xref: /linux/mm/vmalloc.c (revision f7511d5f66f01fc451747b24e79f3ada7a3af9af)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/highmem.h>
14 #include <linux/slab.h>
15 #include <linux/spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/seq_file.h>
18 #include <linux/vmalloc.h>
19 #include <linux/kallsyms.h>
20 
21 #include <asm/uaccess.h>
22 #include <asm/tlbflush.h>
23 
24 
25 DEFINE_RWLOCK(vmlist_lock);
26 struct vm_struct *vmlist;
27 
28 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
29 			    int node, void *caller);
30 
31 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
32 {
33 	pte_t *pte;
34 
35 	pte = pte_offset_kernel(pmd, addr);
36 	do {
37 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
38 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
39 	} while (pte++, addr += PAGE_SIZE, addr != end);
40 }
41 
42 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
43 						unsigned long end)
44 {
45 	pmd_t *pmd;
46 	unsigned long next;
47 
48 	pmd = pmd_offset(pud, addr);
49 	do {
50 		next = pmd_addr_end(addr, end);
51 		if (pmd_none_or_clear_bad(pmd))
52 			continue;
53 		vunmap_pte_range(pmd, addr, next);
54 	} while (pmd++, addr = next, addr != end);
55 }
56 
57 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
58 						unsigned long end)
59 {
60 	pud_t *pud;
61 	unsigned long next;
62 
63 	pud = pud_offset(pgd, addr);
64 	do {
65 		next = pud_addr_end(addr, end);
66 		if (pud_none_or_clear_bad(pud))
67 			continue;
68 		vunmap_pmd_range(pud, addr, next);
69 	} while (pud++, addr = next, addr != end);
70 }
71 
72 void unmap_kernel_range(unsigned long addr, unsigned long size)
73 {
74 	pgd_t *pgd;
75 	unsigned long next;
76 	unsigned long start = addr;
77 	unsigned long end = addr + size;
78 
79 	BUG_ON(addr >= end);
80 	pgd = pgd_offset_k(addr);
81 	flush_cache_vunmap(addr, end);
82 	do {
83 		next = pgd_addr_end(addr, end);
84 		if (pgd_none_or_clear_bad(pgd))
85 			continue;
86 		vunmap_pud_range(pgd, addr, next);
87 	} while (pgd++, addr = next, addr != end);
88 	flush_tlb_kernel_range(start, end);
89 }
90 
91 static void unmap_vm_area(struct vm_struct *area)
92 {
93 	unmap_kernel_range((unsigned long)area->addr, area->size);
94 }
95 
96 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
97 			unsigned long end, pgprot_t prot, struct page ***pages)
98 {
99 	pte_t *pte;
100 
101 	pte = pte_alloc_kernel(pmd, addr);
102 	if (!pte)
103 		return -ENOMEM;
104 	do {
105 		struct page *page = **pages;
106 		WARN_ON(!pte_none(*pte));
107 		if (!page)
108 			return -ENOMEM;
109 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
110 		(*pages)++;
111 	} while (pte++, addr += PAGE_SIZE, addr != end);
112 	return 0;
113 }
114 
115 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
116 			unsigned long end, pgprot_t prot, struct page ***pages)
117 {
118 	pmd_t *pmd;
119 	unsigned long next;
120 
121 	pmd = pmd_alloc(&init_mm, pud, addr);
122 	if (!pmd)
123 		return -ENOMEM;
124 	do {
125 		next = pmd_addr_end(addr, end);
126 		if (vmap_pte_range(pmd, addr, next, prot, pages))
127 			return -ENOMEM;
128 	} while (pmd++, addr = next, addr != end);
129 	return 0;
130 }
131 
132 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
133 			unsigned long end, pgprot_t prot, struct page ***pages)
134 {
135 	pud_t *pud;
136 	unsigned long next;
137 
138 	pud = pud_alloc(&init_mm, pgd, addr);
139 	if (!pud)
140 		return -ENOMEM;
141 	do {
142 		next = pud_addr_end(addr, end);
143 		if (vmap_pmd_range(pud, addr, next, prot, pages))
144 			return -ENOMEM;
145 	} while (pud++, addr = next, addr != end);
146 	return 0;
147 }
148 
149 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
150 {
151 	pgd_t *pgd;
152 	unsigned long next;
153 	unsigned long addr = (unsigned long) area->addr;
154 	unsigned long end = addr + area->size - PAGE_SIZE;
155 	int err;
156 
157 	BUG_ON(addr >= end);
158 	pgd = pgd_offset_k(addr);
159 	do {
160 		next = pgd_addr_end(addr, end);
161 		err = vmap_pud_range(pgd, addr, next, prot, pages);
162 		if (err)
163 			break;
164 	} while (pgd++, addr = next, addr != end);
165 	flush_cache_vmap((unsigned long) area->addr, end);
166 	return err;
167 }
168 EXPORT_SYMBOL_GPL(map_vm_area);
169 
170 /*
171  * Map a vmalloc()-space virtual address to the physical page.
