xref: /linux/mm/vmalloc.c (revision f9bff0e31881d03badf191d3b0005839391f5f2b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/uio.h>
37 #include <linux/bitops.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/overflow.h>
40 #include <linux/pgtable.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/vmalloc.h>
48 
49 #include "internal.h"
50 #include "pgalloc-track.h"
51 
52 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
53 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
54 
55 static int __init set_nohugeiomap(char *str)
56 {
57 	ioremap_max_page_shift = PAGE_SHIFT;
58 	return 0;
59 }
60 early_param("nohugeiomap", set_nohugeiomap);
61 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
62 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
63 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
64 
65 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
66 static bool __ro_after_init vmap_allow_huge = true;
67 
68 static int __init set_nohugevmalloc(char *str)
69 {
70 	vmap_allow_huge = false;
71 	return 0;
72 }
73 early_param("nohugevmalloc", set_nohugevmalloc);
74 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
75 static const bool vmap_allow_huge = false;
76 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
77 
78 bool is_vmalloc_addr(const void *x)
79 {
80 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
81 
82 	return addr >= VMALLOC_START && addr < VMALLOC_END;
83 }
84 EXPORT_SYMBOL(is_vmalloc_addr);
85 
86 struct vfree_deferred {
87 	struct llist_head list;
88 	struct work_struct wq;
89 };
90 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
91 
92 /*** Page table manipulation functions ***/
93 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
94 			phys_addr_t phys_addr, pgprot_t prot,
95 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
96 {
97 	pte_t *pte;
98 	u64 pfn;
99 	unsigned long size = PAGE_SIZE;
100 
101 	pfn = phys_addr >> PAGE_SHIFT;
102 	pte = pte_alloc_kernel_track(pmd, addr, mask);
103 	if (!pte)
104 		return -ENOMEM;
105 	do {
106 		BUG_ON(!pte_none(ptep_get(pte)));
107 
108 #ifdef CONFIG_HUGETLB_PAGE
109 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
110 		if (size != PAGE_SIZE) {
111 			pte_t entry = pfn_pte(pfn, prot);
112 
113 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
114 			set_huge_pte_at(&init_mm, addr, pte, entry);
115 			pfn += PFN_DOWN(size);
116 			continue;
117 		}
118 #endif
119 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
120 		pfn++;
121 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
122 	*mask |= PGTBL_PTE_MODIFIED;
123 	return 0;
124 }
125 
126 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
127 			phys_addr_t phys_addr, pgprot_t prot,
128 			unsigned int max_page_shift)
129 {
130 	if (max_page_shift < PMD_SHIFT)
131 		return 0;
132 
133 	if (!arch_vmap_pmd_supported(prot))
134 		return 0;
135 
136 	if ((end - addr) != PMD_SIZE)
137 		return 0;
138 
139 	if (!IS_ALIGNED(addr, PMD_SIZE))
140 		return 0;
141 
142 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
143 		return 0;
144 
145 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
146 		return 0;
147 
148 	return pmd_set_huge(pmd, phys_addr, prot);
149 }
150 
151 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
152 			phys_addr_t phys_addr, pgprot_t prot,
153 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
154 {
155 	pmd_t *pmd;
156 	unsigned long next;
157 
158 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
159 	if (!pmd)
160 		return -ENOMEM;
161 	do {
162 		next = pmd_addr_end(addr, end);
163 
164 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
165 					max_page_shift)) {
166 			*mask |= PGTBL_PMD_MODIFIED;
167 			continue;
168 		}
169 
170 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
171 			return -ENOMEM;
172 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
173 	return 0;
174 }
175 
176 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
177 			phys_addr_t phys_addr, pgprot_t prot,
178 			unsigned int max_page_shift)
179 {
180 	if (max_page_shift < PUD_SHIFT)
181 		return 0;
182 
183 	if (!arch_vmap_pud_supported(prot))
184 		return 0;
185 
186 	if ((end - addr) != PUD_SIZE)
187 		return 0;
188 
189 	if (!IS_ALIGNED(addr, PUD_SIZE))
190 		return 0;
191 
192 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
193 		return 0;
194 
195 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
196 		return 0;
197 
198 	return pud_set_huge(pud, phys_addr, prot);
199 }
200 
201 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
202 			phys_addr_t phys_addr, pgprot_t prot,
203 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
204 {
205 	pud_t *pud;
206 	unsigned long next;
207 
208 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
209 	if (!pud)
210 		return -ENOMEM;
211 	do {
212 		next = pud_addr_end(addr, end);
213 
214 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
215 					max_page_shift)) {
216 			*mask |= PGTBL_PUD_MODIFIED;
217 			continue;
218 		}
219 
220 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
221 					max_page_shift, mask))
222 			return -ENOMEM;
223 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
224 	return 0;
225 }
226 
227 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
228 			phys_addr_t phys_addr, pgprot_t prot,
229 			unsigned int max_page_shift)
230 {
231 	if (max_page_shift < P4D_SHIFT)
232 		return 0;
233 
234 	if (!arch_vmap_p4d_supported(prot))
235 		return 0;
236 
237 	if ((end - addr) != P4D_SIZE)
238 		return 0;
239 
240 	if (!IS_ALIGNED(addr, P4D_SIZE))
241 		return 0;
242 
243 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
244 		return 0;
245 
246 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
247 		return 0;
248 
249 	return p4d_set_huge(p4d, phys_addr, prot);
250 }
251 
252 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
253 			phys_addr_t phys_addr, pgprot_t prot,
254 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
255 {
256 	p4d_t *p4d;
257 	unsigned long next;
258 
259 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
260 	if (!p4d)
261 		return -ENOMEM;
262 	do {
263 		next = p4d_addr_end(addr, end);
264 
265 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
266 					max_page_shift)) {
267 			*mask |= PGTBL_P4D_MODIFIED;
268 			continue;
269 		}
270 
271 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
272 					max_page_shift, mask))
273 			return -ENOMEM;
274 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
275 	return 0;
276 }
277 
278 static int vmap_range_noflush(unsigned long addr, unsigned long end,
279 			phys_addr_t phys_addr, pgprot_t prot,
280 			unsigned int max_page_shift)
281 {
282 	pgd_t *pgd;
283 	unsigned long start;
284 	unsigned long next;
285 	int err;
286 	pgtbl_mod_mask mask = 0;
287 
288 	might_sleep();
289 	BUG_ON(addr >= end);
290 
291 	start = addr;
292 	pgd = pgd_offset_k(addr);
293 	do {
294 		next = pgd_addr_end(addr, end);
295 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
296 					max_page_shift, &mask);
297 		if (err)
298 			break;
299 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
300 
301 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
302 		arch_sync_kernel_mappings(start, end);
303 
304 	return err;
305 }
306 
307 int ioremap_page_range(unsigned long addr, unsigned long end,
308 		phys_addr_t phys_addr, pgprot_t prot)
309 {
310 	int err;
311 
312 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
313 				 ioremap_max_page_shift);
314 	flush_cache_vmap(addr, end);
315 	if (!err)
316 		err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
317 					       ioremap_max_page_shift);
318 	return err;
319 }
320 
321 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
322 			     pgtbl_mod_mask *mask)
323 {
324 	pte_t *pte;
325 
326 	pte = pte_offset_kernel(pmd, addr);
327 	do {
328 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
329 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
330 	} while (pte++, addr += PAGE_SIZE, addr != end);
331 	*mask |= PGTBL_PTE_MODIFIED;
332 }
333 
334 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
335 			     pgtbl_mod_mask *mask)
336 {
337 	pmd_t *pmd;
338 	unsigned long next;
339 	int cleared;
340 
341 	pmd = pmd_offset(pud, addr);
342 	do {
343 		next = pmd_addr_end(addr, end);
344 
345 		cleared = pmd_clear_huge(pmd);
346 		if (cleared || pmd_bad(*pmd))
347 			*mask |= PGTBL_PMD_MODIFIED;
348 
349 		if (cleared)
350 			continue;
351 		if (pmd_none_or_clear_bad(pmd))
352 			continue;
353 		vunmap_pte_range(pmd, addr, next, mask);
354 
355 		cond_resched();
356 	} while (pmd++, addr = next, addr != end);
357 }
358 
359 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
360 			     pgtbl_mod_mask *mask)
361 {
362 	pud_t *pud;
363 	unsigned long next;
364 	int cleared;
365 
366 	pud = pud_offset(p4d, addr);
367 	do {
368 		next = pud_addr_end(addr, end);
369 
370 		cleared = pud_clear_huge(pud);
371 		if (cleared || pud_bad(*pud))
372 			*mask |= PGTBL_PUD_MODIFIED;
373 
374 		if (cleared)
375 			continue;
376 		if (pud_none_or_clear_bad(pud))
377 			continue;
378 		vunmap_pmd_range(pud, addr, next, mask);
379 	} while (pud++, addr = next, addr != end);
380 }
381 
382 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
383 			     pgtbl_mod_mask *mask)
384 {
385 	p4d_t *p4d;
386 	unsigned long next;
387 
388 	p4d = p4d_offset(pgd, addr);
389 	do {
390 		next = p4d_addr_end(addr, end);
391 
392 		p4d_clear_huge(p4d);
393 		if (p4d_bad(*p4d))
394 			*mask |= PGTBL_P4D_MODIFIED;
395 
396 		if (p4d_none_or_clear_bad(p4d))
397 			continue;
398 		vunmap_pud_range(p4d, addr, next, mask);
399 	} while (p4d++, addr = next, addr != end);
400 }
401 
402 /*
403  * vunmap_range_noflush is similar to vunmap_range, but does not
404  * flush caches or TLBs.
405  *
406  * The caller is responsible for calling flush_cache_vmap() before calling
407  * this function, and flush_tlb_kernel_range after it has returned
408  * successfully (and before the addresses are expected to cause a page fault
409  * or be re-mapped for something else, if TLB flushes are being delayed or
410  * coalesced).
411  *
412  * This is an internal function only. Do not use outside mm/.
413  */
414 void __vunmap_range_noflush(unsigned long start, unsigned long end)
415 {
416 	unsigned long next;
417 	pgd_t *pgd;
418 	unsigned long addr = start;
419 	pgtbl_mod_mask mask = 0;
420 
421 	BUG_ON(addr >= end);
422 	pgd = pgd_offset_k(addr);
423 	do {
424 		next = pgd_addr_end(addr, end);
425 		if (pgd_bad(*pgd))
426 			mask |= PGTBL_PGD_MODIFIED;
427 		if (pgd_none_or_clear_bad(pgd))
428 			continue;
429 		vunmap_p4d_range(pgd, addr, next, &mask);
430 	} while (pgd++, addr = next, addr != end);
431 
432 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
433 		arch_sync_kernel_mappings(start, end);
434 }
435 
436 void vunmap_range_noflush(unsigned long start, unsigned long end)
437 {
438 	kmsan_vunmap_range_noflush(start, end);
439 	__vunmap_range_noflush(start, end);
440 }
441 
442 /**
443  * vunmap_range - unmap kernel virtual addresses
444  * @addr: start of the VM area to unmap
445  * @end: end of the VM area to unmap (non-inclusive)
446  *
447  * Clears any present PTEs in the virtual address range, flushes TLBs and
448  * caches. Any subsequent access to the address before it has been re-mapped
449  * is a kernel bug.
450  */
451 void vunmap_range(unsigned long addr, unsigned long end)
452 {
453 	flush_cache_vunmap(addr, end);
454 	vunmap_range_noflush(addr, end);
455 	flush_tlb_kernel_range(addr, end);
456 }
457 
458 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
459 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
460 		pgtbl_mod_mask *mask)
461 {
462 	pte_t *pte;
463 
464 	/*
465 	 * nr is a running index into the array which helps higher level
466 	 * callers keep track of where we're up to.
467 	 */
468 
469 	pte = pte_alloc_kernel_track(pmd, addr, mask);
470 	if (!pte)
471 		return -ENOMEM;
472 	do {
473 		struct page *page = pages[*nr];
474 
475 		if (WARN_ON(!pte_none(ptep_get(pte))))
476 			return -EBUSY;
477 		if (WARN_ON(!page))
478 			return -ENOMEM;
479 		if (WARN_ON(!pfn_valid(page_to_pfn(page))))
480 			return -EINVAL;
481 
482 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
483 		(*nr)++;
484 	} while (pte++, addr += PAGE_SIZE, addr != end);
485 	*mask |= PGTBL_PTE_MODIFIED;
486 	return 0;
487 }
488 
489 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
490 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
491 		pgtbl_mod_mask *mask)
492 {
493 	pmd_t *pmd;
494 	unsigned long next;
495 
496 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
497 	if (!pmd)
498 		return -ENOMEM;
499 	do {
500 		next = pmd_addr_end(addr, end);
501 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
502 			return -ENOMEM;
503 	} while (pmd++, addr = next, addr != end);
504 	return 0;
505 }
506 
507 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
508 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
509 		pgtbl_mod_mask *mask)
510 {
511 	pud_t *pud;
512 	unsigned long next;
513 
514 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
515 	if (!pud)
516 		return -ENOMEM;
517 	do {
518 		next = pud_addr_end(addr, end);
519 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
520 			return -ENOMEM;
521 	} while (pud++, addr = next, addr != end);
522 	return 0;
523 }
524 
525 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
526 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
527 		pgtbl_mod_mask *mask)
528 {
529 	p4d_t *p4d;
530 	unsigned long next;
531 
532 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
533 	if (!p4d)
534 		return -ENOMEM;
535 	do {
536 		next = p4d_addr_end(addr, end);
537 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
538 			return -ENOMEM;
539 	} while (p4d++, addr = next, addr != end);
540 	return 0;
541 }
542 
543 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
544 		pgprot_t prot, struct page **pages)
545 {
546 	unsigned long start = addr;
547 	pgd_t *pgd;
548 	unsigned long next;
549 	int err = 0;
550 	int nr = 0;
551 	pgtbl_mod_mask mask = 0;
552 
553 	BUG_ON(addr >= end);
554 	pgd = pgd_offset_k(addr);
555 	do {
556 		next = pgd_addr_end(addr, end);
557 		if (pgd_bad(*pgd))
558 			mask |= PGTBL_PGD_MODIFIED;
559 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
560 		if (err)
561 			return err;
562 	} while (pgd++, addr = next, addr != end);
563 
564 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
565 		arch_sync_kernel_mappings(start, end);
566 
567 	return 0;
568 }
569 
570 /*
571  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
572  * flush caches.
573  *
574  * The caller is responsible for calling flush_cache_vmap() after this
575  * function returns successfully and before the addresses are accessed.
576  *
577  * This is an internal function only. Do not use outside mm/.
578  */
579 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
580 		pgprot_t prot, struct page **pages, unsigned int page_shift)
581 {
582 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
583 
584 	WARN_ON(page_shift < PAGE_SHIFT);
585 
586 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
587 			page_shift == PAGE_SHIFT)
588 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
589 
590 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
591 		int err;
592 
593 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
594 					page_to_phys(pages[i]), prot,
595 					page_shift);
596 		if (err)
597 			return err;
598 
599 		addr += 1UL << page_shift;
600 	}
601 
602 	return 0;
603 }
604 
605 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
606 		pgprot_t prot, struct page **pages, unsigned int page_shift)
607 {
608 	int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
609 						 page_shift);
610 
611 	if (ret)
612 		return ret;
613 	return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
614 }
615 
616 /**
617  * vmap_pages_range - map pages to a kernel virtual address
618  * @addr: start of the VM area to map
619  * @end: end of the VM area to map (non-inclusive)
620  * @prot: page protection flags to use
621  * @pages: pages to map (always PAGE_SIZE pages)
622  * @page_shift: maximum shift that the pages may be mapped with, @pages must
623  * be aligned and contiguous up to at least this shift.
624  *
625  * RETURNS:
626  * 0 on success, -errno on failure.
627  */
628 static int vmap_pages_range(unsigned long addr, unsigned long end,
629 		pgprot_t prot, struct page **pages, unsigned int page_shift)
630 {
631 	int err;
632 
633 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
634 	flush_cache_vmap(addr, end);
635 	return err;
636 }
637 
638 int is_vmalloc_or_module_addr(const void *x)
639 {
640 	/*
641 	 * ARM, x86-64 and sparc64 put modules in a special place,
642 	 * and fall back on vmalloc() if that fails. Others
643 	 * just put it in the vmalloc space.
644 	 */
645 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
646 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
647 	if (addr >= MODULES_VADDR && addr < MODULES_END)
648 		return 1;
649 #endif
650 	return is_vmalloc_addr(x);
651 }
652 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
653 
654 /*
655  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
656  * return the tail page that corresponds to the base page address, which
657  * matches small vmap mappings.
