1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Linux VM pressure 4 * 5 * Copyright 2012 Linaro Ltd. 6 * Anton Vorontsov <anton.vorontsov@linaro.org> 7 * 8 * Based on ideas from Andrew Morton, David Rientjes, KOSAKI Motohiro, 9 * Leonid Moiseichuk, Mel Gorman, Minchan Kim and Pekka Enberg. 10 */ 11 12 #include <linux/cgroup.h> 13 #include <linux/fs.h> 14 #include <linux/log2.h> 15 #include <linux/sched.h> 16 #include <linux/mm.h> 17 #include <linux/vmstat.h> 18 #include <linux/eventfd.h> 19 #include <linux/slab.h> 20 #include <linux/swap.h> 21 #include <linux/printk.h> 22 #include <linux/vmpressure.h> 23 24 /* 25 * The window size (vmpressure_win) is the number of scanned pages before 26 * we try to analyze scanned/reclaimed ratio. So the window is used as a 27 * rate-limit tunable for the "low" level notification, and also for 28 * averaging the ratio for medium/critical levels. Using small window 29 * sizes can cause lot of false positives, but too big window size will 30 * delay the notifications. 31 * 32 * As the vmscan reclaimer logic works with chunks which are multiple of 33 * SWAP_CLUSTER_MAX, it makes sense to use it for the window size as well. 34 * 35 * TODO: Make the window size depend on machine size, as we do for vmstat 36 * thresholds. Currently we set it to 512 pages (2MB for 4KB pages). 37 */ 38 static const unsigned long vmpressure_win = SWAP_CLUSTER_MAX * 16; 39 40 /* 41 * These thresholds are used when we account memory pressure through 42 * scanned/reclaimed ratio. The current values were chosen empirically. In 43 * essence, they are percents: the higher the value, the more number 44 * unsuccessful reclaims there were. 45 */ 46 static const unsigned int vmpressure_level_med = 60; 47 static const unsigned int vmpressure_level_critical = 95; 48 49 /* 50 * When there are too little pages left to scan, vmpressure() may miss the 51 * critical pressure as number of pages will be less than "window size". 52 * However, in that case the vmscan priority will raise fast as the 53 * reclaimer will try to scan LRUs more deeply. 54 * 55 * The vmscan logic considers these special priorities: 56 * 57 * prio == DEF_PRIORITY (12): reclaimer starts with that value 58 * prio <= DEF_PRIORITY - 2 : kswapd becomes somewhat overwhelmed 59 * prio == 0 : close to OOM, kernel scans every page in an lru 60 * 61 * Any value in this range is acceptable for this tunable (i.e. from 12 to 62 * 0). Current value for the vmpressure_level_critical_prio is chosen 63 * empirically, but the number, in essence, means that we consider 64 * critical level when scanning depth is ~10% of the lru size (vmscan 65 * scans 'lru_size >> prio' pages, so it is actually 12.5%, or one 66 * eights). 67 */ 68 static const unsigned int vmpressure_level_critical_prio = ilog2(100 / 10); 69 70 static struct vmpressure *work_to_vmpressure(struct work_struct *work) 71 { 72 return container_of(work, struct vmpressure, work); 73 } 74 75 static struct vmpressure *vmpressure_parent(struct vmpressure *vmpr) 76 { 77 struct mem_cgroup *memcg = vmpressure_to_memcg(vmpr); 78 79 memcg = parent_mem_cgroup(memcg); 80 if (!memcg) 81 return NULL; 82 return memcg_to_vmpressure(memcg); 83 } 84 85 enum vmpressure_levels { 86 VMPRESSURE_LOW = 0, 87 VMPRESSURE_MEDIUM, 88 VMPRESSURE_CRITICAL, 89 VMPRESSURE_NUM_LEVELS, 90 }; 91 92 enum vmpressure_modes { 93 VMPRESSURE_NO_PASSTHROUGH = 0, 94 VMPRESSURE_HIERARCHY, 95 VMPRESSURE_LOCAL, 96 VMPRESSURE_NUM_MODES, 97 }; 98 99 static const char * const vmpressure_str_levels[] = { 100 [VMPRESSURE_LOW] = "low", 101 [VMPRESSURE_MEDIUM] = "medium", 102 [VMPRESSURE_CRITICAL] = "critical", 103 }; 104 105 static const char * const vmpressure_str_modes[] = { 106 [VMPRESSURE_NO_PASSTHROUGH] = "default", 107 [VMPRESSURE_HIERARCHY] = "hierarchy", 108 [VMPRESSURE_LOCAL] = "local", 109 }; 110 111 static enum vmpressure_levels vmpressure_level(unsigned long pressure) 112 { 113 if (pressure >= vmpressure_level_critical) 114 return VMPRESSURE_CRITICAL; 115 else if (pressure >= vmpressure_level_med) 116 return VMPRESSURE_MEDIUM; 117 return VMPRESSURE_LOW; 118 } 119 120 static enum vmpressure_levels vmpressure_calc_level(unsigned long scanned, 121 unsigned long reclaimed) 122 { 123 unsigned long scale = scanned + reclaimed; 124 unsigned long pressure = 0; 125 126 /* 127 * reclaimed can be greater than scanned for things such as reclaimed 128 * slab pages. shrink_node() just adds reclaimed pages without a 129 * related increment to scanned pages. 