1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59 #include <linux/mmu_notifier.h>
60
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63
64 #include <linux/swapops.h>
65 #include <linux/balloon_compaction.h>
66 #include <linux/sched/sysctl.h>
67
68 #include "internal.h"
69 #include "swap.h"
70
71 #define CREATE_TRACE_POINTS
72 #include <trace/events/vmscan.h>
73
74 struct scan_control {
75 /* How many pages shrink_list() should reclaim */
76 unsigned long nr_to_reclaim;
77
78 /*
79 * Nodemask of nodes allowed by the caller. If NULL, all nodes
80 * are scanned.
81 */
82 nodemask_t *nodemask;
83
84 /*
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
87 */
88 struct mem_cgroup *target_mem_cgroup;
89
90 /*
91 * Scan pressure balancing between anon and file LRUs
92 */
93 unsigned long anon_cost;
94 unsigned long file_cost;
95
96 #ifdef CONFIG_MEMCG
97 /* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
98 int *proactive_swappiness;
99 #endif
100
101 /* Can active folios be deactivated as part of reclaim? */
102 #define DEACTIVATE_ANON 1
103 #define DEACTIVATE_FILE 2
104 unsigned int may_deactivate:2;
105 unsigned int force_deactivate:1;
106 unsigned int skipped_deactivate:1;
107
108 /* Writepage batching in laptop mode; RECLAIM_WRITE */
109 unsigned int may_writepage:1;
110
111 /* Can mapped folios be reclaimed? */
112 unsigned int may_unmap:1;
113
114 /* Can folios be swapped as part of reclaim? */
115 unsigned int may_swap:1;
116
117 /* Not allow cache_trim_mode to be turned on as part of reclaim? */
118 unsigned int no_cache_trim_mode:1;
119
120 /* Has cache_trim_mode failed at least once? */
121 unsigned int cache_trim_mode_failed:1;
122
123 /* Proactive reclaim invoked by userspace through memory.reclaim */
124 unsigned int proactive:1;
125
126 /*
127 * Cgroup memory below memory.low is protected as long as we
128 * don't threaten to OOM. If any cgroup is reclaimed at
129 * reduced force or passed over entirely due to its memory.low
130 * setting (memcg_low_skipped), and nothing is reclaimed as a
131 * result, then go back for one more cycle that reclaims the protected
132 * memory (memcg_low_reclaim) to avert OOM.
133 */
134 unsigned int memcg_low_reclaim:1;
135 unsigned int memcg_low_skipped:1;
136
137 /* Shared cgroup tree walk failed, rescan the whole tree */
138 unsigned int memcg_full_walk:1;
139
140 unsigned int hibernation_mode:1;
141
142 /* One of the zones is ready for compaction */
143 unsigned int compaction_ready:1;
144
145 /* There is easily reclaimable cold cache in the current node */
146 unsigned int cache_trim_mode:1;
147
148 /* The file folios on the current node are dangerously low */
149 unsigned int file_is_tiny:1;
150
151 /* Always discard instead of demoting to lower tier memory */
152 unsigned int no_demotion:1;
153
154 /* Allocation order */
155 s8 order;
156
157 /* Scan (total_size >> priority) pages at once */
158 s8 priority;
159
160 /* The highest zone to isolate folios for reclaim from */
161 s8 reclaim_idx;
162
163 /* This context's GFP mask */
164 gfp_t gfp_mask;
165
166 /* Incremented by the number of inactive pages that were scanned */
167 unsigned long nr_scanned;
168
169 /* Number of pages freed so far during a call to shrink_zones() */
170 unsigned long nr_reclaimed;
171
172 struct {
173 unsigned int dirty;
174 unsigned int unqueued_dirty;
175 unsigned int congested;
176 unsigned int writeback;
177 unsigned int immediate;
178 unsigned int file_taken;
179 unsigned int taken;
180 } nr;
181
182 /* for recording the reclaimed slab by now */
183 struct reclaim_state reclaim_state;
184 };
185
186 #ifdef ARCH_HAS_PREFETCHW
187 #define prefetchw_prev_lru_folio(_folio, _base, _field) \
188 do { \
189 if ((_folio)->lru.prev != _base) { \
190 struct folio *prev; \
191 \
192 prev = lru_to_folio(&(_folio->lru)); \
193 prefetchw(&prev->_field); \
194 } \
195 } while (0)
196 #else
197 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
198 #endif
199
200 /*
201 * From 0 .. MAX_SWAPPINESS. Higher means more swappy.
202 */
203 int vm_swappiness = 60;
204
205 #ifdef CONFIG_MEMCG
206
207 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
cgroup_reclaim(struct scan_control * sc)208 static bool cgroup_reclaim(struct scan_control *sc)
209 {
210 return sc->target_mem_cgroup;
211 }
212
213 /*
214 * Returns true for reclaim on the root cgroup. This is true for direct
215 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
216 */
root_reclaim(struct scan_control * sc)217 static bool root_reclaim(struct scan_control *sc)
218 {
219 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
220 }
221
222 /**
223 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
224 * @sc: scan_control in question
225 *
226 * The normal page dirty throttling mechanism in balance_dirty_pages() is
227 * completely broken with the legacy memcg and direct stalling in
228 * shrink_folio_list() is used for throttling instead, which lacks all the
229 * niceties such as fairness, adaptive pausing, bandwidth proportional
230 * allocation and configurability.
231 *
232 * This function tests whether the vmscan currently in progress can assume
233 * that the normal dirty throttling mechanism is operational.
234 */
writeback_throttling_sane(struct scan_control * sc)235 static bool writeback_throttling_sane(struct scan_control *sc)
236 {
237 if (!cgroup_reclaim(sc))
238 return true;
239 #ifdef CONFIG_CGROUP_WRITEBACK
240 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
241 return true;
242 #endif
243 return false;
244 }
245
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)246 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
247 {
248 if (sc->proactive && sc->proactive_swappiness)
249 return *sc->proactive_swappiness;
250 return mem_cgroup_swappiness(memcg);
251 }
252 #else
cgroup_reclaim(struct scan_control * sc)253 static bool cgroup_reclaim(struct scan_control *sc)
254 {
255 return false;
256 }
257
root_reclaim(struct scan_control * sc)258 static bool root_reclaim(struct scan_control *sc)
259 {
260 return true;
261 }
262
writeback_throttling_sane(struct scan_control * sc)263 static bool writeback_throttling_sane(struct scan_control *sc)
264 {
265 return true;
266 }
267
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)268 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
269 {
270 return READ_ONCE(vm_swappiness);
271 }
272 #endif
273
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)274 static void set_task_reclaim_state(struct task_struct *task,
275 struct reclaim_state *rs)
276 {
277 /* Check for an overwrite */
278 WARN_ON_ONCE(rs && task->reclaim_state);
279
280 /* Check for the nulling of an already-nulled member */
281 WARN_ON_ONCE(!rs && !task->reclaim_state);
282
283 task->reclaim_state = rs;
284 }
285
286 /*
287 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
288 * scan_control->nr_reclaimed.
289 */
flush_reclaim_state(struct scan_control * sc)290 static void flush_reclaim_state(struct scan_control *sc)
291 {
292 /*
293 * Currently, reclaim_state->reclaimed includes three types of pages
294 * freed outside of vmscan:
295 * (1) Slab pages.
296 * (2) Clean file pages from pruned inodes (on highmem systems).
297 * (3) XFS freed buffer pages.
298 *
299 * For all of these cases, we cannot universally link the pages to a
300 * single memcg. For example, a memcg-aware shrinker can free one object
301 * charged to the target memcg, causing an entire page to be freed.
302 * If we count the entire page as reclaimed from the memcg, we end up
303 * overestimating the reclaimed amount (potentially under-reclaiming).
304 *
305 * Only count such pages for global reclaim to prevent under-reclaiming
306 * from the target memcg; preventing unnecessary retries during memcg
307 * charging and false positives from proactive reclaim.
308 *
309 * For uncommon cases where the freed pages were actually mostly
310 * charged to the target memcg, we end up underestimating the reclaimed
311 * amount. This should be fine. The freed pages will be uncharged
312 * anyway, even if they are not counted here properly, and we will be
313 * able to make forward progress in charging (which is usually in a
314 * retry loop).
315 *
316 * We can go one step further, and report the uncharged objcg pages in
317 * memcg reclaim, to make reporting more accurate and reduce
318 * underestimation, but it's probably not worth the complexity for now.
319 */
320 if (current->reclaim_state && root_reclaim(sc)) {
321 sc->nr_reclaimed += current->reclaim_state->reclaimed;
322 current->reclaim_state->reclaimed = 0;
323 }
324 }
325
can_demote(int nid,struct scan_control * sc)326 static bool can_demote(int nid, struct scan_control *sc)
327 {
328 if (!numa_demotion_enabled)
329 return false;
330 if (sc && sc->no_demotion)
331 return false;
332 if (next_demotion_node(nid) == NUMA_NO_NODE)
333 return false;
334
335 return true;
336 }
337
can_reclaim_anon_pages(struct mem_cgroup * memcg,int nid,struct scan_control * sc)338 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
339 int nid,
340 struct scan_control *sc)
341 {
342 if (memcg == NULL) {
343 /*
344 * For non-memcg reclaim, is there
345 * space in any swap device?
346 */
347 if (get_nr_swap_pages() > 0)
348 return true;
349 } else {
350 /* Is the memcg below its swap limit? */
351 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
352 return true;
353 }
354
355 /*
356 * The page can not be swapped.
357 *
358 * Can it be reclaimed from this node via demotion?
359 */
360 return can_demote(nid, sc);
361 }
362
363 /*
364 * This misses isolated folios which are not accounted for to save counters.
365 * As the data only determines if reclaim or compaction continues, it is
366 * not expected that isolated folios will be a dominating factor.
367 */
zone_reclaimable_pages(struct zone * zone)368 unsigned long zone_reclaimable_pages(struct zone *zone)
369 {
370 unsigned long nr;
371
372 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
373 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
374 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
375 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
376 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
377
378 return nr;
379 }
380
381 /**
382 * lruvec_lru_size - Returns the number of pages on the given LRU list.
383 * @lruvec: lru vector
384 * @lru: lru to use
385 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
386 */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)387 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
388 int zone_idx)
389 {
390 unsigned long size = 0;
391 int zid;
392
393 for (zid = 0; zid <= zone_idx; zid++) {
394 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
395
396 if (!managed_zone(zone))
397 continue;
398
399 if (!mem_cgroup_disabled())
400 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
401 else
402 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
403 }
404 return size;
405 }
406
drop_slab_node(int nid)407 static unsigned long drop_slab_node(int nid)
408 {
409 unsigned long freed = 0;
410 struct mem_cgroup *memcg = NULL;
411
412 memcg = mem_cgroup_iter(NULL, NULL, NULL);
413 do {
414 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
415 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
416
417 return freed;
418 }
419
drop_slab(void)420 void drop_slab(void)
421 {
422 int nid;
423 int shift = 0;
424 unsigned long freed;
425
426 do {
427 freed = 0;
428 for_each_online_node(nid) {
429 if (fatal_signal_pending(current))
430 return;
431
432 freed += drop_slab_node(nid);
433 }
434 } while ((freed >> shift++) > 1);
435 }
436
reclaimer_offset(void)437 static int reclaimer_offset(void)
438 {
439 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
440 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
441 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
442 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
443 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
444 PGSCAN_DIRECT - PGSCAN_KSWAPD);
445 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
446 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
447
448 if (current_is_kswapd())
449 return 0;
450 if (current_is_khugepaged())
451 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
452 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
453 }
454
is_page_cache_freeable(struct folio * folio)455 static inline int is_page_cache_freeable(struct folio *folio)
456 {
457 /*
458 * A freeable page cache folio is referenced only by the caller
459 * that isolated the folio, the page cache and optional filesystem
460 * private data at folio->private.
461 */
462 return folio_ref_count(folio) - folio_test_private(folio) ==
463 1 + folio_nr_pages(folio);
464 }
465
466 /*
467 * We detected a synchronous write error writing a folio out. Probably
468 * -ENOSPC. We need to propagate that into the address_space for a subsequent
469 * fsync(), msync() or close().
470 *
471 * The tricky part is that after writepage we cannot touch the mapping: nothing
472 * prevents it from being freed up. But we have a ref on the folio and once
473 * that folio is locked, the mapping is pinned.
474 *
475 * We're allowed to run sleeping folio_lock() here because we know the caller has
476 * __GFP_FS.
477 */
handle_write_error(struct address_space * mapping,struct folio * folio,int error)478 static void handle_write_error(struct address_space *mapping,
479 struct folio *folio, int error)
480 {
481 folio_lock(folio);
482 if (folio_mapping(folio) == mapping)
483 mapping_set_error(mapping, error);
484 folio_unlock(folio);
485 }
486
skip_throttle_noprogress(pg_data_t * pgdat)487 static bool skip_throttle_noprogress(pg_data_t *pgdat)
488 {
489 int reclaimable = 0, write_pending = 0;
490 int i;
491
492 /*
493 * If kswapd is disabled, reschedule if necessary but do not
494 * throttle as the system is likely near OOM.
495 */
496 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
497 return true;
498
499 /*
500 * If there are a lot of dirty/writeback folios then do not
501 * throttle as throttling will occur when the folios cycle
502 * towards the end of the LRU if still under writeback.
503 */
504 for (i = 0; i < MAX_NR_ZONES; i++) {
505 struct zone *zone = pgdat->node_zones + i;
506
507 if (!managed_zone(zone))
508 continue;
509
510 reclaimable += zone_reclaimable_pages(zone);
511 write_pending += zone_page_state_snapshot(zone,
512 NR_ZONE_WRITE_PENDING);
513 }
514 if (2 * write_pending <= reclaimable)
515 return true;
516
517 return false;
518 }
519
reclaim_throttle(pg_data_t * pgdat,enum vmscan_throttle_state reason)520 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
521 {
522 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
523 long timeout, ret;
524 DEFINE_WAIT(wait);
525
526 /*
527 * Do not throttle user workers, kthreads other than kswapd or
528 * workqueues. They may be required for reclaim to make
529 * forward progress (e.g. journalling workqueues or kthreads).
530 */
531 if (!current_is_kswapd() &&
532 current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
533 cond_resched();
534 return;
535 }
536
537 /*
538 * These figures are pulled out of thin air.
539 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
540 * parallel reclaimers which is a short-lived event so the timeout is
541 * short. Failing to make progress or waiting on writeback are
542 * potentially long-lived events so use a longer timeout. This is shaky
543 * logic as a failure to make progress could be due to anything from
544 * writeback to a slow device to excessive referenced folios at the tail
545 * of the inactive LRU.
546 */
547 switch(reason) {
548 case VMSCAN_THROTTLE_WRITEBACK:
549 timeout = HZ/10;
550
551 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
552 WRITE_ONCE(pgdat->nr_reclaim_start,
553 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
554 }
555
556 break;
557 case VMSCAN_THROTTLE_CONGESTED:
558 fallthrough;
559 case VMSCAN_THROTTLE_NOPROGRESS:
560 if (skip_throttle_noprogress(pgdat)) {
561 cond_resched();
562 return;
563 }
564
565 timeout = 1;
566
567 break;
568 case VMSCAN_THROTTLE_ISOLATED:
569 timeout = HZ/50;
570 break;
571 default:
572 WARN_ON_ONCE(1);
573 timeout = HZ;
574 break;
575 }
576
577 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
578 ret = schedule_timeout(timeout);
579 finish_wait(wqh, &wait);
580
581 if (reason == VMSCAN_THROTTLE_WRITEBACK)
582 atomic_dec(&pgdat->nr_writeback_throttled);
583
584 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
585 jiffies_to_usecs(timeout - ret),
586 reason);
587 }
588
589 /*
590 * Account for folios written if tasks are throttled waiting on dirty
591 * folios to clean. If enough folios have been cleaned since throttling
592 * started then wakeup the throttled tasks.
593 */
__acct_reclaim_writeback(pg_data_t * pgdat,struct folio * folio,int nr_throttled)594 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
595 int nr_throttled)
596 {
597 unsigned long nr_written;
598
599 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
600
601 /*
602 * This is an inaccurate read as the per-cpu deltas may not
603 * be synchronised. However, given that the system is
604 * writeback throttled, it is not worth taking the penalty
605 * of getting an accurate count. At worst, the throttle
606 * timeout guarantees forward progress.
607 */
608 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
609 READ_ONCE(pgdat->nr_reclaim_start);
610
611 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
612 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
613 }
614
615 /* possible outcome of pageout() */
616 typedef enum {
617 /* failed to write folio out, folio is locked */
618 PAGE_KEEP,
619 /* move folio to the active list, folio is locked */
620 PAGE_ACTIVATE,
621 /* folio has been sent to the disk successfully, folio is unlocked */
622 PAGE_SUCCESS,
623 /* folio is clean and locked */
624 PAGE_CLEAN,
625 } pageout_t;
626
627 /*
628 * pageout is called by shrink_folio_list() for each dirty folio.
629 * Calls ->writepage().
630 */
pageout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug,struct list_head * folio_list)631 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
632 struct swap_iocb **plug, struct list_head *folio_list)
633 {
634 /*
635 * If the folio is dirty, only perform writeback if that write
636 * will be non-blocking. To prevent this allocation from being
637 * stalled by pagecache activity. But note that there may be
638 * stalls if we need to run get_block(). We could test
639 * PagePrivate for that.
640 *
641 * If this process is currently in __generic_file_write_iter() against
642 * this folio's queue, we can perform writeback even if that
643 * will block.
644 *
645 * If the folio is swapcache, write it back even if that would
646 * block, for some throttling. This happens by accident, because
647 * swap_backing_dev_info is bust: it doesn't reflect the
648 * congestion state of the swapdevs. Easy to fix, if needed.
649 */
650 if (!is_page_cache_freeable(folio))
651 return PAGE_KEEP;
652 if (!mapping) {
653 /*
654 * Some data journaling orphaned folios can have
655 * folio->mapping == NULL while being dirty with clean buffers.
656 */
657 if (folio_test_private(folio)) {
658 if (try_to_free_buffers(folio)) {
659 folio_clear_dirty(folio);
660 pr_info("%s: orphaned folio\n", __func__);
661 return PAGE_CLEAN;
662 }
663 }
664 return PAGE_KEEP;
665 }
666 if (mapping->a_ops->writepage == NULL)
667 return PAGE_ACTIVATE;
668
669 if (folio_clear_dirty_for_io(folio)) {
670 int res;
671 struct writeback_control wbc = {
672 .sync_mode = WB_SYNC_NONE,
673 .nr_to_write = SWAP_CLUSTER_MAX,
674 .range_start = 0,
675 .range_end = LLONG_MAX,
676 .for_reclaim = 1,
677 .swap_plug = plug,
678 };
679
680 /*
681 * The large shmem folio can be split if CONFIG_THP_SWAP is
682 * not enabled or contiguous swap entries are failed to
683 * allocate.
684 */
685 if (shmem_mapping(mapping) && folio_test_large(folio))
686 wbc.list = folio_list;
687
688 folio_set_reclaim(folio);
689 res = mapping->a_ops->writepage(&folio->page, &wbc);
690 if (res < 0)
691 handle_write_error(mapping, folio, res);
692 if (res == AOP_WRITEPAGE_ACTIVATE) {
693 folio_clear_reclaim(folio);
694 return PAGE_ACTIVATE;
695 }
696
697 if (!folio_test_writeback(folio)) {
698 /* synchronous write or broken a_ops? */
699 folio_clear_reclaim(folio);
700 }
701 trace_mm_vmscan_write_folio(folio);
702 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
703 return PAGE_SUCCESS;
704 }
705
706 return PAGE_CLEAN;
707 }
708
709 /*
710 * Same as remove_mapping, but if the folio is removed from the mapping, it
711 * gets returned with a refcount of 0.
712 */
__remove_mapping(struct address_space * mapping,struct folio * folio,bool reclaimed,struct mem_cgroup * target_memcg)713 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
714 bool reclaimed, struct mem_cgroup *target_memcg)
715 {
716 int refcount;
717 void *shadow = NULL;
718
719 BUG_ON(!folio_test_locked(folio));
720 BUG_ON(mapping != folio_mapping(folio));
721
722 if (!folio_test_swapcache(folio))
723 spin_lock(&mapping->host->i_lock);
724 xa_lock_irq(&mapping->i_pages);
725 /*
726 * The non racy check for a busy folio.
727 *
728 * Must be careful with the order of the tests. When someone has
729 * a ref to the folio, it may be possible that they dirty it then
730 * drop the reference. So if the dirty flag is tested before the
731 * refcount here, then the following race may occur:
732 *
733 * get_user_pages(&page);
734 * [user mapping goes away]
735 * write_to(page);
736 * !folio_test_dirty(folio) [good]
737 * folio_set_dirty(folio);
738 * folio_put(folio);
739 * !refcount(folio) [good, discard it]
740 *
741 * [oops, our write_to data is lost]
742 *
743 * Reversing the order of the tests ensures such a situation cannot
744 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
745 * load is not satisfied before that of folio->_refcount.
746 *
747 * Note that if the dirty flag is always set via folio_mark_dirty,
748 * and thus under the i_pages lock, then this ordering is not required.
749 */
750 refcount = 1 + folio_nr_pages(folio);
751 if (!folio_ref_freeze(folio, refcount))
752 goto cannot_free;
753 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
754 if (unlikely(folio_test_dirty(folio))) {
755 folio_ref_unfreeze(folio, refcount);
756 goto cannot_free;
757 }
758
759 if (folio_test_swapcache(folio)) {
760 swp_entry_t swap = folio->swap;
761
762 if (reclaimed && !mapping_exiting(mapping))
763 shadow = workingset_eviction(folio, target_memcg);
764 __delete_from_swap_cache(folio, swap, shadow);
765 mem_cgroup_swapout(folio, swap);
766 xa_unlock_irq(&mapping->i_pages);
767 put_swap_folio(folio, swap);
768 } else {
769 void (*free_folio)(struct folio *);
770
771 free_folio = mapping->a_ops->free_folio;
772 /*
773 * Remember a shadow entry for reclaimed file cache in
774 * order to detect refaults, thus thrashing, later on.
775 *
776 * But don't store shadows in an address space that is
777 * already exiting. This is not just an optimization,
778 * inode reclaim needs to empty out the radix tree or
779 * the nodes are lost. Don't plant shadows behind its
780 * back.
781 *
782 * We also don't store shadows for DAX mappings because the
783 * only page cache folios found in these are zero pages
784 * covering holes, and because we don't want to mix DAX
785 * exceptional entries and shadow exceptional entries in the
786 * same address_space.
787 */
788 if (reclaimed && folio_is_file_lru(folio) &&
789 !mapping_exiting(mapping) && !dax_mapping(mapping))
790 shadow = workingset_eviction(folio, target_memcg);
791 __filemap_remove_folio(folio, shadow);
792 xa_unlock_irq(&mapping->i_pages);
793 if (mapping_shrinkable(mapping))
794 inode_add_lru(mapping->host);
795 spin_unlock(&mapping->host->i_lock);
796
797 if (free_folio)
798 free_folio(folio);
799 }
800
801 return 1;
802
803 cannot_free:
804 xa_unlock_irq(&mapping->i_pages);
805 if (!folio_test_swapcache(folio))
806 spin_unlock(&mapping->host->i_lock);
807 return 0;
808 }
809
810 /**
811 * remove_mapping() - Attempt to remove a folio from its mapping.
812 * @mapping: The address space.
813 * @folio: The folio to remove.
814 *
815 * If the folio is dirty, under writeback or if someone else has a ref
816 * on it, removal will fail.
817 * Return: The number of pages removed from the mapping. 0 if the folio
818 * could not be removed.
819 * Context: The caller should have a single refcount on the folio and
820 * hold its lock.
821 */
remove_mapping(struct address_space * mapping,struct folio * folio)822 long remove_mapping(struct address_space *mapping, struct folio *folio)
823 {
824 if (__remove_mapping(mapping, folio, false, NULL)) {
825 /*
826 * Unfreezing the refcount with 1 effectively
827 * drops the pagecache ref for us without requiring another
828 * atomic operation.
829 */
830 folio_ref_unfreeze(folio, 1);
831 return folio_nr_pages(folio);
832 }
833 return 0;
834 }
835
836 /**
837 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
838 * @folio: Folio to be returned to an LRU list.
839 *
840 * Add previously isolated @folio to appropriate LRU list.
841 * The folio may still be unevictable for other reasons.
842 *
843 * Context: lru_lock must not be held, interrupts must be enabled.
844 */
folio_putback_lru(struct folio * folio)845 void folio_putback_lru(struct folio *folio)
846 {
847 folio_add_lru(folio);
848 folio_put(folio); /* drop ref from isolate */
849 }
850
851 enum folio_references {
852 FOLIOREF_RECLAIM,
853 FOLIOREF_RECLAIM_CLEAN,
854 FOLIOREF_KEEP,
855 FOLIOREF_ACTIVATE,
856 };
857
folio_check_references(struct folio * folio,struct scan_control * sc)858 static enum folio_references folio_check_references(struct folio *folio,
859 struct scan_control *sc)
860 {
861 int referenced_ptes, referenced_folio;
862 unsigned long vm_flags;
863
864 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
865 &vm_flags);
866 referenced_folio = folio_test_clear_referenced(folio);
867
868 /*
869 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
870 * Let the folio, now marked Mlocked, be moved to the unevictable list.
871 */
872 if (vm_flags & VM_LOCKED)
873 return FOLIOREF_ACTIVATE;
874
875 /*
876 * There are two cases to consider.
877 * 1) Rmap lock contention: rotate.
878 * 2) Skip the non-shared swapbacked folio mapped solely by
879 * the exiting or OOM-reaped process.
880 */
881 if (referenced_ptes == -1)
882 return FOLIOREF_KEEP;
883
884 if (referenced_ptes) {
885 /*
886 * All mapped folios start out with page table
887 * references from the instantiating fault, so we need
888 * to look twice if a mapped file/anon folio is used more
889 * than once.
890 *
891 * Mark it and spare it for another trip around the
892 * inactive list. Another page table reference will
893 * lead to its activation.
894 *
895 * Note: the mark is set for activated folios as well
896 * so that recently deactivated but used folios are
897 * quickly recovered.
898 */
899 folio_set_referenced(folio);
900
901 if (referenced_folio || referenced_ptes > 1)
902 return FOLIOREF_ACTIVATE;
903
904 /*
905 * Activate file-backed executable folios after first usage.
906 */
907 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
908 return FOLIOREF_ACTIVATE;
909
910 return FOLIOREF_KEEP;
911 }
912
913 /* Reclaim if clean, defer dirty folios to writeback */
914 if (referenced_folio && folio_is_file_lru(folio))
915 return FOLIOREF_RECLAIM_CLEAN;
916
917 return FOLIOREF_RECLAIM;
918 }
919
920 /* Check if a folio is dirty or under writeback */
folio_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)921 static void folio_check_dirty_writeback(struct folio *folio,
922 bool *dirty, bool *writeback)
923 {
924 struct address_space *mapping;
925
926 /*
927 * Anonymous folios are not handled by flushers and must be written
928 * from reclaim context. Do not stall reclaim based on them.
929 * MADV_FREE anonymous folios are put into inactive file list too.
930 * They could be mistakenly treated as file lru. So further anon
931 * test is needed.
932 */
933 if (!folio_is_file_lru(folio) ||
934 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
935 *dirty = false;
936 *writeback = false;
937 return;
938 }
939
940 /* By default assume that the folio flags are accurate */
941 *dirty = folio_test_dirty(folio);
942 *writeback = folio_test_writeback(folio);
943
944 /* Verify dirty/writeback state if the filesystem supports it */
945 if (!folio_test_private(folio))
946 return;
947
948 mapping = folio_mapping(folio);
949 if (mapping && mapping->a_ops->is_dirty_writeback)
950 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
951 }
952
alloc_migrate_folio(struct folio * src,unsigned long private)953 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private)
954 {
955 struct folio *dst;
956 nodemask_t *allowed_mask;
957 struct migration_target_control *mtc;
958
959 mtc = (struct migration_target_control *)private;
960
961 allowed_mask = mtc->nmask;
962 /*
963 * make sure we allocate from the target node first also trying to
964 * demote or reclaim pages from the target node via kswapd if we are
965 * low on free memory on target node. If we don't do this and if
966 * we have free memory on the slower(lower) memtier, we would start
967 * allocating pages from slower(lower) memory tiers without even forcing
968 * a demotion of cold pages from the target memtier. This can result
969 * in the kernel placing hot pages in slower(lower) memory tiers.
