xref: /linux/mm/vmalloc.c (revision f6e0a4984c2e7244689ea87b62b433bed9d07e94)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/uio.h>
37 #include <linux/bitops.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/overflow.h>
40 #include <linux/pgtable.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/vmalloc.h>
48 
49 #include "internal.h"
50 #include "pgalloc-track.h"
51 
52 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
53 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
54 
55 static int __init set_nohugeiomap(char *str)
56 {
57 	ioremap_max_page_shift = PAGE_SHIFT;
58 	return 0;
59 }
60 early_param("nohugeiomap", set_nohugeiomap);
61 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
62 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
63 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
64 
65 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
66 static bool __ro_after_init vmap_allow_huge = true;
67 
68 static int __init set_nohugevmalloc(char *str)
69 {
70 	vmap_allow_huge = false;
71 	return 0;
72 }
73 early_param("nohugevmalloc", set_nohugevmalloc);
74 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
75 static const bool vmap_allow_huge = false;
76 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
77 
78 bool is_vmalloc_addr(const void *x)
79 {
80 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
81 
82 	return addr >= VMALLOC_START && addr < VMALLOC_END;
83 }
84 EXPORT_SYMBOL(is_vmalloc_addr);
85 
86 struct vfree_deferred {
87 	struct llist_head list;
88 	struct work_struct wq;
89 };
90 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
91 
92 /*** Page table manipulation functions ***/
93 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
94 			phys_addr_t phys_addr, pgprot_t prot,
95 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
96 {
97 	pte_t *pte;
98 	u64 pfn;
99 	unsigned long size = PAGE_SIZE;
100 
101 	pfn = phys_addr >> PAGE_SHIFT;
102 	pte = pte_alloc_kernel_track(pmd, addr, mask);
103 	if (!pte)
104 		return -ENOMEM;
105 	do {
106 		BUG_ON(!pte_none(ptep_get(pte)));
107 
108 #ifdef CONFIG_HUGETLB_PAGE
109 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
110 		if (size != PAGE_SIZE) {
111 			pte_t entry = pfn_pte(pfn, prot);
112 
113 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
114 			set_huge_pte_at(&init_mm, addr, pte, entry, size);
115 			pfn += PFN_DOWN(size);
116 			continue;
117 		}
118 #endif
119 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
120 		pfn++;
121 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
122 	*mask |= PGTBL_PTE_MODIFIED;
123 	return 0;
124 }
125 
126 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
127 			phys_addr_t phys_addr, pgprot_t prot,
128 			unsigned int max_page_shift)
129 {
130 	if (max_page_shift < PMD_SHIFT)
131 		return 0;
132 
133 	if (!arch_vmap_pmd_supported(prot))
134 		return 0;
135 
136 	if ((end - addr) != PMD_SIZE)
137 		return 0;
138 
139 	if (!IS_ALIGNED(addr, PMD_SIZE))
140 		return 0;
141 
142 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
143 		return 0;
144 
145 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
146 		return 0;
147 
148 	return pmd_set_huge(pmd, phys_addr, prot);
149 }
150 
151 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
152 			phys_addr_t phys_addr, pgprot_t prot,
153 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
154 {
155 	pmd_t *pmd;
156 	unsigned long next;
157 
158 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
159 	if (!pmd)
160 		return -ENOMEM;
161 	do {
162 		next = pmd_addr_end(addr, end);
163 
164 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
165 					max_page_shift)) {
166 			*mask |= PGTBL_PMD_MODIFIED;
167 			continue;
168 		}
169 
170 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
171 			return -ENOMEM;
172 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
173 	return 0;
174 }
175 
176 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
177 			phys_addr_t phys_addr, pgprot_t prot,
178 			unsigned int max_page_shift)
179 {
180 	if (max_page_shift < PUD_SHIFT)
181 		return 0;
182 
183 	if (!arch_vmap_pud_supported(prot))
184 		return 0;
185 
186 	if ((end - addr) != PUD_SIZE)
187 		return 0;
188 
189 	if (!IS_ALIGNED(addr, PUD_SIZE))
190 		return 0;
191 
192 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
193 		return 0;
194 
195 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
196 		return 0;
197 
198 	return pud_set_huge(pud, phys_addr, prot);
199 }
200 
201 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
202 			phys_addr_t phys_addr, pgprot_t prot,
203 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
204 {
205 	pud_t *pud;
206 	unsigned long next;
207 
208 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
209 	if (!pud)
210 		return -ENOMEM;
211 	do {
212 		next = pud_addr_end(addr, end);
213 
214 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
215 					max_page_shift)) {
216 			*mask |= PGTBL_PUD_MODIFIED;
217 			continue;
218 		}
219 
220 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
221 					max_page_shift, mask))
222 			return -ENOMEM;
223 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
224 	return 0;
225 }
226 
227 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
228 			phys_addr_t phys_addr, pgprot_t prot,
229 			unsigned int max_page_shift)
230 {
231 	if (max_page_shift < P4D_SHIFT)
232 		return 0;
233 
234 	if (!arch_vmap_p4d_supported(prot))
235 		return 0;
236 
237 	if ((end - addr) != P4D_SIZE)
238 		return 0;
239 
240 	if (!IS_ALIGNED(addr, P4D_SIZE))
241 		return 0;
242 
243 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
244 		return 0;
245 
246 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
247 		return 0;
248 
249 	return p4d_set_huge(p4d, phys_addr, prot);
250 }
251 
252 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
253 			phys_addr_t phys_addr, pgprot_t prot,
254 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
255 {
256 	p4d_t *p4d;
257 	unsigned long next;
258 
259 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
260 	if (!p4d)
261 		return -ENOMEM;
262 	do {
263 		next = p4d_addr_end(addr, end);
264 
265 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
266 					max_page_shift)) {
267 			*mask |= PGTBL_P4D_MODIFIED;