658  */
659 struct page *vmalloc_to_page(const void *vmalloc_addr)
660 {
661 	unsigned long addr = (unsigned long) vmalloc_addr;
662 	struct page *page = NULL;
663 	pgd_t *pgd = pgd_offset_k(addr);
664 	p4d_t *p4d;
665 	pud_t *pud;
666 	pmd_t *pmd;
667 	pte_t *ptep, pte;
668 
669 	/*
670 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
671 	 * architectures that do not vmalloc module space
672 	 */
673 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
674 
675 	if (pgd_none(*pgd))
676 		return NULL;
677 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
678 		return NULL; /* XXX: no allowance for huge pgd */
679 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
680 		return NULL;
681 
682 	p4d = p4d_offset(pgd, addr);
683 	if (p4d_none(*p4d))
684 		return NULL;
685 	if (p4d_leaf(*p4d))
686 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
687 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
688 		return NULL;
689 
690 	pud = pud_offset(p4d, addr);
691 	if (pud_none(*pud))
692 		return NULL;
693 	if (pud_leaf(*pud))
694 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
695 	if (WARN_ON_ONCE(pud_bad(*pud)))
696 		return NULL;
697 
698 	pmd = pmd_offset(pud, addr);
699 	if (pmd_none(*pmd))
700 		return NULL;
701 	if (pmd_leaf(*pmd))
702 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
703 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
704 		return NULL;
705 
706 	ptep = pte_offset_kernel(pmd, addr);
707 	pte = ptep_get(ptep);
708 	if (pte_present(pte))
709 		page = pte_page(pte);
710 
711 	return page;
712 }
713 EXPORT_SYMBOL(vmalloc_to_page);
714 
715 /*
716  * Map a vmalloc()-space virtual address to the physical page frame number.
717  */
718 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
719 {
720 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
721 }
722 EXPORT_SYMBOL(vmalloc_to_pfn);
723 
724 
725 /*** Global kva allocator ***/
726 
727 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
728 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
729 
730 
731 static DEFINE_SPINLOCK(vmap_area_lock);
732 static DEFINE_SPINLOCK(free_vmap_area_lock);
733 /* Export for kexec only */
734 LIST_HEAD(vmap_area_list);
735 static struct rb_root vmap_area_root = RB_ROOT;
736 static bool vmap_initialized __read_mostly;
737 
738 static struct rb_root purge_vmap_area_root = RB_ROOT;
739 static LIST_HEAD(purge_vmap_area_list);
740 static DEFINE_SPINLOCK(purge_vmap_area_lock);
741 
742 /*
743  * This kmem_cache is used for vmap_area objects. Instead of
744  * allocating from slab we reuse an object from this cache to
745  * make things faster. Especially in "no edge" splitting of
746  * free block.
747  */
748 static struct kmem_cache *vmap_area_cachep;
749 
750 /*
751  * This linked list is used in pair with free_vmap_area_root.
752  * It gives O(1) access to prev/next to perform fast coalescing.
753  */
754 static LIST_HEAD(free_vmap_area_list);
755 
756 /*
757  * This augment red-black tree represents the free vmap space.
758  * All vmap_area objects in this tree are sorted by va->va_start
759  * address. It is used for allocation and merging when a vmap
760  * object is released.
761  *
762  * Each vmap_area node contains a maximum available free block
763  * of its sub-tree, right or left. Therefore it is possible to
764  * find a lowest match of free area.
765  */
766 static struct rb_root free_vmap_area_root = RB_ROOT;
767 
768 /*
769  * Preload a CPU with one object for "no edge" split case. The
770  * aim is to get rid of allocations from the atomic context, thus
771  * to use more permissive allocation masks.
772  */
773 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
774 
775 static __always_inline unsigned long
776 va_size(struct vmap_area *va)
777 {
778 	return (va->va_end - va->va_start);
779 }
780 
781 static __always_inline unsigned long
782 get_subtree_max_size(struct rb_node *node)
783 {
784 	struct vmap_area *va;
785 
786 	va = rb_entry_safe(node, struct vmap_area, rb_node);
787 	return va ? va->subtree_max_size : 0;
788 }
789 
790 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
791 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
792 
793 static void reclaim_and_purge_vmap_areas(void);
794 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
795 static void drain_vmap_area_work(struct work_struct *work);
796 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
797 
798 static atomic_long_t nr_vmalloc_pages;
799 
800 unsigned long vmalloc_nr_pages(void)
801 {
802 	return atomic_long_read(&nr_vmalloc_pages);
803 }
804 
805 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
806 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
807 {
808 	struct vmap_area *va = NULL;
809 	struct rb_node *n = vmap_area_root.rb_node;
810 
811 	addr = (unsigned long)kasan_reset_tag((void *)addr);
812 
813 	while (n) {
814 		struct vmap_area *tmp;
815 
816 		tmp = rb_entry(n, struct vmap_area, rb_node);
817 		if (tmp->va_end > addr) {
818 			va = tmp;
819 			if (tmp->va_start <= addr)
820 				break;
821 
822 			n = n->rb_left;
823 		} else
824 			n = n->rb_right;
825 	}
826 
827 	return va;
828 }
829 
830 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
831 {
832 	struct rb_node *n = root->rb_node;
833 
834 	addr = (unsigned long)kasan_reset_tag((void *)addr);
835 
836 	while (n) {
837 		struct vmap_area *va;
838 
839 		va = rb_entry(n, struct vmap_area, rb_node);
840 		if (addr < va->va_start)
841 			n = n->rb_left;
842 		else if (addr >= va->va_end)
843 			n = n->rb_right;
844 		else
845 			return va;
846 	}
847 
848 	return NULL;
849 }
850 
851 /*
852  * This function returns back addresses of parent node
853  * and its left or right link for further processing.
854  *
855  * Otherwise NULL is returned. In that case all further
856  * steps regarding inserting of conflicting overlap range
857  * have to be declined and actually considered as a bug.
858  */
859 static __always_inline struct rb_node **
860 find_va_links(struct vmap_area *va,
861 	struct rb_root *root, struct rb_node *from,
862 	struct rb_node **parent)
863 {
864 	struct vmap_area *tmp_va;
865 	struct rb_node **link;
866 
867 	if (root) {
868 		link = &root->rb_node;
869 		if (unlikely(!*link)) {
870 			*parent = NULL;
871 			return link;
872 		}
873 	} else {
874 		link = &from;
875 	}
876 
877 	/*
878 	 * Go to the bottom of the tree. When we hit the last point
879 	 * we end up with parent rb_node and correct direction, i name
880 	 * it link, where the new va->rb_node will be attached to.
881 	 */
882 	do {
883 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
884 
885 		/*
886 		 * During the traversal we also do some sanity check.
887 		 * Trigger the BUG() if there are sides(left/right)
888 		 * or full overlaps.
889 		 */
890 		if (va->va_end <= tmp_va->va_start)
891 			link = &(*link)->rb_left;
892 		else if (va->va_start >= tmp_va->va_end)
893 			link = &(*link)->rb_right;
894 		else {
895 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
896 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
897 
898 			return NULL;
899 		}
900 	} while (*link);
901 
902 	*parent = &tmp_va->rb_node;
903 	return link;
904 }
905 
906 static __always_inline struct list_head *
907 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
908 {
909 	struct list_head *list;
910 
911 	if (unlikely(!parent))
912 		/*
913 		 * The red-black tree where we try to find VA neighbors
914 		 * before merging or inserting is empty, i.e. it means
915 		 * there is no free vmap space. Normally it does not
916 		 * happen but we handle this case anyway.
917 		 */
918 		return NULL;
919 
920 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
921 	return (&parent->rb_right == link ? list->next : list);
922 }
923 
924 static __always_inline void
925 __link_va(struct vmap_area *va, struct rb_root *root,
926 	struct rb_node *parent, struct rb_node **link,
927 	struct list_head *head, bool augment)
928 {
929 	/*
930 	 * VA is still not in the list, but we can
931 	 * identify its future previous list_head node.
932 	 */
933 	if (likely(parent)) {
934 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
935 		if (&parent->rb_right != link)
936 			head = head->prev;
937 	}
938 
939 	/* Insert to the rb-tree */
940 	rb_link_node(&va->rb_node, parent, link);
941 	if (augment) {
942 		/*
943 		 * Some explanation here. Just perform simple insertion
944 		 * to the tree. We do not set va->subtree_max_size to
945 		 * its current size before calling rb_insert_augmented().
946 		 * It is because we populate the tree from the bottom
947 		 * to parent levels when the node _is_ in the tree.
948 		 *
949 		 * Therefore we set subtree_max_size to zero after insertion,
950 		 * to let __augment_tree_propagate_from() puts everything to
951 		 * the correct order later on.
952 		 */
953 		rb_insert_augmented(&va->rb_node,
954 			root, &free_vmap_area_rb_augment_cb);
955 		va->subtree_max_size = 0;
956 	} else {
957 		rb_insert_color(&va->rb_node, root);
958 	}
959 
960 	/* Address-sort this list */
961 	list_add(&va->list, head);
962 }
963 
964 static __always_inline void
965 link_va(struct vmap_area *va, struct rb_root *root,
966 	struct rb_node *parent, struct rb_node **link,
967 	struct list_head *head)
968 {
969 	__link_va(va, root, parent, link, head, false);
970 }
971 
972 static __always_inline void
973 link_va_augment(struct vmap_area *va, struct rb_root *root,
974 	struct rb_node *parent, struct rb_node **link,
975 	struct list_head *head)
976 {
977 	__link_va(va, root, parent, link, head, true);
978 }
979 
980 static __always_inline void
981 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
982 {
983 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
984 		return;
985 
986 	if (augment)
987 		rb_erase_augmented(&va->rb_node,
988 			root, &free_vmap_area_rb_augment_cb);
989 	else
990 		rb_erase(&va->rb_node, root);
991 
992 	list_del_init(&va->list);
993 	RB_CLEAR_NODE(&va->rb_node);
994 }
995 
996 static __always_inline void
997 unlink_va(struct vmap_area *va, struct rb_root *root)
998 {
999 	__unlink_va(va, root, false);
1000 }
1001 
1002 static __always_inline void
1003 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1004 {
1005 	__unlink_va(va, root, true);
1006 }
1007 
1008 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1009 /*
1010  * Gets called when remove the node and rotate.
1011  */
1012 static __always_inline unsigned long
1013 compute_subtree_max_size(struct vmap_area *va)
1014 {
1015 	return max3(va_size(va),
1016 		get_subtree_max_size(va->rb_node.rb_left),
1017 		get_subtree_max_size(va->rb_node.rb_right));
1018 }
1019 
1020 static void
1021 augment_tree_propagate_check(void)
1022 {
1023 	struct vmap_area *va;
1024 	unsigned long computed_size;
1025 
1026 	list_for_each_entry(va, &free_vmap_area_list, list) {
1027 		computed_size = compute_subtree_max_size(va);
1028 		if (computed_size != va->subtree_max_size)
1029 			pr_emerg("tree is corrupted: %lu, %lu\n",
1030 				va_size(va), va->subtree_max_size);
1031 	}
1032 }
1033 #endif
1034 
1035 /*
1036  * This function populates subtree_max_size from bottom to upper
1037  * levels starting from VA point. The propagation must be done
1038  * when VA size is modified by changing its va_start/va_end. Or
1039  * in case of newly inserting of VA to the tree.
1040  *
1041  * It means that __augment_tree_propagate_from() must be called:
1042  * - After VA has been inserted to the tree(free path);
1043  * - After VA has been shrunk(allocation path);
1044  * - After VA has been increased(merging path).
1045  *
1046  * Please note that, it does not mean that upper parent nodes
1047  * and their subtree_max_size are recalculated all the time up
1048  * to the root node.
1049  *
1050  *       4--8
1051  *        /\
1052  *       /  \
1053  *      /    \
1054  *    2--2  8--8
1055  *
1056  * For example if we modify the node 4, shrinking it to 2, then
1057  * no any modification is required. If we shrink the node 2 to 1
1058  * its subtree_max_size is updated only, and set to 1. If we shrink
1059  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1060  * node becomes 4--6.
1061  */
1062 static __always_inline void
1063 augment_tree_propagate_from(struct vmap_area *va)
1064 {
1065 	/*
1066 	 * Populate the tree from bottom towards the root until
1067 	 * the calculated maximum available size of checked node
1068 	 * is equal to its current one.
1069 	 */
1070 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1071 
1072 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1073 	augment_tree_propagate_check();
1074 #endif
1075 }
1076 
1077 static void
1078 insert_vmap_area(struct vmap_area *va,
1079 	struct rb_root *root, struct list_head *head)
1080 {
1081 	struct rb_node **link;
1082 	struct rb_node *parent;
1083 
1084 	link = find_va_links(va, root, NULL, &parent);
1085 	if (link)
1086 		link_va(va, root, parent, link, head);
1087 }
1088 
1089 static void
1090 insert_vmap_area_augment(struct vmap_area *va,
1091 	struct rb_node *from, struct rb_root *root,
1092 	struct list_head *head)
1093 {
1094 	struct rb_node **link;
1095 	struct rb_node *parent;
1096 
1097 	if (from)
1098 		link = find_va_links(va, NULL, from, &parent);
1099 	else
1100 		link = find_va_links(va, root, NULL, &parent);
1101 
1102 	if (link) {
1103 		link_va_augment(va, root, parent, link, head);
1104 		augment_tree_propagate_from(va);
1105 	}
1106 }
1107 
1108 /*
1109  * Merge de-allocated chunk of VA memory with previous
1110  * and next free blocks. If coalesce is not done a new
1111  * free area is inserted. If VA has been merged, it is
1112  * freed.
1113  *
1114  * Please note, it can return NULL in case of overlap
1115  * ranges, followed by WARN() report. Despite it is a
1116  * buggy behaviour, a system can be alive and keep
1117  * ongoing.
1118  */
1119 static __always_inline struct vmap_area *
1120 __merge_or_add_vmap_area(struct vmap_area *va,
1121 	struct rb_root *root, struct list_head *head, bool augment)
1122 {
1123 	struct vmap_area *sibling;
1124 	struct list_head *next;
1125 	struct rb_node **link;
1126 	struct rb_node *parent;
1127 	bool merged = false;
1128 
1129 	/*
1130 	 * Find a place in the tree where VA potentially will be
1131 	 * inserted, unless it is merged with its sibling/siblings.
1132 	 */
1133 	link = find_va_links(va, root, NULL, &parent);
1134 	if (!link)
1135 		return NULL;
1136 
1137 	/*
1138 	 * Get next node of VA to check if merging can be done.
1139 	 */
1140 	next = get_va_next_sibling(parent, link);
1141 	if (unlikely(next == NULL))
1142 		goto insert;
1143 
1144 	/*
1145 	 * start            end
1146 	 * |                |
1147 	 * |<------VA------>|<-----Next----->|
1148 	 *                  |                |
1149 	 *                  start            end
1150 	 */
1151 	if (next != head) {
1152 		sibling = list_entry(next, struct vmap_area, list);
1153 		if (sibling->va_start == va->va_end) {
1154 			sibling->va_start = va->va_start;
1155 
1156 			/* Free vmap_area object. */
1157 			kmem_cache_free(vmap_area_cachep, va);
1158 
1159 			/* Point to the new merged area. */
1160 			va = sibling;
1161 			merged = true;
1162 		}
1163 	}
1164 
1165 	/*
1166 	 * start            end
1167 	 * |                |
1168 	 * |<-----Prev----->|<------VA------>|
1169 	 *                  |                |
1170 	 *                  start            end
1171 	 */
1172 	if (next->prev != head) {
1173 		sibling = list_entry(next->prev, struct vmap_area, list);
1174 		if (sibling->va_end == va->va_start) {
1175 			/*
1176 			 * If both neighbors are coalesced, it is important
1177 			 * to unlink the "next" node first, followed by merging
1178 			 * with "previous" one. Otherwise the tree might not be
1179 			 * fully populated if a sibling's augmented value is
1180 			 * "normalized" because of rotation operations.
1181 			 */
1182 			if (merged)
1183 				__unlink_va(va, root, augment);
1184 
1185 			sibling->va_end = va->va_end;
1186 
1187 			/* Free vmap_area object. */
1188 			kmem_cache_free(vmap_area_cachep, va);
1189 
1190 			/* Point to the new merged area. */
1191 			va = sibling;
1192 			merged = true;
1193 		}
1194 	}
1195 
1196 insert:
1197 	if (!merged)
1198 		__link_va(va, root, parent, link, head, augment);
1199 
1200 	return va;
1201 }
1202 
1203 static __always_inline struct vmap_area *
1204 merge_or_add_vmap_area(struct vmap_area *va,
1205 	struct rb_root *root, struct list_head *head)
1206 {
1207 	return __merge_or_add_vmap_area(va, root, head, false);
1208 }
1209 
1210 static __always_inline struct vmap_area *
1211 merge_or_add_vmap_area_augment(struct vmap_area *va,
1212 	struct rb_root *root, struct list_head *head)
1213 {
1214 	va = __merge_or_add_vmap_area(va, root, head, true);
1215 	if (va)
1216 		augment_tree_propagate_from(va);
1217 
1218 	return va;
1219 }
1220 
1221 static __always_inline bool
1222 is_within_this_va(struct vmap_area *va, unsigned long size,
1223 	unsigned long align, unsigned long vstart)
1224 {
1225 	unsigned long nva_start_addr;
1226 
1227 	if (va->va_start > vstart)
1228 		nva_start_addr = ALIGN(va->va_start, align);
1229 	else
1230 		nva_start_addr = ALIGN(vstart, align);
1231 
1232 	/* Can be overflowed due to big size or alignment. */
1233 	if (nva_start_addr + size < nva_start_addr ||
1234 			nva_start_addr < vstart)
1235 		return false;
1236 
1237 	return (nva_start_addr + size <= va->va_end);
1238 }
1239 
1240 /*
1241  * Find the first free block(lowest start address) in the tree,
1242  * that will accomplish the request corresponding to passing
1243  * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1244  * a search length is adjusted to account for worst case alignment
1245  * overhead.