970 */
971 mtc->nmask = NULL;
972 mtc->gfp_mask |= __GFP_THISNODE;
973 dst = alloc_migration_target(src, (unsigned long)mtc);
974 if (dst)
975 return dst;
976
977 mtc->gfp_mask &= ~__GFP_THISNODE;
978 mtc->nmask = allowed_mask;
979
980 return alloc_migration_target(src, (unsigned long)mtc);
981 }
982
983 /*
984 * Take folios on @demote_folios and attempt to demote them to another node.
985 * Folios which are not demoted are left on @demote_folios.
986 */
demote_folio_list(struct list_head * demote_folios,struct pglist_data * pgdat)987 static unsigned int demote_folio_list(struct list_head *demote_folios,
988 struct pglist_data *pgdat)
989 {
990 int target_nid = next_demotion_node(pgdat->node_id);
991 unsigned int nr_succeeded;
992 nodemask_t allowed_mask;
993
994 struct migration_target_control mtc = {
995 /*
996 * Allocate from 'node', or fail quickly and quietly.
997 * When this happens, 'page' will likely just be discarded
998 * instead of migrated.
999 */
1000 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1001 __GFP_NOMEMALLOC | GFP_NOWAIT,
1002 .nid = target_nid,
1003 .nmask = &allowed_mask,
1004 .reason = MR_DEMOTION,
1005 };
1006
1007 if (list_empty(demote_folios))
1008 return 0;
1009
1010 if (target_nid == NUMA_NO_NODE)
1011 return 0;
1012
1013 node_get_allowed_targets(pgdat, &allowed_mask);
1014
1015 /* Demotion ignores all cpuset and mempolicy settings */
1016 migrate_pages(demote_folios, alloc_migrate_folio, NULL,
1017 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1018 &nr_succeeded);
1019
1020 return nr_succeeded;
1021 }
1022
may_enter_fs(struct folio * folio,gfp_t gfp_mask)1023 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1024 {
1025 if (gfp_mask & __GFP_FS)
1026 return true;
1027 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1028 return false;
1029 /*
1030 * We can "enter_fs" for swap-cache with only __GFP_IO
1031 * providing this isn't SWP_FS_OPS.
1032 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1033 * but that will never affect SWP_FS_OPS, so the data_race
1034 * is safe.
1035 */
1036 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1037 }
1038
1039 /*
1040 * shrink_folio_list() returns the number of reclaimed pages
1041 */
shrink_folio_list(struct list_head * folio_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references)1042 static unsigned int shrink_folio_list(struct list_head *folio_list,
1043 struct pglist_data *pgdat, struct scan_control *sc,
1044 struct reclaim_stat *stat, bool ignore_references)
1045 {
1046 struct folio_batch free_folios;
1047 LIST_HEAD(ret_folios);
1048 LIST_HEAD(demote_folios);
1049 unsigned int nr_reclaimed = 0;
1050 unsigned int pgactivate = 0;
1051 bool do_demote_pass;
1052 struct swap_iocb *plug = NULL;
1053
1054 folio_batch_init(&free_folios);
1055 memset(stat, 0, sizeof(*stat));
1056 cond_resched();
1057 do_demote_pass = can_demote(pgdat->node_id, sc);
1058
1059 retry:
1060 while (!list_empty(folio_list)) {
1061 struct address_space *mapping;
1062 struct folio *folio;
1063 enum folio_references references = FOLIOREF_RECLAIM;
1064 bool dirty, writeback;
1065 unsigned int nr_pages;
1066
1067 cond_resched();
1068
1069 folio = lru_to_folio(folio_list);
1070 list_del(&folio->lru);
1071
1072 if (!folio_trylock(folio))
1073 goto keep;
1074
1075 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1076
1077 nr_pages = folio_nr_pages(folio);
1078
1079 /* Account the number of base pages */
1080 sc->nr_scanned += nr_pages;
1081
1082 if (unlikely(!folio_evictable(folio)))
1083 goto activate_locked;
1084
1085 if (!sc->may_unmap && folio_mapped(folio))
1086 goto keep_locked;
1087
1088 /* folio_update_gen() tried to promote this page? */
1089 if (lru_gen_enabled() && !ignore_references &&
1090 folio_mapped(folio) && folio_test_referenced(folio))
1091 goto keep_locked;
1092
1093 /*
1094 * The number of dirty pages determines if a node is marked
1095 * reclaim_congested. kswapd will stall and start writing
1096 * folios if the tail of the LRU is all dirty unqueued folios.
1097 */
1098 folio_check_dirty_writeback(folio, &dirty, &writeback);
1099 if (dirty || writeback)
1100 stat->nr_dirty += nr_pages;
1101
1102 if (dirty && !writeback)
1103 stat->nr_unqueued_dirty += nr_pages;
1104
1105 /*
1106 * Treat this folio as congested if folios are cycling
1107 * through the LRU so quickly that the folios marked
1108 * for immediate reclaim are making it to the end of
1109 * the LRU a second time.
1110 */
1111 if (writeback && folio_test_reclaim(folio))
1112 stat->nr_congested += nr_pages;
1113
1114 /*
1115 * If a folio at the tail of the LRU is under writeback, there
1116 * are three cases to consider.
1117 *
1118 * 1) If reclaim is encountering an excessive number
1119 * of folios under writeback and this folio has both
1120 * the writeback and reclaim flags set, then it
1121 * indicates that folios are being queued for I/O but
1122 * are being recycled through the LRU before the I/O
1123 * can complete. Waiting on the folio itself risks an
1124 * indefinite stall if it is impossible to writeback
1125 * the folio due to I/O error or disconnected storage
1126 * so instead note that the LRU is being scanned too
1127 * quickly and the caller can stall after the folio
1128 * list has been processed.
1129 *
1130 * 2) Global or new memcg reclaim encounters a folio that is
1131 * not marked for immediate reclaim, or the caller does not
1132 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1133 * not to fs). In this case mark the folio for immediate
1134 * reclaim and continue scanning.
1135 *
1136 * Require may_enter_fs() because we would wait on fs, which
1137 * may not have submitted I/O yet. And the loop driver might
1138 * enter reclaim, and deadlock if it waits on a folio for
1139 * which it is needed to do the write (loop masks off
1140 * __GFP_IO|__GFP_FS for this reason); but more thought
1141 * would probably show more reasons.
1142 *
1143 * 3) Legacy memcg encounters a folio that already has the
1144 * reclaim flag set. memcg does not have any dirty folio
1145 * throttling so we could easily OOM just because too many
1146 * folios are in writeback and there is nothing else to
1147 * reclaim. Wait for the writeback to complete.
1148 *
1149 * In cases 1) and 2) we activate the folios to get them out of
1150 * the way while we continue scanning for clean folios on the
1151 * inactive list and refilling from the active list. The
1152 * observation here is that waiting for disk writes is more
1153 * expensive than potentially causing reloads down the line.
1154 * Since they're marked for immediate reclaim, they won't put
1155 * memory pressure on the cache working set any longer than it
1156 * takes to write them to disk.
1157 */
1158 if (folio_test_writeback(folio)) {
1159 /* Case 1 above */
1160 if (current_is_kswapd() &&
1161 folio_test_reclaim(folio) &&
1162 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1163 stat->nr_immediate += nr_pages;
1164 goto activate_locked;
1165
1166 /* Case 2 above */
1167 } else if (writeback_throttling_sane(sc) ||
1168 !folio_test_reclaim(folio) ||
1169 !may_enter_fs(folio, sc->gfp_mask)) {
1170 /*
1171 * This is slightly racy -
1172 * folio_end_writeback() might have
1173 * just cleared the reclaim flag, then
1174 * setting the reclaim flag here ends up
1175 * interpreted as the readahead flag - but
1176 * that does not matter enough to care.
1177 * What we do want is for this folio to
1178 * have the reclaim flag set next time
1179 * memcg reclaim reaches the tests above,
1180 * so it will then wait for writeback to
1181 * avoid OOM; and it's also appropriate
1182 * in global reclaim.
1183 */
1184 folio_set_reclaim(folio);
1185 stat->nr_writeback += nr_pages;
1186 goto activate_locked;
1187
1188 /* Case 3 above */
1189 } else {
1190 folio_unlock(folio);
1191 folio_wait_writeback(folio);
1192 /* then go back and try same folio again */
1193 list_add_tail(&folio->lru, folio_list);
1194 continue;
1195 }
1196 }
1197
1198 if (!ignore_references)
1199 references = folio_check_references(folio, sc);
1200
1201 switch (references) {
1202 case FOLIOREF_ACTIVATE:
1203 goto activate_locked;
1204 case FOLIOREF_KEEP:
1205 stat->nr_ref_keep += nr_pages;
1206 goto keep_locked;
1207 case FOLIOREF_RECLAIM:
1208 case FOLIOREF_RECLAIM_CLEAN:
1209 ; /* try to reclaim the folio below */
1210 }
1211
1212 /*
1213 * Before reclaiming the folio, try to relocate
1214 * its contents to another node.
1215 */
1216 if (do_demote_pass &&
1217 (thp_migration_supported() || !folio_test_large(folio))) {
1218 list_add(&folio->lru, &demote_folios);
1219 folio_unlock(folio);
1220 continue;
1221 }
1222
1223 /*
1224 * Anonymous process memory has backing store?
1225 * Try to allocate it some swap space here.
1226 * Lazyfree folio could be freed directly
1227 */
1228 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1229 if (!folio_test_swapcache(folio)) {
1230 if (!(sc->gfp_mask & __GFP_IO))
1231 goto keep_locked;
1232 if (folio_maybe_dma_pinned(folio))
1233 goto keep_locked;
1234 if (folio_test_large(folio)) {
1235 /* cannot split folio, skip it */
1236 if (!can_split_folio(folio, 1, NULL))
1237 goto activate_locked;
1238 /*
1239 * Split partially mapped folios right away.
1240 * We can free the unmapped pages without IO.
1241 */
1242 if (data_race(!list_empty(&folio->_deferred_list) &&
1243 folio_test_partially_mapped(folio)) &&
1244 split_folio_to_list(folio, folio_list))
1245 goto activate_locked;
1246 }
1247 if (!add_to_swap(folio)) {
1248 int __maybe_unused order = folio_order(folio);
1249
1250 if (!folio_test_large(folio))
1251 goto activate_locked_split;
1252 /* Fallback to swap normal pages */
1253 if (split_folio_to_list(folio, folio_list))
1254 goto activate_locked;
1255 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1256 if (nr_pages >= HPAGE_PMD_NR) {
1257 count_memcg_folio_events(folio,
1258 THP_SWPOUT_FALLBACK, 1);
1259 count_vm_event(THP_SWPOUT_FALLBACK);
1260 }
1261 #endif
1262 count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
1263 if (!add_to_swap(folio))
1264 goto activate_locked_split;
1265 }
1266 }
1267 }
1268
1269 /*
1270 * If the folio was split above, the tail pages will make
1271 * their own pass through this function and be accounted
1272 * then.
1273 */
1274 if ((nr_pages > 1) && !folio_test_large(folio)) {
1275 sc->nr_scanned -= (nr_pages - 1);
1276 nr_pages = 1;
1277 }
1278
1279 /*
1280 * The folio is mapped into the page tables of one or more
1281 * processes. Try to unmap it here.
1282 */
1283 if (folio_mapped(folio)) {
1284 enum ttu_flags flags = TTU_BATCH_FLUSH;
1285 bool was_swapbacked = folio_test_swapbacked(folio);
1286
1287 if (folio_test_pmd_mappable(folio))
1288 flags |= TTU_SPLIT_HUGE_PMD;
1289 /*
1290 * Without TTU_SYNC, try_to_unmap will only begin to
1291 * hold PTL from the first present PTE within a large
1292 * folio. Some initial PTEs might be skipped due to
1293 * races with parallel PTE writes in which PTEs can be
1294 * cleared temporarily before being written new present
1295 * values. This will lead to a large folio is still
1296 * mapped while some subpages have been partially
1297 * unmapped after try_to_unmap; TTU_SYNC helps
1298 * try_to_unmap acquire PTL from the first PTE,
1299 * eliminating the influence of temporary PTE values.
1300 */
1301 if (folio_test_large(folio))
1302 flags |= TTU_SYNC;
1303
1304 try_to_unmap(folio, flags);
1305 if (folio_mapped(folio)) {
1306 stat->nr_unmap_fail += nr_pages;
1307 if (!was_swapbacked &&
1308 folio_test_swapbacked(folio))
1309 stat->nr_lazyfree_fail += nr_pages;
1310 goto activate_locked;
1311 }
1312 }
1313
1314 /*
1315 * Folio is unmapped now so it cannot be newly pinned anymore.
1316 * No point in trying to reclaim folio if it is pinned.
1317 * Furthermore we don't want to reclaim underlying fs metadata
1318 * if the folio is pinned and thus potentially modified by the
1319 * pinning process as that may upset the filesystem.
1320 */
1321 if (folio_maybe_dma_pinned(folio))
1322 goto activate_locked;
1323
1324 mapping = folio_mapping(folio);
1325 if (folio_test_dirty(folio)) {
1326 /*
1327 * Only kswapd can writeback filesystem folios
1328 * to avoid risk of stack overflow. But avoid
1329 * injecting inefficient single-folio I/O into
1330 * flusher writeback as much as possible: only
1331 * write folios when we've encountered many
1332 * dirty folios, and when we've already scanned
1333 * the rest of the LRU for clean folios and see
1334 * the same dirty folios again (with the reclaim
1335 * flag set).
1336 */
1337 if (folio_is_file_lru(folio) &&
1338 (!current_is_kswapd() ||
1339 !folio_test_reclaim(folio) ||
1340 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1341 /*
1342 * Immediately reclaim when written back.
1343 * Similar in principle to folio_deactivate()
1344 * except we already have the folio isolated
1345 * and know it's dirty
1346 */
1347 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1348 nr_pages);
1349 folio_set_reclaim(folio);
1350
1351 goto activate_locked;
1352 }
1353
1354 if (references == FOLIOREF_RECLAIM_CLEAN)
1355 goto keep_locked;
1356 if (!may_enter_fs(folio, sc->gfp_mask))
1357 goto keep_locked;
1358 if (!sc->may_writepage)
1359 goto keep_locked;
1360
1361 /*
1362 * Folio is dirty. Flush the TLB if a writable entry
1363 * potentially exists to avoid CPU writes after I/O
1364 * starts and then write it out here.
1365 */
1366 try_to_unmap_flush_dirty();
1367 switch (pageout(folio, mapping, &plug, folio_list)) {
1368 case PAGE_KEEP:
1369 goto keep_locked;
1370 case PAGE_ACTIVATE:
1371 /*
1372 * If shmem folio is split when writeback to swap,
1373 * the tail pages will make their own pass through
1374 * this function and be accounted then.
1375 */
1376 if (nr_pages > 1 && !folio_test_large(folio)) {
1377 sc->nr_scanned -= (nr_pages - 1);
1378 nr_pages = 1;
1379 }
1380 goto activate_locked;
1381 case PAGE_SUCCESS:
1382 if (nr_pages > 1 && !folio_test_large(folio)) {
1383 sc->nr_scanned -= (nr_pages - 1);
1384 nr_pages = 1;
1385 }
1386 stat->nr_pageout += nr_pages;
1387
1388 if (folio_test_writeback(folio))
1389 goto keep;
1390 if (folio_test_dirty(folio))
1391 goto keep;
1392
1393 /*
1394 * A synchronous write - probably a ramdisk. Go
1395 * ahead and try to reclaim the folio.
1396 */
1397 if (!folio_trylock(folio))
1398 goto keep;
1399 if (folio_test_dirty(folio) ||
1400 folio_test_writeback(folio))
1401 goto keep_locked;
1402 mapping = folio_mapping(folio);
1403 fallthrough;
1404 case PAGE_CLEAN:
1405 ; /* try to free the folio below */
1406 }
1407 }
1408
1409 /*
1410 * If the folio has buffers, try to free the buffer
1411 * mappings associated with this folio. If we succeed
1412 * we try to free the folio as well.
1413 *
1414 * We do this even if the folio is dirty.
1415 * filemap_release_folio() does not perform I/O, but it
1416 * is possible for a folio to have the dirty flag set,
1417 * but it is actually clean (all its buffers are clean).
1418 * This happens if the buffers were written out directly,
1419 * with submit_bh(). ext3 will do this, as well as
1420 * the blockdev mapping. filemap_release_folio() will
1421 * discover that cleanness and will drop the buffers
1422 * and mark the folio clean - it can be freed.
1423 *
1424 * Rarely, folios can have buffers and no ->mapping.
1425 * These are the folios which were not successfully
1426 * invalidated in truncate_cleanup_folio(). We try to
1427 * drop those buffers here and if that worked, and the
1428 * folio is no longer mapped into process address space
1429 * (refcount == 1) it can be freed. Otherwise, leave
1430 * the folio on the LRU so it is swappable.
1431 */
1432 if (folio_needs_release(folio)) {
1433 if (!filemap_release_folio(folio, sc->gfp_mask))
1434 goto activate_locked;
1435 if (!mapping && folio_ref_count(folio) == 1) {
1436 folio_unlock(folio);
1437 if (folio_put_testzero(folio))
1438 goto free_it;
1439 else {
1440 /*
1441 * rare race with speculative reference.
1442 * the speculative reference will free
1443 * this folio shortly, so we may
1444 * increment nr_reclaimed here (and
1445 * leave it off the LRU).
1446 */
1447 nr_reclaimed += nr_pages;
1448 continue;
1449 }
1450 }
1451 }
1452
1453 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1454 /* follow __remove_mapping for reference */
1455 if (!folio_ref_freeze(folio, 1))
1456 goto keep_locked;
1457 /*
1458 * The folio has only one reference left, which is
1459 * from the isolation. After the caller puts the
1460 * folio back on the lru and drops the reference, the
1461 * folio will be freed anyway. It doesn't matter
1462 * which lru it goes on. So we don't bother checking
1463 * the dirty flag here.
1464 */
1465 count_vm_events(PGLAZYFREED, nr_pages);
1466 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1467 } else if (!mapping || !__remove_mapping(mapping, folio, true,
1468 sc->target_mem_cgroup))
1469 goto keep_locked;
1470
1471 folio_unlock(folio);
1472 free_it:
1473 /*
1474 * Folio may get swapped out as a whole, need to account
1475 * all pages in it.
1476 */
1477 nr_reclaimed += nr_pages;
1478
1479 folio_unqueue_deferred_split(folio);
1480 if (folio_batch_add(&free_folios, folio) == 0) {
1481 mem_cgroup_uncharge_folios(&free_folios);
1482 try_to_unmap_flush();
1483 free_unref_folios(&free_folios);
1484 }
1485 continue;
1486
1487 activate_locked_split:
1488 /*
1489 * The tail pages that are failed to add into swap cache
1490 * reach here. Fixup nr_scanned and nr_pages.
1491 */
1492 if (nr_pages > 1) {
1493 sc->nr_scanned -= (nr_pages - 1);
1494 nr_pages = 1;
1495 }
1496 activate_locked:
1497 /* Not a candidate for swapping, so reclaim swap space. */
1498 if (folio_test_swapcache(folio) &&
1499 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1500 folio_free_swap(folio);
1501 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1502 if (!folio_test_mlocked(folio)) {
1503 int type = folio_is_file_lru(folio);
1504 folio_set_active(folio);
1505 stat->nr_activate[type] += nr_pages;
1506 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1507 }
1508 keep_locked:
1509 folio_unlock(folio);
1510 keep:
1511 list_add(&folio->lru, &ret_folios);
1512 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1513 folio_test_unevictable(folio), folio);
1514 }
1515 /* 'folio_list' is always empty here */
1516
1517 /* Migrate folios selected for demotion */
1518 stat->nr_demoted = demote_folio_list(&demote_folios, pgdat);
1519 nr_reclaimed += stat->nr_demoted;
1520 /* Folios that could not be demoted are still in @demote_folios */
1521 if (!list_empty(&demote_folios)) {
1522 /* Folios which weren't demoted go back on @folio_list */
1523 list_splice_init(&demote_folios, folio_list);
1524
1525 /*
1526 * goto retry to reclaim the undemoted folios in folio_list if
1527 * desired.
1528 *
1529 * Reclaiming directly from top tier nodes is not often desired
1530 * due to it breaking the LRU ordering: in general memory
1531 * should be reclaimed from lower tier nodes and demoted from
1532 * top tier nodes.
1533 *
1534 * However, disabling reclaim from top tier nodes entirely
1535 * would cause ooms in edge scenarios where lower tier memory
1536 * is unreclaimable for whatever reason, eg memory being
1537 * mlocked or too hot to reclaim. We can disable reclaim
1538 * from top tier nodes in proactive reclaim though as that is
1539 * not real memory pressure.
1540 */
1541 if (!sc->proactive) {
1542 do_demote_pass = false;
1543 goto retry;
1544 }
1545 }
1546
1547 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1548
1549 mem_cgroup_uncharge_folios(&free_folios);
1550 try_to_unmap_flush();
1551 free_unref_folios(&free_folios);
1552
1553 list_splice(&ret_folios, folio_list);
1554 count_vm_events(PGACTIVATE, pgactivate);
1555
1556 if (plug)
1557 swap_write_unplug(plug);
1558 return nr_reclaimed;
1559 }
1560
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * folio_list)1561 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1562 struct list_head *folio_list)
1563 {
1564 struct scan_control sc = {
1565 .gfp_mask = GFP_KERNEL,
1566 .may_unmap = 1,
1567 };
1568 struct reclaim_stat stat;
1569 unsigned int nr_reclaimed;
1570 struct folio *folio, *next;
1571 LIST_HEAD(clean_folios);
1572 unsigned int noreclaim_flag;
1573
1574 list_for_each_entry_safe(folio, next, folio_list, lru) {
1575 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1576 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1577 !folio_test_unevictable(folio)) {
1578 folio_clear_active(folio);
1579 list_move(&folio->lru, &clean_folios);
1580 }
1581 }
1582
1583 /*
1584 * We should be safe here since we are only dealing with file pages and
1585 * we are not kswapd and therefore cannot write dirty file pages. But
1586 * call memalloc_noreclaim_save() anyway, just in case these conditions
1587 * change in the future.
1588 */
1589 noreclaim_flag = memalloc_noreclaim_save();
1590 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1591 &stat, true);
1592 memalloc_noreclaim_restore(noreclaim_flag);
1593
1594 list_splice(&clean_folios, folio_list);
1595 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1596 -(long)nr_reclaimed);
1597 /*
1598 * Since lazyfree pages are isolated from file LRU from the beginning,
1599 * they will rotate back to anonymous LRU in the end if it failed to
1600 * discard so isolated count will be mismatched.
1601 * Compensate the isolated count for both LRU lists.
1602 */
1603 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1604 stat.nr_lazyfree_fail);
1605 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1606 -(long)stat.nr_lazyfree_fail);
1607 return nr_reclaimed;
1608 }
1609
1610 /*
1611 * Update LRU sizes after isolating pages. The LRU size updates must
1612 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1613 */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1614 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1615 enum lru_list lru, unsigned long *nr_zone_taken)
1616 {
1617 int zid;
1618
1619 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1620 if (!nr_zone_taken[zid])
1621 continue;
1622
1623 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1624 }
1625
1626 }
1627
1628 /*
1629 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1630 *
1631 * lruvec->lru_lock is heavily contended. Some of the functions that
1632 * shrink the lists perform better by taking out a batch of pages
1633 * and working on them outside the LRU lock.
1634 *
1635 * For pagecache intensive workloads, this function is the hottest
1636 * spot in the kernel (apart from copy_*_user functions).
1637 *
1638 * Lru_lock must be held before calling this function.
1639 *
1640 * @nr_to_scan: The number of eligible pages to look through on the list.
1641 * @lruvec: The LRU vector to pull pages from.
1642 * @dst: The temp list to put pages on to.
1643 * @nr_scanned: The number of pages that were scanned.
1644 * @sc: The scan_control struct for this reclaim session
1645 * @lru: LRU list id for isolating
1646 *
1647 * returns how many pages were moved onto *@dst.
1648 */
isolate_lru_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1649 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1650 struct lruvec *lruvec, struct list_head *dst,
1651 unsigned long *nr_scanned, struct scan_control *sc,
1652 enum lru_list lru)
1653 {
1654 struct list_head *src = &lruvec->lists[lru];
1655 unsigned long nr_taken = 0;
1656 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1657 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1658 unsigned long skipped = 0;
1659 unsigned long scan, total_scan, nr_pages;
1660 LIST_HEAD(folios_skipped);
1661
1662 total_scan = 0;
1663 scan = 0;
1664 while (scan < nr_to_scan && !list_empty(src)) {
1665 struct list_head *move_to = src;
1666 struct folio *folio;
1667
1668 folio = lru_to_folio(src);
1669 prefetchw_prev_lru_folio(folio, src, flags);
1670
1671 nr_pages = folio_nr_pages(folio);
1672 total_scan += nr_pages;
1673
1674 if (folio_zonenum(folio) > sc->reclaim_idx) {
1675 nr_skipped[folio_zonenum(folio)] += nr_pages;
1676 move_to = &folios_skipped;
1677 goto move;
1678 }
1679
1680 /*
1681 * Do not count skipped folios because that makes the function
1682 * return with no isolated folios if the LRU mostly contains
1683 * ineligible folios. This causes the VM to not reclaim any
1684 * folios, triggering a premature OOM.
1685 * Account all pages in a folio.
1686 */
1687 scan += nr_pages;
1688
1689 if (!folio_test_lru(folio))
1690 goto move;
1691 if (!sc->may_unmap && folio_mapped(folio))
1692 goto move;
1693
1694 /*
1695 * Be careful not to clear the lru flag until after we're
1696 * sure the folio is not being freed elsewhere -- the
1697 * folio release code relies on it.
1698 */
1699 if (unlikely(!folio_try_get(folio)))
1700 goto move;
1701
1702 if (!folio_test_clear_lru(folio)) {
1703 /* Another thread is already isolating this folio */
1704 folio_put(folio);
1705 goto move;
1706 }
1707
1708 nr_taken += nr_pages;
1709 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1710 move_to = dst;
1711 move:
1712 list_move(&folio->lru, move_to);
1713 }
1714
1715 /*
1716 * Splice any skipped folios to the start of the LRU list. Note that
1717 * this disrupts the LRU order when reclaiming for lower zones but
1718 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1719 * scanning would soon rescan the same folios to skip and waste lots
1720 * of cpu cycles.
1721 */
1722 if (!list_empty(&folios_skipped)) {
1723 int zid;
1724
1725 list_splice(&folios_skipped, src);
1726 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1727 if (!nr_skipped[zid])
1728 continue;
1729
1730 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1731 skipped += nr_skipped[zid];
1732 }
1733 }
1734 *nr_scanned = total_scan;
1735 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1736 total_scan, skipped, nr_taken, lru);
1737 update_lru_sizes(lruvec, lru, nr_zone_taken);
1738 return nr_taken;
1739 }
1740
1741 /**
1742 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1743 * @folio: Folio to isolate from its LRU list.
1744 *
1745 * Isolate a @folio from an LRU list and adjust the vmstat statistic
1746 * corresponding to whatever LRU list the folio was on.
1747 *
1748 * The folio will have its LRU flag cleared. If it was found on the
1749 * active list, it will have the Active flag set. If it was found on the
1750 * unevictable list, it will have the Unevictable flag set. These flags
1751 * may need to be cleared by the caller before letting the page go.
1752 *
1753 * Context:
1754 *
1755 * (1) Must be called with an elevated refcount on the folio. This is a
1756 * fundamental difference from isolate_lru_folios() (which is called
1757 * without a stable reference).
1758 * (2) The lru_lock must not be held.
1759 * (3) Interrupts must be enabled.
1760 *
1761 * Return: true if the folio was removed from an LRU list.
1762 * false if the folio was not on an LRU list.
1763 */
folio_isolate_lru(struct folio * folio)1764 bool folio_isolate_lru(struct folio *folio)
1765 {
1766 bool ret = false;
1767
1768 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1769
1770 if (folio_test_clear_lru(folio)) {
1771 struct lruvec *lruvec;
1772
1773 folio_get(folio);
1774 lruvec = folio_lruvec_lock_irq(folio);
1775 lruvec_del_folio(lruvec, folio);
1776 unlock_page_lruvec_irq(lruvec);
1777 ret = true;
1778 }
1779
1780 return ret;
1781 }
1782
1783 /*
1784 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1785 * then get rescheduled. When there are massive number of tasks doing page
1786 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1787 * the LRU list will go small and be scanned faster than necessary, leading to
1788 * unnecessary swapping, thrashing and OOM.
1789 */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1790 static bool too_many_isolated(struct pglist_data *pgdat, int file,
1791 struct scan_control *sc)
1792 {
1793 unsigned long inactive, isolated;
1794 bool too_many;
1795
1796 if (current_is_kswapd())
1797 return false;
1798
1799 if (!writeback_throttling_sane(sc))
1800 return false;
1801
1802 if (file) {
1803 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1804 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1805 } else {
1806 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1807 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1808 }
1809
1810 /*
1811 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1812 * won't get blocked by normal direct-reclaimers, forming a circular
1813 * deadlock.