268 			continue;
269 		}
270 
271 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
272 					max_page_shift, mask))
273 			return -ENOMEM;
274 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
275 	return 0;
276 }
277 
278 static int vmap_range_noflush(unsigned long addr, unsigned long end,
279 			phys_addr_t phys_addr, pgprot_t prot,
280 			unsigned int max_page_shift)
281 {
282 	pgd_t *pgd;
283 	unsigned long start;
284 	unsigned long next;
285 	int err;
286 	pgtbl_mod_mask mask = 0;
287 
288 	might_sleep();
289 	BUG_ON(addr >= end);
290 
291 	start = addr;
292 	pgd = pgd_offset_k(addr);
293 	do {
294 		next = pgd_addr_end(addr, end);
295 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
296 					max_page_shift, &mask);
297 		if (err)
298 			break;
299 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
300 
301 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
302 		arch_sync_kernel_mappings(start, end);
303 
304 	return err;
305 }
306 
307 int vmap_page_range(unsigned long addr, unsigned long end,
308 		    phys_addr_t phys_addr, pgprot_t prot)
309 {
310 	int err;
311 
312 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
313 				 ioremap_max_page_shift);
314 	flush_cache_vmap(addr, end);
315 	if (!err)
316 		err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
317 					       ioremap_max_page_shift);
318 	return err;
319 }
320 
321 int ioremap_page_range(unsigned long addr, unsigned long end,
322 		phys_addr_t phys_addr, pgprot_t prot)
323 {
324 	struct vm_struct *area;
325 
326 	area = find_vm_area((void *)addr);
327 	if (!area || !(area->flags & VM_IOREMAP)) {
328 		WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr);
329 		return -EINVAL;
330 	}
331 	if (addr != (unsigned long)area->addr ||
332 	    (void *)end != area->addr + get_vm_area_size(area)) {
333 		WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n",
334 			  addr, end, (long)area->addr,
335 			  (long)area->addr + get_vm_area_size(area));
336 		return -ERANGE;
337 	}
338 	return vmap_page_range(addr, end, phys_addr, prot);
339 }
340 
341 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
342 			     pgtbl_mod_mask *mask)
343 {
344 	pte_t *pte;
345 
346 	pte = pte_offset_kernel(pmd, addr);
347 	do {
348 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
349 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
350 	} while (pte++, addr += PAGE_SIZE, addr != end);
351 	*mask |= PGTBL_PTE_MODIFIED;
352 }
353 
354 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
355 			     pgtbl_mod_mask *mask)
356 {
357 	pmd_t *pmd;
358 	unsigned long next;
359 	int cleared;
360 
361 	pmd = pmd_offset(pud, addr);
362 	do {
363 		next = pmd_addr_end(addr, end);
364 
365 		cleared = pmd_clear_huge(pmd);
366 		if (cleared || pmd_bad(*pmd))
367 			*mask |= PGTBL_PMD_MODIFIED;
368 
369 		if (cleared)
370 			continue;
371 		if (pmd_none_or_clear_bad(pmd))
372 			continue;
373 		vunmap_pte_range(pmd, addr, next, mask);
374 
375 		cond_resched();
376 	} while (pmd++, addr = next, addr != end);
377 }
378 
379 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
380 			     pgtbl_mod_mask *mask)
381 {
382 	pud_t *pud;
383 	unsigned long next;
384 	int cleared;
385 
386 	pud = pud_offset(p4d, addr);
387 	do {
388 		next = pud_addr_end(addr, end);
389 
390 		cleared = pud_clear_huge(pud);
391 		if (cleared || pud_bad(*pud))
392 			*mask |= PGTBL_PUD_MODIFIED;
393 
394 		if (cleared)
395 			continue;
396 		if (pud_none_or_clear_bad(pud))
397 			continue;
398 		vunmap_pmd_range(pud, addr, next, mask);
399 	} while (pud++, addr = next, addr != end);
400 }
401 
402 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
403 			     pgtbl_mod_mask *mask)
404 {
405 	p4d_t *p4d;
406 	unsigned long next;
407 
408 	p4d = p4d_offset(pgd, addr);
409 	do {
410 		next = p4d_addr_end(addr, end);
411 
412 		p4d_clear_huge(p4d);
413 		if (p4d_bad(*p4d))
414 			*mask |= PGTBL_P4D_MODIFIED;
415 
416 		if (p4d_none_or_clear_bad(p4d))
417 			continue;
418 		vunmap_pud_range(p4d, addr, next, mask);
419 	} while (p4d++, addr = next, addr != end);
420 }
421 
422 /*
423  * vunmap_range_noflush is similar to vunmap_range, but does not
424  * flush caches or TLBs.
425  *
426  * The caller is responsible for calling flush_cache_vmap() before calling
427  * this function, and flush_tlb_kernel_range after it has returned
428  * successfully (and before the addresses are expected to cause a page fault
429  * or be re-mapped for something else, if TLB flushes are being delayed or
430  * coalesced).
431  *
432  * This is an internal function only. Do not use outside mm/.
433  */
434 void __vunmap_range_noflush(unsigned long start, unsigned long end)
435 {
436 	unsigned long next;
437 	pgd_t *pgd;
438 	unsigned long addr = start;
439 	pgtbl_mod_mask mask = 0;
440 
441 	BUG_ON(addr >= end);
442 	pgd = pgd_offset_k(addr);
443 	do {
444 		next = pgd_addr_end(addr, end);
445 		if (pgd_bad(*pgd))
446 			mask |= PGTBL_PGD_MODIFIED;
447 		if (pgd_none_or_clear_bad(pgd))
448 			continue;
449 		vunmap_p4d_range(pgd, addr, next, &mask);
450 	} while (pgd++, addr = next, addr != end);
451 
452 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
453 		arch_sync_kernel_mappings(start, end);
454 }
455 
456 void vunmap_range_noflush(unsigned long start, unsigned long end)
457 {
458 	kmsan_vunmap_range_noflush(start, end);
459 	__vunmap_range_noflush(start, end);
460 }
461 
462 /**
463  * vunmap_range - unmap kernel virtual addresses
464  * @addr: start of the VM area to unmap
465  * @end: end of the VM area to unmap (non-inclusive)
466  *
467  * Clears any present PTEs in the virtual address range, flushes TLBs and
468  * caches. Any subsequent access to the address before it has been re-mapped
469  * is a kernel bug.
470  */
471 void vunmap_range(unsigned long addr, unsigned long end)
472 {
473 	flush_cache_vunmap(addr, end);
474 	vunmap_range_noflush(addr, end);
475 	flush_tlb_kernel_range(addr, end);
476 }
477 
478 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
479 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
480 		pgtbl_mod_mask *mask)
481 {
482 	pte_t *pte;
483 
484 	/*
485 	 * nr is a running index into the array which helps higher level
486 	 * callers keep track of where we're up to.
