1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1993 Linus Torvalds 4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 7 * Numa awareness, Christoph Lameter, SGI, June 2005 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/set_memory.h> 22 #include <linux/debugobjects.h> 23 #include <linux/kallsyms.h> 24 #include <linux/list.h> 25 #include <linux/notifier.h> 26 #include <linux/rbtree.h> 27 #include <linux/xarray.h> 28 #include <linux/io.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/memcontrol.h> 35 #include <linux/llist.h> 36 #include <linux/uio.h> 37 #include <linux/bitops.h> 38 #include <linux/rbtree_augmented.h> 39 #include <linux/overflow.h> 40 #include <linux/pgtable.h> 41 #include <linux/hugetlb.h> 42 #include <linux/sched/mm.h> 43 #include <asm/tlbflush.h> 44 #include <asm/shmparam.h> 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/vmalloc.h> 48 49 #include "internal.h" 50 #include "pgalloc-track.h" 51 52 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 53 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; 54 55 static int __init set_nohugeiomap(char *str) 56 { 57 ioremap_max_page_shift = PAGE_SHIFT; 58 return 0; 59 } 60 early_param("nohugeiomap", set_nohugeiomap); 61 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 62 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; 63 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 64 65 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 66 static bool __ro_after_init vmap_allow_huge = true; 67 68 static int __init set_nohugevmalloc(char *str) 69 { 70 vmap_allow_huge = false; 71 return 0; 72 } 73 early_param("nohugevmalloc", set_nohugevmalloc); 74 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 75 static const bool vmap_allow_huge = false; 76 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 77 78 bool is_vmalloc_addr(const void *x) 79 { 80 unsigned long addr = (unsigned long)kasan_reset_tag(x); 81 82 return addr >= VMALLOC_START && addr < VMALLOC_END; 83 } 84 EXPORT_SYMBOL(is_vmalloc_addr); 85 86 struct vfree_deferred { 87 struct llist_head list; 88 struct work_struct wq; 89 }; 90 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 91 92 /*** Page table manipulation functions ***/ 93 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 94 phys_addr_t phys_addr, pgprot_t prot, 95 unsigned int max_page_shift, pgtbl_mod_mask *mask) 96 { 97 pte_t *pte; 98 u64 pfn; 99 unsigned long size = PAGE_SIZE; 100 101 pfn = phys_addr >> PAGE_SHIFT; 102 pte = pte_alloc_kernel_track(pmd, addr, mask); 103 if (!pte) 104 return -ENOMEM; 105 do { 106 BUG_ON(!pte_none(ptep_get(pte))); 107 108 #ifdef CONFIG_HUGETLB_PAGE 109 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); 110 if (size != PAGE_SIZE) { 111 pte_t entry = pfn_pte(pfn, prot); 112 113 entry = arch_make_huge_pte(entry, ilog2(size), 0); 114 set_huge_pte_at(&init_mm, addr, pte, entry, size); 115 pfn += PFN_DOWN(size); 116 continue; 117 } 118 #endif 119 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); 120 pfn++; 121 } while (pte += PFN_DOWN(size), addr += size, addr != end); 122 *mask |= PGTBL_PTE_MODIFIED; 123 return 0; 124 } 125 126 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, 127 phys_addr_t phys_addr, pgprot_t prot, 128 unsigned int max_page_shift) 129 { 130 if (max_page_shift < PMD_SHIFT) 131 return 0; 132 133 if (!arch_vmap_pmd_supported(prot)) 134 return 0; 135 136 if ((end - addr) != PMD_SIZE) 137 return 0; 138 139 if (!IS_ALIGNED(addr, PMD_SIZE)) 140 return 0; 141 142 if (!IS_ALIGNED(phys_addr, PMD_SIZE)) 143 return 0; 144 145 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) 146 return 0; 147 148 return pmd_set_huge(pmd, phys_addr, prot); 149 } 150 151 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 152 phys_addr_t phys_addr, pgprot_t prot, 153 unsigned int max_page_shift, pgtbl_mod_mask *mask) 154 { 155 pmd_t *pmd; 156 unsigned long next; 157 158 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 159 if (!pmd) 160 return -ENOMEM; 161 do { 162 next = pmd_addr_end(addr, end); 163 164 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, 165 max_page_shift)) { 166 *mask |= PGTBL_PMD_MODIFIED; 167 continue; 168 } 169 170 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) 171 return -ENOMEM; 172 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); 173 return 0; 174 } 175 176 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, 177 phys_addr_t phys_addr, pgprot_t prot, 178 unsigned int max_page_shift) 179 { 180 if (max_page_shift < PUD_SHIFT) 181 return 0; 182 183 if (!arch_vmap_pud_supported(prot)) 184 return 0; 185 186 if ((end - addr) != PUD_SIZE) 187 return 0; 188 189 if (!IS_ALIGNED(addr, PUD_SIZE)) 190 return 0; 191 192 if (!IS_ALIGNED(phys_addr, PUD_SIZE)) 193 return 0; 194 195 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) 196 return 0; 197 198 return pud_set_huge(pud, phys_addr, prot); 199 } 200 201 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 202 phys_addr_t phys_addr, pgprot_t prot, 203 unsigned int max_page_shift, pgtbl_mod_mask *mask) 204 { 205 pud_t *pud; 206 unsigned long next; 207 208 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 209 if (!pud) 210 return -ENOMEM; 211 do { 212 next = pud_addr_end(addr, end); 213 214 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, 215 max_page_shift)) { 216 *mask |= PGTBL_PUD_MODIFIED; 217 continue; 218 } 219 220 if (vmap_pmd_range(pud, addr, next, phys_addr, prot, 221 max_page_shift, mask)) 222 return -ENOMEM; 223 } while (pud++, phys_addr += (next - addr), addr = next, addr != end); 224 return 0; 225 } 226 227 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, 228 phys_addr_t phys_addr, pgprot_t prot, 229 unsigned int max_page_shift) 230 { 231 if (max_page_shift < P4D_SHIFT) 232 return 0; 233 234 if (!arch_vmap_p4d_supported(prot)) 235 return 0; 236 237 if ((end - addr) != P4D_SIZE) 238 return 0; 239 240 if (!IS_ALIGNED(addr, P4D_SIZE)) 241 return 0; 242 243 if (!IS_ALIGNED(phys_addr, P4D_SIZE)) 244 return 0; 245 246 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) 247 return 0; 248 249 return p4d_set_huge(p4d, phys_addr, prot); 250 } 251 252 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 253 phys_addr_t phys_addr, pgprot_t prot, 254 unsigned int max_page_shift, pgtbl_mod_mask *mask) 255 { 256 p4d_t *p4d; 257 unsigned long next; 258 259 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 260 if (!p4d) 261 return -ENOMEM; 262 do { 263 next = p4d_addr_end(addr, end); 264 265 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, 266 max_page_shift)) { 267 *mask |= PGTBL_P4D_MODIFIED; 268 continue; 269 } 270 271 if (vmap_pud_range(p4d, addr, next, phys_addr, prot, 272 max_page_shift, mask)) 273 return -ENOMEM; 274 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); 275 return 0; 276 } 277 278 static int vmap_range_noflush(unsigned long addr, unsigned long end, 279 phys_addr_t phys_addr, pgprot_t prot, 280 unsigned int max_page_shift) 281 { 282 pgd_t *pgd; 283 unsigned long start; 284 unsigned long next; 285 int err; 286 pgtbl_mod_mask mask = 0; 287 288 might_sleep(); 289 BUG_ON(addr >= end); 290 291 start = addr; 292 pgd = pgd_offset_k(addr); 293 do { 294 next = pgd_addr_end(addr, end); 295 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, 296 max_page_shift, &mask); 297 if (err) 298 break; 299 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); 300 301 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 302 arch_sync_kernel_mappings(start, end); 303 304 return err; 305 } 306 307 int vmap_page_range(unsigned long addr, unsigned long end, 308 phys_addr_t phys_addr, pgprot_t prot) 309 { 310 int err; 311 312 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), 313 ioremap_max_page_shift); 314 flush_cache_vmap(addr, end); 315 if (!err) 316 err = kmsan_ioremap_page_range(addr, end, phys_addr, prot, 317 ioremap_max_page_shift); 318 return err; 319 } 320 321 int ioremap_page_range(unsigned long addr, unsigned long end, 322 phys_addr_t phys_addr, pgprot_t prot) 323 { 324 struct vm_struct *area; 325 326 area = find_vm_area((void *)addr); 327 if (!area || !(area->flags & VM_IOREMAP)) { 328 WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr); 329 return -EINVAL; 330 } 331 if (addr != (unsigned long)area->addr || 332 (void *)end != area->addr + get_vm_area_size(area)) { 333 WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n", 334 addr, end, (long)area->addr, 335 (long)area->addr + get_vm_area_size(area)); 336 return -ERANGE; 337 } 338 return vmap_page_range(addr, end, phys_addr, prot); 339 } 340 341 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 342 pgtbl_mod_mask *mask) 343 { 344 pte_t *pte; 345 346 pte = pte_offset_kernel(pmd, addr); 347 do { 348 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 349 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 350 } while (pte++, addr += PAGE_SIZE, addr != end); 351 *mask |= PGTBL_PTE_MODIFIED; 352 } 353 354 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 355 pgtbl_mod_mask *mask) 356 { 357 pmd_t *pmd; 358 unsigned long next; 359 int cleared; 360 361 pmd = pmd_offset(pud, addr); 362 do { 363 next = pmd_addr_end(addr, end); 364 365 cleared = pmd_clear_huge(pmd); 366 if (cleared || pmd_bad(*pmd)) 367 *mask |= PGTBL_PMD_MODIFIED; 368 369 if (cleared) 370 continue; 371 if (pmd_none_or_clear_bad(pmd)) 372 continue; 373 vunmap_pte_range(pmd, addr, next, mask); 374 375 cond_resched(); 376 } while (pmd++, addr = next, addr != end); 377 } 378 379 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 380 pgtbl_mod_mask *mask) 381 { 382 pud_t *pud; 383 unsigned long next; 384 int cleared; 385 386 pud = pud_offset(p4d, addr); 387 do { 388 next = pud_addr_end(addr, end); 389 390 cleared = pud_clear_huge(pud); 391 if (cleared || pud_bad(*pud)) 392 *mask |= PGTBL_PUD_MODIFIED; 393 394 if (cleared) 395 continue; 396 if (pud_none_or_clear_bad(pud)) 397 continue; 398 vunmap_pmd_range(pud, addr, next, mask); 399 } while (pud++, addr = next, addr != end); 400 } 401 402 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 403 pgtbl_mod_mask *mask) 404 { 405 p4d_t *p4d; 406 unsigned long next; 407 408 p4d = p4d_offset(pgd, addr); 409 do { 410 next = p4d_addr_end(addr, end); 411 412 p4d_clear_huge(p4d); 413 if (p4d_bad(*p4d)) 414 *mask |= PGTBL_P4D_MODIFIED; 415 416 if (p4d_none_or_clear_bad(p4d)) 417 continue; 418 vunmap_pud_range(p4d, addr, next, mask); 419 } while (p4d++, addr = next, addr != end); 420 } 421 422 /* 423 * vunmap_range_noflush is similar to vunmap_range, but does not 424 * flush caches or TLBs. 425 * 426 * The caller is responsible for calling flush_cache_vmap() before calling 427 * this function, and flush_tlb_kernel_range after it has returned 428 * successfully (and before the addresses are expected to cause a page fault 429 * or be re-mapped for something else, if TLB flushes are being delayed or 430 * coalesced). 431 * 432 * This is an internal function only. Do not use outside mm/. 433 */ 434 void __vunmap_range_noflush(unsigned long start, unsigned long end) 435 { 436 unsigned long next; 437 pgd_t *pgd; 438 unsigned long addr = start; 439 pgtbl_mod_mask mask = 0; 440 441 BUG_ON(addr >= end); 442 pgd = pgd_offset_k(addr); 443 do { 444 next = pgd_addr_end(addr, end); 445 if (pgd_bad(*pgd)) 446 mask |= PGTBL_PGD_MODIFIED; 447 if (pgd_none_or_clear_bad(pgd)) 448 continue; 449 vunmap_p4d_range(pgd, addr, next, &mask); 450 } while (pgd++, addr = next, addr != end); 451 452 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 453 arch_sync_kernel_mappings(start, end); 454 } 455 456 void vunmap_range_noflush(unsigned long start, unsigned long end) 457 { 458 kmsan_vunmap_range_noflush(start, end); 459 __vunmap_range_noflush(start, end); 460 } 461 462 /** 463 * vunmap_range - unmap kernel virtual addresses 464 * @addr: start of the VM area to unmap 465 * @end: end of the VM area to unmap (non-inclusive) 466 * 467 * Clears any present PTEs in the virtual address range, flushes TLBs and 468 * caches. Any subsequent access to the address before it has been re-mapped 469 * is a kernel bug. 470 */ 471 void vunmap_range(unsigned long addr, unsigned long end) 472 { 473 flush_cache_vunmap(addr, end); 474 vunmap_range_noflush(addr, end); 475 flush_tlb_kernel_range(addr, end); 476 } 477 478 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, 479 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 480 pgtbl_mod_mask *mask) 481 { 482 pte_t *pte; 483 484 /* 485 * nr is a running index into the array which helps higher level 486 * callers keep track of where we're up to. 487 */ 488 489 pte = pte_alloc_kernel_track(pmd, addr, mask); 490 if (!pte) 491 return -ENOMEM; 492 do { 493 struct page *page = pages[*nr]; 494 495 if (WARN_ON(!pte_none(ptep_get(pte)))) 496 return -EBUSY; 497 if (WARN_ON(!page)) 498 return -ENOMEM; 499 if (WARN_ON(!pfn_valid(page_to_pfn(page)))) 500 return -EINVAL; 501 502 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 503 (*nr)++; 504 } while (pte++, addr += PAGE_SIZE, addr != end); 505 *mask |= PGTBL_PTE_MODIFIED; 506 return 0; 507 } 508 509 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, 510 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 511 pgtbl_mod_mask *mask) 512 { 513 pmd_t *pmd; 514 unsigned long next; 515 516 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 517 if (!pmd) 518 return -ENOMEM; 519 do { 520 next = pmd_addr_end(addr, end); 521 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) 522 return -ENOMEM; 523 } while (pmd++, addr = next, addr != end); 524 return 0; 525 } 526 527 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, 528 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 529 pgtbl_mod_mask *mask) 530 { 531 pud_t *pud; 532 unsigned long next; 533 534 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 535 if (!pud) 536 return -ENOMEM; 537 do { 538 next = pud_addr_end(addr, end); 539 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) 540 return -ENOMEM; 541 } while (pud++, addr = next, addr != end); 542 return 0; 543 } 544 545 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, 546 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 547 pgtbl_mod_mask *mask) 548 { 549 p4d_t *p4d; 550 unsigned long next; 551 552 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 553 if (!p4d) 554 return -ENOMEM; 555 do { 556 next = p4d_addr_end(addr, end); 557 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) 558 return -ENOMEM; 559 } while (p4d++, addr = next, addr != end); 560 return 0; 561 } 562 563 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, 564 pgprot_t prot, struct page **pages) 565 { 566 unsigned long start = addr; 567 pgd_t *pgd; 568 unsigned long next; 569 int err = 0; 570 int nr = 0; 571 pgtbl_mod_mask mask = 0; 572 573 BUG_ON(addr >= end); 574 pgd = pgd_offset_k(addr); 575 do { 576 next = pgd_addr_end(addr, end); 577 if (pgd_bad(*pgd)) 578 mask |= PGTBL_PGD_MODIFIED; 579 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); 580 if (err) 581 return err; 582 } while (pgd++, addr = next, addr != end); 583 584 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 585 arch_sync_kernel_mappings(start, end); 586 587 return 0; 588 } 589 590 /* 591 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not 592 * flush caches. 593 * 594 * The caller is responsible for calling flush_cache_vmap() after this 595 * function returns successfully and before the addresses are accessed. 596 * 597 * This is an internal function only. Do not use outside mm/. 598 */ 599 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end, 600 pgprot_t prot, struct page **pages, unsigned int page_shift) 601 { 602 unsigned int i, nr = (end - addr) >> PAGE_SHIFT; 603 604 WARN_ON(page_shift < PAGE_SHIFT); 605 606 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || 607 page_shift == PAGE_SHIFT) 608 return vmap_small_pages_range_noflush(addr, end, prot, pages); 609 610 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { 611 int err; 612 613 err = vmap_range_noflush(addr, addr + (1UL << page_shift), 614 page_to_phys(pages[i]), prot, 615 page_shift); 616 if (err) 617 return err; 618 619 addr += 1UL << page_shift; 620 } 621 622 return 0; 623 } 624 625 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 626 pgprot_t prot, struct page **pages, unsigned int page_shift) 627 { 628 int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages, 629 page_shift); 630 631 if (ret) 632 return ret; 633 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 634 } 635 636 /** 637 * vmap_pages_range - map pages to a kernel virtual address 638 * @addr: start of the VM area to map 639 * @end: end of the VM area to map (non-inclusive) 640 * @prot: page protection flags to use 641 * @pages: pages to map (always PAGE_SIZE pages) 642 * @page_shift: maximum shift that the pages may be mapped with, @pages must 643 * be aligned and contiguous up to at least this shift. 