1814 */
1815 if (gfp_has_io_fs(sc->gfp_mask))
1816 inactive >>= 3;
1817
1818 too_many = isolated > inactive;
1819
1820 /* Wake up tasks throttled due to too_many_isolated. */
1821 if (!too_many)
1822 wake_throttle_isolated(pgdat);
1823
1824 return too_many;
1825 }
1826
1827 /*
1828 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1829 *
1830 * Returns the number of pages moved to the given lruvec.
1831 */
move_folios_to_lru(struct lruvec * lruvec,struct list_head * list)1832 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1833 struct list_head *list)
1834 {
1835 int nr_pages, nr_moved = 0;
1836 struct folio_batch free_folios;
1837
1838 folio_batch_init(&free_folios);
1839 while (!list_empty(list)) {
1840 struct folio *folio = lru_to_folio(list);
1841
1842 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1843 list_del(&folio->lru);
1844 if (unlikely(!folio_evictable(folio))) {
1845 spin_unlock_irq(&lruvec->lru_lock);
1846 folio_putback_lru(folio);
1847 spin_lock_irq(&lruvec->lru_lock);
1848 continue;
1849 }
1850
1851 /*
1852 * The folio_set_lru needs to be kept here for list integrity.
1853 * Otherwise:
1854 * #0 move_folios_to_lru #1 release_pages
1855 * if (!folio_put_testzero())
1856 * if (folio_put_testzero())
1857 * !lru //skip lru_lock
1858 * folio_set_lru()
1859 * list_add(&folio->lru,)
1860 * list_add(&folio->lru,)
1861 */
1862 folio_set_lru(folio);
1863
1864 if (unlikely(folio_put_testzero(folio))) {
1865 __folio_clear_lru_flags(folio);
1866
1867 folio_unqueue_deferred_split(folio);
1868 if (folio_batch_add(&free_folios, folio) == 0) {
1869 spin_unlock_irq(&lruvec->lru_lock);
1870 mem_cgroup_uncharge_folios(&free_folios);
1871 free_unref_folios(&free_folios);
1872 spin_lock_irq(&lruvec->lru_lock);
1873 }
1874
1875 continue;
1876 }
1877
1878 /*
1879 * All pages were isolated from the same lruvec (and isolation
1880 * inhibits memcg migration).
1881 */
1882 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1883 lruvec_add_folio(lruvec, folio);
1884 nr_pages = folio_nr_pages(folio);
1885 nr_moved += nr_pages;
1886 if (folio_test_active(folio))
1887 workingset_age_nonresident(lruvec, nr_pages);
1888 }
1889
1890 if (free_folios.nr) {
1891 spin_unlock_irq(&lruvec->lru_lock);
1892 mem_cgroup_uncharge_folios(&free_folios);
1893 free_unref_folios(&free_folios);
1894 spin_lock_irq(&lruvec->lru_lock);
1895 }
1896
1897 return nr_moved;
1898 }
1899
1900 /*
1901 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1902 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1903 * we should not throttle. Otherwise it is safe to do so.
1904 */
current_may_throttle(void)1905 static int current_may_throttle(void)
1906 {
1907 return !(current->flags & PF_LOCAL_THROTTLE);
1908 }
1909
1910 /*
1911 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1912 * of reclaimed pages
1913 */
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1914 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1915 struct lruvec *lruvec, struct scan_control *sc,
1916 enum lru_list lru)
1917 {
1918 LIST_HEAD(folio_list);
1919 unsigned long nr_scanned;
1920 unsigned int nr_reclaimed = 0;
1921 unsigned long nr_taken;
1922 struct reclaim_stat stat;
1923 bool file = is_file_lru(lru);
1924 enum vm_event_item item;
1925 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1926 bool stalled = false;
1927
1928 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1929 if (stalled)
1930 return 0;
1931
1932 /* wait a bit for the reclaimer. */
1933 stalled = true;
1934 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
1935
1936 /* We are about to die and free our memory. Return now. */
1937 if (fatal_signal_pending(current))
1938 return SWAP_CLUSTER_MAX;
1939 }
1940
1941 lru_add_drain();
1942
1943 spin_lock_irq(&lruvec->lru_lock);
1944
1945 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
1946 &nr_scanned, sc, lru);
1947
1948 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1949 item = PGSCAN_KSWAPD + reclaimer_offset();
1950 if (!cgroup_reclaim(sc))
1951 __count_vm_events(item, nr_scanned);
1952 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1953 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
1954
1955 spin_unlock_irq(&lruvec->lru_lock);
1956
1957 if (nr_taken == 0)
1958 return 0;
1959
1960 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
1961
1962 spin_lock_irq(&lruvec->lru_lock);
1963 move_folios_to_lru(lruvec, &folio_list);
1964
1965 __mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(),
1966 stat.nr_demoted);
1967 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1968 item = PGSTEAL_KSWAPD + reclaimer_offset();
1969 if (!cgroup_reclaim(sc))
1970 __count_vm_events(item, nr_reclaimed);
1971 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1972 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1973 spin_unlock_irq(&lruvec->lru_lock);
1974
1975 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
1976
1977 /*
1978 * If dirty folios are scanned that are not queued for IO, it
1979 * implies that flushers are not doing their job. This can
1980 * happen when memory pressure pushes dirty folios to the end of
1981 * the LRU before the dirty limits are breached and the dirty
1982 * data has expired. It can also happen when the proportion of
1983 * dirty folios grows not through writes but through memory
1984 * pressure reclaiming all the clean cache. And in some cases,
1985 * the flushers simply cannot keep up with the allocation
1986 * rate. Nudge the flusher threads in case they are asleep.
1987 */
1988 if (stat.nr_unqueued_dirty == nr_taken) {
1989 wakeup_flusher_threads(WB_REASON_VMSCAN);
1990 /*
1991 * For cgroupv1 dirty throttling is achieved by waking up
1992 * the kernel flusher here and later waiting on folios
1993 * which are in writeback to finish (see shrink_folio_list()).
1994 *
1995 * Flusher may not be able to issue writeback quickly
1996 * enough for cgroupv1 writeback throttling to work
1997 * on a large system.
1998 */
1999 if (!writeback_throttling_sane(sc))
2000 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2001 }
2002
2003 sc->nr.dirty += stat.nr_dirty;
2004 sc->nr.congested += stat.nr_congested;
2005 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2006 sc->nr.writeback += stat.nr_writeback;
2007 sc->nr.immediate += stat.nr_immediate;
2008 sc->nr.taken += nr_taken;
2009 if (file)
2010 sc->nr.file_taken += nr_taken;
2011
2012 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2013 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2014 return nr_reclaimed;
2015 }
2016
2017 /*
2018 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2019 *
2020 * We move them the other way if the folio is referenced by one or more
2021 * processes.
2022 *
2023 * If the folios are mostly unmapped, the processing is fast and it is
2024 * appropriate to hold lru_lock across the whole operation. But if
2025 * the folios are mapped, the processing is slow (folio_referenced()), so
2026 * we should drop lru_lock around each folio. It's impossible to balance
2027 * this, so instead we remove the folios from the LRU while processing them.
2028 * It is safe to rely on the active flag against the non-LRU folios in here
2029 * because nobody will play with that bit on a non-LRU folio.
2030 *
2031 * The downside is that we have to touch folio->_refcount against each folio.
2032 * But we had to alter folio->flags anyway.
2033 */
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2034 static void shrink_active_list(unsigned long nr_to_scan,
2035 struct lruvec *lruvec,
2036 struct scan_control *sc,
2037 enum lru_list lru)
2038 {
2039 unsigned long nr_taken;
2040 unsigned long nr_scanned;
2041 unsigned long vm_flags;
2042 LIST_HEAD(l_hold); /* The folios which were snipped off */
2043 LIST_HEAD(l_active);
2044 LIST_HEAD(l_inactive);
2045 unsigned nr_deactivate, nr_activate;
2046 unsigned nr_rotated = 0;
2047 bool file = is_file_lru(lru);
2048 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2049
2050 lru_add_drain();
2051
2052 spin_lock_irq(&lruvec->lru_lock);
2053
2054 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2055 &nr_scanned, sc, lru);
2056
2057 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2058
2059 if (!cgroup_reclaim(sc))
2060 __count_vm_events(PGREFILL, nr_scanned);
2061 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2062
2063 spin_unlock_irq(&lruvec->lru_lock);
2064
2065 while (!list_empty(&l_hold)) {
2066 struct folio *folio;
2067
2068 cond_resched();
2069 folio = lru_to_folio(&l_hold);
2070 list_del(&folio->lru);
2071
2072 if (unlikely(!folio_evictable(folio))) {
2073 folio_putback_lru(folio);
2074 continue;
2075 }
2076
2077 if (unlikely(buffer_heads_over_limit)) {
2078 if (folio_needs_release(folio) &&
2079 folio_trylock(folio)) {
2080 filemap_release_folio(folio, 0);
2081 folio_unlock(folio);
2082 }
2083 }
2084
2085 /* Referenced or rmap lock contention: rotate */
2086 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2087 &vm_flags) != 0) {
2088 /*
2089 * Identify referenced, file-backed active folios and
2090 * give them one more trip around the active list. So
2091 * that executable code get better chances to stay in
2092 * memory under moderate memory pressure. Anon folios
2093 * are not likely to be evicted by use-once streaming
2094 * IO, plus JVM can create lots of anon VM_EXEC folios,
2095 * so we ignore them here.
2096 */
2097 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2098 nr_rotated += folio_nr_pages(folio);
2099 list_add(&folio->lru, &l_active);
2100 continue;
2101 }
2102 }
2103
2104 folio_clear_active(folio); /* we are de-activating */
2105 folio_set_workingset(folio);
2106 list_add(&folio->lru, &l_inactive);
2107 }
2108
2109 /*
2110 * Move folios back to the lru list.
2111 */
2112 spin_lock_irq(&lruvec->lru_lock);
2113
2114 nr_activate = move_folios_to_lru(lruvec, &l_active);
2115 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2116
2117 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2118 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2119
2120 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2121 spin_unlock_irq(&lruvec->lru_lock);
2122
2123 if (nr_rotated)
2124 lru_note_cost(lruvec, file, 0, nr_rotated);
2125 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2126 nr_deactivate, nr_rotated, sc->priority, file);
2127 }
2128
reclaim_folio_list(struct list_head * folio_list,struct pglist_data * pgdat)2129 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2130 struct pglist_data *pgdat)
2131 {
2132 struct reclaim_stat stat;
2133 unsigned int nr_reclaimed;
2134 struct folio *folio;
2135 struct scan_control sc = {
2136 .gfp_mask = GFP_KERNEL,
2137 .may_writepage = 1,
2138 .may_unmap = 1,
2139 .may_swap = 1,
2140 .no_demotion = 1,
2141 };
2142
2143 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true);
2144 while (!list_empty(folio_list)) {
2145 folio = lru_to_folio(folio_list);
2146 list_del(&folio->lru);
2147 folio_putback_lru(folio);
2148 }
2149 trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat);
2150
2151 return nr_reclaimed;
2152 }
2153
reclaim_pages(struct list_head * folio_list)2154 unsigned long reclaim_pages(struct list_head *folio_list)
2155 {
2156 int nid;
2157 unsigned int nr_reclaimed = 0;
2158 LIST_HEAD(node_folio_list);
2159 unsigned int noreclaim_flag;
2160
2161 if (list_empty(folio_list))
2162 return nr_reclaimed;
2163
2164 noreclaim_flag = memalloc_noreclaim_save();
2165
2166 nid = folio_nid(lru_to_folio(folio_list));
2167 do {
2168 struct folio *folio = lru_to_folio(folio_list);
2169
2170 if (nid == folio_nid(folio)) {
2171 folio_clear_active(folio);
2172 list_move(&folio->lru, &node_folio_list);
2173 continue;
2174 }
2175
2176 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2177 nid = folio_nid(lru_to_folio(folio_list));
2178 } while (!list_empty(folio_list));
2179
2180 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2181
2182 memalloc_noreclaim_restore(noreclaim_flag);
2183
2184 return nr_reclaimed;
2185 }
2186
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2187 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2188 struct lruvec *lruvec, struct scan_control *sc)
2189 {
2190 if (is_active_lru(lru)) {
2191 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2192 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2193 else
2194 sc->skipped_deactivate = 1;
2195 return 0;
2196 }
2197
2198 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2199 }
2200
2201 /*
2202 * The inactive anon list should be small enough that the VM never has
2203 * to do too much work.
2204 *
2205 * The inactive file list should be small enough to leave most memory
2206 * to the established workingset on the scan-resistant active list,
2207 * but large enough to avoid thrashing the aggregate readahead window.
2208 *
2209 * Both inactive lists should also be large enough that each inactive
2210 * folio has a chance to be referenced again before it is reclaimed.
2211 *
2212 * If that fails and refaulting is observed, the inactive list grows.
2213 *
2214 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2215 * on this LRU, maintained by the pageout code. An inactive_ratio
2216 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2217 *
2218 * total target max
2219 * memory ratio inactive
2220 * -------------------------------------
2221 * 10MB 1 5MB
2222 * 100MB 1 50MB
2223 * 1GB 3 250MB
2224 * 10GB 10 0.9GB
2225 * 100GB 31 3GB
2226 * 1TB 101 10GB
2227 * 10TB 320 32GB
2228 */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2229 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2230 {
2231 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2232 unsigned long inactive, active;
2233 unsigned long inactive_ratio;
2234 unsigned long gb;
2235
2236 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2237 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2238
2239 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2240 if (gb)
2241 inactive_ratio = int_sqrt(10 * gb);
2242 else
2243 inactive_ratio = 1;
2244
2245 return inactive * inactive_ratio < active;
2246 }
2247
2248 enum scan_balance {
2249 SCAN_EQUAL,
2250 SCAN_FRACT,
2251 SCAN_ANON,
2252 SCAN_FILE,
2253 };
2254
prepare_scan_control(pg_data_t * pgdat,struct scan_control * sc)2255 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2256 {
2257 unsigned long file;
2258 struct lruvec *target_lruvec;
2259
2260 if (lru_gen_enabled())
2261 return;
2262
2263 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2264
2265 /*
2266 * Flush the memory cgroup stats in rate-limited way as we don't need
2267 * most accurate stats here. We may switch to regular stats flushing
2268 * in the future once it is cheap enough.
2269 */
2270 mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup);
2271
2272 /*
2273 * Determine the scan balance between anon and file LRUs.
2274 */
2275 spin_lock_irq(&target_lruvec->lru_lock);
2276 sc->anon_cost = target_lruvec->anon_cost;
2277 sc->file_cost = target_lruvec->file_cost;
2278 spin_unlock_irq(&target_lruvec->lru_lock);
2279
2280 /*
2281 * Target desirable inactive:active list ratios for the anon
2282 * and file LRU lists.
2283 */
2284 if (!sc->force_deactivate) {
2285 unsigned long refaults;
2286
2287 /*
2288 * When refaults are being observed, it means a new
2289 * workingset is being established. Deactivate to get
2290 * rid of any stale active pages quickly.
2291 */
2292 refaults = lruvec_page_state(target_lruvec,
2293 WORKINGSET_ACTIVATE_ANON);
2294 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2295 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2296 sc->may_deactivate |= DEACTIVATE_ANON;
2297 else
2298 sc->may_deactivate &= ~DEACTIVATE_ANON;
2299
2300 refaults = lruvec_page_state(target_lruvec,
2301 WORKINGSET_ACTIVATE_FILE);
2302 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2303 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2304 sc->may_deactivate |= DEACTIVATE_FILE;
2305 else
2306 sc->may_deactivate &= ~DEACTIVATE_FILE;
2307 } else
2308 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2309
2310 /*
2311 * If we have plenty of inactive file pages that aren't
2312 * thrashing, try to reclaim those first before touching
2313 * anonymous pages.
2314 */
2315 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2316 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2317 !sc->no_cache_trim_mode)
2318 sc->cache_trim_mode = 1;
2319 else
2320 sc->cache_trim_mode = 0;
2321
2322 /*
2323 * Prevent the reclaimer from falling into the cache trap: as
2324 * cache pages start out inactive, every cache fault will tip
2325 * the scan balance towards the file LRU. And as the file LRU
2326 * shrinks, so does the window for rotation from references.
2327 * This means we have a runaway feedback loop where a tiny
2328 * thrashing file LRU becomes infinitely more attractive than
2329 * anon pages. Try to detect this based on file LRU size.
2330 */
2331 if (!cgroup_reclaim(sc)) {
2332 unsigned long total_high_wmark = 0;
2333 unsigned long free, anon;
2334 int z;
2335
2336 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2337 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2338 node_page_state(pgdat, NR_INACTIVE_FILE);
2339
2340 for (z = 0; z < MAX_NR_ZONES; z++) {
2341 struct zone *zone = &pgdat->node_zones[z];
2342
2343 if (!managed_zone(zone))
2344 continue;
2345
2346 total_high_wmark += high_wmark_pages(zone);
2347 }
2348
2349 /*
2350 * Consider anon: if that's low too, this isn't a
2351 * runaway file reclaim problem, but rather just
2352 * extreme pressure. Reclaim as per usual then.
2353 */
2354 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2355
2356 sc->file_is_tiny =
2357 file + free <= total_high_wmark &&
2358 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2359 anon >> sc->priority;
2360 }
2361 }
2362
2363 /*
2364 * Determine how aggressively the anon and file LRU lists should be
2365 * scanned.
2366 *
2367 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2368 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2369 */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2370 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2371 unsigned long *nr)
2372 {
2373 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2374 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2375 unsigned long anon_cost, file_cost, total_cost;
2376 int swappiness = sc_swappiness(sc, memcg);
2377 u64 fraction[ANON_AND_FILE];
2378 u64 denominator = 0; /* gcc */
2379 enum scan_balance scan_balance;
2380 unsigned long ap, fp;
2381 enum lru_list lru;
2382
2383 /* If we have no swap space, do not bother scanning anon folios. */
2384 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2385 scan_balance = SCAN_FILE;
2386 goto out;
2387 }
2388
2389 /*
2390 * Global reclaim will swap to prevent OOM even with no
2391 * swappiness, but memcg users want to use this knob to
2392 * disable swapping for individual groups completely when
2393 * using the memory controller's swap limit feature would be
2394 * too expensive.
2395 */
2396 if (cgroup_reclaim(sc) && !swappiness) {
2397 scan_balance = SCAN_FILE;
2398 goto out;
2399 }
2400
2401 /*
2402 * Do not apply any pressure balancing cleverness when the
2403 * system is close to OOM, scan both anon and file equally
2404 * (unless the swappiness setting disagrees with swapping).
2405 */
2406 if (!sc->priority && swappiness) {
2407 scan_balance = SCAN_EQUAL;
2408 goto out;
2409 }
2410
2411 /*
2412 * If the system is almost out of file pages, force-scan anon.
2413 */
2414 if (sc->file_is_tiny) {
2415 scan_balance = SCAN_ANON;
2416 goto out;
2417 }
2418
2419 /*
2420 * If there is enough inactive page cache, we do not reclaim
2421 * anything from the anonymous working right now.
2422 */
2423 if (sc->cache_trim_mode) {
2424 scan_balance = SCAN_FILE;
2425 goto out;
2426 }
2427
2428 scan_balance = SCAN_FRACT;
2429 /*
2430 * Calculate the pressure balance between anon and file pages.
2431 *
2432 * The amount of pressure we put on each LRU is inversely
2433 * proportional to the cost of reclaiming each list, as
2434 * determined by the share of pages that are refaulting, times
2435 * the relative IO cost of bringing back a swapped out
2436 * anonymous page vs reloading a filesystem page (swappiness).
2437 *
2438 * Although we limit that influence to ensure no list gets
2439 * left behind completely: at least a third of the pressure is
2440 * applied, before swappiness.
2441 *
2442 * With swappiness at 100, anon and file have equal IO cost.
2443 */
2444 total_cost = sc->anon_cost + sc->file_cost;
2445 anon_cost = total_cost + sc->anon_cost;
2446 file_cost = total_cost + sc->file_cost;
2447 total_cost = anon_cost + file_cost;
2448
2449 ap = swappiness * (total_cost + 1);
2450 ap /= anon_cost + 1;
2451
2452 fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1);
2453 fp /= file_cost + 1;
2454
2455 fraction[0] = ap;
2456 fraction[1] = fp;
2457 denominator = ap + fp;
2458 out:
2459 for_each_evictable_lru(lru) {
2460 bool file = is_file_lru(lru);
2461 unsigned long lruvec_size;
2462 unsigned long low, min;
2463 unsigned long scan;
2464
2465 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2466 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2467 &min, &low);
2468
2469 if (min || low) {
2470 /*
2471 * Scale a cgroup's reclaim pressure by proportioning
2472 * its current usage to its memory.low or memory.min
2473 * setting.
2474 *
2475 * This is important, as otherwise scanning aggression
2476 * becomes extremely binary -- from nothing as we
2477 * approach the memory protection threshold, to totally
2478 * nominal as we exceed it. This results in requiring
2479 * setting extremely liberal protection thresholds. It
2480 * also means we simply get no protection at all if we
2481 * set it too low, which is not ideal.
2482 *
2483 * If there is any protection in place, we reduce scan
2484 * pressure by how much of the total memory used is
2485 * within protection thresholds.
2486 *
2487 * There is one special case: in the first reclaim pass,
2488 * we skip over all groups that are within their low
2489 * protection. If that fails to reclaim enough pages to
2490 * satisfy the reclaim goal, we come back and override
2491 * the best-effort low protection. However, we still
2492 * ideally want to honor how well-behaved groups are in
2493 * that case instead of simply punishing them all
2494 * equally. As such, we reclaim them based on how much
2495 * memory they are using, reducing the scan pressure
2496 * again by how much of the total memory used is under
2497 * hard protection.
2498 */
2499 unsigned long cgroup_size = mem_cgroup_size(memcg);
2500 unsigned long protection;
2501
2502 /* memory.low scaling, make sure we retry before OOM */
2503 if (!sc->memcg_low_reclaim && low > min) {
2504 protection = low;
2505 sc->memcg_low_skipped = 1;
2506 } else {
2507 protection = min;
2508 }
2509
2510 /* Avoid TOCTOU with earlier protection check */
2511 cgroup_size = max(cgroup_size, protection);
2512
2513 scan = lruvec_size - lruvec_size * protection /
2514 (cgroup_size + 1);
2515
2516 /*
2517 * Minimally target SWAP_CLUSTER_MAX pages to keep
2518 * reclaim moving forwards, avoiding decrementing
2519 * sc->priority further than desirable.
2520 */
2521 scan = max(scan, SWAP_CLUSTER_MAX);
2522 } else {
2523 scan = lruvec_size;
2524 }
2525
2526 scan >>= sc->priority;
2527
2528 /*
2529 * If the cgroup's already been deleted, make sure to
2530 * scrape out the remaining cache.
2531 */
2532 if (!scan && !mem_cgroup_online(memcg))
2533 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2534
2535 switch (scan_balance) {
2536 case SCAN_EQUAL:
2537 /* Scan lists relative to size */
2538 break;
2539 case SCAN_FRACT:
2540 /*
2541 * Scan types proportional to swappiness and
2542 * their relative recent reclaim efficiency.
2543 * Make sure we don't miss the last page on
2544 * the offlined memory cgroups because of a
2545 * round-off error.
2546 */
2547 scan = mem_cgroup_online(memcg) ?
2548 div64_u64(scan * fraction[file], denominator) :
2549 DIV64_U64_ROUND_UP(scan * fraction[file],
2550 denominator);
2551 break;
2552 case SCAN_FILE:
2553 case SCAN_ANON:
2554 /* Scan one type exclusively */
2555 if ((scan_balance == SCAN_FILE) != file)
2556 scan = 0;
2557 break;
2558 default:
2559 /* Look ma, no brain */
2560 BUG();
2561 }
2562
2563 nr[lru] = scan;
2564 }
2565 }
2566
2567 /*
2568 * Anonymous LRU management is a waste if there is
2569 * ultimately no way to reclaim the memory.
2570 */
can_age_anon_pages(struct pglist_data * pgdat,struct scan_control * sc)2571 static bool can_age_anon_pages(struct pglist_data *pgdat,
2572 struct scan_control *sc)
2573 {
2574 /* Aging the anon LRU is valuable if swap is present: */
2575 if (total_swap_pages > 0)
2576 return true;
2577
2578 /* Also valuable if anon pages can be demoted: */
2579 return can_demote(pgdat->node_id, sc);
2580 }
2581
2582 #ifdef CONFIG_LRU_GEN
2583
2584 #ifdef CONFIG_LRU_GEN_ENABLED
2585 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2586 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
2587 #else
2588 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2589 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
2590 #endif
2591
should_walk_mmu(void)2592 static bool should_walk_mmu(void)
2593 {
2594 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2595 }
2596
should_clear_pmd_young(void)2597 static bool should_clear_pmd_young(void)
2598 {
2599 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2600 }
2601
2602 /******************************************************************************
2603 * shorthand helpers
2604 ******************************************************************************/
2605
2606 #define DEFINE_MAX_SEQ(lruvec) \
2607 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2608
2609 #define DEFINE_MIN_SEQ(lruvec) \
2610 unsigned long min_seq[ANON_AND_FILE] = { \
2611 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
2612 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
2613 }
2614
2615 #define for_each_gen_type_zone(gen, type, zone) \
2616 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
2617 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
2618 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2619
2620 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS)
2621 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS)
2622
get_lruvec(struct mem_cgroup * memcg,int nid)2623 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2624 {
2625 struct pglist_data *pgdat = NODE_DATA(nid);
2626
2627 #ifdef CONFIG_MEMCG
2628 if (memcg) {
2629 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2630
2631 /* see the comment in mem_cgroup_lruvec() */
2632 if (!lruvec->pgdat)
2633 lruvec->pgdat = pgdat;
2634
2635 return lruvec;
2636 }
2637 #endif
2638 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2639
2640 return &pgdat->__lruvec;
2641 }
2642
get_swappiness(struct lruvec * lruvec,struct scan_control * sc)2643 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2644 {
2645 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2646 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2647
2648 if (!sc->may_swap)
2649 return 0;
2650
2651 if (!can_demote(pgdat->node_id, sc) &&
2652 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2653 return 0;
2654
2655 return sc_swappiness(sc, memcg);
2656 }
2657
get_nr_gens(struct lruvec * lruvec,int type)2658 static int get_nr_gens(struct lruvec *lruvec, int type)
2659 {
2660 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2661 }
2662
seq_is_valid(struct lruvec * lruvec)2663 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2664 {
2665 /* see the comment on lru_gen_folio */
2666 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
2667 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
2668 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
2669 }
2670
2671 /******************************************************************************
2672 * Bloom filters
2673 ******************************************************************************/
2674
2675 /*
2676 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2677 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2678 * bits in a bitmap, k is the number of hash functions and n is the number of
2679 * inserted items.
2680 *
2681 * Page table walkers use one of the two filters to reduce their search space.
2682 * To get rid of non-leaf entries that no longer have enough leaf entries, the
2683 * aging uses the double-buffering technique to flip to the other filter each
2684 * time it produces a new generation. For non-leaf entries that have enough
2685 * leaf entries, the aging carries them over to the next generation in
2686 * walk_pmd_range(); the eviction also report them when walking the rmap
2687 * in lru_gen_look_around().
2688 *
2689 * For future optimizations:
2690 * 1. It's not necessary to keep both filters all the time. The spare one can be
2691 * freed after the RCU grace period and reallocated if needed again.
2692 * 2. And when reallocating, it's worth scaling its size according to the number
2693 * of inserted entries in the other filter, to reduce the memory overhead on
2694 * small systems and false positives on large systems.
2695 * 3. Jenkins' hash function is an alternative to Knuth's.