487 	 */
488 
489 	pte = pte_alloc_kernel_track(pmd, addr, mask);
490 	if (!pte)
491 		return -ENOMEM;
492 	do {
493 		struct page *page = pages[*nr];
494 
495 		if (WARN_ON(!pte_none(ptep_get(pte))))
496 			return -EBUSY;
497 		if (WARN_ON(!page))
498 			return -ENOMEM;
499 		if (WARN_ON(!pfn_valid(page_to_pfn(page))))
500 			return -EINVAL;
501 
502 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
503 		(*nr)++;
504 	} while (pte++, addr += PAGE_SIZE, addr != end);
505 	*mask |= PGTBL_PTE_MODIFIED;
506 	return 0;
507 }
508 
509 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
510 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
511 		pgtbl_mod_mask *mask)
512 {
513 	pmd_t *pmd;
514 	unsigned long next;
515 
516 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
517 	if (!pmd)
518 		return -ENOMEM;
519 	do {
520 		next = pmd_addr_end(addr, end);
521 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
522 			return -ENOMEM;
523 	} while (pmd++, addr = next, addr != end);
524 	return 0;
525 }
526 
527 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
528 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
529 		pgtbl_mod_mask *mask)
530 {
531 	pud_t *pud;
532 	unsigned long next;
533 
534 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
535 	if (!pud)
536 		return -ENOMEM;
537 	do {
538 		next = pud_addr_end(addr, end);
539 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
540 			return -ENOMEM;
541 	} while (pud++, addr = next, addr != end);
542 	return 0;
543 }
544 
545 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
546 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
547 		pgtbl_mod_mask *mask)
548 {
549 	p4d_t *p4d;
550 	unsigned long next;
551 
552 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
553 	if (!p4d)
554 		return -ENOMEM;
555 	do {
556 		next = p4d_addr_end(addr, end);
557 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
558 			return -ENOMEM;
559 	} while (p4d++, addr = next, addr != end);
560 	return 0;
561 }
562 
563 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
564 		pgprot_t prot, struct page **pages)
565 {
566 	unsigned long start = addr;
567 	pgd_t *pgd;
568 	unsigned long next;
569 	int err = 0;
570 	int nr = 0;
571 	pgtbl_mod_mask mask = 0;
572 
573 	BUG_ON(addr >= end);
574 	pgd = pgd_offset_k(addr);
575 	do {
576 		next = pgd_addr_end(addr, end);
577 		if (pgd_bad(*pgd))
578 			mask |= PGTBL_PGD_MODIFIED;
579 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
580 		if (err)
581 			return err;
582 	} while (pgd++, addr = next, addr != end);
583 
584 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
585 		arch_sync_kernel_mappings(start, end);
586 
587 	return 0;
588 }
589 
590 /*
591  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
592  * flush caches.
593  *
594  * The caller is responsible for calling flush_cache_vmap() after this
595  * function returns successfully and before the addresses are accessed.
596  *
597  * This is an internal function only. Do not use outside mm/.
598  */
599 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
600 		pgprot_t prot, struct page **pages, unsigned int page_shift)
601 {
602 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
603 
604 	WARN_ON(page_shift < PAGE_SHIFT);
605 
606 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
607 			page_shift == PAGE_SHIFT)
608 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
609 
610 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
611 		int err;
612 
613 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
614 					page_to_phys(pages[i]), prot,
615 					page_shift);
616 		if (err)
617 			return err;
618 
619 		addr += 1UL << page_shift;
620 	}
621 
622 	return 0;
623 }
624 
625 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
626 		pgprot_t prot, struct page **pages, unsigned int page_shift)
627 {
628 	int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
629 						 page_shift);
630 
631 	if (ret)
632 		return ret;
633 	return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
634 }
635 
636 /**
637  * vmap_pages_range - map pages to a kernel virtual address
638  * @addr: start of the VM area to map
639  * @end: end of the VM area to map (non-inclusive)
640  * @prot: page protection flags to use
641  * @pages: pages to map (always PAGE_SIZE pages)
642  * @page_shift: maximum shift that the pages may be mapped with, @pages must
643  * be aligned and contiguous up to at least this shift.
644  *
645  * RETURNS:
646  * 0 on success, -errno on failure.
647  */
648 static int vmap_pages_range(unsigned long addr, unsigned long end,
649 		pgprot_t prot, struct page **pages, unsigned int page_shift)
650 {
651 	int err;
652 
653 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
654 	flush_cache_vmap(addr, end);
655 	return err;
656 }
657 
658 static int check_sparse_vm_area(struct vm_struct *area, unsigned long start,
659 				unsigned long end)
660 {
661 	might_sleep();
662 	if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS))
663 		return -EINVAL;
664 	if (WARN_ON_ONCE(area->flags & VM_NO_GUARD))
665 		return -EINVAL;
666 	if (WARN_ON_ONCE(!(area->flags & VM_SPARSE)))
667 		return -EINVAL;
668 	if ((end - start) >> PAGE_SHIFT > totalram_pages())
669 		return -E2BIG;
670 	if (start < (unsigned long)area->addr ||
671 	    (void *)end > area->addr + get_vm_area_size(area))
672 		return -ERANGE;
673 	return 0;
674 }
675 
676 /**
677  * vm_area_map_pages - map pages inside given sparse vm_area
678  * @area: vm_area
679  * @start: start address inside vm_area
680  * @end: end address inside vm_area
681  * @pages: pages to map (always PAGE_SIZE pages)
682  */
683 int vm_area_map_pages(struct vm_struct *area, unsigned long start,
684 		      unsigned long end, struct page **pages)
685 {
686 	int err;
687 
688 	err = check_sparse_vm_area(area, start, end);
689 	if (err)
690 		return err;
691 
692 	return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT);
693 }
694 
695 /**
696  * vm_area_unmap_pages - unmap pages inside given sparse vm_area
697  * @area: vm_area
698  * @start: start address inside vm_area
699  * @end: end address inside vm_area
700  */
701 void vm_area_unmap_pages(struct vm_struct *area, unsigned long start,
702 			 unsigned long end)
703 {
704 	if (check_sparse_vm_area(area, start, end))
705 		return;
706 
707 	vunmap_range(start, end);
708 }
709 
710 int is_vmalloc_or_module_addr(const void *x)
711 {
712 	/*
713 	 * ARM, x86-64 and sparc64 put modules in a special place,
714 	 * and fall back on vmalloc() if that fails. Others
715 	 * just put it in the vmalloc space.
716 	 */
717 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
718 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
719 	if (addr >= MODULES_VADDR && addr < MODULES_END)
720 		return 1;
721 #endif
722 	return is_vmalloc_addr(x);
723 }
724 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
725 
726 /*
727  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
728  * return the tail page that corresponds to the base page address, which
729  * matches small vmap mappings.