1246  */
1247 static __always_inline struct vmap_area *
1248 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1249 	unsigned long align, unsigned long vstart, bool adjust_search_size)
1250 {
1251 	struct vmap_area *va;
1252 	struct rb_node *node;
1253 	unsigned long length;
1254 
1255 	/* Start from the root. */
1256 	node = root->rb_node;
1257 
1258 	/* Adjust the search size for alignment overhead. */
1259 	length = adjust_search_size ? size + align - 1 : size;
1260 
1261 	while (node) {
1262 		va = rb_entry(node, struct vmap_area, rb_node);
1263 
1264 		if (get_subtree_max_size(node->rb_left) >= length &&
1265 				vstart < va->va_start) {
1266 			node = node->rb_left;
1267 		} else {
1268 			if (is_within_this_va(va, size, align, vstart))
1269 				return va;
1270 
1271 			/*
1272 			 * Does not make sense to go deeper towards the right
1273 			 * sub-tree if it does not have a free block that is
1274 			 * equal or bigger to the requested search length.
1275 			 */
1276 			if (get_subtree_max_size(node->rb_right) >= length) {
1277 				node = node->rb_right;
1278 				continue;
1279 			}
1280 
1281 			/*
1282 			 * OK. We roll back and find the first right sub-tree,
1283 			 * that will satisfy the search criteria. It can happen
1284 			 * due to "vstart" restriction or an alignment overhead
1285 			 * that is bigger then PAGE_SIZE.
1286 			 */
1287 			while ((node = rb_parent(node))) {
1288 				va = rb_entry(node, struct vmap_area, rb_node);
1289 				if (is_within_this_va(va, size, align, vstart))
1290 					return va;
1291 
1292 				if (get_subtree_max_size(node->rb_right) >= length &&
1293 						vstart <= va->va_start) {
1294 					/*
1295 					 * Shift the vstart forward. Please note, we update it with
1296 					 * parent's start address adding "1" because we do not want
1297 					 * to enter same sub-tree after it has already been checked
1298 					 * and no suitable free block found there.
1299 					 */
1300 					vstart = va->va_start + 1;
1301 					node = node->rb_right;
1302 					break;
1303 				}
1304 			}
1305 		}
1306 	}
1307 
1308 	return NULL;
1309 }
1310 
1311 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1312 #include <linux/random.h>
1313 
1314 static struct vmap_area *
1315 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1316 	unsigned long align, unsigned long vstart)
1317 {
1318 	struct vmap_area *va;
1319 
1320 	list_for_each_entry(va, head, list) {
1321 		if (!is_within_this_va(va, size, align, vstart))
1322 			continue;
1323 
1324 		return va;
1325 	}
1326 
1327 	return NULL;
1328 }
1329 
1330 static void
1331 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1332 			     unsigned long size, unsigned long align)
1333 {
1334 	struct vmap_area *va_1, *va_2;
1335 	unsigned long vstart;
1336 	unsigned int rnd;
1337 
1338 	get_random_bytes(&rnd, sizeof(rnd));
1339 	vstart = VMALLOC_START + rnd;
1340 
1341 	va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1342 	va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1343 
1344 	if (va_1 != va_2)
1345 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1346 			va_1, va_2, vstart);
1347 }
1348 #endif
1349 
1350 enum fit_type {
1351 	NOTHING_FIT = 0,
1352 	FL_FIT_TYPE = 1,	/* full fit */
1353 	LE_FIT_TYPE = 2,	/* left edge fit */
1354 	RE_FIT_TYPE = 3,	/* right edge fit */
1355 	NE_FIT_TYPE = 4		/* no edge fit */
1356 };
1357 
1358 static __always_inline enum fit_type
1359 classify_va_fit_type(struct vmap_area *va,
1360 	unsigned long nva_start_addr, unsigned long size)
1361 {
1362 	enum fit_type type;
1363 
1364 	/* Check if it is within VA. */
1365 	if (nva_start_addr < va->va_start ||
1366 			nva_start_addr + size > va->va_end)
1367 		return NOTHING_FIT;
1368 
1369 	/* Now classify. */
1370 	if (va->va_start == nva_start_addr) {
1371 		if (va->va_end == nva_start_addr + size)
1372 			type = FL_FIT_TYPE;
1373 		else
1374 			type = LE_FIT_TYPE;
1375 	} else if (va->va_end == nva_start_addr + size) {
1376 		type = RE_FIT_TYPE;
1377 	} else {
1378 		type = NE_FIT_TYPE;
1379 	}
1380 
1381 	return type;
1382 }
1383 
1384 static __always_inline int
1385 adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
1386 		      struct vmap_area *va, unsigned long nva_start_addr,
1387 		      unsigned long size)
1388 {
1389 	struct vmap_area *lva = NULL;
1390 	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1391 
1392 	if (type == FL_FIT_TYPE) {
1393 		/*
1394 		 * No need to split VA, it fully fits.
1395 		 *
1396 		 * |               |
1397 		 * V      NVA      V
1398 		 * |---------------|
1399 		 */
1400 		unlink_va_augment(va, root);
1401 		kmem_cache_free(vmap_area_cachep, va);
1402 	} else if (type == LE_FIT_TYPE) {
1403 		/*
1404 		 * Split left edge of fit VA.
1405 		 *
1406 		 * |       |
1407 		 * V  NVA  V   R
1408 		 * |-------|-------|
1409 		 */
1410 		va->va_start += size;
1411 	} else if (type == RE_FIT_TYPE) {
1412 		/*
1413 		 * Split right edge of fit VA.
1414 		 *
1415 		 *         |       |
1416 		 *     L   V  NVA  V
1417 		 * |-------|-------|
1418 		 */
1419 		va->va_end = nva_start_addr;
1420 	} else if (type == NE_FIT_TYPE) {
1421 		/*
1422 		 * Split no edge of fit VA.
1423 		 *
1424 		 *     |       |
1425 		 *   L V  NVA  V R
1426 		 * |---|-------|---|
1427 		 */
1428 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1429 		if (unlikely(!lva)) {
1430 			/*
1431 			 * For percpu allocator we do not do any pre-allocation
1432 			 * and leave it as it is. The reason is it most likely
1433 			 * never ends up with NE_FIT_TYPE splitting. In case of
1434 			 * percpu allocations offsets and sizes are aligned to
1435 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1436 			 * are its main fitting cases.
1437 			 *
1438 			 * There are a few exceptions though, as an example it is
1439 			 * a first allocation (early boot up) when we have "one"
1440 			 * big free space that has to be split.
1441 			 *
1442 			 * Also we can hit this path in case of regular "vmap"
1443 			 * allocations, if "this" current CPU was not preloaded.
1444 			 * See the comment in alloc_vmap_area() why. If so, then
1445 			 * GFP_NOWAIT is used instead to get an extra object for
1446 			 * split purpose. That is rare and most time does not
1447 			 * occur.
1448 			 *
1449 			 * What happens if an allocation gets failed. Basically,
1450 			 * an "overflow" path is triggered to purge lazily freed
1451 			 * areas to free some memory, then, the "retry" path is
1452 			 * triggered to repeat one more time. See more details
1453 			 * in alloc_vmap_area() function.
1454 			 */
1455 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1456 			if (!lva)
1457 				return -1;
1458 		}
1459 
1460 		/*
1461 		 * Build the remainder.
1462 		 */
1463 		lva->va_start = va->va_start;
1464 		lva->va_end = nva_start_addr;
1465 
1466 		/*
1467 		 * Shrink this VA to remaining size.
1468 		 */
1469 		va->va_start = nva_start_addr + size;
1470 	} else {
1471 		return -1;
1472 	}
1473 
1474 	if (type != FL_FIT_TYPE) {
1475 		augment_tree_propagate_from(va);
1476 
1477 		if (lva)	/* type == NE_FIT_TYPE */
1478 			insert_vmap_area_augment(lva, &va->rb_node, root, head);
1479 	}
1480 
1481 	return 0;
1482 }
1483 
1484 /*
1485  * Returns a start address of the newly allocated area, if success.
1486  * Otherwise a vend is returned that indicates failure.
1487  */
1488 static __always_inline unsigned long
1489 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1490 	unsigned long size, unsigned long align,
1491 	unsigned long vstart, unsigned long vend)
1492 {
1493 	bool adjust_search_size = true;
1494 	unsigned long nva_start_addr;
1495 	struct vmap_area *va;
1496 	int ret;
1497 
1498 	/*
1499 	 * Do not adjust when:
1500 	 *   a) align <= PAGE_SIZE, because it does not make any sense.
1501 	 *      All blocks(their start addresses) are at least PAGE_SIZE
1502 	 *      aligned anyway;
1503 	 *   b) a short range where a requested size corresponds to exactly
1504 	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1505 	 *      With adjusted search length an allocation would not succeed.
1506 	 */
1507 	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1508 		adjust_search_size = false;
1509 
1510 	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1511 	if (unlikely(!va))
1512 		return vend;
1513 
1514 	if (va->va_start > vstart)
1515 		nva_start_addr = ALIGN(va->va_start, align);
1516 	else
1517 		nva_start_addr = ALIGN(vstart, align);
1518 
1519 	/* Check the "vend" restriction. */
1520 	if (nva_start_addr + size > vend)
1521 		return vend;
1522 
1523 	/* Update the free vmap_area. */
1524 	ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1525 	if (WARN_ON_ONCE(ret))
1526 		return vend;
1527 
1528 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1529 	find_vmap_lowest_match_check(root, head, size, align);
1530 #endif
1531 
1532 	return nva_start_addr;
1533 }
1534 
1535 /*
1536  * Free a region of KVA allocated by alloc_vmap_area
1537  */
1538 static void free_vmap_area(struct vmap_area *va)
1539 {
1540 	/*
1541 	 * Remove from the busy tree/list.
1542 	 */
1543 	spin_lock(&vmap_area_lock);
1544 	unlink_va(va, &vmap_area_root);
1545 	spin_unlock(&vmap_area_lock);
1546 
1547 	/*
1548 	 * Insert/Merge it back to the free tree/list.
1549 	 */
1550 	spin_lock(&free_vmap_area_lock);
1551 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1552 	spin_unlock(&free_vmap_area_lock);
1553 }
1554 
1555 static inline void
1556 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1557 {
1558 	struct vmap_area *va = NULL;
1559 
1560 	/*
1561 	 * Preload this CPU with one extra vmap_area object. It is used
1562 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1563 	 * a CPU that does an allocation is preloaded.
1564 	 *
1565 	 * We do it in non-atomic context, thus it allows us to use more
1566 	 * permissive allocation masks to be more stable under low memory
1567 	 * condition and high memory pressure.
1568 	 */
1569 	if (!this_cpu_read(ne_fit_preload_node))
1570 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1571 
1572 	spin_lock(lock);
1573 
1574 	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1575 		kmem_cache_free(vmap_area_cachep, va);
1576 }
1577 
1578 /*
1579  * Allocate a region of KVA of the specified size and alignment, within the
1580  * vstart and vend.
1581  */
1582 static struct vmap_area *alloc_vmap_area(unsigned long size,
1583 				unsigned long align,
1584 				unsigned long vstart, unsigned long vend,
1585 				int node, gfp_t gfp_mask,
1586 				unsigned long va_flags)
1587 {
1588 	struct vmap_area *va;
1589 	unsigned long freed;
1590 	unsigned long addr;
1591 	int purged = 0;
1592 	int ret;
1593 
1594 	if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1595 		return ERR_PTR(-EINVAL);
1596 
1597 	if (unlikely(!vmap_initialized))
1598 		return ERR_PTR(-EBUSY);
1599 
1600 	might_sleep();
1601 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1602 
1603 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1604 	if (unlikely(!va))
1605 		return ERR_PTR(-ENOMEM);
1606 
1607 	/*
1608 	 * Only scan the relevant parts containing pointers to other objects
1609 	 * to avoid false negatives.
1610 	 */
1611 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1612 
1613 retry:
1614 	preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1615 	addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1616 		size, align, vstart, vend);
1617 	spin_unlock(&free_vmap_area_lock);
1618 
1619 	trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
1620 
1621 	/*
1622 	 * If an allocation fails, the "vend" address is
1623 	 * returned. Therefore trigger the overflow path.
1624 	 */
1625 	if (unlikely(addr == vend))
1626 		goto overflow;
1627 
1628 	va->va_start = addr;
1629 	va->va_end = addr + size;
1630 	va->vm = NULL;
1631 	va->flags = va_flags;
1632 
1633 	spin_lock(&vmap_area_lock);
1634 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1635 	spin_unlock(&vmap_area_lock);
1636 
1637 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1638 	BUG_ON(va->va_start < vstart);
1639 	BUG_ON(va->va_end > vend);
1640 
1641 	ret = kasan_populate_vmalloc(addr, size);
1642 	if (ret) {
1643 		free_vmap_area(va);
1644 		return ERR_PTR(ret);
1645 	}
1646 
1647 	return va;
1648 
1649 overflow:
1650 	if (!purged) {
1651 		reclaim_and_purge_vmap_areas();
1652 		purged = 1;
1653 		goto retry;
1654 	}
1655 
1656 	freed = 0;
1657 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1658 
1659 	if (freed > 0) {
1660 		purged = 0;
1661 		goto retry;
1662 	}
1663 
1664 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1665 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1666 			size);
1667 
1668 	kmem_cache_free(vmap_area_cachep, va);
1669 	return ERR_PTR(-EBUSY);
1670 }
1671 
1672 int register_vmap_purge_notifier(struct notifier_block *nb)
1673 {
1674 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1675 }
1676 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1677 
1678 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1679 {
1680 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1681 }
1682 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1683 
1684 /*
1685  * lazy_max_pages is the maximum amount of virtual address space we gather up
1686  * before attempting to purge with a TLB flush.
1687  *
1688  * There is a tradeoff here: a larger number will cover more kernel page tables
1689  * and take slightly longer to purge, but it will linearly reduce the number of
1690  * global TLB flushes that must be performed. It would seem natural to scale
1691  * this number up linearly with the number of CPUs (because vmapping activity
1692  * could also scale linearly with the number of CPUs), however it is likely
1693  * that in practice, workloads might be constrained in other ways that mean
1694  * vmap activity will not scale linearly with CPUs. Also, I want to be
1695  * conservative and not introduce a big latency on huge systems, so go with
1696  * a less aggressive log scale. It will still be an improvement over the old
1697  * code, and it will be simple to change the scale factor if we find that it
1698  * becomes a problem on bigger systems.
1699  */
1700 static unsigned long lazy_max_pages(void)
1701 {
1702 	unsigned int log;
1703 
1704 	log = fls(num_online_cpus());
1705 
1706 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1707 }
1708 
1709 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1710 
1711 /*
1712  * Serialize vmap purging.  There is no actual critical section protected
1713  * by this lock, but we want to avoid concurrent calls for performance
1714  * reasons and to make the pcpu_get_vm_areas more deterministic.
1715  */
1716 static DEFINE_MUTEX(vmap_purge_lock);
1717 
1718 /* for per-CPU blocks */
1719 static void purge_fragmented_blocks_allcpus(void);
1720 
1721 /*
1722  * Purges all lazily-freed vmap areas.
1723  */
1724 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1725 {
1726 	unsigned long resched_threshold;
1727 	unsigned int num_purged_areas = 0;
1728 	struct list_head local_purge_list;
1729 	struct vmap_area *va, *n_va;
1730 
1731 	lockdep_assert_held(&vmap_purge_lock);
1732 
1733 	spin_lock(&purge_vmap_area_lock);
1734 	purge_vmap_area_root = RB_ROOT;
1735 	list_replace_init(&purge_vmap_area_list, &local_purge_list);
1736 	spin_unlock(&purge_vmap_area_lock);
1737 
1738 	if (unlikely(list_empty(&local_purge_list)))
1739 		goto out;
1740 
1741 	start = min(start,
1742 		list_first_entry(&local_purge_list,
1743 			struct vmap_area, list)->va_start);
1744 
1745 	end = max(end,
1746 		list_last_entry(&local_purge_list,
1747 			struct vmap_area, list)->va_end);
1748 
1749 	flush_tlb_kernel_range(start, end);
1750 	resched_threshold = lazy_max_pages() << 1;
1751 
1752 	spin_lock(&free_vmap_area_lock);
1753 	list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
1754 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1755 		unsigned long orig_start = va->va_start;
1756 		unsigned long orig_end = va->va_end;
1757 
1758 		/*
1759 		 * Finally insert or merge lazily-freed area. It is
1760 		 * detached and there is no need to "unlink" it from
1761 		 * anything.