172  */
173 struct page *vmalloc_to_page(const void *vmalloc_addr)
174 {
175 	unsigned long addr = (unsigned long) vmalloc_addr;
176 	struct page *page = NULL;
177 	pgd_t *pgd = pgd_offset_k(addr);
178 	pud_t *pud;
179 	pmd_t *pmd;
180 	pte_t *ptep, pte;
181 
182 	if (!pgd_none(*pgd)) {
183 		pud = pud_offset(pgd, addr);
184 		if (!pud_none(*pud)) {
185 			pmd = pmd_offset(pud, addr);
186 			if (!pmd_none(*pmd)) {
187 				ptep = pte_offset_map(pmd, addr);
188 				pte = *ptep;
189 				if (pte_present(pte))
190 					page = pte_page(pte);
191 				pte_unmap(ptep);
192 			}
193 		}
194 	}
195 	return page;
196 }
197 EXPORT_SYMBOL(vmalloc_to_page);
198 
199 /*
200  * Map a vmalloc()-space virtual address to the physical page frame number.
201  */
202 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
203 {
204 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
205 }
206 EXPORT_SYMBOL(vmalloc_to_pfn);
207 
208 static struct vm_struct *
209 __get_vm_area_node(unsigned long size, unsigned long flags, unsigned long start,
210 		unsigned long end, int node, gfp_t gfp_mask, void *caller)
211 {
212 	struct vm_struct **p, *tmp, *area;
213 	unsigned long align = 1;
214 	unsigned long addr;
215 
216 	BUG_ON(in_interrupt());
217 	if (flags & VM_IOREMAP) {
218 		int bit = fls(size);
219 
220 		if (bit > IOREMAP_MAX_ORDER)
221 			bit = IOREMAP_MAX_ORDER;
222 		else if (bit < PAGE_SHIFT)
223 			bit = PAGE_SHIFT;
224 
225 		align = 1ul << bit;
226 	}
227 	addr = ALIGN(start, align);
228 	size = PAGE_ALIGN(size);
229 	if (unlikely(!size))
230 		return NULL;
231 
232 	area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
233 
234 	if (unlikely(!area))
235 		return NULL;
236 
237 	/*
238 	 * We always allocate a guard page.