730  */
731 struct page *vmalloc_to_page(const void *vmalloc_addr)
732 {
733 	unsigned long addr = (unsigned long) vmalloc_addr;
734 	struct page *page = NULL;
735 	pgd_t *pgd = pgd_offset_k(addr);
736 	p4d_t *p4d;
737 	pud_t *pud;
738 	pmd_t *pmd;
739 	pte_t *ptep, pte;
740 
741 	/*
742 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
743 	 * architectures that do not vmalloc module space
744 	 */
745 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
746 
747 	if (pgd_none(*pgd))
748 		return NULL;
749 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
750 		return NULL; /* XXX: no allowance for huge pgd */
751 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
752 		return NULL;
753 
754 	p4d = p4d_offset(pgd, addr);
755 	if (p4d_none(*p4d))
756 		return NULL;
757 	if (p4d_leaf(*p4d))
758 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
759 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
760 		return NULL;
761 
762 	pud = pud_offset(p4d, addr);
763 	if (pud_none(*pud))
764 		return NULL;
765 	if (pud_leaf(*pud))
766 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
767 	if (WARN_ON_ONCE(pud_bad(*pud)))
768 		return NULL;
769 
770 	pmd = pmd_offset(pud, addr);
771 	if (pmd_none(*pmd))
772 		return NULL;
773 	if (pmd_leaf(*pmd))
774 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
775 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
776 		return NULL;
777 
778 	ptep = pte_offset_kernel(pmd, addr);
779 	pte = ptep_get(ptep);
780 	if (pte_present(pte))
781 		page = pte_page(pte);
782 
783 	return page;
784 }
785 EXPORT_SYMBOL(vmalloc_to_page);
786 
787 /*
788  * Map a vmalloc()-space virtual address to the physical page frame number.
789  */
790 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
791 {
792 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
793 }
794 EXPORT_SYMBOL(vmalloc_to_pfn);
795 
796 
797 /*** Global kva allocator ***/
798 
799 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
800 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
801 
802 
803 static DEFINE_SPINLOCK(vmap_area_lock);
804 static DEFINE_SPINLOCK(free_vmap_area_lock);
805 /* Export for kexec only */
806 LIST_HEAD(vmap_area_list);
807 static struct rb_root vmap_area_root = RB_ROOT;
808 static bool vmap_initialized __read_mostly;
809 
810 static struct rb_root purge_vmap_area_root = RB_ROOT;
811 static LIST_HEAD(purge_vmap_area_list);
812 static DEFINE_SPINLOCK(purge_vmap_area_lock);
813 
814 /*
815  * This kmem_cache is used for vmap_area objects. Instead of
816  * allocating from slab we reuse an object from this cache to
817  * make things faster. Especially in "no edge" splitting of
818  * free block.
819  */
820 static struct kmem_cache *vmap_area_cachep;
821 
822 /*
823  * This linked list is used in pair with free_vmap_area_root.
824  * It gives O(1) access to prev/next to perform fast coalescing.
825  */
826 static LIST_HEAD(free_vmap_area_list);
827 
828 /*
829  * This augment red-black tree represents the free vmap space.
830  * All vmap_area objects in this tree are sorted by va->va_start
831  * address. It is used for allocation and merging when a vmap
832  * object is released.
833  *
834  * Each vmap_area node contains a maximum available free block
835  * of its sub-tree, right or left. Therefore it is possible to
836  * find a lowest match of free area.
837  */
838 static struct rb_root free_vmap_area_root = RB_ROOT;
839 
840 /*
841  * Preload a CPU with one object for "no edge" split case. The
842  * aim is to get rid of allocations from the atomic context, thus
843  * to use more permissive allocation masks.
844  */
845 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
846 
847 static __always_inline unsigned long
848 va_size(struct vmap_area *va)
849 {
850 	return (va->va_end - va->va_start);
851 }
852 
853 static __always_inline unsigned long
854 get_subtree_max_size(struct rb_node *node)
855 {
856 	struct vmap_area *va;
857 
858 	va = rb_entry_safe(node, struct vmap_area, rb_node);
859 	return va ? va->subtree_max_size : 0;
860 }
861 
862 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
863 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
864 
865 static void reclaim_and_purge_vmap_areas(void);
866 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
867 static void drain_vmap_area_work(struct work_struct *work);
868 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
869 
870 static atomic_long_t nr_vmalloc_pages;
871 
872 unsigned long vmalloc_nr_pages(void)
873 {
874 	return atomic_long_read(&nr_vmalloc_pages);
875 }
876 
877 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
878 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
879 {
880 	struct vmap_area *va = NULL;
881 	struct rb_node *n = vmap_area_root.rb_node;
882 
883 	addr = (unsigned long)kasan_reset_tag((void *)addr);
884 
885 	while (n) {
886 		struct vmap_area *tmp;
887 
888 		tmp = rb_entry(n, struct vmap_area, rb_node);
889 		if (tmp->va_end > addr) {
890 			va = tmp;
891 			if (tmp->va_start <= addr)
892 				break;
893 
894 			n = n->rb_left;
895 		} else
896 			n = n->rb_right;
897 	}
898 
899 	return va;
900 }
901 
902 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
903 {
904 	struct rb_node *n = root->rb_node;
905 
906 	addr = (unsigned long)kasan_reset_tag((void *)addr);
907 
908 	while (n) {
909 		struct vmap_area *va;
910 
911 		va = rb_entry(n, struct vmap_area, rb_node);
912 		if (addr < va->va_start)
913 			n = n->rb_left;
914 		else if (addr >= va->va_end)
915 			n = n->rb_right;
916 		else
917 			return va;
918 	}
919 
920 	return NULL;
921 }
922 
923 /*
924  * This function returns back addresses of parent node
925  * and its left or right link for further processing.
926  *
927  * Otherwise NULL is returned. In that case all further
928  * steps regarding inserting of conflicting overlap range
929  * have to be declined and actually considered as a bug.
930  */
931 static __always_inline struct rb_node **
932 find_va_links(struct vmap_area *va,
933 	struct rb_root *root, struct rb_node *from,
934 	struct rb_node **parent)
935 {
936 	struct vmap_area *tmp_va;
937 	struct rb_node **link;
938 
939 	if (root) {
940 		link = &root->rb_node;
941 		if (unlikely(!*link)) {
942 			*parent = NULL;
943 			return link;
944 		}
945 	} else {
946 		link = &from;
947 	}
948 
949 	/*
950 	 * Go to the bottom of the tree. When we hit the last point
951 	 * we end up with parent rb_node and correct direction, i name
952 	 * it link, where the new va->rb_node will be attached to.
953 	 */
954 	do {
955 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
956 
957 		/*
958 		 * During the traversal we also do some sanity check.
959 		 * Trigger the BUG() if there are sides(left/right)
960 		 * or full overlaps.
