio_update_gen() has promoted this page? */
3147 		if (new_gen >= 0 && new_gen != old_gen)
3148 			return new_gen;
3149 
3150 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3151 
3152 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3153 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3154 		/* for folio_end_writeback() */
3155 		if (reclaiming)
3156 			new_flags |= BIT(PG_reclaim);
3157 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3158 
3159 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3160 
3161 	return new_gen;
3162 }
3163 
3164 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3165 			      int old_gen, int new_gen)
3166 {
3167 	int type = folio_is_file_lru(folio);
3168 	int zone = folio_zonenum(folio);
3169 	int delta = folio_nr_pages(folio);
3170 
3171 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3172 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3173 
3174 	walk->batched++;
3175 
3176 	walk->nr_pages[old_gen][type][zone] -= delta;
3177 	walk->nr_pages[new_gen][type][zone] += delta;
3178 }
3179 
3180 static void reset_batch_size(struct lru_gen_mm_walk *walk)
3181 {
3182 	int gen, type, zone;
3183 	struct lruvec *lruvec = walk->lruvec;
3184 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3185 
3186 	walk->batched = 0;
3187 
3188 	for_each_gen_type_zone(gen, type, zone) {
3189 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3190 		int delta = walk->nr_pages[gen][type][zone];
3191 
3192 		if (!delta)
3193 			continue;
3194 
3195 		walk->nr_pages[gen][type][zone] = 0;
3196 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3197 			   lrugen->nr_pages[gen][type][zone] + delta);
3198 
3199 		if (lru_gen_is_active(lruvec, gen))
3200 			lru += LRU_ACTIVE;
3201 		__update_lru_size(lruvec, lru, zone, delta);
3202 	}
3203 }
3204 
3205 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3206 {
3207 	struct address_space *mapping;
3208 	struct vm_area_struct *vma = args->vma;
3209 	struct lru_gen_mm_walk *walk = args->private;
3210 
3211 	if (!vma_is_accessible(vma))
3212 		return true;
3213 
3214 	if (is_vm_hugetlb_page(vma))
3215 		return true;
3216 
3217 	if (!vma_has_recency(vma))
3218 		return true;
3219 
3220 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3221 		return true;
3222 
3223 	if (vma == get_gate_vma(vma->vm_mm))
3224 		return true;
3225 
3226 	if (vma_is_anonymous(vma))
3227 		return !walk->can_swap;
3228 
3229 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3230 		return true;
3231 
3232 	mapping = vma->vm_file->f_mapping;
3233 	if (mapping_unevictable(mapping))
3234 		return true;
3235 
3236 	if (shmem_mapping(mapping))
3237 		return !walk->can_swap;
3238 
3239 	/* to exclude special mappings like dax, etc. */
3240 	return !mapping->a_ops->read_folio;
3241 }
3242 
3243 /*
3244  * Some userspace memory allocators map many single-page VMAs. Instead of
3245  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3246  * table to reduce zigzags and improve cache performance.
3247  */
3248 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3249 			 unsigned long *vm_start, unsigned long *vm_end)
3250 {
3251 	unsigned long start = round_up(*vm_end, size);
3252 	unsigned long end = (start | ~mask) + 1;
3253 	VMA_ITERATOR(vmi, args->mm, start);
3254 
3255 	VM_WARN_ON_ONCE(mask & size);
3256 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3257 
3258 	for_each_vma(vmi, args->vma) {
3259 		if (end && end <= args->vma->vm_start)
3260 			return false;
3261 
3262 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3263 			continue;
3264 
3265 		*vm_start = max(start, args->vma->vm_start);
3266 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3267 
3268 		return true;
3269 	}
3270 
3271 	return false;
3272 }
3273 
3274 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3275 {
3276 	unsigned long pfn = pte_pfn(pte);
3277 
3278 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3279 
3280 	if (!pte_present(pte) || is_zero_pfn(pfn))
3281 		return -1;
3282 
3283 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3284 		return -1;
3285 
3286 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3287 		return -1;
3288 
3289 	return pfn;
3290 }
3291 
3292 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3293 {
3294 	unsigned long pfn = pmd_pfn(pmd);
3295 
3296 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3297 
3298 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3299 		return -1;
3300 
3301 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3302 		return -1;
3303 
3304 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3305 		return -1;
3306 
3307 	return pfn;
3308 }
3309 
3310 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3311 				   struct pglist_data *pgdat, bool can_swap)
3312 {
3313 	struct folio *folio;
3314 
3315 	/* try to avoid unnecessary memory loads */
3316 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3317 		return NULL;
3318 
3319 	folio = pfn_folio(pfn);
3320 	if (folio_nid(folio) != pgdat->node_id)
3321 		return NULL;
3322 
3323 	if (folio_memcg_rcu(folio) != memcg)
3324 		return NULL;
3325 
3326 	/* file VMAs can contain anon pages from COW */
3327 	if (!folio_is_file_lru(folio) && !can_swap)
3328 		return NULL;
3329 
3330 	return folio;
3331 }
3332 
3333 static bool suitable_to_scan(int total, int young)
3334 {
3335 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3336 
3337 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3338 	return young * n >= total;
3339 }
3340 
3341 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3342 			   struct mm_walk *args)
3343 {
3344 	int i;
3345 	pte_t *pte;
3346 	spinlock_t *ptl;
3347 	unsigned long addr;
3348 	int total = 0;
3349 	int young = 0;
3350 	struct lru_gen_mm_walk *walk = args->private;
3351 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3352 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3353 	DEFINE_MAX_SEQ(walk->lruvec);
3354 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
3355 
3356 	pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl);
3357 	if (!pte)
3358 		return false;
3359 	if (!spin_trylock(ptl)) {
3360 		pte_unmap(pte);
3361 		return false;
3362 	}
3363 
3364 	arch_enter_lazy_mmu_mode();
3365 restart:
3366 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3367 		unsigned long pfn;
3368 		struct folio *folio;
3369 		pte_t ptent = ptep_get(pte + i);
3370 
3371 		total++;
3372 		walk->mm_stats[MM_LEAF_TOTAL]++;
3373 
3374 		pfn = get_pte_pfn(ptent, args->vma, addr);
3375 		if (pfn == -1)
3376 			continue;
3377 
3378 		if (!pte_young(ptent)) {
3379 			walk->mm_stats[MM_LEAF_OLD]++;
3380 			continue;
3381 		}
3382 
3383 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3384 		if (!folio)
3385 			continue;
3386 
3387 		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3388 			VM_WARN_ON_ONCE(true);
3389 
3390 		young++;
3391 		walk->mm_stats[MM_LEAF_YOUNG]++;
3392 
3393 		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
3394 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3395 		      !folio_test_swapcache(folio)))
3396 			folio_mark_dirty(folio);
3397 
3398 		old_gen = folio_update_gen(folio, new_gen);
3399 		if (old_gen >= 0 && old_gen != new_gen)
3400 			update_batch_size(walk, folio, old_gen, new_gen);
3401 	}
3402 
3403 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3404 		goto restart;
3405 
3406 	arch_leave_lazy_mmu_mode();
3407 	pte_unmap_unlock(pte, ptl);
3408 
3409 	return suitable_to_scan(total, young);
3410 }
3411 
3412 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3413 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3414 {
3415 	int i;
3416 	pmd_t *pmd;
3417 	spinlock_t *ptl;
3418 	struct lru_gen_mm_walk *walk = args->private;
3419 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3420 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3421 	DEFINE_MAX_SEQ(walk->lruvec);
3422 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
3423 
3424 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3425 
3426 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3427 	if (*first == -1) {
3428 		*first = addr;
3429 		bitmap_zero(bitmap, MIN_LRU_BATCH);
3430 		return;
3431 	}
3432 
3433 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3434 	if (i && i <= MIN_LRU_BATCH) {
3435 		__set_bit(i - 1, bitmap);
3436 		return;
3437 	}
3438 
3439 	pmd = pmd_offset(pud, *first);
3440 
3441 	ptl = pmd_lockptr(args->mm, pmd);
3442 	if (!spin_trylock(ptl))
3443 		goto done;
3444 
3445 	arch_enter_lazy_mmu_mode();
3446 
3447 	do {
3448 		unsigned long pfn;
3449 		struct folio *folio;
3450 
3451 		/* don't round down the first address */
3452 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3453 
3454 		pfn = get_pmd_pfn(pmd[i], vma, addr);
3455 		if (pfn == -1)
3456 			goto next;
3457 
3458 		if (!pmd_trans_huge(pmd[i])) {
3459 			if (should_clear_pmd_young())
3460 				pmdp_test_and_clear_young(vma, addr, pmd + i);
3461 			goto next;
3462 		}
3463 
3464 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3465 		if (!folio)
3466 			goto next;
3467 
3468 		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
3469 			goto next;
3470 
3471 		walk->mm_stats[MM_LEAF_YOUNG]++;
3472 
3473 		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
3474 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3475 		      !folio_test_swapcache(folio)))
3476 			folio_mark_dirty(folio);
3477 
3478 		old_gen = folio_update_gen(folio, new_gen);
3479 		if (old_gen >= 0 && old_gen != new_gen)
3480 			update_batch_size(walk, folio, old_gen, new_gen);
3481 next:
3482 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3483 	} while (i <= MIN_LRU_BATCH);
3484 
3485 	arch_leave_lazy_mmu_mode();
3486 	spin_unlock(ptl);
3487 done:
3488 	*first = -1;
3489 }
3490 
3491 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3492 			   struct mm_walk *args)
3493 {
3494 	int i;
3495 	pmd_t *pmd;
3496 	unsigned long next;
3497 	unsigned long addr;
3498 	struct vm_area_struct *vma;
3499 	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3500 	unsigned long first = -1;
3501 	struct lru_gen_mm_walk *walk = args->private;
3502 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3503 
3504 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3505 
3506 	/*
3507 	 * Finish an entire PMD in two passes: the first only reaches to PTE
3508 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
3509 	 * the PMD lock to clear the accessed bit in PMD entries.
3510 	 */
3511 	pmd = pmd_offset(pud, start & PUD_MASK);
3512 restart:
3513 	/* walk_pte_range() may call get_next_vma() */
3514 	vma = args->vma;
3515 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3516 		pmd_t val = pmdp_get_lockless(pmd + i);
3517 
3518 		next = pmd_addr_end(addr, end);
3519 
3520 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3521 			walk->mm_stats[MM_LEAF_TOTAL]++;
3522 			continue;
3523 		}
3524 
3525 		if (pmd_trans_huge(val)) {
3526 			unsigned long pfn = pmd_pfn(val);
3527 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3528 
3529 			walk->mm_stats[MM_LEAF_TOTAL]++;
3530 
3531 			if (!pmd_young(val)) {
3532 				walk->mm_stats[MM_LEAF_OLD]++;
3533 				continue;
3534 			}
3535 
3536 			/* try to avoid unnecessary memory loads */
3537 			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3538 				continue;
3539 
3540 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3541 			continue;
3542 		}
3543 
3544 		walk->mm_stats[MM_NONLEAF_TOTAL]++;
3545 
3546 		if (should_clear_pmd_young()) {
3547 			if (!pmd_young(val))
3548 				continue;
3549 
3550 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3551 		}
3552 
3553 		if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3554 			continue;
3555 
3556 		walk->mm_stats[MM_NONLEAF_FOUND]++;
3557 
3558 		if (!walk_pte_range(&val, addr, next, args))
3559 			continue;
3560 
3561 		walk->mm_stats[MM_NONLEAF_ADDED]++;
3562 
3563 		/* carry over to the next generation */
3564 		update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3565 	}
3566 
3567 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3568 
3569 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3570 		goto restart;
3571 }
3572 
3573 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3574 			  struct mm_walk *args)
3575 {
3576 	int i;
3577 	pud_t *pud;
3578 	unsigned long addr;
3579 	unsigned long next;
3580 	struct lru_gen_mm_walk *walk = args->private;
3581 
3582 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3583 
3584 	pud = pud_offset(p4d, start & P4D_MASK);
3585 restart:
3586 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3587 		pud_t val = READ_ONCE(pud[i]);
3588 
3589 		next = pud_addr_end(addr, end);
3590 
3591 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3592 			continue;
3593 
3594 		walk_pmd_range(&val, addr, next, args);
3595 
3596 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3597 			end = (addr | ~PUD_MASK) + 1;
3598 			goto done;
3599 		}
3600 	}
3601 
3602 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3603 		goto restart;
3604 
3605 	end = round_up(end, P4D_SIZE);
3606 done:
3607 	if (!end || !args->vma)
3608 		return 1;
3609 
3610 	walk->next_addr = max(end, args->vma->vm_start);
3611 
3612 	return -EAGAIN;
3613 }
3614 
3615 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3616 {
3617 	static const struct mm_walk_ops mm_walk_ops = {
3618 		.test_walk = should_skip_vma,
3619 		.p4d_entry = walk_pud_range,
3620 		.walk_lock = PGWALK_RDLOCK,
3621 	};
3622 
3623 	int err;
3624 	struct lruvec *lruvec = walk->lruvec;
3625 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3626 
3627 	walk->next_addr = FIRST_USER_ADDRESS;
3628 
3629 	do {
3630 		DEFINE_MAX_SEQ(lruvec);
3631 
3632 		err = -EBUSY;
3633 
3634 		/* another thread might have called inc_max_seq() */
3635 		if (walk->seq != max_seq)
3636 			break;
3637 
3638 		/* folio_update_gen() requires stable folio_memcg() */
3639 		if (!mem_cgroup_trylock_pages(memcg))
3640 			break;
3641 
3642 		/* the caller might be holding the lock for write */
3643 		if (mmap_read_trylock(mm)) {
3644 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3645 
3646 			mmap_read_unlock(mm);
3647 		}
3648 
3649 		mem_cgroup_unlock_pages();
3650 
3651 		if (walk->batched) {
3652 			spin_lock_irq(&lruvec->lru_lock);
3653 			reset_batch_size(walk);
3654 			spin_unlock_irq(&lruvec->lru_lock);
3655 		}
3656 
3657 		cond_resched();
3658 	} while (err == -EAGAIN);
3659 }
3660 
3661 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3662 {
3663 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3664 
3665 	if (pgdat && current_is_kswapd()) {
3666 		VM_WARN_ON_ONCE(walk);
3667 
3668 		walk = &pgdat->mm_walk;
3669 	} else if (!walk && force_alloc) {
3670 		VM_WARN_ON_ONCE(current_is_kswapd());
3671 
3672 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3673 	}
3674 
3675 	current->reclaim_state->mm_walk = walk;
3676 
3677 	return walk;
3678 }
3679 
3680 static void clear_mm_walk(void)
3681 {
3682 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3683 
3684 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3685 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3686 
3687 	current->reclaim_state->mm_walk = NULL;
3688 
3689 	if (!current_is_kswapd())
3690 		kfree(walk);
3691 }
3692 
3693 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
3694 {
3695 	int zone;
3696 	int remaining = MAX_LRU_BATCH;
3697 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3698 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3699 
3700 	if (type == LRU_GEN_ANON && !can_swap)
3701 		goto done;
3702 
3703 	/* prevent cold/hot inversion if force_scan is true */
3704 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3705 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
3706 
3707 		while (!list_empty(head)) {
3708 			struct folio *folio = lru_to_folio(head);
3709 
3710 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3711 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3712 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3713 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3714 
3715 			new_gen = folio_inc_gen(lruvec, folio, false);
3716 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3717 
3718 			if (!--remaining)
3719 				return false;
3720 		}
3721 	}
3722 done:
3723 	reset_ctrl_pos(lruvec, type, true);
3724 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3725 
3726 	return true;
3727 }
3728 
3729 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
3730 {
3731 	int gen, type, zone;
3732 	bool success = false;
3733 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3734 	DEFINE_MIN_SEQ(lruvec);
3735 
3736 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3737 
3738 	/* find the oldest populated generation */
3739 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3740 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3741 			gen = lru_gen_from_seq(min_seq[type]);
3742 
3743 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3744 				if (!list_empty(&lrugen->folios[gen][type][zone]))
3745 					goto next;
3746 			}
3747 
3748 			min_seq[type]++;
3749 		}
3750 next:
3751 		;
3752 	}
3753 
3754 	/* see the comment on lru_gen_folio */
3755 	if (can_swap) {
3756 		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
3757 		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
3758 	}
3759 
3760 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3761 		if (min_seq[type] == lrugen->min_seq[type])
3762 			continue;
3763 
3764 		reset_ctrl_pos(lruvec, type, true);
3765 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3766 		success = true;
3767 	}
3768 
3769 	return success;
3770 }
3771 
3772 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3773 			bool can_swap, bool force_scan)
3774 {
3775 	bool success;
3776 	int prev, next;
3777 	int type, zone;
3778 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3779 restart:
3780 	if (seq < READ_ONCE(lrugen->max_seq))
3781 		return false;
3782 
3783 	spin_lock_irq(&lruvec->lru_lock);
3784 
3785 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3786 
3787 	success = seq == lrugen->max_seq;
3788 	if (!success)
3789 		goto unlock;
3790 
3791 	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
3792 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3793 			continue;
3794 
3795 		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
3796 
3797 		if (inc_min_seq(lruvec, type, can_swap))
3798 			continue;
3799 
3800 		spin_unlock_irq(&lruvec->lru_lock);
3801 		cond_resched();
3802 		goto restart;
3803 	}
3804 
3805 	/*
3806 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
3807 	 * the current max_seq need to be covered, since max_seq+1 can overlap
3808 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3809 	 * overlap, cold/hot inversion happens.