644 * 645 * RETURNS: 646 * 0 on success, -errno on failure. 647 */ 648 static int vmap_pages_range(unsigned long addr, unsigned long end, 649 pgprot_t prot, struct page **pages, unsigned int page_shift) 650 { 651 int err; 652 653 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 654 flush_cache_vmap(addr, end); 655 return err; 656 } 657 658 static int check_sparse_vm_area(struct vm_struct *area, unsigned long start, 659 unsigned long end) 660 { 661 might_sleep(); 662 if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS)) 663 return -EINVAL; 664 if (WARN_ON_ONCE(area->flags & VM_NO_GUARD)) 665 return -EINVAL; 666 if (WARN_ON_ONCE(!(area->flags & VM_SPARSE))) 667 return -EINVAL; 668 if ((end - start) >> PAGE_SHIFT > totalram_pages()) 669 return -E2BIG; 670 if (start < (unsigned long)area->addr || 671 (void *)end > area->addr + get_vm_area_size(area)) 672 return -ERANGE; 673 return 0; 674 } 675 676 /** 677 * vm_area_map_pages - map pages inside given sparse vm_area 678 * @area: vm_area 679 * @start: start address inside vm_area 680 * @end: end address inside vm_area 681 * @pages: pages to map (always PAGE_SIZE pages) 682 */ 683 int vm_area_map_pages(struct vm_struct *area, unsigned long start, 684 unsigned long end, struct page **pages) 685 { 686 int err; 687 688 err = check_sparse_vm_area(area, start, end); 689 if (err) 690 return err; 691 692 return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT); 693 } 694 695 /** 696 * vm_area_unmap_pages - unmap pages inside given sparse vm_area 697 * @area: vm_area 698 * @start: start address inside vm_area 699 * @end: end address inside vm_area 700 */ 701 void vm_area_unmap_pages(struct vm_struct *area, unsigned long start, 702 unsigned long end) 703 { 704 if (check_sparse_vm_area(area, start, end)) 705 return; 706 707 vunmap_range(start, end); 708 } 709 710 int is_vmalloc_or_module_addr(const void *x) 711 { 712 /* 713 * ARM, x86-64 and sparc64 put modules in a special place, 714 * and fall back on vmalloc() if that fails. Others 715 * just put it in the vmalloc space. 716 */ 717 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 718 unsigned long addr = (unsigned long)kasan_reset_tag(x); 719 if (addr >= MODULES_VADDR && addr < MODULES_END) 720 return 1; 721 #endif 722 return is_vmalloc_addr(x); 723 } 724 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr); 725 726 /* 727 * Walk a vmap address to the struct page it maps. Huge vmap mappings will 728 * return the tail page that corresponds to the base page address, which 729 * matches small vmap mappings. 730 */ 731 struct page *vmalloc_to_page(const void *vmalloc_addr) 732 { 733 unsigned long addr = (unsigned long) vmalloc_addr; 734 struct page *page = NULL; 735 pgd_t *pgd = pgd_offset_k(addr); 736 p4d_t *p4d; 737 pud_t *pud; 738 pmd_t *pmd; 739 pte_t *ptep, pte; 740 741 /* 742 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 743 * architectures that do not vmalloc module space 744 */ 745 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 746 747 if (pgd_none(*pgd)) 748 return NULL; 749 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 750 return NULL; /* XXX: no allowance for huge pgd */ 751 if (WARN_ON_ONCE(pgd_bad(*pgd))) 752 return NULL; 753 754 p4d = p4d_offset(pgd, addr); 755 if (p4d_none(*p4d)) 756 return NULL; 757 if (p4d_leaf(*p4d)) 758 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); 759 if (WARN_ON_ONCE(p4d_bad(*p4d))) 760 return NULL; 761 762 pud = pud_offset(p4d, addr); 763 if (pud_none(*pud)) 764 return NULL; 765 if (pud_leaf(*pud)) 766 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 767 if (WARN_ON_ONCE(pud_bad(*pud))) 768 return NULL; 769 770 pmd = pmd_offset(pud, addr); 771 if (pmd_none(*pmd)) 772 return NULL; 773 if (pmd_leaf(*pmd)) 774 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 775 if (WARN_ON_ONCE(pmd_bad(*pmd))) 776 return NULL; 777 778 ptep = pte_offset_kernel(pmd, addr); 779 pte = ptep_get(ptep); 780 if (pte_present(pte)) 781 page = pte_page(pte); 782 783 return page; 784 } 785 EXPORT_SYMBOL(vmalloc_to_page); 786 787 /* 788 * Map a vmalloc()-space virtual address to the physical page frame number. 789 */ 790 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 791 { 792 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 793 } 794 EXPORT_SYMBOL(vmalloc_to_pfn); 795 796 797 /*** Global kva allocator ***/ 798 799 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 800 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 801 802 803 static DEFINE_SPINLOCK(vmap_area_lock); 804 static DEFINE_SPINLOCK(free_vmap_area_lock); 805 /* Export for kexec only */ 806 LIST_HEAD(vmap_area_list); 807 static struct rb_root vmap_area_root = RB_ROOT; 808 static bool vmap_initialized __read_mostly; 809 810 static struct rb_root purge_vmap_area_root = RB_ROOT; 811 static LIST_HEAD(purge_vmap_area_list); 812 static DEFINE_SPINLOCK(purge_vmap_area_lock); 813 814 /* 815 * This kmem_cache is used for vmap_area objects. Instead of 816 * allocating from slab we reuse an object from this cache to 817 * make things faster. Especially in "no edge" splitting of 818 * free block. 819 */ 820 static struct kmem_cache *vmap_area_cachep; 821 822 /* 823 * This linked list is used in pair with free_vmap_area_root. 824 * It gives O(1) access to prev/next to perform fast coalescing. 825 */ 826 static LIST_HEAD(free_vmap_area_list); 827 828 /* 829 * This augment red-black tree represents the free vmap space. 830 * All vmap_area objects in this tree are sorted by va->va_start 831 * address. It is used for allocation and merging when a vmap 832 * object is released. 833 * 834 * Each vmap_area node contains a maximum available free block 835 * of its sub-tree, right or left. Therefore it is possible to 836 * find a lowest match of free area. 837 */ 838 static struct rb_root free_vmap_area_root = RB_ROOT; 839 840 /* 841 * Preload a CPU with one object for "no edge" split case. The 842 * aim is to get rid of allocations from the atomic context, thus 843 * to use more permissive allocation masks. 844 */ 845 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 846 847 static __always_inline unsigned long 848 va_size(struct vmap_area *va) 849 { 850 return (va->va_end - va->va_start); 851 } 852 853 static __always_inline unsigned long 854 get_subtree_max_size(struct rb_node *node) 855 { 856 struct vmap_area *va; 857 858 va = rb_entry_safe(node, struct vmap_area, rb_node); 859 return va ? va->subtree_max_size : 0; 860 } 861 862 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 863 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 864 865 static void reclaim_and_purge_vmap_areas(void); 866 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 867 static void drain_vmap_area_work(struct work_struct *work); 868 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); 869 870 static atomic_long_t nr_vmalloc_pages; 871 872 unsigned long vmalloc_nr_pages(void) 873 { 874 return atomic_long_read(&nr_vmalloc_pages); 875 } 876 877 /* Look up the first VA which satisfies addr < va_end, NULL if none. */ 878 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr) 879 { 880 struct vmap_area *va = NULL; 881 struct rb_node *n = vmap_area_root.rb_node; 882 883 addr = (unsigned long)kasan_reset_tag((void *)addr); 884 885 while (n) { 886 struct vmap_area *tmp; 887 888 tmp = rb_entry(n, struct vmap_area, rb_node); 889 if (tmp->va_end > addr) { 890 va = tmp; 891 if (tmp->va_start <= addr) 892 break; 893 894 n = n->rb_left; 895 } else 896 n = n->rb_right; 897 } 898 899 return va; 900 } 901 902 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root) 903 { 904 struct rb_node *n = root->rb_node; 905 906 addr = (unsigned long)kasan_reset_tag((void *)addr); 907 908 while (n) { 909 struct vmap_area *va; 910 911 va = rb_entry(n, struct vmap_area, rb_node); 912 if (addr < va->va_start) 913 n = n->rb_left; 914 else if (addr >= va->va_end) 915 n = n->rb_right; 916 else 917 return va; 918 } 919 920 return NULL; 921 } 922 923 /* 924 * This function returns back addresses of parent node 925 * and its left or right link for further processing. 926 * 927 * Otherwise NULL is returned. In that case all further 928 * steps regarding inserting of conflicting overlap range 929 * have to be declined and actually considered as a bug. 930 */ 931 static __always_inline struct rb_node ** 932 find_va_links(struct vmap_area *va, 933 struct rb_root *root, struct rb_node *from, 934 struct rb_node **parent) 935 { 936 struct vmap_area *tmp_va; 937 struct rb_node **link; 938 939 if (root) { 940 link = &root->rb_node; 941 if (unlikely(!*link)) { 942 *parent = NULL; 943 return link; 944 } 945 } else { 946 link = &from; 947 } 948 949 /* 950 * Go to the bottom of the tree. When we hit the last point 951 * we end up with parent rb_node and correct direction, i name 952 * it link, where the new va->rb_node will be attached to. 953 */ 954 do { 955 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 956 957 /* 958 * During the traversal we also do some sanity check. 959 * Trigger the BUG() if there are sides(left/right) 960 * or full overlaps. 961 */ 962 if (va->va_end <= tmp_va->va_start) 963 link = &(*link)->rb_left; 964 else if (va->va_start >= tmp_va->va_end) 965 link = &(*link)->rb_right; 966 else { 967 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", 968 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); 969 970 return NULL; 971 } 972 } while (*link); 973 974 *parent = &tmp_va->rb_node; 975 return link; 976 } 977 978 static __always_inline struct list_head * 979 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 980 { 981 struct list_head *list; 982 983 if (unlikely(!parent)) 984 /* 985 * The red-black tree where we try to find VA neighbors 986 * before merging or inserting is empty, i.e. it means 987 * there is no free vmap space. Normally it does not 988 * happen but we handle this case anyway. 989 */ 990 return NULL; 991 992 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 993 return (&parent->rb_right == link ? list->next : list); 994 } 995 996 static __always_inline void 997 __link_va(struct vmap_area *va, struct rb_root *root, 998 struct rb_node *parent, struct rb_node **link, 999 struct list_head *head, bool augment) 1000 { 1001 /* 1002 * VA is still not in the list, but we can 1003 * identify its future previous list_head node. 1004 */ 1005 if (likely(parent)) { 1006 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 1007 if (&parent->rb_right != link) 1008 head = head->prev; 1009 } 1010 1011 /* Insert to the rb-tree */ 1012 rb_link_node(&va->rb_node, parent, link); 1013 if (augment) { 1014 /* 1015 * Some explanation here. Just perform simple insertion 1016 * to the tree. We do not set va->subtree_max_size to 1017 * its current size before calling rb_insert_augmented(). 1018 * It is because we populate the tree from the bottom 1019 * to parent levels when the node _is_ in the tree. 1020 * 1021 * Therefore we set subtree_max_size to zero after insertion, 1022 * to let __augment_tree_propagate_from() puts everything to 1023 * the correct order later on. 1024 */ 1025 rb_insert_augmented(&va->rb_node, 1026 root, &free_vmap_area_rb_augment_cb); 1027 va->subtree_max_size = 0; 1028 } else { 1029 rb_insert_color(&va->rb_node, root); 1030 } 1031 1032 /* Address-sort this list */ 1033 list_add(&va->list, head); 1034 } 1035 1036 static __always_inline void 1037 link_va(struct vmap_area *va, struct rb_root *root, 1038 struct rb_node *parent, struct rb_node **link, 1039 struct list_head *head) 1040 { 1041 __link_va(va, root, parent, link, head, false); 1042 } 1043 1044 static __always_inline void 1045 link_va_augment(struct vmap_area *va, struct rb_root *root, 1046 struct rb_node *parent, struct rb_node **link, 1047 struct list_head *head) 1048 { 1049 __link_va(va, root, parent, link, head, true); 1050 } 1051 1052 static __always_inline void 1053 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment) 1054 { 1055 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 1056 return; 1057 1058 if (augment) 1059 rb_erase_augmented(&va->rb_node, 1060 root, &free_vmap_area_rb_augment_cb); 1061 else 1062 rb_erase(&va->rb_node, root); 1063 1064 list_del_init(&va->list); 1065 RB_CLEAR_NODE(&va->rb_node); 1066 } 1067 1068 static __always_inline void 1069 unlink_va(struct vmap_area *va, struct rb_root *root) 1070 { 1071 __unlink_va(va, root, false); 1072 } 1073 1074 static __always_inline void 1075 unlink_va_augment(struct vmap_area *va, struct rb_root *root) 1076 { 1077 __unlink_va(va, root, true); 1078 } 1079 1080 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1081 /* 1082 * Gets called when remove the node and rotate. 1083 */ 1084 static __always_inline unsigned long 1085 compute_subtree_max_size(struct vmap_area *va) 1086 { 1087 return max3(va_size(va), 1088 get_subtree_max_size(va->rb_node.rb_left), 1089 get_subtree_max_size(va->rb_node.rb_right)); 1090 } 1091 1092 static void 1093 augment_tree_propagate_check(void) 1094 { 1095 struct vmap_area *va; 1096 unsigned long computed_size; 1097 1098 list_for_each_entry(va, &free_vmap_area_list, list) { 1099 computed_size = compute_subtree_max_size(va); 1100 if (computed_size != va->subtree_max_size) 1101 pr_emerg("tree is corrupted: %lu, %lu\n", 1102 va_size(va), va->subtree_max_size); 1103 } 1104 } 1105 #endif 1106 1107 /* 1108 * This function populates subtree_max_size from bottom to upper 1109 * levels starting from VA point. The propagation must be done 1110 * when VA size is modified by changing its va_start/va_end. Or 1111 * in case of newly inserting of VA to the tree. 1112 * 1113 * It means that __augment_tree_propagate_from() must be called: 1114 * - After VA has been inserted to the tree(free path); 1115 * - After VA has been shrunk(allocation path); 1116 * - After VA has been increased(merging path). 1117 * 1118 * Please note that, it does not mean that upper parent nodes 1119 * and their subtree_max_size are recalculated all the time up 1120 * to the root node. 1121 * 1122 * 4--8 1123 * /\ 1124 * / \ 1125 * / \ 1126 * 2--2 8--8 1127 * 1128 * For example if we modify the node 4, shrinking it to 2, then 1129 * no any modification is required. If we shrink the node 2 to 1 1130 * its subtree_max_size is updated only, and set to 1. If we shrink 1131 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 1132 * node becomes 4--6. 1133 */ 1134 static __always_inline void 1135 augment_tree_propagate_from(struct vmap_area *va) 1136 { 1137 /* 1138 * Populate the tree from bottom towards the root until 1139 * the calculated maximum available size of checked node 1140 * is equal to its current one. 1141 */ 1142 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); 1143 1144 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1145 augment_tree_propagate_check(); 1146 #endif 1147 } 1148 1149 static void 1150 insert_vmap_area(struct vmap_area *va, 1151 struct rb_root *root, struct list_head *head) 1152 { 1153 struct rb_node **link; 1154 struct rb_node *parent; 1155 1156 link = find_va_links(va, root, NULL, &parent); 1157 if (link) 1158 link_va(va, root, parent, link, head); 1159 } 1160 1161 static void 1162 insert_vmap_area_augment(struct vmap_area *va, 1163 struct rb_node *from, struct rb_root *root, 1164 struct list_head *head) 1165 { 1166 struct rb_node **link; 1167 struct rb_node *parent; 1168 1169 if (from) 1170 link = find_va_links(va, NULL, from, &parent); 1171 else 1172 link = find_va_links(va, root, NULL, &parent); 1173 1174 if (link) { 1175 link_va_augment(va, root, parent, link, head); 1176 augment_tree_propagate_from(va); 1177 } 1178 } 1179 1180 /* 1181 * Merge de-allocated chunk of VA memory with previous 1182 * and next free blocks. If coalesce is not done a new 1183 * free area is inserted. If VA has been merged, it is 1184 * freed. 1185 * 1186 * Please note, it can return NULL in case of overlap 1187 * ranges, followed by WARN() report. Despite it is a 1188 * buggy behaviour, a system can be alive and keep 1189 * ongoing. 1190 */ 1191 static __always_inline struct vmap_area * 1192 __merge_or_add_vmap_area(struct vmap_area *va, 1193 struct rb_root *root, struct list_head *head, bool augment) 1194 { 1195 struct vmap_area *sibling; 1196 struct list_head *next; 1197 struct rb_node **link; 1198 struct rb_node *parent; 1199 bool merged = false; 1200 1201 /* 1202 * Find a place in the tree where VA potentially will be 1203 * inserted, unless it is merged with its sibling/siblings. 