1762 		 */
1763 		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1764 				&free_vmap_area_list);
1765 
1766 		if (!va)
1767 			continue;
1768 
1769 		if (is_vmalloc_or_module_addr((void *)orig_start))
1770 			kasan_release_vmalloc(orig_start, orig_end,
1771 					      va->va_start, va->va_end);
1772 
1773 		atomic_long_sub(nr, &vmap_lazy_nr);
1774 		num_purged_areas++;
1775 
1776 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1777 			cond_resched_lock(&free_vmap_area_lock);
1778 	}
1779 	spin_unlock(&free_vmap_area_lock);
1780 
1781 out:
1782 	trace_purge_vmap_area_lazy(start, end, num_purged_areas);
1783 	return num_purged_areas > 0;
1784 }
1785 
1786 /*
1787  * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
1788  */
1789 static void reclaim_and_purge_vmap_areas(void)
1790 
1791 {
1792 	mutex_lock(&vmap_purge_lock);
1793 	purge_fragmented_blocks_allcpus();
1794 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1795 	mutex_unlock(&vmap_purge_lock);
1796 }
1797 
1798 static void drain_vmap_area_work(struct work_struct *work)
1799 {
1800 	unsigned long nr_lazy;
1801 
1802 	do {
1803 		mutex_lock(&vmap_purge_lock);
1804 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1805 		mutex_unlock(&vmap_purge_lock);
1806 
1807 		/* Recheck if further work is required. */
1808 		nr_lazy = atomic_long_read(&vmap_lazy_nr);
1809 	} while (nr_lazy > lazy_max_pages());
1810 }
1811 
1812 /*
1813  * Free a vmap area, caller ensuring that the area has been unmapped,
1814  * unlinked and flush_cache_vunmap had been called for the correct
1815  * range previously.
1816  */
1817 static void free_vmap_area_noflush(struct vmap_area *va)
1818 {
1819 	unsigned long nr_lazy_max = lazy_max_pages();
1820 	unsigned long va_start = va->va_start;
1821 	unsigned long nr_lazy;
1822 
1823 	if (WARN_ON_ONCE(!list_empty(&va->list)))
1824 		return;
1825 
1826 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1827 				PAGE_SHIFT, &vmap_lazy_nr);
1828 
1829 	/*
1830 	 * Merge or place it to the purge tree/list.
1831 	 */
1832 	spin_lock(&purge_vmap_area_lock);
1833 	merge_or_add_vmap_area(va,
1834 		&purge_vmap_area_root, &purge_vmap_area_list);
1835 	spin_unlock(&purge_vmap_area_lock);
1836 
1837 	trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
1838 
1839 	/* After this point, we may free va at any time */
1840 	if (unlikely(nr_lazy > nr_lazy_max))
1841 		schedule_work(&drain_vmap_work);
1842 }
1843 
1844 /*
1845  * Free and unmap a vmap area
1846  */
1847 static void free_unmap_vmap_area(struct vmap_area *va)
1848 {
1849 	flush_cache_vunmap(va->va_start, va->va_end);
1850 	vunmap_range_noflush(va->va_start, va->va_end);
1851 	if (debug_pagealloc_enabled_static())
1852 		flush_tlb_kernel_range(va->va_start, va->va_end);
1853 
1854 	free_vmap_area_noflush(va);
1855 }
1856 
1857 struct vmap_area *find_vmap_area(unsigned long addr)
1858 {
1859 	struct vmap_area *va;
1860 
1861 	spin_lock(&vmap_area_lock);
1862 	va = __find_vmap_area(addr, &vmap_area_root);
1863 	spin_unlock(&vmap_area_lock);
1864 
1865 	return va;
1866 }
1867 
1868 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
1869 {
1870 	struct vmap_area *va;
1871 
1872 	spin_lock(&vmap_area_lock);
1873 	va = __find_vmap_area(addr, &vmap_area_root);
1874 	if (va)
1875 		unlink_va(va, &vmap_area_root);
1876 	spin_unlock(&vmap_area_lock);
1877 
1878 	return va;
1879 }
1880 
1881 /*** Per cpu kva allocator ***/
1882 
1883 /*
1884  * vmap space is limited especially on 32 bit architectures. Ensure there is
1885  * room for at least 16 percpu vmap blocks per CPU.
1886  */
1887 /*
1888  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1889  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1890  * instead (we just need a rough idea)
1891  */
1892 #if BITS_PER_LONG == 32
1893 #define VMALLOC_SPACE		(128UL*1024*1024)
1894 #else
1895 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1896 #endif
1897 
1898 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1899 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1900 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1901 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1902 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1903 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1904 #define VMAP_BBMAP_BITS		\
1905 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1906 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1907 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1908 
1909 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1910 
1911 /*
1912  * Purge threshold to prevent overeager purging of fragmented blocks for
1913  * regular operations: Purge if vb->free is less than 1/4 of the capacity.
1914  */
1915 #define VMAP_PURGE_THRESHOLD	(VMAP_BBMAP_BITS / 4)
1916 
1917 #define VMAP_RAM		0x1 /* indicates vm_map_ram area*/
1918 #define VMAP_BLOCK		0x2 /* mark out the vmap_block sub-type*/
1919 #define VMAP_FLAGS_MASK		0x3
1920 
1921 struct vmap_block_queue {
1922 	spinlock_t lock;
1923 	struct list_head free;
1924 
1925 	/*
1926 	 * An xarray requires an extra memory dynamically to
1927 	 * be allocated. If it is an issue, we can use rb-tree
1928 	 * instead.
1929 	 */
1930 	struct xarray vmap_blocks;
1931 };
1932 
1933 struct vmap_block {
1934 	spinlock_t lock;
1935 	struct vmap_area *va;
1936 	unsigned long free, dirty;
1937 	DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
1938 	unsigned long dirty_min, dirty_max; /*< dirty range */
1939 	struct list_head free_list;
1940 	struct rcu_head rcu_head;
1941 	struct list_head purge;
1942 };
1943 
1944 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1945 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1946 
1947 /*
1948  * In order to fast access to any "vmap_block" associated with a
1949  * specific address, we use a hash.
1950  *
1951  * A per-cpu vmap_block_queue is used in both ways, to serialize
1952  * an access to free block chains among CPUs(alloc path) and it
1953  * also acts as a vmap_block hash(alloc/free paths). It means we
1954  * overload it, since we already have the per-cpu array which is
1955  * used as a hash table. When used as a hash a 'cpu' passed to
1956  * per_cpu() is not actually a CPU but rather a hash index.
1957  *
1958  * A hash function is addr_to_vb_xa() which hashes any address
1959  * to a specific index(in a hash) it belongs to. This then uses a
1960  * per_cpu() macro to access an array with generated index.
1961  *
1962  * An example:
1963  *
1964  *  CPU_1  CPU_2  CPU_0
1965  *    |      |      |
1966  *    V      V      V
1967  * 0     10     20     30     40     50     60
1968  * |------|------|------|------|------|------|...<vmap address space>
1969  *   CPU0   CPU1   CPU2   CPU0   CPU1   CPU2
1970  *
1971  * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
1972  *   it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
1973  *
1974  * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
1975  *   it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
1976  *
1977  * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
1978  *   it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
1979  *
1980  * This technique almost always avoids lock contention on insert/remove,
1981  * however xarray spinlocks protect against any contention that remains.
1982  */
1983 static struct xarray *
1984 addr_to_vb_xa(unsigned long addr)
1985 {
1986 	int index = (addr / VMAP_BLOCK_SIZE) % num_possible_cpus();
1987 
1988 	return &per_cpu(vmap_block_queue, index).vmap_blocks;
1989 }
1990 
1991 /*
1992  * We should probably have a fallback mechanism to allocate virtual memory
1993  * out of partially filled vmap blocks. However vmap block sizing should be
1994  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1995  * big problem.
1996  */
1997 
1998 static unsigned long addr_to_vb_idx(unsigned long addr)
1999 {
2000 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2001 	addr /= VMAP_BLOCK_SIZE;
2002 	return addr;
2003 }
2004 
2005 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2006 {
2007 	unsigned long addr;
2008 
2009 	addr = va_start + (pages_off << PAGE_SHIFT);
2010 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2011 	return (void *)addr;
2012 }
2013 
2014 /**
2015  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2016  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
2017  * @order:    how many 2^order pages should be occupied in newly allocated block
2018  * @gfp_mask: flags for the page level allocator
2019  *
2020  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2021  */
2022 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2023 {
2024 	struct vmap_block_queue *vbq;
2025 	struct vmap_block *vb;
2026 	struct vmap_area *va;
2027 	struct xarray *xa;
2028 	unsigned long vb_idx;
2029 	int node, err;
2030 	void *vaddr;
2031 
2032 	node = numa_node_id();
2033 
2034 	vb = kmalloc_node(sizeof(struct vmap_block),
2035 			gfp_mask & GFP_RECLAIM_MASK, node);
2036 	if (unlikely(!vb))
2037 		return ERR_PTR(-ENOMEM);
2038 
2039 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2040 					VMALLOC_START, VMALLOC_END,
2041 					node, gfp_mask,
2042 					VMAP_RAM|VMAP_BLOCK);
2043 	if (IS_ERR(va)) {
2044 		kfree(vb);
2045 		return ERR_CAST(va);
2046 	}
2047 
2048 	vaddr = vmap_block_vaddr(va->va_start, 0);
2049 	spin_lock_init(&vb->lock);
2050 	vb->va = va;
2051 	/* At least something should be left free */
2052 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2053 	bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2054 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
2055 	vb->dirty = 0;
2056 	vb->dirty_min = VMAP_BBMAP_BITS;
2057 	vb->dirty_max = 0;
2058 	bitmap_set(vb->used_map, 0, (1UL << order));
2059 	INIT_LIST_HEAD(&vb->free_list);
2060 
2061 	xa = addr_to_vb_xa(va->va_start);
2062 	vb_idx = addr_to_vb_idx(va->va_start);
2063 	err = xa_insert(xa, vb_idx, vb, gfp_mask);
2064 	if (err) {
2065 		kfree(vb);
2066 		free_vmap_area(va);
2067 		return ERR_PTR(err);
2068 	}
2069 
2070 	vbq = raw_cpu_ptr(&vmap_block_queue);
2071 	spin_lock(&vbq->lock);
2072 	list_add_tail_rcu(&vb->free_list, &vbq->free);
2073 	spin_unlock(&vbq->lock);
2074 
2075 	return vaddr;
2076 }
2077 
2078 static void free_vmap_block(struct vmap_block *vb)
2079 {
2080 	struct vmap_block *tmp;
2081 	struct xarray *xa;
2082 
2083 	xa = addr_to_vb_xa(vb->va->va_start);
2084 	tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2085 	BUG_ON(tmp != vb);
2086 
2087 	spin_lock(&vmap_area_lock);
2088 	unlink_va(vb->va, &vmap_area_root);
2089 	spin_unlock(&vmap_area_lock);
2090 
2091 	free_vmap_area_noflush(vb->va);
2092 	kfree_rcu(vb, rcu_head);
2093 }
2094 
2095 static bool purge_fragmented_block(struct vmap_block *vb,
2096 		struct vmap_block_queue *vbq, struct list_head *purge_list,
2097 		bool force_purge)
2098 {
2099 	if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2100 	    vb->dirty == VMAP_BBMAP_BITS)
2101 		return false;
2102 
2103 	/* Don't overeagerly purge usable blocks unless requested */
2104 	if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2105 		return false;
2106 
2107 	/* prevent further allocs after releasing lock */
2108 	WRITE_ONCE(vb->free, 0);
2109 	/* prevent purging it again */
2110 	WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2111 	vb->dirty_min = 0;
2112 	vb->dirty_max = VMAP_BBMAP_BITS;
2113 	spin_lock(&vbq->lock);
2114 	list_del_rcu(&vb->free_list);
2115 	spin_unlock(&vbq->lock);
2116 	list_add_tail(&vb->purge, purge_list);
2117 	return true;
2118 }
2119 
2120 static void free_purged_blocks(struct list_head *purge_list)
2121 {
2122 	struct vmap_block *vb, *n_vb;
2123 
2124 	list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2125 		list_del(&vb->purge);
2126 		free_vmap_block(vb);
2127 	}
2128 }
2129 
2130 static void purge_fragmented_blocks(int cpu)
2131 {
2132 	LIST_HEAD(purge);
2133 	struct vmap_block *vb;
2134 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2135 
2136 	rcu_read_lock();
2137 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2138 		unsigned long free = READ_ONCE(vb->free);
2139 		unsigned long dirty = READ_ONCE(vb->dirty);
2140 
2141 		if (free + dirty != VMAP_BBMAP_BITS ||
2142 		    dirty == VMAP_BBMAP_BITS)
2143 			continue;
2144 
2145 		spin_lock(&vb->lock);
2146 		purge_fragmented_block(vb, vbq, &purge, true);
2147 		spin_unlock(&vb->lock);
2148 	}
2149 	rcu_read_unlock();
2150 	free_purged_blocks(&purge);
2151 }
2152 
2153 static void purge_fragmented_blocks_allcpus(void)
2154 {
2155 	int cpu;
2156 
2157 	for_each_possible_cpu(cpu)
2158 		purge_fragmented_blocks(cpu);
2159 }
2160 
2161 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2162 {
2163 	struct vmap_block_queue *vbq;
2164 	struct vmap_block *vb;
2165 	void *vaddr = NULL;
2166 	unsigned int order;
2167 
2168 	BUG_ON(offset_in_page(size));
2169 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2170 	if (WARN_ON(size == 0)) {
2171 		/*
2172 		 * Allocating 0 bytes isn't what caller wants since
2173 		 * get_order(0) returns funny result. Just warn and terminate
2174 		 * early.
2175 		 */
2176 		return NULL;
2177 	}
2178 	order = get_order(size);
2179 
2180 	rcu_read_lock();
2181 	vbq = raw_cpu_ptr(&vmap_block_queue);
2182 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2183 		unsigned long pages_off;
2184 
2185 		if (READ_ONCE(vb->free) < (1UL << order))
2186 			continue;
2187 
2188 		spin_lock(&vb->lock);
2189 		if (vb->free < (1UL << order)) {
2190 			spin_unlock(&vb->lock);
2191 			continue;
2192 		}
2193 
2194 		pages_off = VMAP_BBMAP_BITS - vb->free;
2195 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2196 		WRITE_ONCE(vb->free, vb->free - (1UL << order));
2197 		bitmap_set(vb->used_map, pages_off, (1UL << order));
2198 		if (vb->free == 0) {
2199 			spin_lock(&vbq->lock);
2200 			list_del_rcu(&vb->free_list);
2201 			spin_unlock(&vbq->lock);
2202 		}
2203 
2204 		spin_unlock(&vb->lock);
2205 		break;
2206 	}
2207 
2208 	rcu_read_unlock();
2209 
2210 	/* Allocate new block if nothing was found */
2211 	if (!vaddr)
2212 		vaddr = new_vmap_block(order, gfp_mask);
2213 
2214 	return vaddr;
2215 }
2216 
2217 static void vb_free(unsigned long addr, unsigned long size)
2218 {
2219 	unsigned long offset;
2220 	unsigned int order;
2221 	struct vmap_block *vb;
2222 	struct xarray *xa;
2223 
2224 	BUG_ON(offset_in_page(size));
2225 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2226 
2227 	flush_cache_vunmap(addr, addr + size);
2228 
2229 	order = get_order(size);
2230 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2231 
2232 	xa = addr_to_vb_xa(addr);
2233 	vb = xa_load(xa, addr_to_vb_idx(addr));
2234 
2235 	spin_lock(&vb->lock);
2236 	bitmap_clear(vb->used_map, offset, (1UL << order));
2237 	spin_unlock(&vb->lock);
2238 
2239 	vunmap_range_noflush(addr, addr + size);
2240 
2241 	if (debug_pagealloc_enabled_static())
2242 		flush_tlb_kernel_range(addr, addr + size);
2243 
2244 	spin_lock(&vb->lock);
2245 
2246 	/* Expand the not yet TLB flushed dirty range */
2247 	vb->dirty_min = min(vb->dirty_min, offset);
2248 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2249 
2250 	WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2251 	if (vb->dirty == VMAP_BBMAP_BITS) {
2252 		BUG_ON(vb->free);
2253 		spin_unlock(&vb->lock);
2254 		free_vmap_block(vb);
2255 	} else
2256 		spin_unlock(&vb->lock);
2257 }
2258 
2259 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2260 {
2261 	LIST_HEAD(purge_list);
2262 	int cpu;
2263 
2264 	if (unlikely(!vmap_initialized))
2265 		return;
2266 
2267 	mutex_lock(&vmap_purge_lock);
2268 
2269 	for_each_possible_cpu(cpu) {
2270 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2271 		struct vmap_block *vb;
2272 		unsigned long idx;
2273 
2274 		rcu_read_lock();
2275 		xa_for_each(&vbq->vmap_blocks, idx, vb) {
2276 			spin_lock(&vb->lock);
2277 
2278 			/*
2279 			 * Try to purge a fragmented block first. If it's
2280 			 * not purgeable, check whether there is dirty
2281 			 * space to be flushed.
2282 			 */
2283 			if (!purge_fragmented_block(vb, vbq, &purge_list, false) &&
2284 			    vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2285 				unsigned long va_start = vb->va->va_start;
2286 				unsigned long s, e;
2287 
2288 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2289 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2290 
2291 				start = min(s, start);
2292 				end   = max(e, end);
2293 
2294 				/* Prevent that this is flushed again */
2295 				vb->dirty_min = VMAP_BBMAP_BITS;
2296 				vb->dirty_max = 0;
2297 
2298 				flush = 1;
2299 			}
2300 			spin_unlock(&vb->lock);
2301 		}
2302 		rcu_read_unlock();
2303 	}
2304 	free_purged_blocks(&purge_list);
2305 
2306 	if (!__purge_vmap_area_lazy(start, end) && flush)
2307 		flush_tlb_kernel_range(start, end);
2308 	mutex_unlock(&vmap_purge_lock);
2309 }
2310 
2311 /**
2312  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2313  *
2314  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2315  * to amortize TLB flushing overheads. What this means is that any page you
2316  * have now, may, in a former life, have been mapped into kernel virtual
2317  * address by the vmap layer and so there might be some CPUs with TLB entries
2318  * still referencing that page (additional to the regular 1:1 kernel mapping).