3810 	 */
3811 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
3812 	next = lru_gen_from_seq(lrugen->max_seq + 1);
3813 
3814 	for (type = 0; type < ANON_AND_FILE; type++) {
3815 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3816 			enum lru_list lru = type * LRU_INACTIVE_FILE;
3817 			long delta = lrugen->nr_pages[prev][type][zone] -
3818 				     lrugen->nr_pages[next][type][zone];
3819 
3820 			if (!delta)
3821 				continue;
3822 
3823 			__update_lru_size(lruvec, lru, zone, delta);
3824 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3825 		}
3826 	}
3827 
3828 	for (type = 0; type < ANON_AND_FILE; type++)
3829 		reset_ctrl_pos(lruvec, type, false);
3830 
3831 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
3832 	/* make sure preceding modifications appear */
3833 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
3834 unlock:
3835 	spin_unlock_irq(&lruvec->lru_lock);
3836 
3837 	return success;
3838 }
3839 
3840 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3841 			       bool can_swap, bool force_scan)
3842 {
3843 	bool success;
3844 	struct lru_gen_mm_walk *walk;
3845 	struct mm_struct *mm = NULL;
3846 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3847 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3848 
3849 	VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
3850 
3851 	if (!mm_state)
3852 		return inc_max_seq(lruvec, seq, can_swap, force_scan);
3853 
3854 	/* see the comment in iterate_mm_list() */
3855 	if (seq <= READ_ONCE(mm_state->seq))
3856 		return false;
3857 
3858 	/*
3859 	 * If the hardware doesn't automatically set the accessed bit, fallback
3860 	 * to lru_gen_look_around(), which only clears the accessed bit in a
3861 	 * handful of PTEs. Spreading the work out over a period of time usually
3862 	 * is less efficient, but it avoids bursty page faults.
3863 	 */
3864 	if (!should_walk_mmu()) {
3865 		success = iterate_mm_list_nowalk(lruvec, seq);
3866 		goto done;
3867 	}
3868 
3869 	walk = set_mm_walk(NULL, true);
3870 	if (!walk) {
3871 		success = iterate_mm_list_nowalk(lruvec, seq);
3872 		goto done;
3873 	}
3874 
3875 	walk->lruvec = lruvec;
3876 	walk->seq = seq;
3877 	walk->can_swap = can_swap;
3878 	walk->force_scan = force_scan;
3879 
3880 	do {
3881 		success = iterate_mm_list(walk, &mm);
3882 		if (mm)
3883 			walk_mm(mm, walk);
3884 	} while (mm);
3885 done:
3886 	if (success) {
3887 		success = inc_max_seq(lruvec, seq, can_swap, force_scan);
3888 		WARN_ON_ONCE(!success);
3889 	}
3890 
3891 	return success;
3892 }
3893 
3894 /******************************************************************************
3895  *                          working set protection
3896  ******************************************************************************/
3897 
3898 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
3899 {
3900 	int priority;
3901 	unsigned long reclaimable;
3902 
3903 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
3904 		return;
3905 	/*
3906 	 * Determine the initial priority based on
3907 	 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
3908 	 * where reclaimed_to_scanned_ratio = inactive / total.
3909 	 */
3910 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
3911 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3912 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
3913 
3914 	/* round down reclaimable and round up sc->nr_to_reclaim */
3915 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
3916 
3917 	/*
3918 	 * The estimation is based on LRU pages only, so cap it to prevent
3919 	 * overshoots of shrinker objects by large margins.
3920 	 */
3921 	sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
3922 }
3923 
3924 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
3925 {
3926 	int gen, type, zone;
3927 	unsigned long total = 0;
3928 	bool can_swap = get_swappiness(lruvec, sc);
3929 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3930 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3931 	DEFINE_MAX_SEQ(lruvec);
3932 	DEFINE_MIN_SEQ(lruvec);
3933 
3934 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3935 		unsigned long seq;
3936 
3937 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
3938 			gen = lru_gen_from_seq(seq);
3939 
3940 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
3941 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
3942 		}
3943 	}
3944 
3945 	/* whether the size is big enough to be helpful */
3946 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
3947 }
3948 
3949 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
3950 				  unsigned long min_ttl)
3951 {
3952 	int gen;
3953 	unsigned long birth;
3954 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3955 	DEFINE_MIN_SEQ(lruvec);
3956 
3957 	if (mem_cgroup_below_min(NULL, memcg))
3958 		return false;
3959 
3960 	if (!lruvec_is_sizable(lruvec, sc))
3961 		return false;
3962 
3963 	/* see the comment on lru_gen_folio */
3964 	gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
3965 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
3966 
3967 	return time_is_before_jiffies(birth + min_ttl);
3968 }
3969 
3970 /* to protect the working set of the last N jiffies */
3971 static unsigned long lru_gen_min_ttl __read_mostly;
3972 
3973 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
3974 {
3975 	struct mem_cgroup *memcg;
3976 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
3977 	bool reclaimable = !min_ttl;
3978 
3979 	VM_WARN_ON_ONCE(!current_is_kswapd());
3980 
3981 	set_initial_priority(pgdat, sc);
3982 
3983 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3984 	do {
3985 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3986 
3987 		mem_cgroup_calculate_protection(NULL, memcg);
3988 
3989 		if (!reclaimable)
3990 			reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
3991 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
3992 
3993 	/*
3994 	 * The main goal is to OOM kill if every generation from all memcgs is
3995 	 * younger than min_ttl. However, another possibility is all memcgs are
3996 	 * either too small or below min.
3997 	 */
3998 	if (!reclaimable && mutex_trylock(&oom_lock)) {
3999 		struct oom_control oc = {
4000 			.gfp_mask = sc->gfp_mask,
4001 		};
4002 
4003 		out_of_memory(&oc);
4004 
4005 		mutex_unlock(&oom_lock);
4006 	}
4007 }
4008 
4009 /******************************************************************************
4010  *                          rmap/PT walk feedback
4011  ******************************************************************************/
4012 
4013 /*
4014  * This function exploits spatial locality when shrink_folio_list() walks the
4015  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4016  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4017  * the PTE table to the Bloom filter. This forms a feedback loop between the
4018  * eviction and the aging.
4019  */
4020 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4021 {
4022 	int i;
4023 	unsigned long start;
4024 	unsigned long end;
4025 	struct lru_gen_mm_walk *walk;
4026 	int young = 0;
4027 	pte_t *pte = pvmw->pte;
4028 	unsigned long addr = pvmw->address;
4029 	struct vm_area_struct *vma = pvmw->vma;
4030 	struct folio *folio = pfn_folio(pvmw->pfn);
4031 	bool can_swap = !folio_is_file_lru(folio);
4032 	struct mem_cgroup *memcg = folio_memcg(folio);
4033 	struct pglist_data *pgdat = folio_pgdat(folio);
4034 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4035 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4036 	DEFINE_MAX_SEQ(lruvec);
4037 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4038 
4039 	lockdep_assert_held(pvmw->ptl);
4040 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4041 
4042 	if (spin_is_contended(pvmw->ptl))
4043 		return;
4044 
4045 	/* exclude special VMAs containing anon pages from COW */
4046 	if (vma->vm_flags & VM_SPECIAL)
4047 		return;
4048 
4049 	/* avoid taking the LRU lock under the PTL when possible */
4050 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4051 
4052 	start = max(addr & PMD_MASK, vma->vm_start);
4053 	end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4054 
4055 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4056 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4057 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4058 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4059 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4060 		else {
4061 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4062 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4063 		}
4064 	}
4065 
4066 	/* folio_update_gen() requires stable folio_memcg() */
4067 	if (!mem_cgroup_trylock_pages(memcg))
4068 		return;
4069 
4070 	arch_enter_lazy_mmu_mode();
4071 
4072 	pte -= (addr - start) / PAGE_SIZE;
4073 
4074 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4075 		unsigned long pfn;
4076 		pte_t ptent = ptep_get(pte + i);
4077 
4078 		pfn = get_pte_pfn(ptent, vma, addr);
4079 		if (pfn == -1)
4080 			continue;
4081 
4082 		if (!pte_young(ptent))
4083 			continue;
4084 
4085 		folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4086 		if (!folio)
4087 			continue;
4088 
4089 		if (!ptep_test_and_clear_young(vma, addr, pte + i))
4090 			VM_WARN_ON_ONCE(true);
4091 
4092 		young++;
4093 
4094 		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4095 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4096 		      !folio_test_swapcache(folio)))
4097 			folio_mark_dirty(folio);
4098 
4099 		if (walk) {
4100 			old_gen = folio_update_gen(folio, new_gen);
4101 			if (old_gen >= 0 && old_gen != new_gen)
4102 				update_batch_size(walk, folio, old_gen, new_gen);
4103 
4104 			continue;
4105 		}
4106 
4107 		old_gen = folio_lru_gen(folio);
4108 		if (old_gen < 0)
4109 			folio_set_referenced(folio);
4110 		else if (old_gen != new_gen)
4111 			folio_activate(folio);
4112 	}
4113 
4114 	arch_leave_lazy_mmu_mode();
4115 	mem_cgroup_unlock_pages();
4116 
4117 	/* feedback from rmap walkers to page table walkers */
4118 	if (mm_state && suitable_to_scan(i, young))
4119 		update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4120 }
4121 
4122 /******************************************************************************
4123  *                          memcg LRU
4124  ******************************************************************************/
4125 
4126 /* see the comment on MEMCG_NR_GENS */
4127 enum {
4128 	MEMCG_LRU_NOP,
4129 	MEMCG_LRU_HEAD,
4130 	MEMCG_LRU_TAIL,
4131 	MEMCG_LRU_OLD,
4132 	MEMCG_LRU_YOUNG,
4133 };
4134 
4135 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4136 {
4137 	int seg;
4138 	int old, new;
4139 	unsigned long flags;
4140 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4141 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4142 
4143 	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4144 
4145 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4146 
4147 	seg = 0;
4148 	new = old = lruvec->lrugen.gen;
4149 
4150 	/* see the comment on MEMCG_NR_GENS */
4151 	if (op == MEMCG_LRU_HEAD)
4152 		seg = MEMCG_LRU_HEAD;
4153 	else if (op == MEMCG_LRU_TAIL)
4154 		seg = MEMCG_LRU_TAIL;
4155 	else if (op == MEMCG_LRU_OLD)
4156 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4157 	else if (op == MEMCG_LRU_YOUNG)
4158 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4159 	else
4160 		VM_WARN_ON_ONCE(true);
4161 
4162 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4163 	WRITE_ONCE(lruvec->lrugen.gen, new);
4164 
4165 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4166 
4167 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4168 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4169 	else
4170 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4171 
4172 	pgdat->memcg_lru.nr_memcgs[old]--;
4173 	pgdat->memcg_lru.nr_memcgs[new]++;
4174 
4175 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4176 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4177 
4178 	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4179 }
4180 
4181 #ifdef CONFIG_MEMCG
4182 
4183 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4184 {
4185 	int gen;
4186 	int nid;
4187 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4188 
4189 	for_each_node(nid) {
4190 		struct pglist_data *pgdat = NODE_DATA(nid);
4191 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4192 
4193 		spin_lock_irq(&pgdat->memcg_lru.lock);
4194 
4195 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4196 
4197 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4198 
4199 		lruvec->lrugen.gen = gen;
4200 
4201 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4202 		pgdat->memcg_lru.nr_memcgs[gen]++;
4203 
4204 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4205 	}
4206 }
4207 
4208 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4209 {
4210 	int nid;
4211 
4212 	for_each_node(nid) {
4213 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4214 
4215 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4216 	}
4217 }
4218 
4219 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4220 {
4221 	int gen;
4222 	int nid;
4223 
4224 	for_each_node(nid) {
4225 		struct pglist_data *pgdat = NODE_DATA(nid);
4226 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4227 
4228 		spin_lock_irq(&pgdat->memcg_lru.lock);
4229 
4230 		if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4231 			goto unlock;
4232 
4233 		gen = lruvec->lrugen.gen;
4234 
4235 		hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4236 		pgdat->memcg_lru.nr_memcgs[gen]--;
4237 
4238 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4239 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4240 unlock:
4241 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4242 	}
4243 }
4244 
4245 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4246 {
4247 	struct lruvec *lruvec = get_lruvec(memcg, nid);
4248 
4249 	/* see the comment on MEMCG_NR_GENS */
4250 	if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4251 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4252 }
4253 
4254 #endif /* CONFIG_MEMCG */
4255 
4256 /******************************************************************************
4257  *                          the eviction
4258  ******************************************************************************/
4259 
4260 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4261 		       int tier_idx)
4262 {
4263 	bool success;
4264 	int gen = folio_lru_gen(folio);
4265 	int type = folio_is_file_lru(folio);
4266 	int zone = folio_zonenum(folio);
4267 	int delta = folio_nr_pages(folio);
4268 	int refs = folio_lru_refs(folio);
4269 	int tier = lru_tier_from_refs(refs);
4270 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4271 
4272 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4273 
4274 	/* unevictable */
4275 	if (!folio_evictable(folio)) {
4276 		success = lru_gen_del_folio(lruvec, folio, true);
4277 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4278 		folio_set_unevictable(folio);
4279 		lruvec_add_folio(lruvec, folio);
4280 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4281 		return true;
4282 	}
4283 
4284 	/* promoted */
4285 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4286 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4287 		return true;
4288 	}
4289 
4290 	/* protected */
4291 	if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) {
4292 		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4293 
4294 		gen = folio_inc_gen(lruvec, folio, false);
4295 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4296 
4297 		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4298 			   lrugen->protected[hist][type][tier - 1] + delta);
4299 		return true;
4300 	}
4301 
4302 	/* ineligible */
4303 	if (zone > sc->reclaim_idx) {
4304 		gen = folio_inc_gen(lruvec, folio, false);
4305 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4306 		return true;
4307 	}
4308 
4309 	/* waiting for writeback */
4310 	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4311 	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4312 		gen = folio_inc_gen(lruvec, folio, true);
4313 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4314 		return true;
4315 	}
4316 
4317 	return false;
4318 }
4319 
4320 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4321 {
4322 	bool success;
4323 
4324 	/* swap constrained */
4325 	if (!(sc->gfp_mask & __GFP_IO) &&
4326 	    (folio_test_dirty(folio) ||
4327 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4328 		return false;
4329 
4330 	/* raced with release_pages() */
4331 	if (!folio_try_get(folio))
4332 		return false;
4333 
4334 	/* raced with another isolation */
4335 	if (!folio_test_clear_lru(folio)) {
4336 		folio_put(folio);
4337 		return false;
4338 	}
4339 
4340 	/* see the comment on MAX_NR_TIERS */
4341 	if (!folio_test_referenced(folio))
4342 		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4343 
4344 	/* for shrink_folio_list() */
4345 	folio_clear_reclaim(folio);
4346 	folio_clear_referenced(folio);
4347 
4348 	success = lru_gen_del_folio(lruvec, folio, true);
4349 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4350 
4351 	return true;
4352 }
4353 
4354 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4355 		       int type, int tier, struct list_head *list)
4356 {
4357 	int i;
4358 	int gen;
4359 	enum vm_event_item item;
4360 	int sorted = 0;
4361 	int scanned = 0;
4362 	int isolated = 0;
4363 	int skipped = 0;
4364 	int remaining = MAX_LRU_BATCH;
4365 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4366 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4367 
4368 	VM_WARN_ON_ONCE(!list_empty(list));
4369 
4370 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4371 		return 0;
4372 
4373 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4374 
4375 	for (i = MAX_NR_ZONES; i > 0; i--) {
4376 		LIST_HEAD(moved);
4377 		int skipped_zone = 0;
4378 		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4379 		struct list_head *head = &lrugen->folios[gen][type][zone];
4380 
4381 		while (!list_empty(head)) {
4382 			struct folio *folio = lru_to_folio(head);
4383 			int delta = folio_nr_pages(folio);
4384 
4385 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4386 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4387 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4388 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4389 
4390 			scanned += delta;
4391 
4392 			if (sort_folio(lruvec, folio, sc, tier))
4393 				sorted += delta;
4394 			else if (isolate_folio(lruvec, folio, sc)) {
4395 				list_add(&folio->lru, list);
4396 				isolated += delta;
4397 			} else {
4398 				list_move(&folio->lru, &moved);
4399 				skipped_zone += delta;
4400 			}
4401 
4402 			if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4403 				break;
4404 		}
4405 
4406 		if (skipped_zone) {
4407 			list_splice(&moved, head);
4408 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4409 			skipped += skipped_zone;
4410 		}
4411 
4412 		if (!remaining || isolated >= MIN_LRU_BATCH)
4413 			break;
4414 	}
4415 
4416 	item = PGSCAN_KSWAPD + reclaimer_offset();
4417 	if (!cgroup_reclaim(sc)) {
4418 		__count_vm_events(item, isolated);
4419 		__count_vm_events(PGREFILL, sorted);
4420 	}
4421 	__count_memcg_events(memcg, item, isolated);
4422 	__count_memcg_events(memcg, PGREFILL, sorted);
4423 	__count_vm_events(PGSCAN_ANON + type, isolated);
4424 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4425 				scanned, skipped, isolated,
4426 				type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4427 
4428 	/*
4429 	 * There might not be eligible folios due to reclaim_idx. Check the
4430 	 * remaining to prevent livelock if it's not making progress.