1204 */ 1205 link = find_va_links(va, root, NULL, &parent); 1206 if (!link) 1207 return NULL; 1208 1209 /* 1210 * Get next node of VA to check if merging can be done. 1211 */ 1212 next = get_va_next_sibling(parent, link); 1213 if (unlikely(next == NULL)) 1214 goto insert; 1215 1216 /* 1217 * start end 1218 * | | 1219 * |<------VA------>|<-----Next----->| 1220 * | | 1221 * start end 1222 */ 1223 if (next != head) { 1224 sibling = list_entry(next, struct vmap_area, list); 1225 if (sibling->va_start == va->va_end) { 1226 sibling->va_start = va->va_start; 1227 1228 /* Free vmap_area object. */ 1229 kmem_cache_free(vmap_area_cachep, va); 1230 1231 /* Point to the new merged area. */ 1232 va = sibling; 1233 merged = true; 1234 } 1235 } 1236 1237 /* 1238 * start end 1239 * | | 1240 * |<-----Prev----->|<------VA------>| 1241 * | | 1242 * start end 1243 */ 1244 if (next->prev != head) { 1245 sibling = list_entry(next->prev, struct vmap_area, list); 1246 if (sibling->va_end == va->va_start) { 1247 /* 1248 * If both neighbors are coalesced, it is important 1249 * to unlink the "next" node first, followed by merging 1250 * with "previous" one. Otherwise the tree might not be 1251 * fully populated if a sibling's augmented value is 1252 * "normalized" because of rotation operations. 1253 */ 1254 if (merged) 1255 __unlink_va(va, root, augment); 1256 1257 sibling->va_end = va->va_end; 1258 1259 /* Free vmap_area object. */ 1260 kmem_cache_free(vmap_area_cachep, va); 1261 1262 /* Point to the new merged area. */ 1263 va = sibling; 1264 merged = true; 1265 } 1266 } 1267 1268 insert: 1269 if (!merged) 1270 __link_va(va, root, parent, link, head, augment); 1271 1272 return va; 1273 } 1274 1275 static __always_inline struct vmap_area * 1276 merge_or_add_vmap_area(struct vmap_area *va, 1277 struct rb_root *root, struct list_head *head) 1278 { 1279 return __merge_or_add_vmap_area(va, root, head, false); 1280 } 1281 1282 static __always_inline struct vmap_area * 1283 merge_or_add_vmap_area_augment(struct vmap_area *va, 1284 struct rb_root *root, struct list_head *head) 1285 { 1286 va = __merge_or_add_vmap_area(va, root, head, true); 1287 if (va) 1288 augment_tree_propagate_from(va); 1289 1290 return va; 1291 } 1292 1293 static __always_inline bool 1294 is_within_this_va(struct vmap_area *va, unsigned long size, 1295 unsigned long align, unsigned long vstart) 1296 { 1297 unsigned long nva_start_addr; 1298 1299 if (va->va_start > vstart) 1300 nva_start_addr = ALIGN(va->va_start, align); 1301 else 1302 nva_start_addr = ALIGN(vstart, align); 1303 1304 /* Can be overflowed due to big size or alignment. */ 1305 if (nva_start_addr + size < nva_start_addr || 1306 nva_start_addr < vstart) 1307 return false; 1308 1309 return (nva_start_addr + size <= va->va_end); 1310 } 1311 1312 /* 1313 * Find the first free block(lowest start address) in the tree, 1314 * that will accomplish the request corresponding to passing 1315 * parameters. Please note, with an alignment bigger than PAGE_SIZE, 1316 * a search length is adjusted to account for worst case alignment 1317 * overhead. 1318 */ 1319 static __always_inline struct vmap_area * 1320 find_vmap_lowest_match(struct rb_root *root, unsigned long size, 1321 unsigned long align, unsigned long vstart, bool adjust_search_size) 1322 { 1323 struct vmap_area *va; 1324 struct rb_node *node; 1325 unsigned long length; 1326 1327 /* Start from the root. */ 1328 node = root->rb_node; 1329 1330 /* Adjust the search size for alignment overhead. */ 1331 length = adjust_search_size ? size + align - 1 : size; 1332 1333 while (node) { 1334 va = rb_entry(node, struct vmap_area, rb_node); 1335 1336 if (get_subtree_max_size(node->rb_left) >= length && 1337 vstart < va->va_start) { 1338 node = node->rb_left; 1339 } else { 1340 if (is_within_this_va(va, size, align, vstart)) 1341 return va; 1342 1343 /* 1344 * Does not make sense to go deeper towards the right 1345 * sub-tree if it does not have a free block that is 1346 * equal or bigger to the requested search length. 1347 */ 1348 if (get_subtree_max_size(node->rb_right) >= length) { 1349 node = node->rb_right; 1350 continue; 1351 } 1352 1353 /* 1354 * OK. We roll back and find the first right sub-tree, 1355 * that will satisfy the search criteria. It can happen 1356 * due to "vstart" restriction or an alignment overhead 1357 * that is bigger then PAGE_SIZE. 1358 */ 1359 while ((node = rb_parent(node))) { 1360 va = rb_entry(node, struct vmap_area, rb_node); 1361 if (is_within_this_va(va, size, align, vstart)) 1362 return va; 1363 1364 if (get_subtree_max_size(node->rb_right) >= length && 1365 vstart <= va->va_start) { 1366 /* 1367 * Shift the vstart forward. Please note, we update it with 1368 * parent's start address adding "1" because we do not want 1369 * to enter same sub-tree after it has already been checked 1370 * and no suitable free block found there. 1371 */ 1372 vstart = va->va_start + 1; 1373 node = node->rb_right; 1374 break; 1375 } 1376 } 1377 } 1378 } 1379 1380 return NULL; 1381 } 1382 1383 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1384 #include <linux/random.h> 1385 1386 static struct vmap_area * 1387 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size, 1388 unsigned long align, unsigned long vstart) 1389 { 1390 struct vmap_area *va; 1391 1392 list_for_each_entry(va, head, list) { 1393 if (!is_within_this_va(va, size, align, vstart)) 1394 continue; 1395 1396 return va; 1397 } 1398 1399 return NULL; 1400 } 1401 1402 static void 1403 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head, 1404 unsigned long size, unsigned long align) 1405 { 1406 struct vmap_area *va_1, *va_2; 1407 unsigned long vstart; 1408 unsigned int rnd; 1409 1410 get_random_bytes(&rnd, sizeof(rnd)); 1411 vstart = VMALLOC_START + rnd; 1412 1413 va_1 = find_vmap_lowest_match(root, size, align, vstart, false); 1414 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart); 1415 1416 if (va_1 != va_2) 1417 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 1418 va_1, va_2, vstart); 1419 } 1420 #endif 1421 1422 enum fit_type { 1423 NOTHING_FIT = 0, 1424 FL_FIT_TYPE = 1, /* full fit */ 1425 LE_FIT_TYPE = 2, /* left edge fit */ 1426 RE_FIT_TYPE = 3, /* right edge fit */ 1427 NE_FIT_TYPE = 4 /* no edge fit */ 1428 }; 1429 1430 static __always_inline enum fit_type 1431 classify_va_fit_type(struct vmap_area *va, 1432 unsigned long nva_start_addr, unsigned long size) 1433 { 1434 enum fit_type type; 1435 1436 /* Check if it is within VA. */ 1437 if (nva_start_addr < va->va_start || 1438 nva_start_addr + size > va->va_end) 1439 return NOTHING_FIT; 1440 1441 /* Now classify. */ 1442 if (va->va_start == nva_start_addr) { 1443 if (va->va_end == nva_start_addr + size) 1444 type = FL_FIT_TYPE; 1445 else 1446 type = LE_FIT_TYPE; 1447 } else if (va->va_end == nva_start_addr + size) { 1448 type = RE_FIT_TYPE; 1449 } else { 1450 type = NE_FIT_TYPE; 1451 } 1452 1453 return type; 1454 } 1455 1456 static __always_inline int 1457 adjust_va_to_fit_type(struct rb_root *root, struct list_head *head, 1458 struct vmap_area *va, unsigned long nva_start_addr, 1459 unsigned long size) 1460 { 1461 struct vmap_area *lva = NULL; 1462 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size); 1463 1464 if (type == FL_FIT_TYPE) { 1465 /* 1466 * No need to split VA, it fully fits. 1467 * 1468 * | | 1469 * V NVA V 1470 * |---------------| 1471 */ 1472 unlink_va_augment(va, root); 1473 kmem_cache_free(vmap_area_cachep, va); 1474 } else if (type == LE_FIT_TYPE) { 1475 /* 1476 * Split left edge of fit VA. 1477 * 1478 * | | 1479 * V NVA V R 1480 * |-------|-------| 1481 */ 1482 va->va_start += size; 1483 } else if (type == RE_FIT_TYPE) { 1484 /* 1485 * Split right edge of fit VA. 1486 * 1487 * | | 1488 * L V NVA V 1489 * |-------|-------| 1490 */ 1491 va->va_end = nva_start_addr; 1492 } else if (type == NE_FIT_TYPE) { 1493 /* 1494 * Split no edge of fit VA. 1495 * 1496 * | | 1497 * L V NVA V R 1498 * |---|-------|---| 1499 */ 1500 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 1501 if (unlikely(!lva)) { 1502 /* 1503 * For percpu allocator we do not do any pre-allocation 1504 * and leave it as it is. The reason is it most likely 1505 * never ends up with NE_FIT_TYPE splitting. In case of 1506 * percpu allocations offsets and sizes are aligned to 1507 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 1508 * are its main fitting cases. 1509 * 1510 * There are a few exceptions though, as an example it is 1511 * a first allocation (early boot up) when we have "one" 1512 * big free space that has to be split. 1513 * 1514 * Also we can hit this path in case of regular "vmap" 1515 * allocations, if "this" current CPU was not preloaded. 1516 * See the comment in alloc_vmap_area() why. If so, then 1517 * GFP_NOWAIT is used instead to get an extra object for 1518 * split purpose. That is rare and most time does not 1519 * occur. 1520 * 1521 * What happens if an allocation gets failed. Basically, 1522 * an "overflow" path is triggered to purge lazily freed 1523 * areas to free some memory, then, the "retry" path is 1524 * triggered to repeat one more time. See more details 1525 * in alloc_vmap_area() function. 1526 */ 1527 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 1528 if (!lva) 1529 return -1; 1530 } 1531 1532 /* 1533 * Build the remainder. 1534 */ 1535 lva->va_start = va->va_start; 1536 lva->va_end = nva_start_addr; 1537 1538 /* 1539 * Shrink this VA to remaining size. 1540 */ 1541 va->va_start = nva_start_addr + size; 1542 } else { 1543 return -1; 1544 } 1545 1546 if (type != FL_FIT_TYPE) { 1547 augment_tree_propagate_from(va); 1548 1549 if (lva) /* type == NE_FIT_TYPE */ 1550 insert_vmap_area_augment(lva, &va->rb_node, root, head); 1551 } 1552 1553 return 0; 1554 } 1555 1556 /* 1557 * Returns a start address of the newly allocated area, if success. 1558 * Otherwise a vend is returned that indicates failure. 1559 */ 1560 static __always_inline unsigned long 1561 __alloc_vmap_area(struct rb_root *root, struct list_head *head, 1562 unsigned long size, unsigned long align, 1563 unsigned long vstart, unsigned long vend) 1564 { 1565 bool adjust_search_size = true; 1566 unsigned long nva_start_addr; 1567 struct vmap_area *va; 1568 int ret; 1569 1570 /* 1571 * Do not adjust when: 1572 * a) align <= PAGE_SIZE, because it does not make any sense. 1573 * All blocks(their start addresses) are at least PAGE_SIZE 1574 * aligned anyway; 1575 * b) a short range where a requested size corresponds to exactly 1576 * specified [vstart:vend] interval and an alignment > PAGE_SIZE. 1577 * With adjusted search length an allocation would not succeed. 1578 */ 1579 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) 1580 adjust_search_size = false; 1581 1582 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size); 1583 if (unlikely(!va)) 1584 return vend; 1585 1586 if (va->va_start > vstart) 1587 nva_start_addr = ALIGN(va->va_start, align); 1588 else 1589 nva_start_addr = ALIGN(vstart, align); 1590 1591 /* Check the "vend" restriction. */ 1592 if (nva_start_addr + size > vend) 1593 return vend; 1594 1595 /* Update the free vmap_area. */ 1596 ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size); 1597 if (WARN_ON_ONCE(ret)) 1598 return vend; 1599 1600 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1601 find_vmap_lowest_match_check(root, head, size, align); 1602 #endif 1603 1604 return nva_start_addr; 1605 } 1606 1607 /* 1608 * Free a region of KVA allocated by alloc_vmap_area 1609 */ 1610 static void free_vmap_area(struct vmap_area *va) 1611 { 1612 /* 1613 * Remove from the busy tree/list. 1614 */ 1615 spin_lock(&vmap_area_lock); 1616 unlink_va(va, &vmap_area_root); 1617 spin_unlock(&vmap_area_lock); 1618 1619 /* 1620 * Insert/Merge it back to the free tree/list. 1621 */ 1622 spin_lock(&free_vmap_area_lock); 1623 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); 1624 spin_unlock(&free_vmap_area_lock); 1625 } 1626 1627 static inline void 1628 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) 1629 { 1630 struct vmap_area *va = NULL; 1631 1632 /* 1633 * Preload this CPU with one extra vmap_area object. It is used 1634 * when fit type of free area is NE_FIT_TYPE. It guarantees that 1635 * a CPU that does an allocation is preloaded. 1636 * 1637 * We do it in non-atomic context, thus it allows us to use more 1638 * permissive allocation masks to be more stable under low memory 1639 * condition and high memory pressure. 1640 */ 1641 if (!this_cpu_read(ne_fit_preload_node)) 1642 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1643 1644 spin_lock(lock); 1645 1646 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va)) 1647 kmem_cache_free(vmap_area_cachep, va); 1648 } 1649 1650 /* 1651 * Allocate a region of KVA of the specified size and alignment, within the 1652 * vstart and vend. 1653 */ 1654 static struct vmap_area *alloc_vmap_area(unsigned long size, 1655 unsigned long align, 1656 unsigned long vstart, unsigned long vend, 1657 int node, gfp_t gfp_mask, 1658 unsigned long va_flags) 1659 { 1660 struct vmap_area *va; 1661 unsigned long freed; 1662 unsigned long addr; 1663 int purged = 0; 1664 int ret; 1665 1666 if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align))) 1667 return ERR_PTR(-EINVAL); 1668 1669 if (unlikely(!vmap_initialized)) 1670 return ERR_PTR(-EBUSY); 1671 1672 might_sleep(); 1673 gfp_mask = gfp_mask & GFP_RECLAIM_MASK; 1674 1675 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1676 if (unlikely(!va)) 1677 return ERR_PTR(-ENOMEM); 1678 1679 /* 1680 * Only scan the relevant parts containing pointers to other objects 1681 * to avoid false negatives. 1682 */ 1683 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); 1684 1685 retry: 1686 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); 1687 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list, 1688 size, align, vstart, vend); 1689 spin_unlock(&free_vmap_area_lock); 1690 1691 trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend); 1692 1693 /* 1694 * If an allocation fails, the "vend" address is 1695 * returned. Therefore trigger the overflow path. 1696 */ 1697 if (unlikely(addr == vend)) 1698 goto overflow; 1699 1700 va->va_start = addr; 1701 va->va_end = addr + size; 1702 va->vm = NULL; 1703 va->flags = va_flags; 1704 1705 spin_lock(&vmap_area_lock); 1706 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1707 spin_unlock(&vmap_area_lock); 1708 1709 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1710 BUG_ON(va->va_start < vstart); 1711 BUG_ON(va->va_end > vend); 1712 1713 ret = kasan_populate_vmalloc(addr, size); 1714 if (ret) { 1715 free_vmap_area(va); 1716 return ERR_PTR(ret); 1717 } 1718 1719 return va; 1720 1721 overflow: 1722 if (!purged) { 1723 reclaim_and_purge_vmap_areas(); 1724 purged = 1; 1725 goto retry; 1726 } 1727 1728 freed = 0; 1729 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 1730 1731 if (freed > 0) { 1732 purged = 0; 1733 goto retry; 1734 } 1735 1736 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 1737 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 1738 size); 1739 1740 kmem_cache_free(vmap_area_cachep, va); 1741 return ERR_PTR(-EBUSY); 1742 } 1743 1744 int register_vmap_purge_notifier(struct notifier_block *nb) 1745 { 1746 return blocking_notifier_chain_register(&vmap_notify_list, nb); 1747 } 1748 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 1749 1750 int unregister_vmap_purge_notifier(struct notifier_block *nb) 1751 { 1752 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 1753 } 1754 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 1755 1756 /* 1757 * lazy_max_pages is the maximum amount of virtual address space we gather up 1758 * before attempting to purge with a TLB flush. 1759 * 1760 * There is a tradeoff here: a larger number will cover more kernel page tables 1761 * and take slightly longer to purge, but it will linearly reduce the number of 1762 * global TLB flushes that must be performed. It would seem natural to scale 1763 * this number up linearly with the number of CPUs (because vmapping activity 1764 * could also scale linearly with the number of CPUs), however it is likely 1765 * that in practice, workloads might be constrained in other ways that mean 1766 * vmap activity will not scale linearly with CPUs. Also, I want to be 1767 * conservative and not introduce a big latency on huge systems, so go with 1768 * a less aggressive log scale. It will still be an improvement over the old 1769 * code, and it will be simple to change the scale factor if we find that it 1770 * becomes a problem on bigger systems. 