239 	 */
240 	size += PAGE_SIZE;
241 
242 	write_lock(&vmlist_lock);
243 	for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
244 		if ((unsigned long)tmp->addr < addr) {
245 			if((unsigned long)tmp->addr + tmp->size >= addr)
246 				addr = ALIGN(tmp->size +
247 					     (unsigned long)tmp->addr, align);
248 			continue;
249 		}
250 		if ((size + addr) < addr)
251 			goto out;
252 		if (size + addr <= (unsigned long)tmp->addr)
253 			goto found;
254 		addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
255 		if (addr > end - size)
256 			goto out;
257 	}
258 	if ((size + addr) < addr)
259 		goto out;
260 	if (addr > end - size)
261 		goto out;
262 
263 found:
264 	area->next = *p;
265 	*p = area;
266 
267 	area->flags = flags;
268 	area->addr = (void *)addr;
269 	area->size = size;
270 	area->pages = NULL;
271 	area->nr_pages = 0;
272 	area->phys_addr = 0;
273 	area->caller = caller;
274 	write_unlock(&vmlist_lock);
275 
276 	return area;
277 
278 out:
279 	write_unlock(&vmlist_lock);
280 	kfree(area);
281 	if (printk_ratelimit())
282 		printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
283 	return NULL;
284 }
285 
286 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
287 				unsigned long start, unsigned long end)
288 {
289 	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
290 						__builtin_return_address(0));
291 }
292 EXPORT_SYMBOL_GPL(__get_vm_area);
293 
294 /**
295  *	get_vm_area  -  reserve a contiguous kernel virtual area
296  *	@size:		size of the area
297  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
298  *
299  *	Search an area of @size in the kernel virtual mapping area,
300  *	and reserved it for out purposes.  Returns the area descriptor
301  *	on success or %NULL on failure.
302  */
303 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
304 {
305 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
306 				-1, GFP_KERNEL, __builtin_return_address(0));
307 }
308 
309 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
310 				void *caller)
311 {
312 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
313 						-1, GFP_KERNEL, caller);
314 }
315 
316 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
317 				   int node, gfp_t gfp_mask)
318 {
319 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
320 				  gfp_mask, __builtin_return_address(0));
321 }
322 
323 /* Caller must hold vmlist_lock */
324 static struct vm_struct *__find_vm_area(const void *addr)
325 {
326 	struct vm_struct *tmp;
327 
328 	for (tmp = vmlist; tmp != NULL; tmp = tmp->next) {
329 		 if (tmp->addr == addr)
330 			break;
331 	}
332 
333 	return tmp;
334 }
335 
336 /* Caller must hold vmlist_lock */
337 static struct vm_struct *__remove_vm_area(const void *addr)
338 {
339 	struct vm_struct **p, *tmp;
340 
341 	for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
342 		 if (tmp->addr == addr)
343 			 goto found;
344 	}
345 	return NULL;
346 
347 found:
348 	unmap_vm_area(tmp);
349 	*p = tmp->next;
350 
351 	/*
352 	 * Remove the guard page.
353 	 */
354 	tmp->size -= PAGE_SIZE;
355 	return tmp;
356 }
357 
358 /**
359  *	remove_vm_area  -  find and remove a continuous kernel virtual area
360  *	@addr:		base address
361  *
362  *	Search for the kernel VM area starting at @addr, and remove it.
363  *	This function returns the found VM area, but using it is NOT safe
364  *	on SMP machines, except for its size or flags.
365  */
366 struct vm_struct *remove_vm_area(const void *addr)
367 {
368 	struct vm_struct *v;
369 	write_lock(&vmlist_lock);
370 	v = __remove_vm_area(addr);
371 	write_unlock(&vmlist_lock);
372 	return v;
373 }
374 
375 static void __vunmap(const void *addr, int deallocate_pages)
376 {
377 	struct vm_struct *area;
378 
379 	if (!addr)
380 		return;
381 
382 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
383 		printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
384 		WARN_ON(1);
385 		return;
386 	}
387 
388 	area = remove_vm_area(addr);
389 	if (unlikely(!area)) {
390 		printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
391 				addr);
392 		WARN_ON(1);
393 		return;
394 	}
395 
396 	debug_check_no_locks_freed(addr, area->size);
397 
398 	if (deallocate_pages) {
399 		int i;
400 
401 		for (i = 0; i < area->nr_pages; i++) {
402 			struct page *page = area->pages[i];
403 
404 			BUG_ON(!page);
405 			__free_page(page);
406 		}
407 
408 		if (area->flags & VM_VPAGES)
409 			vfree(area->pages);
410 		else
411 			kfree(area->pages);
412 	}
413 
414 	kfree(area);
415 	return;
416 }
417 
418 /**
419  *	vfree  -  release memory allocated by vmalloc()
420  *	@addr:		memory base address
421  *
422  *	Free the virtually continuous memory area starting at @addr, as
423  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
424  *	NULL, no operation is performed.