4431 	 */
4432 	return isolated || !remaining ? scanned : 0;
4433 }
4434 
4435 static int get_tier_idx(struct lruvec *lruvec, int type)
4436 {
4437 	int tier;
4438 	struct ctrl_pos sp, pv;
4439 
4440 	/*
4441 	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4442 	 * This value is chosen because any other tier would have at least twice
4443 	 * as many refaults as the first tier.
4444 	 */
4445 	read_ctrl_pos(lruvec, type, 0, 1, &sp);
4446 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4447 		read_ctrl_pos(lruvec, type, tier, 2, &pv);
4448 		if (!positive_ctrl_err(&sp, &pv))
4449 			break;
4450 	}
4451 
4452 	return tier - 1;
4453 }
4454 
4455 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4456 {
4457 	int type, tier;
4458 	struct ctrl_pos sp, pv;
4459 	int gain[ANON_AND_FILE] = { swappiness, MAX_SWAPPINESS - swappiness };
4460 
4461 	/*
4462 	 * Compare the first tier of anon with that of file to determine which
4463 	 * type to scan. Also need to compare other tiers of the selected type
4464 	 * with the first tier of the other type to determine the last tier (of
4465 	 * the selected type) to evict.
4466 	 */
4467 	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4468 	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4469 	type = positive_ctrl_err(&sp, &pv);
4470 
4471 	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4472 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4473 		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4474 		if (!positive_ctrl_err(&sp, &pv))
4475 			break;
4476 	}
4477 
4478 	*tier_idx = tier - 1;
4479 
4480 	return type;
4481 }
4482 
4483 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4484 			  int *type_scanned, struct list_head *list)
4485 {
4486 	int i;
4487 	int type;
4488 	int scanned;
4489 	int tier = -1;
4490 	DEFINE_MIN_SEQ(lruvec);
4491 
4492 	/*
4493 	 * Try to make the obvious choice first, and if anon and file are both
4494 	 * available from the same generation,
4495 	 * 1. Interpret swappiness 1 as file first and MAX_SWAPPINESS as anon
4496 	 *    first.
4497 	 * 2. If !__GFP_IO, file first since clean pagecache is more likely to
4498 	 *    exist than clean swapcache.
4499 	 */
4500 	if (!swappiness)
4501 		type = LRU_GEN_FILE;
4502 	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4503 		type = LRU_GEN_ANON;
4504 	else if (swappiness == 1)
4505 		type = LRU_GEN_FILE;
4506 	else if (swappiness == MAX_SWAPPINESS)
4507 		type = LRU_GEN_ANON;
4508 	else if (!(sc->gfp_mask & __GFP_IO))
4509 		type = LRU_GEN_FILE;
4510 	else
4511 		type = get_type_to_scan(lruvec, swappiness, &tier);
4512 
4513 	for (i = !swappiness; i < ANON_AND_FILE; i++) {
4514 		if (tier < 0)
4515 			tier = get_tier_idx(lruvec, type);
4516 
4517 		scanned = scan_folios(lruvec, sc, type, tier, list);
4518 		if (scanned)
4519 			break;
4520 
4521 		type = !type;
4522 		tier = -1;
4523 	}
4524 
4525 	*type_scanned = type;
4526 
4527 	return scanned;
4528 }
4529 
4530 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4531 {
4532 	int type;
4533 	int scanned;
4534 	int reclaimed;
4535 	LIST_HEAD(list);
4536 	LIST_HEAD(clean);
4537 	struct folio *folio;
4538 	struct folio *next;
4539 	enum vm_event_item item;
4540 	struct reclaim_stat stat;
4541 	struct lru_gen_mm_walk *walk;
4542 	bool skip_retry = false;
4543 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4544 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4545 
4546 	spin_lock_irq(&lruvec->lru_lock);
4547 
4548 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4549 
4550 	scanned += try_to_inc_min_seq(lruvec, swappiness);
4551 
4552 	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4553 		scanned = 0;
4554 
4555 	spin_unlock_irq(&lruvec->lru_lock);
4556 
4557 	if (list_empty(&list))
4558 		return scanned;
4559 retry:
4560 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4561 	sc->nr_reclaimed += reclaimed;
4562 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4563 			scanned, reclaimed, &stat, sc->priority,
4564 			type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4565 
4566 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4567 		if (!folio_evictable(folio)) {
4568 			list_del(&folio->lru);
4569 			folio_putback_lru(folio);
4570 			continue;
4571 		}
4572 
4573 		if (folio_test_reclaim(folio) &&
4574 		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
4575 			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
4576 			if (folio_test_workingset(folio))
4577 				folio_set_referenced(folio);
4578 			continue;
4579 		}
4580 
4581 		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
4582 		    folio_mapped(folio) || folio_test_locked(folio) ||
4583 		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
4584 			/* don't add rejected folios to the oldest generation */
4585 			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
4586 				      BIT(PG_active));
4587 			continue;
4588 		}
4589 
4590 		/* retry folios that may have missed folio_rotate_reclaimable() */
4591 		list_move(&folio->lru, &clean);
4592 	}
4593 
4594 	spin_lock_irq(&lruvec->lru_lock);
4595 
4596 	move_folios_to_lru(lruvec, &list);
4597 
4598 	walk = current->reclaim_state->mm_walk;
4599 	if (walk && walk->batched) {
4600 		walk->lruvec = lruvec;
4601 		reset_batch_size(walk);
4602 	}
4603 
4604 	item = PGSTEAL_KSWAPD + reclaimer_offset();
4605 	if (!cgroup_reclaim(sc))
4606 		__count_vm_events(item, reclaimed);
4607 	__count_memcg_events(memcg, item, reclaimed);
4608 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
4609 
4610 	spin_unlock_irq(&lruvec->lru_lock);
4611 
4612 	list_splice_init(&clean, &list);
4613 
4614 	if (!list_empty(&list)) {
4615 		skip_retry = true;
4616 		goto retry;
4617 	}
4618 
4619 	return scanned;
4620 }
4621 
4622 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4623 			     bool can_swap, unsigned long *nr_to_scan)
4624 {
4625 	int gen, type, zone;
4626 	unsigned long old = 0;
4627 	unsigned long young = 0;
4628 	unsigned long total = 0;
4629 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4630 	DEFINE_MIN_SEQ(lruvec);
4631 
4632 	/* whether this lruvec is completely out of cold folios */
4633 	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
4634 		*nr_to_scan = 0;
4635 		return true;
4636 	}
4637 
4638 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4639 		unsigned long seq;
4640 
4641 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4642 			unsigned long size = 0;
4643 
4644 			gen = lru_gen_from_seq(seq);
4645 
4646 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4647 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4648 
4649 			total += size;
4650 			if (seq == max_seq)
4651 				young += size;
4652 			else if (seq + MIN_NR_GENS == max_seq)
4653 				old += size;
4654 		}
4655 	}
4656 
4657 	*nr_to_scan = total;
4658 
4659 	/*
4660 	 * The aging tries to be lazy to reduce the overhead, while the eviction
4661 	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4662 	 * ideal number of generations is MIN_NR_GENS+1.
4663 	 */
4664 	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4665 		return false;
4666 
4667 	/*
4668 	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4669 	 * of the total number of pages for each generation. A reasonable range
4670 	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4671 	 * aging cares about the upper bound of hot pages, while the eviction
4672 	 * cares about the lower bound of cold pages.
4673 	 */
4674 	if (young * MIN_NR_GENS > total)
4675 		return true;
4676 	if (old * (MIN_NR_GENS + 2) < total)
4677 		return true;
4678 
4679 	return false;
4680 }
4681 
4682 /*
4683  * For future optimizations:
4684  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4685  *    reclaim.
4686  */
4687 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
4688 {
4689 	bool success;
4690 	unsigned long nr_to_scan;
4691 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4692 	DEFINE_MAX_SEQ(lruvec);
4693 
4694 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4695 		return -1;
4696 
4697 	success = should_run_aging(lruvec, max_seq, can_swap, &nr_to_scan);
4698 
4699 	/* try to scrape all its memory if this memcg was deleted */
4700 	if (nr_to_scan && !mem_cgroup_online(memcg))
4701 		return nr_to_scan;
4702 
4703 	/* try to get away with not aging at the default priority */
4704 	if (!success || sc->priority == DEF_PRIORITY)
4705 		return nr_to_scan >> sc->priority;
4706 
4707 	/* stop scanning this lruvec as it's low on cold folios */
4708 	return try_to_inc_max_seq(lruvec, max_seq, can_swap, false) ? -1 : 0;
4709 }
4710 
4711 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4712 {
4713 	int i;
4714 	enum zone_watermarks mark;
4715 
4716 	/* don't abort memcg reclaim to ensure fairness */
4717 	if (!root_reclaim(sc))
4718 		return false;
4719 
4720 	if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4721 		return true;
4722 
4723 	/* check the order to exclude compaction-induced reclaim */
4724 	if (!current_is_kswapd() || sc->order)
4725 		return false;
4726 
4727 	mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4728 	       WMARK_PROMO : WMARK_HIGH;
4729 
4730 	for (i = 0; i <= sc->reclaim_idx; i++) {
4731 		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4732 		unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4733 
4734 		if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4735 			return false;
4736 	}
4737 
4738 	/* kswapd should abort if all eligible zones are safe */
4739 	return true;
4740 }
4741 
4742 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4743 {
4744 	long nr_to_scan;
4745 	unsigned long scanned = 0;
4746 	int swappiness = get_swappiness(lruvec, sc);
4747 
4748 	while (true) {
4749 		int delta;
4750 
4751 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4752 		if (nr_to_scan <= 0)
4753 			break;
4754 
4755 		delta = evict_folios(lruvec, sc, swappiness);
4756 		if (!delta)
4757 			break;
4758 
4759 		scanned += delta;
4760 		if (scanned >= nr_to_scan)
4761 			break;
4762 
4763 		if (should_abort_scan(lruvec, sc))
4764 			break;
4765 
4766 		cond_resched();
4767 	}
4768 
4769 	/* whether this lruvec should be rotated */
4770 	return nr_to_scan < 0;
4771 }
4772 
4773 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4774 {
4775 	bool success;
4776 	unsigned long scanned = sc->nr_scanned;
4777 	unsigned long reclaimed = sc->nr_reclaimed;
4778 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4779 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4780 
4781 	/* lru_gen_age_node() called mem_cgroup_calculate_protection() */
4782 	if (mem_cgroup_below_min(NULL, memcg))
4783 		return MEMCG_LRU_YOUNG;
4784 
4785 	if (mem_cgroup_below_low(NULL, memcg)) {
4786 		/* see the comment on MEMCG_NR_GENS */
4787 		if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4788 			return MEMCG_LRU_TAIL;
4789 
4790 		memcg_memory_event(memcg, MEMCG_LOW);
4791 	}
4792 
4793 	success = try_to_shrink_lruvec(lruvec, sc);
4794 
4795 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4796 
4797 	if (!sc->proactive)
4798 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4799 			   sc->nr_reclaimed - reclaimed);
4800 
4801 	flush_reclaim_state(sc);
4802 
4803 	if (success && mem_cgroup_online(memcg))
4804 		return MEMCG_LRU_YOUNG;
4805 
4806 	if (!success && lruvec_is_sizable(lruvec, sc))
4807 		return 0;
4808 
4809 	/* one retry if offlined or too small */
4810 	return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4811 	       MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4812 }
4813 
4814 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4815 {
4816 	int op;
4817 	int gen;
4818 	int bin;
4819 	int first_bin;
4820 	struct lruvec *lruvec;
4821 	struct lru_gen_folio *lrugen;
4822 	struct mem_cgroup *memcg;
4823 	struct hlist_nulls_node *pos;
4824 
4825 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4826 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4827 restart:
4828 	op = 0;
4829 	memcg = NULL;
4830 
4831 	rcu_read_lock();
4832 
4833 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4834 		if (op) {
4835 			lru_gen_rotate_memcg(lruvec, op);
4836 			op = 0;
4837 		}
4838 
4839 		mem_cgroup_put(memcg);
4840 		memcg = NULL;
4841 
4842 		if (gen != READ_ONCE(lrugen->gen))
4843 			continue;
4844 
4845 		lruvec = container_of(lrugen, struct lruvec, lrugen);
4846 		memcg = lruvec_memcg(lruvec);
4847 
4848 		if (!mem_cgroup_tryget(memcg)) {
4849 			lru_gen_release_memcg(memcg);
4850 			memcg = NULL;
4851 			continue;
4852 		}
4853 
4854 		rcu_read_unlock();
4855 
4856 		op = shrink_one(lruvec, sc);
4857 
4858 		rcu_read_lock();
4859 
4860 		if (should_abort_scan(lruvec, sc))
4861 			break;
4862 	}
4863 
4864 	rcu_read_unlock();
4865 
4866 	if (op)
4867 		lru_gen_rotate_memcg(lruvec, op);
4868 
4869 	mem_cgroup_put(memcg);
4870 
4871 	if (!is_a_nulls(pos))
4872 		return;
4873 
4874 	/* restart if raced with lru_gen_rotate_memcg() */
4875 	if (gen != get_nulls_value(pos))
4876 		goto restart;
4877 
4878 	/* try the rest of the bins of the current generation */
4879 	bin = get_memcg_bin(bin + 1);
4880 	if (bin != first_bin)
4881 		goto restart;
4882 }
4883 
4884 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4885 {
4886 	struct blk_plug plug;
4887 
4888 	VM_WARN_ON_ONCE(root_reclaim(sc));
4889 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
4890 
4891 	lru_add_drain();
4892 
4893 	blk_start_plug(&plug);
4894 
4895 	set_mm_walk(NULL, sc->proactive);
4896 
4897 	if (try_to_shrink_lruvec(lruvec, sc))
4898 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
4899 
4900 	clear_mm_walk();
4901 
4902 	blk_finish_plug(&plug);
4903 }
4904 
4905 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
4906 {
4907 	struct blk_plug plug;
4908 	unsigned long reclaimed = sc->nr_reclaimed;
4909 
4910 	VM_WARN_ON_ONCE(!root_reclaim(sc));
4911 
4912 	/*
4913 	 * Unmapped clean folios are already prioritized. Scanning for more of
4914 	 * them is likely futile and can cause high reclaim latency when there
4915 	 * is a large number of memcgs.