961 		 */
962 		if (va->va_end <= tmp_va->va_start)
963 			link = &(*link)->rb_left;
964 		else if (va->va_start >= tmp_va->va_end)
965 			link = &(*link)->rb_right;
966 		else {
967 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
968 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
969 
970 			return NULL;
971 		}
972 	} while (*link);
973 
974 	*parent = &tmp_va->rb_node;
975 	return link;
976 }
977 
978 static __always_inline struct list_head *
979 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
980 {
981 	struct list_head *list;
982 
983 	if (unlikely(!parent))
984 		/*
985 		 * The red-black tree where we try to find VA neighbors
986 		 * before merging or inserting is empty, i.e. it means
987 		 * there is no free vmap space. Normally it does not
988 		 * happen but we handle this case anyway.
989 		 */
990 		return NULL;
991 
992 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
993 	return (&parent->rb_right == link ? list->next : list);
994 }
995 
996 static __always_inline void
997 __link_va(struct vmap_area *va, struct rb_root *root,
998 	struct rb_node *parent, struct rb_node **link,
999 	struct list_head *head, bool augment)
1000 {
1001 	/*
1002 	 * VA is still not in the list, but we can
1003 	 * identify its future previous list_head node.
1004 	 */
1005 	if (likely(parent)) {
1006 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
1007 		if (&parent->rb_right != link)
1008 			head = head->prev;
1009 	}
1010 
1011 	/* Insert to the rb-tree */
1012 	rb_link_node(&va->rb_node, parent, link);
1013 	if (augment) {
1014 		/*
1015 		 * Some explanation here. Just perform simple insertion
1016 		 * to the tree. We do not set va->subtree_max_size to
1017 		 * its current size before calling rb_insert_augmented().
1018 		 * It is because we populate the tree from the bottom
1019 		 * to parent levels when the node _is_ in the tree.
1020 		 *
1021 		 * Therefore we set subtree_max_size to zero after insertion,
1022 		 * to let __augment_tree_propagate_from() puts everything to
1023 		 * the correct order later on.
1024 		 */
1025 		rb_insert_augmented(&va->rb_node,
1026 			root, &free_vmap_area_rb_augment_cb);
1027 		va->subtree_max_size = 0;
1028 	} else {
1029 		rb_insert_color(&va->rb_node, root);
1030 	}
1031 
1032 	/* Address-sort this list */
1033 	list_add(&va->list, head);
1034 }
1035 
1036 static __always_inline void
1037 link_va(struct vmap_area *va, struct rb_root *root,
1038 	struct rb_node *parent, struct rb_node **link,
1039 	struct list_head *head)
1040 {
1041 	__link_va(va, root, parent, link, head, false);
1042 }
1043 
1044 static __always_inline void
1045 link_va_augment(struct vmap_area *va, struct rb_root *root,
1046 	struct rb_node *parent, struct rb_node **link,
1047 	struct list_head *head)
1048 {
1049 	__link_va(va, root, parent, link, head, true);
1050 }
1051 
1052 static __always_inline void
1053 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
1054 {
1055 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
1056 		return;
1057 
1058 	if (augment)
1059 		rb_erase_augmented(&va->rb_node,
1060 			root, &free_vmap_area_rb_augment_cb);
1061 	else
1062 		rb_erase(&va->rb_node, root);
1063 
1064 	list_del_init(&va->list);
1065 	RB_CLEAR_NODE(&va->rb_node);
1066 }
1067 
1068 static __always_inline void
1069 unlink_va(struct vmap_area *va, struct rb_root *root)
1070 {
1071 	__unlink_va(va, root, false);
1072 }
1073 
1074 static __always_inline void
1075 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1076 {
1077 	__unlink_va(va, root, true);
1078 }
1079 
1080 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1081 /*
1082  * Gets called when remove the node and rotate.
1083  */
1084 static __always_inline unsigned long
1085 compute_subtree_max_size(struct vmap_area *va)
1086 {
1087 	return max3(va_size(va),
1088 		get_subtree_max_size(va->rb_node.rb_left),
1089 		get_subtree_max_size(va->rb_node.rb_right));
1090 }
1091 
1092 static void
1093 augment_tree_propagate_check(void)
1094 {
1095 	struct vmap_area *va;
1096 	unsigned long computed_size;
1097 
1098 	list_for_each_entry(va, &free_vmap_area_list, list) {
1099 		computed_size = compute_subtree_max_size(va);
1100 		if (computed_size != va->subtree_max_size)
1101 			pr_emerg("tree is corrupted: %lu, %lu\n",
1102 				va_size(va), va->subtree_max_size);
1103 	}
1104 }
1105 #endif
1106 
1107 /*
1108  * This function populates subtree_max_size from bottom to upper
1109  * levels starting from VA point. The propagation must be done
1110  * when VA size is modified by changing its va_start/va_end. Or
1111  * in case of newly inserting of VA to the tree.
1112  *
1113  * It means that __augment_tree_propagate_from() must be called:
1114  * - After VA has been inserted to the tree(free path);
1115  * - After VA has been shrunk(allocation path);
1116  * - After VA has been increased(merging path).
1117  *
1118  * Please note that, it does not mean that upper parent nodes
1119  * and their subtree_max_size are recalculated all the time up
1120  * to the root node.
1121  *
1122  *       4--8
1123  *        /\
1124  *       /  \
1125  *      /    \
1126  *    2--2  8--8
1127  *
1128  * For example if we modify the node 4, shrinking it to 2, then
1129  * no any modification is required. If we shrink the node 2 to 1
1130  * its subtree_max_size is updated only, and set to 1. If we shrink
1131  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1132  * node becomes 4--6.
1133  */
1134 static __always_inline void
1135 augment_tree_propagate_from(struct vmap_area *va)
1136 {
1137 	/*
1138 	 * Populate the tree from bottom towards the root until
1139 	 * the calculated maximum available size of checked node
1140 	 * is equal to its current one.
1141 	 */
1142 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1143 
1144 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1145 	augment_tree_propagate_check();
1146 #endif
1147 }
1148 
1149 static void
1150 insert_vmap_area(struct vmap_area *va,
1151 	struct rb_root *root, struct list_head *head)
1152 {
1153 	struct rb_node **link;
1154 	struct rb_node *parent;
1155 
1156 	link = find_va_links(va, root, NULL, &parent);
1157 	if (link)
1158 		link_va(va, root, parent, link, head);
1159 }
1160 
1161 static void
1162 insert_vmap_area_augment(struct vmap_area *va,
1163 	struct rb_node *from, struct rb_root *root,
1164 	struct list_head *head)
1165 {
1166 	struct rb_node **link;
1167 	struct rb_node *parent;
1168 
1169 	if (from)
1170 		link = find_va_links(va, NULL, from, &parent);
1171 	else
1172 		link = find_va_links(va, root, NULL, &parent);
1173 
1174 	if (link) {
1175 		link_va_augment(va, root, parent, link, head);
1176 		augment_tree_propagate_from(va);
1177 	}
1178 }
1179 
1180 /*
1181  * Merge de-allocated chunk of VA memory with previous
1182  * and next free blocks. If coalesce is not done a new
1183  * free area is inserted. If VA has been merged, it is
1184  * freed.