2319  *
2320  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2321  * be sure that none of the pages we have control over will have any aliases
2322  * from the vmap layer.
2323  */
2324 void vm_unmap_aliases(void)
2325 {
2326 	unsigned long start = ULONG_MAX, end = 0;
2327 	int flush = 0;
2328 
2329 	_vm_unmap_aliases(start, end, flush);
2330 }
2331 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2332 
2333 /**
2334  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2335  * @mem: the pointer returned by vm_map_ram
2336  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2337  */
2338 void vm_unmap_ram(const void *mem, unsigned int count)
2339 {
2340 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2341 	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2342 	struct vmap_area *va;
2343 
2344 	might_sleep();
2345 	BUG_ON(!addr);
2346 	BUG_ON(addr < VMALLOC_START);
2347 	BUG_ON(addr > VMALLOC_END);
2348 	BUG_ON(!PAGE_ALIGNED(addr));
2349 
2350 	kasan_poison_vmalloc(mem, size);
2351 
2352 	if (likely(count <= VMAP_MAX_ALLOC)) {
2353 		debug_check_no_locks_freed(mem, size);
2354 		vb_free(addr, size);
2355 		return;
2356 	}
2357 
2358 	va = find_unlink_vmap_area(addr);
2359 	if (WARN_ON_ONCE(!va))
2360 		return;
2361 
2362 	debug_check_no_locks_freed((void *)va->va_start,
2363 				    (va->va_end - va->va_start));
2364 	free_unmap_vmap_area(va);
2365 }
2366 EXPORT_SYMBOL(vm_unmap_ram);
2367 
2368 /**
2369  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2370  * @pages: an array of pointers to the pages to be mapped
2371  * @count: number of pages
2372  * @node: prefer to allocate data structures on this node
2373  *
2374  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2375  * faster than vmap so it's good.  But if you mix long-life and short-life
2376  * objects with vm_map_ram(), it could consume lots of address space through
2377  * fragmentation (especially on a 32bit machine).  You could see failures in
2378  * the end.  Please use this function for short-lived objects.
2379  *
2380  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2381  */
2382 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2383 {
2384 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2385 	unsigned long addr;
2386 	void *mem;
2387 
2388 	if (likely(count <= VMAP_MAX_ALLOC)) {
2389 		mem = vb_alloc(size, GFP_KERNEL);
2390 		if (IS_ERR(mem))
2391 			return NULL;
2392 		addr = (unsigned long)mem;
2393 	} else {
2394 		struct vmap_area *va;
2395 		va = alloc_vmap_area(size, PAGE_SIZE,
2396 				VMALLOC_START, VMALLOC_END,
2397 				node, GFP_KERNEL, VMAP_RAM);
2398 		if (IS_ERR(va))
2399 			return NULL;
2400 
2401 		addr = va->va_start;
2402 		mem = (void *)addr;
2403 	}
2404 
2405 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2406 				pages, PAGE_SHIFT) < 0) {
2407 		vm_unmap_ram(mem, count);
2408 		return NULL;
2409 	}
2410 
2411 	/*
2412 	 * Mark the pages as accessible, now that they are mapped.
2413 	 * With hardware tag-based KASAN, marking is skipped for
2414 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2415 	 */
2416 	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2417 
2418 	return mem;
2419 }
2420 EXPORT_SYMBOL(vm_map_ram);
2421 
2422 static struct vm_struct *vmlist __initdata;
2423 
2424 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2425 {
2426 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2427 	return vm->page_order;
2428 #else
2429 	return 0;
2430 #endif
2431 }
2432 
2433 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2434 {
2435 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2436 	vm->page_order = order;
2437 #else
2438 	BUG_ON(order != 0);
2439 #endif
2440 }
2441 
2442 /**
2443  * vm_area_add_early - add vmap area early during boot
2444  * @vm: vm_struct to add
2445  *
2446  * This function is used to add fixed kernel vm area to vmlist before
2447  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2448  * should contain proper values and the other fields should be zero.
2449  *
2450  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2451  */
2452 void __init vm_area_add_early(struct vm_struct *vm)
2453 {
2454 	struct vm_struct *tmp, **p;
2455 
2456 	BUG_ON(vmap_initialized);
2457 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2458 		if (tmp->addr >= vm->addr) {
2459 			BUG_ON(tmp->addr < vm->addr + vm->size);
2460 			break;
2461 		} else
2462 			BUG_ON(tmp->addr + tmp->size > vm->addr);
2463 	}
2464 	vm->next = *p;
2465 	*p = vm;
2466 }
2467 
2468 /**
2469  * vm_area_register_early - register vmap area early during boot
2470  * @vm: vm_struct to register
2471  * @align: requested alignment
2472  *
2473  * This function is used to register kernel vm area before
2474  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
2475  * proper values on entry and other fields should be zero.  On return,
2476  * vm->addr contains the allocated address.
2477  *
2478  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2479  */
2480 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2481 {
2482 	unsigned long addr = ALIGN(VMALLOC_START, align);
2483 	struct vm_struct *cur, **p;
2484 
2485 	BUG_ON(vmap_initialized);
2486 
2487 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2488 		if ((unsigned long)cur->addr - addr >= vm->size)
2489 			break;
2490 		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2491 	}
2492 
2493 	BUG_ON(addr > VMALLOC_END - vm->size);
2494 	vm->addr = (void *)addr;
2495 	vm->next = *p;
2496 	*p = vm;
2497 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2498 }
2499 
2500 static void vmap_init_free_space(void)
2501 {
2502 	unsigned long vmap_start = 1;
2503 	const unsigned long vmap_end = ULONG_MAX;
2504 	struct vmap_area *busy, *free;
2505 
2506 	/*
2507 	 *     B     F     B     B     B     F
2508 	 * -|-----|.....|-----|-----|-----|.....|-
2509 	 *  |           The KVA space           |
2510 	 *  |<--------------------------------->|
2511 	 */
2512 	list_for_each_entry(busy, &vmap_area_list, list) {
2513 		if (busy->va_start - vmap_start > 0) {
2514 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2515 			if (!WARN_ON_ONCE(!free)) {
2516 				free->va_start = vmap_start;
2517 				free->va_end = busy->va_start;
2518 
2519 				insert_vmap_area_augment(free, NULL,
2520 					&free_vmap_area_root,
2521 						&free_vmap_area_list);
2522 			}
2523 		}
2524 
2525 		vmap_start = busy->va_end;
2526 	}
2527 
2528 	if (vmap_end - vmap_start > 0) {
2529 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2530 		if (!WARN_ON_ONCE(!free)) {
2531 			free->va_start = vmap_start;
2532 			free->va_end = vmap_end;
2533 
2534 			insert_vmap_area_augment(free, NULL,
2535 				&free_vmap_area_root,
2536 					&free_vmap_area_list);
2537 		}
2538 	}
2539 }
2540 
2541 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2542 	struct vmap_area *va, unsigned long flags, const void *caller)
2543 {
2544 	vm->flags = flags;
2545 	vm->addr = (void *)va->va_start;
2546 	vm->size = va->va_end - va->va_start;
2547 	vm->caller = caller;
2548 	va->vm = vm;
2549 }
2550 
2551 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2552 			      unsigned long flags, const void *caller)
2553 {
2554 	spin_lock(&vmap_area_lock);
2555 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2556 	spin_unlock(&vmap_area_lock);
2557 }
2558 
2559 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2560 {
2561 	/*
2562 	 * Before removing VM_UNINITIALIZED,
2563 	 * we should make sure that vm has proper values.
2564 	 * Pair with smp_rmb() in show_numa_info().
2565 	 */
2566 	smp_wmb();
2567 	vm->flags &= ~VM_UNINITIALIZED;
2568 }
2569 
2570 static struct vm_struct *__get_vm_area_node(unsigned long size,
2571 		unsigned long align, unsigned long shift, unsigned long flags,
2572 		unsigned long start, unsigned long end, int node,
2573 		gfp_t gfp_mask, const void *caller)
2574 {
2575 	struct vmap_area *va;
2576 	struct vm_struct *area;
2577 	unsigned long requested_size = size;
2578 
2579 	BUG_ON(in_interrupt());
2580 	size = ALIGN(size, 1ul << shift);
2581 	if (unlikely(!size))
2582 		return NULL;
2583 
2584 	if (flags & VM_IOREMAP)
2585 		align = 1ul << clamp_t(int, get_count_order_long(size),
2586 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2587 
2588 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2589 	if (unlikely(!area))
2590 		return NULL;
2591 
2592 	if (!(flags & VM_NO_GUARD))
2593 		size += PAGE_SIZE;
2594 
2595 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0);
2596 	if (IS_ERR(va)) {
2597 		kfree(area);
2598 		return NULL;
2599 	}
2600 
2601 	setup_vmalloc_vm(area, va, flags, caller);
2602 
2603 	/*
2604 	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2605 	 * best-effort approach, as they can be mapped outside of vmalloc code.
2606 	 * For VM_ALLOC mappings, the pages are marked as accessible after
2607 	 * getting mapped in __vmalloc_node_range().
2608 	 * With hardware tag-based KASAN, marking is skipped for
2609 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2610 	 */
2611 	if (!(flags & VM_ALLOC))
2612 		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2613 						    KASAN_VMALLOC_PROT_NORMAL);
2614 
2615 	return area;
2616 }
2617 
2618 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2619 				       unsigned long start, unsigned long end,
2620 				       const void *caller)
2621 {
2622 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2623 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2624 }
2625 
2626 /**
2627  * get_vm_area - reserve a contiguous kernel virtual area
2628  * @size:	 size of the area
2629  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2630  *
2631  * Search an area of @size in the kernel virtual mapping area,
2632  * and reserved it for out purposes.  Returns the area descriptor
2633  * on success or %NULL on failure.
2634  *
2635  * Return: the area descriptor on success or %NULL on failure.
2636  */
2637 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2638 {
2639 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2640 				  VMALLOC_START, VMALLOC_END,
2641 				  NUMA_NO_NODE, GFP_KERNEL,
2642 				  __builtin_return_address(0));
2643 }
2644 
2645 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2646 				const void *caller)
2647 {
2648 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2649 				  VMALLOC_START, VMALLOC_END,
2650 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2651 }
2652 
2653 /**
2654  * find_vm_area - find a continuous kernel virtual area
2655  * @addr:	  base address
2656  *
2657  * Search for the kernel VM area starting at @addr, and return it.
2658  * It is up to the caller to do all required locking to keep the returned
2659  * pointer valid.
2660  *
2661  * Return: the area descriptor on success or %NULL on failure.
2662  */
2663 struct vm_struct *find_vm_area(const void *addr)
2664 {
2665 	struct vmap_area *va;
2666 
2667 	va = find_vmap_area((unsigned long)addr);
2668 	if (!va)
2669 		return NULL;
2670 
2671 	return va->vm;
2672 }
2673 
2674 /**
2675  * remove_vm_area - find and remove a continuous kernel virtual area
2676  * @addr:	    base address
2677  *
2678  * Search for the kernel VM area starting at @addr, and remove it.
2679  * This function returns the found VM area, but using it is NOT safe
2680  * on SMP machines, except for its size or flags.
2681  *
2682  * Return: the area descriptor on success or %NULL on failure.
2683  */
2684 struct vm_struct *remove_vm_area(const void *addr)
2685 {
2686 	struct vmap_area *va;
2687 	struct vm_struct *vm;
2688 
2689 	might_sleep();
2690 
2691 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2692 			addr))
2693 		return NULL;
2694 
2695 	va = find_unlink_vmap_area((unsigned long)addr);
2696 	if (!va || !va->vm)
2697 		return NULL;
2698 	vm = va->vm;
2699 
2700 	debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
2701 	debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
2702 	kasan_free_module_shadow(vm);
2703 	kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
2704 
2705 	free_unmap_vmap_area(va);
2706 	return vm;
2707 }
2708 
2709 static inline void set_area_direct_map(const struct vm_struct *area,
2710 				       int (*set_direct_map)(struct page *page))
2711 {
2712 	int i;
2713 
2714 	/* HUGE_VMALLOC passes small pages to set_direct_map */
2715 	for (i = 0; i < area->nr_pages; i++)
2716 		if (page_address(area->pages[i]))
2717 			set_direct_map(area->pages[i]);
2718 }
2719 
2720 /*
2721  * Flush the vm mapping and reset the direct map.
2722  */
2723 static void vm_reset_perms(struct vm_struct *area)
2724 {
2725 	unsigned long start = ULONG_MAX, end = 0;
2726 	unsigned int page_order = vm_area_page_order(area);
2727 	int flush_dmap = 0;
2728 	int i;
2729 
2730 	/*
2731 	 * Find the start and end range of the direct mappings to make sure that
2732 	 * the vm_unmap_aliases() flush includes the direct map.
2733 	 */
2734 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2735 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2736 
2737 		if (addr) {
2738 			unsigned long page_size;
2739 
2740 			page_size = PAGE_SIZE << page_order;
2741 			start = min(addr, start);
2742 			end = max(addr + page_size, end);
2743 			flush_dmap = 1;
2744 		}
2745 	}
2746 
2747 	/*
2748 	 * Set direct map to something invalid so that it won't be cached if
2749 	 * there are any accesses after the TLB flush, then flush the TLB and
2750 	 * reset the direct map permissions to the default.
2751 	 */
2752 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2753 	_vm_unmap_aliases(start, end, flush_dmap);
2754 	set_area_direct_map(area, set_direct_map_default_noflush);
2755 }
2756 
2757 static void delayed_vfree_work(struct work_struct *w)
2758 {
2759 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
2760 	struct llist_node *t, *llnode;
2761 
2762 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
2763 		vfree(llnode);
2764 }
2765 
2766 /**
2767  * vfree_atomic - release memory allocated by vmalloc()
2768  * @addr:	  memory base address
2769  *
2770  * This one is just like vfree() but can be called in any atomic context
2771  * except NMIs.
2772  */
2773 void vfree_atomic(const void *addr)
2774 {
2775 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2776 
2777 	BUG_ON(in_nmi());
2778 	kmemleak_free(addr);
2779 
2780 	/*
2781 	 * Use raw_cpu_ptr() because this can be called from preemptible
2782 	 * context. Preemption is absolutely fine here, because the llist_add()
2783 	 * implementation is lockless, so it works even if we are adding to
2784 	 * another cpu's list. schedule_work() should be fine with this too.
2785 	 */
2786 	if (addr && llist_add((struct llist_node *)addr, &p->list))
2787 		schedule_work(&p->wq);
2788 }
2789 
2790 /**
2791  * vfree - Release memory allocated by vmalloc()
2792  * @addr:  Memory base address
2793  *
2794  * Free the virtually continuous memory area starting at @addr, as obtained
2795  * from one of the vmalloc() family of APIs.  This will usually also free the
2796  * physical memory underlying the virtual allocation, but that memory is
2797  * reference counted, so it will not be freed until the last user goes away.
2798  *
2799  * If @addr is NULL, no operation is performed.
2800  *
2801  * Context:
2802  * May sleep if called *not* from interrupt context.
2803  * Must not be called in NMI context (strictly speaking, it could be
2804  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2805  * conventions for vfree() arch-dependent would be a really bad idea).
2806  */
2807 void vfree(const void *addr)
2808 {
2809 	struct vm_struct *vm;
2810 	int i;
2811 
2812 	if (unlikely(in_interrupt())) {
2813 		vfree_atomic(addr);
2814 		return;
2815 	}
2816 
2817 	BUG_ON(in_nmi());
2818 	kmemleak_free(addr);
2819 	might_sleep();
2820 
2821 	if (!addr)
2822 		return;
2823 
2824 	vm = remove_vm_area(addr);
2825 	if (unlikely(!vm)) {
2826 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2827 				addr);
2828 		return;
2829 	}
2830 
2831 	if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
2832 		vm_reset_perms(vm);
2833 	for (i = 0; i < vm->nr_pages; i++) {
2834 		struct page *page = vm->pages[i];
2835 
2836 		BUG_ON(!page);
2837 		mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2838 		/*
2839 		 * High-order allocs for huge vmallocs are split, so
2840 		 * can be freed as an array of order-0 allocations
2841 		 */
2842 		__free_page(page);
2843 		cond_resched();
2844 	}
2845 	atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
2846 	kvfree(vm->pages);
2847 	kfree(vm);
2848 }
2849 EXPORT_SYMBOL(vfree);
2850 
2851 /**
2852  * vunmap - release virtual mapping obtained by vmap()
2853  * @addr:   memory base address
2854  *
2855  * Free the virtually contiguous memory area starting at @addr,
2856  * which was created from the page array passed to vmap().
2857  *
2858  * Must not be called in interrupt context.