4916 	 */
4917 	if (!sc->may_writepage || !sc->may_unmap)
4918 		goto done;
4919 
4920 	lru_add_drain();
4921 
4922 	blk_start_plug(&plug);
4923 
4924 	set_mm_walk(pgdat, sc->proactive);
4925 
4926 	set_initial_priority(pgdat, sc);
4927 
4928 	if (current_is_kswapd())
4929 		sc->nr_reclaimed = 0;
4930 
4931 	if (mem_cgroup_disabled())
4932 		shrink_one(&pgdat->__lruvec, sc);
4933 	else
4934 		shrink_many(pgdat, sc);
4935 
4936 	if (current_is_kswapd())
4937 		sc->nr_reclaimed += reclaimed;
4938 
4939 	clear_mm_walk();
4940 
4941 	blk_finish_plug(&plug);
4942 done:
4943 	/* kswapd should never fail */
4944 	pgdat->kswapd_failures = 0;
4945 }
4946 
4947 /******************************************************************************
4948  *                          state change
4949  ******************************************************************************/
4950 
4951 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
4952 {
4953 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4954 
4955 	if (lrugen->enabled) {
4956 		enum lru_list lru;
4957 
4958 		for_each_evictable_lru(lru) {
4959 			if (!list_empty(&lruvec->lists[lru]))
4960 				return false;
4961 		}
4962 	} else {
4963 		int gen, type, zone;
4964 
4965 		for_each_gen_type_zone(gen, type, zone) {
4966 			if (!list_empty(&lrugen->folios[gen][type][zone]))
4967 				return false;
4968 		}
4969 	}
4970 
4971 	return true;
4972 }
4973 
4974 static bool fill_evictable(struct lruvec *lruvec)
4975 {
4976 	enum lru_list lru;
4977 	int remaining = MAX_LRU_BATCH;
4978 
4979 	for_each_evictable_lru(lru) {
4980 		int type = is_file_lru(lru);
4981 		bool active = is_active_lru(lru);
4982 		struct list_head *head = &lruvec->lists[lru];
4983 
4984 		while (!list_empty(head)) {
4985 			bool success;
4986 			struct folio *folio = lru_to_folio(head);
4987 
4988 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4989 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
4990 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4991 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
4992 
4993 			lruvec_del_folio(lruvec, folio);
4994 			success = lru_gen_add_folio(lruvec, folio, false);
4995 			VM_WARN_ON_ONCE(!success);
4996 
4997 			if (!--remaining)
4998 				return false;
4999 		}
5000 	}
5001 
5002 	return true;
5003 }
5004 
5005 static bool drain_evictable(struct lruvec *lruvec)
5006 {
5007 	int gen, type, zone;
5008 	int remaining = MAX_LRU_BATCH;
5009 
5010 	for_each_gen_type_zone(gen, type, zone) {
5011 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5012 
5013 		while (!list_empty(head)) {
5014 			bool success;
5015 			struct folio *folio = lru_to_folio(head);
5016 
5017 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5018 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5019 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5020 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5021 
5022 			success = lru_gen_del_folio(lruvec, folio, false);
5023 			VM_WARN_ON_ONCE(!success);
5024 			lruvec_add_folio(lruvec, folio);
5025 
5026 			if (!--remaining)
5027 				return false;
5028 		}
5029 	}
5030 
5031 	return true;
5032 }
5033 
5034 static void lru_gen_change_state(bool enabled)
5035 {
5036 	static DEFINE_MUTEX(state_mutex);
5037 
5038 	struct mem_cgroup *memcg;
5039 
5040 	cgroup_lock();
5041 	cpus_read_lock();
5042 	get_online_mems();
5043 	mutex_lock(&state_mutex);
5044 
5045 	if (enabled == lru_gen_enabled())
5046 		goto unlock;
5047 
5048 	if (enabled)
5049 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5050 	else
5051 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5052 
5053 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5054 	do {
5055 		int nid;
5056 
5057 		for_each_node(nid) {
5058 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5059 
5060 			spin_lock_irq(&lruvec->lru_lock);
5061 
5062 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5063 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5064 
5065 			lruvec->lrugen.enabled = enabled;
5066 
5067 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5068 				spin_unlock_irq(&lruvec->lru_lock);
5069 				cond_resched();
5070 				spin_lock_irq(&lruvec->lru_lock);
5071 			}
5072 
5073 			spin_unlock_irq(&lruvec->lru_lock);
5074 		}
5075 
5076 		cond_resched();
5077 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5078 unlock:
5079 	mutex_unlock(&state_mutex);
5080 	put_online_mems();
5081 	cpus_read_unlock();
5082 	cgroup_unlock();
5083 }
5084 
5085 /******************************************************************************
5086  *                          sysfs interface
5087  ******************************************************************************/
5088 
5089 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5090 {
5091 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5092 }
5093 
5094 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5095 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5096 				const char *buf, size_t len)
5097 {
5098 	unsigned int msecs;
5099 
5100 	if (kstrtouint(buf, 0, &msecs))
5101 		return -EINVAL;
5102 
5103 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5104 
5105 	return len;
5106 }
5107 
5108 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5109 
5110 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5111 {
5112 	unsigned int caps = 0;
5113 
5114 	if (get_cap(LRU_GEN_CORE))
5115 		caps |= BIT(LRU_GEN_CORE);
5116 
5117 	if (should_walk_mmu())
5118 		caps |= BIT(LRU_GEN_MM_WALK);
5119 
5120 	if (should_clear_pmd_young())
5121 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5122 
5123 	return sysfs_emit(buf, "0x%04x\n", caps);
5124 }
5125 
5126 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5127 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5128 			     const char *buf, size_t len)
5129 {
5130 	int i;
5131 	unsigned int caps;
5132 
5133 	if (tolower(*buf) == 'n')
5134 		caps = 0;
5135 	else if (tolower(*buf) == 'y')
5136 		caps = -1;
5137 	else if (kstrtouint(buf, 0, &caps))
5138 		return -EINVAL;
5139 
5140 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5141 		bool enabled = caps & BIT(i);
5142 
5143 		if (i == LRU_GEN_CORE)
5144 			lru_gen_change_state(enabled);
5145 		else if (enabled)
5146 			static_branch_enable(&lru_gen_caps[i]);
5147 		else
5148 			static_branch_disable(&lru_gen_caps[i]);
5149 	}
5150 
5151 	return len;
5152 }
5153 
5154 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5155 
5156 static struct attribute *lru_gen_attrs[] = {
5157 	&lru_gen_min_ttl_attr.attr,
5158 	&lru_gen_enabled_attr.attr,
5159 	NULL
5160 };
5161 
5162 static const struct attribute_group lru_gen_attr_group = {
5163 	.name = "lru_gen",
5164 	.attrs = lru_gen_attrs,
5165 };
5166 
5167 /******************************************************************************
5168  *                          debugfs interface
5169  ******************************************************************************/
5170 
5171 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5172 {
5173 	struct mem_cgroup *memcg;
5174 	loff_t nr_to_skip = *pos;
5175 
5176 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5177 	if (!m->private)
5178 		return ERR_PTR(-ENOMEM);
5179 
5180 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5181 	do {
5182 		int nid;
5183 
5184 		for_each_node_state(nid, N_MEMORY) {
5185 			if (!nr_to_skip--)
5186 				return get_lruvec(memcg, nid);
5187 		}
5188 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5189 
5190 	return NULL;
5191 }
5192 
5193 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5194 {
5195 	if (!IS_ERR_OR_NULL(v))
5196 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5197 
5198 	kvfree(m->private);
5199 	m->private = NULL;
5200 }
5201 
5202 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5203 {
5204 	int nid = lruvec_pgdat(v)->node_id;
5205 	struct mem_cgroup *memcg = lruvec_memcg(v);
5206 
5207 	++*pos;
5208 
5209 	nid = next_memory_node(nid);
5210 	if (nid == MAX_NUMNODES) {
5211 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5212 		if (!memcg)
5213 			return NULL;
5214 
5215 		nid = first_memory_node;
5216 	}
5217 
5218 	return get_lruvec(memcg, nid);
5219 }
5220 
5221 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5222 				  unsigned long max_seq, unsigned long *min_seq,
5223 				  unsigned long seq)
5224 {
5225 	int i;
5226 	int type, tier;
5227 	int hist = lru_hist_from_seq(seq);
5228 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5229 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5230 
5231 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5232 		seq_printf(m, "            %10d", tier);
5233 		for (type = 0; type < ANON_AND_FILE; type++) {
5234 			const char *s = "   ";
5235 			unsigned long n[3] = {};
5236 
5237 			if (seq == max_seq) {
5238 				s = "RT ";
5239 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5240 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5241 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5242 				s = "rep";
5243 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5244 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5245 				if (tier)
5246 					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5247 			}
5248 
5249 			for (i = 0; i < 3; i++)
5250 				seq_printf(m, " %10lu%c", n[i], s[i]);
5251 		}
5252 		seq_putc(m, '\n');
5253 	}
5254 
5255 	if (!mm_state)
5256 		return;
5257 
5258 	seq_puts(m, "                      ");
5259 	for (i = 0; i < NR_MM_STATS; i++) {
5260 		const char *s = "      ";
5261 		unsigned long n = 0;
5262 
5263 		if (seq == max_seq && NR_HIST_GENS == 1) {
5264 			s = "LOYNFA";
5265 			n = READ_ONCE(mm_state->stats[hist][i]);
5266 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5267 			s = "loynfa";
5268 			n = READ_ONCE(mm_state->stats[hist][i]);
5269 		}
5270 
5271 		seq_printf(m, " %10lu%c", n, s[i]);
5272 	}
5273 	seq_putc(m, '\n');
5274 }
5275 
5276 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5277 static int lru_gen_seq_show(struct seq_file *m, void *v)
5278 {
5279 	unsigned long seq;
5280 	bool full = !debugfs_real_fops(m->file)->write;
5281 	struct lruvec *lruvec = v;
5282 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5283 	int nid = lruvec_pgdat(lruvec)->node_id;
5284 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5285 	DEFINE_MAX_SEQ(lruvec);
5286 	DEFINE_MIN_SEQ(lruvec);
5287 
5288 	if (nid == first_memory_node) {
5289 		const char *path = memcg ? m->private : "";
5290 
5291 #ifdef CONFIG_MEMCG
5292 		if (memcg)
5293 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5294 #endif
5295 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5296 	}
5297 
5298 	seq_printf(m, " node %5d\n", nid);
5299 
5300 	if (!full)
5301 		seq = min_seq[LRU_GEN_ANON];
5302 	else if (max_seq >= MAX_NR_GENS)
5303 		seq = max_seq - MAX_NR_GENS + 1;
5304 	else
5305 		seq = 0;
5306 
5307 	for (; seq <= max_seq; seq++) {
5308 		int type, zone;
5309 		int gen = lru_gen_from_seq(seq);
5310 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5311 
5312 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5313 
5314 		for (type = 0; type < ANON_AND_FILE; type++) {
5315 			unsigned long size = 0;
5316 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5317 
5318 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5319 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5320 
5321 			seq_printf(m, " %10lu%c", size, mark);
5322 		}
5323 
5324 		seq_putc(m, '\n');
5325 
5326 		if (full)
5327 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5328 	}
5329 
5330 	return 0;
5331 }
5332 
5333 static const struct seq_operations lru_gen_seq_ops = {
5334 	.start = lru_gen_seq_start,
5335 	.stop = lru_gen_seq_stop,
5336 	.next = lru_gen_seq_next,
5337 	.show = lru_gen_seq_show,
5338 };
5339 
5340 static int run_aging(struct lruvec *lruvec, unsigned long seq,
5341 		     bool can_swap, bool force_scan)
5342 {
5343 	DEFINE_MAX_SEQ(lruvec);
5344 	DEFINE_MIN_SEQ(lruvec);
5345 
5346 	if (seq < max_seq)
5347 		return 0;
5348 
5349 	if (seq > max_seq)
5350 		return -EINVAL;
5351 
5352 	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5353 		return -ERANGE;
5354 
5355 	try_to_inc_max_seq(lruvec, max_seq, can_swap, force_scan);
5356 
5357 	return 0;
5358 }
5359 
5360 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5361 			int swappiness, unsigned long nr_to_reclaim)
5362 {
5363 	DEFINE_MAX_SEQ(lruvec);
5364 
5365 	if (seq + MIN_NR_GENS > max_seq)
5366 		return -EINVAL;
5367 
5368 	sc->nr_reclaimed = 0;
5369 
5370 	while (!signal_pending(current)) {
5371 		DEFINE_MIN_SEQ(lruvec);
5372 
5373 		if (seq < min_seq[!swappiness])
5374 			return 0;
5375 
5376 		if (sc->nr_reclaimed >= nr_to_reclaim)
5377 			return 0;
5378 
5379 		if (!evict_folios(lruvec, sc, swappiness))
5380 			return 0;
5381 
5382 		cond_resched();
5383 	}
5384 
5385 	return -EINTR;
5386 }
5387 
5388 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5389 		   struct scan_control *sc, int swappiness, unsigned long opt)
5390 {
5391 	struct lruvec *lruvec;
5392 	int err = -EINVAL;
5393 	struct mem_cgroup *memcg = NULL;
5394 
5395 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5396 		return -EINVAL;
5397 
5398 	if (!mem_cgroup_disabled()) {
5399 		rcu_read_lock();
5400 
5401 		memcg = mem_cgroup_from_id(memcg_id);
5402 		if (!mem_cgroup_tryget(memcg))
5403 			memcg = NULL;
5404 
5405 		rcu_read_unlock();
5406 
5407 		if (!memcg)
5408 			return -EINVAL;
5409 	}
5410 
5411 	if (memcg_id != mem_cgroup_id(memcg))
5412 		goto done;
5413 
5414 	lruvec = get_lruvec(memcg, nid);
5415 
5416 	if (swappiness < MIN_SWAPPINESS)
5417 		swappiness = get_swappiness(lruvec, sc);
5418 	else if (swappiness > MAX_SWAPPINESS)
5419 		goto done;
5420 
5421 	switch (cmd) {
5422 	case '+':
5423 		err = run_aging(lruvec, seq, swappiness, opt);
5424 		break;
5425 	case '-':
5426 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5427 		break;
5428 	}
5429 done:
5430 	mem_cgroup_put(memcg);
5431 
5432 	return err;
5433 }
5434 
5435 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5436 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5437 				 size_t len, loff_t *pos)
5438 {
5439 	void *buf;
5440 	char *cur, *next;
5441 	unsigned int flags;
5442 	struct blk_plug plug;
5443 	int err = -EINVAL;
5444 	struct scan_control sc = {
5445 		.may_writepage = true,
5446 		.may_unmap = true,
5447 		.may_swap = true,
5448 		.reclaim_idx = MAX_NR_ZONES - 1,
5449 		.gfp_mask = GFP_KERNEL,
5450 	};
5451 
5452 	buf = kvmalloc(len + 1, GFP_KERNEL);
5453 	if (!buf)
5454 		return -ENOMEM;
5455 
5456 	if (copy_from_user(buf, src, len)) {
5457 		kvfree(buf);
5458 		return -EFAULT;
5459 	}
5460 
5461 	set_task_reclaim_state(current, &sc.reclaim_state);
5462 	flags = memalloc_noreclaim_save();
5463 	blk_start_plug(&plug);
5464 	if (!set_mm_walk(NULL, true)) {
5465 		err = -ENOMEM;
5466 		goto done;
5467 	}
5468 
5469 	next = buf;
5470 	next[len] = '\0';
5471 
5472 	while ((cur = strsep(&next, ",;\n"))) {
5473 		int n;
5474 		int end;
5475 		char cmd;
5476 		unsigned int memcg_id;
5477 		unsigned int nid;
5478 		unsigned long seq;
5479 		unsigned int swappiness = -1;
5480 		unsigned long opt = -1;
5481 
5482 		cur = skip_spaces(cur);
5483 		if (!*cur)
5484 			continue;
5485 
5486 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5487 			   &seq, &end, &swappiness, &end, &opt, &end);
5488 		if (n < 4 || cur[end]) {
5489 			err = -EINVAL;
5490 			break;
5491 		}
5492 
5493 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5494 		if (err)
5495 			break;
5496 	}
5497 done:
5498 	clear_mm_walk();
5499 	blk_finish_plug(&plug);
5500 	memalloc_noreclaim_restore(flags);
5501 	set_task_reclaim_state(current, NULL);
5502 
5503 	kvfree(buf);
5504 
5505 	return err ? : len;
5506 }
5507 
5508 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5509 {
5510 	return seq_open(file, &lru_gen_seq_ops);
5511 }
5512 
5513 static const struct file_operations lru_gen_rw_fops = {
5514 	.open = lru_gen_seq_open,
5515 	.read = seq_read,
5516 	.write = lru_gen_seq_write,
5517 	.llseek = seq_lseek,
5518 	.release = seq_release,
5519 };
5520 
5521 static const struct file_operations lru_gen_ro_fops = {
5522 	.open = lru_gen_seq_open,
5523 	.read = seq_read,
5524 	.llseek = seq_lseek,
5525 	.release = seq_release,
5526 };
5527 
5528 /******************************************************************************
5529  *                          initialization
5530  ******************************************************************************/
5531 
5532 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5533 {
5534 	int i, j;
5535 
5536 	spin_lock_init(&pgdat->memcg_lru.lock);
5537 
5538 	for (i = 0; i < MEMCG_NR_GENS; i++) {
5539 		for (j = 0; j < MEMCG_NR_BINS; j++)
5540 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5541 	}
5542 }
5543 
5544 void lru_gen_init_lruvec(struct lruvec *lruvec)
5545 {
5546 	int i;
5547 	int gen, type, zone;
5548 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5549 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5550 
5551 	lrugen->max_seq = MIN_NR_GENS + 1;
5552 	lrugen->enabled = lru_gen_enabled();
5553 
5554 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5555 		lrugen->timestamps[i] = jiffies;
5556 
5557 	for_each_gen_type_zone(gen, type, zone)
5558 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5559 
5560 	if (mm_state)
5561 		mm_state->seq = MIN_NR_GENS;
5562 }
5563 
5564 #ifdef CONFIG_MEMCG
5565 
5566 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5567 {
5568 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5569 
5570 	if (!mm_list)
5571 		return;
5572 
5573 	INIT_LIST_HEAD(&mm_list->fifo);
5574 	spin_lock_init(&mm_list->lock);
5575 }
5576 
5577 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5578 {
5579 	int i;
5580 	int nid;
5581 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5582 
5583 	VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5584 
5585 	for_each_node(nid) {
5586 		struct lruvec *lruvec = get_lruvec(memcg, nid);
5587 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5588 
5589 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5590 					   sizeof(lruvec->lrugen.nr_pages)));
5591 
5592 		lruvec->lrugen.list.next = LIST_POISON1;
5593 
5594 		if (!mm_state)
5595 			continue;
5596 
5597 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5598 			bitmap_free(mm_state->filters[i]);
5599 			mm_state->filters[i] = NULL;
5600 		}
5601 	}
5602 }
5603 
5604 #endif /* CONFIG_MEMCG */
5605 
5606 static int __init init_lru_gen(void)
5607 {
5608 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5609 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5610 
5611 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5612 		pr_err("lru_gen: failed to create sysfs group\n");
5613 
5614 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5615 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5616 
5617 	return 0;
5618 };
5619 late_initcall(init_lru_gen);
5620 
5621 #else /* !CONFIG_LRU_GEN */
5622 
5623 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5624 {
5625 	BUILD_BUG();
5626 }
5627 
5628 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5629 {
5630 	BUILD_BUG();
5631 }
5632 
5633 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5634 {
5635 	BUILD_BUG();
5636 }
5637 
5638 #endif /* CONFIG_LRU_GEN */
5639 
5640 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5641 {
5642 	unsigned long nr[NR_LRU_LISTS];
5643 	unsigned long targets[NR_LRU_LISTS];
5644 	unsigned long nr_to_scan;
5645 	enum lru_list lru;
5646 	unsigned long nr_reclaimed = 0;
5647 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5648 	bool proportional_reclaim;
5649 	struct blk_plug plug;
5650 
5651 	if (lru_gen_enabled() && !root_reclaim(sc)) {
5652 		lru_gen_shrink_lruvec(lruvec, sc);
5653 		return;
5654 	}
5655 
5656 	get_scan_count(lruvec, sc, nr);
5657 
5658 	/* Record the original scan target for proportional adjustments later */
5659 	memcpy(targets, nr, sizeof(nr));
5660 
5661 	/*
5662 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5663 	 * event that can occur when there is little memory pressure e.g.