130 */ 131 if (reclaimed >= scanned) 132 goto out; 133 /* 134 * We calculate the ratio (in percents) of how many pages were 135 * scanned vs. reclaimed in a given time frame (window). Note that 136 * time is in VM reclaimer's "ticks", i.e. number of pages 137 * scanned. This makes it possible to set desired reaction time 138 * and serves as a ratelimit. 139 */ 140 pressure = scale - (reclaimed * scale / scanned); 141 pressure = pressure * 100 / scale; 142 143 out: 144 pr_debug("%s: %3lu (s: %lu r: %lu)\n", __func__, pressure, 145 scanned, reclaimed); 146 147 return vmpressure_level(pressure); 148 } 149 150 struct vmpressure_event { 151 struct eventfd_ctx *efd; 152 enum vmpressure_levels level; 153 enum vmpressure_modes mode; 154 struct list_head node; 155 }; 156 157 static bool vmpressure_event(struct vmpressure *vmpr, 158 const enum vmpressure_levels level, 159 bool ancestor, bool signalled) 160 { 161 struct vmpressure_event *ev; 162 bool ret = false; 163 164 mutex_lock(&vmpr->events_lock); 165 list_for_each_entry(ev, &vmpr->events, node) { 166 if (ancestor && ev->mode == VMPRESSURE_LOCAL) 167 continue; 168 if (signalled && ev->mode == VMPRESSURE_NO_PASSTHROUGH) 169 continue; 170 if (level < ev->level) 171 continue; 172 eventfd_signal(ev->efd); 173 ret = true; 174 } 175 mutex_unlock(&vmpr->events_lock); 176 177 return ret; 178 } 179 180 static void vmpressure_work_fn(struct work_struct *work) 181 { 182 struct vmpressure *vmpr = work_to_vmpressure(work); 183 unsigned long scanned; 184 unsigned long reclaimed; 185 enum vmpressure_levels level; 186 bool ancestor = false; 187 bool signalled = false; 188 189 spin_lock(&vmpr->sr_lock); 190 /* 191 * Several contexts might be calling vmpressure(), so it is 192 * possible that the work was rescheduled again before the old 193 * work context cleared the counters. In that case we will run 194 * just after the old work returns, but then scanned might be zero 195 * here. No need for any locks here since we don't care if 196 * vmpr->reclaimed is in sync. 197 */ 198 scanned = vmpr->tree_scanned; 199 if (!scanned) { 200 spin_unlock(&vmpr->sr_lock); 201 return; 202 } 203 204 reclaimed = vmpr->tree_reclaimed; 205 vmpr->tree_scanned = 0; 206 vmpr->tree_reclaimed = 0; 207 spin_unlock(&vmpr->sr_lock); 208 209 level = vmpressure_calc_level(scanned, reclaimed); 210 211 do { 212 if (vmpressure_event(vmpr, level, ancestor, signalled)) 213 signalled = true; 214 ancestor = true; 215 } while ((vmpr = vmpressure_parent(vmpr))); 216 } 217 218 /** 219 * vmpressure() - Account memory pressure through scanned/reclaimed ratio 220 * @gfp: reclaimer's gfp mask 221 * @memcg: cgroup memory controller handle 222 * @tree: legacy subtree mode 223 * @scanned: number of pages scanned 224 * @reclaimed: number of pages reclaimed 225 * 226 * This function should be called from the vmscan reclaim path to account 227 * "instantaneous" memory pressure (scanned/reclaimed ratio). The raw 228 * pressure index is then further refined and averaged over time. 229 * 230 * If @tree is set, vmpressure is in traditional userspace reporting 231 * mode: @memcg is considered the pressure root and userspace is 232 * notified of the entire subtree's reclaim efficiency. 233 * 234 * If @tree is not set, reclaim efficiency is recorded for @memcg, and 235 * only in-kernel users are notified. 