1771 */ 1772 static unsigned long lazy_max_pages(void) 1773 { 1774 unsigned int log; 1775 1776 log = fls(num_online_cpus()); 1777 1778 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 1779 } 1780 1781 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 1782 1783 /* 1784 * Serialize vmap purging. There is no actual critical section protected 1785 * by this lock, but we want to avoid concurrent calls for performance 1786 * reasons and to make the pcpu_get_vm_areas more deterministic. 1787 */ 1788 static DEFINE_MUTEX(vmap_purge_lock); 1789 1790 /* for per-CPU blocks */ 1791 static void purge_fragmented_blocks_allcpus(void); 1792 1793 /* 1794 * Purges all lazily-freed vmap areas. 1795 */ 1796 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 1797 { 1798 unsigned long resched_threshold; 1799 unsigned int num_purged_areas = 0; 1800 struct list_head local_purge_list; 1801 struct vmap_area *va, *n_va; 1802 1803 lockdep_assert_held(&vmap_purge_lock); 1804 1805 spin_lock(&purge_vmap_area_lock); 1806 purge_vmap_area_root = RB_ROOT; 1807 list_replace_init(&purge_vmap_area_list, &local_purge_list); 1808 spin_unlock(&purge_vmap_area_lock); 1809 1810 if (unlikely(list_empty(&local_purge_list))) 1811 goto out; 1812 1813 start = min(start, 1814 list_first_entry(&local_purge_list, 1815 struct vmap_area, list)->va_start); 1816 1817 end = max(end, 1818 list_last_entry(&local_purge_list, 1819 struct vmap_area, list)->va_end); 1820 1821 flush_tlb_kernel_range(start, end); 1822 resched_threshold = lazy_max_pages() << 1; 1823 1824 spin_lock(&free_vmap_area_lock); 1825 list_for_each_entry_safe(va, n_va, &local_purge_list, list) { 1826 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 1827 unsigned long orig_start = va->va_start; 1828 unsigned long orig_end = va->va_end; 1829 1830 /* 1831 * Finally insert or merge lazily-freed area. It is 1832 * detached and there is no need to "unlink" it from 1833 * anything. 1834 */ 1835 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root, 1836 &free_vmap_area_list); 1837 1838 if (!va) 1839 continue; 1840 1841 if (is_vmalloc_or_module_addr((void *)orig_start)) 1842 kasan_release_vmalloc(orig_start, orig_end, 1843 va->va_start, va->va_end); 1844 1845 atomic_long_sub(nr, &vmap_lazy_nr); 1846 num_purged_areas++; 1847 1848 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 1849 cond_resched_lock(&free_vmap_area_lock); 1850 } 1851 spin_unlock(&free_vmap_area_lock); 1852 1853 out: 1854 trace_purge_vmap_area_lazy(start, end, num_purged_areas); 1855 return num_purged_areas > 0; 1856 } 1857 1858 /* 1859 * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list. 1860 */ 1861 static void reclaim_and_purge_vmap_areas(void) 1862 1863 { 1864 mutex_lock(&vmap_purge_lock); 1865 purge_fragmented_blocks_allcpus(); 1866 __purge_vmap_area_lazy(ULONG_MAX, 0); 1867 mutex_unlock(&vmap_purge_lock); 1868 } 1869 1870 static void drain_vmap_area_work(struct work_struct *work) 1871 { 1872 unsigned long nr_lazy; 1873 1874 do { 1875 mutex_lock(&vmap_purge_lock); 1876 __purge_vmap_area_lazy(ULONG_MAX, 0); 1877 mutex_unlock(&vmap_purge_lock); 1878 1879 /* Recheck if further work is required. */ 1880 nr_lazy = atomic_long_read(&vmap_lazy_nr); 1881 } while (nr_lazy > lazy_max_pages()); 1882 } 1883 1884 /* 1885 * Free a vmap area, caller ensuring that the area has been unmapped, 1886 * unlinked and flush_cache_vunmap had been called for the correct 1887 * range previously. 1888 */ 1889 static void free_vmap_area_noflush(struct vmap_area *va) 1890 { 1891 unsigned long nr_lazy_max = lazy_max_pages(); 1892 unsigned long va_start = va->va_start; 1893 unsigned long nr_lazy; 1894 1895 if (WARN_ON_ONCE(!list_empty(&va->list))) 1896 return; 1897 1898 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 1899 PAGE_SHIFT, &vmap_lazy_nr); 1900 1901 /* 1902 * Merge or place it to the purge tree/list. 1903 */ 1904 spin_lock(&purge_vmap_area_lock); 1905 merge_or_add_vmap_area(va, 1906 &purge_vmap_area_root, &purge_vmap_area_list); 1907 spin_unlock(&purge_vmap_area_lock); 1908 1909 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max); 1910 1911 /* After this point, we may free va at any time */ 1912 if (unlikely(nr_lazy > nr_lazy_max)) 1913 schedule_work(&drain_vmap_work); 1914 } 1915 1916 /* 1917 * Free and unmap a vmap area 1918 */ 1919 static void free_unmap_vmap_area(struct vmap_area *va) 1920 { 1921 flush_cache_vunmap(va->va_start, va->va_end); 1922 vunmap_range_noflush(va->va_start, va->va_end); 1923 if (debug_pagealloc_enabled_static()) 1924 flush_tlb_kernel_range(va->va_start, va->va_end); 1925 1926 free_vmap_area_noflush(va); 1927 } 1928 1929 struct vmap_area *find_vmap_area(unsigned long addr) 1930 { 1931 struct vmap_area *va; 1932 1933 spin_lock(&vmap_area_lock); 1934 va = __find_vmap_area(addr, &vmap_area_root); 1935 spin_unlock(&vmap_area_lock); 1936 1937 return va; 1938 } 1939 1940 static struct vmap_area *find_unlink_vmap_area(unsigned long addr) 1941 { 1942 struct vmap_area *va; 1943 1944 spin_lock(&vmap_area_lock); 1945 va = __find_vmap_area(addr, &vmap_area_root); 1946 if (va) 1947 unlink_va(va, &vmap_area_root); 1948 spin_unlock(&vmap_area_lock); 1949 1950 return va; 1951 } 1952 1953 /*** Per cpu kva allocator ***/ 1954 1955 /* 1956 * vmap space is limited especially on 32 bit architectures. Ensure there is 1957 * room for at least 16 percpu vmap blocks per CPU. 1958 */ 1959 /* 1960 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 1961 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 1962 * instead (we just need a rough idea) 1963 */ 1964 #if BITS_PER_LONG == 32 1965 #define VMALLOC_SPACE (128UL*1024*1024) 1966 #else 1967 #define VMALLOC_SPACE (128UL*1024*1024*1024) 1968 #endif 1969 1970 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 1971 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 1972 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 1973 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 1974 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 1975 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 1976 #define VMAP_BBMAP_BITS \ 1977 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 1978 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 1979 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 1980 1981 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 1982 1983 /* 1984 * Purge threshold to prevent overeager purging of fragmented blocks for 1985 * regular operations: Purge if vb->free is less than 1/4 of the capacity. 1986 */ 1987 #define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4) 1988 1989 #define VMAP_RAM 0x1 /* indicates vm_map_ram area*/ 1990 #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/ 1991 #define VMAP_FLAGS_MASK 0x3 1992 1993 struct vmap_block_queue { 1994 spinlock_t lock; 1995 struct list_head free; 1996 1997 /* 1998 * An xarray requires an extra memory dynamically to 1999 * be allocated. If it is an issue, we can use rb-tree 2000 * instead. 2001 */ 2002 struct xarray vmap_blocks; 2003 }; 2004 2005 struct vmap_block { 2006 spinlock_t lock; 2007 struct vmap_area *va; 2008 unsigned long free, dirty; 2009 DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS); 2010 unsigned long dirty_min, dirty_max; /*< dirty range */ 2011 struct list_head free_list; 2012 struct rcu_head rcu_head; 2013 struct list_head purge; 2014 }; 2015 2016 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 2017 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 2018 2019 /* 2020 * In order to fast access to any "vmap_block" associated with a 2021 * specific address, we use a hash. 2022 * 2023 * A per-cpu vmap_block_queue is used in both ways, to serialize 2024 * an access to free block chains among CPUs(alloc path) and it 2025 * also acts as a vmap_block hash(alloc/free paths). It means we 2026 * overload it, since we already have the per-cpu array which is 2027 * used as a hash table. When used as a hash a 'cpu' passed to 2028 * per_cpu() is not actually a CPU but rather a hash index. 2029 * 2030 * A hash function is addr_to_vb_xa() which hashes any address 2031 * to a specific index(in a hash) it belongs to. This then uses a 2032 * per_cpu() macro to access an array with generated index. 2033 * 2034 * An example: 2035 * 2036 * CPU_1 CPU_2 CPU_0 2037 * | | | 2038 * V V V 2039 * 0 10 20 30 40 50 60 2040 * |------|------|------|------|------|------|...<vmap address space> 2041 * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2 2042 * 2043 * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus 2044 * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock; 2045 * 2046 * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus 2047 * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock; 2048 * 2049 * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus 2050 * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock. 2051 * 2052 * This technique almost always avoids lock contention on insert/remove, 2053 * however xarray spinlocks protect against any contention that remains. 2054 */ 2055 static struct xarray * 2056 addr_to_vb_xa(unsigned long addr) 2057 { 2058 int index = (addr / VMAP_BLOCK_SIZE) % num_possible_cpus(); 2059 2060 return &per_cpu(vmap_block_queue, index).vmap_blocks; 2061 } 2062 2063 /* 2064 * We should probably have a fallback mechanism to allocate virtual memory 2065 * out of partially filled vmap blocks. However vmap block sizing should be 2066 * fairly reasonable according to the vmalloc size, so it shouldn't be a 2067 * big problem. 2068 */ 2069 2070 static unsigned long addr_to_vb_idx(unsigned long addr) 2071 { 2072 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 2073 addr /= VMAP_BLOCK_SIZE; 2074 return addr; 2075 } 2076 2077 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 2078 { 2079 unsigned long addr; 2080 2081 addr = va_start + (pages_off << PAGE_SHIFT); 2082 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 2083 return (void *)addr; 2084 } 2085 2086 /** 2087 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 2088 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 2089 * @order: how many 2^order pages should be occupied in newly allocated block 2090 * @gfp_mask: flags for the page level allocator 2091 * 2092 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 2093 */ 2094 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 2095 { 2096 struct vmap_block_queue *vbq; 2097 struct vmap_block *vb; 2098 struct vmap_area *va; 2099 struct xarray *xa; 2100 unsigned long vb_idx; 2101 int node, err; 2102 void *vaddr; 2103 2104 node = numa_node_id(); 2105 2106 vb = kmalloc_node(sizeof(struct vmap_block), 2107 gfp_mask & GFP_RECLAIM_MASK, node); 2108 if (unlikely(!vb)) 2109 return ERR_PTR(-ENOMEM); 2110 2111 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 2112 VMALLOC_START, VMALLOC_END, 2113 node, gfp_mask, 2114 VMAP_RAM|VMAP_BLOCK); 2115 if (IS_ERR(va)) { 2116 kfree(vb); 2117 return ERR_CAST(va); 2118 } 2119 2120 vaddr = vmap_block_vaddr(va->va_start, 0); 2121 spin_lock_init(&vb->lock); 2122 vb->va = va; 2123 /* At least something should be left free */ 2124 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 2125 bitmap_zero(vb->used_map, VMAP_BBMAP_BITS); 2126 vb->free = VMAP_BBMAP_BITS - (1UL << order); 2127 vb->dirty = 0; 2128 vb->dirty_min = VMAP_BBMAP_BITS; 2129 vb->dirty_max = 0; 2130 bitmap_set(vb->used_map, 0, (1UL << order)); 2131 INIT_LIST_HEAD(&vb->free_list); 2132 2133 xa = addr_to_vb_xa(va->va_start); 2134 vb_idx = addr_to_vb_idx(va->va_start); 2135 err = xa_insert(xa, vb_idx, vb, gfp_mask); 2136 if (err) { 2137 kfree(vb); 2138 free_vmap_area(va); 2139 return ERR_PTR(err); 2140 } 2141 2142 vbq = raw_cpu_ptr(&vmap_block_queue); 2143 spin_lock(&vbq->lock); 2144 list_add_tail_rcu(&vb->free_list, &vbq->free); 2145 spin_unlock(&vbq->lock); 2146 2147 return vaddr; 2148 } 2149 2150 static void free_vmap_block(struct vmap_block *vb) 2151 { 2152 struct vmap_block *tmp; 2153 struct xarray *xa; 2154 2155 xa = addr_to_vb_xa(vb->va->va_start); 2156 tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start)); 2157 BUG_ON(tmp != vb); 2158 2159 spin_lock(&vmap_area_lock); 2160 unlink_va(vb->va, &vmap_area_root); 2161 spin_unlock(&vmap_area_lock); 2162 2163 free_vmap_area_noflush(vb->va); 2164 kfree_rcu(vb, rcu_head); 2165 } 2166 2167 static bool purge_fragmented_block(struct vmap_block *vb, 2168 struct vmap_block_queue *vbq, struct list_head *purge_list, 2169 bool force_purge) 2170 { 2171 if (vb->free + vb->dirty != VMAP_BBMAP_BITS || 2172 vb->dirty == VMAP_BBMAP_BITS) 2173 return false; 2174 2175 /* Don't overeagerly purge usable blocks unless requested */ 2176 if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD)) 2177 return false; 2178 2179 /* prevent further allocs after releasing lock */ 2180 WRITE_ONCE(vb->free, 0); 2181 /* prevent purging it again */ 2182 WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS); 2183 vb->dirty_min = 0; 2184 vb->dirty_max = VMAP_BBMAP_BITS; 2185 spin_lock(&vbq->lock); 2186 list_del_rcu(&vb->free_list); 2187 spin_unlock(&vbq->lock); 2188 list_add_tail(&vb->purge, purge_list); 2189 return true; 2190 } 2191 2192 static void free_purged_blocks(struct list_head *purge_list) 2193 { 2194 struct vmap_block *vb, *n_vb; 2195 2196 list_for_each_entry_safe(vb, n_vb, purge_list, purge) { 2197 list_del(&vb->purge); 2198 free_vmap_block(vb); 2199 } 2200 } 2201 2202 static void purge_fragmented_blocks(int cpu) 2203 { 2204 LIST_HEAD(purge); 2205 struct vmap_block *vb; 2206 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2207 2208 rcu_read_lock(); 2209 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2210 unsigned long free = READ_ONCE(vb->free); 2211 unsigned long dirty = READ_ONCE(vb->dirty); 2212 2213 if (free + dirty != VMAP_BBMAP_BITS || 2214 dirty == VMAP_BBMAP_BITS) 2215 continue; 2216 2217 spin_lock(&vb->lock); 2218 purge_fragmented_block(vb, vbq, &purge, true); 2219 spin_unlock(&vb->lock); 2220 } 2221 rcu_read_unlock(); 2222 free_purged_blocks(&purge); 2223 } 2224 2225 static void purge_fragmented_blocks_allcpus(void) 2226 { 2227 int cpu; 2228 2229 for_each_possible_cpu(cpu) 2230 purge_fragmented_blocks(cpu); 2231 } 2232 2233 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 2234 { 2235 struct vmap_block_queue *vbq; 2236 struct vmap_block *vb; 2237 void *vaddr = NULL; 2238 unsigned int order; 2239 2240 BUG_ON(offset_in_page(size)); 2241 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2242 if (WARN_ON(size == 0)) { 2243 /* 2244 * Allocating 0 bytes isn't what caller wants since 2245 * get_order(0) returns funny result. Just warn and terminate 2246 * early. 2247 */ 2248 return NULL; 2249 } 2250 order = get_order(size); 2251 2252 rcu_read_lock(); 2253 vbq = raw_cpu_ptr(&vmap_block_queue); 2254 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2255 unsigned long pages_off; 2256 2257 if (READ_ONCE(vb->free) < (1UL << order)) 2258 continue; 2259 2260 spin_lock(&vb->lock); 2261 if (vb->free < (1UL << order)) { 2262 spin_unlock(&vb->lock); 2263 continue; 2264 } 2265 2266 pages_off = VMAP_BBMAP_BITS - vb->free; 2267 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 2268 WRITE_ONCE(vb->free, vb->free - (1UL << order)); 2269 bitmap_set(vb->used_map, pages_off, (1UL << order)); 2270 if (vb->free == 0) { 2271 spin_lock(&vbq->lock); 2272 list_del_rcu(&vb->free_list); 2273 spin_unlock(&vbq->lock); 2274 } 2275 2276 spin_unlock(&vb->lock); 2277 break; 2278 } 2279 2280 rcu_read_unlock(); 2281 2282 /* Allocate new block if nothing was found */ 2283 if (!vaddr) 2284 vaddr = new_vmap_block(order, gfp_mask); 2285 2286 return vaddr; 2287 } 2288 2289 static void vb_free(unsigned long addr, unsigned long size) 2290 { 2291 unsigned long offset; 2292 unsigned int order; 2293 struct vmap_block *vb; 2294 struct xarray *xa; 2295 2296 BUG_ON(offset_in_page(size)); 2297 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2298 2299 flush_cache_vunmap(addr, addr + size); 2300 2301 order = get_order(size); 2302 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; 2303 2304 xa = addr_to_vb_xa(addr); 2305 vb = xa_load(xa, addr_to_vb_idx(addr)); 2306 2307 spin_lock(&vb->lock); 2308 bitmap_clear(vb->used_map, offset, (1UL << order)); 2309 spin_unlock(&vb->lock); 2310 2311 vunmap_range_noflush(addr, addr + size); 2312 2313 if (debug_pagealloc_enabled_static()) 2314 flush_tlb_kernel_range(addr, addr + size); 2315 2316 spin_lock(&vb->lock); 2317 2318 /* Expand the not yet TLB flushed dirty range */ 2319 vb->dirty_min = min(vb->dirty_min, offset); 2320 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 2321 2322 WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order)); 2323 if (vb->dirty == VMAP_BBMAP_BITS) { 2324 BUG_ON(vb->free); 2325 spin_unlock(&vb->lock); 2326 free_vmap_block(vb); 2327 } else 2328 spin_unlock(&vb->lock); 2329 } 2330 2331 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 2332 { 2333 LIST_HEAD(purge_list); 2334 int cpu; 2335 2336 if (unlikely(!vmap_initialized)) 2337 return; 2338 2339 mutex_lock(&vmap_purge_lock); 2340 2341 for_each_possible_cpu(cpu) { 2342 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2343 struct vmap_block *vb; 2344 unsigned long idx; 2345 2346 rcu_read_lock(); 2347 xa_for_each(&vbq->vmap_blocks, idx, vb) { 2348 spin_lock(&vb->lock); 2349 2350 /* 2351 * Try to purge a fragmented block first. If it's 2352 * not purgeable, check whether there is dirty 2353 * space to be flushed. 