425  *
426  *	Must not be called in interrupt context.
427  */
428 void vfree(const void *addr)
429 {
430 	BUG_ON(in_interrupt());
431 	__vunmap(addr, 1);
432 }
433 EXPORT_SYMBOL(vfree);
434 
435 /**
436  *	vunmap  -  release virtual mapping obtained by vmap()
437  *	@addr:		memory base address
438  *
439  *	Free the virtually contiguous memory area starting at @addr,
440  *	which was created from the page array passed to vmap().
441  *
442  *	Must not be called in interrupt context.
443  */
444 void vunmap(const void *addr)
445 {
446 	BUG_ON(in_interrupt());
447 	__vunmap(addr, 0);
448 }
449 EXPORT_SYMBOL(vunmap);
450 
451 /**
452  *	vmap  -  map an array of pages into virtually contiguous space
453  *	@pages:		array of page pointers
454  *	@count:		number of pages to map
455  *	@flags:		vm_area->flags
456  *	@prot:		page protection for the mapping
457  *
458  *	Maps @count pages from @pages into contiguous kernel virtual
459  *	space.
460  */
461 void *vmap(struct page **pages, unsigned int count,
462 		unsigned long flags, pgprot_t prot)
463 {
464 	struct vm_struct *area;
465 
466 	if (count > num_physpages)
467 		return NULL;
468 
469 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
470 					__builtin_return_address(0));
471 	if (!area)
472 		return NULL;
473 
474 	if (map_vm_area(area, prot, &pages)) {
475 		vunmap(area->addr);
476 		return NULL;
477 	}
478 
479 	return area->addr;
480 }
481 EXPORT_SYMBOL(vmap);
482 
483 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
484 				 pgprot_t prot, int node, void *caller)
485 {
486 	struct page **pages;
487 	unsigned int nr_pages, array_size, i;
488 
489 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
490 	array_size = (nr_pages * sizeof(struct page *));
491 
492 	area->nr_pages = nr_pages;
493 	/* Please note that the recursion is strictly bounded. */
494 	if (array_size > PAGE_SIZE) {
495 		pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
496 				PAGE_KERNEL, node, caller);
497 		area->flags |= VM_VPAGES;
498 	} else {
499 		pages = kmalloc_node(array_size,
500 				(gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
501 				node);
502 	}
503 	area->pages = pages;
504 	area->caller = caller;
505 	if (!area->pages) {
506 		remove_vm_area(area->addr);
507 		kfree(area);
508 		return NULL;
509 	}
510 
511 	for (i = 0; i < area->nr_pages; i++) {
512 		struct page *page;
513 
514 		if (node < 0)
515 			page = alloc_page(gfp_mask);
516 		else
517 			page = alloc_pages_node(node, gfp_mask, 0);
518 
519 		if (unlikely(!page)) {
520 			/* Successfully allocated i pages, free them in __vunmap() */
521 			area->nr_pages = i;
522 			goto fail;
523 		}
524 		area->pages[i] = page;
525 	}
526 
527 	if (map_vm_area(area, prot, &pages))
528 		goto fail;
529 	return area->addr;
530 
531 fail:
532 	vfree(area->addr);
533 	return NULL;
534 }
535 
536 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
537 {
538 	return __vmalloc_area_node(area, gfp_mask, prot, -1,
539 					__builtin_return_address(0));
540 }
541 
542 /**
543  *	__vmalloc_node  -  allocate virtually contiguous memory
544  *	@size:		allocation size
545  *	@gfp_mask:	flags for the page level allocator
546  *	@prot:		protection mask for the allocated pages
547  *	@node:		node to use for allocation or -1
548  *
549  *	Allocate enough pages to cover @size from the page level
550  *	allocator with @gfp_mask flags.  Map them into contiguous
551  *	kernel virtual space, using a pagetable protection of @prot.