2859  */
2860 void vunmap(const void *addr)
2861 {
2862 	struct vm_struct *vm;
2863 
2864 	BUG_ON(in_interrupt());
2865 	might_sleep();
2866 
2867 	if (!addr)
2868 		return;
2869 	vm = remove_vm_area(addr);
2870 	if (unlikely(!vm)) {
2871 		WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
2872 				addr);
2873 		return;
2874 	}
2875 	kfree(vm);
2876 }
2877 EXPORT_SYMBOL(vunmap);
2878 
2879 /**
2880  * vmap - map an array of pages into virtually contiguous space
2881  * @pages: array of page pointers
2882  * @count: number of pages to map
2883  * @flags: vm_area->flags
2884  * @prot: page protection for the mapping
2885  *
2886  * Maps @count pages from @pages into contiguous kernel virtual space.
2887  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2888  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2889  * are transferred from the caller to vmap(), and will be freed / dropped when
2890  * vfree() is called on the return value.
2891  *
2892  * Return: the address of the area or %NULL on failure
2893  */
2894 void *vmap(struct page **pages, unsigned int count,
2895 	   unsigned long flags, pgprot_t prot)
2896 {
2897 	struct vm_struct *area;
2898 	unsigned long addr;
2899 	unsigned long size;		/* In bytes */
2900 
2901 	might_sleep();
2902 
2903 	if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
2904 		return NULL;
2905 
2906 	/*
2907 	 * Your top guard is someone else's bottom guard. Not having a top
2908 	 * guard compromises someone else's mappings too.
2909 	 */
2910 	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2911 		flags &= ~VM_NO_GUARD;
2912 
2913 	if (count > totalram_pages())
2914 		return NULL;
2915 
2916 	size = (unsigned long)count << PAGE_SHIFT;
2917 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2918 	if (!area)
2919 		return NULL;
2920 
2921 	addr = (unsigned long)area->addr;
2922 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2923 				pages, PAGE_SHIFT) < 0) {
2924 		vunmap(area->addr);
2925 		return NULL;
2926 	}
2927 
2928 	if (flags & VM_MAP_PUT_PAGES) {
2929 		area->pages = pages;
2930 		area->nr_pages = count;
2931 	}
2932 	return area->addr;
2933 }
2934 EXPORT_SYMBOL(vmap);
2935 
2936 #ifdef CONFIG_VMAP_PFN
2937 struct vmap_pfn_data {
2938 	unsigned long	*pfns;
2939 	pgprot_t	prot;
2940 	unsigned int	idx;
2941 };
2942 
2943 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2944 {
2945 	struct vmap_pfn_data *data = private;
2946 	unsigned long pfn = data->pfns[data->idx];
2947 	pte_t ptent;
2948 
2949 	if (WARN_ON_ONCE(pfn_valid(pfn)))
2950 		return -EINVAL;
2951 
2952 	ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
2953 	set_pte_at(&init_mm, addr, pte, ptent);
2954 
2955 	data->idx++;
2956 	return 0;
2957 }
2958 
2959 /**
2960  * vmap_pfn - map an array of PFNs into virtually contiguous space
2961  * @pfns: array of PFNs
2962  * @count: number of pages to map
2963  * @prot: page protection for the mapping
2964  *
2965  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2966  * the start address of the mapping.
2967  */
2968 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2969 {
2970 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2971 	struct vm_struct *area;
2972 
2973 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2974 			__builtin_return_address(0));
2975 	if (!area)
2976 		return NULL;
2977 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2978 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2979 		free_vm_area(area);
2980 		return NULL;
2981 	}
2982 
2983 	flush_cache_vmap((unsigned long)area->addr,
2984 			 (unsigned long)area->addr + count * PAGE_SIZE);
2985 
2986 	return area->addr;
2987 }
2988 EXPORT_SYMBOL_GPL(vmap_pfn);
2989 #endif /* CONFIG_VMAP_PFN */
2990 
2991 static inline unsigned int
2992 vm_area_alloc_pages(gfp_t gfp, int nid,
2993 		unsigned int order, unsigned int nr_pages, struct page **pages)
2994 {
2995 	unsigned int nr_allocated = 0;
2996 	gfp_t alloc_gfp = gfp;
2997 	bool nofail = false;
2998 	struct page *page;
2999 	int i;
3000 
3001 	/*
3002 	 * For order-0 pages we make use of bulk allocator, if
3003 	 * the page array is partly or not at all populated due
3004 	 * to fails, fallback to a single page allocator that is
3005 	 * more permissive.
3006 	 */
3007 	if (!order) {
3008 		/* bulk allocator doesn't support nofail req. officially */
3009 		gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
3010 
3011 		while (nr_allocated < nr_pages) {
3012 			unsigned int nr, nr_pages_request;
3013 
3014 			/*
3015 			 * A maximum allowed request is hard-coded and is 100
3016 			 * pages per call. That is done in order to prevent a
3017 			 * long preemption off scenario in the bulk-allocator
3018 			 * so the range is [1:100].
3019 			 */
3020 			nr_pages_request = min(100U, nr_pages - nr_allocated);
3021 
3022 			/* memory allocation should consider mempolicy, we can't
3023 			 * wrongly use nearest node when nid == NUMA_NO_NODE,
3024 			 * otherwise memory may be allocated in only one node,
3025 			 * but mempolicy wants to alloc memory by interleaving.
3026 			 */
3027 			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3028 				nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
3029 							nr_pages_request,
3030 							pages + nr_allocated);
3031 
3032 			else
3033 				nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
3034 							nr_pages_request,
3035 							pages + nr_allocated);
3036 
3037 			nr_allocated += nr;
3038 			cond_resched();
3039 
3040 			/*
3041 			 * If zero or pages were obtained partly,
3042 			 * fallback to a single page allocator.
3043 			 */
3044 			if (nr != nr_pages_request)
3045 				break;
3046 		}
3047 	} else if (gfp & __GFP_NOFAIL) {
3048 		/*
3049 		 * Higher order nofail allocations are really expensive and
3050 		 * potentially dangerous (pre-mature OOM, disruptive reclaim
3051 		 * and compaction etc.
3052 		 */
3053 		alloc_gfp &= ~__GFP_NOFAIL;
3054 		nofail = true;
3055 	}
3056 
3057 	/* High-order pages or fallback path if "bulk" fails. */
3058 	while (nr_allocated < nr_pages) {
3059 		if (fatal_signal_pending(current))
3060 			break;
3061 
3062 		if (nid == NUMA_NO_NODE)
3063 			page = alloc_pages(alloc_gfp, order);
3064 		else
3065 			page = alloc_pages_node(nid, alloc_gfp, order);
3066 		if (unlikely(!page)) {
3067 			if (!nofail)
3068 				break;
3069 
3070 			/* fall back to the zero order allocations */
3071 			alloc_gfp |= __GFP_NOFAIL;
3072 			order = 0;
3073 			continue;
3074 		}
3075 
3076 		/*
3077 		 * Higher order allocations must be able to be treated as
3078 		 * indepdenent small pages by callers (as they can with
3079 		 * small-page vmallocs). Some drivers do their own refcounting
3080 		 * on vmalloc_to_page() pages, some use page->mapping,
3081 		 * page->lru, etc.
3082 		 */
3083 		if (order)
3084 			split_page(page, order);
3085 
3086 		/*
3087 		 * Careful, we allocate and map page-order pages, but
3088 		 * tracking is done per PAGE_SIZE page so as to keep the
3089 		 * vm_struct APIs independent of the physical/mapped size.
3090 		 */
3091 		for (i = 0; i < (1U << order); i++)
3092 			pages[nr_allocated + i] = page + i;
3093 
3094 		cond_resched();
3095 		nr_allocated += 1U << order;
3096 	}
3097 
3098 	return nr_allocated;
3099 }
3100 
3101 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3102 				 pgprot_t prot, unsigned int page_shift,
3103 				 int node)
3104 {
3105 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3106 	bool nofail = gfp_mask & __GFP_NOFAIL;
3107 	unsigned long addr = (unsigned long)area->addr;
3108 	unsigned long size = get_vm_area_size(area);
3109 	unsigned long array_size;
3110 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
3111 	unsigned int page_order;
3112 	unsigned int flags;
3113 	int ret;
3114 
3115 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3116 
3117 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3118 		gfp_mask |= __GFP_HIGHMEM;
3119 
3120 	/* Please note that the recursion is strictly bounded. */
3121 	if (array_size > PAGE_SIZE) {
3122 		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
3123 					area->caller);
3124 	} else {
3125 		area->pages = kmalloc_node(array_size, nested_gfp, node);
3126 	}
3127 
3128 	if (!area->pages) {
3129 		warn_alloc(gfp_mask, NULL,
3130 			"vmalloc error: size %lu, failed to allocated page array size %lu",
3131 			nr_small_pages * PAGE_SIZE, array_size);
3132 		free_vm_area(area);
3133 		return NULL;
3134 	}
3135 
3136 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3137 	page_order = vm_area_page_order(area);
3138 
3139 	area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3140 		node, page_order, nr_small_pages, area->pages);
3141 
3142 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3143 	if (gfp_mask & __GFP_ACCOUNT) {
3144 		int i;
3145 
3146 		for (i = 0; i < area->nr_pages; i++)
3147 			mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3148 	}
3149 
3150 	/*
3151 	 * If not enough pages were obtained to accomplish an
3152 	 * allocation request, free them via vfree() if any.
3153 	 */
3154 	if (area->nr_pages != nr_small_pages) {
3155 		/*
3156 		 * vm_area_alloc_pages() can fail due to insufficient memory but
3157 		 * also:-
3158 		 *
3159 		 * - a pending fatal signal
3160 		 * - insufficient huge page-order pages
3161 		 *
3162 		 * Since we always retry allocations at order-0 in the huge page
3163 		 * case a warning for either is spurious.
3164 		 */
3165 		if (!fatal_signal_pending(current) && page_order == 0)
3166 			warn_alloc(gfp_mask, NULL,
3167 				"vmalloc error: size %lu, failed to allocate pages",
3168 				area->nr_pages * PAGE_SIZE);
3169 		goto fail;
3170 	}
3171 
3172 	/*
3173 	 * page tables allocations ignore external gfp mask, enforce it
3174 	 * by the scope API
3175 	 */
3176 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3177 		flags = memalloc_nofs_save();
3178 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3179 		flags = memalloc_noio_save();
3180 
3181 	do {
3182 		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3183 			page_shift);
3184 		if (nofail && (ret < 0))
3185 			schedule_timeout_uninterruptible(1);
3186 	} while (nofail && (ret < 0));
3187 
3188 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3189 		memalloc_nofs_restore(flags);
3190 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3191 		memalloc_noio_restore(flags);
3192 
3193 	if (ret < 0) {
3194 		warn_alloc(gfp_mask, NULL,
3195 			"vmalloc error: size %lu, failed to map pages",
3196 			area->nr_pages * PAGE_SIZE);
3197 		goto fail;
3198 	}
3199 
3200 	return area->addr;
3201 
3202 fail:
3203 	vfree(area->addr);
3204 	return NULL;
3205 }
3206 
3207 /**
3208  * __vmalloc_node_range - allocate virtually contiguous memory
3209  * @size:		  allocation size
3210  * @align:		  desired alignment
3211  * @start:		  vm area range start
3212  * @end:		  vm area range end
3213  * @gfp_mask:		  flags for the page level allocator
3214  * @prot:		  protection mask for the allocated pages
3215  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3216  * @node:		  node to use for allocation or NUMA_NO_NODE
3217  * @caller:		  caller's return address
3218  *
3219  * Allocate enough pages to cover @size from the page level
3220  * allocator with @gfp_mask flags. Please note that the full set of gfp
3221  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3222  * supported.
3223  * Zone modifiers are not supported. From the reclaim modifiers
3224  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3225  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3226  * __GFP_RETRY_MAYFAIL are not supported).
3227  *
3228  * __GFP_NOWARN can be used to suppress failures messages.
3229  *
3230  * Map them into contiguous kernel virtual space, using a pagetable
3231  * protection of @prot.
3232  *
3233  * Return: the address of the area or %NULL on failure
3234  */
3235 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3236 			unsigned long start, unsigned long end, gfp_t gfp_mask,
3237 			pgprot_t prot, unsigned long vm_flags, int node,
3238 			const void *caller)
3239 {
3240 	struct vm_struct *area;
3241 	void *ret;
3242 	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3243 	unsigned long real_size = size;
3244 	unsigned long real_align = align;
3245 	unsigned int shift = PAGE_SHIFT;
3246 
3247 	if (WARN_ON_ONCE(!size))
3248 		return NULL;
3249 
3250 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3251 		warn_alloc(gfp_mask, NULL,
3252 			"vmalloc error: size %lu, exceeds total pages",
3253 			real_size);
3254 		return NULL;
3255 	}
3256 
3257 	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3258 		unsigned long size_per_node;
3259 
3260 		/*
3261 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3262 		 * others like modules don't yet expect huge pages in
3263 		 * their allocations due to apply_to_page_range not
3264 		 * supporting them.
3265 		 */
3266 
3267 		size_per_node = size;
3268 		if (node == NUMA_NO_NODE)
3269 			size_per_node /= num_online_nodes();
3270 		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3271 			shift = PMD_SHIFT;
3272 		else
3273 			shift = arch_vmap_pte_supported_shift(size_per_node);
3274 
3275 		align = max(real_align, 1UL << shift);
3276 		size = ALIGN(real_size, 1UL << shift);
3277 	}
3278 
3279 again:
3280 	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3281 				  VM_UNINITIALIZED | vm_flags, start, end, node,
3282 				  gfp_mask, caller);
3283 	if (!area) {
3284 		bool nofail = gfp_mask & __GFP_NOFAIL;
3285 		warn_alloc(gfp_mask, NULL,
3286 			"vmalloc error: size %lu, vm_struct allocation failed%s",
3287 			real_size, (nofail) ? ". Retrying." : "");
3288 		if (nofail) {
3289 			schedule_timeout_uninterruptible(1);
3290 			goto again;
3291 		}
3292 		goto fail;
3293 	}
3294 
3295 	/*
3296 	 * Prepare arguments for __vmalloc_area_node() and
3297 	 * kasan_unpoison_vmalloc().
3298 	 */
3299 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3300 		if (kasan_hw_tags_enabled()) {
3301 			/*
3302 			 * Modify protection bits to allow tagging.
3303 			 * This must be done before mapping.
3304 			 */
3305 			prot = arch_vmap_pgprot_tagged(prot);
3306 
3307 			/*
3308 			 * Skip page_alloc poisoning and zeroing for physical
3309 			 * pages backing VM_ALLOC mapping. Memory is instead
3310 			 * poisoned and zeroed by kasan_unpoison_vmalloc().
3311 			 */
3312 			gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
3313 		}
3314 
3315 		/* Take note that the mapping is PAGE_KERNEL. */
3316 		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3317 	}
3318 
3319 	/* Allocate physical pages and map them into vmalloc space. */
3320 	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3321 	if (!ret)
3322 		goto fail;
3323 
3324 	/*
3325 	 * Mark the pages as accessible, now that they are mapped.
3326 	 * The condition for setting KASAN_VMALLOC_INIT should complement the
3327 	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3328 	 * to make sure that memory is initialized under the same conditions.
3329 	 * Tag-based KASAN modes only assign tags to normal non-executable
3330 	 * allocations, see __kasan_unpoison_vmalloc().
3331 	 */
3332 	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3333 	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3334 	    (gfp_mask & __GFP_SKIP_ZERO))
3335 		kasan_flags |= KASAN_VMALLOC_INIT;
3336 	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3337 	area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3338 
3339 	/*
3340 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3341 	 * flag. It means that vm_struct is not fully initialized.
3342 	 * Now, it is fully initialized, so remove this flag here.
3343 	 */
3344 	clear_vm_uninitialized_flag(area);
3345 
3346 	size = PAGE_ALIGN(size);
3347 	if (!(vm_flags & VM_DEFER_KMEMLEAK))
3348 		kmemleak_vmalloc(area, size, gfp_mask);
3349 
3350 	return area->addr;
3351 
3352 fail:
3353 	if (shift > PAGE_SHIFT) {
3354 		shift = PAGE_SHIFT;
3355 		align = real_align;
3356 		size = real_size;
3357 		goto again;
3358 	}
3359 
3360 	return NULL;
3361 }
3362 
3363 /**
3364  * __vmalloc_node - allocate virtually contiguous memory
3365  * @size:	    allocation size
3366  * @align:	    desired alignment
3367  * @gfp_mask:	    flags for the page level allocator
3368  * @node:	    node to use for allocation or NUMA_NO_NODE
3369  * @caller:	    caller's return address
3370  *
3371  * Allocate enough pages to cover @size from the page level allocator with
3372  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3373  *
3374  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3375  * and __GFP_NOFAIL are not supported
3376  *
3377  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3378  * with mm people.
3379  *
3380  * Return: pointer to the allocated memory or %NULL on error
3381  */
3382 void *__vmalloc_node(unsigned long size, unsigned long align,
3383 			    gfp_t gfp_mask, int node, const void *caller)
3384 {
3385 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3386 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3387 }
3388 /*
3389  * This is only for performance analysis of vmalloc and stress purpose.
3390  * It is required by vmalloc test module, therefore do not use it other
3391  * than that.