2354 */ 2355 if (!purge_fragmented_block(vb, vbq, &purge_list, false) && 2356 vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) { 2357 unsigned long va_start = vb->va->va_start; 2358 unsigned long s, e; 2359 2360 s = va_start + (vb->dirty_min << PAGE_SHIFT); 2361 e = va_start + (vb->dirty_max << PAGE_SHIFT); 2362 2363 start = min(s, start); 2364 end = max(e, end); 2365 2366 /* Prevent that this is flushed again */ 2367 vb->dirty_min = VMAP_BBMAP_BITS; 2368 vb->dirty_max = 0; 2369 2370 flush = 1; 2371 } 2372 spin_unlock(&vb->lock); 2373 } 2374 rcu_read_unlock(); 2375 } 2376 free_purged_blocks(&purge_list); 2377 2378 if (!__purge_vmap_area_lazy(start, end) && flush) 2379 flush_tlb_kernel_range(start, end); 2380 mutex_unlock(&vmap_purge_lock); 2381 } 2382 2383 /** 2384 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 2385 * 2386 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 2387 * to amortize TLB flushing overheads. What this means is that any page you 2388 * have now, may, in a former life, have been mapped into kernel virtual 2389 * address by the vmap layer and so there might be some CPUs with TLB entries 2390 * still referencing that page (additional to the regular 1:1 kernel mapping). 2391 * 2392 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 2393 * be sure that none of the pages we have control over will have any aliases 2394 * from the vmap layer. 2395 */ 2396 void vm_unmap_aliases(void) 2397 { 2398 unsigned long start = ULONG_MAX, end = 0; 2399 int flush = 0; 2400 2401 _vm_unmap_aliases(start, end, flush); 2402 } 2403 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 2404 2405 /** 2406 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 2407 * @mem: the pointer returned by vm_map_ram 2408 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 2409 */ 2410 void vm_unmap_ram(const void *mem, unsigned int count) 2411 { 2412 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2413 unsigned long addr = (unsigned long)kasan_reset_tag(mem); 2414 struct vmap_area *va; 2415 2416 might_sleep(); 2417 BUG_ON(!addr); 2418 BUG_ON(addr < VMALLOC_START); 2419 BUG_ON(addr > VMALLOC_END); 2420 BUG_ON(!PAGE_ALIGNED(addr)); 2421 2422 kasan_poison_vmalloc(mem, size); 2423 2424 if (likely(count <= VMAP_MAX_ALLOC)) { 2425 debug_check_no_locks_freed(mem, size); 2426 vb_free(addr, size); 2427 return; 2428 } 2429 2430 va = find_unlink_vmap_area(addr); 2431 if (WARN_ON_ONCE(!va)) 2432 return; 2433 2434 debug_check_no_locks_freed((void *)va->va_start, 2435 (va->va_end - va->va_start)); 2436 free_unmap_vmap_area(va); 2437 } 2438 EXPORT_SYMBOL(vm_unmap_ram); 2439 2440 /** 2441 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 2442 * @pages: an array of pointers to the pages to be mapped 2443 * @count: number of pages 2444 * @node: prefer to allocate data structures on this node 2445 * 2446 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 2447 * faster than vmap so it's good. But if you mix long-life and short-life 2448 * objects with vm_map_ram(), it could consume lots of address space through 2449 * fragmentation (especially on a 32bit machine). You could see failures in 2450 * the end. Please use this function for short-lived objects. 2451 * 2452 * Returns: a pointer to the address that has been mapped, or %NULL on failure 2453 */ 2454 void *vm_map_ram(struct page **pages, unsigned int count, int node) 2455 { 2456 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2457 unsigned long addr; 2458 void *mem; 2459 2460 if (likely(count <= VMAP_MAX_ALLOC)) { 2461 mem = vb_alloc(size, GFP_KERNEL); 2462 if (IS_ERR(mem)) 2463 return NULL; 2464 addr = (unsigned long)mem; 2465 } else { 2466 struct vmap_area *va; 2467 va = alloc_vmap_area(size, PAGE_SIZE, 2468 VMALLOC_START, VMALLOC_END, 2469 node, GFP_KERNEL, VMAP_RAM); 2470 if (IS_ERR(va)) 2471 return NULL; 2472 2473 addr = va->va_start; 2474 mem = (void *)addr; 2475 } 2476 2477 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, 2478 pages, PAGE_SHIFT) < 0) { 2479 vm_unmap_ram(mem, count); 2480 return NULL; 2481 } 2482 2483 /* 2484 * Mark the pages as accessible, now that they are mapped. 2485 * With hardware tag-based KASAN, marking is skipped for 2486 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 2487 */ 2488 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); 2489 2490 return mem; 2491 } 2492 EXPORT_SYMBOL(vm_map_ram); 2493 2494 static struct vm_struct *vmlist __initdata; 2495 2496 static inline unsigned int vm_area_page_order(struct vm_struct *vm) 2497 { 2498 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2499 return vm->page_order; 2500 #else 2501 return 0; 2502 #endif 2503 } 2504 2505 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) 2506 { 2507 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2508 vm->page_order = order; 2509 #else 2510 BUG_ON(order != 0); 2511 #endif 2512 } 2513 2514 /** 2515 * vm_area_add_early - add vmap area early during boot 2516 * @vm: vm_struct to add 2517 * 2518 * This function is used to add fixed kernel vm area to vmlist before 2519 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 2520 * should contain proper values and the other fields should be zero. 2521 * 2522 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2523 */ 2524 void __init vm_area_add_early(struct vm_struct *vm) 2525 { 2526 struct vm_struct *tmp, **p; 2527 2528 BUG_ON(vmap_initialized); 2529 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 2530 if (tmp->addr >= vm->addr) { 2531 BUG_ON(tmp->addr < vm->addr + vm->size); 2532 break; 2533 } else 2534 BUG_ON(tmp->addr + tmp->size > vm->addr); 2535 } 2536 vm->next = *p; 2537 *p = vm; 2538 } 2539 2540 /** 2541 * vm_area_register_early - register vmap area early during boot 2542 * @vm: vm_struct to register 2543 * @align: requested alignment 2544 * 2545 * This function is used to register kernel vm area before 2546 * vmalloc_init() is called. @vm->size and @vm->flags should contain 2547 * proper values on entry and other fields should be zero. On return, 2548 * vm->addr contains the allocated address. 2549 * 2550 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2551 */ 2552 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 2553 { 2554 unsigned long addr = ALIGN(VMALLOC_START, align); 2555 struct vm_struct *cur, **p; 2556 2557 BUG_ON(vmap_initialized); 2558 2559 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { 2560 if ((unsigned long)cur->addr - addr >= vm->size) 2561 break; 2562 addr = ALIGN((unsigned long)cur->addr + cur->size, align); 2563 } 2564 2565 BUG_ON(addr > VMALLOC_END - vm->size); 2566 vm->addr = (void *)addr; 2567 vm->next = *p; 2568 *p = vm; 2569 kasan_populate_early_vm_area_shadow(vm->addr, vm->size); 2570 } 2571 2572 static void vmap_init_free_space(void) 2573 { 2574 unsigned long vmap_start = 1; 2575 const unsigned long vmap_end = ULONG_MAX; 2576 struct vmap_area *busy, *free; 2577 2578 /* 2579 * B F B B B F 2580 * -|-----|.....|-----|-----|-----|.....|- 2581 * | The KVA space | 2582 * |<--------------------------------->| 2583 */ 2584 list_for_each_entry(busy, &vmap_area_list, list) { 2585 if (busy->va_start - vmap_start > 0) { 2586 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2587 if (!WARN_ON_ONCE(!free)) { 2588 free->va_start = vmap_start; 2589 free->va_end = busy->va_start; 2590 2591 insert_vmap_area_augment(free, NULL, 2592 &free_vmap_area_root, 2593 &free_vmap_area_list); 2594 } 2595 } 2596 2597 vmap_start = busy->va_end; 2598 } 2599 2600 if (vmap_end - vmap_start > 0) { 2601 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2602 if (!WARN_ON_ONCE(!free)) { 2603 free->va_start = vmap_start; 2604 free->va_end = vmap_end; 2605 2606 insert_vmap_area_augment(free, NULL, 2607 &free_vmap_area_root, 2608 &free_vmap_area_list); 2609 } 2610 } 2611 } 2612 2613 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, 2614 struct vmap_area *va, unsigned long flags, const void *caller) 2615 { 2616 vm->flags = flags; 2617 vm->addr = (void *)va->va_start; 2618 vm->size = va->va_end - va->va_start; 2619 vm->caller = caller; 2620 va->vm = vm; 2621 } 2622 2623 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 2624 unsigned long flags, const void *caller) 2625 { 2626 spin_lock(&vmap_area_lock); 2627 setup_vmalloc_vm_locked(vm, va, flags, caller); 2628 spin_unlock(&vmap_area_lock); 2629 } 2630 2631 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 2632 { 2633 /* 2634 * Before removing VM_UNINITIALIZED, 2635 * we should make sure that vm has proper values. 2636 * Pair with smp_rmb() in show_numa_info(). 2637 */ 2638 smp_wmb(); 2639 vm->flags &= ~VM_UNINITIALIZED; 2640 } 2641 2642 static struct vm_struct *__get_vm_area_node(unsigned long size, 2643 unsigned long align, unsigned long shift, unsigned long flags, 2644 unsigned long start, unsigned long end, int node, 2645 gfp_t gfp_mask, const void *caller) 2646 { 2647 struct vmap_area *va; 2648 struct vm_struct *area; 2649 unsigned long requested_size = size; 2650 2651 BUG_ON(in_interrupt()); 2652 size = ALIGN(size, 1ul << shift); 2653 if (unlikely(!size)) 2654 return NULL; 2655 2656 if (flags & VM_IOREMAP) 2657 align = 1ul << clamp_t(int, get_count_order_long(size), 2658 PAGE_SHIFT, IOREMAP_MAX_ORDER); 2659 2660 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 2661 if (unlikely(!area)) 2662 return NULL; 2663 2664 if (!(flags & VM_NO_GUARD)) 2665 size += PAGE_SIZE; 2666 2667 va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0); 2668 if (IS_ERR(va)) { 2669 kfree(area); 2670 return NULL; 2671 } 2672 2673 setup_vmalloc_vm(area, va, flags, caller); 2674 2675 /* 2676 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a 2677 * best-effort approach, as they can be mapped outside of vmalloc code. 2678 * For VM_ALLOC mappings, the pages are marked as accessible after 2679 * getting mapped in __vmalloc_node_range(). 2680 * With hardware tag-based KASAN, marking is skipped for 2681 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 2682 */ 2683 if (!(flags & VM_ALLOC)) 2684 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, 2685 KASAN_VMALLOC_PROT_NORMAL); 2686 2687 return area; 2688 } 2689 2690 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 2691 unsigned long start, unsigned long end, 2692 const void *caller) 2693 { 2694 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, 2695 NUMA_NO_NODE, GFP_KERNEL, caller); 2696 } 2697 2698 /** 2699 * get_vm_area - reserve a contiguous kernel virtual area 2700 * @size: size of the area 2701 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 2702 * 2703 * Search an area of @size in the kernel virtual mapping area, 2704 * and reserved it for out purposes. Returns the area descriptor 2705 * on success or %NULL on failure. 2706 * 2707 * Return: the area descriptor on success or %NULL on failure. 2708 */ 2709 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 2710 { 2711 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2712 VMALLOC_START, VMALLOC_END, 2713 NUMA_NO_NODE, GFP_KERNEL, 2714 __builtin_return_address(0)); 2715 } 2716 2717 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 2718 const void *caller) 2719 { 2720 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2721 VMALLOC_START, VMALLOC_END, 2722 NUMA_NO_NODE, GFP_KERNEL, caller); 2723 } 2724 2725 /** 2726 * find_vm_area - find a continuous kernel virtual area 2727 * @addr: base address 2728 * 2729 * Search for the kernel VM area starting at @addr, and return it. 2730 * It is up to the caller to do all required locking to keep the returned 2731 * pointer valid. 2732 * 2733 * Return: the area descriptor on success or %NULL on failure. 2734 */ 2735 struct vm_struct *find_vm_area(const void *addr) 2736 { 2737 struct vmap_area *va; 2738 2739 va = find_vmap_area((unsigned long)addr); 2740 if (!va) 2741 return NULL; 2742 2743 return va->vm; 2744 } 2745 2746 /** 2747 * remove_vm_area - find and remove a continuous kernel virtual area 2748 * @addr: base address 2749 * 2750 * Search for the kernel VM area starting at @addr, and remove it. 2751 * This function returns the found VM area, but using it is NOT safe 2752 * on SMP machines, except for its size or flags. 2753 * 2754 * Return: the area descriptor on success or %NULL on failure. 2755 */ 2756 struct vm_struct *remove_vm_area(const void *addr) 2757 { 2758 struct vmap_area *va; 2759 struct vm_struct *vm; 2760 2761 might_sleep(); 2762 2763 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 2764 addr)) 2765 return NULL; 2766 2767 va = find_unlink_vmap_area((unsigned long)addr); 2768 if (!va || !va->vm) 2769 return NULL; 2770 vm = va->vm; 2771 2772 debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm)); 2773 debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm)); 2774 kasan_free_module_shadow(vm); 2775 kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm)); 2776 2777 free_unmap_vmap_area(va); 2778 return vm; 2779 } 2780 2781 static inline void set_area_direct_map(const struct vm_struct *area, 2782 int (*set_direct_map)(struct page *page)) 2783 { 2784 int i; 2785 2786 /* HUGE_VMALLOC passes small pages to set_direct_map */ 2787 for (i = 0; i < area->nr_pages; i++) 2788 if (page_address(area->pages[i])) 2789 set_direct_map(area->pages[i]); 2790 } 2791 2792 /* 2793 * Flush the vm mapping and reset the direct map. 2794 */ 2795 static void vm_reset_perms(struct vm_struct *area) 2796 { 2797 unsigned long start = ULONG_MAX, end = 0; 2798 unsigned int page_order = vm_area_page_order(area); 2799 int flush_dmap = 0; 2800 int i; 2801 2802 /* 2803 * Find the start and end range of the direct mappings to make sure that 2804 * the vm_unmap_aliases() flush includes the direct map. 2805 */ 2806 for (i = 0; i < area->nr_pages; i += 1U << page_order) { 2807 unsigned long addr = (unsigned long)page_address(area->pages[i]); 2808 2809 if (addr) { 2810 unsigned long page_size; 2811 2812 page_size = PAGE_SIZE << page_order; 2813 start = min(addr, start); 2814 end = max(addr + page_size, end); 2815 flush_dmap = 1; 2816 } 2817 } 2818 2819 /* 2820 * Set direct map to something invalid so that it won't be cached if 2821 * there are any accesses after the TLB flush, then flush the TLB and 2822 * reset the direct map permissions to the default. 2823 */ 2824 set_area_direct_map(area, set_direct_map_invalid_noflush); 2825 _vm_unmap_aliases(start, end, flush_dmap); 2826 set_area_direct_map(area, set_direct_map_default_noflush); 2827 } 2828 2829 static void delayed_vfree_work(struct work_struct *w) 2830 { 2831 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 2832 struct llist_node *t, *llnode; 2833 2834 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 2835 vfree(llnode); 2836 } 2837 2838 /** 2839 * vfree_atomic - release memory allocated by vmalloc() 2840 * @addr: memory base address 2841 * 2842 * This one is just like vfree() but can be called in any atomic context 2843 * except NMIs. 2844 */ 2845 void vfree_atomic(const void *addr) 2846 { 2847 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 2848 2849 BUG_ON(in_nmi()); 2850 kmemleak_free(addr); 2851 2852 /* 2853 * Use raw_cpu_ptr() because this can be called from preemptible 2854 * context. Preemption is absolutely fine here, because the llist_add() 2855 * implementation is lockless, so it works even if we are adding to 2856 * another cpu's list. schedule_work() should be fine with this too. 2857 */ 2858 if (addr && llist_add((struct llist_node *)addr, &p->list)) 2859 schedule_work(&p->wq); 2860 } 2861 2862 /** 2863 * vfree - Release memory allocated by vmalloc() 2864 * @addr: Memory base address 2865 * 2866 * Free the virtually continuous memory area starting at @addr, as obtained 2867 * from one of the vmalloc() family of APIs. This will usually also free the 2868 * physical memory underlying the virtual allocation, but that memory is 2869 * reference counted, so it will not be freed until the last user goes away. 2870 * 2871 * If @addr is NULL, no operation is performed. 2872 * 2873 * Context: 2874 * May sleep if called *not* from interrupt context. 