1185  *
1186  * Please note, it can return NULL in case of overlap
1187  * ranges, followed by WARN() report. Despite it is a
1188  * buggy behaviour, a system can be alive and keep
1189  * ongoing.
1190  */
1191 static __always_inline struct vmap_area *
1192 __merge_or_add_vmap_area(struct vmap_area *va,
1193 	struct rb_root *root, struct list_head *head, bool augment)
1194 {
1195 	struct vmap_area *sibling;
1196 	struct list_head *next;
1197 	struct rb_node **link;
1198 	struct rb_node *parent;
1199 	bool merged = false;
1200 
1201 	/*
1202 	 * Find a place in the tree where VA potentially will be
1203 	 * inserted, unless it is merged with its sibling/siblings.
1204 	 */
1205 	link = find_va_links(va, root, NULL, &parent);
1206 	if (!link)
1207 		return NULL;
1208 
1209 	/*
1210 	 * Get next node of VA to check if merging can be done.
1211 	 */
1212 	next = get_va_next_sibling(parent, link);
1213 	if (unlikely(next == NULL))
1214 		goto insert;
1215 
1216 	/*
1217 	 * start            end
1218 	 * |                |
1219 	 * |<------VA------>|<-----Next----->|
1220 	 *                  |                |
1221 	 *                  start            end
1222 	 */
1223 	if (next != head) {
1224 		sibling = list_entry(next, struct vmap_area, list);
1225 		if (sibling->va_start == va->va_end) {
1226 			sibling->va_start = va->va_start;
1227 
1228 			/* Free vmap_area object. */
1229 			kmem_cache_free(vmap_area_cachep, va);
1230 
1231 			/* Point to the new merged area. */
1232 			va = sibling;
1233 			merged = true;
1234 		}
1235 	}
1236 
1237 	/*
1238 	 * start            end
1239 	 * |                |
1240 	 * |<-----Prev----->|<------VA------>|
1241 	 *                  |                |
1242 	 *                  start            end
1243 	 */
1244 	if (next->prev != head) {
1245 		sibling = list_entry(next->prev, struct vmap_area, list);
1246 		if (sibling->va_end == va->va_start) {
1247 			/*
1248 			 * If both neighbors are coalesced, it is important
1249 			 * to unlink the "next" node first, followed by merging
1250 			 * with "previous" one. Otherwise the tree might not be
1251 			 * fully populated if a sibling's augmented value is
1252 			 * "normalized" because of rotation operations.
1253 			 */
1254 			if (merged)
1255 				__unlink_va(va, root, augment);
1256 
1257 			sibling->va_end = va->va_end;
1258 
1259 			/* Free vmap_area object. */
1260 			kmem_cache_free(vmap_area_cachep, va);
1261 
1262 			/* Point to the new merged area. */
1263 			va = sibling;
1264 			merged = true;
1265 		}
1266 	}
1267 
1268 insert:
1269 	if (!merged)
1270 		__link_va(va, root, parent, link, head, augment);
1271 
1272 	return va;
1273 }
1274 
1275 static __always_inline struct vmap_area *
1276 merge_or_add_vmap_area(struct vmap_area *va,
1277 	struct rb_root *root, struct list_head *head)
1278 {
1279 	return __merge_or_add_vmap_area(va, root, head, false);
1280 }
1281 
1282 static __always_inline struct vmap_area *
1283 merge_or_add_vmap_area_augment(struct vmap_area *va,
1284 	struct rb_root *root, struct list_head *head)
1285 {
1286 	va = __merge_or_add_vmap_area(va, root, head, true);
1287 	if (va)
1288 		augment_tree_propagate_from(va);
1289 
1290 	return va;
1291 }
1292 
1293 static __always_inline bool
1294 is_within_this_va(struct vmap_area *va, unsigned long size,
1295 	unsigned long align, unsigned long vstart)
1296 {
1297 	unsigned long nva_start_addr;
1298 
1299 	if (va->va_start > vstart)
1300 		nva_start_addr = ALIGN(va->va_start, align);
1301 	else
1302 		nva_start_addr = ALIGN(vstart, align);
1303 
1304 	/* Can be overflowed due to big size or alignment. */
1305 	if (nva_start_addr + size < nva_start_addr ||
1306 			nva_start_addr < vstart)
1307 		return false;
1308 
1309 	return (nva_start_addr + size <= va->va_end);
1310 }
1311 
1312 /*
1313  * Find the first free block(lowest start address) in the tree,
1314  * that will accomplish the request corresponding to passing
1315  * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1316  * a search length is adjusted to account for worst case alignment
1317  * overhead.
1318  */
1319 static __always_inline struct vmap_area *
1320 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1321 	unsigned long align, unsigned long vstart, bool adjust_search_size)
1322 {
1323 	struct vmap_area *va;
1324 	struct rb_node *node;
1325 	unsigned long length;
1326 
1327 	/* Start from the root. */
1328 	node = root->rb_node;
1329 
1330 	/* Adjust the search size for alignment overhead. */
1331 	length = adjust_search_size ? size + align - 1 : size;
1332 
1333 	while (node) {
1334 		va = rb_entry(node, struct vmap_area, rb_node);
1335 
1336 		if (get_subtree_max_size(node->rb_left) >= length &&
1337 				vstart < va->va_start) {
1338 			node = node->rb_left;
1339 		} else {
1340 			if (is_within_this_va(va, size, align, vstart))
1341 				return va;
1342 
1343 			/*
1344 			 * Does not make sense to go deeper towards the right
1345 			 * sub-tree if it does not have a free block that is
1346 			 * equal or bigger to the requested search length.
1347 			 */
1348 			if (get_subtree_max_size(node->rb_right) >= length) {
1349 				node = node->rb_right;
1350 				continue;
1351 			}
1352 
1353 			/*
1354 			 * OK. We roll back and find the first right sub-tree,
1355 			 * that will satisfy the search criteria. It can happen
1356 			 * due to "vstart" restriction or an alignment overhead
1357 			 * that is bigger then PAGE_SIZE.
1358 			 */
1359 			while ((node = rb_parent(node))) {
1360 				va = rb_entry(node, struct vmap_area, rb_node);
1361 				if (is_within_this_va(va, size, align, vstart))
1362 					return va;
1363 
1364 				if (get_subtree_max_size(node->rb_right) >= length &&
1365 						vstart <= va->va_start) {
1366 					/*
1367 					 * Shift the vstart forward. Please note, we update it with
1368 					 * parent's start address adding "1" because we do not want
1369 					 * to enter same sub-tree after it has already been checked
1370 					 * and no suitable free block found there.