5664 	 * multiple streaming readers/writers. Hence, we do not abort scanning
5665 	 * when the requested number of pages are reclaimed when scanning at
5666 	 * DEF_PRIORITY on the assumption that the fact we are direct
5667 	 * reclaiming implies that kswapd is not keeping up and it is best to
5668 	 * do a batch of work at once. For memcg reclaim one check is made to
5669 	 * abort proportional reclaim if either the file or anon lru has already
5670 	 * dropped to zero at the first pass.
5671 	 */
5672 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5673 				sc->priority == DEF_PRIORITY);
5674 
5675 	blk_start_plug(&plug);
5676 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5677 					nr[LRU_INACTIVE_FILE]) {
5678 		unsigned long nr_anon, nr_file, percentage;
5679 		unsigned long nr_scanned;
5680 
5681 		for_each_evictable_lru(lru) {
5682 			if (nr[lru]) {
5683 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5684 				nr[lru] -= nr_to_scan;
5685 
5686 				nr_reclaimed += shrink_list(lru, nr_to_scan,
5687 							    lruvec, sc);
5688 			}
5689 		}
5690 
5691 		cond_resched();
5692 
5693 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5694 			continue;
5695 
5696 		/*
5697 		 * For kswapd and memcg, reclaim at least the number of pages
5698 		 * requested. Ensure that the anon and file LRUs are scanned
5699 		 * proportionally what was requested by get_scan_count(). We
5700 		 * stop reclaiming one LRU and reduce the amount scanning
5701 		 * proportional to the original scan target.
5702 		 */
5703 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5704 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5705 
5706 		/*
5707 		 * It's just vindictive to attack the larger once the smaller
5708 		 * has gone to zero.  And given the way we stop scanning the
5709 		 * smaller below, this makes sure that we only make one nudge
5710 		 * towards proportionality once we've got nr_to_reclaim.
5711 		 */
5712 		if (!nr_file || !nr_anon)
5713 			break;
5714 
5715 		if (nr_file > nr_anon) {
5716 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5717 						targets[LRU_ACTIVE_ANON] + 1;
5718 			lru = LRU_BASE;
5719 			percentage = nr_anon * 100 / scan_target;
5720 		} else {
5721 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5722 						targets[LRU_ACTIVE_FILE] + 1;
5723 			lru = LRU_FILE;
5724 			percentage = nr_file * 100 / scan_target;
5725 		}
5726 
5727 		/* Stop scanning the smaller of the LRU */
5728 		nr[lru] = 0;
5729 		nr[lru + LRU_ACTIVE] = 0;
5730 
5731 		/*
5732 		 * Recalculate the other LRU scan count based on its original
5733 		 * scan target and the percentage scanning already complete
5734 		 */
5735 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5736 		nr_scanned = targets[lru] - nr[lru];
5737 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5738 		nr[lru] -= min(nr[lru], nr_scanned);
5739 
5740 		lru += LRU_ACTIVE;
5741 		nr_scanned = targets[lru] - nr[lru];
5742 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5743 		nr[lru] -= min(nr[lru], nr_scanned);
5744 	}
5745 	blk_finish_plug(&plug);
5746 	sc->nr_reclaimed += nr_reclaimed;
5747 
5748 	/*
5749 	 * Even if we did not try to evict anon pages at all, we want to
5750 	 * rebalance the anon lru active/inactive ratio.
5751 	 */
5752 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5753 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5754 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5755 				   sc, LRU_ACTIVE_ANON);
5756 }
5757 
5758 /* Use reclaim/compaction for costly allocs or under memory pressure */
5759 static bool in_reclaim_compaction(struct scan_control *sc)
5760 {
5761 	if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5762 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5763 			 sc->priority < DEF_PRIORITY - 2))
5764 		return true;
5765 
5766 	return false;
5767 }
5768 
5769 /*
5770  * Reclaim/compaction is used for high-order allocation requests. It reclaims
5771  * order-0 pages before compacting the zone. should_continue_reclaim() returns
5772  * true if more pages should be reclaimed such that when the page allocator
5773  * calls try_to_compact_pages() that it will have enough free pages to succeed.
5774  * It will give up earlier than that if there is difficulty reclaiming pages.
5775  */
5776 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5777 					unsigned long nr_reclaimed,
5778 					struct scan_control *sc)
5779 {
5780 	unsigned long pages_for_compaction;
5781 	unsigned long inactive_lru_pages;
5782 	int z;
5783 
5784 	/* If not in reclaim/compaction mode, stop */
5785 	if (!in_reclaim_compaction(sc))
5786 		return false;
5787 
5788 	/*
5789 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5790 	 * number of pages that were scanned. This will return to the caller
5791 	 * with the risk reclaim/compaction and the resulting allocation attempt
5792 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5793 	 * allocations through requiring that the full LRU list has been scanned
5794 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5795 	 * scan, but that approximation was wrong, and there were corner cases
5796 	 * where always a non-zero amount of pages were scanned.
5797 	 */
5798 	if (!nr_reclaimed)
5799 		return false;
5800 
5801 	/* If compaction would go ahead or the allocation would succeed, stop */
5802 	for (z = 0; z <= sc->reclaim_idx; z++) {
5803 		struct zone *zone = &pgdat->node_zones[z];
5804 		if (!managed_zone(zone))
5805 			continue;
5806 
5807 		/* Allocation can already succeed, nothing to do */
5808 		if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
5809 				      sc->reclaim_idx, 0))
5810 			return false;
5811 
5812 		if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
5813 			return false;
5814 	}
5815 
5816 	/*
5817 	 * If we have not reclaimed enough pages for compaction and the
5818 	 * inactive lists are large enough, continue reclaiming
5819 	 */
5820 	pages_for_compaction = compact_gap(sc->order);
5821 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5822 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5823 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5824 
5825 	return inactive_lru_pages > pages_for_compaction;
5826 }
5827 
5828 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5829 {
5830 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5831 	struct mem_cgroup_reclaim_cookie reclaim = {
5832 		.pgdat = pgdat,
5833 	};
5834 	struct mem_cgroup_reclaim_cookie *partial = &reclaim;
5835 	struct mem_cgroup *memcg;
5836 
5837 	/*
5838 	 * In most cases, direct reclaimers can do partial walks
5839 	 * through the cgroup tree, using an iterator state that
5840 	 * persists across invocations. This strikes a balance between
5841 	 * fairness and allocation latency.
5842 	 *
5843 	 * For kswapd, reliable forward progress is more important
5844 	 * than a quick return to idle. Always do full walks.
5845 	 */
5846 	if (current_is_kswapd() || sc->memcg_full_walk)
5847 		partial = NULL;
5848 
5849 	memcg = mem_cgroup_iter(target_memcg, NULL, partial);
5850 	do {
5851 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5852 		unsigned long reclaimed;
5853 		unsigned long scanned;
5854 
5855 		/*
5856 		 * This loop can become CPU-bound when target memcgs
5857 		 * aren't eligible for reclaim - either because they
5858 		 * don't have any reclaimable pages, or because their
5859 		 * memory is explicitly protected. Avoid soft lockups.
5860 		 */
5861 		cond_resched();
5862 
5863 		mem_cgroup_calculate_protection(target_memcg, memcg);
5864 
5865 		if (mem_cgroup_below_min(target_memcg, memcg)) {
5866 			/*
5867 			 * Hard protection.
5868 			 * If there is no reclaimable memory, OOM.
5869 			 */
5870 			continue;
5871 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
5872 			/*
5873 			 * Soft protection.
5874 			 * Respect the protection only as long as
5875 			 * there is an unprotected supply
5876 			 * of reclaimable memory from other cgroups.
5877 			 */
5878 			if (!sc->memcg_low_reclaim) {
5879 				sc->memcg_low_skipped = 1;
5880 				continue;
5881 			}
5882 			memcg_memory_event(memcg, MEMCG_LOW);
5883 		}
5884 
5885 		reclaimed = sc->nr_reclaimed;
5886 		scanned = sc->nr_scanned;
5887 
5888 		shrink_lruvec(lruvec, sc);
5889 
5890 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
5891 			    sc->priority);
5892 
5893 		/* Record the group's reclaim efficiency */
5894 		if (!sc->proactive)
5895 			vmpressure(sc->gfp_mask, memcg, false,
5896 				   sc->nr_scanned - scanned,
5897 				   sc->nr_reclaimed - reclaimed);
5898 
5899 		/* If partial walks are allowed, bail once goal is reached */
5900 		if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) {
5901 			mem_cgroup_iter_break(target_memcg, memcg);
5902 			break;
5903 		}
5904 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial)));
5905 }
5906 
5907 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
5908 {
5909 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
5910 	struct lruvec *target_lruvec;
5911 	bool reclaimable = false;
5912 
5913 	if (lru_gen_enabled() && root_reclaim(sc)) {
5914 		lru_gen_shrink_node(pgdat, sc);
5915 		return;
5916 	}
5917 
5918 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
5919 
5920 again:
5921 	memset(&sc->nr, 0, sizeof(sc->nr));
5922 
5923 	nr_reclaimed = sc->nr_reclaimed;
5924 	nr_scanned = sc->nr_scanned;
5925 
5926 	prepare_scan_control(pgdat, sc);
5927 
5928 	shrink_node_memcgs(pgdat, sc);
5929 
5930 	flush_reclaim_state(sc);
5931 
5932 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
5933 
5934 	/* Record the subtree's reclaim efficiency */
5935 	if (!sc->proactive)
5936 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
5937 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
5938 
5939 	if (nr_node_reclaimed)
5940 		reclaimable = true;
5941 
5942 	if (current_is_kswapd()) {
5943 		/*
5944 		 * If reclaim is isolating dirty pages under writeback,
5945 		 * it implies that the long-lived page allocation rate
5946 		 * is exceeding the page laundering rate. Either the
5947 		 * global limits are not being effective at throttling
5948 		 * processes due to the page distribution throughout
5949 		 * zones or there is heavy usage of a slow backing
5950 		 * device. The only option is to throttle from reclaim
5951 		 * context which is not ideal as there is no guarantee
5952 		 * the dirtying process is throttled in the same way
5953 		 * balance_dirty_pages() manages.
5954 		 *
5955 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
5956 		 * count the number of pages under pages flagged for
5957 		 * immediate reclaim and stall if any are encountered
5958 		 * in the nr_immediate check below.
5959 		 */
5960 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
5961 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
5962 
5963 		/* Allow kswapd to start writing pages during reclaim.*/
5964 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
5965 			set_bit(PGDAT_DIRTY, &pgdat->flags);
5966 
5967 		/*
5968 		 * If kswapd scans pages marked for immediate
5969 		 * reclaim and under writeback (nr_immediate), it
5970 		 * implies that pages are cycling through the LRU
5971 		 * faster than they are written so forcibly stall
5972 		 * until some pages complete writeback.
5973 		 */
5974 		if (sc->nr.immediate)
5975 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
5976 	}
5977 
5978 	/*
5979 	 * Tag a node/memcg as congested if all the dirty pages were marked
5980 	 * for writeback and immediate reclaim (counted in nr.congested).
5981 	 *
5982 	 * Legacy memcg will stall in page writeback so avoid forcibly
5983 	 * stalling in reclaim_throttle().
5984 	 */
5985 	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
5986 		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
5987 			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
5988 
5989 		if (current_is_kswapd())
5990 			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
5991 	}
5992 
5993 	/*
5994 	 * Stall direct reclaim for IO completions if the lruvec is
5995 	 * node is congested. Allow kswapd to continue until it
5996 	 * starts encountering unqueued dirty pages or cycling through
5997 	 * the LRU too quickly.
5998 	 */
5999 	if (!current_is_kswapd() && current_may_throttle() &&
6000 	    !sc->hibernation_mode &&
6001 	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6002 	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6003 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6004 
6005 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6006 		goto again;
6007 
6008 	/*
6009 	 * Kswapd gives up on balancing particular nodes after too
6010 	 * many failures to reclaim anything from them and goes to
6011 	 * sleep. On reclaim progress, reset the failure counter. A
6012 	 * successful direct reclaim run will revive a dormant kswapd.
6013 	 */
6014 	if (reclaimable)
6015 		pgdat->kswapd_failures = 0;
6016 	else if (sc->cache_trim_mode)
6017 		sc->cache_trim_mode_failed = 1;
6018 }
6019 
6020 /*
6021  * Returns true if compaction should go ahead for a costly-order request, or
6022  * the allocation would already succeed without compaction. Return false if we
6023  * should reclaim first.