2875 * Must not be called in NMI context (strictly speaking, it could be 2876 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 2877 * conventions for vfree() arch-dependent would be a really bad idea). 2878 */ 2879 void vfree(const void *addr) 2880 { 2881 struct vm_struct *vm; 2882 int i; 2883 2884 if (unlikely(in_interrupt())) { 2885 vfree_atomic(addr); 2886 return; 2887 } 2888 2889 BUG_ON(in_nmi()); 2890 kmemleak_free(addr); 2891 might_sleep(); 2892 2893 if (!addr) 2894 return; 2895 2896 vm = remove_vm_area(addr); 2897 if (unlikely(!vm)) { 2898 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 2899 addr); 2900 return; 2901 } 2902 2903 if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS)) 2904 vm_reset_perms(vm); 2905 for (i = 0; i < vm->nr_pages; i++) { 2906 struct page *page = vm->pages[i]; 2907 2908 BUG_ON(!page); 2909 mod_memcg_page_state(page, MEMCG_VMALLOC, -1); 2910 /* 2911 * High-order allocs for huge vmallocs are split, so 2912 * can be freed as an array of order-0 allocations 2913 */ 2914 __free_page(page); 2915 cond_resched(); 2916 } 2917 atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages); 2918 kvfree(vm->pages); 2919 kfree(vm); 2920 } 2921 EXPORT_SYMBOL(vfree); 2922 2923 /** 2924 * vunmap - release virtual mapping obtained by vmap() 2925 * @addr: memory base address 2926 * 2927 * Free the virtually contiguous memory area starting at @addr, 2928 * which was created from the page array passed to vmap(). 2929 * 2930 * Must not be called in interrupt context. 2931 */ 2932 void vunmap(const void *addr) 2933 { 2934 struct vm_struct *vm; 2935 2936 BUG_ON(in_interrupt()); 2937 might_sleep(); 2938 2939 if (!addr) 2940 return; 2941 vm = remove_vm_area(addr); 2942 if (unlikely(!vm)) { 2943 WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n", 2944 addr); 2945 return; 2946 } 2947 kfree(vm); 2948 } 2949 EXPORT_SYMBOL(vunmap); 2950 2951 /** 2952 * vmap - map an array of pages into virtually contiguous space 2953 * @pages: array of page pointers 2954 * @count: number of pages to map 2955 * @flags: vm_area->flags 2956 * @prot: page protection for the mapping 2957 * 2958 * Maps @count pages from @pages into contiguous kernel virtual space. 2959 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself 2960 * (which must be kmalloc or vmalloc memory) and one reference per pages in it 2961 * are transferred from the caller to vmap(), and will be freed / dropped when 2962 * vfree() is called on the return value. 2963 * 2964 * Return: the address of the area or %NULL on failure 2965 */ 2966 void *vmap(struct page **pages, unsigned int count, 2967 unsigned long flags, pgprot_t prot) 2968 { 2969 struct vm_struct *area; 2970 unsigned long addr; 2971 unsigned long size; /* In bytes */ 2972 2973 might_sleep(); 2974 2975 if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS)) 2976 return NULL; 2977 2978 /* 2979 * Your top guard is someone else's bottom guard. Not having a top 2980 * guard compromises someone else's mappings too. 2981 */ 2982 if (WARN_ON_ONCE(flags & VM_NO_GUARD)) 2983 flags &= ~VM_NO_GUARD; 2984 2985 if (count > totalram_pages()) 2986 return NULL; 2987 2988 size = (unsigned long)count << PAGE_SHIFT; 2989 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 2990 if (!area) 2991 return NULL; 2992 2993 addr = (unsigned long)area->addr; 2994 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), 2995 pages, PAGE_SHIFT) < 0) { 2996 vunmap(area->addr); 2997 return NULL; 2998 } 2999 3000 if (flags & VM_MAP_PUT_PAGES) { 3001 area->pages = pages; 3002 area->nr_pages = count; 3003 } 3004 return area->addr; 3005 } 3006 EXPORT_SYMBOL(vmap); 3007 3008 #ifdef CONFIG_VMAP_PFN 3009 struct vmap_pfn_data { 3010 unsigned long *pfns; 3011 pgprot_t prot; 3012 unsigned int idx; 3013 }; 3014 3015 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) 3016 { 3017 struct vmap_pfn_data *data = private; 3018 unsigned long pfn = data->pfns[data->idx]; 3019 pte_t ptent; 3020 3021 if (WARN_ON_ONCE(pfn_valid(pfn))) 3022 return -EINVAL; 3023 3024 ptent = pte_mkspecial(pfn_pte(pfn, data->prot)); 3025 set_pte_at(&init_mm, addr, pte, ptent); 3026 3027 data->idx++; 3028 return 0; 3029 } 3030 3031 /** 3032 * vmap_pfn - map an array of PFNs into virtually contiguous space 3033 * @pfns: array of PFNs 3034 * @count: number of pages to map 3035 * @prot: page protection for the mapping 3036 * 3037 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns 3038 * the start address of the mapping. 3039 */ 3040 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) 3041 { 3042 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; 3043 struct vm_struct *area; 3044 3045 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, 3046 __builtin_return_address(0)); 3047 if (!area) 3048 return NULL; 3049 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 3050 count * PAGE_SIZE, vmap_pfn_apply, &data)) { 3051 free_vm_area(area); 3052 return NULL; 3053 } 3054 3055 flush_cache_vmap((unsigned long)area->addr, 3056 (unsigned long)area->addr + count * PAGE_SIZE); 3057 3058 return area->addr; 3059 } 3060 EXPORT_SYMBOL_GPL(vmap_pfn); 3061 #endif /* CONFIG_VMAP_PFN */ 3062 3063 static inline unsigned int 3064 vm_area_alloc_pages(gfp_t gfp, int nid, 3065 unsigned int order, unsigned int nr_pages, struct page **pages) 3066 { 3067 unsigned int nr_allocated = 0; 3068 gfp_t alloc_gfp = gfp; 3069 bool nofail = false; 3070 struct page *page; 3071 int i; 3072 3073 /* 3074 * For order-0 pages we make use of bulk allocator, if 3075 * the page array is partly or not at all populated due 3076 * to fails, fallback to a single page allocator that is 3077 * more permissive. 3078 */ 3079 if (!order) { 3080 /* bulk allocator doesn't support nofail req. officially */ 3081 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL; 3082 3083 while (nr_allocated < nr_pages) { 3084 unsigned int nr, nr_pages_request; 3085 3086 /* 3087 * A maximum allowed request is hard-coded and is 100 3088 * pages per call. That is done in order to prevent a 3089 * long preemption off scenario in the bulk-allocator 3090 * so the range is [1:100]. 3091 */ 3092 nr_pages_request = min(100U, nr_pages - nr_allocated); 3093 3094 /* memory allocation should consider mempolicy, we can't 3095 * wrongly use nearest node when nid == NUMA_NO_NODE, 3096 * otherwise memory may be allocated in only one node, 3097 * but mempolicy wants to alloc memory by interleaving. 3098 */ 3099 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) 3100 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp, 3101 nr_pages_request, 3102 pages + nr_allocated); 3103 3104 else 3105 nr = alloc_pages_bulk_array_node(bulk_gfp, nid, 3106 nr_pages_request, 3107 pages + nr_allocated); 3108 3109 nr_allocated += nr; 3110 cond_resched(); 3111 3112 /* 3113 * If zero or pages were obtained partly, 3114 * fallback to a single page allocator. 3115 */ 3116 if (nr != nr_pages_request) 3117 break; 3118 } 3119 } else if (gfp & __GFP_NOFAIL) { 3120 /* 3121 * Higher order nofail allocations are really expensive and 3122 * potentially dangerous (pre-mature OOM, disruptive reclaim 3123 * and compaction etc. 3124 */ 3125 alloc_gfp &= ~__GFP_NOFAIL; 3126 nofail = true; 3127 } 3128 3129 /* High-order pages or fallback path if "bulk" fails. */ 3130 while (nr_allocated < nr_pages) { 3131 if (fatal_signal_pending(current)) 3132 break; 3133 3134 if (nid == NUMA_NO_NODE) 3135 page = alloc_pages(alloc_gfp, order); 3136 else 3137 page = alloc_pages_node(nid, alloc_gfp, order); 3138 if (unlikely(!page)) { 3139 if (!nofail) 3140 break; 3141 3142 /* fall back to the zero order allocations */ 3143 alloc_gfp |= __GFP_NOFAIL; 3144 order = 0; 3145 continue; 3146 } 3147 3148 /* 3149 * Higher order allocations must be able to be treated as 3150 * indepdenent small pages by callers (as they can with 3151 * small-page vmallocs). Some drivers do their own refcounting 3152 * on vmalloc_to_page() pages, some use page->mapping, 3153 * page->lru, etc. 3154 */ 3155 if (order) 3156 split_page(page, order); 3157 3158 /* 3159 * Careful, we allocate and map page-order pages, but 3160 * tracking is done per PAGE_SIZE page so as to keep the 3161 * vm_struct APIs independent of the physical/mapped size. 3162 */ 3163 for (i = 0; i < (1U << order); i++) 3164 pages[nr_allocated + i] = page + i; 3165 3166 cond_resched(); 3167 nr_allocated += 1U << order; 3168 } 3169 3170 return nr_allocated; 3171 } 3172 3173 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 3174 pgprot_t prot, unsigned int page_shift, 3175 int node) 3176 { 3177 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 3178 bool nofail = gfp_mask & __GFP_NOFAIL; 3179 unsigned long addr = (unsigned long)area->addr; 3180 unsigned long size = get_vm_area_size(area); 3181 unsigned long array_size; 3182 unsigned int nr_small_pages = size >> PAGE_SHIFT; 3183 unsigned int page_order; 3184 unsigned int flags; 3185 int ret; 3186 3187 array_size = (unsigned long)nr_small_pages * sizeof(struct page *); 3188 3189 if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) 3190 gfp_mask |= __GFP_HIGHMEM; 3191 3192 /* Please note that the recursion is strictly bounded. */ 3193 if (array_size > PAGE_SIZE) { 3194 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node, 3195 area->caller); 3196 } else { 3197 area->pages = kmalloc_node(array_size, nested_gfp, node); 3198 } 3199 3200 if (!area->pages) { 3201 warn_alloc(gfp_mask, NULL, 3202 "vmalloc error: size %lu, failed to allocated page array size %lu", 3203 nr_small_pages * PAGE_SIZE, array_size); 3204 free_vm_area(area); 3205 return NULL; 3206 } 3207 3208 set_vm_area_page_order(area, page_shift - PAGE_SHIFT); 3209 page_order = vm_area_page_order(area); 3210 3211 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN, 3212 node, page_order, nr_small_pages, area->pages); 3213 3214 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 3215 if (gfp_mask & __GFP_ACCOUNT) { 3216 int i; 3217 3218 for (i = 0; i < area->nr_pages; i++) 3219 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1); 3220 } 3221 3222 /* 3223 * If not enough pages were obtained to accomplish an 3224 * allocation request, free them via vfree() if any. 3225 */ 3226 if (area->nr_pages != nr_small_pages) { 3227 /* 3228 * vm_area_alloc_pages() can fail due to insufficient memory but 3229 * also:- 3230 * 3231 * - a pending fatal signal 3232 * - insufficient huge page-order pages 3233 * 3234 * Since we always retry allocations at order-0 in the huge page 3235 * case a warning for either is spurious. 3236 */ 3237 if (!fatal_signal_pending(current) && page_order == 0) 3238 warn_alloc(gfp_mask, NULL, 3239 "vmalloc error: size %lu, failed to allocate pages", 3240 area->nr_pages * PAGE_SIZE); 3241 goto fail; 3242 } 3243 3244 /* 3245 * page tables allocations ignore external gfp mask, enforce it 3246 * by the scope API 3247 */ 3248 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3249 flags = memalloc_nofs_save(); 3250 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3251 flags = memalloc_noio_save(); 3252 3253 do { 3254 ret = vmap_pages_range(addr, addr + size, prot, area->pages, 3255 page_shift); 3256 if (nofail && (ret < 0)) 3257 schedule_timeout_uninterruptible(1); 3258 } while (nofail && (ret < 0)); 3259 3260 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3261 memalloc_nofs_restore(flags); 3262 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3263 memalloc_noio_restore(flags); 3264 3265 if (ret < 0) { 3266 warn_alloc(gfp_mask, NULL, 3267 "vmalloc error: size %lu, failed to map pages", 3268 area->nr_pages * PAGE_SIZE); 3269 goto fail; 3270 } 3271 3272 return area->addr; 3273 3274 fail: 3275 vfree(area->addr); 3276 return NULL; 3277 } 3278 3279 /** 3280 * __vmalloc_node_range - allocate virtually contiguous memory 3281 * @size: allocation size 3282 * @align: desired alignment 3283 * @start: vm area range start 3284 * @end: vm area range end 3285 * @gfp_mask: flags for the page level allocator 3286 * @prot: protection mask for the allocated pages 3287 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 3288 * @node: node to use for allocation or NUMA_NO_NODE 3289 * @caller: caller's return address 3290 * 3291 * Allocate enough pages to cover @size from the page level 3292 * allocator with @gfp_mask flags. Please note that the full set of gfp 3293 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all 3294 * supported. 3295 * Zone modifiers are not supported. From the reclaim modifiers 3296 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) 3297 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and 3298 * __GFP_RETRY_MAYFAIL are not supported). 3299 * 3300 * __GFP_NOWARN can be used to suppress failures messages. 3301 * 3302 * Map them into contiguous kernel virtual space, using a pagetable 3303 * protection of @prot. 3304 * 3305 * Return: the address of the area or %NULL on failure 3306 */ 3307 void *__vmalloc_node_range(unsigned long size, unsigned long align, 3308 unsigned long start, unsigned long end, gfp_t gfp_mask, 3309 pgprot_t prot, unsigned long vm_flags, int node, 3310 const void *caller) 3311 { 3312 struct vm_struct *area; 3313 void *ret; 3314 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; 3315 unsigned long real_size = size; 3316 unsigned long real_align = align; 3317 unsigned int shift = PAGE_SHIFT; 3318 3319 if (WARN_ON_ONCE(!size)) 3320 return NULL; 3321 3322 if ((size >> PAGE_SHIFT) > totalram_pages()) { 3323 warn_alloc(gfp_mask, NULL, 3324 "vmalloc error: size %lu, exceeds total pages", 3325 real_size); 3326 return NULL; 3327 } 3328 3329 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { 3330 unsigned long size_per_node; 3331 3332 /* 3333 * Try huge pages. Only try for PAGE_KERNEL allocations, 3334 * others like modules don't yet expect huge pages in 3335 * their allocations due to apply_to_page_range not 3336 * supporting them. 3337 */ 3338 3339 size_per_node = size; 3340 if (node == NUMA_NO_NODE) 3341 size_per_node /= num_online_nodes(); 3342 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE) 3343 shift = PMD_SHIFT; 3344 else 3345 shift = arch_vmap_pte_supported_shift(size_per_node); 3346 3347 align = max(real_align, 1UL << shift); 3348 size = ALIGN(real_size, 1UL << shift); 3349 } 3350 3351 again: 3352 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC | 3353 VM_UNINITIALIZED | vm_flags, start, end, node, 3354 gfp_mask, caller); 3355 if (!area) { 3356 bool nofail = gfp_mask & __GFP_NOFAIL; 3357 warn_alloc(gfp_mask, NULL, 3358 "vmalloc error: size %lu, vm_struct allocation failed%s", 3359 real_size, (nofail) ? ". Retrying." : ""); 3360 if (nofail) { 3361 schedule_timeout_uninterruptible(1); 3362 goto again; 3363 } 3364 goto fail; 3365 } 3366 3367 /* 3368 * Prepare arguments for __vmalloc_area_node() and 3369 * kasan_unpoison_vmalloc(). 3370 */ 3371 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { 3372 if (kasan_hw_tags_enabled()) { 3373 /* 3374 * Modify protection bits to allow tagging. 3375 * This must be done before mapping. 3376 */ 3377 prot = arch_vmap_pgprot_tagged(prot); 3378 3379 /* 3380 * Skip page_alloc poisoning and zeroing for physical 3381 * pages backing VM_ALLOC mapping. Memory is instead 3382 * poisoned and zeroed by kasan_unpoison_vmalloc(). 3383 */ 3384 gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO; 3385 } 3386 3387 /* Take note that the mapping is PAGE_KERNEL. */ 3388 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; 3389 } 3390 3391 /* Allocate physical pages and map them into vmalloc space. */ 3392 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); 3393 if (!ret) 3394 goto fail; 3395 3396 /* 3397 * Mark the pages as accessible, now that they are mapped. 3398 * The condition for setting KASAN_VMALLOC_INIT should complement the 3399 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check 3400 * to make sure that memory is initialized under the same conditions. 3401 * Tag-based KASAN modes only assign tags to normal non-executable 3402 * allocations, see __kasan_unpoison_vmalloc(). 3403 */ 3404 kasan_flags |= KASAN_VMALLOC_VM_ALLOC; 3405 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) && 3406 (gfp_mask & __GFP_SKIP_ZERO)) 3407 kasan_flags |= KASAN_VMALLOC_INIT; 3408 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ 3409 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags); 3410 3411 /* 3412 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 3413 * flag. It means that vm_struct is not fully initialized. 3414 * Now, it is fully initialized, so remove this flag here. 3415 */ 3416 clear_vm_uninitialized_flag(area); 3417 3418 size = PAGE_ALIGN(size); 3419 if (!