2696 */
2697 #define BLOOM_FILTER_SHIFT 15
2698
filter_gen_from_seq(unsigned long seq)2699 static inline int filter_gen_from_seq(unsigned long seq)
2700 {
2701 return seq % NR_BLOOM_FILTERS;
2702 }
2703
get_item_key(void * item,int * key)2704 static void get_item_key(void *item, int *key)
2705 {
2706 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2707
2708 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2709
2710 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2711 key[1] = hash >> BLOOM_FILTER_SHIFT;
2712 }
2713
test_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2714 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2715 void *item)
2716 {
2717 int key[2];
2718 unsigned long *filter;
2719 int gen = filter_gen_from_seq(seq);
2720
2721 filter = READ_ONCE(mm_state->filters[gen]);
2722 if (!filter)
2723 return true;
2724
2725 get_item_key(item, key);
2726
2727 return test_bit(key[0], filter) && test_bit(key[1], filter);
2728 }
2729
update_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2730 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2731 void *item)
2732 {
2733 int key[2];
2734 unsigned long *filter;
2735 int gen = filter_gen_from_seq(seq);
2736
2737 filter = READ_ONCE(mm_state->filters[gen]);
2738 if (!filter)
2739 return;
2740
2741 get_item_key(item, key);
2742
2743 if (!test_bit(key[0], filter))
2744 set_bit(key[0], filter);
2745 if (!test_bit(key[1], filter))
2746 set_bit(key[1], filter);
2747 }
2748
reset_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq)2749 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2750 {
2751 unsigned long *filter;
2752 int gen = filter_gen_from_seq(seq);
2753
2754 filter = mm_state->filters[gen];
2755 if (filter) {
2756 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2757 return;
2758 }
2759
2760 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2761 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2762 WRITE_ONCE(mm_state->filters[gen], filter);
2763 }
2764
2765 /******************************************************************************
2766 * mm_struct list
2767 ******************************************************************************/
2768
2769 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2770
get_mm_list(struct mem_cgroup * memcg)2771 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2772 {
2773 static struct lru_gen_mm_list mm_list = {
2774 .fifo = LIST_HEAD_INIT(mm_list.fifo),
2775 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2776 };
2777
2778 #ifdef CONFIG_MEMCG
2779 if (memcg)
2780 return &memcg->mm_list;
2781 #endif
2782 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2783
2784 return &mm_list;
2785 }
2786
get_mm_state(struct lruvec * lruvec)2787 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2788 {
2789 return &lruvec->mm_state;
2790 }
2791
get_next_mm(struct lru_gen_mm_walk * walk)2792 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2793 {
2794 int key;
2795 struct mm_struct *mm;
2796 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2797 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2798
2799 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2800 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2801
2802 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2803 return NULL;
2804
2805 clear_bit(key, &mm->lru_gen.bitmap);
2806
2807 return mmget_not_zero(mm) ? mm : NULL;
2808 }
2809
lru_gen_add_mm(struct mm_struct * mm)2810 void lru_gen_add_mm(struct mm_struct *mm)
2811 {
2812 int nid;
2813 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2814 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2815
2816 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2817 #ifdef CONFIG_MEMCG
2818 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2819 mm->lru_gen.memcg = memcg;
2820 #endif
2821 spin_lock(&mm_list->lock);
2822
2823 for_each_node_state(nid, N_MEMORY) {
2824 struct lruvec *lruvec = get_lruvec(memcg, nid);
2825 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2826
2827 /* the first addition since the last iteration */
2828 if (mm_state->tail == &mm_list->fifo)
2829 mm_state->tail = &mm->lru_gen.list;
2830 }
2831
2832 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2833
2834 spin_unlock(&mm_list->lock);
2835 }
2836
lru_gen_del_mm(struct mm_struct * mm)2837 void lru_gen_del_mm(struct mm_struct *mm)
2838 {
2839 int nid;
2840 struct lru_gen_mm_list *mm_list;
2841 struct mem_cgroup *memcg = NULL;
2842
2843 if (list_empty(&mm->lru_gen.list))
2844 return;
2845
2846 #ifdef CONFIG_MEMCG
2847 memcg = mm->lru_gen.memcg;
2848 #endif
2849 mm_list = get_mm_list(memcg);
2850
2851 spin_lock(&mm_list->lock);
2852
2853 for_each_node(nid) {
2854 struct lruvec *lruvec = get_lruvec(memcg, nid);
2855 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2856
2857 /* where the current iteration continues after */
2858 if (mm_state->head == &mm->lru_gen.list)
2859 mm_state->head = mm_state->head->prev;
2860
2861 /* where the last iteration ended before */
2862 if (mm_state->tail == &mm->lru_gen.list)
2863 mm_state->tail = mm_state->tail->next;
2864 }
2865
2866 list_del_init(&mm->lru_gen.list);
2867
2868 spin_unlock(&mm_list->lock);
2869
2870 #ifdef CONFIG_MEMCG
2871 mem_cgroup_put(mm->lru_gen.memcg);
2872 mm->lru_gen.memcg = NULL;
2873 #endif
2874 }
2875
2876 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)2877 void lru_gen_migrate_mm(struct mm_struct *mm)
2878 {
2879 struct mem_cgroup *memcg;
2880 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2881
2882 VM_WARN_ON_ONCE(task->mm != mm);
2883 lockdep_assert_held(&task->alloc_lock);
2884
2885 /* for mm_update_next_owner() */
2886 if (mem_cgroup_disabled())
2887 return;
2888
2889 /* migration can happen before addition */
2890 if (!mm->lru_gen.memcg)
2891 return;
2892
2893 rcu_read_lock();
2894 memcg = mem_cgroup_from_task(task);
2895 rcu_read_unlock();
2896 if (memcg == mm->lru_gen.memcg)
2897 return;
2898
2899 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2900
2901 lru_gen_del_mm(mm);
2902 lru_gen_add_mm(mm);
2903 }
2904 #endif
2905
2906 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
2907
get_mm_list(struct mem_cgroup * memcg)2908 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2909 {
2910 return NULL;
2911 }
2912
get_mm_state(struct lruvec * lruvec)2913 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2914 {
2915 return NULL;
2916 }
2917
get_next_mm(struct lru_gen_mm_walk * walk)2918 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2919 {
2920 return NULL;
2921 }
2922
2923 #endif
2924
reset_mm_stats(struct lru_gen_mm_walk * walk,bool last)2925 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
2926 {
2927 int i;
2928 int hist;
2929 struct lruvec *lruvec = walk->lruvec;
2930 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2931
2932 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
2933
2934 hist = lru_hist_from_seq(walk->seq);
2935
2936 for (i = 0; i < NR_MM_STATS; i++) {
2937 WRITE_ONCE(mm_state->stats[hist][i],
2938 mm_state->stats[hist][i] + walk->mm_stats[i]);
2939 walk->mm_stats[i] = 0;
2940 }
2941
2942 if (NR_HIST_GENS > 1 && last) {
2943 hist = lru_hist_from_seq(walk->seq + 1);
2944
2945 for (i = 0; i < NR_MM_STATS; i++)
2946 WRITE_ONCE(mm_state->stats[hist][i], 0);
2947 }
2948 }
2949
iterate_mm_list(struct lru_gen_mm_walk * walk,struct mm_struct ** iter)2950 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
2951 {
2952 bool first = false;
2953 bool last = false;
2954 struct mm_struct *mm = NULL;
2955 struct lruvec *lruvec = walk->lruvec;
2956 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2957 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2958 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2959
2960 /*
2961 * mm_state->seq is incremented after each iteration of mm_list. There
2962 * are three interesting cases for this page table walker:
2963 * 1. It tries to start a new iteration with a stale max_seq: there is
2964 * nothing left to do.
2965 * 2. It started the next iteration: it needs to reset the Bloom filter
2966 * so that a fresh set of PTE tables can be recorded.
2967 * 3. It ended the current iteration: it needs to reset the mm stats
2968 * counters and tell its caller to increment max_seq.
2969 */
2970 spin_lock(&mm_list->lock);
2971
2972 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
2973
2974 if (walk->seq <= mm_state->seq)
2975 goto done;
2976
2977 if (!mm_state->head)
2978 mm_state->head = &mm_list->fifo;
2979
2980 if (mm_state->head == &mm_list->fifo)
2981 first = true;
2982
2983 do {
2984 mm_state->head = mm_state->head->next;
2985 if (mm_state->head == &mm_list->fifo) {
2986 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2987 last = true;
2988 break;
2989 }
2990
2991 /* force scan for those added after the last iteration */
2992 if (!mm_state->tail || mm_state->tail == mm_state->head) {
2993 mm_state->tail = mm_state->head->next;
2994 walk->force_scan = true;
2995 }
2996 } while (!(mm = get_next_mm(walk)));
2997 done:
2998 if (*iter || last)
2999 reset_mm_stats(walk, last);
3000
3001 spin_unlock(&mm_list->lock);
3002
3003 if (mm && first)
3004 reset_bloom_filter(mm_state, walk->seq + 1);
3005
3006 if (*iter)
3007 mmput_async(*iter);
3008
3009 *iter = mm;
3010
3011 return last;
3012 }
3013
iterate_mm_list_nowalk(struct lruvec * lruvec,unsigned long seq)3014 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
3015 {
3016 bool success = false;
3017 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3018 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3019 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3020
3021 spin_lock(&mm_list->lock);
3022
3023 VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
3024
3025 if (seq > mm_state->seq) {
3026 mm_state->head = NULL;
3027 mm_state->tail = NULL;
3028 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3029 success = true;
3030 }
3031
3032 spin_unlock(&mm_list->lock);
3033
3034 return success;
3035 }
3036
3037 /******************************************************************************
3038 * PID controller
3039 ******************************************************************************/
3040
3041 /*
3042 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3043 *
3044 * The P term is refaulted/(evicted+protected) from a tier in the generation
3045 * currently being evicted; the I term is the exponential moving average of the
3046 * P term over the generations previously evicted, using the smoothing factor
3047 * 1/2; the D term isn't supported.
3048 *
3049 * The setpoint (SP) is always the first tier of one type; the process variable
3050 * (PV) is either any tier of the other type or any other tier of the same
3051 * type.
3052 *
3053 * The error is the difference between the SP and the PV; the correction is to
3054 * turn off protection when SP>PV or turn on protection when SP<PV.
3055 *
3056 * For future optimizations:
3057 * 1. The D term may discount the other two terms over time so that long-lived
3058 * generations can resist stale information.
3059 */
3060 struct ctrl_pos {
3061 unsigned long refaulted;
3062 unsigned long total;
3063 int gain;
3064 };
3065
read_ctrl_pos(struct lruvec * lruvec,int type,int tier,int gain,struct ctrl_pos * pos)3066 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3067 struct ctrl_pos *pos)
3068 {
3069 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3070 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3071
3072 pos->refaulted = lrugen->avg_refaulted[type][tier] +
3073 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3074 pos->total = lrugen->avg_total[type][tier] +
3075 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3076 if (tier)
3077 pos->total += lrugen->protected[hist][type][tier - 1];
3078 pos->gain = gain;
3079 }
3080
reset_ctrl_pos(struct lruvec * lruvec,int type,bool carryover)3081 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3082 {
3083 int hist, tier;
3084 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3085 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3086 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3087
3088 lockdep_assert_held(&lruvec->lru_lock);
3089
3090 if (!carryover && !clear)
3091 return;
3092
3093 hist = lru_hist_from_seq(seq);
3094
3095 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3096 if (carryover) {
3097 unsigned long sum;
3098
3099 sum = lrugen->avg_refaulted[type][tier] +
3100 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3101 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3102
3103 sum = lrugen->avg_total[type][tier] +
3104 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3105 if (tier)
3106 sum += lrugen->protected[hist][type][tier - 1];
3107 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3108 }
3109
3110 if (clear) {
3111 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3112 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3113 if (tier)
3114 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3115 }
3116 }
3117 }
3118
positive_ctrl_err(struct ctrl_pos * sp,struct ctrl_pos * pv)3119 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3120 {
3121 /*
3122 * Return true if the PV has a limited number of refaults or a lower
3123 * refaulted/total than the SP.
3124 */
3125 return pv->refaulted < MIN_LRU_BATCH ||
3126 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3127 (sp->refaulted + 1) * pv->total * pv->gain;
3128 }
3129
3130 /******************************************************************************
3131 * the aging
3132 ******************************************************************************/
3133
3134 /* promote pages accessed through page tables */
folio_update_gen(struct folio * folio,int gen)3135 static int folio_update_gen(struct folio *folio, int gen)
3136 {
3137 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3138
3139 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3140
3141 do {
3142 /* lru_gen_del_folio() has isolated this page? */
3143 if (!(old_flags & LRU_GEN_MASK)) {
3144 /* for shrink_folio_list() */
3145 new_flags = old_flags | BIT(PG_referenced);
3146 continue;
3147 }
3148
3149 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3150 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3151 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3152
3153 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3154 }
3155
3156 /* protect pages accessed multiple times through file descriptors */
folio_inc_gen(struct lruvec * lruvec,struct folio * folio,bool reclaiming)3157 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3158 {
3159 int type = folio_is_file_lru(folio);
3160 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3161 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3162 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3163
3164 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3165
3166 do {
3167 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3168 /* folio_update_gen() has promoted this page? */
3169 if (new_gen >= 0 && new_gen != old_gen)
3170 return new_gen;
3171
3172 new_gen = (old_gen + 1) % MAX_NR_GENS;
3173
3174 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3175 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3176 /* for folio_end_writeback() */
3177 if (reclaiming)
3178 new_flags |= BIT(PG_reclaim);
3179 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3180
3181 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3182
3183 return new_gen;
3184 }
3185
update_batch_size(struct lru_gen_mm_walk * walk,struct folio * folio,int old_gen,int new_gen)3186 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3187 int old_gen, int new_gen)
3188 {
3189 int type = folio_is_file_lru(folio);
3190 int zone = folio_zonenum(folio);
3191 int delta = folio_nr_pages(folio);
3192
3193 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3194 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3195
3196 walk->batched++;
3197
3198 walk->nr_pages[old_gen][type][zone] -= delta;
3199 walk->nr_pages[new_gen][type][zone] += delta;
3200 }
3201
reset_batch_size(struct lru_gen_mm_walk * walk)3202 static void reset_batch_size(struct lru_gen_mm_walk *walk)
3203 {
3204 int gen, type, zone;
3205 struct lruvec *lruvec = walk->lruvec;
3206 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3207
3208 walk->batched = 0;
3209
3210 for_each_gen_type_zone(gen, type, zone) {
3211 enum lru_list lru = type * LRU_INACTIVE_FILE;
3212 int delta = walk->nr_pages[gen][type][zone];
3213
3214 if (!delta)
3215 continue;
3216
3217 walk->nr_pages[gen][type][zone] = 0;
3218 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3219 lrugen->nr_pages[gen][type][zone] + delta);
3220
3221 if (lru_gen_is_active(lruvec, gen))
3222 lru += LRU_ACTIVE;
3223 __update_lru_size(lruvec, lru, zone, delta);
3224 }
3225 }
3226
should_skip_vma(unsigned long start,unsigned long end,struct mm_walk * args)3227 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3228 {
3229 struct address_space *mapping;
3230 struct vm_area_struct *vma = args->vma;
3231 struct lru_gen_mm_walk *walk = args->private;
3232
3233 if (!vma_is_accessible(vma))
3234 return true;
3235
3236 if (is_vm_hugetlb_page(vma))
3237 return true;
3238
3239 if (!vma_has_recency(vma))
3240 return true;
3241
3242 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3243 return true;
3244
3245 if (vma == get_gate_vma(vma->vm_mm))
3246 return true;
3247
3248 if (vma_is_anonymous(vma))
3249 return !walk->can_swap;
3250
3251 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3252 return true;
3253
3254 mapping = vma->vm_file->f_mapping;
3255 if (mapping_unevictable(mapping))
3256 return true;
3257
3258 if (shmem_mapping(mapping))
3259 return !walk->can_swap;
3260
3261 /* to exclude special mappings like dax, etc. */
3262 return !mapping->a_ops->read_folio;
3263 }
3264
3265 /*
3266 * Some userspace memory allocators map many single-page VMAs. Instead of
3267 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3268 * table to reduce zigzags and improve cache performance.
3269 */
get_next_vma(unsigned long mask,unsigned long size,struct mm_walk * args,unsigned long * vm_start,unsigned long * vm_end)3270 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3271 unsigned long *vm_start, unsigned long *vm_end)
3272 {
3273 unsigned long start = round_up(*vm_end, size);
3274 unsigned long end = (start | ~mask) + 1;
3275 VMA_ITERATOR(vmi, args->mm, start);
3276
3277 VM_WARN_ON_ONCE(mask & size);
3278 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3279
3280 for_each_vma(vmi, args->vma) {
3281 if (end && end <= args->vma->vm_start)
3282 return false;
3283
3284 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3285 continue;
3286
3287 *vm_start = max(start, args->vma->vm_start);
3288 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3289
3290 return true;
3291 }
3292
3293 return false;
3294 }
3295
get_pte_pfn(pte_t pte,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3296 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr,
3297 struct pglist_data *pgdat)
3298 {
3299 unsigned long pfn = pte_pfn(pte);
3300
3301 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3302
3303 if (!pte_present(pte) || is_zero_pfn(pfn))
3304 return -1;
3305
3306 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3307 return -1;
3308
3309 if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm))
3310 return -1;
3311
3312 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3313 return -1;
3314
3315 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3316 return -1;
3317
3318 return pfn;
3319 }
3320
get_pmd_pfn(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3321 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr,
3322 struct pglist_data *pgdat)
3323 {
3324 unsigned long pfn = pmd_pfn(pmd);
3325
3326 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3327
3328 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3329 return -1;
3330
3331 if (WARN_ON_ONCE(pmd_devmap(pmd)))
3332 return -1;
3333
3334 if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm))
3335 return -1;
3336
3337 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3338 return -1;
3339
3340 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3341 return -1;
3342
3343 return pfn;
3344 }
3345
get_pfn_folio(unsigned long pfn,struct mem_cgroup * memcg,struct pglist_data * pgdat,bool can_swap)3346 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3347 struct pglist_data *pgdat, bool can_swap)
3348 {
3349 struct folio *folio;
3350
3351 folio = pfn_folio(pfn);
3352 if (folio_nid(folio) != pgdat->node_id)
3353 return NULL;
3354
3355 if (folio_memcg(folio) != memcg)
3356 return NULL;
3357
3358 /* file VMAs can contain anon pages from COW */
3359 if (!folio_is_file_lru(folio) && !can_swap)
3360 return NULL;
3361
3362 return folio;
3363 }
3364
suitable_to_scan(int total,int young)3365 static bool suitable_to_scan(int total, int young)
3366 {
3367 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3368
3369 /* suitable if the average number of young PTEs per cacheline is >=1 */
3370 return young * n >= total;
3371 }
3372
walk_pte_range(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * args)3373 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3374 struct mm_walk *args)
3375 {
3376 int i;
3377 pte_t *pte;
3378 spinlock_t *ptl;
3379 unsigned long addr;
3380 int total = 0;
3381 int young = 0;
3382 struct lru_gen_mm_walk *walk = args->private;
3383 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3384 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3385 DEFINE_MAX_SEQ(walk->lruvec);
3386 int old_gen, new_gen = lru_gen_from_seq(max_seq);
3387 pmd_t pmdval;
3388
3389 pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval,
3390 &ptl);
3391 if (!pte)
3392 return false;
3393 if (!spin_trylock(ptl)) {
3394 pte_unmap(pte);
3395 return false;
3396 }
3397
3398 if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
3399 pte_unmap_unlock(pte, ptl);
3400 return false;
3401 }
3402
3403 arch_enter_lazy_mmu_mode();
3404 restart:
3405 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3406 unsigned long pfn;
3407 struct folio *folio;
3408 pte_t ptent = ptep_get(pte + i);
3409
3410 total++;
3411 walk->mm_stats[MM_LEAF_TOTAL]++;
3412
3413 pfn = get_pte_pfn(ptent, args->vma, addr, pgdat);
3414 if (pfn == -1)
3415 continue;
3416
3417 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3418 if (!folio)
3419 continue;
3420
3421 if (!ptep_clear_young_notify(args->vma, addr, pte + i))
3422 continue;
3423
3424 young++;
3425 walk->mm_stats[MM_LEAF_YOUNG]++;
3426
3427 if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
3428 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3429 !folio_test_swapcache(folio)))
3430 folio_mark_dirty(folio);
3431
3432 old_gen = folio_update_gen(folio, new_gen);
3433 if (old_gen >= 0 && old_gen != new_gen)
3434 update_batch_size(walk, folio, old_gen, new_gen);
3435 }
3436
3437 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3438 goto restart;
3439
3440 arch_leave_lazy_mmu_mode();
3441 pte_unmap_unlock(pte, ptl);
3442
3443 return suitable_to_scan(total, young);
3444 }
3445
walk_pmd_range_locked(pud_t * pud,unsigned long addr,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * first)3446 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3447 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3448 {
3449 int i;
3450 pmd_t *pmd;
3451 spinlock_t *ptl;
3452 struct lru_gen_mm_walk *walk = args->private;
3453 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3454 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3455 DEFINE_MAX_SEQ(walk->lruvec);
3456 int old_gen, new_gen = lru_gen_from_seq(max_seq);
3457
3458 VM_WARN_ON_ONCE(pud_leaf(*pud));
3459
3460 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3461 if (*first == -1) {
3462 *first = addr;
3463 bitmap_zero(bitmap, MIN_LRU_BATCH);
3464 return;
3465 }
3466
3467 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3468 if (i && i <= MIN_LRU_BATCH) {
3469 __set_bit(i - 1, bitmap);
3470 return;
3471 }
3472
3473 pmd = pmd_offset(pud, *first);
3474
3475 ptl = pmd_lockptr(args->mm, pmd);
3476 if (!spin_trylock(ptl))
3477 goto done;
3478
3479 arch_enter_lazy_mmu_mode();
3480
3481 do {
3482 unsigned long pfn;
3483 struct folio *folio;
3484
3485 /* don't round down the first address */
3486 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3487
3488 if (!pmd_present(pmd[i]))
3489 goto next;
3490
3491 if (!pmd_trans_huge(pmd[i])) {
3492 if (!walk->force_scan && should_clear_pmd_young() &&
3493 !mm_has_notifiers(args->mm))
3494 pmdp_test_and_clear_young(vma, addr, pmd + i);
3495 goto next;
3496 }
3497
3498 pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat);
3499 if (pfn == -1)
3500 goto next;
3501
3502 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3503 if (!folio)
3504 goto next;
3505
3506 if (!pmdp_clear_young_notify(vma, addr, pmd + i))
3507 goto next;
3508
3509 walk->mm_stats[MM_LEAF_YOUNG]++;
3510
3511 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
3512 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3513 !folio_test_swapcache(folio)))
3514 folio_mark_dirty(folio);
3515
3516 old_gen = folio_update_gen(folio, new_gen);
3517 if (old_gen >= 0 && old_gen != new_gen)
3518 update_batch_size(walk, folio, old_gen, new_gen);
3519 next:
3520 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3521 } while (i <= MIN_LRU_BATCH);
3522
3523 arch_leave_lazy_mmu_mode();
3524 spin_unlock(ptl);
3525 done:
3526 *first = -1;
3527 }
3528
walk_pmd_range(pud_t * pud,unsigned long start,unsigned long end,struct mm_walk * args)3529 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3530 struct mm_walk *args)
3531 {
3532 int i;
3533 pmd_t *pmd;
3534 unsigned long next;
3535 unsigned long addr;
3536 struct vm_area_struct *vma;
3537 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3538 unsigned long first = -1;
3539 struct lru_gen_mm_walk *walk = args->private;
3540 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3541
3542 VM_WARN_ON_ONCE(pud_leaf(*pud));
3543
3544 /*
3545 * Finish an entire PMD in two passes: the first only reaches to PTE
3546 * tables to avoid taking the PMD lock; the second, if necessary, takes
3547 * the PMD lock to clear the accessed bit in PMD entries.
3548 */
3549 pmd = pmd_offset(pud, start & PUD_MASK);
3550 restart:
3551 /* walk_pte_range() may call get_next_vma() */
3552 vma = args->vma;
3553 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3554 pmd_t val = pmdp_get_lockless(pmd + i);
3555
3556 next = pmd_addr_end(addr, end);
3557
3558 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3559 walk->mm_stats[MM_LEAF_TOTAL]++;
3560 continue;
3561 }
3562
3563 if (pmd_trans_huge(val)) {
3564 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3565 unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat);
3566
3567 walk->mm_stats[MM_LEAF_TOTAL]++;
3568
3569 if (pfn != -1)
3570 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3571 continue;
3572 }
3573
3574 if (!walk->force_scan && should_clear_pmd_young() &&
3575 !mm_has_notifiers(args->mm)) {
3576 if (!pmd_young(val))
3577 continue;
3578
3579 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3580 }
3581
3582 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3583 continue;
3584
3585 walk->mm_stats[MM_NONLEAF_FOUND]++;
3586
3587 if (!walk_pte_range(&val, addr, next, args))
3588 continue;
3589
3590 walk->mm_stats[MM_NONLEAF_ADDED]++;
3591
3592 /* carry over to the next generation */
3593 update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3594 }
3595
3596 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3597
3598 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3599 goto restart;
3600 }
3601
walk_pud_range(p4d_t * p4d,unsigned long start,unsigned long end,struct mm_walk * args)3602 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3603 struct mm_walk *args)
3604 {
3605 int i;
3606 pud_t *pud;
3607 unsigned long addr;
3608 unsigned long next;
3609 struct lru_gen_mm_walk *walk = args->private;
3610
3611 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3612
3613 pud = pud_offset(p4d, start & P4D_MASK);
3614 restart:
3615 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3616 pud_t val = READ_ONCE(pud[i]);
3617
3618 next = pud_addr_end(addr, end);
3619
3620 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3621 continue;
3622
3623 walk_pmd_range(&val, addr, next, args);
3624
3625 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3626 end = (addr | ~PUD_MASK) + 1;
3627 goto done;
3628 }
3629 }
3630
3631 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3632 goto restart;
3633
3634 end = round_up(end, P4D_SIZE);
3635 done:
3636 if (!end || !args->vma)
3637 return 1;
3638
3639 walk->next_addr = max(end, args->vma->vm_start);
3640
3641 return -EAGAIN;
3642 }
3643
walk_mm(struct mm_struct * mm,struct lru_gen_mm_walk * walk)3644 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3645 {
3646 static const struct mm_walk_ops mm_walk_ops = {
3647 .test_walk = should_skip_vma,
3648 .p4d_entry = walk_pud_range,
3649 .walk_lock = PGWALK_RDLOCK,
3650 };
3651 int err;
3652 struct lruvec *lruvec = walk->lruvec;
3653
3654 walk->next_addr = FIRST_USER_ADDRESS;
3655
3656 do {
3657 DEFINE_MAX_SEQ(lruvec);
3658
3659 err = -EBUSY;
3660
3661 /* another thread might have called inc_max_seq() */
3662 if (walk->seq != max_seq)
3663 break;
3664
3665 /* the caller might be holding the lock for write */
3666 if (mmap_read_trylock(mm)) {
3667 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3668
3669 mmap_read_unlock(mm);
3670 }
3671
3672 if (walk->batched) {
3673 spin_lock_irq(&lruvec->lru_lock);
3674 reset_batch_size(walk);
3675 spin_unlock_irq(&lruvec->lru_lock);
3676 }
3677
3678 cond_resched();
3679 } while (err == -EAGAIN);
3680 }
3681
set_mm_walk(struct pglist_data * pgdat,bool force_alloc)3682 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3683 {
3684 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3685
3686 if (pgdat && current_is_kswapd()) {
3687 VM_WARN_ON_ONCE(walk);
3688
3689 walk = &pgdat->mm_walk;
3690 } else if (!walk && force_alloc) {
3691 VM_WARN_ON_ONCE(current_is_kswapd());
3692
3693 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3694 }
3695
3696 current->reclaim_state->mm_walk = walk;
3697
3698 return walk;
3699 }
3700
clear_mm_walk(void)3701 static void clear_mm_walk(void)
3702 {
3703 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3704
3705 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3706 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3707
3708 current->reclaim_state->mm_walk = NULL;
3709
3710 if (!current_is_kswapd())
3711 kfree(walk);
3712 }
3713
inc_min_seq(struct lruvec * lruvec,int type,bool can_swap)3714 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
3715 {
3716 int zone;
3717 int remaining = MAX_LRU_BATCH;
3718 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3719 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3720
3721 if (type == LRU_GEN_ANON && !can_swap)
3722 goto done;
3723
3724 /* prevent cold/hot inversion if force_scan is true */
3725 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3726 struct list_head *head = &lrugen->folios[old_gen][type][zone];
3727
3728 while (!list_empty(head)) {
3729 struct folio *folio = lru_to_folio(head);
3730
3731 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3732 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3733 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3734 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3735
3736 new_gen = folio_inc_gen(lruvec, folio, false);
3737 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3738
3739 if (!--remaining)
3740 return false;
3741 }
3742 }
3743 done:
3744 reset_ctrl_pos(lruvec, type, true);
3745 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3746
3747 return true;
3748 }
3749
try_to_inc_min_seq(struct lruvec * lruvec,bool can_swap)3750 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
3751 {
3752 int gen, type, zone;
3753 bool success = false;
3754 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3755 DEFINE_MIN_SEQ(lruvec);
3756
3757 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3758
3759 /* find the oldest populated generation */
3760 for (type = !can_swap; type < ANON_AND_FILE; type++) {
3761 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3762 gen = lru_gen_from_seq(min_seq[type]);
3763
3764 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3765 if (!list_empty(&lrugen->folios[gen][type][zone]))
3766 goto next;
3767 }
3768
3769 min_seq[type]++;
3770 }
3771 next:
3772 ;
3773 }
3774
3775 /* see the comment on lru_gen_folio */
3776 if (can_swap) {
3777 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
3778 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
3779 }
3780
3781 for (type = !can_swap; type < ANON_AND_FILE; type++) {
3782 if (min_seq[type] == lrugen->min_seq[type])
3783 continue;
3784
3785 reset_ctrl_pos(lruvec, type, true);
3786 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3787 success = true;
3788 }
3789
3790 return success;
3791 }
3792
inc_max_seq(struct lruvec * lruvec,unsigned long seq,bool can_swap,bool force_scan)3793 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3794 bool can_swap, bool force_scan)
3795 {
3796 bool success;
3797 int prev, next;
3798 int type, zone;
3799 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3800 restart:
3801 if (seq < READ_ONCE(lrugen->max_seq))
3802 return false;
3803
3804 spin_lock_irq(&lruvec->lru_lock);
3805
3806 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3807
3808 success = seq == lrugen->max_seq;
3809 if (!success)
3810 goto unlock;
3811
3812 for (type = ANON_AND_FILE - 1; type >= 0; type--) {
3813 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3814 continue;
3815
3816 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
3817
3818 if (inc_min_seq(lruvec, type, can_swap))
3819 continue;
3820
3821 spin_unlock_irq(&lruvec->lru_lock);
3822 cond_resched();
3823 goto restart;
3824 }
3825
3826 /*
3827 * Update the active/inactive LRU sizes for compatibility. Both sides of
3828 * the current max_seq need to be covered, since max_seq+1 can overlap
3829 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3830 * overlap, cold/hot inversion happens.