6024  */
6025 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6026 {
6027 	unsigned long watermark;
6028 
6029 	if (!gfp_compaction_allowed(sc->gfp_mask))
6030 		return false;
6031 
6032 	/* Allocation can already succeed, nothing to do */
6033 	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6034 			      sc->reclaim_idx, 0))
6035 		return true;
6036 
6037 	/* Compaction cannot yet proceed. Do reclaim. */
6038 	if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6039 		return false;
6040 
6041 	/*
6042 	 * Compaction is already possible, but it takes time to run and there
6043 	 * are potentially other callers using the pages just freed. So proceed
6044 	 * with reclaim to make a buffer of free pages available to give
6045 	 * compaction a reasonable chance of completing and allocating the page.
6046 	 * Note that we won't actually reclaim the whole buffer in one attempt
6047 	 * as the target watermark in should_continue_reclaim() is lower. But if
6048 	 * we are already above the high+gap watermark, don't reclaim at all.
6049 	 */
6050 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6051 
6052 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6053 }
6054 
6055 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6056 {
6057 	/*
6058 	 * If reclaim is making progress greater than 12% efficiency then
6059 	 * wake all the NOPROGRESS throttled tasks.
6060 	 */
6061 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6062 		wait_queue_head_t *wqh;
6063 
6064 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6065 		if (waitqueue_active(wqh))
6066 			wake_up(wqh);
6067 
6068 		return;
6069 	}
6070 
6071 	/*
6072 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6073 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6074 	 * under writeback and marked for immediate reclaim at the tail of the
6075 	 * LRU.
6076 	 */
6077 	if (current_is_kswapd() || cgroup_reclaim(sc))
6078 		return;
6079 
6080 	/* Throttle if making no progress at high prioities. */
6081 	if (sc->priority == 1 && !sc->nr_reclaimed)
6082 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6083 }
6084 
6085 /*
6086  * This is the direct reclaim path, for page-allocating processes.  We only
6087  * try to reclaim pages from zones which will satisfy the caller's allocation
6088  * request.
6089  *
6090  * If a zone is deemed to be full of pinned pages then just give it a light
6091  * scan then give up on it.
6092  */
6093 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6094 {
6095 	struct zoneref *z;
6096 	struct zone *zone;
6097 	unsigned long nr_soft_reclaimed;
6098 	unsigned long nr_soft_scanned;
6099 	gfp_t orig_mask;
6100 	pg_data_t *last_pgdat = NULL;
6101 	pg_data_t *first_pgdat = NULL;
6102 
6103 	/*
6104 	 * If the number of buffer_heads in the machine exceeds the maximum
6105 	 * allowed level, force direct reclaim to scan the highmem zone as
6106 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6107 	 */
6108 	orig_mask = sc->gfp_mask;
6109 	if (buffer_heads_over_limit) {
6110 		sc->gfp_mask |= __GFP_HIGHMEM;
6111 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6112 	}
6113 
6114 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6115 					sc->reclaim_idx, sc->nodemask) {
6116 		/*
6117 		 * Take care memory controller reclaiming has small influence
6118 		 * to global LRU.
6119 		 */
6120 		if (!cgroup_reclaim(sc)) {
6121 			if (!cpuset_zone_allowed(zone,
6122 						 GFP_KERNEL | __GFP_HARDWALL))
6123 				continue;
6124 
6125 			/*
6126 			 * If we already have plenty of memory free for
6127 			 * compaction in this zone, don't free any more.
6128 			 * Even though compaction is invoked for any
6129 			 * non-zero order, only frequent costly order
6130 			 * reclamation is disruptive enough to become a
6131 			 * noticeable problem, like transparent huge
6132 			 * page allocations.
6133 			 */
6134 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6135 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6136 			    compaction_ready(zone, sc)) {
6137 				sc->compaction_ready = true;
6138 				continue;
6139 			}
6140 
6141 			/*
6142 			 * Shrink each node in the zonelist once. If the
6143 			 * zonelist is ordered by zone (not the default) then a
6144 			 * node may be shrunk multiple times but in that case
6145 			 * the user prefers lower zones being preserved.
6146 			 */
6147 			if (zone->zone_pgdat == last_pgdat)
6148 				continue;
6149 
6150 			/*
6151 			 * This steals pages from memory cgroups over softlimit
6152 			 * and returns the number of reclaimed pages and
6153 			 * scanned pages. This works for global memory pressure
6154 			 * and balancing, not for a memcg's limit.
6155 			 */
6156 			nr_soft_scanned = 0;
6157 			nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat,
6158 								      sc->order, sc->gfp_mask,
6159 								      &nr_soft_scanned);
6160 			sc->nr_reclaimed += nr_soft_reclaimed;
6161 			sc->nr_scanned += nr_soft_scanned;
6162 			/* need some check for avoid more shrink_zone() */
6163 		}
6164 
6165 		if (!first_pgdat)
6166 			first_pgdat = zone->zone_pgdat;
6167 
6168 		/* See comment about same check for global reclaim above */
6169 		if (zone->zone_pgdat == last_pgdat)
6170 			continue;
6171 		last_pgdat = zone->zone_pgdat;
6172 		shrink_node(zone->zone_pgdat, sc);
6173 	}
6174 
6175 	if (first_pgdat)
6176 		consider_reclaim_throttle(first_pgdat, sc);
6177 
6178 	/*
6179 	 * Restore to original mask to avoid the impact on the caller if we
6180 	 * promoted it to __GFP_HIGHMEM.
6181 	 */
6182 	sc->gfp_mask = orig_mask;
6183 }
6184 
6185 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6186 {
6187 	struct lruvec *target_lruvec;
6188 	unsigned long refaults;
6189 
6190 	if (lru_gen_enabled())
6191 		return;
6192 
6193 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6194 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6195 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6196 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6197 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6198 }
6199 
6200 /*
6201  * This is the main entry point to direct page reclaim.
6202  *
6203  * If a full scan of the inactive list fails to free enough memory then we
6204  * are "out of memory" and something needs to be killed.
6205  *
6206  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6207  * high - the zone may be full of dirty or under-writeback pages, which this
6208  * caller can't do much about.  We kick the writeback threads and take explicit
6209  * naps in the hope that some of these pages can be written.  But if the
6210  * allocating task holds filesystem locks which prevent writeout this might not
6211  * work, and the allocation attempt will fail.
6212  *
6213  * returns:	0, if no pages reclaimed
6214  * 		else, the number of pages reclaimed
6215  */
6216 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6217 					  struct scan_control *sc)
6218 {
6219 	int initial_priority = sc->priority;
6220 	pg_data_t *last_pgdat;
6221 	struct zoneref *z;
6222 	struct zone *zone;
6223 retry:
6224 	delayacct_freepages_start();
6225 
6226 	if (!cgroup_reclaim(sc))
6227 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6228 
6229 	do {
6230 		if (!sc->proactive)
6231 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6232 					sc->priority);
6233 		sc->nr_scanned = 0;
6234 		shrink_zones(zonelist, sc);
6235 
6236 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6237 			break;
6238 
6239 		if (sc->compaction_ready)
6240 			break;
6241 
6242 		/*
6243 		 * If we're getting trouble reclaiming, start doing
6244 		 * writepage even in laptop mode.
6245 		 */
6246 		if (sc->priority < DEF_PRIORITY - 2)
6247 			sc->may_writepage = 1;
6248 	} while (--sc->priority >= 0);
6249 
6250 	last_pgdat = NULL;
6251 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6252 					sc->nodemask) {
6253 		if (zone->zone_pgdat == last_pgdat)
6254 			continue;
6255 		last_pgdat = zone->zone_pgdat;
6256 
6257 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6258 
6259 		if (cgroup_reclaim(sc)) {
6260 			struct lruvec *lruvec;
6261 
6262 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6263 						   zone->zone_pgdat);
6264 			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6265 		}
6266 	}
6267 
6268 	delayacct_freepages_end();
6269 
6270 	if (sc->nr_reclaimed)
6271 		return sc->nr_reclaimed;
6272 
6273 	/* Aborted reclaim to try compaction? don't OOM, then */
6274 	if (sc->compaction_ready)
6275 		return 1;
6276 
6277 	/*
6278 	 * In most cases, direct reclaimers can do partial walks
6279 	 * through the cgroup tree to meet the reclaim goal while
6280 	 * keeping latency low. Since the iterator state is shared
6281 	 * among all direct reclaim invocations (to retain fairness
6282 	 * among cgroups), though, high concurrency can result in
6283 	 * individual threads not seeing enough cgroups to make
6284 	 * meaningful forward progress. Avoid false OOMs in this case.
6285 	 */
6286 	if (!sc->memcg_full_walk) {
6287 		sc->priority = initial_priority;
6288 		sc->memcg_full_walk = 1;
6289 		goto retry;
6290 	}
6291 
6292 	/*
6293 	 * We make inactive:active ratio decisions based on the node's
6294 	 * composition of memory, but a restrictive reclaim_idx or a
6295 	 * memory.low cgroup setting can exempt large amounts of
6296 	 * memory from reclaim. Neither of which are very common, so
6297 	 * instead of doing costly eligibility calculations of the
6298 	 * entire cgroup subtree up front, we assume the estimates are
6299 	 * good, and retry with forcible deactivation if that fails.
6300 	 */
6301 	if (sc->skipped_deactivate) {
6302 		sc->priority = initial_priority;
6303 		sc->force_deactivate = 1;
6304 		sc->skipped_deactivate = 0;
6305 		goto retry;
6306 	}
6307 
6308 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6309 	if (sc->memcg_low_skipped) {
6310 		sc->priority = initial_priority;
6311 		sc->force_deactivate = 0;
6312 		sc->memcg_low_reclaim = 1;
6313 		sc->memcg_low_skipped = 0;
6314 		goto retry;
6315 	}
6316 
6317 	return 0;
6318 }
6319 
6320 static bool allow_direct_reclaim(pg_data_t *pgdat)
6321 {
6322 	struct zone *zone;
6323 	unsigned long pfmemalloc_reserve = 0;
6324 	unsigned long free_pages = 0;
6325 	int i;
6326 	bool wmark_ok;
6327 
6328 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6329 		return true;
6330 
6331 	for (i = 0; i <= ZONE_NORMAL; i++) {
6332 		zone = &pgdat->node_zones[i];
6333 		if (!managed_zone(zone))
6334 			continue;
6335 
6336 		if (!zone_reclaimable_pages(zone))
6337 			continue;
6338 
6339 		pfmemalloc_reserve += min_wmark_pages(zone);
6340 		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6341 	}
6342 
6343 	/* If there are no reserves (unexpected config) then do not throttle */
6344 	if (!pfmemalloc_reserve)
6345 		return true;
6346 
6347 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6348 
6349 	/* kswapd must be awake if processes are being throttled */
6350 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6351 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6352 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6353 
6354 		wake_up_interruptible(&pgdat->kswapd_wait);
6355 	}
6356 
6357 	return wmark_ok;
6358 }
6359 
6360 /*
6361  * Throttle direct reclaimers if backing storage is backed by the network
6362  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6363  * depleted. kswapd will continue to make progress and wake the processes
6364  * when the low watermark is reached.
6365  *
6366  * Returns true if a fatal signal was delivered during throttling. If this
6367  * happens, the page allocator should not consider triggering the OOM killer.
6368  */
6369 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6370 					nodemask_t *nodemask)
6371 {
6372 	struct zoneref *z;
6373 	struct zone *zone;
6374 	pg_data_t *pgdat = NULL;
6375 
6376 	/*
6377 	 * Kernel threads should not be throttled as they may be indirectly
6378 	 * responsible for cleaning pages necessary for reclaim to make forward
6379 	 * progress. kjournald for example may enter direct reclaim while
6380 	 * committing a transaction where throttling it could forcing other
6381 	 * processes to block on log_wait_commit().
6382 	 */
6383 	if (current->flags & PF_KTHREAD)
6384 		goto out;
6385 
6386 	/*
6387 	 * If a fatal signal is pending, this process should not throttle.
6388 	 * It should return quickly so it can exit and free its memory
6389 	 */
6390 	if (fatal_signal_pending(current))
6391 		goto out;
6392 
6393 	/*
6394 	 * Check if the pfmemalloc reserves are ok by finding the first node
6395 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6396 	 * GFP_KERNEL will be required for allocating network buffers when
6397 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6398 	 *
6399 	 * Throttling is based on the first usable node and throttled processes
6400 	 * wait on a queue until kswapd makes progress and wakes them. There
6401 	 * is an affinity then between processes waking up and where reclaim
6402 	 * progress has been made assuming the process wakes on the same node.
6403 	 * More importantly, processes running on remote nodes will not compete
6404 	 * for remote pfmemalloc reserves and processes on different nodes
6405 	 * should make reasonable progress.
6406 	 */
6407 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6408 					gfp_zone(gfp_mask), nodemask) {
6409 		if (zone_idx(zone) > ZONE_NORMAL)
6410 			continue;
6411 
6412 		/* Throttle based on the first usable node */
6413 		pgdat = zone->zone_pgdat;
6414 		if (allow_direct_reclaim(pgdat))
6415 			goto out;
6416 		break;
6417 	}
6418 
6419 	/* If no zone was usable by the allocation flags then do not throttle */
6420 	if (!pgdat)
6421 		goto out;
6422 
6423 	/* Account for the throttling */
6424 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6425 
6426 	/*
6427 	 * If the caller cannot enter the filesystem, it's possible that it
6428 	 * is due to the caller holding an FS lock or performing a journal
6429 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6430 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6431 	 * blocked waiting on the same lock. Instead, throttle for up to a
6432 	 * second before continuing.
6433 	 */
6434 	if (!(gfp_mask & __GFP_FS))
6435 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6436 			allow_direct_reclaim(pgdat), HZ);
6437 	else
6438 		/* Throttle until kswapd wakes the process */
6439 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6440 			allow_direct_reclaim(pgdat));
6441 
6442 	if (fatal_signal_pending(current))
6443 		return true;
6444 
6445 out:
6446 	return false;
6447 }
6448 
6449 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6450 				gfp_t gfp_mask, nodemask_t *nodemask)
6451 {
6452 	unsigned long nr_reclaimed;
6453 	struct scan_control sc = {
6454 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6455 		.gfp_mask = current_gfp_context(gfp_mask),
6456 		.reclaim_idx = gfp_zone(gfp_mask),
6457 		.order = order,
6458 		.nodemask = nodemask,
6459 		.priority = DEF_PRIORITY,
6460 		.may_writepage = !laptop_mode,
6461 		.may_unmap = 1,
6462 		.may_swap = 1,
6463 	};
6464 
6465 	/*
6466 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6467 	 * Confirm they are large enough for max values.
6468 	 */
6469 	BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6470 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6471 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6472 
6473 	/*
6474 	 * Do not enter reclaim if fatal signal was delivered while throttled.
6475 	 * 1 is returned so that the page allocator does not OOM kill at this
6476 	 * point.
6477 	 */
6478 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6479 		return 1;
6480 
6481 	set_task_reclaim_state(current, &sc.reclaim_state);
6482 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6483 
6484 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6485 
6486 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6487 	set_task_reclaim_state(current, NULL);
6488 
6489 	return nr_reclaimed;
6490 }
6491 
6492 #ifdef CONFIG_MEMCG
6493 
6494 /* Only used by soft limit reclaim. Do not reuse for anything else. */
6495 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6496 						gfp_t gfp_mask, bool noswap,
6497 						pg_data_t *pgdat,
6498 						unsigned long *nr_scanned)
6499 {
6500 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6501 	struct scan_control sc = {
6502 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6503 		.target_mem_cgroup = memcg,
6504 		.may_writepage = !laptop_mode,
6505 		.may_unmap = 1,
6506 		.reclaim_idx = MAX_NR_ZONES - 1,
6507 		.may_swap = !noswap,
6508 	};
6509 
6510 	WARN_ON_ONCE(!current->reclaim_state);
6511 
6512 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6513 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6514 
6515 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6516 						      sc.gfp_mask);
6517 
6518 	/*
6519 	 * NOTE: Although we can get the priority field, using it
6520 	 * here is not a good idea, since it limits the pages we can scan.
6521 	 * if we don't reclaim here, the shrink_node from balance_pgdat
6522 	 * will pick up pages from other mem cgroup's as well. We hack
6523 	 * the priority and make it zero.