236 * 237 * This function does not return any value. 238 */ 239 void vmpressure(gfp_t gfp, struct mem_cgroup *memcg, bool tree, 240 unsigned long scanned, unsigned long reclaimed) 241 { 242 struct vmpressure *vmpr; 243 244 if (mem_cgroup_disabled()) 245 return; 246 247 /* 248 * The in-kernel users only care about the reclaim efficiency 249 * for this @memcg rather than the whole subtree, and there 250 * isn't and won't be any in-kernel user in a legacy cgroup. 251 */ 252 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !tree) 253 return; 254 255 vmpr = memcg_to_vmpressure(memcg); 256 257 /* 258 * Here we only want to account pressure that userland is able to 259 * help us with. For example, suppose that DMA zone is under 260 * pressure; if we notify userland about that kind of pressure, 261 * then it will be mostly a waste as it will trigger unnecessary 262 * freeing of memory by userland (since userland is more likely to 263 * have HIGHMEM/MOVABLE pages instead of the DMA fallback). That 264 * is why we include only movable, highmem and FS/IO pages. 265 * Indirect reclaim (kswapd) sets sc->gfp_mask to GFP_KERNEL, so 266 * we account it too. 267 */ 268 if (!(gfp & (__GFP_HIGHMEM | __GFP_MOVABLE | __GFP_IO | __GFP_FS))) 269 return; 270 271 /* 272 * If we got here with no pages scanned, then that is an indicator 273 * that reclaimer was unable to find any shrinkable LRUs at the 274 * current scanning depth. But it does not mean that we should 275 * report the critical pressure, yet. If the scanning priority 276 * (scanning depth) goes too high (deep), we will be notified 277 * through vmpressure_prio(). But so far, keep calm. 278 */ 279 if (!scanned) 280 return; 281 282 if (tree) { 283 spin_lock(&vmpr->sr_lock); 284 scanned = vmpr->tree_scanned += scanned; 285 vmpr->tree_reclaimed += reclaimed; 286 spin_unlock(&vmpr->sr_lock); 287 288 if (scanned < vmpressure_win) 289 return; 290 schedule_work(&vmpr->work); 291 } else { 292 enum vmpressure_levels level; 293 294 /* For now, no users for root-level efficiency */ 295 if (!memcg || mem_cgroup_is_root(memcg)) 296 return; 297 298 spin_lock(&vmpr->sr_lock); 299 scanned = vmpr->scanned += scanned; 300 reclaimed = vmpr->reclaimed += reclaimed; 301 if (scanned < vmpressure_win) { 302 spin_unlock(&vmpr->sr_lock); 303 return; 304 } 305 vmpr->scanned = vmpr->reclaimed = 0; 306 spin_unlock(&vmpr->sr_lock); 307 308 level = vmpressure_calc_level(scanned, reclaimed); 309 310 if (level > VMPRESSURE_LOW) { 311 /* 312 * Let the socket buffer allocator know that 313 * we are having trouble reclaiming LRU pages. 314 * 315 * For hysteresis keep the pressure state 316 * asserted for a second in which subsequent 317 * pressure events can occur. 318 */ 319 WRITE_ONCE(memcg->socket_pressure, jiffies + HZ); 320 } 321 } 322 } 323 324 /** 325 * vmpressure_prio() - Account memory pressure through reclaimer priority level 326 * @gfp: reclaimer's gfp mask 327 * @memcg: cgroup memory controller handle 328 * @prio: reclaimer's priority 329 * 330 * This function should be called from the reclaim path every time when 331 * the vmscan's reclaiming priority (scanning depth) changes. 332 * 333 * This function does not return any value. 334 */ 335 void vmpressure_prio(gfp_t gfp, struct mem_cgroup *memcg, int prio) 336 { 337 /* 338 * We only use prio for accounting critical level. For more info 339 * see comment for vmpressure_level_critical_prio variable above. 340 */ 341 if (prio > vmpressure_level_critical_prio) 342 return; 343 344 /* 345 * OK, the prio is below the threshold, updating vmpressure 346 * information before shrinker dives into long shrinking of long 347 * range vmscan. Passing scanned = vmpressure_win, reclaimed = 0 348 * to the vmpressure() basically means that we signal 'critical' 349 * level. 