552  */
553 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
554 						int node, void *caller)
555 {
556 	struct vm_struct *area;
557 
558 	size = PAGE_ALIGN(size);
559 	if (!size || (size >> PAGE_SHIFT) > num_physpages)
560 		return NULL;
561 
562 	area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
563 						node, gfp_mask, caller);
564 
565 	if (!area)
566 		return NULL;
567 
568 	return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
569 }
570 
571 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
572 {
573 	return __vmalloc_node(size, gfp_mask, prot, -1,
574 				__builtin_return_address(0));
575 }
576 EXPORT_SYMBOL(__vmalloc);
577 
578 /**
579  *	vmalloc  -  allocate virtually contiguous memory
580  *	@size:		allocation size
581  *	Allocate enough pages to cover @size from the page level
582  *	allocator and map them into contiguous kernel virtual space.
583  *
584  *	For tight control over page level allocator and protection flags
585  *	use __vmalloc() instead.
586  */
587 void *vmalloc(unsigned long size)
588 {
589 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
590 					-1, __builtin_return_address(0));
591 }
592 EXPORT_SYMBOL(vmalloc);
593 
594 /**
595  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
596  * @size: allocation size
597  *
598  * The resulting memory area is zeroed so it can be mapped to userspace
599  * without leaking data.
600  */
601 void *vmalloc_user(unsigned long size)
602 {
603 	struct vm_struct *area;
604 	void *ret;
605 
606 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
607 	if (ret) {
608 		write_lock(&vmlist_lock);
609 		area = __find_vm_area(ret);
610 		area->flags |= VM_USERMAP;
611 		write_unlock(&vmlist_lock);
612 	}
613 	return ret;
614 }
615 EXPORT_SYMBOL(vmalloc_user);
616 
617 /**
618  *	vmalloc_node  -  allocate memory on a specific node
619  *	@size:		allocation size
620  *	@node:		numa node
621  *
622  *	Allocate enough pages to cover @size from the page level
623  *	allocator and map them into contiguous kernel virtual space.
624  *
625  *	For tight control over page level allocator and protection flags
626  *	use __vmalloc() instead.
627  */
628 void *vmalloc_node(unsigned long size, int node)
629 {
630 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
631 					node, __builtin_return_address(0));
632 }
633 EXPORT_SYMBOL(vmalloc_node);
634 
635 #ifndef PAGE_KERNEL_EXEC
636 # define PAGE_KERNEL_EXEC PAGE_KERNEL
637 #endif
638 
639 /**
640  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
641  *	@size:		allocation size
642  *
643  *	Kernel-internal function to allocate enough pages to cover @size
644  *	the page level allocator and map them into contiguous and
645  *	executable kernel virtual space.
646  *
647  *	For tight control over page level allocator and protection flags
648  *	use __vmalloc() instead.
649  */
650 
651 void *vmalloc_exec(unsigned long size)
652 {
653 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
654 }
655 
656 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
657 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
658 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
659 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
660 #else
661 #define GFP_VMALLOC32 GFP_KERNEL
662 #endif
663 
664 /**
665  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
666  *	@size:		allocation size
667  *
668  *	Allocate enough 32bit PA addressable pages to cover @size from the
669  *	page level allocator and map them into contiguous kernel virtual space.
670  */
671 void *vmalloc_32(unsigned long size)
672 {
673 	return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
674 }
675 EXPORT_SYMBOL(vmalloc_32);
676 
677 /**
678  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
679  *	@size:		allocation size
680  *
681  * The resulting memory area is 32bit addressable and zeroed so it can be
682  * mapped to userspace without leaking data.