(vm_flags & VM_DEFER_KMEMLEAK)) 3420 kmemleak_vmalloc(area, size, gfp_mask); 3421 3422 return area->addr; 3423 3424 fail: 3425 if (shift > PAGE_SHIFT) { 3426 shift = PAGE_SHIFT; 3427 align = real_align; 3428 size = real_size; 3429 goto again; 3430 } 3431 3432 return NULL; 3433 } 3434 3435 /** 3436 * __vmalloc_node - allocate virtually contiguous memory 3437 * @size: allocation size 3438 * @align: desired alignment 3439 * @gfp_mask: flags for the page level allocator 3440 * @node: node to use for allocation or NUMA_NO_NODE 3441 * @caller: caller's return address 3442 * 3443 * Allocate enough pages to cover @size from the page level allocator with 3444 * @gfp_mask flags. Map them into contiguous kernel virtual space. 3445 * 3446 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 3447 * and __GFP_NOFAIL are not supported 3448 * 3449 * Any use of gfp flags outside of GFP_KERNEL should be consulted 3450 * with mm people. 3451 * 3452 * Return: pointer to the allocated memory or %NULL on error 3453 */ 3454 void *__vmalloc_node(unsigned long size, unsigned long align, 3455 gfp_t gfp_mask, int node, const void *caller) 3456 { 3457 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 3458 gfp_mask, PAGE_KERNEL, 0, node, caller); 3459 } 3460 /* 3461 * This is only for performance analysis of vmalloc and stress purpose. 3462 * It is required by vmalloc test module, therefore do not use it other 3463 * than that. 3464 */ 3465 #ifdef CONFIG_TEST_VMALLOC_MODULE 3466 EXPORT_SYMBOL_GPL(__vmalloc_node); 3467 #endif 3468 3469 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 3470 { 3471 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE, 3472 __builtin_return_address(0)); 3473 } 3474 EXPORT_SYMBOL(__vmalloc); 3475 3476 /** 3477 * vmalloc - allocate virtually contiguous memory 3478 * @size: allocation size 3479 * 3480 * Allocate enough pages to cover @size from the page level 3481 * allocator and map them into contiguous kernel virtual space. 3482 * 3483 * For tight control over page level allocator and protection flags 3484 * use __vmalloc() instead. 3485 * 3486 * Return: pointer to the allocated memory or %NULL on error 3487 */ 3488 void *vmalloc(unsigned long size) 3489 { 3490 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE, 3491 __builtin_return_address(0)); 3492 } 3493 EXPORT_SYMBOL(vmalloc); 3494 3495 /** 3496 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages 3497 * @size: allocation size 3498 * @gfp_mask: flags for the page level allocator 3499 * 3500 * Allocate enough pages to cover @size from the page level 3501 * allocator and map them into contiguous kernel virtual space. 3502 * If @size is greater than or equal to PMD_SIZE, allow using 3503 * huge pages for the memory 3504 * 3505 * Return: pointer to the allocated memory or %NULL on error 3506 */ 3507 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) 3508 { 3509 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 3510 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 3511 NUMA_NO_NODE, __builtin_return_address(0)); 3512 } 3513 EXPORT_SYMBOL_GPL(vmalloc_huge); 3514 3515 /** 3516 * vzalloc - allocate virtually contiguous memory with zero fill 3517 * @size: allocation size 3518 * 3519 * Allocate enough pages to cover @size from the page level 3520 * allocator and map them into contiguous kernel virtual space. 3521 * The memory allocated is set to zero. 3522 * 3523 * For tight control over page level allocator and protection flags 3524 * use __vmalloc() instead. 3525 * 3526 * Return: pointer to the allocated memory or %NULL on error 3527 */ 3528 void *vzalloc(unsigned long size) 3529 { 3530 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 3531 __builtin_return_address(0)); 3532 } 3533 EXPORT_SYMBOL(vzalloc); 3534 3535 /** 3536 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 3537 * @size: allocation size 3538 * 3539 * The resulting memory area is zeroed so it can be mapped to userspace 3540 * without leaking data. 3541 * 3542 * Return: pointer to the allocated memory or %NULL on error 3543 */ 3544 void *vmalloc_user(unsigned long size) 3545 { 3546 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3547 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 3548 VM_USERMAP, NUMA_NO_NODE, 3549 __builtin_return_address(0)); 3550 } 3551 EXPORT_SYMBOL(vmalloc_user); 3552 3553 /** 3554 * vmalloc_node - allocate memory on a specific node 3555 * @size: allocation size 3556 * @node: numa node 3557 * 3558 * Allocate enough pages to cover @size from the page level 3559 * allocator and map them into contiguous kernel virtual space. 3560 * 3561 * For tight control over page level allocator and protection flags 3562 * use __vmalloc() instead. 3563 * 3564 * Return: pointer to the allocated memory or %NULL on error 3565 */ 3566 void *vmalloc_node(unsigned long size, int node) 3567 { 3568 return __vmalloc_node(size, 1, GFP_KERNEL, node, 3569 __builtin_return_address(0)); 3570 } 3571 EXPORT_SYMBOL(vmalloc_node); 3572 3573 /** 3574 * vzalloc_node - allocate memory on a specific node with zero fill 3575 * @size: allocation size 3576 * @node: numa node 3577 * 3578 * Allocate enough pages to cover @size from the page level 3579 * allocator and map them into contiguous kernel virtual space. 3580 * The memory allocated is set to zero. 3581 * 3582 * Return: pointer to the allocated memory or %NULL on error 3583 */ 3584 void *vzalloc_node(unsigned long size, int node) 3585 { 3586 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node, 3587 __builtin_return_address(0)); 3588 } 3589 EXPORT_SYMBOL(vzalloc_node); 3590 3591 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 3592 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3593 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 3594 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 3595 #else 3596 /* 3597 * 64b systems should always have either DMA or DMA32 zones. For others 3598 * GFP_DMA32 should do the right thing and use the normal zone. 3599 */ 3600 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3601 #endif 3602 3603 /** 3604 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 3605 * @size: allocation size 3606 * 3607 * Allocate enough 32bit PA addressable pages to cover @size from the 3608 * page level allocator and map them into contiguous kernel virtual space. 3609 * 3610 * Return: pointer to the allocated memory or %NULL on error 3611 */ 3612 void *vmalloc_32(unsigned long size) 3613 { 3614 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, 3615 __builtin_return_address(0)); 3616 } 3617 EXPORT_SYMBOL(vmalloc_32); 3618 3619 /** 3620 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 3621 * @size: allocation size 3622 * 3623 * The resulting memory area is 32bit addressable and zeroed so it can be 3624 * mapped to userspace without leaking data. 3625 * 3626 * Return: pointer to the allocated memory or %NULL on error 3627 */ 3628 void *vmalloc_32_user(unsigned long size) 3629 { 3630 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3631 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 3632 VM_USERMAP, NUMA_NO_NODE, 3633 __builtin_return_address(0)); 3634 } 3635 EXPORT_SYMBOL(vmalloc_32_user); 3636 3637 /* 3638 * Atomically zero bytes in the iterator. 3639 * 3640 * Returns the number of zeroed bytes. 3641 */ 3642 static size_t zero_iter(struct iov_iter *iter, size_t count) 3643 { 3644 size_t remains = count; 3645 3646 while (remains > 0) { 3647 size_t num, copied; 3648 3649 num = min_t(size_t, remains, PAGE_SIZE); 3650 copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter); 3651 remains -= copied; 3652 3653 if (copied < num) 3654 break; 3655 } 3656 3657 return count - remains; 3658 } 3659 3660 /* 3661 * small helper routine, copy contents to iter from addr. 3662 * If the page is not present, fill zero. 3663 * 3664 * Returns the number of copied bytes. 3665 */ 3666 static size_t aligned_vread_iter(struct iov_iter *iter, 3667 const char *addr, size_t count) 3668 { 3669 size_t remains = count; 3670 struct page *page; 3671 3672 while (remains > 0) { 3673 unsigned long offset, length; 3674 size_t copied = 0; 3675 3676 offset = offset_in_page(addr); 3677 length = PAGE_SIZE - offset; 3678 if (length > remains) 3679 length = remains; 3680 page = vmalloc_to_page(addr); 3681 /* 3682 * To do safe access to this _mapped_ area, we need lock. But 3683 * adding lock here means that we need to add overhead of 3684 * vmalloc()/vfree() calls for this _debug_ interface, rarely 3685 * used. Instead of that, we'll use an local mapping via 3686 * copy_page_to_iter_nofault() and accept a small overhead in 3687 * this access function. 3688 */ 3689 if (page) 3690 copied = copy_page_to_iter_nofault(page, offset, 3691 length, iter); 3692 else 3693 copied = zero_iter(iter, length); 3694 3695 addr += copied; 3696 remains -= copied; 3697 3698 if (copied != length) 3699 break; 3700 } 3701 3702 return count - remains; 3703 } 3704 3705 /* 3706 * Read from a vm_map_ram region of memory. 3707 * 3708 * Returns the number of copied bytes. 3709 */ 3710 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr, 3711 size_t count, unsigned long flags) 3712 { 3713 char *start; 3714 struct vmap_block *vb; 3715 struct xarray *xa; 3716 unsigned long offset; 3717 unsigned int rs, re; 3718 size_t remains, n; 3719 3720 /* 3721 * If it's area created by vm_map_ram() interface directly, but 3722 * not further subdividing and delegating management to vmap_block, 3723 * handle it here. 3724 */ 3725 if (!(flags & VMAP_BLOCK)) 3726 return aligned_vread_iter(iter, addr, count); 3727 3728 remains = count; 3729 3730 /* 3731 * Area is split into regions and tracked with vmap_block, read out 3732 * each region and zero fill the hole between regions. 3733 */ 3734 xa = addr_to_vb_xa((unsigned long) addr); 3735 vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr)); 3736 if (!vb) 3737 goto finished_zero; 3738 3739 spin_lock(&vb->lock); 3740 if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) { 3741 spin_unlock(&vb->lock); 3742 goto finished_zero; 3743 } 3744 3745 for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) { 3746 size_t copied; 3747 3748 if (remains == 0) 3749 goto finished; 3750 3751 start = vmap_block_vaddr(vb->va->va_start, rs); 3752 3753 if (addr < start) { 3754 size_t to_zero = min_t(size_t, start - addr, remains); 3755 size_t zeroed = zero_iter(iter, to_zero); 3756 3757 addr += zeroed; 3758 remains -= zeroed; 3759 3760 if (remains == 0 || zeroed != to_zero) 3761 goto finished; 3762 } 3763 3764 /*it could start reading from the middle of used region*/ 3765 offset = offset_in_page(addr); 3766 n = ((re - rs + 1) << PAGE_SHIFT) - offset; 3767 if (n > remains) 3768 n = remains; 3769 3770 copied = aligned_vread_iter(iter, start + offset, n); 3771 3772 addr += copied; 3773 remains -= copied; 3774 3775 if (copied != n) 3776 goto finished; 3777 } 3778 3779 spin_unlock(&vb->lock); 3780 3781 finished_zero: 3782 /* zero-fill the left dirty or free regions */ 3783 return count - remains + zero_iter(iter, remains); 3784 finished: 3785 /* We couldn't copy/zero everything */ 3786 spin_unlock(&vb->lock); 3787 return count - remains; 3788 } 3789 3790 /** 3791 * vread_iter() - read vmalloc area in a safe way to an iterator. 3792 * @iter: the iterator to which data should be written. 3793 * @addr: vm address. 3794 * @count: number of bytes to be read. 3795 * 3796 * This function checks that addr is a valid vmalloc'ed area, and 3797 * copy data from that area to a given buffer. If the given memory range 3798 * of [addr...addr+count) includes some valid address, data is copied to 3799 * proper area of @buf. If there are memory holes, they'll be zero-filled. 3800 * IOREMAP area is treated as memory hole and no copy is done. 3801 * 3802 * If [addr...addr+count) doesn't includes any intersects with alive 3803 * vm_struct area, returns 0. @buf should be kernel's buffer. 3804 * 3805 * Note: In usual ops, vread() is never necessary because the caller 3806 * should know vmalloc() area is valid and can use memcpy(). 3807 * This is for routines which have to access vmalloc area without 3808 * any information, as /proc/kcore. 3809 * 3810 * Return: number of bytes for which addr and buf should be increased 3811 * (same number as @count) or %0 if [addr...addr+count) doesn't 3812 * include any intersection with valid vmalloc area 3813 */ 3814 long vread_iter(struct iov_iter *iter, const char *addr, size_t count) 3815 { 3816 struct vmap_area *va; 3817 struct vm_struct *vm; 3818 char *vaddr; 3819 size_t n, size, flags, remains; 3820 3821 addr = kasan_reset_tag(addr); 3822 3823 /* Don't allow overflow */ 3824 if ((unsigned long) addr + count < count) 3825 count = -(unsigned long) addr; 3826 3827 remains = count; 3828 3829 spin_lock(&vmap_area_lock); 3830 va = find_vmap_area_exceed_addr((unsigned long)addr); 3831 if (!va) 3832 goto finished_zero; 3833 3834 /* no intersects with alive vmap_area */ 3835 if ((unsigned long)addr + remains <= va->va_start) 3836 goto finished_zero; 3837 3838 list_for_each_entry_from(va, &vmap_area_list, list) { 3839 size_t copied; 3840 3841 if (remains == 0) 3842 goto finished; 3843 3844 vm = va->vm; 3845 flags = va->flags & VMAP_FLAGS_MASK; 3846 /* 3847 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need 3848 * be set together with VMAP_RAM. 3849 */ 3850 WARN_ON(flags == VMAP_BLOCK); 3851 3852 if (!vm && !flags) 3853 continue; 3854 3855 if (vm && (vm->flags & VM_UNINITIALIZED)) 3856 continue; 3857 3858 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 3859 smp_rmb(); 3860 3861 vaddr = (char *) va->va_start; 3862 size = vm ? get_vm_area_size(vm) : va_size(va); 3863 3864 if (addr >= vaddr + size) 3865 continue; 3866 3867 if (addr < vaddr) { 3868 size_t to_zero = min_t(size_t, vaddr - addr, remains); 3869 size_t zeroed = zero_iter(iter, to_zero); 3870 3871 addr += zeroed; 3872 remains -= zeroed; 3873 3874 if (remains == 0 || zeroed != to_zero) 3875 goto finished; 3876 } 3877 3878 n = vaddr + size - addr; 3879 if (n > remains) 3880 n = remains; 3881 3882 if (flags & VMAP_RAM) 3883 copied = vmap_ram_vread_iter(iter, addr, n, flags); 3884 else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE)))) 3885 copied = aligned_vread_iter(iter, addr, n); 3886 else /* IOREMAP | SPARSE area is treated as memory hole */ 3887 copied = zero_iter(iter, n); 3888 3889 addr += copied; 3890 remains -= copied; 3891 3892 if (copied != n) 3893 goto finished; 3894 } 3895 3896 finished_zero: 3897 spin_unlock(&vmap_area_lock); 3898 /* zero-fill memory holes */ 3899 return count - remains + zero_iter(iter, remains); 3900 finished: 3901 /* Nothing remains, or We couldn't copy/zero everything. */ 3902 spin_unlock(&vmap_area_lock); 3903 3904 return count - remains; 3905 } 3906 3907 /** 3908 * remap_vmalloc_range_partial - map vmalloc pages to userspace 3909 * @vma: vma to cover 3910 * @uaddr: target user address to start at 3911 * @kaddr: virtual address of vmalloc kernel memory 3912 * @pgoff: offset from @kaddr to start at 3913 * @size: size of map area 3914 * 3915 * Returns: 0 for success, -Exxx on failure 3916 * 3917 * This function checks that @kaddr is a valid vmalloc'ed area, 3918 * and that it is big enough to cover the range starting at 3919 * @uaddr in @vma. Will return failure if that criteria isn't 3920 * met. 3921 * 3922 * Similar to remap_pfn_range() (see mm/memory.c) 3923 */ 3924 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 3925 void *kaddr, unsigned long pgoff, 3926 unsigned long size) 3927 { 3928 struct vm_struct *area; 3929 unsigned long off; 3930 unsigned long end_index; 3931 3932 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) 3933 return -EINVAL; 3934 3935 size = PAGE_ALIGN(size); 3936 3937 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 3938 return -EINVAL; 3939 3940 area = find_vm_area(kaddr); 3941 if (!area) 3942 return -EINVAL; 3943 3944 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 3945 return -EINVAL; 3946 3947 if (check_add_overflow(size, off, &end_index) || 3948 end_index > get_vm_area_size(area)) 3949 return -EINVAL; 3950 kaddr += off; 3951 3952 do { 3953 struct page *page = vmalloc_to_page(kaddr); 3954 int ret; 3955 3956 ret = vm_insert_page(vma, uaddr, page); 3957 if (ret) 3958 return ret; 3959 3960 uaddr += PAGE_SIZE; 3961 kaddr += PAGE_SIZE; 3962 size -= PAGE_SIZE; 3963 } while (size > 0); 3964 3965 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP); 3966 3967 return 0; 3968 } 3969 3970 /** 3971 * remap_vmalloc_range - map vmalloc pages to userspace 3972 * @vma: vma to cover (map full range of vma) 3973 * @addr: vmalloc memory 3974 * @pgoff: number of pages into addr before first page to map 3975 * 3976 * Returns: 0 for success, -Exxx on failure 3977 * 3978 * This function checks that addr is a valid vmalloc'ed area, and 3979 * that it is big enough to cover the vma. Will return failure if 3980 * that criteria isn't met. 3981 * 3982 * Similar to remap_pfn_range() (see mm/memory.c) 3983 */ 3984 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 3985 unsigned long pgoff) 3986 { 3987 return remap_vmalloc_range_partial(vma, vma->vm_start, 3988 addr, pgoff, 3989 vma->vm_end - vma->vm_start); 3990 } 3991 EXPORT_SYMBOL(remap_vmalloc_range); 3992 3993 void free_vm_area(struct vm_struct *area) 3994 { 3995 struct vm_struct *ret; 3996 ret = remove_vm_area(area->addr); 3997 BUG_ON(ret != area); 3998 kfree(area); 3999 } 4000 EXPORT_SYMBOL_GPL(free_vm_area); 4001 4002 #ifdef CONFIG_SMP 4003 static struct vmap_area *node_to_va(struct rb_node *n) 4004 { 4005 return rb_entry_safe(n, struct vmap_area, rb_node); 4006 } 4007 4008 /** 4009 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 4010 * @addr: target address 4011 * 4012 * Returns: vmap_area if it is found. If there is no such area 4013 * the first highest(reverse order) vmap_area is returned 4014 * i.e. va->va_start < addr && va->va_end < addr or NULL 4015 * if there are no any areas before @addr. 4016 */ 4017 static struct vmap_area * 4018 pvm_find_va_enclose_addr(unsigned long addr) 4019 { 4020 struct vmap_area *va, *tmp; 4021 struct rb_node *n; 4022 4023 n = free_vmap_area_root.rb_node; 4024 va = NULL; 4025 4026 while (n) { 4027 tmp = rb_entry(n, struct vmap_area, rb_node); 4028 if (tmp->va_start <= addr) { 4029 va = tmp; 4030 if (tmp->va_end >= addr) 4031 break; 4032 4033 n = n->rb_right; 4034 } else { 4035 n = n->rb_left; 4036 } 4037 } 4038 4039 return va; 4040 } 4041 4042 /** 4043 * pvm_determine_end_from_reverse - find the highest aligned address 4044 * of free block below VMALLOC_END 4045 * @va: 4046 * in - the VA we start the search(reverse order); 4047 * out - the VA with the highest aligned end address. 