3392  */
3393 #ifdef CONFIG_TEST_VMALLOC_MODULE
3394 EXPORT_SYMBOL_GPL(__vmalloc_node);
3395 #endif
3396 
3397 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3398 {
3399 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3400 				__builtin_return_address(0));
3401 }
3402 EXPORT_SYMBOL(__vmalloc);
3403 
3404 /**
3405  * vmalloc - allocate virtually contiguous memory
3406  * @size:    allocation size
3407  *
3408  * Allocate enough pages to cover @size from the page level
3409  * allocator and map them into contiguous kernel virtual space.
3410  *
3411  * For tight control over page level allocator and protection flags
3412  * use __vmalloc() instead.
3413  *
3414  * Return: pointer to the allocated memory or %NULL on error
3415  */
3416 void *vmalloc(unsigned long size)
3417 {
3418 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3419 				__builtin_return_address(0));
3420 }
3421 EXPORT_SYMBOL(vmalloc);
3422 
3423 /**
3424  * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3425  * @size:      allocation size
3426  * @gfp_mask:  flags for the page level allocator
3427  *
3428  * Allocate enough pages to cover @size from the page level
3429  * allocator and map them into contiguous kernel virtual space.
3430  * If @size is greater than or equal to PMD_SIZE, allow using
3431  * huge pages for the memory
3432  *
3433  * Return: pointer to the allocated memory or %NULL on error
3434  */
3435 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3436 {
3437 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3438 				    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3439 				    NUMA_NO_NODE, __builtin_return_address(0));
3440 }
3441 EXPORT_SYMBOL_GPL(vmalloc_huge);
3442 
3443 /**
3444  * vzalloc - allocate virtually contiguous memory with zero fill
3445  * @size:    allocation size
3446  *
3447  * Allocate enough pages to cover @size from the page level
3448  * allocator and map them into contiguous kernel virtual space.
3449  * The memory allocated is set to zero.
3450  *
3451  * For tight control over page level allocator and protection flags
3452  * use __vmalloc() instead.
3453  *
3454  * Return: pointer to the allocated memory or %NULL on error
3455  */
3456 void *vzalloc(unsigned long size)
3457 {
3458 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3459 				__builtin_return_address(0));
3460 }
3461 EXPORT_SYMBOL(vzalloc);
3462 
3463 /**
3464  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3465  * @size: allocation size
3466  *
3467  * The resulting memory area is zeroed so it can be mapped to userspace
3468  * without leaking data.
3469  *
3470  * Return: pointer to the allocated memory or %NULL on error
3471  */
3472 void *vmalloc_user(unsigned long size)
3473 {
3474 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3475 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3476 				    VM_USERMAP, NUMA_NO_NODE,
3477 				    __builtin_return_address(0));
3478 }
3479 EXPORT_SYMBOL(vmalloc_user);
3480 
3481 /**
3482  * vmalloc_node - allocate memory on a specific node
3483  * @size:	  allocation size
3484  * @node:	  numa node
3485  *
3486  * Allocate enough pages to cover @size from the page level
3487  * allocator and map them into contiguous kernel virtual space.
3488  *
3489  * For tight control over page level allocator and protection flags
3490  * use __vmalloc() instead.
3491  *
3492  * Return: pointer to the allocated memory or %NULL on error
3493  */
3494 void *vmalloc_node(unsigned long size, int node)
3495 {
3496 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
3497 			__builtin_return_address(0));
3498 }
3499 EXPORT_SYMBOL(vmalloc_node);
3500 
3501 /**
3502  * vzalloc_node - allocate memory on a specific node with zero fill
3503  * @size:	allocation size
3504  * @node:	numa node
3505  *
3506  * Allocate enough pages to cover @size from the page level
3507  * allocator and map them into contiguous kernel virtual space.
3508  * The memory allocated is set to zero.
3509  *
3510  * Return: pointer to the allocated memory or %NULL on error
3511  */
3512 void *vzalloc_node(unsigned long size, int node)
3513 {
3514 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3515 				__builtin_return_address(0));
3516 }
3517 EXPORT_SYMBOL(vzalloc_node);
3518 
3519 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3520 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3521 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3522 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3523 #else
3524 /*
3525  * 64b systems should always have either DMA or DMA32 zones. For others
3526  * GFP_DMA32 should do the right thing and use the normal zone.
3527  */
3528 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3529 #endif
3530 
3531 /**
3532  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3533  * @size:	allocation size
3534  *
3535  * Allocate enough 32bit PA addressable pages to cover @size from the
3536  * page level allocator and map them into contiguous kernel virtual space.
3537  *
3538  * Return: pointer to the allocated memory or %NULL on error
3539  */
3540 void *vmalloc_32(unsigned long size)
3541 {
3542 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3543 			__builtin_return_address(0));
3544 }
3545 EXPORT_SYMBOL(vmalloc_32);
3546 
3547 /**
3548  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3549  * @size:	     allocation size
3550  *
3551  * The resulting memory area is 32bit addressable and zeroed so it can be
3552  * mapped to userspace without leaking data.
3553  *
3554  * Return: pointer to the allocated memory or %NULL on error
3555  */
3556 void *vmalloc_32_user(unsigned long size)
3557 {
3558 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3559 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3560 				    VM_USERMAP, NUMA_NO_NODE,
3561 				    __builtin_return_address(0));
3562 }
3563 EXPORT_SYMBOL(vmalloc_32_user);
3564 
3565 /*
3566  * Atomically zero bytes in the iterator.
3567  *
3568  * Returns the number of zeroed bytes.
3569  */
3570 static size_t zero_iter(struct iov_iter *iter, size_t count)
3571 {
3572 	size_t remains = count;
3573 
3574 	while (remains > 0) {
3575 		size_t num, copied;
3576 
3577 		num = min_t(size_t, remains, PAGE_SIZE);
3578 		copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
3579 		remains -= copied;
3580 
3581 		if (copied < num)
3582 			break;
3583 	}
3584 
3585 	return count - remains;
3586 }
3587 
3588 /*
3589  * small helper routine, copy contents to iter from addr.
3590  * If the page is not present, fill zero.
3591  *
3592  * Returns the number of copied bytes.
3593  */
3594 static size_t aligned_vread_iter(struct iov_iter *iter,
3595 				 const char *addr, size_t count)
3596 {
3597 	size_t remains = count;
3598 	struct page *page;
3599 
3600 	while (remains > 0) {
3601 		unsigned long offset, length;
3602 		size_t copied = 0;
3603 
3604 		offset = offset_in_page(addr);
3605 		length = PAGE_SIZE - offset;
3606 		if (length > remains)
3607 			length = remains;
3608 		page = vmalloc_to_page(addr);
3609 		/*
3610 		 * To do safe access to this _mapped_ area, we need lock. But
3611 		 * adding lock here means that we need to add overhead of
3612 		 * vmalloc()/vfree() calls for this _debug_ interface, rarely
3613 		 * used. Instead of that, we'll use an local mapping via
3614 		 * copy_page_to_iter_nofault() and accept a small overhead in
3615 		 * this access function.
3616 		 */
3617 		if (page)
3618 			copied = copy_page_to_iter_nofault(page, offset,
3619 							   length, iter);
3620 		else
3621 			copied = zero_iter(iter, length);
3622 
3623 		addr += copied;
3624 		remains -= copied;
3625 
3626 		if (copied != length)
3627 			break;
3628 	}
3629 
3630 	return count - remains;
3631 }
3632 
3633 /*
3634  * Read from a vm_map_ram region of memory.
3635  *
3636  * Returns the number of copied bytes.
3637  */
3638 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
3639 				  size_t count, unsigned long flags)
3640 {
3641 	char *start;
3642 	struct vmap_block *vb;
3643 	struct xarray *xa;
3644 	unsigned long offset;
3645 	unsigned int rs, re;
3646 	size_t remains, n;
3647 
3648 	/*
3649 	 * If it's area created by vm_map_ram() interface directly, but
3650 	 * not further subdividing and delegating management to vmap_block,
3651 	 * handle it here.
3652 	 */
3653 	if (!(flags & VMAP_BLOCK))
3654 		return aligned_vread_iter(iter, addr, count);
3655 
3656 	remains = count;
3657 
3658 	/*
3659 	 * Area is split into regions and tracked with vmap_block, read out
3660 	 * each region and zero fill the hole between regions.
3661 	 */
3662 	xa = addr_to_vb_xa((unsigned long) addr);
3663 	vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
3664 	if (!vb)
3665 		goto finished_zero;
3666 
3667 	spin_lock(&vb->lock);
3668 	if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
3669 		spin_unlock(&vb->lock);
3670 		goto finished_zero;
3671 	}
3672 
3673 	for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
3674 		size_t copied;
3675 
3676 		if (remains == 0)
3677 			goto finished;
3678 
3679 		start = vmap_block_vaddr(vb->va->va_start, rs);
3680 
3681 		if (addr < start) {
3682 			size_t to_zero = min_t(size_t, start - addr, remains);
3683 			size_t zeroed = zero_iter(iter, to_zero);
3684 
3685 			addr += zeroed;
3686 			remains -= zeroed;
3687 
3688 			if (remains == 0 || zeroed != to_zero)
3689 				goto finished;
3690 		}
3691 
3692 		/*it could start reading from the middle of used region*/
3693 		offset = offset_in_page(addr);
3694 		n = ((re - rs + 1) << PAGE_SHIFT) - offset;
3695 		if (n > remains)
3696 			n = remains;
3697 
3698 		copied = aligned_vread_iter(iter, start + offset, n);
3699 
3700 		addr += copied;
3701 		remains -= copied;
3702 
3703 		if (copied != n)
3704 			goto finished;
3705 	}
3706 
3707 	spin_unlock(&vb->lock);
3708 
3709 finished_zero:
3710 	/* zero-fill the left dirty or free regions */
3711 	return count - remains + zero_iter(iter, remains);
3712 finished:
3713 	/* We couldn't copy/zero everything */
3714 	spin_unlock(&vb->lock);
3715 	return count - remains;
3716 }
3717 
3718 /**
3719  * vread_iter() - read vmalloc area in a safe way to an iterator.
3720  * @iter:         the iterator to which data should be written.
3721  * @addr:         vm address.
3722  * @count:        number of bytes to be read.
3723  *
3724  * This function checks that addr is a valid vmalloc'ed area, and
3725  * copy data from that area to a given buffer. If the given memory range
3726  * of [addr...addr+count) includes some valid address, data is copied to
3727  * proper area of @buf. If there are memory holes, they'll be zero-filled.
3728  * IOREMAP area is treated as memory hole and no copy is done.
3729  *
3730  * If [addr...addr+count) doesn't includes any intersects with alive
3731  * vm_struct area, returns 0. @buf should be kernel's buffer.
3732  *
3733  * Note: In usual ops, vread() is never necessary because the caller
3734  * should know vmalloc() area is valid and can use memcpy().
3735  * This is for routines which have to access vmalloc area without
3736  * any information, as /proc/kcore.
3737  *
3738  * Return: number of bytes for which addr and buf should be increased
3739  * (same number as @count) or %0 if [addr...addr+count) doesn't
3740  * include any intersection with valid vmalloc area
3741  */
3742 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
3743 {
3744 	struct vmap_area *va;
3745 	struct vm_struct *vm;
3746 	char *vaddr;
3747 	size_t n, size, flags, remains;
3748 
3749 	addr = kasan_reset_tag(addr);
3750 
3751 	/* Don't allow overflow */
3752 	if ((unsigned long) addr + count < count)
3753 		count = -(unsigned long) addr;
3754 
3755 	remains = count;
3756 
3757 	spin_lock(&vmap_area_lock);
3758 	va = find_vmap_area_exceed_addr((unsigned long)addr);
3759 	if (!va)
3760 		goto finished_zero;
3761 
3762 	/* no intersects with alive vmap_area */
3763 	if ((unsigned long)addr + remains <= va->va_start)
3764 		goto finished_zero;
3765 
3766 	list_for_each_entry_from(va, &vmap_area_list, list) {
3767 		size_t copied;
3768 
3769 		if (remains == 0)
3770 			goto finished;
3771 
3772 		vm = va->vm;
3773 		flags = va->flags & VMAP_FLAGS_MASK;
3774 		/*
3775 		 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
3776 		 * be set together with VMAP_RAM.
3777 		 */
3778 		WARN_ON(flags == VMAP_BLOCK);
3779 
3780 		if (!vm && !flags)
3781 			continue;
3782 
3783 		if (vm && (vm->flags & VM_UNINITIALIZED))
3784 			continue;
3785 
3786 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3787 		smp_rmb();
3788 
3789 		vaddr = (char *) va->va_start;
3790 		size = vm ? get_vm_area_size(vm) : va_size(va);
3791 
3792 		if (addr >= vaddr + size)
3793 			continue;
3794 
3795 		if (addr < vaddr) {
3796 			size_t to_zero = min_t(size_t, vaddr - addr, remains);
3797 			size_t zeroed = zero_iter(iter, to_zero);
3798 
3799 			addr += zeroed;
3800 			remains -= zeroed;
3801 
3802 			if (remains == 0 || zeroed != to_zero)
3803 				goto finished;
3804 		}
3805 
3806 		n = vaddr + size - addr;
3807 		if (n > remains)
3808 			n = remains;
3809 
3810 		if (flags & VMAP_RAM)
3811 			copied = vmap_ram_vread_iter(iter, addr, n, flags);
3812 		else if (!(vm->flags & VM_IOREMAP))
3813 			copied = aligned_vread_iter(iter, addr, n);
3814 		else /* IOREMAP area is treated as memory hole */
3815 			copied = zero_iter(iter, n);
3816 
3817 		addr += copied;
3818 		remains -= copied;
3819 
3820 		if (copied != n)
3821 			goto finished;
3822 	}
3823 
3824 finished_zero:
3825 	spin_unlock(&vmap_area_lock);
3826 	/* zero-fill memory holes */
3827 	return count - remains + zero_iter(iter, remains);
3828 finished:
3829 	/* Nothing remains, or We couldn't copy/zero everything. */
3830 	spin_unlock(&vmap_area_lock);
3831 
3832 	return count - remains;
3833 }
3834 
3835 /**
3836  * remap_vmalloc_range_partial - map vmalloc pages to userspace
3837  * @vma:		vma to cover
3838  * @uaddr:		target user address to start at
3839  * @kaddr:		virtual address of vmalloc kernel memory
3840  * @pgoff:		offset from @kaddr to start at
3841  * @size:		size of map area
3842  *
3843  * Returns:	0 for success, -Exxx on failure
3844  *
3845  * This function checks that @kaddr is a valid vmalloc'ed area,
3846  * and that it is big enough to cover the range starting at
3847  * @uaddr in @vma. Will return failure if that criteria isn't
3848  * met.
3849  *
3850  * Similar to remap_pfn_range() (see mm/memory.c)
3851  */
3852 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3853 				void *kaddr, unsigned long pgoff,
3854 				unsigned long size)
3855 {
3856 	struct vm_struct *area;
3857 	unsigned long off;
3858 	unsigned long end_index;
3859 
3860 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3861 		return -EINVAL;
3862 
3863 	size = PAGE_ALIGN(size);
3864 
3865 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3866 		return -EINVAL;
3867 
3868 	area = find_vm_area(kaddr);
3869 	if (!area)
3870 		return -EINVAL;
3871 
3872 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3873 		return -EINVAL;
3874 
3875 	if (check_add_overflow(size, off, &end_index) ||
3876 	    end_index > get_vm_area_size(area))
3877 		return -EINVAL;
3878 	kaddr += off;
3879 
3880 	do {
3881 		struct page *page = vmalloc_to_page(kaddr);
3882 		int ret;
3883 
3884 		ret = vm_insert_page(vma, uaddr, page);
3885 		if (ret)
3886 			return ret;
3887 
3888 		uaddr += PAGE_SIZE;
3889 		kaddr += PAGE_SIZE;
3890 		size -= PAGE_SIZE;
3891 	} while (size > 0);
3892 
3893 	vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
3894 
3895 	return 0;
3896 }
3897 
3898 /**
3899  * remap_vmalloc_range - map vmalloc pages to userspace
3900  * @vma:		vma to cover (map full range of vma)
3901  * @addr:		vmalloc memory
3902  * @pgoff:		number of pages into addr before first page to map
3903  *
3904  * Returns:	0 for success, -Exxx on failure
3905  *
3906  * This function checks that addr is a valid vmalloc'ed area, and
3907  * that it is big enough to cover the vma. Will return failure if
3908  * that criteria isn't met.
3909  *
3910  * Similar to remap_pfn_range() (see mm/memory.c)
3911  */
3912 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3913 						unsigned long pgoff)
3914 {
3915 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3916 					   addr, pgoff,
3917 					   vma->vm_end - vma->vm_start);
3918 }
3919 EXPORT_SYMBOL(remap_vmalloc_range);
3920 
3921 void free_vm_area(struct vm_struct *area)
3922 {
3923 	struct vm_struct *ret;
3924 	ret = remove_vm_area(area->addr);
3925 	BUG_ON(ret != area);
3926 	kfree(area);
3927 }
3928 EXPORT_SYMBOL_GPL(free_vm_area);
3929 
3930 #ifdef CONFIG_SMP
3931 static struct vmap_area *node_to_va(struct rb_node *n)
3932 {
3933 	return rb_entry_safe(n, struct vmap_area, rb_node);
3934 }
3935 
3936 /**
3937  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3938  * @addr: target address
3939  *
3940  * Returns: vmap_area if it is found. If there is no such area
3941  *   the first highest(reverse order) vmap_area is returned
3942  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3943  *   if there are no any areas before @addr.