683  */
684 void *vmalloc_32_user(unsigned long size)
685 {
686 	struct vm_struct *area;
687 	void *ret;
688 
689 	ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
690 	if (ret) {
691 		write_lock(&vmlist_lock);
692 		area = __find_vm_area(ret);
693 		area->flags |= VM_USERMAP;
694 		write_unlock(&vmlist_lock);
695 	}
696 	return ret;
697 }
698 EXPORT_SYMBOL(vmalloc_32_user);
699 
700 long vread(char *buf, char *addr, unsigned long count)
701 {
702 	struct vm_struct *tmp;
703 	char *vaddr, *buf_start = buf;
704 	unsigned long n;
705 
706 	/* Don't allow overflow */
707 	if ((unsigned long) addr + count < count)
708 		count = -(unsigned long) addr;
709 
710 	read_lock(&vmlist_lock);
711 	for (tmp = vmlist; tmp; tmp = tmp->next) {
712 		vaddr = (char *) tmp->addr;
713 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
714 			continue;
715 		while (addr < vaddr) {
716 			if (count == 0)
717 				goto finished;
718 			*buf = '\0';
719 			buf++;
720 			addr++;
721 			count--;
722 		}
723 		n = vaddr + tmp->size - PAGE_SIZE - addr;
724 		do {
725 			if (count == 0)
726 				goto finished;
727 			*buf = *addr;
728 			buf++;
729 			addr++;
730 			count--;
731 		} while (--n > 0);
732 	}
733 finished:
734 	read_unlock(&vmlist_lock);
735 	return buf - buf_start;
736 }
737 
738 long vwrite(char *buf, char *addr, unsigned long count)
739 {
740 	struct vm_struct *tmp;
741 	char *vaddr, *buf_start = buf;
742 	unsigned long n;
743 
744 	/* Don't allow overflow */
745 	if ((unsigned long) addr + count < count)
746 		count = -(unsigned long) addr;
747 
748 	read_lock(&vmlist_lock);
749 	for (tmp = vmlist; tmp; tmp = tmp->next) {
750 		vaddr = (char *) tmp->addr;
751 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
752 			continue;
753 		while (addr < vaddr) {
754 			if (count == 0)
755 				goto finished;
756 			buf++;
757 			addr++;
758 			count--;
759 		}
760 		n = vaddr + tmp->size - PAGE_SIZE - addr;
761 		do {
762 			if (count == 0)
763 				goto finished;
764 			*addr = *buf;
765 			buf++;
766 			addr++;
767 			count--;
768 		} while (--n > 0);
769 	}
770 finished:
771 	read_unlock(&vmlist_lock);
772 	return buf - buf_start;
773 }
774 
775 /**
776  *	remap_vmalloc_range  -  map vmalloc pages to userspace
777  *	@vma:		vma to cover (map full range of vma)
778  *	@addr:		vmalloc memory
779  *	@pgoff:		number of pages into addr before first page to map
780  *
781  *	Returns:	0 for success, -Exxx on failure
782  *
783  *	This function checks that addr is a valid vmalloc'ed area, and
784  *	that it is big enough to cover the vma. Will return failure if
785  *	that criteria isn't met.
786  *
787  *	Similar to remap_pfn_range() (see mm/memory.c)
788  */
789 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
790 						unsigned long pgoff)
791 {
792 	struct vm_struct *area;
793 	unsigned long uaddr = vma->vm_start;
794 	unsigned long usize = vma->vm_end - vma->vm_start;
795 	int ret;
796 
797 	if ((PAGE_SIZE-1) & (unsigned long)addr)
798 		return -EINVAL;
799 
800 	read_lock(&vmlist_lock);
801 	area = __find_vm_area(addr);
802 	if (!area)
803 		goto out_einval_locked;
804 
805 	if (!(area->flags & VM_USERMAP))
806 		goto out_einval_locked;
807 
808 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
809 		goto out_einval_locked;
810 	read_unlock(&vmlist_lock);
811 
812 	addr += pgoff << PAGE_SHIFT;
813 	do {
814 		struct page *page = vmalloc_to_page(addr);
815 		ret = vm_insert_page(vma, uaddr, page);
816 		if (ret)
817 			return ret;
818 
819 		uaddr += PAGE_SIZE;
820 		addr += PAGE_SIZE;
821 		usize -= PAGE_SIZE;
822 	} while (usize > 0);
823 
824 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
825 	vma->vm_flags |= VM_RESERVED;
826 
827 	return ret;
828 
829 out_einval_locked:
830 	read_unlock(&vmlist_lock);
831 	return -EINVAL;
832 }
833 EXPORT_SYMBOL(remap_vmalloc_range);
834 
835 /*
836  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
837  * have one.