1371 					 */
1372 					vstart = va->va_start + 1;
1373 					node = node->rb_right;
1374 					break;
1375 				}
1376 			}
1377 		}
1378 	}
1379 
1380 	return NULL;
1381 }
1382 
1383 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1384 #include <linux/random.h>
1385 
1386 static struct vmap_area *
1387 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1388 	unsigned long align, unsigned long vstart)
1389 {
1390 	struct vmap_area *va;
1391 
1392 	list_for_each_entry(va, head, list) {
1393 		if (!is_within_this_va(va, size, align, vstart))
1394 			continue;
1395 
1396 		return va;
1397 	}
1398 
1399 	return NULL;
1400 }
1401 
1402 static void
1403 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1404 			     unsigned long size, unsigned long align)
1405 {
1406 	struct vmap_area *va_1, *va_2;
1407 	unsigned long vstart;
1408 	unsigned int rnd;
1409 
1410 	get_random_bytes(&rnd, sizeof(rnd));
1411 	vstart = VMALLOC_START + rnd;
1412 
1413 	va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1414 	va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1415 
1416 	if (va_1 != va_2)
1417 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1418 			va_1, va_2, vstart);
1419 }
1420 #endif
1421 
1422 enum fit_type {
1423 	NOTHING_FIT = 0,
1424 	FL_FIT_TYPE = 1,	/* full fit */
1425 	LE_FIT_TYPE = 2,	/* left edge fit */
1426 	RE_FIT_TYPE = 3,	/* right edge fit */
1427 	NE_FIT_TYPE = 4		/* no edge fit */
1428 };
1429 
1430 static __always_inline enum fit_type
1431 classify_va_fit_type(struct vmap_area *va,
1432 	unsigned long nva_start_addr, unsigned long size)
1433 {
1434 	enum fit_type type;
1435 
1436 	/* Check if it is within VA. */
1437 	if (nva_start_addr < va->va_start ||
1438 			nva_start_addr + size > va->va_end)
1439 		return NOTHING_FIT;
1440 
1441 	/* Now classify. */
1442 	if (va->va_start == nva_start_addr) {
1443 		if (va->va_end == nva_start_addr + size)
1444 			type = FL_FIT_TYPE;
1445 		else
1446 			type = LE_FIT_TYPE;
1447 	} else if (va->va_end == nva_start_addr + size) {
1448 		type = RE_FIT_TYPE;
1449 	} else {
1450 		type = NE_FIT_TYPE;
1451 	}
1452 
1453 	return type;
1454 }
1455 
1456 static __always_inline int
1457 adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
1458 		      struct vmap_area *va, unsigned long nva_start_addr,
1459 		      unsigned long size)
1460 {
1461 	struct vmap_area *lva = NULL;
1462 	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1463 
1464 	if (type == FL_FIT_TYPE) {
1465 		/*
1466 		 * No need to split VA, it fully fits.
1467 		 *
1468 		 * |               |
1469 		 * V      NVA      V
1470 		 * |---------------|
1471 		 */
1472 		unlink_va_augment(va, root);
1473 		kmem_cache_free(vmap_area_cachep, va);
1474 	} else if (type == LE_FIT_TYPE) {
1475 		/*
1476 		 * Split left edge of fit VA.
1477 		 *
1478 		 * |       |
1479 		 * V  NVA  V   R
1480 		 * |-------|-------|
1481 		 */
1482 		va->va_start += size;
1483 	} else if (type == RE_FIT_TYPE) {
1484 		/*
1485 		 * Split right edge of fit VA.
1486 		 *
1487 		 *         |       |
1488 		 *     L   V  NVA  V
1489 		 * |-------|-------|
1490 		 */
1491 		va->va_end = nva_start_addr;
1492 	} else if (type == NE_FIT_TYPE) {
1493 		/*
1494 		 * Split no edge of fit VA.
1495 		 *
1496 		 *     |       |
1497 		 *   L V  NVA  V R
1498 		 * |---|-------|---|
1499 		 */
1500 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1501 		if (unlikely(!lva)) {
1502 			/*
1503 			 * For percpu allocator we do not do any pre-allocation
1504 			 * and leave it as it is. The reason is it most likely
1505 			 * never ends up with NE_FIT_TYPE splitting. In case of
1506 			 * percpu allocations offsets and sizes are aligned to
1507 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1508 			 * are its main fitting cases.
1509 			 *
1510 			 * There are a few exceptions though, as an example it is
1511 			 * a first allocation (early boot up) when we have "one"
1512 			 * big free space that has to be split.
1513 			 *
1514 			 * Also we can hit this path in case of regular "vmap"
1515 			 * allocations, if "this" current CPU was not preloaded.
1516 			 * See the comment in alloc_vmap_area() why. If so, then
1517 			 * GFP_NOWAIT is used instead to get an extra object for
1518 			 * split purpose. That is rare and most time does not
1519 			 * occur.
1520 			 *
1521 			 * What happens if an allocation gets failed. Basically,
1522 			 * an "overflow" path is triggered to purge lazily freed
1523 			 * areas to free some memory, then, the "retry" path is
1524 			 * triggered to repeat one more time. See more details
1525 			 * in alloc_vmap_area() function.
1526 			 */
1527 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1528 			if (!lva)
1529 				return -1;
1530 		}
1531 
1532 		/*
1533 		 * Build the remainder.
1534 		 */
1535 		lva->va_start = va->va_start;
1536 		lva->va_end = nva_start_addr;
1537 
1538 		/*
1539 		 * Shrink this VA to remaining size.
1540 		 */
1541 		va->va_start = nva_start_addr + size;
1542 	} else {
1543 		return -1;
1544 	}
1545 
1546 	if (type != FL_FIT_TYPE) {
1547 		augment_tree_propagate_from(va);
1548 
1549 		if (lva)	/* type == NE_FIT_TYPE */
1550 			insert_vmap_area_augment(lva, &va->rb_node, root, head);
1551 	}
1552 
1553 	return 0;
1554 }
1555 
1556 /*
1557  * Returns a start address of the newly allocated area, if success.
1558  * Otherwise a vend is returned that indicates failure.
1559  */
1560 static __always_inline unsigned long
1561 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1562 	unsigned long size, unsigned long align,
1563 	unsigned long vstart, unsigned long vend)
1564 {
1565 	bool adjust_search_size = true;
1566 	unsigned long nva_start_addr;
1567 	struct vmap_area *va;
1568 	int ret;
1569 
1570 	/*
1571 	 * Do not adjust when:
1572 	 *   a) align <= PAGE_SIZE, because it does not make any sense.