4048 * @align: alignment for required highest address 4049 * 4050 * Returns: determined end address within vmap_area 4051 */ 4052 static unsigned long 4053 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 4054 { 4055 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 4056 unsigned long addr; 4057 4058 if (likely(*va)) { 4059 list_for_each_entry_from_reverse((*va), 4060 &free_vmap_area_list, list) { 4061 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 4062 if ((*va)->va_start < addr) 4063 return addr; 4064 } 4065 } 4066 4067 return 0; 4068 } 4069 4070 /** 4071 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 4072 * @offsets: array containing offset of each area 4073 * @sizes: array containing size of each area 4074 * @nr_vms: the number of areas to allocate 4075 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 4076 * 4077 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 4078 * vm_structs on success, %NULL on failure 4079 * 4080 * Percpu allocator wants to use congruent vm areas so that it can 4081 * maintain the offsets among percpu areas. This function allocates 4082 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 4083 * be scattered pretty far, distance between two areas easily going up 4084 * to gigabytes. To avoid interacting with regular vmallocs, these 4085 * areas are allocated from top. 4086 * 4087 * Despite its complicated look, this allocator is rather simple. It 4088 * does everything top-down and scans free blocks from the end looking 4089 * for matching base. While scanning, if any of the areas do not fit the 4090 * base address is pulled down to fit the area. Scanning is repeated till 4091 * all the areas fit and then all necessary data structures are inserted 4092 * and the result is returned. 4093 */ 4094 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 4095 const size_t *sizes, int nr_vms, 4096 size_t align) 4097 { 4098 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 4099 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 4100 struct vmap_area **vas, *va; 4101 struct vm_struct **vms; 4102 int area, area2, last_area, term_area; 4103 unsigned long base, start, size, end, last_end, orig_start, orig_end; 4104 bool purged = false; 4105 4106 /* verify parameters and allocate data structures */ 4107 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 4108 for (last_area = 0, area = 0; area < nr_vms; area++) { 4109 start = offsets[area]; 4110 end = start + sizes[area]; 4111 4112 /* is everything aligned properly? */ 4113 BUG_ON(!IS_ALIGNED(offsets[area], align)); 4114 BUG_ON(!IS_ALIGNED(sizes[area], align)); 4115 4116 /* detect the area with the highest address */ 4117 if (start > offsets[last_area]) 4118 last_area = area; 4119 4120 for (area2 = area + 1; area2 < nr_vms; area2++) { 4121 unsigned long start2 = offsets[area2]; 4122 unsigned long end2 = start2 + sizes[area2]; 4123 4124 BUG_ON(start2 < end && start < end2); 4125 } 4126 } 4127 last_end = offsets[last_area] + sizes[last_area]; 4128 4129 if (vmalloc_end - vmalloc_start < last_end) { 4130 WARN_ON(true); 4131 return NULL; 4132 } 4133 4134 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 4135 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 4136 if (!vas || !vms) 4137 goto err_free2; 4138 4139 for (area = 0; area < nr_vms; area++) { 4140 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 4141 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 4142 if (!vas[area] || !vms[area]) 4143 goto err_free; 4144 } 4145 retry: 4146 spin_lock(&free_vmap_area_lock); 4147 4148 /* start scanning - we scan from the top, begin with the last area */ 4149 area = term_area = last_area; 4150 start = offsets[area]; 4151 end = start + sizes[area]; 4152 4153 va = pvm_find_va_enclose_addr(vmalloc_end); 4154 base = pvm_determine_end_from_reverse(&va, align) - end; 4155 4156 while (true) { 4157 /* 4158 * base might have underflowed, add last_end before 4159 * comparing. 4160 */ 4161 if (base + last_end < vmalloc_start + last_end) 4162 goto overflow; 4163 4164 /* 4165 * Fitting base has not been found. 4166 */ 4167 if (va == NULL) 4168 goto overflow; 4169 4170 /* 4171 * If required width exceeds current VA block, move 4172 * base downwards and then recheck. 4173 */ 4174 if (base + end > va->va_end) { 4175 base = pvm_determine_end_from_reverse(&va, align) - end; 4176 term_area = area; 4177 continue; 4178 } 4179 4180 /* 4181 * If this VA does not fit, move base downwards and recheck. 4182 */ 4183 if (base + start < va->va_start) { 4184 va = node_to_va(rb_prev(&va->rb_node)); 4185 base = pvm_determine_end_from_reverse(&va, align) - end; 4186 term_area = area; 4187 continue; 4188 } 4189 4190 /* 4191 * This area fits, move on to the previous one. If 4192 * the previous one is the terminal one, we're done. 4193 */ 4194 area = (area + nr_vms - 1) % nr_vms; 4195 if (area == term_area) 4196 break; 4197 4198 start = offsets[area]; 4199 end = start + sizes[area]; 4200 va = pvm_find_va_enclose_addr(base + end); 4201 } 4202 4203 /* we've found a fitting base, insert all va's */ 4204 for (area = 0; area < nr_vms; area++) { 4205 int ret; 4206 4207 start = base + offsets[area]; 4208 size = sizes[area]; 4209 4210 va = pvm_find_va_enclose_addr(start); 4211 if (WARN_ON_ONCE(va == NULL)) 4212 /* It is a BUG(), but trigger recovery instead. */ 4213 goto recovery; 4214 4215 ret = adjust_va_to_fit_type(&free_vmap_area_root, 4216 &free_vmap_area_list, 4217 va, start, size); 4218 if (WARN_ON_ONCE(unlikely(ret))) 4219 /* It is a BUG(), but trigger recovery instead. */ 4220 goto recovery; 4221 4222 /* Allocated area. */ 4223 va = vas[area]; 4224 va->va_start = start; 4225 va->va_end = start + size; 4226 } 4227 4228 spin_unlock(&free_vmap_area_lock); 4229 4230 /* populate the kasan shadow space */ 4231 for (area = 0; area < nr_vms; area++) { 4232 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) 4233 goto err_free_shadow; 4234 } 4235 4236 /* insert all vm's */ 4237 spin_lock(&vmap_area_lock); 4238 for (area = 0; area < nr_vms; area++) { 4239 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list); 4240 4241 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, 4242 pcpu_get_vm_areas); 4243 } 4244 spin_unlock(&vmap_area_lock); 4245 4246 /* 4247 * Mark allocated areas as accessible. Do it now as a best-effort 4248 * approach, as they can be mapped outside of vmalloc code. 4249 * With hardware tag-based KASAN, marking is skipped for 4250 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 4251 */ 4252 for (area = 0; area < nr_vms; area++) 4253 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, 4254 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); 4255 4256 kfree(vas); 4257 return vms; 4258 4259 recovery: 4260 /* 4261 * Remove previously allocated areas. There is no 4262 * need in removing these areas from the busy tree, 4263 * because they are inserted only on the final step 4264 * and when pcpu_get_vm_areas() is success. 4265 */ 4266 while (area--) { 4267 orig_start = vas[area]->va_start; 4268 orig_end = vas[area]->va_end; 4269 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 4270 &free_vmap_area_list); 4271 if (va) 4272 kasan_release_vmalloc(orig_start, orig_end, 4273 va->va_start, va->va_end); 4274 vas[area] = NULL; 4275 } 4276 4277 overflow: 4278 spin_unlock(&free_vmap_area_lock); 4279 if (!purged) { 4280 reclaim_and_purge_vmap_areas(); 4281 purged = true; 4282 4283 /* Before "retry", check if we recover. */ 4284 for (area = 0; area < nr_vms; area++) { 4285 if (vas[area]) 4286 continue; 4287 4288 vas[area] = kmem_cache_zalloc( 4289 vmap_area_cachep, GFP_KERNEL); 4290 if (!vas[area]) 4291 goto err_free; 4292 } 4293 4294 goto retry; 4295 } 4296 4297 err_free: 4298 for (area = 0; area < nr_vms; area++) { 4299 if (vas[area]) 4300 kmem_cache_free(vmap_area_cachep, vas[area]); 4301 4302 kfree(vms[area]); 4303 } 4304 err_free2: 4305 kfree(vas); 4306 kfree(vms); 4307 return NULL; 4308 4309 err_free_shadow: 4310 spin_lock(&free_vmap_area_lock); 4311 /* 4312 * We release all the vmalloc shadows, even the ones for regions that 4313 * hadn't been successfully added. This relies on kasan_release_vmalloc 4314 * being able to tolerate this case. 4315 */ 4316 for (area = 0; area < nr_vms; area++) { 4317 orig_start = vas[area]->va_start; 4318 orig_end = vas[area]->va_end; 4319 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 4320 &free_vmap_area_list); 4321 if (va) 4322 kasan_release_vmalloc(orig_start, orig_end, 4323 va->va_start, va->va_end); 4324 vas[area] = NULL; 4325 kfree(vms[area]); 4326 } 4327 spin_unlock(&free_vmap_area_lock); 4328 kfree(vas); 4329 kfree(vms); 4330 return NULL; 4331 } 4332 4333 /** 4334 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 4335 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 4336 * @nr_vms: the number of allocated areas 4337 * 4338 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 4339 */ 4340 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 4341 { 4342 int i; 4343 4344 for (i = 0; i < nr_vms; i++) 4345 free_vm_area(vms[i]); 4346 kfree(vms); 4347 } 4348 #endif /* CONFIG_SMP */ 4349 4350 #ifdef CONFIG_PRINTK 4351 bool vmalloc_dump_obj(void *object) 4352 { 4353 void *objp = (void *)PAGE_ALIGN((unsigned long)object); 4354 const void *caller; 4355 struct vm_struct *vm; 4356 struct vmap_area *va; 4357 unsigned long addr; 4358 unsigned int nr_pages; 4359 4360 if (!spin_trylock(&vmap_area_lock)) 4361 return false; 4362 va = __find_vmap_area((unsigned long)objp, &vmap_area_root); 4363 if (!va) { 4364 spin_unlock(&vmap_area_lock); 4365 return false; 4366 } 4367 4368 vm = va->vm; 4369 if (!vm) { 4370 spin_unlock(&vmap_area_lock); 4371 return false; 4372 } 4373 addr = (unsigned long)vm->addr; 4374 caller = vm->caller; 4375 nr_pages = vm->nr_pages; 4376 spin_unlock(&vmap_area_lock); 4377 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", 4378 nr_pages, addr, caller); 4379 return true; 4380 } 4381 #endif 4382 4383 #ifdef CONFIG_PROC_FS 4384 static void *s_start(struct seq_file *m, loff_t *pos) 4385 __acquires(&vmap_purge_lock) 4386 __acquires(&vmap_area_lock) 4387 { 4388 mutex_lock(&vmap_purge_lock); 4389 spin_lock(&vmap_area_lock); 4390 4391 return seq_list_start(&vmap_area_list, *pos); 4392 } 4393 4394 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4395 { 4396 return seq_list_next(p, &vmap_area_list, pos); 4397 } 4398 4399 static void s_stop(struct seq_file *m, void *p) 4400 __releases(&vmap_area_lock) 4401 __releases(&vmap_purge_lock) 4402 { 4403 spin_unlock(&vmap_area_lock); 4404 mutex_unlock(&vmap_purge_lock); 4405 } 4406 4407 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 4408 { 4409 if (IS_ENABLED(CONFIG_NUMA)) { 4410 unsigned int nr, *counters = m->private; 4411 unsigned int step = 1U << vm_area_page_order(v); 4412 4413 if (!counters) 4414 return; 4415 4416 if (v->flags & VM_UNINITIALIZED) 4417 return; 4418 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 4419 smp_rmb(); 4420 4421 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 4422 4423 for (nr = 0; nr < v->nr_pages; nr += step) 4424 counters[page_to_nid(v->pages[nr])] += step; 4425 for_each_node_state(nr, N_HIGH_MEMORY) 4426 if (counters[nr]) 4427 seq_printf(m, " N%u=%u", nr, counters[nr]); 4428 } 4429 } 4430 4431 static void show_purge_info(struct seq_file *m) 4432 { 4433 struct vmap_area *va; 4434 4435 spin_lock(&purge_vmap_area_lock); 4436 list_for_each_entry(va, &purge_vmap_area_list, list) { 4437 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 4438 (void *)va->va_start, (void *)va->va_end, 4439 va->va_end - va->va_start); 4440 } 4441 spin_unlock(&purge_vmap_area_lock); 4442 } 4443 4444 static int s_show(struct seq_file *m, void *p) 4445 { 4446 struct vmap_area *va; 4447 struct vm_struct *v; 4448 4449 va = list_entry(p, struct vmap_area, list); 4450 4451 if (!va->vm) { 4452 if (va->flags & VMAP_RAM) 4453 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 4454 (void *)va->va_start, (void *)va->va_end, 4455 va->va_end - va->va_start); 4456 4457 goto final; 4458 } 4459 4460 v = va->vm; 4461 4462 seq_printf(m, "0x%pK-0x%pK %7ld", 4463 v->addr, v->addr + v->size, v->size); 4464 4465 if (v->caller) 4466 seq_printf(m, " %pS", v->caller); 4467 4468 if (v->nr_pages) 4469 seq_printf(m, " pages=%d", v->nr_pages); 4470 4471 if (v->phys_addr) 4472 seq_printf(m, " phys=%pa", &v->phys_addr); 4473 4474 if (v->flags & VM_IOREMAP) 4475 seq_puts(m, " ioremap"); 4476 4477 if (v->flags & VM_SPARSE) 4478 seq_puts(m, " sparse"); 4479 4480 if (v->flags & VM_ALLOC) 4481 seq_puts(m, " vmalloc"); 4482 4483 if (v->flags & VM_MAP) 4484 seq_puts(m, " vmap"); 4485 4486 if (v->flags & VM_USERMAP) 4487 seq_puts(m, " user"); 4488 4489 if (v->flags & VM_DMA_COHERENT) 4490 seq_puts(m, " dma-coherent"); 4491 4492 if (is_vmalloc_addr(v->pages)) 4493 seq_puts(m, " vpages"); 4494 4495 show_numa_info(m, v); 4496 seq_putc(m, '\n'); 4497 4498 /* 4499 * As a final step, dump "unpurged" areas. 4500 */ 4501 final: 4502 if (list_is_last(&va->list, &vmap_area_list)) 4503 show_purge_info(m); 4504 4505 return 0; 4506 } 4507 4508 static const struct seq_operations vmalloc_op = { 4509 .start = s_start, 4510 .next = s_next, 4511 .stop = s_stop, 4512 .show = s_show, 4513 }; 4514 4515 static int __init proc_vmalloc_init(void) 4516 { 4517 if (IS_ENABLED(CONFIG_NUMA)) 4518 proc_create_seq_private("vmallocinfo", 0400, NULL, 4519 &vmalloc_op, 4520 nr_node_ids * sizeof(unsigned int), NULL); 4521 else 4522 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 4523 return 0; 4524 } 4525 module_init(proc_vmalloc_init); 4526 4527 #endif 4528 4529 void __init vmalloc_init(void) 4530 { 4531 struct vmap_area *va; 4532 struct vm_struct *tmp; 4533 int i; 4534 4535 /* 4536 * Create the cache for vmap_area objects. 4537 */ 4538 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 4539 4540 for_each_possible_cpu(i) { 4541 struct vmap_block_queue *vbq; 4542 struct vfree_deferred *p; 4543 4544 vbq = &per_cpu(vmap_block_queue, i); 4545 spin_lock_init(&vbq->lock); 4546 INIT_LIST_HEAD(&vbq->free); 4547 p = &per_cpu(vfree_deferred, i); 4548 init_llist_head(&p->list); 4549 INIT_WORK(&p->wq, delayed_vfree_work); 4550 xa_init(&vbq->vmap_blocks); 4551 } 4552 4553 /* Import existing vmlist entries. */ 4554 for (tmp = vmlist; tmp; tmp = tmp->next) { 4555 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 4556 if (WARN_ON_ONCE(!va)) 4557 continue; 4558 4559 va->va_start = (unsigned long)tmp->addr; 4560 va->va_end = va->va_start + tmp->size; 4561 va->vm = tmp; 4562 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 4563 } 4564 4565 /* 4566 * Now we can initialize a free vmap space. 4567 */ 4568 vmap_init_free_space(); 4569 vmap_initialized = true; 4570 } 4571