6524 	 */
6525 	shrink_lruvec(lruvec, &sc);
6526 
6527 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6528 
6529 	*nr_scanned = sc.nr_scanned;
6530 
6531 	return sc.nr_reclaimed;
6532 }
6533 
6534 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6535 					   unsigned long nr_pages,
6536 					   gfp_t gfp_mask,
6537 					   unsigned int reclaim_options,
6538 					   int *swappiness)
6539 {
6540 	unsigned long nr_reclaimed;
6541 	unsigned int noreclaim_flag;
6542 	struct scan_control sc = {
6543 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6544 		.proactive_swappiness = swappiness,
6545 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6546 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6547 		.reclaim_idx = MAX_NR_ZONES - 1,
6548 		.target_mem_cgroup = memcg,
6549 		.priority = DEF_PRIORITY,
6550 		.may_writepage = !laptop_mode,
6551 		.may_unmap = 1,
6552 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6553 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6554 	};
6555 	/*
6556 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6557 	 * equal pressure on all the nodes. This is based on the assumption that
6558 	 * the reclaim does not bail out early.
6559 	 */
6560 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6561 
6562 	set_task_reclaim_state(current, &sc.reclaim_state);
6563 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6564 	noreclaim_flag = memalloc_noreclaim_save();
6565 
6566 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6567 
6568 	memalloc_noreclaim_restore(noreclaim_flag);
6569 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6570 	set_task_reclaim_state(current, NULL);
6571 
6572 	return nr_reclaimed;
6573 }
6574 #endif
6575 
6576 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6577 {
6578 	struct mem_cgroup *memcg;
6579 	struct lruvec *lruvec;
6580 
6581 	if (lru_gen_enabled()) {
6582 		lru_gen_age_node(pgdat, sc);
6583 		return;
6584 	}
6585 
6586 	if (!can_age_anon_pages(pgdat, sc))
6587 		return;
6588 
6589 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6590 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6591 		return;
6592 
6593 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6594 	do {
6595 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6596 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6597 				   sc, LRU_ACTIVE_ANON);
6598 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6599 	} while (memcg);
6600 }
6601 
6602 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6603 {
6604 	int i;
6605 	struct zone *zone;
6606 
6607 	/*
6608 	 * Check for watermark boosts top-down as the higher zones
6609 	 * are more likely to be boosted. Both watermarks and boosts
6610 	 * should not be checked at the same time as reclaim would
6611 	 * start prematurely when there is no boosting and a lower
6612 	 * zone is balanced.
6613 	 */
6614 	for (i = highest_zoneidx; i >= 0; i--) {
6615 		zone = pgdat->node_zones + i;
6616 		if (!managed_zone(zone))
6617 			continue;
6618 
6619 		if (zone->watermark_boost)
6620 			return true;
6621 	}
6622 
6623 	return false;
6624 }
6625 
6626 /*
6627  * Returns true if there is an eligible zone balanced for the request order
6628  * and highest_zoneidx
6629  */
6630 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6631 {
6632 	int i;
6633 	unsigned long mark = -1;
6634 	struct zone *zone;
6635 
6636 	/*
6637 	 * Check watermarks bottom-up as lower zones are more likely to
6638 	 * meet watermarks.
6639 	 */
6640 	for (i = 0; i <= highest_zoneidx; i++) {
6641 		zone = pgdat->node_zones + i;
6642 
6643 		if (!managed_zone(zone))
6644 			continue;
6645 
6646 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6647 			mark = wmark_pages(zone, WMARK_PROMO);
6648 		else
6649 			mark = high_wmark_pages(zone);
6650 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6651 			return true;
6652 	}
6653 
6654 	/*
6655 	 * If a node has no managed zone within highest_zoneidx, it does not
6656 	 * need balancing by definition. This can happen if a zone-restricted
6657 	 * allocation tries to wake a remote kswapd.
6658 	 */
6659 	if (mark == -1)
6660 		return true;
6661 
6662 	return false;
6663 }
6664 
6665 /* Clear pgdat state for congested, dirty or under writeback. */
6666 static void clear_pgdat_congested(pg_data_t *pgdat)
6667 {
6668 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6669 
6670 	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6671 	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6672 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
6673 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6674 }
6675 
6676 /*
6677  * Prepare kswapd for sleeping. This verifies that there are no processes
6678  * waiting in throttle_direct_reclaim() and that watermarks have been met.
6679  *
6680  * Returns true if kswapd is ready to sleep
6681  */
6682 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6683 				int highest_zoneidx)
6684 {
6685 	/*
6686 	 * The throttled processes are normally woken up in balance_pgdat() as
6687 	 * soon as allow_direct_reclaim() is true. But there is a potential
6688 	 * race between when kswapd checks the watermarks and a process gets
6689 	 * throttled. There is also a potential race if processes get
6690 	 * throttled, kswapd wakes, a large process exits thereby balancing the
6691 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6692 	 * the wake up checks. If kswapd is going to sleep, no process should
6693 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6694 	 * the wake up is premature, processes will wake kswapd and get
6695 	 * throttled again. The difference from wake ups in balance_pgdat() is
6696 	 * that here we are under prepare_to_wait().
6697 	 */
6698 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6699 		wake_up_all(&pgdat->pfmemalloc_wait);
6700 
6701 	/* Hopeless node, leave it to direct reclaim */
6702 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6703 		return true;
6704 
6705 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6706 		clear_pgdat_congested(pgdat);
6707 		return true;
6708 	}
6709 
6710 	return false;
6711 }
6712 
6713 /*
6714  * kswapd shrinks a node of pages that are at or below the highest usable
6715  * zone that is currently unbalanced.
6716  *
6717  * Returns true if kswapd scanned at least the requested number of pages to
6718  * reclaim or if the lack of progress was due to pages under writeback.
6719  * This is used to determine if the scanning priority needs to be raised.
6720  */
6721 static bool kswapd_shrink_node(pg_data_t *pgdat,
6722 			       struct scan_control *sc)
6723 {
6724 	struct zone *zone;
6725 	int z;
6726 	unsigned long nr_reclaimed = sc->nr_reclaimed;
6727 
6728 	/* Reclaim a number of pages proportional to the number of zones */
6729 	sc->nr_to_reclaim = 0;
6730 	for (z = 0; z <= sc->reclaim_idx; z++) {
6731 		zone = pgdat->node_zones + z;
6732 		if (!managed_zone(zone))
6733 			continue;
6734 
6735 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6736 	}
6737 
6738 	/*
6739 	 * Historically care was taken to put equal pressure on all zones but
6740 	 * now pressure is applied based on node LRU order.
6741 	 */
6742 	shrink_node(pgdat, sc);
6743 
6744 	/*
6745 	 * Fragmentation may mean that the system cannot be rebalanced for
6746 	 * high-order allocations. If twice the allocation size has been
6747 	 * reclaimed then recheck watermarks only at order-0 to prevent
6748 	 * excessive reclaim. Assume that a process requested a high-order
6749 	 * can direct reclaim/compact.
6750 	 */
6751 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6752 		sc->order = 0;
6753 
6754 	/* account for progress from mm_account_reclaimed_pages() */
6755 	return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
6756 }
6757 
6758 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6759 static inline void
6760 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6761 {
6762 	int i;
6763 	struct zone *zone;
6764 
6765 	for (i = 0; i <= highest_zoneidx; i++) {
6766 		zone = pgdat->node_zones + i;
6767 
6768 		if (!managed_zone(zone))
6769 			continue;
6770 
6771 		if (active)
6772 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6773 		else
6774 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6775 	}
6776 }
6777 
6778 static inline void
6779 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6780 {
6781 	update_reclaim_active(pgdat, highest_zoneidx, true);
6782 }
6783 
6784 static inline void
6785 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6786 {
6787 	update_reclaim_active(pgdat, highest_zoneidx, false);
6788 }
6789 
6790 /*
6791  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6792  * that are eligible for use by the caller until at least one zone is
6793  * balanced.
6794  *
6795  * Returns the order kswapd finished reclaiming at.
6796  *
6797  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
6798  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6799  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6800  * or lower is eligible for reclaim until at least one usable zone is
6801  * balanced.
6802  */
6803 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6804 {
6805 	int i;
6806 	unsigned long nr_soft_reclaimed;
6807 	unsigned long nr_soft_scanned;
6808 	unsigned long pflags;
6809 	unsigned long nr_boost_reclaim;
6810 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6811 	bool boosted;
6812 	struct zone *zone;
6813 	struct scan_control sc = {
6814 		.gfp_mask = GFP_KERNEL,
6815 		.order = order,
6816 		.may_unmap = 1,
6817 	};
6818 
6819 	set_task_reclaim_state(current, &sc.reclaim_state);
6820 	psi_memstall_enter(&pflags);
6821 	__fs_reclaim_acquire(_THIS_IP_);
6822 
6823 	count_vm_event(PAGEOUTRUN);
6824 
6825 	/*
6826 	 * Account for the reclaim boost. Note that the zone boost is left in
6827 	 * place so that parallel allocations that are near the watermark will
6828 	 * stall or direct reclaim until kswapd is finished.
6829 	 */
6830 	nr_boost_reclaim = 0;
6831 	for (i = 0; i <= highest_zoneidx; i++) {
6832 		zone = pgdat->node_zones + i;
6833 		if (!managed_zone(zone))
6834 			continue;
6835 
6836 		nr_boost_reclaim += zone->watermark_boost;
6837 		zone_boosts[i] = zone->watermark_boost;
6838 	}
6839 	boosted = nr_boost_reclaim;
6840 
6841 restart:
6842 	set_reclaim_active(pgdat, highest_zoneidx);
6843 	sc.priority = DEF_PRIORITY;
6844 	do {
6845 		unsigned long nr_reclaimed = sc.nr_reclaimed;
6846 		bool raise_priority = true;
6847 		bool balanced;
6848 		bool ret;
6849 		bool was_frozen;
6850 
6851 		sc.reclaim_idx = highest_zoneidx;
6852 
6853 		/*
6854 		 * If the number of buffer_heads exceeds the maximum allowed
6855 		 * then consider reclaiming from all zones. This has a dual
6856 		 * purpose -- on 64-bit systems it is expected that
6857 		 * buffer_heads are stripped during active rotation. On 32-bit
6858 		 * systems, highmem pages can pin lowmem memory and shrinking
6859 		 * buffers can relieve lowmem pressure. Reclaim may still not
6860 		 * go ahead if all eligible zones for the original allocation
6861 		 * request are balanced to avoid excessive reclaim from kswapd.
6862 		 */
6863 		if (buffer_heads_over_limit) {
6864 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
6865 				zone = pgdat->node_zones + i;
6866 				if (!managed_zone(zone))
6867 					continue;
6868 
6869 				sc.reclaim_idx = i;
6870 				break;
6871 			}
6872 		}
6873 
6874 		/*
6875 		 * If the pgdat is imbalanced then ignore boosting and preserve
6876 		 * the watermarks for a later time and restart. Note that the
6877 		 * zone watermarks will be still reset at the end of balancing
6878 		 * on the grounds that the normal reclaim should be enough to
6879 		 * re-evaluate if boosting is required when kswapd next wakes.
6880 		 */
6881 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
6882 		if (!balanced && nr_boost_reclaim) {
6883 			nr_boost_reclaim = 0;
6884 			goto restart;
6885 		}
6886 
6887 		/*
6888 		 * If boosting is not active then only reclaim if there are no
6889 		 * eligible zones. Note that sc.reclaim_idx is not used as
6890 		 * buffer_heads_over_limit may have adjusted it.
6891 		 */
6892 		if (!nr_boost_reclaim && balanced)
6893 			goto out;
6894 
6895 		/* Limit the priority of boosting to avoid reclaim writeback */
6896 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
6897 			raise_priority = false;
6898 
6899 		/*
6900 		 * Do not writeback or swap pages for boosted reclaim. The
6901 		 * intent is to relieve pressure not issue sub-optimal IO
6902 		 * from reclaim context. If no pages are reclaimed, the
6903 		 * reclaim will be aborted.
6904 		 */
6905 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
6906 		sc.may_swap = !nr_boost_reclaim;
6907 
6908 		/*
6909 		 * Do some background aging, to give pages a chance to be
6910 		 * referenced before reclaiming. All pages are rotated
6911 		 * regardless of classzone as this is about consistent aging.
6912 		 */
6913 		kswapd_age_node(pgdat, &sc);
6914 
6915 		/*
6916 		 * If we're getting trouble reclaiming, start doing writepage
6917 		 * even in laptop mode.
6918 		 */
6919 		if (sc.priority < DEF_PRIORITY - 2)
6920 			sc.may_writepage = 1;
6921 
6922 		/* Call soft limit reclaim before calling shrink_node. */
6923 		sc.nr_scanned = 0;
6924 		nr_soft_scanned = 0;
6925 		nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order,
6926 							      sc.gfp_mask, &nr_soft_scanned);
6927 		sc.nr_reclaimed += nr_soft_reclaimed;
6928 
6929 		/*
6930 		 * There should be no need to raise the scanning priority if
6931 		 * enough pages are already being scanned that that high
6932 		 * watermark would be met at 100% efficiency.
6933 		 */
6934 		if (kswapd_shrink_node(pgdat, &sc))
6935 			raise_priority = false;
6936 
6937 		/*
6938 		 * If the low watermark is met there is no need for processes
6939 		 * to be throttled on pfmemalloc_wait as they should not be
6940 		 * able to safely make forward progress. Wake them
6941 		 */
6942 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
6943 				allow_direct_reclaim(pgdat))
6944 			wake_up_all(&pgdat->pfmemalloc_wait);
6945 
6946 		/* Check if kswapd should be suspending */
6947 		__fs_reclaim_release(_THIS_IP_);
6948 		ret = kthread_freezable_should_stop(&was_frozen);
6949 		__fs_reclaim_acquire(_THIS_IP_);
6950 		if (was_frozen || ret)
6951 			break;
6952 
6953 		/*
6954 		 * Raise priority if scanning rate is too low or there was no
6955 		 * progress in reclaiming pages
6956 		 */
6957 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
6958 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
6959 
6960 		/*
6961 		 * If reclaim made no progress for a boost, stop reclaim as
6962 		 * IO cannot be queued and it could be an infinite loop in
6963 		 * extreme circumstances.
6964 		 */
6965 		if (nr_boost_reclaim && !nr_reclaimed)
6966 			break;
6967 
6968 		if (raise_priority || !nr_reclaimed)
6969 			sc.priority--;
6970 	} while (sc.priority >= 1);
6971 
6972 	/*
6973 	 * Restart only if it went through the priority loop all the way,
6974 	 * but cache_trim_mode didn't work.
6975 	 */
6976 	if (!sc.nr_reclaimed && sc.priority < 1 &&
6977 	    !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
6978 		sc.no_cache_trim_mode = 1;
6979 		goto restart;
6980 	}
6981 
6982 	if (!sc.nr_reclaimed)
6983 		pgdat->kswapd_failures++;
6984 
6985 out:
6986 	clear_reclaim_active(pgdat, highest_zoneidx);
6987 
6988 	/* If reclaim was boosted, account for the reclaim done in this pass */
6989 	if (boosted) {
6990 		unsigned long flags;
6991 
6992 		for (i = 0; i <= highest_zoneidx; i++) {
6993 			if (!zone_boosts[i])
6994 				continue;
6995 
6996 			/* Increments are under the zone lock */
6997 			zone = pgdat->node_zones + i;
6998 			spin_lock_irqsave(&zone->lock, flags);
6999 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7000 			spin_unlock_irqrestore(&zone->lock, flags);
7001 		}
7002 
7003 		/*
7004 		 * As there is now likely space, wakeup kcompact to defragment
7005 		 * pageblocks.
7006 		 */
7007 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7008 	}
7009 
7010 	snapshot_refaults(NULL, pgdat);
7011 	__fs_reclaim_release(_THIS_IP_);
7012 	psi_memstall_leave(&pflags);
7013 	set_task_reclaim_state(current, NULL);
7014 
7015 	/*
7016 	 * Return the order kswapd stopped reclaiming at as
7017 	 * prepare_kswapd_sleep() takes it into account. If another caller
7018 	 * entered the allocator slow path while kswapd was awake, order will
7019 	 * remain at the higher level.
7020 	 */
7021 	return sc.order;
7022 }
7023 
7024 /*
7025  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7026  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7027  * not a valid index then either kswapd runs for first time or kswapd couldn't
7028  * sleep after previous reclaim attempt (node is still unbalanced). In that
7029  * case return the zone index of the previous kswapd reclaim cycle.