3944  */
3945 static struct vmap_area *
3946 pvm_find_va_enclose_addr(unsigned long addr)
3947 {
3948 	struct vmap_area *va, *tmp;
3949 	struct rb_node *n;
3950 
3951 	n = free_vmap_area_root.rb_node;
3952 	va = NULL;
3953 
3954 	while (n) {
3955 		tmp = rb_entry(n, struct vmap_area, rb_node);
3956 		if (tmp->va_start <= addr) {
3957 			va = tmp;
3958 			if (tmp->va_end >= addr)
3959 				break;
3960 
3961 			n = n->rb_right;
3962 		} else {
3963 			n = n->rb_left;
3964 		}
3965 	}
3966 
3967 	return va;
3968 }
3969 
3970 /**
3971  * pvm_determine_end_from_reverse - find the highest aligned address
3972  * of free block below VMALLOC_END
3973  * @va:
3974  *   in - the VA we start the search(reverse order);
3975  *   out - the VA with the highest aligned end address.
3976  * @align: alignment for required highest address
3977  *
3978  * Returns: determined end address within vmap_area
3979  */
3980 static unsigned long
3981 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3982 {
3983 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3984 	unsigned long addr;
3985 
3986 	if (likely(*va)) {
3987 		list_for_each_entry_from_reverse((*va),
3988 				&free_vmap_area_list, list) {
3989 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3990 			if ((*va)->va_start < addr)
3991 				return addr;
3992 		}
3993 	}
3994 
3995 	return 0;
3996 }
3997 
3998 /**
3999  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4000  * @offsets: array containing offset of each area
4001  * @sizes: array containing size of each area
4002  * @nr_vms: the number of areas to allocate
4003  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4004  *
4005  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4006  *	    vm_structs on success, %NULL on failure
4007  *
4008  * Percpu allocator wants to use congruent vm areas so that it can
4009  * maintain the offsets among percpu areas.  This function allocates
4010  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
4011  * be scattered pretty far, distance between two areas easily going up
4012  * to gigabytes.  To avoid interacting with regular vmallocs, these
4013  * areas are allocated from top.
4014  *
4015  * Despite its complicated look, this allocator is rather simple. It
4016  * does everything top-down and scans free blocks from the end looking
4017  * for matching base. While scanning, if any of the areas do not fit the
4018  * base address is pulled down to fit the area. Scanning is repeated till
4019  * all the areas fit and then all necessary data structures are inserted
4020  * and the result is returned.
4021  */
4022 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4023 				     const size_t *sizes, int nr_vms,
4024 				     size_t align)
4025 {
4026 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4027 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4028 	struct vmap_area **vas, *va;
4029 	struct vm_struct **vms;
4030 	int area, area2, last_area, term_area;
4031 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
4032 	bool purged = false;
4033 
4034 	/* verify parameters and allocate data structures */
4035 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4036 	for (last_area = 0, area = 0; area < nr_vms; area++) {
4037 		start = offsets[area];
4038 		end = start + sizes[area];
4039 
4040 		/* is everything aligned properly? */
4041 		BUG_ON(!IS_ALIGNED(offsets[area], align));
4042 		BUG_ON(!IS_ALIGNED(sizes[area], align));
4043 
4044 		/* detect the area with the highest address */
4045 		if (start > offsets[last_area])
4046 			last_area = area;
4047 
4048 		for (area2 = area + 1; area2 < nr_vms; area2++) {
4049 			unsigned long start2 = offsets[area2];
4050 			unsigned long end2 = start2 + sizes[area2];
4051 
4052 			BUG_ON(start2 < end && start < end2);
4053 		}
4054 	}
4055 	last_end = offsets[last_area] + sizes[last_area];
4056 
4057 	if (vmalloc_end - vmalloc_start < last_end) {
4058 		WARN_ON(true);
4059 		return NULL;
4060 	}
4061 
4062 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4063 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4064 	if (!vas || !vms)
4065 		goto err_free2;
4066 
4067 	for (area = 0; area < nr_vms; area++) {
4068 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4069 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4070 		if (!vas[area] || !vms[area])
4071 			goto err_free;
4072 	}
4073 retry:
4074 	spin_lock(&free_vmap_area_lock);
4075 
4076 	/* start scanning - we scan from the top, begin with the last area */
4077 	area = term_area = last_area;
4078 	start = offsets[area];
4079 	end = start + sizes[area];
4080 
4081 	va = pvm_find_va_enclose_addr(vmalloc_end);
4082 	base = pvm_determine_end_from_reverse(&va, align) - end;
4083 
4084 	while (true) {
4085 		/*
4086 		 * base might have underflowed, add last_end before
4087 		 * comparing.
4088 		 */
4089 		if (base + last_end < vmalloc_start + last_end)
4090 			goto overflow;
4091 
4092 		/*
4093 		 * Fitting base has not been found.
4094 		 */
4095 		if (va == NULL)
4096 			goto overflow;
4097 
4098 		/*
4099 		 * If required width exceeds current VA block, move
4100 		 * base downwards and then recheck.
4101 		 */
4102 		if (base + end > va->va_end) {
4103 			base = pvm_determine_end_from_reverse(&va, align) - end;
4104 			term_area = area;
4105 			continue;
4106 		}
4107 
4108 		/*
4109 		 * If this VA does not fit, move base downwards and recheck.
4110 		 */
4111 		if (base + start < va->va_start) {
4112 			va = node_to_va(rb_prev(&va->rb_node));
4113 			base = pvm_determine_end_from_reverse(&va, align) - end;
4114 			term_area = area;
4115 			continue;
4116 		}
4117 
4118 		/*
4119 		 * This area fits, move on to the previous one.  If
4120 		 * the previous one is the terminal one, we're done.
4121 		 */
4122 		area = (area + nr_vms - 1) % nr_vms;
4123 		if (area == term_area)
4124 			break;
4125 
4126 		start = offsets[area];
4127 		end = start + sizes[area];
4128 		va = pvm_find_va_enclose_addr(base + end);
4129 	}
4130 
4131 	/* we've found a fitting base, insert all va's */
4132 	for (area = 0; area < nr_vms; area++) {
4133 		int ret;
4134 
4135 		start = base + offsets[area];
4136 		size = sizes[area];
4137 
4138 		va = pvm_find_va_enclose_addr(start);
4139 		if (WARN_ON_ONCE(va == NULL))
4140 			/* It is a BUG(), but trigger recovery instead. */
4141 			goto recovery;
4142 
4143 		ret = adjust_va_to_fit_type(&free_vmap_area_root,
4144 					    &free_vmap_area_list,
4145 					    va, start, size);
4146 		if (WARN_ON_ONCE(unlikely(ret)))
4147 			/* It is a BUG(), but trigger recovery instead. */
4148 			goto recovery;
4149 
4150 		/* Allocated area. */
4151 		va = vas[area];
4152 		va->va_start = start;
4153 		va->va_end = start + size;
4154 	}
4155 
4156 	spin_unlock(&free_vmap_area_lock);
4157 
4158 	/* populate the kasan shadow space */
4159 	for (area = 0; area < nr_vms; area++) {
4160 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4161 			goto err_free_shadow;
4162 	}
4163 
4164 	/* insert all vm's */
4165 	spin_lock(&vmap_area_lock);
4166 	for (area = 0; area < nr_vms; area++) {
4167 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
4168 
4169 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
4170 				 pcpu_get_vm_areas);
4171 	}
4172 	spin_unlock(&vmap_area_lock);
4173 
4174 	/*
4175 	 * Mark allocated areas as accessible. Do it now as a best-effort
4176 	 * approach, as they can be mapped outside of vmalloc code.
4177 	 * With hardware tag-based KASAN, marking is skipped for
4178 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4179 	 */
4180 	for (area = 0; area < nr_vms; area++)
4181 		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4182 				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4183 
4184 	kfree(vas);
4185 	return vms;
4186 
4187 recovery:
4188 	/*
4189 	 * Remove previously allocated areas. There is no
4190 	 * need in removing these areas from the busy tree,
4191 	 * because they are inserted only on the final step
4192 	 * and when pcpu_get_vm_areas() is success.
4193 	 */
4194 	while (area--) {
4195 		orig_start = vas[area]->va_start;
4196 		orig_end = vas[area]->va_end;
4197 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4198 				&free_vmap_area_list);
4199 		if (va)
4200 			kasan_release_vmalloc(orig_start, orig_end,
4201 				va->va_start, va->va_end);
4202 		vas[area] = NULL;
4203 	}
4204 
4205 overflow:
4206 	spin_unlock(&free_vmap_area_lock);
4207 	if (!purged) {
4208 		reclaim_and_purge_vmap_areas();
4209 		purged = true;
4210 
4211 		/* Before "retry", check if we recover. */
4212 		for (area = 0; area < nr_vms; area++) {
4213 			if (vas[area])
4214 				continue;
4215 
4216 			vas[area] = kmem_cache_zalloc(
4217 				vmap_area_cachep, GFP_KERNEL);
4218 			if (!vas[area])
4219 				goto err_free;
4220 		}
4221 
4222 		goto retry;
4223 	}
4224 
4225 err_free:
4226 	for (area = 0; area < nr_vms; area++) {
4227 		if (vas[area])
4228 			kmem_cache_free(vmap_area_cachep, vas[area]);
4229 
4230 		kfree(vms[area]);
4231 	}
4232 err_free2:
4233 	kfree(vas);
4234 	kfree(vms);
4235 	return NULL;
4236 
4237 err_free_shadow:
4238 	spin_lock(&free_vmap_area_lock);
4239 	/*
4240 	 * We release all the vmalloc shadows, even the ones for regions that
4241 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
4242 	 * being able to tolerate this case.
4243 	 */
4244 	for (area = 0; area < nr_vms; area++) {
4245 		orig_start = vas[area]->va_start;
4246 		orig_end = vas[area]->va_end;
4247 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4248 				&free_vmap_area_list);
4249 		if (va)
4250 			kasan_release_vmalloc(orig_start, orig_end,
4251 				va->va_start, va->va_end);
4252 		vas[area] = NULL;
4253 		kfree(vms[area]);
4254 	}
4255 	spin_unlock(&free_vmap_area_lock);
4256 	kfree(vas);
4257 	kfree(vms);
4258 	return NULL;
4259 }
4260 
4261 /**
4262  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4263  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4264  * @nr_vms: the number of allocated areas
4265  *
4266  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4267  */
4268 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4269 {
4270 	int i;
4271 
4272 	for (i = 0; i < nr_vms; i++)
4273 		free_vm_area(vms[i]);
4274 	kfree(vms);
4275 }
4276 #endif	/* CONFIG_SMP */
4277 
4278 #ifdef CONFIG_PRINTK
4279 bool vmalloc_dump_obj(void *object)
4280 {
4281 	struct vm_struct *vm;
4282 	void *objp = (void *)PAGE_ALIGN((unsigned long)object);
4283 
4284 	vm = find_vm_area(objp);
4285 	if (!vm)
4286 		return false;
4287 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4288 		vm->nr_pages, (unsigned long)vm->addr, vm->caller);
4289 	return true;
4290 }
4291 #endif
4292 
4293 #ifdef CONFIG_PROC_FS
4294 static void *s_start(struct seq_file *m, loff_t *pos)
4295 	__acquires(&vmap_purge_lock)
4296 	__acquires(&vmap_area_lock)
4297 {
4298 	mutex_lock(&vmap_purge_lock);
4299 	spin_lock(&vmap_area_lock);
4300 
4301 	return seq_list_start(&vmap_area_list, *pos);
4302 }
4303 
4304 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4305 {
4306 	return seq_list_next(p, &vmap_area_list, pos);
4307 }
4308 
4309 static void s_stop(struct seq_file *m, void *p)
4310 	__releases(&vmap_area_lock)
4311 	__releases(&vmap_purge_lock)
4312 {
4313 	spin_unlock(&vmap_area_lock);
4314 	mutex_unlock(&vmap_purge_lock);
4315 }
4316 
4317 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4318 {
4319 	if (IS_ENABLED(CONFIG_NUMA)) {
4320 		unsigned int nr, *counters = m->private;
4321 		unsigned int step = 1U << vm_area_page_order(v);
4322 
4323 		if (!counters)
4324 			return;
4325 
4326 		if (v->flags & VM_UNINITIALIZED)
4327 			return;
4328 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4329 		smp_rmb();
4330 
4331 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4332 
4333 		for (nr = 0; nr < v->nr_pages; nr += step)
4334 			counters[page_to_nid(v->pages[nr])] += step;
4335 		for_each_node_state(nr, N_HIGH_MEMORY)
4336 			if (counters[nr])
4337 				seq_printf(m, " N%u=%u", nr, counters[nr]);
4338 	}
4339 }
4340 
4341 static void show_purge_info(struct seq_file *m)
4342 {
4343 	struct vmap_area *va;
4344 
4345 	spin_lock(&purge_vmap_area_lock);
4346 	list_for_each_entry(va, &purge_vmap_area_list, list) {
4347 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4348 			(void *)va->va_start, (void *)va->va_end,
4349 			va->va_end - va->va_start);
4350 	}
4351 	spin_unlock(&purge_vmap_area_lock);
4352 }
4353 
4354 static int s_show(struct seq_file *m, void *p)
4355 {
4356 	struct vmap_area *va;
4357 	struct vm_struct *v;
4358 
4359 	va = list_entry(p, struct vmap_area, list);
4360 
4361 	if (!va->vm) {
4362 		if (va->flags & VMAP_RAM)
4363 			seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4364 				(void *)va->va_start, (void *)va->va_end,
4365 				va->va_end - va->va_start);
4366 
4367 		goto final;
4368 	}
4369 
4370 	v = va->vm;
4371 
4372 	seq_printf(m, "0x%pK-0x%pK %7ld",
4373 		v->addr, v->addr + v->size, v->size);
4374 
4375 	if (v->caller)
4376 		seq_printf(m, " %pS", v->caller);
4377 
4378 	if (v->nr_pages)
4379 		seq_printf(m, " pages=%d", v->nr_pages);
4380 
4381 	if (v->phys_addr)
4382 		seq_printf(m, " phys=%pa", &v->phys_addr);
4383 
4384 	if (v->flags & VM_IOREMAP)
4385 		seq_puts(m, " ioremap");
4386 
4387 	if (v->flags & VM_ALLOC)
4388 		seq_puts(m, " vmalloc");
4389 
4390 	if (v->flags & VM_MAP)
4391 		seq_puts(m, " vmap");
4392 
4393 	if (v->flags & VM_USERMAP)
4394 		seq_puts(m, " user");
4395 
4396 	if (v->flags & VM_DMA_COHERENT)
4397 		seq_puts(m, " dma-coherent");
4398 
4399 	if (is_vmalloc_addr(v->pages))
4400 		seq_puts(m, " vpages");
4401 
4402 	show_numa_info(m, v);
4403 	seq_putc(m, '\n');
4404 
4405 	/*
4406 	 * As a final step, dump "unpurged" areas.
4407 	 */
4408 final:
4409 	if (list_is_last(&va->list, &vmap_area_list))
4410 		show_purge_info(m);
4411 
4412 	return 0;
4413 }
4414 
4415 static const struct seq_operations vmalloc_op = {
4416 	.start = s_start,
4417 	.next = s_next,
4418 	.stop = s_stop,
4419 	.show = s_show,
4420 };
4421 
4422 static int __init proc_vmalloc_init(void)
4423 {
4424 	if (IS_ENABLED(CONFIG_NUMA))
4425 		proc_create_seq_private("vmallocinfo", 0400, NULL,
4426 				&vmalloc_op,
4427 				nr_node_ids * sizeof(unsigned int), NULL);
4428 	else
4429 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4430 	return 0;
4431 }
4432 module_init(proc_vmalloc_init);
4433 
4434 #endif
4435 
4436 void __init vmalloc_init(void)
4437 {
4438 	struct vmap_area *va;
4439 	struct vm_struct *tmp;
4440 	int i;
4441 
4442 	/*
4443 	 * Create the cache for vmap_area objects.
4444 	 */
4445 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
4446 
4447 	for_each_possible_cpu(i) {
4448 		struct vmap_block_queue *vbq;
4449 		struct vfree_deferred *p;
4450 
4451 		vbq = &per_cpu(vmap_block_queue, i);
4452 		spin_lock_init(&vbq->lock);
4453 		INIT_LIST_HEAD(&vbq->free);
4454 		p = &per_cpu(vfree_deferred, i);
4455 		init_llist_head(&p->list);
4456 		INIT_WORK(&p->wq, delayed_vfree_work);
4457 		xa_init(&vbq->vmap_blocks);
4458 	}
4459 
4460 	/* Import existing vmlist entries. */
4461 	for (tmp = vmlist; tmp; tmp = tmp->next) {
4462 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4463 		if (WARN_ON_ONCE(!va))
4464 			continue;
4465 
4466 		va->va_start = (unsigned long)tmp->addr;
4467 		va->va_end = va->va_start + tmp->size;
4468 		va->vm = tmp;
4469 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
4470 	}
4471 
4472 	/*
4473 	 * Now we can initialize a free vmap space.
4474 	 */
4475 	vmap_init_free_space();
4476 	vmap_initialized = true;
4477 }
4478