838  */
839 void  __attribute__((weak)) vmalloc_sync_all(void)
840 {
841 }
842 
843 
844 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
845 {
846 	/* apply_to_page_range() does all the hard work. */
847 	return 0;
848 }
849 
850 /**
851  *	alloc_vm_area - allocate a range of kernel address space
852  *	@size:		size of the area
853  *
854  *	Returns:	NULL on failure, vm_struct on success
855  *
856  *	This function reserves a range of kernel address space, and
857  *	allocates pagetables to map that range.  No actual mappings
858  *	are created.  If the kernel address space is not shared
859  *	between processes, it syncs the pagetable across all
860  *	processes.
861  */
862 struct vm_struct *alloc_vm_area(size_t size)
863 {
864 	struct vm_struct *area;
865 
866 	area = get_vm_area_caller(size, VM_IOREMAP,
867 				__builtin_return_address(0));
868 	if (area == NULL)
869 		return NULL;
870 
871 	/*
872 	 * This ensures that page tables are constructed for this region
873 	 * of kernel virtual address space and mapped into init_mm.
874 	 */
875 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
876 				area->size, f, NULL)) {
877 		free_vm_area(area);
878 		return NULL;
879 	}
880 
881 	/* Make sure the pagetables are constructed in process kernel
882 	   mappings */
883 	vmalloc_sync_all();
884 
885 	return area;
886 }
887 EXPORT_SYMBOL_GPL(alloc_vm_area);
888 
889 void free_vm_area(struct vm_struct *area)
890 {
891 	struct vm_struct *ret;
892 	ret = remove_vm_area(area->addr);
893 	BUG_ON(ret != area);
894 	kfree(area);
895 }
896 EXPORT_SYMBOL_GPL(free_vm_area);
897 
898 
899 #ifdef CONFIG_PROC_FS
900 static void *s_start(struct seq_file *m, loff_t *pos)
901 {
902 	loff_t n = *pos;
903 	struct vm_struct *v;
904 
905 	read_lock(&vmlist_lock);
906 	v = vmlist;
907 	while (n > 0 && v) {
908 		n--;
909 		v = v->next;
910 	}
911 	if (!n)
912 		return v;
913 
914 	return NULL;
915 
916 }
917 
918 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
919 {
920 	struct vm_struct *v = p;
921 
922 	++*pos;
923 	return v->next;
924 }
925 
926 static void s_stop(struct seq_file *m, void *p)
927 {
928 	read_unlock(&vmlist_lock);
929 }
930 
931 static int s_show(struct seq_file *m, void *p)
932 {
933 	struct vm_struct *v = p;
934 
935 	seq_printf(m, "0x%p-0x%p %7ld",
936 		v->addr, v->addr + v->size, v->size);
937 
938 	if (v->caller) {
939 		char buff[2 * KSYM_NAME_LEN];
940 
941 		seq_putc(m, ' ');
942 		sprint_symbol(buff, (unsigned long)v->caller);
943 		seq_puts(m, buff);
944 	}
945 
946 	if (v->nr_pages)
947 		seq_printf(m, " pages=%d", v->nr_pages);
948 
949 	if (v->phys_addr)
950 		seq_printf(m, " phys=%lx", v->phys_addr);
951 
952 	if (v->flags & VM_IOREMAP)
953 		seq_printf(m, " ioremap");
954 
955 	if (v->flags & VM_ALLOC)
956 		seq_printf(m, " vmalloc");
957 
958 	if (v->flags & VM_MAP)
959 		seq_printf(m, " vmap");
960 
961 	if (v->flags & VM_USERMAP)
962 		seq_printf(m, " user");
963 
964 	if (v->flags & VM_VPAGES)
965 		seq_printf(m, " vpages");
966 
967 	seq_putc(m, '\n');
968 	return 0;
969 }
970 
971 const struct seq_operations vmalloc_op = {
972 	.start = s_start,
973 	.next = s_next,
974 	.stop = s_stop,
975 	.show = s_show,
976 };
977 #endif
978 
979