7030  */
7031 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7032 					   enum zone_type prev_highest_zoneidx)
7033 {
7034 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7035 
7036 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7037 }
7038 
7039 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7040 				unsigned int highest_zoneidx)
7041 {
7042 	long remaining = 0;
7043 	DEFINE_WAIT(wait);
7044 
7045 	if (freezing(current) || kthread_should_stop())
7046 		return;
7047 
7048 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7049 
7050 	/*
7051 	 * Try to sleep for a short interval. Note that kcompactd will only be
7052 	 * woken if it is possible to sleep for a short interval. This is
7053 	 * deliberate on the assumption that if reclaim cannot keep an
7054 	 * eligible zone balanced that it's also unlikely that compaction will
7055 	 * succeed.
7056 	 */
7057 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7058 		/*
7059 		 * Compaction records what page blocks it recently failed to
7060 		 * isolate pages from and skips them in the future scanning.
7061 		 * When kswapd is going to sleep, it is reasonable to assume
7062 		 * that pages and compaction may succeed so reset the cache.
7063 		 */
7064 		reset_isolation_suitable(pgdat);
7065 
7066 		/*
7067 		 * We have freed the memory, now we should compact it to make
7068 		 * allocation of the requested order possible.
7069 		 */
7070 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7071 
7072 		remaining = schedule_timeout(HZ/10);
7073 
7074 		/*
7075 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7076 		 * order. The values will either be from a wakeup request or
7077 		 * the previous request that slept prematurely.
7078 		 */
7079 		if (remaining) {
7080 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7081 					kswapd_highest_zoneidx(pgdat,
7082 							highest_zoneidx));
7083 
7084 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7085 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7086 		}
7087 
7088 		finish_wait(&pgdat->kswapd_wait, &wait);
7089 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7090 	}
7091 
7092 	/*
7093 	 * After a short sleep, check if it was a premature sleep. If not, then
7094 	 * go fully to sleep until explicitly woken up.
7095 	 */
7096 	if (!remaining &&
7097 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7098 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7099 
7100 		/*
7101 		 * vmstat counters are not perfectly accurate and the estimated
7102 		 * value for counters such as NR_FREE_PAGES can deviate from the
7103 		 * true value by nr_online_cpus * threshold. To avoid the zone
7104 		 * watermarks being breached while under pressure, we reduce the
7105 		 * per-cpu vmstat threshold while kswapd is awake and restore
7106 		 * them before going back to sleep.
7107 		 */
7108 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7109 
7110 		if (!kthread_should_stop())
7111 			schedule();
7112 
7113 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7114 	} else {
7115 		if (remaining)
7116 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7117 		else
7118 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7119 	}
7120 	finish_wait(&pgdat->kswapd_wait, &wait);
7121 }
7122 
7123 /*
7124  * The background pageout daemon, started as a kernel thread
7125  * from the init process.
7126  *
7127  * This basically trickles out pages so that we have _some_
7128  * free memory available even if there is no other activity
7129  * that frees anything up. This is needed for things like routing
7130  * etc, where we otherwise might have all activity going on in
7131  * asynchronous contexts that cannot page things out.
7132  *
7133  * If there are applications that are active memory-allocators
7134  * (most normal use), this basically shouldn't matter.
7135  */
7136 static int kswapd(void *p)
7137 {
7138 	unsigned int alloc_order, reclaim_order;
7139 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7140 	pg_data_t *pgdat = (pg_data_t *)p;
7141 	struct task_struct *tsk = current;
7142 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7143 
7144 	if (!cpumask_empty(cpumask))
7145 		set_cpus_allowed_ptr(tsk, cpumask);
7146 
7147 	/*
7148 	 * Tell the memory management that we're a "memory allocator",
7149 	 * and that if we need more memory we should get access to it
7150 	 * regardless (see "__alloc_pages()"). "kswapd" should
7151 	 * never get caught in the normal page freeing logic.
7152 	 *
7153 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7154 	 * you need a small amount of memory in order to be able to
7155 	 * page out something else, and this flag essentially protects
7156 	 * us from recursively trying to free more memory as we're
7157 	 * trying to free the first piece of memory in the first place).
7158 	 */
7159 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7160 	set_freezable();
7161 
7162 	WRITE_ONCE(pgdat->kswapd_order, 0);
7163 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7164 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7165 	for ( ; ; ) {
7166 		bool was_frozen;
7167 
7168 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7169 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7170 							highest_zoneidx);
7171 
7172 kswapd_try_sleep:
7173 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7174 					highest_zoneidx);
7175 
7176 		/* Read the new order and highest_zoneidx */
7177 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7178 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7179 							highest_zoneidx);
7180 		WRITE_ONCE(pgdat->kswapd_order, 0);
7181 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7182 
7183 		if (kthread_freezable_should_stop(&was_frozen))
7184 			break;
7185 
7186 		/*
7187 		 * We can speed up thawing tasks if we don't call balance_pgdat
7188 		 * after returning from the refrigerator
7189 		 */
7190 		if (was_frozen)
7191 			continue;
7192 
7193 		/*
7194 		 * Reclaim begins at the requested order but if a high-order
7195 		 * reclaim fails then kswapd falls back to reclaiming for
7196 		 * order-0. If that happens, kswapd will consider sleeping
7197 		 * for the order it finished reclaiming at (reclaim_order)
7198 		 * but kcompactd is woken to compact for the original
7199 		 * request (alloc_order).
7200 		 */
7201 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7202 						alloc_order);
7203 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7204 						highest_zoneidx);
7205 		if (reclaim_order < alloc_order)
7206 			goto kswapd_try_sleep;
7207 	}
7208 
7209 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7210 
7211 	return 0;
7212 }
7213 
7214 /*
7215  * A zone is low on free memory or too fragmented for high-order memory.  If
7216  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7217  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7218  * has failed or is not needed, still wake up kcompactd if only compaction is
7219  * needed.
7220  */
7221 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7222 		   enum zone_type highest_zoneidx)
7223 {
7224 	pg_data_t *pgdat;
7225 	enum zone_type curr_idx;
7226 
7227 	if (!managed_zone(zone))
7228 		return;
7229 
7230 	if (!cpuset_zone_allowed(zone, gfp_flags))
7231 		return;
7232 
7233 	pgdat = zone->zone_pgdat;
7234 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7235 
7236 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7237 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7238 
7239 	if (READ_ONCE(pgdat->kswapd_order) < order)
7240 		WRITE_ONCE(pgdat->kswapd_order, order);
7241 
7242 	if (!waitqueue_active(&pgdat->kswapd_wait))
7243 		return;
7244 
7245 	/* Hopeless node, leave it to direct reclaim if possible */
7246 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7247 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7248 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7249 		/*
7250 		 * There may be plenty of free memory available, but it's too
7251 		 * fragmented for high-order allocations.  Wake up kcompactd
7252 		 * and rely on compaction_suitable() to determine if it's
7253 		 * needed.  If it fails, it will defer subsequent attempts to
7254 		 * ratelimit its work.
7255 		 */
7256 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7257 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7258 		return;
7259 	}
7260 
7261 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7262 				      gfp_flags);
7263 	wake_up_interruptible(&pgdat->kswapd_wait);
7264 }
7265 
7266 #ifdef CONFIG_HIBERNATION
7267 /*
7268  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7269  * freed pages.
7270  *
7271  * Rather than trying to age LRUs the aim is to preserve the overall
7272  * LRU order by reclaiming preferentially
7273  * inactive > active > active referenced > active mapped
7274  */
7275 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7276 {
7277 	struct scan_control sc = {
7278 		.nr_to_reclaim = nr_to_reclaim,
7279 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7280 		.reclaim_idx = MAX_NR_ZONES - 1,
7281 		.priority = DEF_PRIORITY,
7282 		.may_writepage = 1,
7283 		.may_unmap = 1,
7284 		.may_swap = 1,
7285 		.hibernation_mode = 1,
7286 	};
7287 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7288 	unsigned long nr_reclaimed;
7289 	unsigned int noreclaim_flag;
7290 
7291 	fs_reclaim_acquire(sc.gfp_mask);
7292 	noreclaim_flag = memalloc_noreclaim_save();
7293 	set_task_reclaim_state(current, &sc.reclaim_state);
7294 
7295 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7296 
7297 	set_task_reclaim_state(current, NULL);
7298 	memalloc_noreclaim_restore(noreclaim_flag);
7299 	fs_reclaim_release(sc.gfp_mask);
7300 
7301 	return nr_reclaimed;
7302 }
7303 #endif /* CONFIG_HIBERNATION */
7304 
7305 /*
7306  * This kswapd start function will be called by init and node-hot-add.
7307  */
7308 void __meminit kswapd_run(int nid)
7309 {
7310 	pg_data_t *pgdat = NODE_DATA(nid);
7311 
7312 	pgdat_kswapd_lock(pgdat);
7313 	if (!pgdat->kswapd) {
7314 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7315 		if (IS_ERR(pgdat->kswapd)) {
7316 			/* failure at boot is fatal */
7317 			pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7318 				   nid, PTR_ERR(pgdat->kswapd));
7319 			BUG_ON(system_state < SYSTEM_RUNNING);
7320 			pgdat->kswapd = NULL;
7321 		}
7322 	}
7323 	pgdat_kswapd_unlock(pgdat);
7324 }
7325 
7326 /*
7327  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7328  * be holding mem_hotplug_begin/done().
7329  */
7330 void __meminit kswapd_stop(int nid)
7331 {
7332 	pg_data_t *pgdat = NODE_DATA(nid);
7333 	struct task_struct *kswapd;
7334 
7335 	pgdat_kswapd_lock(pgdat);
7336 	kswapd = pgdat->kswapd;
7337 	if (kswapd) {
7338 		kthread_stop(kswapd);
7339 		pgdat->kswapd = NULL;
7340 	}
7341 	pgdat_kswapd_unlock(pgdat);
7342 }
7343 
7344 static int __init kswapd_init(void)
7345 {
7346 	int nid;
7347 
7348 	swap_setup();
7349 	for_each_node_state(nid, N_MEMORY)
7350  		kswapd_run(nid);
7351 	return 0;
7352 }
7353 
7354 module_init(kswapd_init)
7355 
7356 #ifdef CONFIG_NUMA
7357 /*
7358  * Node reclaim mode
7359  *
7360  * If non-zero call node_reclaim when the number of free pages falls below
7361  * the watermarks.
7362  */
7363 int node_reclaim_mode __read_mostly;
7364 
7365 /*
7366  * Priority for NODE_RECLAIM. This determines the fraction of pages
7367  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7368  * a zone.
7369  */
7370 #define NODE_RECLAIM_PRIORITY 4
7371 
7372 /*
7373  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7374  * occur.
7375  */
7376 int sysctl_min_unmapped_ratio = 1;
7377 
7378 /*
7379  * If the number of slab pages in a zone grows beyond this percentage then
7380  * slab reclaim needs to occur.
7381  */
7382 int sysctl_min_slab_ratio = 5;
7383 
7384 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7385 {
7386 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7387 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7388 		node_page_state(pgdat, NR_ACTIVE_FILE);
7389 
7390 	/*
7391 	 * It's possible for there to be more file mapped pages than
7392 	 * accounted for by the pages on the file LRU lists because
7393 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7394 	 */
7395 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7396 }
7397 
7398 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7399 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7400 {
7401 	unsigned long nr_pagecache_reclaimable;
7402 	unsigned long delta = 0;
7403 
7404 	/*
7405 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7406 	 * potentially reclaimable. Otherwise, we have to worry about
7407 	 * pages like swapcache and node_unmapped_file_pages() provides
7408 	 * a better estimate
7409 	 */
7410 	if (node_reclaim_mode & RECLAIM_UNMAP)
7411 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7412 	else
7413 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7414 
7415 	/* If we can't clean pages, remove dirty pages from consideration */
7416 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7417 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7418 
7419 	/* Watch for any possible underflows due to delta */
7420 	if (unlikely(delta > nr_pagecache_reclaimable))
7421 		delta = nr_pagecache_reclaimable;
7422 
7423 	return nr_pagecache_reclaimable - delta;
7424 }
7425 
7426 /*
7427  * Try to free up some pages from this node through reclaim.
7428  */
7429 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7430 {
7431 	/* Minimum pages needed in order to stay on node */
7432 	const unsigned long nr_pages = 1 << order;
7433 	struct task_struct *p = current;
7434 	unsigned int noreclaim_flag;
7435 	struct scan_control sc = {
7436 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7437 		.gfp_mask = current_gfp_context(gfp_mask),
7438 		.order = order,
7439 		.priority = NODE_RECLAIM_PRIORITY,
7440 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7441 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7442 		.may_swap = 1,
7443 		.reclaim_idx = gfp_zone(gfp_mask),
7444 	};
7445 	unsigned long pflags;
7446 
7447 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7448 					   sc.gfp_mask);
7449 
7450 	cond_resched();
7451 	psi_memstall_enter(&pflags);
7452 	delayacct_freepages_start();
7453 	fs_reclaim_acquire(sc.gfp_mask);
7454 	/*
7455 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7456 	 */
7457 	noreclaim_flag = memalloc_noreclaim_save();
7458 	set_task_reclaim_state(p, &sc.reclaim_state);
7459 
7460 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7461 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7462 		/*
7463 		 * Free memory by calling shrink node with increasing
7464 		 * priorities until we have enough memory freed.
7465 		 */
7466 		do {
7467 			shrink_node(pgdat, &sc);
7468 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7469 	}
7470 
7471 	set_task_reclaim_state(p, NULL);
7472 	memalloc_noreclaim_restore(noreclaim_flag);
7473 	fs_reclaim_release(sc.gfp_mask);
7474 	psi_memstall_leave(&pflags);
7475 	delayacct_freepages_end();
7476 
7477 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7478 
7479 	return sc.nr_reclaimed >= nr_pages;
7480 }
7481 
7482 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7483 {
7484 	int ret;
7485 
7486 	/*
7487 	 * Node reclaim reclaims unmapped file backed pages and
7488 	 * slab pages if we are over the defined limits.
7489 	 *
7490 	 * A small portion of unmapped file backed pages is needed for
7491 	 * file I/O otherwise pages read by file I/O will be immediately
7492 	 * thrown out if the node is overallocated. So we do not reclaim
7493 	 * if less than a specified percentage of the node is used by
7494 	 * unmapped file backed pages.
7495 	 */
7496 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7497 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7498 	    pgdat->min_slab_pages)
7499 		return NODE_RECLAIM_FULL;
7500 
7501 	/*
7502 	 * Do not scan if the allocation should not be delayed.
7503 	 */
7504 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7505 		return NODE_RECLAIM_NOSCAN;
7506 
7507 	/*
7508 	 * Only run node reclaim on the local node or on nodes that do not
7509 	 * have associated processors. This will favor the local processor
7510 	 * over remote processors and spread off node memory allocations
7511 	 * as wide as possible.
7512 	 */
7513 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7514 		return NODE_RECLAIM_NOSCAN;
7515 
7516 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7517 		return NODE_RECLAIM_NOSCAN;
7518 
7519 	ret = __node_reclaim(pgdat, gfp_mask, order);
7520 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7521 
7522 	if (!ret)
7523 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7524 
7525 	return ret;
7526 }
7527 #endif
7528 
7529 /**
7530  * check_move_unevictable_folios - Move evictable folios to appropriate zone
7531  * lru list
7532  * @fbatch: Batch of lru folios to check.
7533  *
7534  * Checks folios for evictability, if an evictable folio is in the unevictable
7535  * lru list, moves it to the appropriate evictable lru list. This function
7536  * should be only used for lru folios.
7537  */
7538 void check_move_unevictable_folios(struct folio_batch *fbatch)
7539 {
7540 	struct lruvec *lruvec = NULL;
7541 	int pgscanned = 0;
7542 	int pgrescued = 0;
7543 	int i;
7544 
7545 	for (i = 0; i < fbatch->nr; i++) {
7546 		struct folio *folio = fbatch->folios[i];
7547 		int nr_pages = folio_nr_pages(folio);
7548 
7549 		pgscanned += nr_pages;
7550 
7551 		/* block memcg migration while the folio moves between lrus */
7552 		if (!folio_test_clear_lru(folio))
7553 			continue;
7554 
7555 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7556 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7557 			lruvec_del_folio(lruvec, folio);
7558 			folio_clear_unevictable(folio);
7559 			lruvec_add_folio(lruvec, folio);
7560 			pgrescued += nr_pages;
7561 		}
7562 		folio_set_lru(folio);
7563 	}
7564 
7565 	if (lruvec) {
7566 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7567 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7568 		unlock_page_lruvec_irq(lruvec);
7569 	} else if (pgscanned) {
7570 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7571 	}
7572 }
7573 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7574