3831 */
3832 prev = lru_gen_from_seq(lrugen->max_seq - 1);
3833 next = lru_gen_from_seq(lrugen->max_seq + 1);
3834
3835 for (type = 0; type < ANON_AND_FILE; type++) {
3836 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3837 enum lru_list lru = type * LRU_INACTIVE_FILE;
3838 long delta = lrugen->nr_pages[prev][type][zone] -
3839 lrugen->nr_pages[next][type][zone];
3840
3841 if (!delta)
3842 continue;
3843
3844 __update_lru_size(lruvec, lru, zone, delta);
3845 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3846 }
3847 }
3848
3849 for (type = 0; type < ANON_AND_FILE; type++)
3850 reset_ctrl_pos(lruvec, type, false);
3851
3852 WRITE_ONCE(lrugen->timestamps[next], jiffies);
3853 /* make sure preceding modifications appear */
3854 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
3855 unlock:
3856 spin_unlock_irq(&lruvec->lru_lock);
3857
3858 return success;
3859 }
3860
try_to_inc_max_seq(struct lruvec * lruvec,unsigned long seq,bool can_swap,bool force_scan)3861 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3862 bool can_swap, bool force_scan)
3863 {
3864 bool success;
3865 struct lru_gen_mm_walk *walk;
3866 struct mm_struct *mm = NULL;
3867 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3868 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3869
3870 VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
3871
3872 if (!mm_state)
3873 return inc_max_seq(lruvec, seq, can_swap, force_scan);
3874
3875 /* see the comment in iterate_mm_list() */
3876 if (seq <= READ_ONCE(mm_state->seq))
3877 return false;
3878
3879 /*
3880 * If the hardware doesn't automatically set the accessed bit, fallback
3881 * to lru_gen_look_around(), which only clears the accessed bit in a
3882 * handful of PTEs. Spreading the work out over a period of time usually
3883 * is less efficient, but it avoids bursty page faults.
3884 */
3885 if (!should_walk_mmu()) {
3886 success = iterate_mm_list_nowalk(lruvec, seq);
3887 goto done;
3888 }
3889
3890 walk = set_mm_walk(NULL, true);
3891 if (!walk) {
3892 success = iterate_mm_list_nowalk(lruvec, seq);
3893 goto done;
3894 }
3895
3896 walk->lruvec = lruvec;
3897 walk->seq = seq;
3898 walk->can_swap = can_swap;
3899 walk->force_scan = force_scan;
3900
3901 do {
3902 success = iterate_mm_list(walk, &mm);
3903 if (mm)
3904 walk_mm(mm, walk);
3905 } while (mm);
3906 done:
3907 if (success) {
3908 success = inc_max_seq(lruvec, seq, can_swap, force_scan);
3909 WARN_ON_ONCE(!success);
3910 }
3911
3912 return success;
3913 }
3914
3915 /******************************************************************************
3916 * working set protection
3917 ******************************************************************************/
3918
set_initial_priority(struct pglist_data * pgdat,struct scan_control * sc)3919 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
3920 {
3921 int priority;
3922 unsigned long reclaimable;
3923
3924 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
3925 return;
3926 /*
3927 * Determine the initial priority based on
3928 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
3929 * where reclaimed_to_scanned_ratio = inactive / total.
3930 */
3931 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
3932 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3933 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
3934
3935 /* round down reclaimable and round up sc->nr_to_reclaim */
3936 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
3937
3938 /*
3939 * The estimation is based on LRU pages only, so cap it to prevent
3940 * overshoots of shrinker objects by large margins.
3941 */
3942 sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
3943 }
3944
lruvec_is_sizable(struct lruvec * lruvec,struct scan_control * sc)3945 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
3946 {
3947 int gen, type, zone;
3948 unsigned long total = 0;
3949 bool can_swap = get_swappiness(lruvec, sc);
3950 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3951 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3952 DEFINE_MAX_SEQ(lruvec);
3953 DEFINE_MIN_SEQ(lruvec);
3954
3955 for (type = !can_swap; type < ANON_AND_FILE; type++) {
3956 unsigned long seq;
3957
3958 for (seq = min_seq[type]; seq <= max_seq; seq++) {
3959 gen = lru_gen_from_seq(seq);
3960
3961 for (zone = 0; zone < MAX_NR_ZONES; zone++)
3962 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
3963 }
3964 }
3965
3966 /* whether the size is big enough to be helpful */
3967 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
3968 }
3969
lruvec_is_reclaimable(struct lruvec * lruvec,struct scan_control * sc,unsigned long min_ttl)3970 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
3971 unsigned long min_ttl)
3972 {
3973 int gen;
3974 unsigned long birth;
3975 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3976 DEFINE_MIN_SEQ(lruvec);
3977
3978 if (mem_cgroup_below_min(NULL, memcg))
3979 return false;
3980
3981 if (!lruvec_is_sizable(lruvec, sc))
3982 return false;
3983
3984 /* see the comment on lru_gen_folio */
3985 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
3986 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
3987
3988 return time_is_before_jiffies(birth + min_ttl);
3989 }
3990
3991 /* to protect the working set of the last N jiffies */
3992 static unsigned long lru_gen_min_ttl __read_mostly;
3993
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)3994 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
3995 {
3996 struct mem_cgroup *memcg;
3997 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
3998 bool reclaimable = !min_ttl;
3999
4000 VM_WARN_ON_ONCE(!current_is_kswapd());
4001
4002 set_initial_priority(pgdat, sc);
4003
4004 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4005 do {
4006 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4007
4008 mem_cgroup_calculate_protection(NULL, memcg);
4009
4010 if (!reclaimable)
4011 reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4012 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4013
4014 /*
4015 * The main goal is to OOM kill if every generation from all memcgs is
4016 * younger than min_ttl. However, another possibility is all memcgs are
4017 * either too small or below min.
4018 */
4019 if (!reclaimable && mutex_trylock(&oom_lock)) {
4020 struct oom_control oc = {
4021 .gfp_mask = sc->gfp_mask,
4022 };
4023
4024 out_of_memory(&oc);
4025
4026 mutex_unlock(&oom_lock);
4027 }
4028 }
4029
4030 /******************************************************************************
4031 * rmap/PT walk feedback
4032 ******************************************************************************/
4033
4034 /*
4035 * This function exploits spatial locality when shrink_folio_list() walks the
4036 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4037 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4038 * the PTE table to the Bloom filter. This forms a feedback loop between the
4039 * eviction and the aging.
4040 */
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)4041 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4042 {
4043 int i;
4044 unsigned long start;
4045 unsigned long end;
4046 struct lru_gen_mm_walk *walk;
4047 int young = 1;
4048 pte_t *pte = pvmw->pte;
4049 unsigned long addr = pvmw->address;
4050 struct vm_area_struct *vma = pvmw->vma;
4051 struct folio *folio = pfn_folio(pvmw->pfn);
4052 bool can_swap = !folio_is_file_lru(folio);
4053 struct mem_cgroup *memcg = folio_memcg(folio);
4054 struct pglist_data *pgdat = folio_pgdat(folio);
4055 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4056 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4057 DEFINE_MAX_SEQ(lruvec);
4058 int old_gen, new_gen = lru_gen_from_seq(max_seq);
4059
4060 lockdep_assert_held(pvmw->ptl);
4061 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4062
4063 if (!ptep_clear_young_notify(vma, addr, pte))
4064 return false;
4065
4066 if (spin_is_contended(pvmw->ptl))
4067 return true;
4068
4069 /* exclude special VMAs containing anon pages from COW */
4070 if (vma->vm_flags & VM_SPECIAL)
4071 return true;
4072
4073 /* avoid taking the LRU lock under the PTL when possible */
4074 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4075
4076 start = max(addr & PMD_MASK, vma->vm_start);
4077 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4078
4079 if (end - start == PAGE_SIZE)
4080 return true;
4081
4082 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4083 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4084 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4085 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4086 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4087 else {
4088 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4089 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4090 }
4091 }
4092
4093 arch_enter_lazy_mmu_mode();
4094
4095 pte -= (addr - start) / PAGE_SIZE;
4096
4097 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4098 unsigned long pfn;
4099 pte_t ptent = ptep_get(pte + i);
4100
4101 pfn = get_pte_pfn(ptent, vma, addr, pgdat);
4102 if (pfn == -1)
4103 continue;
4104
4105 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4106 if (!folio)
4107 continue;
4108
4109 if (!ptep_clear_young_notify(vma, addr, pte + i))
4110 continue;
4111
4112 young++;
4113
4114 if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4115 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4116 !folio_test_swapcache(folio)))
4117 folio_mark_dirty(folio);
4118
4119 if (walk) {
4120 old_gen = folio_update_gen(folio, new_gen);
4121 if (old_gen >= 0 && old_gen != new_gen)
4122 update_batch_size(walk, folio, old_gen, new_gen);
4123
4124 continue;
4125 }
4126
4127 old_gen = folio_lru_gen(folio);
4128 if (old_gen < 0)
4129 folio_set_referenced(folio);
4130 else if (old_gen != new_gen) {
4131 folio_clear_lru_refs(folio);
4132 folio_activate(folio);
4133 }
4134 }
4135
4136 arch_leave_lazy_mmu_mode();
4137
4138 /* feedback from rmap walkers to page table walkers */
4139 if (mm_state && suitable_to_scan(i, young))
4140 update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4141
4142 return true;
4143 }
4144
4145 /******************************************************************************
4146 * memcg LRU
4147 ******************************************************************************/
4148
4149 /* see the comment on MEMCG_NR_GENS */
4150 enum {
4151 MEMCG_LRU_NOP,
4152 MEMCG_LRU_HEAD,
4153 MEMCG_LRU_TAIL,
4154 MEMCG_LRU_OLD,
4155 MEMCG_LRU_YOUNG,
4156 };
4157
lru_gen_rotate_memcg(struct lruvec * lruvec,int op)4158 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4159 {
4160 int seg;
4161 int old, new;
4162 unsigned long flags;
4163 int bin = get_random_u32_below(MEMCG_NR_BINS);
4164 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4165
4166 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4167
4168 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4169
4170 seg = 0;
4171 new = old = lruvec->lrugen.gen;
4172
4173 /* see the comment on MEMCG_NR_GENS */
4174 if (op == MEMCG_LRU_HEAD)
4175 seg = MEMCG_LRU_HEAD;
4176 else if (op == MEMCG_LRU_TAIL)
4177 seg = MEMCG_LRU_TAIL;
4178 else if (op == MEMCG_LRU_OLD)
4179 new = get_memcg_gen(pgdat->memcg_lru.seq);
4180 else if (op == MEMCG_LRU_YOUNG)
4181 new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4182 else
4183 VM_WARN_ON_ONCE(true);
4184
4185 WRITE_ONCE(lruvec->lrugen.seg, seg);
4186 WRITE_ONCE(lruvec->lrugen.gen, new);
4187
4188 hlist_nulls_del_rcu(&lruvec->lrugen.list);
4189
4190 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4191 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4192 else
4193 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4194
4195 pgdat->memcg_lru.nr_memcgs[old]--;
4196 pgdat->memcg_lru.nr_memcgs[new]++;
4197
4198 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4199 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4200
4201 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4202 }
4203
4204 #ifdef CONFIG_MEMCG
4205
lru_gen_online_memcg(struct mem_cgroup * memcg)4206 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4207 {
4208 int gen;
4209 int nid;
4210 int bin = get_random_u32_below(MEMCG_NR_BINS);
4211
4212 for_each_node(nid) {
4213 struct pglist_data *pgdat = NODE_DATA(nid);
4214 struct lruvec *lruvec = get_lruvec(memcg, nid);
4215
4216 spin_lock_irq(&pgdat->memcg_lru.lock);
4217
4218 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4219
4220 gen = get_memcg_gen(pgdat->memcg_lru.seq);
4221
4222 lruvec->lrugen.gen = gen;
4223
4224 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4225 pgdat->memcg_lru.nr_memcgs[gen]++;
4226
4227 spin_unlock_irq(&pgdat->memcg_lru.lock);
4228 }
4229 }
4230
lru_gen_offline_memcg(struct mem_cgroup * memcg)4231 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4232 {
4233 int nid;
4234
4235 for_each_node(nid) {
4236 struct lruvec *lruvec = get_lruvec(memcg, nid);
4237
4238 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4239 }
4240 }
4241
lru_gen_release_memcg(struct mem_cgroup * memcg)4242 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4243 {
4244 int gen;
4245 int nid;
4246
4247 for_each_node(nid) {
4248 struct pglist_data *pgdat = NODE_DATA(nid);
4249 struct lruvec *lruvec = get_lruvec(memcg, nid);
4250
4251 spin_lock_irq(&pgdat->memcg_lru.lock);
4252
4253 if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4254 goto unlock;
4255
4256 gen = lruvec->lrugen.gen;
4257
4258 hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4259 pgdat->memcg_lru.nr_memcgs[gen]--;
4260
4261 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4262 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4263 unlock:
4264 spin_unlock_irq(&pgdat->memcg_lru.lock);
4265 }
4266 }
4267
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)4268 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4269 {
4270 struct lruvec *lruvec = get_lruvec(memcg, nid);
4271
4272 /* see the comment on MEMCG_NR_GENS */
4273 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4274 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4275 }
4276
4277 #endif /* CONFIG_MEMCG */
4278
4279 /******************************************************************************
4280 * the eviction
4281 ******************************************************************************/
4282
sort_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc,int tier_idx)4283 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4284 int tier_idx)
4285 {
4286 bool success;
4287 bool dirty, writeback;
4288 int gen = folio_lru_gen(folio);
4289 int type = folio_is_file_lru(folio);
4290 int zone = folio_zonenum(folio);
4291 int delta = folio_nr_pages(folio);
4292 int refs = folio_lru_refs(folio);
4293 int tier = lru_tier_from_refs(refs);
4294 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4295
4296 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4297
4298 /* unevictable */
4299 if (!folio_evictable(folio)) {
4300 success = lru_gen_del_folio(lruvec, folio, true);
4301 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4302 folio_set_unevictable(folio);
4303 lruvec_add_folio(lruvec, folio);
4304 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4305 return true;
4306 }
4307
4308 /* promoted */
4309 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4310 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4311 return true;
4312 }
4313
4314 /* protected */
4315 if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) {
4316 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4317
4318 gen = folio_inc_gen(lruvec, folio, false);
4319 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4320
4321 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4322 lrugen->protected[hist][type][tier - 1] + delta);
4323 return true;
4324 }
4325
4326 /* ineligible */
4327 if (!folio_test_lru(folio) || zone > sc->reclaim_idx) {
4328 gen = folio_inc_gen(lruvec, folio, false);
4329 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4330 return true;
4331 }
4332
4333 dirty = folio_test_dirty(folio);
4334 writeback = folio_test_writeback(folio);
4335 if (type == LRU_GEN_FILE && dirty) {
4336 sc->nr.file_taken += delta;
4337 if (!writeback)
4338 sc->nr.unqueued_dirty += delta;
4339 }
4340
4341 /* waiting for writeback */
4342 if (folio_test_locked(folio) || writeback ||
4343 (type == LRU_GEN_FILE && dirty)) {
4344 gen = folio_inc_gen(lruvec, folio, true);
4345 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4346 return true;
4347 }
4348
4349 return false;
4350 }
4351
isolate_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc)4352 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4353 {
4354 bool success;
4355
4356 /* swap constrained */
4357 if (!(sc->gfp_mask & __GFP_IO) &&
4358 (folio_test_dirty(folio) ||
4359 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4360 return false;
4361
4362 /* raced with release_pages() */
4363 if (!folio_try_get(folio))
4364 return false;
4365
4366 /* raced with another isolation */
4367 if (!folio_test_clear_lru(folio)) {
4368 folio_put(folio);
4369 return false;
4370 }
4371
4372 /* see the comment on MAX_NR_TIERS */
4373 if (!folio_test_referenced(folio))
4374 folio_clear_lru_refs(folio);
4375
4376 /* for shrink_folio_list() */
4377 folio_clear_reclaim(folio);
4378 folio_clear_referenced(folio);
4379
4380 success = lru_gen_del_folio(lruvec, folio, true);
4381 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4382
4383 return true;
4384 }
4385
scan_folios(struct lruvec * lruvec,struct scan_control * sc,int type,int tier,struct list_head * list)4386 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4387 int type, int tier, struct list_head *list)
4388 {
4389 int i;
4390 int gen;
4391 enum vm_event_item item;
4392 int sorted = 0;
4393 int scanned = 0;
4394 int isolated = 0;
4395 int skipped = 0;
4396 int remaining = MAX_LRU_BATCH;
4397 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4398 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4399
4400 VM_WARN_ON_ONCE(!list_empty(list));
4401
4402 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4403 return 0;
4404
4405 gen = lru_gen_from_seq(lrugen->min_seq[type]);
4406
4407 for (i = MAX_NR_ZONES; i > 0; i--) {
4408 LIST_HEAD(moved);
4409 int skipped_zone = 0;
4410 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4411 struct list_head *head = &lrugen->folios[gen][type][zone];
4412
4413 while (!list_empty(head)) {
4414 struct folio *folio = lru_to_folio(head);
4415 int delta = folio_nr_pages(folio);
4416
4417 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4418 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4419 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4420 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4421
4422 scanned += delta;
4423
4424 if (sort_folio(lruvec, folio, sc, tier))
4425 sorted += delta;
4426 else if (isolate_folio(lruvec, folio, sc)) {
4427 list_add(&folio->lru, list);
4428 isolated += delta;
4429 } else {
4430 list_move(&folio->lru, &moved);
4431 skipped_zone += delta;
4432 }
4433
4434 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4435 break;
4436 }
4437
4438 if (skipped_zone) {
4439 list_splice(&moved, head);
4440 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4441 skipped += skipped_zone;
4442 }
4443
4444 if (!remaining || isolated >= MIN_LRU_BATCH)
4445 break;
4446 }
4447
4448 item = PGSCAN_KSWAPD + reclaimer_offset();
4449 if (!cgroup_reclaim(sc)) {
4450 __count_vm_events(item, isolated);
4451 __count_vm_events(PGREFILL, sorted);
4452 }
4453 __count_memcg_events(memcg, item, isolated);
4454 __count_memcg_events(memcg, PGREFILL, sorted);
4455 __count_vm_events(PGSCAN_ANON + type, isolated);
4456 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4457 scanned, skipped, isolated,
4458 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4459 if (type == LRU_GEN_FILE)
4460 sc->nr.file_taken += isolated;
4461 /*
4462 * There might not be eligible folios due to reclaim_idx. Check the
4463 * remaining to prevent livelock if it's not making progress.
4464 */
4465 return isolated || !remaining ? scanned : 0;
4466 }
4467
get_tier_idx(struct lruvec * lruvec,int type)4468 static int get_tier_idx(struct lruvec *lruvec, int type)
4469 {
4470 int tier;
4471 struct ctrl_pos sp, pv;
4472
4473 /*
4474 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4475 * This value is chosen because any other tier would have at least twice
4476 * as many refaults as the first tier.
4477 */
4478 read_ctrl_pos(lruvec, type, 0, 1, &sp);
4479 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4480 read_ctrl_pos(lruvec, type, tier, 2, &pv);
4481 if (!positive_ctrl_err(&sp, &pv))
4482 break;
4483 }
4484
4485 return tier - 1;
4486 }
4487
get_type_to_scan(struct lruvec * lruvec,int swappiness,int * tier_idx)4488 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4489 {
4490 int type, tier;
4491 struct ctrl_pos sp, pv;
4492 int gain[ANON_AND_FILE] = { swappiness, MAX_SWAPPINESS - swappiness };
4493
4494 /*
4495 * Compare the first tier of anon with that of file to determine which
4496 * type to scan. Also need to compare other tiers of the selected type
4497 * with the first tier of the other type to determine the last tier (of
4498 * the selected type) to evict.
4499 */
4500 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4501 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4502 type = positive_ctrl_err(&sp, &pv);
4503
4504 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4505 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4506 read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4507 if (!positive_ctrl_err(&sp, &pv))
4508 break;
4509 }
4510
4511 *tier_idx = tier - 1;
4512
4513 return type;
4514 }
4515
isolate_folios(struct lruvec * lruvec,struct scan_control * sc,int swappiness,int * type_scanned,struct list_head * list)4516 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4517 int *type_scanned, struct list_head *list)
4518 {
4519 int i;
4520 int type;
4521 int scanned;
4522 int tier = -1;
4523 DEFINE_MIN_SEQ(lruvec);
4524
4525 /*
4526 * Try to make the obvious choice first, and if anon and file are both
4527 * available from the same generation,
4528 * 1. Interpret swappiness 1 as file first and MAX_SWAPPINESS as anon
4529 * first.
4530 * 2. If !__GFP_IO, file first since clean pagecache is more likely to
4531 * exist than clean swapcache.
4532 */
4533 if (!swappiness)
4534 type = LRU_GEN_FILE;
4535 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4536 type = LRU_GEN_ANON;
4537 else if (swappiness == 1)
4538 type = LRU_GEN_FILE;
4539 else if (swappiness == MAX_SWAPPINESS)
4540 type = LRU_GEN_ANON;
4541 else if (!(sc->gfp_mask & __GFP_IO))
4542 type = LRU_GEN_FILE;
4543 else
4544 type = get_type_to_scan(lruvec, swappiness, &tier);
4545
4546 for (i = !swappiness; i < ANON_AND_FILE; i++) {
4547 if (tier < 0)
4548 tier = get_tier_idx(lruvec, type);
4549
4550 scanned = scan_folios(lruvec, sc, type, tier, list);
4551 if (scanned)
4552 break;
4553
4554 type = !type;
4555 tier = -1;
4556 }
4557
4558 *type_scanned = type;
4559
4560 return scanned;
4561 }
4562
evict_folios(struct lruvec * lruvec,struct scan_control * sc,int swappiness)4563 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4564 {
4565 int type;
4566 int scanned;
4567 int reclaimed;
4568 LIST_HEAD(list);
4569 LIST_HEAD(clean);
4570 struct folio *folio;
4571 struct folio *next;
4572 enum vm_event_item item;
4573 struct reclaim_stat stat;
4574 struct lru_gen_mm_walk *walk;
4575 bool skip_retry = false;
4576 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4577 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4578
4579 spin_lock_irq(&lruvec->lru_lock);
4580
4581 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4582
4583 scanned += try_to_inc_min_seq(lruvec, swappiness);
4584
4585 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4586 scanned = 0;
4587
4588 spin_unlock_irq(&lruvec->lru_lock);
4589
4590 if (list_empty(&list))
4591 return scanned;
4592 retry:
4593 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4594 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
4595 sc->nr_reclaimed += reclaimed;
4596 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4597 scanned, reclaimed, &stat, sc->priority,
4598 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4599
4600 list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4601 if (!folio_evictable(folio)) {
4602 list_del(&folio->lru);
4603 folio_putback_lru(folio);
4604 continue;
4605 }
4606
4607 if (folio_test_reclaim(folio) &&
4608 (folio_test_dirty(folio) || folio_test_writeback(folio))) {
4609 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */
4610 if (folio_test_workingset(folio))
4611 folio_set_referenced(folio);
4612 continue;
4613 }
4614
4615 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
4616 folio_mapped(folio) || folio_test_locked(folio) ||
4617 folio_test_dirty(folio) || folio_test_writeback(folio)) {
4618 /* don't add rejected folios to the oldest generation */
4619 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
4620 BIT(PG_active));
4621 continue;
4622 }
4623
4624 /* retry folios that may have missed folio_rotate_reclaimable() */
4625 list_move(&folio->lru, &clean);
4626 }
4627
4628 spin_lock_irq(&lruvec->lru_lock);
4629
4630 move_folios_to_lru(lruvec, &list);
4631
4632 walk = current->reclaim_state->mm_walk;
4633 if (walk && walk->batched) {
4634 walk->lruvec = lruvec;
4635 reset_batch_size(walk);
4636 }
4637
4638 item = PGSTEAL_KSWAPD + reclaimer_offset();
4639 if (!cgroup_reclaim(sc))
4640 __count_vm_events(item, reclaimed);
4641 __count_memcg_events(memcg, item, reclaimed);
4642 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
4643
4644 spin_unlock_irq(&lruvec->lru_lock);
4645
4646 list_splice_init(&clean, &list);
4647
4648 if (!list_empty(&list)) {
4649 skip_retry = true;
4650 goto retry;
4651 }
4652
4653 return scanned;
4654 }
4655
should_run_aging(struct lruvec * lruvec,unsigned long max_seq,bool can_swap,unsigned long * nr_to_scan)4656 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4657 bool can_swap, unsigned long *nr_to_scan)
4658 {
4659 int gen, type, zone;
4660 unsigned long old = 0;
4661 unsigned long young = 0;
4662 unsigned long total = 0;
4663 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4664 DEFINE_MIN_SEQ(lruvec);
4665
4666 /* whether this lruvec is completely out of cold folios */
4667 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
4668 *nr_to_scan = 0;
4669 return true;
4670 }
4671
4672 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4673 unsigned long seq;
4674
4675 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4676 unsigned long size = 0;
4677
4678 gen = lru_gen_from_seq(seq);
4679
4680 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4681 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4682
4683 total += size;
4684 if (seq == max_seq)
4685 young += size;
4686 else if (seq + MIN_NR_GENS == max_seq)
4687 old += size;
4688 }
4689 }
4690
4691 *nr_to_scan = total;
4692
4693 /*
4694 * The aging tries to be lazy to reduce the overhead, while the eviction
4695 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4696 * ideal number of generations is MIN_NR_GENS+1.
4697 */
4698 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4699 return false;
4700
4701 /*
4702 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4703 * of the total number of pages for each generation. A reasonable range
4704 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4705 * aging cares about the upper bound of hot pages, while the eviction
4706 * cares about the lower bound of cold pages.
4707 */
4708 if (young * MIN_NR_GENS > total)
4709 return true;
4710 if (old * (MIN_NR_GENS + 2) < total)
4711 return true;
4712
4713 return false;
4714 }
4715
4716 /*
4717 * For future optimizations:
4718 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4719 * reclaim.