350 */ 351 vmpressure(gfp, memcg, true, vmpressure_win, 0); 352 } 353 354 #define MAX_VMPRESSURE_ARGS_LEN (strlen("critical") + strlen("hierarchy") + 2) 355 356 /** 357 * vmpressure_register_event() - Bind vmpressure notifications to an eventfd 358 * @memcg: memcg that is interested in vmpressure notifications 359 * @eventfd: eventfd context to link notifications with 360 * @args: event arguments (pressure level threshold, optional mode) 361 * 362 * This function associates eventfd context with the vmpressure 363 * infrastructure, so that the notifications will be delivered to the 364 * @eventfd. The @args parameter is a comma-delimited string that denotes a 365 * pressure level threshold (one of vmpressure_str_levels, i.e. "low", "medium", 366 * or "critical") and an optional mode (one of vmpressure_str_modes, i.e. 367 * "hierarchy" or "local"). 368 * 369 * To be used as memcg event method. 370 * 371 * Return: 0 on success, -ENOMEM on memory failure or -EINVAL if @args could 372 * not be parsed. 373 */ 374 int vmpressure_register_event(struct mem_cgroup *memcg, 375 struct eventfd_ctx *eventfd, const char *args) 376 { 377 struct vmpressure *vmpr = memcg_to_vmpressure(memcg); 378 struct vmpressure_event *ev; 379 enum vmpressure_modes mode = VMPRESSURE_NO_PASSTHROUGH; 380 enum vmpressure_levels level; 381 char *spec, *spec_orig; 382 char *token; 383 int ret = 0; 384 385 spec_orig = spec = kstrndup(args, MAX_VMPRESSURE_ARGS_LEN, GFP_KERNEL); 386 if (!spec) 387 return -ENOMEM; 388 389 /* Find required level */ 390 token = strsep(&spec, ","); 391 ret = match_string(vmpressure_str_levels, VMPRESSURE_NUM_LEVELS, token); 392 if (ret < 0) 393 goto out; 394 level = ret; 395 396 /* Find optional mode */ 397 token = strsep(&spec, ","); 398 if (token) { 399 ret = match_string(vmpressure_str_modes, VMPRESSURE_NUM_MODES, token); 400 if (ret < 0) 401 goto out; 402 mode = ret; 403 } 404 405 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 406 if (!ev) { 407 ret = -ENOMEM; 408 goto out; 409 } 410 411 ev->efd = eventfd; 412 ev->level = level; 413 ev->mode = mode; 414 415 mutex_lock(&vmpr->events_lock); 416 list_add(&ev->node, &vmpr->events); 417 mutex_unlock(&vmpr->events_lock); 418 ret = 0; 419 out: 420 kfree(spec_orig); 421 return ret; 422 } 423 424 /** 425 * vmpressure_unregister_event() - Unbind eventfd from vmpressure 426 * @memcg: memcg handle 427 * @eventfd: eventfd context that was used to link vmpressure with the @cg 428 * 429 * This function does internal manipulations to detach the @eventfd from 430 * the vmpressure notifications, and then frees internal resources 431 * associated with the @eventfd (but the @eventfd itself is not freed). 432 * 433 * To be used as memcg event method. 434 */ 435 void vmpressure_unregister_event(struct mem_cgroup *memcg, 436 struct eventfd_ctx *eventfd) 437 { 438 struct vmpressure *vmpr = memcg_to_vmpressure(memcg); 439 struct vmpressure_event *ev; 440 441 mutex_lock(&vmpr->events_lock); 442 list_for_each_entry(ev, &vmpr->events, node) { 443 if (ev->efd != eventfd) 444 continue; 445 list_del(&ev->node); 446 kfree(ev); 447 break; 448 } 449 mutex_unlock(&vmpr->events_lock); 450 } 451 452 /** 453 * vmpressure_init() - Initialize vmpressure control structure 454 * @vmpr: Structure to be initialized 455 * 456 * This function should be called on every allocated vmpressure structure 457 * before any usage. 458 */ 459 void vmpressure_init(struct vmpressure *vmpr) 460 { 461 spin_lock_init(&vmpr->sr_lock); 462 mutex_init(&vmpr->events_lock); 463 INIT_LIST_HEAD(&vmpr->events); 464 INIT_WORK(&vmpr->work, vmpressure_work_fn); 465 } 466 467 /** 468 * vmpressure_cleanup() - shuts down vmpressure control structure 469 * @vmpr: Structure to be cleaned up 470 * 471 * This function should be called before the structure in which it is 472 * embedded is cleaned up. 473 */ 474 void vmpressure_cleanup(struct vmpressure *vmpr) 475 { 476 /* 477 * Make sure there is no pending work before eventfd infrastructure 478 * goes away. 479 */ 480 flush_work(&vmpr->work); 481 } 482