4720 */
get_nr_to_scan(struct lruvec * lruvec,struct scan_control * sc,bool can_swap)4721 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
4722 {
4723 bool success;
4724 unsigned long nr_to_scan;
4725 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4726 DEFINE_MAX_SEQ(lruvec);
4727
4728 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4729 return -1;
4730
4731 success = should_run_aging(lruvec, max_seq, can_swap, &nr_to_scan);
4732
4733 /* try to scrape all its memory if this memcg was deleted */
4734 if (nr_to_scan && !mem_cgroup_online(memcg))
4735 return nr_to_scan;
4736
4737 /* try to get away with not aging at the default priority */
4738 if (!success || sc->priority == DEF_PRIORITY)
4739 return nr_to_scan >> sc->priority;
4740
4741 /* stop scanning this lruvec as it's low on cold folios */
4742 return try_to_inc_max_seq(lruvec, max_seq, can_swap, false) ? -1 : 0;
4743 }
4744
should_abort_scan(struct lruvec * lruvec,struct scan_control * sc)4745 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4746 {
4747 int i;
4748 enum zone_watermarks mark;
4749
4750 /* don't abort memcg reclaim to ensure fairness */
4751 if (!root_reclaim(sc))
4752 return false;
4753
4754 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4755 return true;
4756
4757 /* check the order to exclude compaction-induced reclaim */
4758 if (!current_is_kswapd() || sc->order)
4759 return false;
4760
4761 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4762 WMARK_PROMO : WMARK_HIGH;
4763
4764 for (i = 0; i <= sc->reclaim_idx; i++) {
4765 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4766 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4767
4768 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4769 return false;
4770 }
4771
4772 /* kswapd should abort if all eligible zones are safe */
4773 return true;
4774 }
4775
try_to_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)4776 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4777 {
4778 long nr_to_scan;
4779 unsigned long scanned = 0;
4780 int swappiness = get_swappiness(lruvec, sc);
4781
4782 while (true) {
4783 int delta;
4784
4785 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4786 if (nr_to_scan <= 0)
4787 break;
4788
4789 delta = evict_folios(lruvec, sc, swappiness);
4790 if (!delta)
4791 break;
4792
4793 scanned += delta;
4794 if (scanned >= nr_to_scan)
4795 break;
4796
4797 if (should_abort_scan(lruvec, sc))
4798 break;
4799
4800 cond_resched();
4801 }
4802
4803 /*
4804 * If too many file cache in the coldest generation can't be evicted
4805 * due to being dirty, wake up the flusher.
4806 */
4807 if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken)
4808 wakeup_flusher_threads(WB_REASON_VMSCAN);
4809
4810 /* whether this lruvec should be rotated */
4811 return nr_to_scan < 0;
4812 }
4813
shrink_one(struct lruvec * lruvec,struct scan_control * sc)4814 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4815 {
4816 bool success;
4817 unsigned long scanned = sc->nr_scanned;
4818 unsigned long reclaimed = sc->nr_reclaimed;
4819 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4820 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4821
4822 /* lru_gen_age_node() called mem_cgroup_calculate_protection() */
4823 if (mem_cgroup_below_min(NULL, memcg))
4824 return MEMCG_LRU_YOUNG;
4825
4826 if (mem_cgroup_below_low(NULL, memcg)) {
4827 /* see the comment on MEMCG_NR_GENS */
4828 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4829 return MEMCG_LRU_TAIL;
4830
4831 memcg_memory_event(memcg, MEMCG_LOW);
4832 }
4833
4834 success = try_to_shrink_lruvec(lruvec, sc);
4835
4836 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4837
4838 if (!sc->proactive)
4839 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4840 sc->nr_reclaimed - reclaimed);
4841
4842 flush_reclaim_state(sc);
4843
4844 if (success && mem_cgroup_online(memcg))
4845 return MEMCG_LRU_YOUNG;
4846
4847 if (!success && lruvec_is_sizable(lruvec, sc))
4848 return 0;
4849
4850 /* one retry if offlined or too small */
4851 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4852 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4853 }
4854
shrink_many(struct pglist_data * pgdat,struct scan_control * sc)4855 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4856 {
4857 int op;
4858 int gen;
4859 int bin;
4860 int first_bin;
4861 struct lruvec *lruvec;
4862 struct lru_gen_folio *lrugen;
4863 struct mem_cgroup *memcg;
4864 struct hlist_nulls_node *pos;
4865
4866 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4867 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4868 restart:
4869 op = 0;
4870 memcg = NULL;
4871
4872 rcu_read_lock();
4873
4874 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4875 if (op) {
4876 lru_gen_rotate_memcg(lruvec, op);
4877 op = 0;
4878 }
4879
4880 mem_cgroup_put(memcg);
4881 memcg = NULL;
4882
4883 if (gen != READ_ONCE(lrugen->gen))
4884 continue;
4885
4886 lruvec = container_of(lrugen, struct lruvec, lrugen);
4887 memcg = lruvec_memcg(lruvec);
4888
4889 if (!mem_cgroup_tryget(memcg)) {
4890 lru_gen_release_memcg(memcg);
4891 memcg = NULL;
4892 continue;
4893 }
4894
4895 rcu_read_unlock();
4896
4897 op = shrink_one(lruvec, sc);
4898
4899 rcu_read_lock();
4900
4901 if (should_abort_scan(lruvec, sc))
4902 break;
4903 }
4904
4905 rcu_read_unlock();
4906
4907 if (op)
4908 lru_gen_rotate_memcg(lruvec, op);
4909
4910 mem_cgroup_put(memcg);
4911
4912 if (!is_a_nulls(pos))
4913 return;
4914
4915 /* restart if raced with lru_gen_rotate_memcg() */
4916 if (gen != get_nulls_value(pos))
4917 goto restart;
4918
4919 /* try the rest of the bins of the current generation */
4920 bin = get_memcg_bin(bin + 1);
4921 if (bin != first_bin)
4922 goto restart;
4923 }
4924
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)4925 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4926 {
4927 struct blk_plug plug;
4928
4929 VM_WARN_ON_ONCE(root_reclaim(sc));
4930 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
4931
4932 lru_add_drain();
4933
4934 blk_start_plug(&plug);
4935
4936 set_mm_walk(NULL, sc->proactive);
4937
4938 if (try_to_shrink_lruvec(lruvec, sc))
4939 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
4940
4941 clear_mm_walk();
4942
4943 blk_finish_plug(&plug);
4944 }
4945
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)4946 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
4947 {
4948 struct blk_plug plug;
4949 unsigned long reclaimed = sc->nr_reclaimed;
4950
4951 VM_WARN_ON_ONCE(!root_reclaim(sc));
4952
4953 /*
4954 * Unmapped clean folios are already prioritized. Scanning for more of
4955 * them is likely futile and can cause high reclaim latency when there
4956 * is a large number of memcgs.
4957 */
4958 if (!sc->may_writepage || !sc->may_unmap)
4959 goto done;
4960
4961 lru_add_drain();
4962
4963 blk_start_plug(&plug);
4964
4965 set_mm_walk(pgdat, sc->proactive);
4966
4967 set_initial_priority(pgdat, sc);
4968
4969 if (current_is_kswapd())
4970 sc->nr_reclaimed = 0;
4971
4972 if (mem_cgroup_disabled())
4973 shrink_one(&pgdat->__lruvec, sc);
4974 else
4975 shrink_many(pgdat, sc);
4976
4977 if (current_is_kswapd())
4978 sc->nr_reclaimed += reclaimed;
4979
4980 clear_mm_walk();
4981
4982 blk_finish_plug(&plug);
4983 done:
4984 if (sc->nr_reclaimed > reclaimed)
4985 pgdat->kswapd_failures = 0;
4986 }
4987
4988 /******************************************************************************
4989 * state change
4990 ******************************************************************************/
4991
state_is_valid(struct lruvec * lruvec)4992 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
4993 {
4994 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4995
4996 if (lrugen->enabled) {
4997 enum lru_list lru;
4998
4999 for_each_evictable_lru(lru) {
5000 if (!list_empty(&lruvec->lists[lru]))
5001 return false;
5002 }
5003 } else {
5004 int gen, type, zone;
5005
5006 for_each_gen_type_zone(gen, type, zone) {
5007 if (!list_empty(&lrugen->folios[gen][type][zone]))
5008 return false;
5009 }
5010 }
5011
5012 return true;
5013 }
5014
fill_evictable(struct lruvec * lruvec)5015 static bool fill_evictable(struct lruvec *lruvec)
5016 {
5017 enum lru_list lru;
5018 int remaining = MAX_LRU_BATCH;
5019
5020 for_each_evictable_lru(lru) {
5021 int type = is_file_lru(lru);
5022 bool active = is_active_lru(lru);
5023 struct list_head *head = &lruvec->lists[lru];
5024
5025 while (!list_empty(head)) {
5026 bool success;
5027 struct folio *folio = lru_to_folio(head);
5028
5029 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5030 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5031 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5032 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5033
5034 lruvec_del_folio(lruvec, folio);
5035 success = lru_gen_add_folio(lruvec, folio, false);
5036 VM_WARN_ON_ONCE(!success);
5037
5038 if (!--remaining)
5039 return false;
5040 }
5041 }
5042
5043 return true;
5044 }
5045
drain_evictable(struct lruvec * lruvec)5046 static bool drain_evictable(struct lruvec *lruvec)
5047 {
5048 int gen, type, zone;
5049 int remaining = MAX_LRU_BATCH;
5050
5051 for_each_gen_type_zone(gen, type, zone) {
5052 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5053
5054 while (!list_empty(head)) {
5055 bool success;
5056 struct folio *folio = lru_to_folio(head);
5057
5058 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5059 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5060 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5061 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5062
5063 success = lru_gen_del_folio(lruvec, folio, false);
5064 VM_WARN_ON_ONCE(!success);
5065 lruvec_add_folio(lruvec, folio);
5066
5067 if (!--remaining)
5068 return false;
5069 }
5070 }
5071
5072 return true;
5073 }
5074
lru_gen_change_state(bool enabled)5075 static void lru_gen_change_state(bool enabled)
5076 {
5077 static DEFINE_MUTEX(state_mutex);
5078
5079 struct mem_cgroup *memcg;
5080
5081 cgroup_lock();
5082 cpus_read_lock();
5083 get_online_mems();
5084 mutex_lock(&state_mutex);
5085
5086 if (enabled == lru_gen_enabled())
5087 goto unlock;
5088
5089 if (enabled)
5090 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5091 else
5092 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5093
5094 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5095 do {
5096 int nid;
5097
5098 for_each_node(nid) {
5099 struct lruvec *lruvec = get_lruvec(memcg, nid);
5100
5101 spin_lock_irq(&lruvec->lru_lock);
5102
5103 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5104 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5105
5106 lruvec->lrugen.enabled = enabled;
5107
5108 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5109 spin_unlock_irq(&lruvec->lru_lock);
5110 cond_resched();
5111 spin_lock_irq(&lruvec->lru_lock);
5112 }
5113
5114 spin_unlock_irq(&lruvec->lru_lock);
5115 }
5116
5117 cond_resched();
5118 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5119 unlock:
5120 mutex_unlock(&state_mutex);
5121 put_online_mems();
5122 cpus_read_unlock();
5123 cgroup_unlock();
5124 }
5125
5126 /******************************************************************************
5127 * sysfs interface
5128 ******************************************************************************/
5129
min_ttl_ms_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5130 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5131 {
5132 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5133 }
5134
5135 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
min_ttl_ms_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5136 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5137 const char *buf, size_t len)
5138 {
5139 unsigned int msecs;
5140
5141 if (kstrtouint(buf, 0, &msecs))
5142 return -EINVAL;
5143
5144 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5145
5146 return len;
5147 }
5148
5149 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5150
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5151 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5152 {
5153 unsigned int caps = 0;
5154
5155 if (get_cap(LRU_GEN_CORE))
5156 caps |= BIT(LRU_GEN_CORE);
5157
5158 if (should_walk_mmu())
5159 caps |= BIT(LRU_GEN_MM_WALK);
5160
5161 if (should_clear_pmd_young())
5162 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5163
5164 return sysfs_emit(buf, "0x%04x\n", caps);
5165 }
5166
5167 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5168 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5169 const char *buf, size_t len)
5170 {
5171 int i;
5172 unsigned int caps;
5173
5174 if (tolower(*buf) == 'n')
5175 caps = 0;
5176 else if (tolower(*buf) == 'y')
5177 caps = -1;
5178 else if (kstrtouint(buf, 0, &caps))
5179 return -EINVAL;
5180
5181 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5182 bool enabled = caps & BIT(i);
5183
5184 if (i == LRU_GEN_CORE)
5185 lru_gen_change_state(enabled);
5186 else if (enabled)
5187 static_branch_enable(&lru_gen_caps[i]);
5188 else
5189 static_branch_disable(&lru_gen_caps[i]);
5190 }
5191
5192 return len;
5193 }
5194
5195 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5196
5197 static struct attribute *lru_gen_attrs[] = {
5198 &lru_gen_min_ttl_attr.attr,
5199 &lru_gen_enabled_attr.attr,
5200 NULL
5201 };
5202
5203 static const struct attribute_group lru_gen_attr_group = {
5204 .name = "lru_gen",
5205 .attrs = lru_gen_attrs,
5206 };
5207
5208 /******************************************************************************
5209 * debugfs interface
5210 ******************************************************************************/
5211
lru_gen_seq_start(struct seq_file * m,loff_t * pos)5212 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5213 {
5214 struct mem_cgroup *memcg;
5215 loff_t nr_to_skip = *pos;
5216
5217 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5218 if (!m->private)
5219 return ERR_PTR(-ENOMEM);
5220
5221 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5222 do {
5223 int nid;
5224
5225 for_each_node_state(nid, N_MEMORY) {
5226 if (!nr_to_skip--)
5227 return get_lruvec(memcg, nid);
5228 }
5229 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5230
5231 return NULL;
5232 }
5233
lru_gen_seq_stop(struct seq_file * m,void * v)5234 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5235 {
5236 if (!IS_ERR_OR_NULL(v))
5237 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5238
5239 kvfree(m->private);
5240 m->private = NULL;
5241 }
5242
lru_gen_seq_next(struct seq_file * m,void * v,loff_t * pos)5243 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5244 {
5245 int nid = lruvec_pgdat(v)->node_id;
5246 struct mem_cgroup *memcg = lruvec_memcg(v);
5247
5248 ++*pos;
5249
5250 nid = next_memory_node(nid);
5251 if (nid == MAX_NUMNODES) {
5252 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5253 if (!memcg)
5254 return NULL;
5255
5256 nid = first_memory_node;
5257 }
5258
5259 return get_lruvec(memcg, nid);
5260 }
5261
lru_gen_seq_show_full(struct seq_file * m,struct lruvec * lruvec,unsigned long max_seq,unsigned long * min_seq,unsigned long seq)5262 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5263 unsigned long max_seq, unsigned long *min_seq,
5264 unsigned long seq)
5265 {
5266 int i;
5267 int type, tier;
5268 int hist = lru_hist_from_seq(seq);
5269 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5270 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5271
5272 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5273 seq_printf(m, " %10d", tier);
5274 for (type = 0; type < ANON_AND_FILE; type++) {
5275 const char *s = "xxx";
5276 unsigned long n[3] = {};
5277
5278 if (seq == max_seq) {
5279 s = "RTx";
5280 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5281 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5282 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5283 s = "rep";
5284 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5285 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5286 if (tier)
5287 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5288 }
5289
5290 for (i = 0; i < 3; i++)
5291 seq_printf(m, " %10lu%c", n[i], s[i]);
5292 }
5293 seq_putc(m, '\n');
5294 }
5295
5296 if (!mm_state)
5297 return;
5298
5299 seq_puts(m, " ");
5300 for (i = 0; i < NR_MM_STATS; i++) {
5301 const char *s = "xxxx";
5302 unsigned long n = 0;
5303
5304 if (seq == max_seq && NR_HIST_GENS == 1) {
5305 s = "TYFA";
5306 n = READ_ONCE(mm_state->stats[hist][i]);
5307 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5308 s = "tyfa";
5309 n = READ_ONCE(mm_state->stats[hist][i]);
5310 }
5311
5312 seq_printf(m, " %10lu%c", n, s[i]);
5313 }
5314 seq_putc(m, '\n');
5315 }
5316
5317 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_show(struct seq_file * m,void * v)5318 static int lru_gen_seq_show(struct seq_file *m, void *v)
5319 {
5320 unsigned long seq;
5321 bool full = !debugfs_real_fops(m->file)->write;
5322 struct lruvec *lruvec = v;
5323 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5324 int nid = lruvec_pgdat(lruvec)->node_id;
5325 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5326 DEFINE_MAX_SEQ(lruvec);
5327 DEFINE_MIN_SEQ(lruvec);
5328
5329 if (nid == first_memory_node) {
5330 const char *path = memcg ? m->private : "";
5331
5332 #ifdef CONFIG_MEMCG
5333 if (memcg)
5334 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5335 #endif
5336 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5337 }
5338
5339 seq_printf(m, " node %5d\n", nid);
5340
5341 if (!full)
5342 seq = min_seq[LRU_GEN_ANON];
5343 else if (max_seq >= MAX_NR_GENS)
5344 seq = max_seq - MAX_NR_GENS + 1;
5345 else
5346 seq = 0;
5347
5348 for (; seq <= max_seq; seq++) {
5349 int type, zone;
5350 int gen = lru_gen_from_seq(seq);
5351 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5352
5353 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5354
5355 for (type = 0; type < ANON_AND_FILE; type++) {
5356 unsigned long size = 0;
5357 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5358
5359 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5360 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5361
5362 seq_printf(m, " %10lu%c", size, mark);
5363 }
5364
5365 seq_putc(m, '\n');
5366
5367 if (full)
5368 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5369 }
5370
5371 return 0;
5372 }
5373
5374 static const struct seq_operations lru_gen_seq_ops = {
5375 .start = lru_gen_seq_start,
5376 .stop = lru_gen_seq_stop,
5377 .next = lru_gen_seq_next,
5378 .show = lru_gen_seq_show,
5379 };
5380
run_aging(struct lruvec * lruvec,unsigned long seq,bool can_swap,bool force_scan)5381 static int run_aging(struct lruvec *lruvec, unsigned long seq,
5382 bool can_swap, bool force_scan)
5383 {
5384 DEFINE_MAX_SEQ(lruvec);
5385 DEFINE_MIN_SEQ(lruvec);
5386
5387 if (seq < max_seq)
5388 return 0;
5389
5390 if (seq > max_seq)
5391 return -EINVAL;
5392
5393 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5394 return -ERANGE;
5395
5396 try_to_inc_max_seq(lruvec, max_seq, can_swap, force_scan);
5397
5398 return 0;
5399 }
5400
run_eviction(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long nr_to_reclaim)5401 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5402 int swappiness, unsigned long nr_to_reclaim)
5403 {
5404 DEFINE_MAX_SEQ(lruvec);
5405
5406 if (seq + MIN_NR_GENS > max_seq)
5407 return -EINVAL;
5408
5409 sc->nr_reclaimed = 0;
5410
5411 while (!signal_pending(current)) {
5412 DEFINE_MIN_SEQ(lruvec);
5413
5414 if (seq < min_seq[!swappiness])
5415 return 0;
5416
5417 if (sc->nr_reclaimed >= nr_to_reclaim)
5418 return 0;
5419
5420 if (!evict_folios(lruvec, sc, swappiness))
5421 return 0;
5422
5423 cond_resched();
5424 }
5425
5426 return -EINTR;
5427 }
5428
run_cmd(char cmd,int memcg_id,int nid,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long opt)5429 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5430 struct scan_control *sc, int swappiness, unsigned long opt)
5431 {
5432 struct lruvec *lruvec;
5433 int err = -EINVAL;
5434 struct mem_cgroup *memcg = NULL;
5435
5436 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5437 return -EINVAL;
5438
5439 if (!mem_cgroup_disabled()) {
5440 rcu_read_lock();
5441
5442 memcg = mem_cgroup_from_id(memcg_id);
5443 if (!mem_cgroup_tryget(memcg))
5444 memcg = NULL;
5445
5446 rcu_read_unlock();
5447
5448 if (!memcg)
5449 return -EINVAL;
5450 }
5451
5452 if (memcg_id != mem_cgroup_id(memcg))
5453 goto done;
5454
5455 lruvec = get_lruvec(memcg, nid);
5456
5457 if (swappiness < MIN_SWAPPINESS)
5458 swappiness = get_swappiness(lruvec, sc);
5459 else if (swappiness > MAX_SWAPPINESS)
5460 goto done;
5461
5462 switch (cmd) {
5463 case '+':
5464 err = run_aging(lruvec, seq, swappiness, opt);
5465 break;
5466 case '-':
5467 err = run_eviction(lruvec, seq, sc, swappiness, opt);
5468 break;
5469 }
5470 done:
5471 mem_cgroup_put(memcg);
5472
5473 return err;
5474 }
5475
5476 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_write(struct file * file,const char __user * src,size_t len,loff_t * pos)5477 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5478 size_t len, loff_t *pos)
5479 {
5480 void *buf;
5481 char *cur, *next;
5482 unsigned int flags;
5483 struct blk_plug plug;
5484 int err = -EINVAL;
5485 struct scan_control sc = {
5486 .may_writepage = true,
5487 .may_unmap = true,
5488 .may_swap = true,
5489 .reclaim_idx = MAX_NR_ZONES - 1,
5490 .gfp_mask = GFP_KERNEL,
5491 };
5492
5493 buf = kvmalloc(len + 1, GFP_KERNEL);
5494 if (!buf)
5495 return -ENOMEM;
5496
5497 if (copy_from_user(buf, src, len)) {
5498 kvfree(buf);
5499 return -EFAULT;
5500 }
5501
5502 set_task_reclaim_state(current, &sc.reclaim_state);
5503 flags = memalloc_noreclaim_save();
5504 blk_start_plug(&plug);
5505 if (!set_mm_walk(NULL, true)) {
5506 err = -ENOMEM;
5507 goto done;
5508 }
5509
5510 next = buf;
5511 next[len] = '\0';
5512
5513 while ((cur = strsep(&next, ",;\n"))) {
5514 int n;
5515 int end;
5516 char cmd;
5517 unsigned int memcg_id;
5518 unsigned int nid;
5519 unsigned long seq;
5520 unsigned int swappiness = -1;
5521 unsigned long opt = -1;
5522
5523 cur = skip_spaces(cur);
5524 if (!*cur)
5525 continue;
5526
5527 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5528 &seq, &end, &swappiness, &end, &opt, &end);
5529 if (n < 4 || cur[end]) {
5530 err = -EINVAL;
5531 break;
5532 }
5533
5534 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5535 if (err)
5536 break;
5537 }
5538 done:
5539 clear_mm_walk();
5540 blk_finish_plug(&plug);
5541 memalloc_noreclaim_restore(flags);
5542 set_task_reclaim_state(current, NULL);
5543
5544 kvfree(buf);
5545
5546 return err ? : len;
5547 }
5548
lru_gen_seq_open(struct inode * inode,struct file * file)5549 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5550 {
5551 return seq_open(file, &lru_gen_seq_ops);
5552 }
5553
5554 static const struct file_operations lru_gen_rw_fops = {
5555 .open = lru_gen_seq_open,
5556 .read = seq_read,
5557 .write = lru_gen_seq_write,
5558 .llseek = seq_lseek,
5559 .release = seq_release,
5560 };
5561
5562 static const struct file_operations lru_gen_ro_fops = {
5563 .open = lru_gen_seq_open,
5564 .read = seq_read,
5565 .llseek = seq_lseek,
5566 .release = seq_release,
5567 };
5568
5569 /******************************************************************************
5570 * initialization
5571 ******************************************************************************/
5572
lru_gen_init_pgdat(struct pglist_data * pgdat)5573 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5574 {
5575 int i, j;
5576
5577 spin_lock_init(&pgdat->memcg_lru.lock);
5578
5579 for (i = 0; i < MEMCG_NR_GENS; i++) {
5580 for (j = 0; j < MEMCG_NR_BINS; j++)
5581 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5582 }
5583 }
5584
lru_gen_init_lruvec(struct lruvec * lruvec)5585 void lru_gen_init_lruvec(struct lruvec *lruvec)
5586 {
5587 int i;
5588 int gen, type, zone;
5589 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5590 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5591
5592 lrugen->max_seq = MIN_NR_GENS + 1;
5593 lrugen->enabled = lru_gen_enabled();
5594
5595 for (i = 0; i <= MIN_NR_GENS + 1; i++)
5596 lrugen->timestamps[i] = jiffies;
5597
5598 for_each_gen_type_zone(gen, type, zone)
5599 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5600
5601 if (mm_state)
5602 mm_state->seq = MIN_NR_GENS;
5603 }
5604
5605 #ifdef CONFIG_MEMCG
5606
lru_gen_init_memcg(struct mem_cgroup * memcg)5607 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5608 {
5609 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5610
5611 if (!mm_list)
5612 return;
5613
5614 INIT_LIST_HEAD(&mm_list->fifo);
5615 spin_lock_init(&mm_list->lock);
5616 }
5617
lru_gen_exit_memcg(struct mem_cgroup * memcg)5618 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5619 {
5620 int i;
5621 int nid;
5622 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5623
5624 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5625
5626 for_each_node(nid) {
5627 struct lruvec *lruvec = get_lruvec(memcg, nid);
5628 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5629
5630 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5631 sizeof(lruvec->lrugen.nr_pages)));
5632
5633 lruvec->lrugen.list.next = LIST_POISON1;
5634
5635 if (!mm_state)
5636 continue;
5637
5638 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5639 bitmap_free(mm_state->filters[i]);
5640 mm_state->filters[i] = NULL;
5641 }
5642 }
5643 }
5644
5645 #endif /* CONFIG_MEMCG */
5646
init_lru_gen(void)5647 static int __init init_lru_gen(void)
5648 {
5649 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5650 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5651
5652 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5653 pr_err("lru_gen: failed to create sysfs group\n");
5654
5655 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5656 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5657
5658 return 0;
5659 };
5660 late_initcall(init_lru_gen);
5661
5662 #else /* !CONFIG_LRU_GEN */
5663
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)5664 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5665 {
5666 BUILD_BUG();
5667 }
5668
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5669 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5670 {
5671 BUILD_BUG();
5672 }
5673
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5674 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5675 {
5676 BUILD_BUG();
5677 }
5678
5679 #endif /* CONFIG_LRU_GEN */
5680
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5681 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5682 {
5683 unsigned long nr[NR_LRU_LISTS];
5684 unsigned long targets[NR_LRU_LISTS];
5685 unsigned long nr_to_scan;
5686 enum lru_list lru;
5687 unsigned long nr_reclaimed = 0;
5688 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5689 bool proportional_reclaim;
5690 struct blk_plug plug;
5691
5692 if (lru_gen_enabled() && !root_reclaim(sc)) {
5693 lru_gen_shrink_lruvec(lruvec, sc);
5694 return;
5695 }
5696
5697 get_scan_count(lruvec, sc, nr);
5698
5699 /* Record the original scan target for proportional adjustments later */
5700 memcpy(targets, nr, sizeof(nr));
5701
5702 /*
5703 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5704 * event that can occur when there is little memory pressure e.g.
5705 * multiple streaming readers/writers. Hence, we do not abort scanning
5706 * when the requested number of pages are reclaimed when scanning at
5707 * DEF_PRIORITY on the assumption that the fact we are direct
5708 * reclaiming implies that kswapd is not keeping up and it is best to
5709 * do a batch of work at once. For memcg reclaim one check is made to
5710 * abort proportional reclaim if either the file or anon lru has already
5711 * dropped to zero at the first pass.
5712 */
5713 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5714 sc->priority == DEF_PRIORITY);
5715
5716 blk_start_plug(&plug);
5717 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5718 nr[LRU_INACTIVE_FILE]) {
5719 unsigned long nr_anon, nr_file, percentage;
5720 unsigned long nr_scanned;
5721
5722 for_each_evictable_lru(lru) {
5723 if (nr[lru]) {
5724 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5725 nr[lru] -= nr_to_scan;
5726
5727 nr_reclaimed += shrink_list(lru, nr_to_scan,
5728 lruvec, sc);
5729 }
5730 }
5731
5732 cond_resched();
5733
5734 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5735 continue;
5736
5737 /*
5738 * For kswapd and memcg, reclaim at least the number of pages
5739 * requested. Ensure that the anon and file LRUs are scanned
5740 * proportionally what was requested by get_scan_count(). We
5741 * stop reclaiming one LRU and reduce the amount scanning
5742 * proportional to the original scan target.
5743 */
5744 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5745 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5746
5747 /*
5748 * It's just vindictive to attack the larger once the smaller
5749 * has gone to zero. And given the way we stop scanning the
5750 * smaller below, this makes sure that we only make one nudge
5751 * towards proportionality once we've got nr_to_reclaim.
5752 */
5753 if (!nr_file || !nr_anon)
5754 break;
5755
5756 if (nr_file > nr_anon) {
5757 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5758 targets[LRU_ACTIVE_ANON] + 1;
5759 lru = LRU_BASE;
5760 percentage = nr_anon * 100 / scan_target;
5761 } else {
5762 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5763 targets[LRU_ACTIVE_FILE] + 1;
5764 lru = LRU_FILE;
5765 percentage = nr_file * 100 / scan_target;
5766 }
5767
5768 /* Stop scanning the smaller of the LRU */
5769 nr[lru] = 0;
5770 nr[lru + LRU_ACTIVE] = 0;
5771
5772 /*
5773 * Recalculate the other LRU scan count based on its original
5774 * scan target and the percentage scanning already complete
5775 */
5776 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5777 nr_scanned = targets[lru] - nr[lru];
5778 nr[lru] = targets[lru] * (100 - percentage) / 100;
5779 nr[lru] -= min(nr[lru], nr_scanned);
5780
5781 lru += LRU_ACTIVE;
5782 nr_scanned = targets[lru] - nr[lru];
5783 nr[lru] = targets[lru] * (100 - percentage) / 100;
5784 nr[lru] -= min(nr[lru], nr_scanned);
5785 }
5786 blk_finish_plug(&plug);
5787 sc->nr_reclaimed += nr_reclaimed;
5788
5789 /*
5790 * Even if we did not try to evict anon pages at all, we want to
5791 * rebalance the anon lru active/inactive ratio.
5792 */
5793 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5794 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5795 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5796 sc, LRU_ACTIVE_ANON);
5797 }
5798
5799 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)5800 static bool in_reclaim_compaction(struct scan_control *sc)
5801 {
5802 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5803 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5804 sc->priority < DEF_PRIORITY - 2))
5805 return true;
5806
5807 return false;
5808 }
5809
5810 /*
5811 * Reclaim/compaction is used for high-order allocation requests. It reclaims
5812 * order-0 pages before compacting the zone. should_continue_reclaim() returns
5813 * true if more pages should be reclaimed such that when the page allocator
5814 * calls try_to_compact_pages() that it will have enough free pages to succeed.
5815 * It will give up earlier than that if there is difficulty reclaiming pages.
5816 */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)5817 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5818 unsigned long nr_reclaimed,
5819 struct scan_control *sc)
5820 {
5821 unsigned long pages_for_compaction;
5822 unsigned long inactive_lru_pages;
5823 int z;
5824
5825 /* If not in reclaim/compaction mode, stop */
5826 if (!in_reclaim_compaction(sc))
5827 return false;
5828
5829 /*
5830 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5831 * number of pages that were scanned. This will return to the caller
5832 * with the risk reclaim/compaction and the resulting allocation attempt
5833 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5834 * allocations through requiring that the full LRU list has been scanned
5835 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5836 * scan, but that approximation was wrong, and there were corner cases
5837 * where always a non-zero amount of pages were scanned.
5838 */
5839 if (!nr_reclaimed)
5840 return false;
5841
5842 /* If compaction would go ahead or the allocation would succeed, stop */
5843 for (z = 0; z <= sc->reclaim_idx; z++) {
5844 struct zone *zone = &pgdat->node_zones[z];
5845 if (!managed_zone(zone))
5846 continue;
5847
5848 /* Allocation can already succeed, nothing to do */
5849 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
5850 sc->reclaim_idx, 0))
5851 return false;
5852
5853 if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
5854 return false;
5855 }
5856
5857 /*
5858 * If we have not reclaimed enough pages for compaction and the
5859 * inactive lists are large enough, continue reclaiming
5860 */
5861 pages_for_compaction = compact_gap(sc->order);
5862 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5863 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5864 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5865
5866 return inactive_lru_pages > pages_for_compaction;
5867 }
5868
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)5869 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5870 {
5871 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5872 struct mem_cgroup_reclaim_cookie reclaim = {
5873 .pgdat = pgdat,
5874 };
5875 struct mem_cgroup_reclaim_cookie *partial = &reclaim;
5876 struct mem_cgroup *memcg;
5877
5878 /*
5879 * In most cases, direct reclaimers can do partial walks
5880 * through the cgroup tree, using an iterator state that
5881 * persists across invocations. This strikes a balance between
5882 * fairness and allocation latency.
5883 *
5884 * For kswapd, reliable forward progress is more important
5885 * than a quick return to idle. Always do full walks.
5886 */
5887 if (current_is_kswapd() || sc->memcg_full_walk)
5888 partial = NULL;
5889
5890 memcg = mem_cgroup_iter(target_memcg, NULL, partial);
5891 do {
5892 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5893 unsigned long reclaimed;
5894 unsigned long scanned;
5895
5896 /*
5897 * This loop can become CPU-bound when target memcgs
5898 * aren't eligible for reclaim - either because they
5899 * don't have any reclaimable pages, or because their
5900 * memory is explicitly protected. Avoid soft lockups.
5901 */
5902 cond_resched();
5903
5904 mem_cgroup_calculate_protection(target_memcg, memcg);
5905
5906 if (mem_cgroup_below_min(target_memcg, memcg)) {
5907 /*
5908 * Hard protection.
5909 * If there is no reclaimable memory, OOM.
5910 */
5911 continue;
5912 } else if (mem_cgroup_below_low(target_memcg, memcg)) {
5913 /*
5914 * Soft protection.
5915 * Respect the protection only as long as
5916 * there is an unprotected supply
5917 * of reclaimable memory from other cgroups.
5918 */
5919 if (!sc->memcg_low_reclaim) {
5920 sc->memcg_low_skipped = 1;
5921 continue;
5922 }
5923 memcg_memory_event(memcg, MEMCG_LOW);
5924 }
5925
5926 reclaimed = sc->nr_reclaimed;
5927 scanned = sc->nr_scanned;
5928
5929 shrink_lruvec(lruvec, sc);
5930
5931 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
5932 sc->priority);
5933
5934 /* Record the group's reclaim efficiency */
5935 if (!sc->proactive)
5936 vmpressure(sc->gfp_mask, memcg, false,
5937 sc->nr_scanned - scanned,
5938 sc->nr_reclaimed - reclaimed);
5939
5940 /* If partial walks are allowed, bail once goal is reached */
5941 if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) {
5942 mem_cgroup_iter_break(target_memcg, memcg);
5943 break;
5944 }
5945 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial)));
5946 }
5947
shrink_node(pg_data_t * pgdat,struct scan_control * sc)5948 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
5949 {
5950 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
5951 struct lruvec *target_lruvec;
5952 bool reclaimable = false;
5953
5954 if (lru_gen_enabled() && root_reclaim(sc)) {
5955 memset(&sc->nr, 0, sizeof(sc->nr));
5956 lru_gen_shrink_node(pgdat, sc);
5957 return;
5958 }
5959
5960 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
5961
5962 again:
5963 memset(&sc->nr, 0, sizeof(sc->nr));
5964
5965 nr_reclaimed = sc->nr_reclaimed;
5966 nr_scanned = sc->nr_scanned;
5967
5968 prepare_scan_control(pgdat, sc);
5969
5970 shrink_node_memcgs(pgdat, sc);
5971
5972 flush_reclaim_state(sc);
5973
5974 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
5975
5976 /* Record the subtree's reclaim efficiency */
5977 if (!sc->proactive)
5978 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
5979 sc->nr_scanned - nr_scanned, nr_node_reclaimed);
5980
5981 if (nr_node_reclaimed)
5982 reclaimable = true;
5983
5984 if (current_is_kswapd()) {
5985 /*
5986 * If reclaim is isolating dirty pages under writeback,
5987 * it implies that the long-lived page allocation rate
5988 * is exceeding the page laundering rate. Either the
5989 * global limits are not being effective at throttling
5990 * processes due to the page distribution throughout
5991 * zones or there is heavy usage of a slow backing
5992 * device. The only option is to throttle from reclaim
5993 * context which is not ideal as there is no guarantee
5994 * the dirtying process is throttled in the same way
5995 * balance_dirty_pages() manages.
5996 *
5997 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
5998 * count the number of pages under pages flagged for
5999 * immediate reclaim and stall if any are encountered
6000 * in the nr_immediate check below.
6001 */
6002 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6003 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6004
6005 /* Allow kswapd to start writing pages during reclaim.*/
6006 if (sc->nr.unqueued_dirty &&
6007 sc->nr.unqueued_dirty == sc->nr.file_taken)
6008 set_bit(PGDAT_DIRTY, &pgdat->flags);
6009
6010 /*
6011 * If kswapd scans pages marked for immediate
6012 * reclaim and under writeback (nr_immediate), it
6013 * implies that pages are cycling through the LRU
6014 * faster than they are written so forcibly stall
6015 * until some pages complete writeback.
6016 */
6017 if (sc->nr.immediate)
6018 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6019 }
6020
6021 /*
6022 * Tag a node/memcg as congested if all the dirty pages were marked
6023 * for writeback and immediate reclaim (counted in nr.congested).
6024 *
6025 * Legacy memcg will stall in page writeback so avoid forcibly
6026 * stalling in reclaim_throttle().
6027 */
6028 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6029 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6030 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6031
6032 if (current_is_kswapd())
6033 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6034 }
6035
6036 /*
6037 * Stall direct reclaim for IO completions if the lruvec is
6038 * node is congested. Allow kswapd to continue until it
6039 * starts encountering unqueued dirty pages or cycling through
6040 * the LRU too quickly.
6041 */
6042 if (!current_is_kswapd() && current_may_throttle() &&
6043 !sc->hibernation_mode &&
6044 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6045 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6046 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6047
6048 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6049 goto again;
6050
6051 /*
6052 * Kswapd gives up on balancing particular nodes after too
6053 * many failures to reclaim anything from them and goes to
6054 * sleep. On reclaim progress, reset the failure counter. A
6055 * successful direct reclaim run will revive a dormant kswapd.
6056 */
6057 if (reclaimable)
6058 pgdat->kswapd_failures = 0;
6059 else if (sc->cache_trim_mode)
6060 sc->cache_trim_mode_failed = 1;
6061 }
6062
6063 /*
6064 * Returns true if compaction should go ahead for a costly-order request, or
6065 * the allocation would already succeed without compaction. Return false if we
6066 * should reclaim first.
6067 */
compaction_ready(struct zone * zone,struct scan_control * sc)6068 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6069 {
6070 unsigned long watermark;
6071
6072 if (!gfp_compaction_allowed(sc->gfp_mask))
6073 return false;
6074
6075 /* Allocation can already succeed, nothing to do */
6076 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6077 sc->reclaim_idx, 0))
6078 return true;
6079
6080 /* Compaction cannot yet proceed. Do reclaim. */
6081 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6082 return false;
6083
6084 /*
6085 * Compaction is already possible, but it takes time to run and there
6086 * are potentially other callers using the pages just freed. So proceed
6087 * with reclaim to make a buffer of free pages available to give
6088 * compaction a reasonable chance of completing and allocating the page.
6089 * Note that we won't actually reclaim the whole buffer in one attempt
6090 * as the target watermark in should_continue_reclaim() is lower. But if
6091 * we are already above the high+gap watermark, don't reclaim at all.
6092 */
6093 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6094
6095 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6096 }
6097
consider_reclaim_throttle(pg_data_t * pgdat,struct scan_control * sc)6098 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6099 {
6100 /*
6101 * If reclaim is making progress greater than 12% efficiency then
6102 * wake all the NOPROGRESS throttled tasks.
6103 */
6104 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6105 wait_queue_head_t *wqh;
6106
6107 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6108 if (waitqueue_active(wqh))
6109 wake_up(wqh);
6110
6111 return;
6112 }
6113
6114 /*
6115 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6116 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6117 * under writeback and marked for immediate reclaim at the tail of the
6118 * LRU.
6119 */
6120 if (current_is_kswapd() || cgroup_reclaim(sc))
6121 return;
6122
6123 /* Throttle if making no progress at high prioities. */
6124 if (sc->priority == 1 && !sc->nr_reclaimed)
6125 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6126 }
6127
6128 /*
6129 * This is the direct reclaim path, for page-allocating processes. We only
6130 * try to reclaim pages from zones which will satisfy the caller's allocation
6131 * request.
6132 *
6133 * If a zone is deemed to be full of pinned pages then just give it a light
6134 * scan then give up on it.
6135 */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)6136 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6137 {
6138 struct zoneref *z;
6139 struct zone *zone;
6140 unsigned long nr_soft_reclaimed;
6141 unsigned long nr_soft_scanned;
6142 gfp_t orig_mask;
6143 pg_data_t *last_pgdat = NULL;
6144 pg_data_t *first_pgdat = NULL;
6145
6146 /*
6147 * If the number of buffer_heads in the machine exceeds the maximum
6148 * allowed level, force direct reclaim to scan the highmem zone as
6149 * highmem pages could be pinning lowmem pages storing buffer_heads
6150 */
6151 orig_mask = sc->gfp_mask;
6152 if (buffer_heads_over_limit) {
6153 sc->gfp_mask |= __GFP_HIGHMEM;
6154 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6155 }
6156
6157 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6158 sc->reclaim_idx, sc->nodemask) {
6159 /*
6160 * Take care memory controller reclaiming has small influence
6161 * to global LRU.
6162 */
6163 if (!cgroup_reclaim(sc)) {
6164 if (!cpuset_zone_allowed(zone,
6165 GFP_KERNEL | __GFP_HARDWALL))
6166 continue;
6167
6168 /*
6169 * If we already have plenty of memory free for
6170 * compaction in this zone, don't free any more.
6171 * Even though compaction is invoked for any
6172 * non-zero order, only frequent costly order
6173 * reclamation is disruptive enough to become a
6174 * noticeable problem, like transparent huge
6175 * page allocations.
6176 */
6177 if (IS_ENABLED(CONFIG_COMPACTION) &&
6178 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6179 compaction_ready(zone, sc)) {
6180 sc->compaction_ready = true;
6181 continue;
6182 }
6183
6184 /*
6185 * Shrink each node in the zonelist once. If the
6186 * zonelist is ordered by zone (not the default) then a
6187 * node may be shrunk multiple times but in that case
6188 * the user prefers lower zones being preserved.
6189 */
6190 if (zone->zone_pgdat == last_pgdat)
6191 continue;
6192
6193 /*
6194 * This steals pages from memory cgroups over softlimit
6195 * and returns the number of reclaimed pages and
6196 * scanned pages. This works for global memory pressure
6197 * and balancing, not for a memcg's limit.
6198 */
6199 nr_soft_scanned = 0;
6200 nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat,
6201 sc->order, sc->gfp_mask,
6202 &nr_soft_scanned);
6203 sc->nr_reclaimed += nr_soft_reclaimed;
6204 sc->nr_scanned += nr_soft_scanned;
6205 /* need some check for avoid more shrink_zone() */
6206 }
6207
6208 if (!first_pgdat)
6209 first_pgdat = zone->zone_pgdat;
6210
6211 /* See comment about same check for global reclaim above */
6212 if (zone->zone_pgdat == last_pgdat)
6213 continue;
6214 last_pgdat = zone->zone_pgdat;
6215 shrink_node(zone->zone_pgdat, sc);
6216 }
6217
6218 if (first_pgdat)
6219 consider_reclaim_throttle(first_pgdat, sc);
6220
6221 /*
6222 * Restore to original mask to avoid the impact on the caller if we
6223 * promoted it to __GFP_HIGHMEM.
6224 */
6225 sc->gfp_mask = orig_mask;
6226 }
6227
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)6228 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6229 {
6230 struct lruvec *target_lruvec;
6231 unsigned long refaults;
6232
6233 if (lru_gen_enabled())
6234 return;
6235
6236 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6237 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6238 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6239 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6240 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6241 }
6242
6243 /*
6244 * This is the main entry point to direct page reclaim.
6245 *
6246 * If a full scan of the inactive list fails to free enough memory then we
6247 * are "out of memory" and something needs to be killed.
6248 *
6249 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6250 * high - the zone may be full of dirty or under-writeback pages, which this
6251 * caller can't do much about. We kick the writeback threads and take explicit
6252 * naps in the hope that some of these pages can be written. But if the
6253 * allocating task holds filesystem locks which prevent writeout this might not
6254 * work, and the allocation attempt will fail.
6255 *
6256 * returns: 0, if no pages reclaimed
6257 * else, the number of pages reclaimed
6258 */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)6259 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6260 struct scan_control *sc)
6261 {
6262 int initial_priority = sc->priority;
6263 pg_data_t *last_pgdat;
6264 struct zoneref *z;
6265 struct zone *zone;
6266 retry:
6267 delayacct_freepages_start();
6268
6269 if (!cgroup_reclaim(sc))
6270 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6271
6272 do {
6273 if (!sc->proactive)
6274 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6275 sc->priority);
6276 sc->nr_scanned = 0;
6277 shrink_zones(zonelist, sc);
6278
6279 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6280 break;
6281
6282 if (sc->compaction_ready)
6283 break;
6284
6285 /*
6286 * If we're getting trouble reclaiming, start doing
6287 * writepage even in laptop mode.
6288 */
6289 if (sc->priority < DEF_PRIORITY - 2)
6290 sc->may_writepage = 1;
6291 } while (--sc->priority >= 0);
6292
6293 last_pgdat = NULL;
6294 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6295 sc->nodemask) {
6296 if (zone->zone_pgdat == last_pgdat)
6297 continue;
6298 last_pgdat = zone->zone_pgdat;
6299
6300 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6301
6302 if (cgroup_reclaim(sc)) {
6303 struct lruvec *lruvec;
6304
6305 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6306 zone->zone_pgdat);
6307 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6308 }
6309 }
6310
6311 delayacct_freepages_end();
6312
6313 if (sc->nr_reclaimed)
6314 return sc->nr_reclaimed;
6315
6316 /* Aborted reclaim to try compaction? don't OOM, then */
6317 if (sc->compaction_ready)
6318 return 1;
6319
6320 /*
6321 * In most cases, direct reclaimers can do partial walks
6322 * through the cgroup tree to meet the reclaim goal while
6323 * keeping latency low. Since the iterator state is shared
6324 * among all direct reclaim invocations (to retain fairness
6325 * among cgroups), though, high concurrency can result in
6326 * individual threads not seeing enough cgroups to make
6327 * meaningful forward progress. Avoid false OOMs in this case.
6328 */
6329 if (!sc->memcg_full_walk) {
6330 sc->priority = initial_priority;
6331 sc->memcg_full_walk = 1;
6332 goto retry;
6333 }
6334
6335 /*
6336 * We make inactive:active ratio decisions based on the node's
6337 * composition of memory, but a restrictive reclaim_idx or a
6338 * memory.low cgroup setting can exempt large amounts of
6339 * memory from reclaim. Neither of which are very common, so
6340 * instead of doing costly eligibility calculations of the
6341 * entire cgroup subtree up front, we assume the estimates are
6342 * good, and retry with forcible deactivation if that fails.
6343 */
6344 if (sc->skipped_deactivate) {
6345 sc->priority = initial_priority;
6346 sc->force_deactivate = 1;
6347 sc->skipped_deactivate = 0;
6348 goto retry;
6349 }
6350
6351 /* Untapped cgroup reserves? Don't OOM, retry. */
6352 if (sc->memcg_low_skipped) {
6353 sc->priority = initial_priority;
6354 sc->force_deactivate = 0;
6355 sc->memcg_low_reclaim = 1;
6356 sc->memcg_low_skipped = 0;
6357 goto retry;
6358 }
6359
6360 return 0;
6361 }
6362
allow_direct_reclaim(pg_data_t * pgdat)6363 static bool allow_direct_reclaim(pg_data_t *pgdat)
6364 {
6365 struct zone *zone;
6366 unsigned long pfmemalloc_reserve = 0;
6367 unsigned long free_pages = 0;
6368 int i;
6369 bool wmark_ok;
6370
6371 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6372 return true;
6373
6374 for (i = 0; i <= ZONE_NORMAL; i++) {
6375 zone = &pgdat->node_zones[i];
6376 if (!managed_zone(zone))
6377 continue;
6378
6379 if (!zone_reclaimable_pages(zone))
6380 continue;
6381
6382 pfmemalloc_reserve += min_wmark_pages(zone);
6383 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6384 }
6385
6386 /* If there are no reserves (unexpected config) then do not throttle */
6387 if (!pfmemalloc_reserve)
6388 return true;
6389
6390 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6391
6392 /* kswapd must be awake if processes are being throttled */
6393 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6394 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6395 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6396
6397 wake_up_interruptible(&pgdat->kswapd_wait);
6398 }
6399
6400 return wmark_ok;
6401 }
6402
6403 /*
6404 * Throttle direct reclaimers if backing storage is backed by the network
6405 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6406 * depleted. kswapd will continue to make progress and wake the processes
6407 * when the low watermark is reached.
6408 *
6409 * Returns true if a fatal signal was delivered during throttling. If this
6410 * happens, the page allocator should not consider triggering the OOM killer.
6411 */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)6412 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6413 nodemask_t *nodemask)
6414 {
6415 struct zoneref *z;
6416 struct zone *zone;
6417 pg_data_t *pgdat = NULL;
6418
6419 /*
6420 * Kernel threads should not be throttled as they may be indirectly
6421 * responsible for cleaning pages necessary for reclaim to make forward
6422 * progress. kjournald for example may enter direct reclaim while
6423 * committing a transaction where throttling it could forcing other
6424 * processes to block on log_wait_commit().
6425 */
6426 if (current->flags & PF_KTHREAD)
6427 goto out;
6428
6429 /*
6430 * If a fatal signal is pending, this process should not throttle.
6431 * It should return quickly so it can exit and free its memory
6432 */
6433 if (fatal_signal_pending(current))
6434 goto out;
6435
6436 /*
6437 * Check if the pfmemalloc reserves are ok by finding the first node
6438 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6439 * GFP_KERNEL will be required for allocating network buffers when
6440 * swapping over the network so ZONE_HIGHMEM is unusable.
6441 *
6442 * Throttling is based on the first usable node and throttled processes
6443 * wait on a queue until kswapd makes progress and wakes them. There
6444 * is an affinity then between processes waking up and where reclaim
6445 * progress has been made assuming the process wakes on the same node.
6446 * More importantly, processes running on remote nodes will not compete
6447 * for remote pfmemalloc reserves and processes on different nodes
6448 * should make reasonable progress.
6449 */
6450 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6451 gfp_zone(gfp_mask), nodemask) {
6452 if (zone_idx(zone) > ZONE_NORMAL)
6453 continue;
6454
6455 /* Throttle based on the first usable node */
6456 pgdat = zone->zone_pgdat;
6457 if (allow_direct_reclaim(pgdat))
6458 goto out;
6459 break;
6460 }
6461
6462 /* If no zone was usable by the allocation flags then do not throttle */
6463 if (!pgdat)
6464 goto out;
6465
6466 /* Account for the throttling */
6467 count_vm_event(PGSCAN_DIRECT_THROTTLE);
6468
6469 /*
6470 * If the caller cannot enter the filesystem, it's possible that it
6471 * is due to the caller holding an FS lock or performing a journal
6472 * transaction in the case of a filesystem like ext[3|4]. In this case,
6473 * it is not safe to block on pfmemalloc_wait as kswapd could be
6474 * blocked waiting on the same lock. Instead, throttle for up to a
6475 * second before continuing.
6476 */
6477 if (!(gfp_mask & __GFP_FS))
6478 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6479 allow_direct_reclaim(pgdat), HZ);
6480 else
6481 /* Throttle until kswapd wakes the process */
6482 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6483 allow_direct_reclaim(pgdat));
6484
6485 if (fatal_signal_pending(current))
6486 return true;
6487
6488 out:
6489 return false;
6490 }
6491
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)6492 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6493 gfp_t gfp_mask, nodemask_t *nodemask)
6494 {
6495 unsigned long nr_reclaimed;
6496 struct scan_control sc = {
6497 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6498 .gfp_mask = current_gfp_context(gfp_mask),
6499 .reclaim_idx = gfp_zone(gfp_mask),
6500 .order = order,
6501 .nodemask = nodemask,
6502 .priority = DEF_PRIORITY,
6503 .may_writepage = !laptop_mode,
6504 .may_unmap = 1,
6505 .may_swap = 1,
6506 };
6507
6508 /*
6509 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6510 * Confirm they are large enough for max values.
6511 */
6512 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6513 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6514 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6515
6516 /*
6517 * Do not enter reclaim if fatal signal was delivered while throttled.
6518 * 1 is returned so that the page allocator does not OOM kill at this
6519 * point.
6520 */
6521 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6522 return 1;
6523
6524 set_task_reclaim_state(current, &sc.reclaim_state);
6525 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6526
6527 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6528
6529 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6530 set_task_reclaim_state(current, NULL);
6531
6532 return nr_reclaimed;
6533 }
6534
6535 #ifdef CONFIG_MEMCG
6536
6537 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)6538 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6539 gfp_t gfp_mask, bool noswap,
6540 pg_data_t *pgdat,
6541 unsigned long *nr_scanned)
6542 {
6543 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6544 struct scan_control sc = {
6545 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6546 .target_mem_cgroup = memcg,
6547 .may_writepage = !laptop_mode,
6548 .may_unmap = 1,
6549 .reclaim_idx = MAX_NR_ZONES - 1,
6550 .may_swap = !noswap,
6551 };
6552
6553 WARN_ON_ONCE(!current->reclaim_state);
6554
6555 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6556 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6557
6558 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6559 sc.gfp_mask);
6560
6561 /*
6562 * NOTE: Although we can get the priority field, using it
6563 * here is not a good idea, since it limits the pages we can scan.
6564 * if we don't reclaim here, the shrink_node from balance_pgdat
6565 * will pick up pages from other mem cgroup's as well. We hack
6566 * the priority and make it zero.
6567 */
6568 shrink_lruvec(lruvec, &sc);
6569
6570 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6571
6572 *nr_scanned = sc.nr_scanned;
6573
6574 return sc.nr_reclaimed;
6575 }
6576
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options,int * swappiness)6577 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6578 unsigned long nr_pages,
6579 gfp_t gfp_mask,
6580 unsigned int reclaim_options,
6581 int *swappiness)
6582 {
6583 unsigned long nr_reclaimed;
6584 unsigned int noreclaim_flag;
6585 struct scan_control sc = {
6586 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6587 .proactive_swappiness = swappiness,
6588 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6589 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6590 .reclaim_idx = MAX_NR_ZONES - 1,
6591 .target_mem_cgroup = memcg,
6592 .priority = DEF_PRIORITY,
6593 .may_writepage = !laptop_mode,
6594 .may_unmap = 1,
6595 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6596 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6597 };
6598 /*
6599 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6600 * equal pressure on all the nodes. This is based on the assumption that
6601 * the reclaim does not bail out early.
6602 */
6603 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6604
6605 set_task_reclaim_state(current, &sc.reclaim_state);
6606 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6607 noreclaim_flag = memalloc_noreclaim_save();
6608
6609 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6610
6611 memalloc_noreclaim_restore(noreclaim_flag);
6612 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6613 set_task_reclaim_state(current, NULL);
6614
6615 return nr_reclaimed;
6616 }
6617 #endif
6618
kswapd_age_node(struct pglist_data * pgdat,struct scan_control * sc)6619 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6620 {
6621 struct mem_cgroup *memcg;
6622 struct lruvec *lruvec;
6623
6624 if (lru_gen_enabled()) {
6625 lru_gen_age_node(pgdat, sc);
6626 return;
6627 }
6628
6629 if (!can_age_anon_pages(pgdat, sc))
6630 return;
6631
6632 lruvec = mem_cgroup_lruvec(NULL, pgdat);
6633 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6634 return;
6635
6636 memcg = mem_cgroup_iter(NULL, NULL, NULL);
6637 do {
6638 lruvec = mem_cgroup_lruvec(memcg, pgdat);
6639 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6640 sc, LRU_ACTIVE_ANON);
6641 memcg = mem_cgroup_iter(NULL, memcg, NULL);
6642 } while (memcg);
6643 }
6644
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)6645 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6646 {
6647 int i;
6648 struct zone *zone;
6649
6650 /*
6651 * Check for watermark boosts top-down as the higher zones
6652 * are more likely to be boosted. Both watermarks and boosts
6653 * should not be checked at the same time as reclaim would
6654 * start prematurely when there is no boosting and a lower
6655 * zone is balanced.
6656 */
6657 for (i = highest_zoneidx; i >= 0; i--) {
6658 zone = pgdat->node_zones + i;
6659 if (!managed_zone(zone))
6660 continue;
6661
6662 if (zone->watermark_boost)
6663 return true;
6664 }
6665
6666 return false;
6667 }
6668
6669 /*
6670 * Returns true if there is an eligible zone balanced for the request order
6671 * and highest_zoneidx
6672 */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)6673 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6674 {
6675 int i;
6676 unsigned long mark = -1;
6677 struct zone *zone;
6678
6679 /*
6680 * Check watermarks bottom-up as lower zones are more likely to
6681 * meet watermarks.
6682 */
6683 for (i = 0; i <= highest_zoneidx; i++) {
6684 zone = pgdat->node_zones + i;
6685
6686 if (!managed_zone(zone))
6687 continue;
6688
6689 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6690 mark = promo_wmark_pages(zone);
6691 else
6692 mark = high_wmark_pages(zone);
6693 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6694 return true;
6695 }
6696
6697 /*
6698 * If a node has no managed zone within highest_zoneidx, it does not
6699 * need balancing by definition. This can happen if a zone-restricted
6700 * allocation tries to wake a remote kswapd.
6701 */
6702 if (mark == -1)
6703 return true;
6704
6705 return false;
6706 }
6707
6708 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)6709 static void clear_pgdat_congested(pg_data_t *pgdat)
6710 {
6711 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6712
6713 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6714 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6715 clear_bit(PGDAT_DIRTY, &pgdat->flags);
6716 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6717 }
6718
6719 /*
6720 * Prepare kswapd for sleeping. This verifies that there are no processes
6721 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6722 *
6723 * Returns true if kswapd is ready to sleep
6724 */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)6725 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6726 int highest_zoneidx)
6727 {
6728 /*
6729 * The throttled processes are normally woken up in balance_pgdat() as
6730 * soon as allow_direct_reclaim() is true. But there is a potential
6731 * race between when kswapd checks the watermarks and a process gets
6732 * throttled. There is also a potential race if processes get
6733 * throttled, kswapd wakes, a large process exits thereby balancing the
6734 * zones, which causes kswapd to exit balance_pgdat() before reaching
6735 * the wake up checks. If kswapd is going to sleep, no process should
6736 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6737 * the wake up is premature, processes will wake kswapd and get
6738 * throttled again. The difference from wake ups in balance_pgdat() is
6739 * that here we are under prepare_to_wait().
6740 */
6741 if (waitqueue_active(&pgdat->pfmemalloc_wait))
6742 wake_up_all(&pgdat->pfmemalloc_wait);
6743
6744 /* Hopeless node, leave it to direct reclaim */
6745 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6746 return true;
6747
6748 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6749 clear_pgdat_congested(pgdat);
6750 return true;
6751 }
6752
6753 return false;
6754 }
6755
6756 /*
6757 * kswapd shrinks a node of pages that are at or below the highest usable
6758 * zone that is currently unbalanced.
6759 *
6760 * Returns true if kswapd scanned at least the requested number of pages to
6761 * reclaim or if the lack of progress was due to pages under writeback.
6762 * This is used to determine if the scanning priority needs to be raised.
6763 */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)6764 static bool kswapd_shrink_node(pg_data_t *pgdat,
6765 struct scan_control *sc)
6766 {
6767 struct zone *zone;
6768 int z;
6769 unsigned long nr_reclaimed = sc->nr_reclaimed;
6770
6771 /* Reclaim a number of pages proportional to the number of zones */
6772 sc->nr_to_reclaim = 0;
6773 for (z = 0; z <= sc->reclaim_idx; z++) {
6774 zone = pgdat->node_zones + z;
6775 if (!managed_zone(zone))
6776 continue;
6777
6778 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6779 }
6780
6781 /*
6782 * Historically care was taken to put equal pressure on all zones but
6783 * now pressure is applied based on node LRU order.
6784 */
6785 shrink_node(pgdat, sc);
6786
6787 /*
6788 * Fragmentation may mean that the system cannot be rebalanced for
6789 * high-order allocations. If twice the allocation size has been
6790 * reclaimed then recheck watermarks only at order-0 to prevent
6791 * excessive reclaim. Assume that a process requested a high-order
6792 * can direct reclaim/compact.
6793 */
6794 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6795 sc->order = 0;
6796
6797 /* account for progress from mm_account_reclaimed_pages() */
6798 return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
6799 }
6800
6801 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6802 static inline void
update_reclaim_active(pg_data_t * pgdat,int highest_zoneidx,bool active)6803 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6804 {
6805 int i;
6806 struct zone *zone;
6807
6808 for (i = 0; i <= highest_zoneidx; i++) {
6809 zone = pgdat->node_zones + i;
6810
6811 if (!managed_zone(zone))
6812 continue;
6813
6814 if (active)
6815 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6816 else
6817 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6818 }
6819 }
6820
6821 static inline void
set_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6822 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6823 {
6824 update_reclaim_active(pgdat, highest_zoneidx, true);
6825 }
6826
6827 static inline void
clear_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6828 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6829 {
6830 update_reclaim_active(pgdat, highest_zoneidx, false);
6831 }
6832
6833 /*
6834 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6835 * that are eligible for use by the caller until at least one zone is
6836 * balanced.
6837 *
6838 * Returns the order kswapd finished reclaiming at.
6839 *
6840 * kswapd scans the zones in the highmem->normal->dma direction. It skips
6841 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6842 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6843 * or lower is eligible for reclaim until at least one usable zone is
6844 * balanced.
6845 */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)6846 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6847 {
6848 int i;
6849 unsigned long nr_soft_reclaimed;
6850 unsigned long nr_soft_scanned;
6851 unsigned long pflags;
6852 unsigned long nr_boost_reclaim;
6853 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6854 bool boosted;
6855 struct zone *zone;
6856 struct scan_control sc = {
6857 .gfp_mask = GFP_KERNEL,
6858 .order = order,
6859 .may_unmap = 1,
6860 };
6861
6862 set_task_reclaim_state(current, &sc.reclaim_state);
6863 psi_memstall_enter(&pflags);
6864 __fs_reclaim_acquire(_THIS_IP_);
6865
6866 count_vm_event(PAGEOUTRUN);
6867
6868 /*
6869 * Account for the reclaim boost. Note that the zone boost is left in
6870 * place so that parallel allocations that are near the watermark will
6871 * stall or direct reclaim until kswapd is finished.
6872 */
6873 nr_boost_reclaim = 0;
6874 for (i = 0; i <= highest_zoneidx; i++) {
6875 zone = pgdat->node_zones + i;
6876 if (!managed_zone(zone))
6877 continue;
6878
6879 nr_boost_reclaim += zone->watermark_boost;
6880 zone_boosts[i] = zone->watermark_boost;
6881 }
6882 boosted = nr_boost_reclaim;
6883
6884 restart:
6885 set_reclaim_active(pgdat, highest_zoneidx);
6886 sc.priority = DEF_PRIORITY;
6887 do {
6888 unsigned long nr_reclaimed = sc.nr_reclaimed;
6889 bool raise_priority = true;
6890 bool balanced;
6891 bool ret;
6892 bool was_frozen;
6893
6894 sc.reclaim_idx = highest_zoneidx;
6895
6896 /*
6897 * If the number of buffer_heads exceeds the maximum allowed
6898 * then consider reclaiming from all zones. This has a dual
6899 * purpose -- on 64-bit systems it is expected that
6900 * buffer_heads are stripped during active rotation. On 32-bit
6901 * systems, highmem pages can pin lowmem memory and shrinking
6902 * buffers can relieve lowmem pressure. Reclaim may still not
6903 * go ahead if all eligible zones for the original allocation
6904 * request are balanced to avoid excessive reclaim from kswapd.
6905 */
6906 if (buffer_heads_over_limit) {
6907 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
6908 zone = pgdat->node_zones + i;
6909 if (!managed_zone(zone))
6910 continue;
6911
6912 sc.reclaim_idx = i;
6913 break;
6914 }
6915 }
6916
6917 /*
6918 * If the pgdat is imbalanced then ignore boosting and preserve
6919 * the watermarks for a later time and restart. Note that the
6920 * zone watermarks will be still reset at the end of balancing
6921 * on the grounds that the normal reclaim should be enough to
6922 * re-evaluate if boosting is required when kswapd next wakes.
6923 */
6924 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
6925 if (!balanced && nr_boost_reclaim) {
6926 nr_boost_reclaim = 0;
6927 goto restart;
6928 }
6929
6930 /*
6931 * If boosting is not active then only reclaim if there are no
6932 * eligible zones. Note that sc.reclaim_idx is not used as
6933 * buffer_heads_over_limit may have adjusted it.
6934 */
6935 if (!nr_boost_reclaim && balanced)
6936 goto out;
6937
6938 /* Limit the priority of boosting to avoid reclaim writeback */
6939 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
6940 raise_priority = false;
6941
6942 /*
6943 * Do not writeback or swap pages for boosted reclaim. The
6944 * intent is to relieve pressure not issue sub-optimal IO
6945 * from reclaim context. If no pages are reclaimed, the
6946 * reclaim will be aborted.
6947 */
6948 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
6949 sc.may_swap = !nr_boost_reclaim;
6950
6951 /*
6952 * Do some background aging, to give pages a chance to be
6953 * referenced before reclaiming. All pages are rotated
6954 * regardless of classzone as this is about consistent aging.
6955 */
6956 kswapd_age_node(pgdat, &sc);
6957
6958 /*
6959 * If we're getting trouble reclaiming, start doing writepage
6960 * even in laptop mode.
6961 */
6962 if (sc.priority < DEF_PRIORITY - 2)
6963 sc.may_writepage = 1;
6964
6965 /* Call soft limit reclaim before calling shrink_node. */
6966 sc.nr_scanned = 0;
6967 nr_soft_scanned = 0;
6968 nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order,
6969 sc.gfp_mask, &nr_soft_scanned);
6970 sc.nr_reclaimed += nr_soft_reclaimed;
6971
6972 /*
6973 * There should be no need to raise the scanning priority if
6974 * enough pages are already being scanned that that high
6975 * watermark would be met at 100% efficiency.
6976 */
6977 if (kswapd_shrink_node(pgdat, &sc))
6978 raise_priority = false;
6979
6980 /*
6981 * If the low watermark is met there is no need for processes
6982 * to be throttled on pfmemalloc_wait as they should not be
6983 * able to safely make forward progress. Wake them
6984 */
6985 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
6986 allow_direct_reclaim(pgdat))
6987 wake_up_all(&pgdat->pfmemalloc_wait);
6988
6989 /* Check if kswapd should be suspending */
6990 __fs_reclaim_release(_THIS_IP_);
6991 ret = kthread_freezable_should_stop(&was_frozen);
6992 __fs_reclaim_acquire(_THIS_IP_);
6993 if (was_frozen || ret)
6994 break;
6995
6996 /*
6997 * Raise priority if scanning rate is too low or there was no
6998 * progress in reclaiming pages
6999 */
7000 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7001 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7002
7003 /*
7004 * If reclaim made no progress for a boost, stop reclaim as
7005 * IO cannot be queued and it could be an infinite loop in
7006 * extreme circumstances.
7007 */
7008 if (nr_boost_reclaim && !nr_reclaimed)
7009 break;
7010
7011 if (raise_priority || !nr_reclaimed)
7012 sc.priority--;
7013 } while (sc.priority >= 1);
7014
7015 /*
7016 * Restart only if it went through the priority loop all the way,
7017 * but cache_trim_mode didn't work.
7018 */
7019 if (!sc.nr_reclaimed && sc.priority < 1 &&
7020 !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
7021 sc.no_cache_trim_mode = 1;
7022 goto restart;
7023 }
7024
7025 if (!sc.nr_reclaimed)
7026 pgdat->kswapd_failures++;
7027
7028 out:
7029 clear_reclaim_active(pgdat, highest_zoneidx);
7030
7031 /* If reclaim was boosted, account for the reclaim done in this pass */
7032 if (boosted) {
7033 unsigned long flags;
7034
7035 for (i = 0; i <= highest_zoneidx; i++) {
7036 if (!zone_boosts[i])
7037 continue;
7038
7039 /* Increments are under the zone lock */
7040 zone = pgdat->node_zones + i;
7041 spin_lock_irqsave(&zone->lock, flags);
7042 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7043 spin_unlock_irqrestore(&zone->lock, flags);
7044 }
7045
7046 /*
7047 * As there is now likely space, wakeup kcompact to defragment
7048 * pageblocks.
7049 */
7050 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7051 }
7052
7053 snapshot_refaults(NULL, pgdat);
7054 __fs_reclaim_release(_THIS_IP_);
7055 psi_memstall_leave(&pflags);
7056 set_task_reclaim_state(current, NULL);
7057
7058 /*
7059 * Return the order kswapd stopped reclaiming at as
7060 * prepare_kswapd_sleep() takes it into account. If another caller
7061 * entered the allocator slow path while kswapd was awake, order will
7062 * remain at the higher level.
7063 */
7064 return sc.order;
7065 }
7066
7067 /*
7068 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7069 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7070 * not a valid index then either kswapd runs for first time or kswapd couldn't
7071 * sleep after previous reclaim attempt (node is still unbalanced). In that
7072 * case return the zone index of the previous kswapd reclaim cycle.
7073 */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)7074 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7075 enum zone_type prev_highest_zoneidx)
7076 {
7077 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7078
7079 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7080 }
7081
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)7082 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7083 unsigned int highest_zoneidx)
7084 {
7085 long remaining = 0;
7086 DEFINE_WAIT(wait);
7087
7088 if (freezing(current) || kthread_should_stop())
7089 return;
7090
7091 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7092
7093 /*
7094 * Try to sleep for a short interval. Note that kcompactd will only be
7095 * woken if it is possible to sleep for a short interval. This is
7096 * deliberate on the assumption that if reclaim cannot keep an
7097 * eligible zone balanced that it's also unlikely that compaction will
7098 * succeed.
7099 */
7100 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7101 /*
7102 * Compaction records what page blocks it recently failed to
7103 * isolate pages from and skips them in the future scanning.
7104 * When kswapd is going to sleep, it is reasonable to assume
7105 * that pages and compaction may succeed so reset the cache.
7106 */
7107 reset_isolation_suitable(pgdat);
7108
7109 /*
7110 * We have freed the memory, now we should compact it to make
7111 * allocation of the requested order possible.
7112 */
7113 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7114
7115 remaining = schedule_timeout(HZ/10);
7116
7117 /*
7118 * If woken prematurely then reset kswapd_highest_zoneidx and
7119 * order. The values will either be from a wakeup request or
7120 * the previous request that slept prematurely.
7121 */
7122 if (remaining) {
7123 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7124 kswapd_highest_zoneidx(pgdat,
7125 highest_zoneidx));
7126
7127 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7128 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7129 }
7130
7131 finish_wait(&pgdat->kswapd_wait, &wait);
7132 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7133 }
7134
7135 /*
7136 * After a short sleep, check if it was a premature sleep. If not, then
7137 * go fully to sleep until explicitly woken up.
7138 */
7139 if (!remaining &&
7140 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7141 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7142
7143 /*
7144 * vmstat counters are not perfectly accurate and the estimated
7145 * value for counters such as NR_FREE_PAGES can deviate from the
7146 * true value by nr_online_cpus * threshold. To avoid the zone
7147 * watermarks being breached while under pressure, we reduce the
7148 * per-cpu vmstat threshold while kswapd is awake and restore
7149 * them before going back to sleep.
7150 */
7151 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7152
7153 if (!kthread_should_stop())
7154 schedule();
7155
7156 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7157 } else {
7158 if (remaining)
7159 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7160 else
7161 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7162 }
7163 finish_wait(&pgdat->kswapd_wait, &wait);
7164 }
7165
7166 /*
7167 * The background pageout daemon, started as a kernel thread
7168 * from the init process.
7169 *
7170 * This basically trickles out pages so that we have _some_
7171 * free memory available even if there is no other activity
7172 * that frees anything up. This is needed for things like routing
7173 * etc, where we otherwise might have all activity going on in
7174 * asynchronous contexts that cannot page things out.
7175 *
7176 * If there are applications that are active memory-allocators
7177 * (most normal use), this basically shouldn't matter.
7178 */
kswapd(void * p)7179 static int kswapd(void *p)
7180 {
7181 unsigned int alloc_order, reclaim_order;
7182 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7183 pg_data_t *pgdat = (pg_data_t *)p;
7184 struct task_struct *tsk = current;
7185 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7186
7187 if (!cpumask_empty(cpumask))
7188 set_cpus_allowed_ptr(tsk, cpumask);
7189
7190 /*
7191 * Tell the memory management that we're a "memory allocator",
7192 * and that if we need more memory we should get access to it
7193 * regardless (see "__alloc_pages()"). "kswapd" should
7194 * never get caught in the normal page freeing logic.
7195 *
7196 * (Kswapd normally doesn't need memory anyway, but sometimes
7197 * you need a small amount of memory in order to be able to
7198 * page out something else, and this flag essentially protects
7199 * us from recursively trying to free more memory as we're
7200 * trying to free the first piece of memory in the first place).
7201 */
7202 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7203 set_freezable();
7204
7205 WRITE_ONCE(pgdat->kswapd_order, 0);
7206 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7207 atomic_set(&pgdat->nr_writeback_throttled, 0);
7208 for ( ; ; ) {
7209 bool was_frozen;
7210
7211 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7212 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7213 highest_zoneidx);
7214
7215 kswapd_try_sleep:
7216 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7217 highest_zoneidx);
7218
7219 /* Read the new order and highest_zoneidx */
7220 alloc_order = READ_ONCE(pgdat->kswapd_order);
7221 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7222 highest_zoneidx);
7223 WRITE_ONCE(pgdat->kswapd_order, 0);
7224 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7225
7226 if (kthread_freezable_should_stop(&was_frozen))
7227 break;
7228
7229 /*
7230 * We can speed up thawing tasks if we don't call balance_pgdat
7231 * after returning from the refrigerator
7232 */
7233 if (was_frozen)
7234 continue;
7235
7236 /*
7237 * Reclaim begins at the requested order but if a high-order
7238 * reclaim fails then kswapd falls back to reclaiming for
7239 * order-0. If that happens, kswapd will consider sleeping
7240 * for the order it finished reclaiming at (reclaim_order)
7241 * but kcompactd is woken to compact for the original
7242 * request (alloc_order).
7243 */
7244 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7245 alloc_order);
7246 reclaim_order = balance_pgdat(pgdat, alloc_order,
7247 highest_zoneidx);
7248 if (reclaim_order < alloc_order)
7249 goto kswapd_try_sleep;
7250 }
7251
7252 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7253
7254 return 0;
7255 }
7256
7257 /*
7258 * A zone is low on free memory or too fragmented for high-order memory. If
7259 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7260 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7261 * has failed or is not needed, still wake up kcompactd if only compaction is
7262 * needed.
7263 */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)7264 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7265 enum zone_type highest_zoneidx)
7266 {
7267 pg_data_t *pgdat;
7268 enum zone_type curr_idx;
7269
7270 if (!managed_zone(zone))
7271 return;
7272
7273 if (!cpuset_zone_allowed(zone, gfp_flags))
7274 return;
7275
7276 pgdat = zone->zone_pgdat;
7277 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7278
7279 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7280 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7281
7282 if (READ_ONCE(pgdat->kswapd_order) < order)
7283 WRITE_ONCE(pgdat->kswapd_order, order);
7284
7285 if (!waitqueue_active(&pgdat->kswapd_wait))
7286 return;
7287
7288 /* Hopeless node, leave it to direct reclaim if possible */
7289 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7290 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7291 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7292 /*
7293 * There may be plenty of free memory available, but it's too
7294 * fragmented for high-order allocations. Wake up kcompactd
7295 * and rely on compaction_suitable() to determine if it's
7296 * needed. If it fails, it will defer subsequent attempts to
7297 * ratelimit its work.
7298 */
7299 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7300 wakeup_kcompactd(pgdat, order, highest_zoneidx);
7301 return;
7302 }
7303
7304 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7305 gfp_flags);
7306 wake_up_interruptible(&pgdat->kswapd_wait);
7307 }
7308
7309 #ifdef CONFIG_HIBERNATION
7310 /*
7311 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7312 * freed pages.
7313 *
7314 * Rather than trying to age LRUs the aim is to preserve the overall
7315 * LRU order by reclaiming preferentially
7316 * inactive > active > active referenced > active mapped
7317 */
shrink_all_memory(unsigned long nr_to_reclaim)7318 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7319 {
7320 struct scan_control sc = {
7321 .nr_to_reclaim = nr_to_reclaim,
7322 .gfp_mask = GFP_HIGHUSER_MOVABLE,
7323 .reclaim_idx = MAX_NR_ZONES - 1,
7324 .priority = DEF_PRIORITY,
7325 .may_writepage = 1,
7326 .may_unmap = 1,
7327 .may_swap = 1,
7328 .hibernation_mode = 1,
7329 };
7330 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7331 unsigned long nr_reclaimed;
7332 unsigned int noreclaim_flag;
7333
7334 fs_reclaim_acquire(sc.gfp_mask);
7335 noreclaim_flag = memalloc_noreclaim_save();
7336 set_task_reclaim_state(current, &sc.reclaim_state);
7337
7338 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7339
7340 set_task_reclaim_state(current, NULL);
7341 memalloc_noreclaim_restore(noreclaim_flag);
7342 fs_reclaim_release(sc.gfp_mask);
7343
7344 return nr_reclaimed;
7345 }
7346 #endif /* CONFIG_HIBERNATION */
7347
7348 /*
7349 * This kswapd start function will be called by init and node-hot-add.
7350 */
kswapd_run(int nid)7351 void __meminit kswapd_run(int nid)
7352 {
7353 pg_data_t *pgdat = NODE_DATA(nid);
7354
7355 pgdat_kswapd_lock(pgdat);
7356 if (!pgdat->kswapd) {
7357 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7358 if (IS_ERR(pgdat->kswapd)) {
7359 /* failure at boot is fatal */
7360 pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7361 nid, PTR_ERR(pgdat->kswapd));
7362 BUG_ON(system_state < SYSTEM_RUNNING);
7363 pgdat->kswapd = NULL;
7364 }
7365 }
7366 pgdat_kswapd_unlock(pgdat);
7367 }
7368
7369 /*
7370 * Called by memory hotplug when all memory in a node is offlined. Caller must
7371 * be holding mem_hotplug_begin/done().
7372 */
kswapd_stop(int nid)7373 void __meminit kswapd_stop(int nid)
7374 {
7375 pg_data_t *pgdat = NODE_DATA(nid);
7376 struct task_struct *kswapd;
7377
7378 pgdat_kswapd_lock(pgdat);
7379 kswapd = pgdat->kswapd;
7380 if (kswapd) {
7381 kthread_stop(kswapd);
7382 pgdat->kswapd = NULL;
7383 }
7384 pgdat_kswapd_unlock(pgdat);
7385 }
7386
kswapd_init(void)7387 static int __init kswapd_init(void)
7388 {
7389 int nid;
7390
7391 swap_setup();
7392 for_each_node_state(nid, N_MEMORY)
7393 kswapd_run(nid);
7394 return 0;
7395 }
7396
7397 module_init(kswapd_init)
7398
7399 #ifdef CONFIG_NUMA
7400 /*
7401 * Node reclaim mode
7402 *
7403 * If non-zero call node_reclaim when the number of free pages falls below
7404 * the watermarks.
7405 */
7406 int node_reclaim_mode __read_mostly;
7407
7408 /*
7409 * Priority for NODE_RECLAIM. This determines the fraction of pages
7410 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7411 * a zone.
7412 */
7413 #define NODE_RECLAIM_PRIORITY 4
7414
7415 /*
7416 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7417 * occur.
7418 */
7419 int sysctl_min_unmapped_ratio = 1;
7420
7421 /*
7422 * If the number of slab pages in a zone grows beyond this percentage then
7423 * slab reclaim needs to occur.
7424 */
7425 int sysctl_min_slab_ratio = 5;
7426
node_unmapped_file_pages(struct pglist_data * pgdat)7427 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7428 {
7429 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7430 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7431 node_page_state(pgdat, NR_ACTIVE_FILE);
7432
7433 /*
7434 * It's possible for there to be more file mapped pages than
7435 * accounted for by the pages on the file LRU lists because
7436 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7437 */
7438 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7439 }
7440
7441 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)7442 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7443 {
7444 unsigned long nr_pagecache_reclaimable;
7445 unsigned long delta = 0;
7446
7447 /*
7448 * If RECLAIM_UNMAP is set, then all file pages are considered
7449 * potentially reclaimable. Otherwise, we have to worry about
7450 * pages like swapcache and node_unmapped_file_pages() provides
7451 * a better estimate
7452 */
7453 if (node_reclaim_mode & RECLAIM_UNMAP)
7454 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7455 else
7456 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7457
7458 /* If we can't clean pages, remove dirty pages from consideration */
7459 if (!(node_reclaim_mode & RECLAIM_WRITE))
7460 delta += node_page_state(pgdat, NR_FILE_DIRTY);
7461
7462 /* Watch for any possible underflows due to delta */
7463 if (unlikely(delta > nr_pagecache_reclaimable))
7464 delta = nr_pagecache_reclaimable;
7465
7466 return nr_pagecache_reclaimable - delta;
7467 }
7468
7469 /*
7470 * Try to free up some pages from this node through reclaim.
7471 */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7472 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7473 {
7474 /* Minimum pages needed in order to stay on node */
7475 const unsigned long nr_pages = 1 << order;
7476 struct task_struct *p = current;
7477 unsigned int noreclaim_flag;
7478 struct scan_control sc = {
7479 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7480 .gfp_mask = current_gfp_context(gfp_mask),
7481 .order = order,
7482 .priority = NODE_RECLAIM_PRIORITY,
7483 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7484 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7485 .may_swap = 1,
7486 .reclaim_idx = gfp_zone(gfp_mask),
7487 };
7488 unsigned long pflags;
7489
7490 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7491 sc.gfp_mask);
7492
7493 cond_resched();
7494 psi_memstall_enter(&pflags);
7495 delayacct_freepages_start();
7496 fs_reclaim_acquire(sc.gfp_mask);
7497 /*
7498 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7499 */
7500 noreclaim_flag = memalloc_noreclaim_save();
7501 set_task_reclaim_state(p, &sc.reclaim_state);
7502
7503 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7504 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7505 /*
7506 * Free memory by calling shrink node with increasing
7507 * priorities until we have enough memory freed.
7508 */
7509 do {
7510 shrink_node(pgdat, &sc);
7511 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7512 }
7513
7514 set_task_reclaim_state(p, NULL);
7515 memalloc_noreclaim_restore(noreclaim_flag);
7516 fs_reclaim_release(sc.gfp_mask);
7517 psi_memstall_leave(&pflags);
7518 delayacct_freepages_end();
7519
7520 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7521
7522 return sc.nr_reclaimed >= nr_pages;
7523 }
7524
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7525 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7526 {
7527 int ret;
7528
7529 /*
7530 * Node reclaim reclaims unmapped file backed pages and
7531 * slab pages if we are over the defined limits.
7532 *
7533 * A small portion of unmapped file backed pages is needed for
7534 * file I/O otherwise pages read by file I/O will be immediately
7535 * thrown out if the node is overallocated. So we do not reclaim
7536 * if less than a specified percentage of the node is used by
7537 * unmapped file backed pages.
7538 */
7539 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7540 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7541 pgdat->min_slab_pages)
7542 return NODE_RECLAIM_FULL;
7543
7544 /*
7545 * Do not scan if the allocation should not be delayed.
7546 */
7547 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7548 return NODE_RECLAIM_NOSCAN;
7549
7550 /*
7551 * Only run node reclaim on the local node or on nodes that do not
7552 * have associated processors. This will favor the local processor
7553 * over remote processors and spread off node memory allocations
7554 * as wide as possible.
7555 */
7556 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7557 return NODE_RECLAIM_NOSCAN;
7558
7559 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7560 return NODE_RECLAIM_NOSCAN;
7561
7562 ret = __node_reclaim(pgdat, gfp_mask, order);
7563 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7564
7565 if (ret)
7566 count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS);
7567 else
7568 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7569
7570 return ret;
7571 }
7572 #endif
7573
7574 /**
7575 * check_move_unevictable_folios - Move evictable folios to appropriate zone
7576 * lru list
7577 * @fbatch: Batch of lru folios to check.
7578 *
7579 * Checks folios for evictability, if an evictable folio is in the unevictable
7580 * lru list, moves it to the appropriate evictable lru list. This function
7581 * should be only used for lru folios.
7582 */
check_move_unevictable_folios(struct folio_batch * fbatch)7583 void check_move_unevictable_folios(struct folio_batch *fbatch)
7584 {
7585 struct lruvec *lruvec = NULL;
7586 int pgscanned = 0;
7587 int pgrescued = 0;
7588 int i;
7589
7590 for (i = 0; i < fbatch->nr; i++) {
7591 struct folio *folio = fbatch->folios[i];
7592 int nr_pages = folio_nr_pages(folio);
7593
7594 pgscanned += nr_pages;
7595
7596 /* block memcg migration while the folio moves between lrus */
7597 if (!folio_test_clear_lru(folio))
7598 continue;
7599
7600 lruvec = folio_lruvec_relock_irq(folio, lruvec);
7601 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7602 lruvec_del_folio(lruvec, folio);
7603 folio_clear_unevictable(folio);
7604 lruvec_add_folio(lruvec, folio);
7605 pgrescued += nr_pages;
7606 }
7607 folio_set_lru(folio);
7608 }
7609
7610 if (lruvec) {
7611 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7612 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7613 unlock_page_lruvec_irq(lruvec);
7614 } else if (pgscanned) {
7615 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7616 }
7617 }
7618 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7619