1573 	 *      All blocks(their start addresses) are at least PAGE_SIZE
1574 	 *      aligned anyway;
1575 	 *   b) a short range where a requested size corresponds to exactly
1576 	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1577 	 *      With adjusted search length an allocation would not succeed.
1578 	 */
1579 	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1580 		adjust_search_size = false;
1581 
1582 	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1583 	if (unlikely(!va))
1584 		return vend;
1585 
1586 	if (va->va_start > vstart)
1587 		nva_start_addr = ALIGN(va->va_start, align);
1588 	else
1589 		nva_start_addr = ALIGN(vstart, align);
1590 
1591 	/* Check the "vend" restriction. */
1592 	if (nva_start_addr + size > vend)
1593 		return vend;
1594 
1595 	/* Update the free vmap_area. */
1596 	ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1597 	if (WARN_ON_ONCE(ret))
1598 		return vend;
1599 
1600 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1601 	find_vmap_lowest_match_check(root, head, size, align);
1602 #endif
1603 
1604 	return nva_start_addr;
1605 }
1606 
1607 /*
1608  * Free a region of KVA allocated by alloc_vmap_area
1609  */
1610 static void free_vmap_area(struct vmap_area *va)
1611 {
1612 	/*
1613 	 * Remove from the busy tree/list.
1614 	 */
1615 	spin_lock(&vmap_area_lock);
1616 	unlink_va(va, &vmap_area_root);
1617 	spin_unlock(&vmap_area_lock);
1618 
1619 	/*
1620 	 * Insert/Merge it back to the free tree/list.
1621 	 */
1622 	spin_lock(&free_vmap_area_lock);
1623 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1624 	spin_unlock(&free_vmap_area_lock);
1625 }
1626 
1627 static inline void
1628 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1629 {
1630 	struct vmap_area *va = NULL;
1631 
1632 	/*
1633 	 * Preload this CPU with one extra vmap_area object. It is used
1634 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1635 	 * a CPU that does an allocation is preloaded.
1636 	 *
1637 	 * We do it in non-atomic context, thus it allows us to use more
1638 	 * permissive allocation masks to be more stable under low memory
1639 	 * condition and high memory pressure.
1640 	 */
1641 	if (!this_cpu_read(ne_fit_preload_node))
1642 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1643 
1644 	spin_lock(lock);
1645 
1646 	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1647 		kmem_cache_free(vmap_area_cachep, va);
1648 }
1649 
1650 /*
1651  * Allocate a region of KVA of the specified size and alignment, within the
1652  * vstart and vend.
1653  */
1654 static struct vmap_area *alloc_vmap_area(unsigned long size,
1655 				unsigned long align,
1656 				unsigned long vstart, unsigned long vend,
1657 				int node, gfp_t gfp_mask,
1658 				unsigned long va_flags)
1659 {
1660 	struct vmap_area *va;
1661 	unsigned long freed;
1662 	unsigned long addr;
1663 	int purged = 0;
1664 	int ret;
1665 
1666 	if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1667 		return ERR_PTR(-EINVAL);
1668 
1669 	if (unlikely(!vmap_initialized))
1670 		return ERR_PTR(-EBUSY);
1671 
1672 	might_sleep();
1673 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1674 
1675 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1676 	if (unlikely(!va))
1677 		return ERR_PTR(-ENOMEM);
1678 
1679 	/*
1680 	 * Only scan the relevant parts containing pointers to other objects
1681 	 * to avoid false negatives.
1682 	 */
1683 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1684 
1685 retry:
1686 	preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1687 	addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1688 		size, align, vstart, vend);
1689 	spin_unlock(&free_vmap_area_lock);
1690 
1691 	trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
1692 
1693 	/*
1694 	 * If an allocation fails, the "vend" address is
1695 	 * returned. Therefore trigger the overflow path.
1696 	 */
1697 	if (unlikely(addr == vend))
1698 		goto overflow;
1699 
1700 	va->va_start = addr;
1701 	va->va_end = addr + size;
1702 	va->vm = NULL;
1703 	va->flags = va_flags;
1704 
1705 	spin_lock(&vmap_area_lock);
1706 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1707 	spin_unlock(&vmap_area_lock);
1708 
1709 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1710 	BUG_ON(va->va_start < vstart);
1711 	BUG_ON(va->va_end > vend);
1712 
1713 	ret = kasan_populate_vmalloc(addr, size);
1714 	if (ret) {
1715 		free_vmap_area(va);
1716 		return ERR_PTR(ret);
1717 	}
1718 
1719 	return va;
1720 
1721 overflow:
1722 	if (!purged) {
1723 		reclaim_and_purge_vmap_areas();
1724 		purged = 1;
1725 		goto retry;
1726 	}
1727 
1728 	freed = 0;
1729 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1730 
1731 	if (freed > 0) {
1732 		purged = 0;
1733 		goto retry;
1734 	}
1735 
1736 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1737 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1738 			size);
1739 
1740 	kmem_cache_free(vmap_area_cachep, va);
1741 	return ERR_PTR(-EBUSY);
1742 }
1743 
1744 int register_vmap_purge_notifier(struct notifier_block *nb)
1745 {
1746 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1747 }
1748 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1749 
1750 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1751 {
1752 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1753 }
1754 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1755 
1756 /*
1757  * lazy_max_pages is the maximum amount of virtual address space we gather up
1758  * before attempting to purge with a TLB flush.
1759  *
1760  * There is a tradeoff here: a larger number will cover more kernel page tables
1761  * and take slightly longer to purge, but it will linearly reduce the number of
1762  * global TLB flushes that must be performed. It would seem natural to scale
1763  * this number up linearly with the number of CPUs (because vmapping activity
1764  * could also scale linearly with the number of CPUs), however it is likely
1765  * that in practice, workloads might be constrained in other ways that mean
1766  * vmap activity will not scale linearly with CPUs. Also, I want to be
1767  * conservative and not introduce a big latency on huge systems, so go with
1768  * a less aggressive log scale. It will still be an improvement over the old
1769  * code, and it will be simple to change the scale factor if we find that it
1770  * becomes a problem on bigger systems.
1771  */
1772 static unsigned long lazy_max_pages(void)
1773 {
1774 	unsigned int log;
1775 
1776 	log = fls(num_online_cpus());
1777 
1778 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1779 }
1780 
1781 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1782 
1783 /*
1784  * Serialize vmap purging.  There is no actual critical section protected
1785  * by this lock, but we want to avoid concurrent calls for performance
1786  * reasons and to make the pcpu_get_vm_areas more deterministic.
1787  */
1788 static DEFINE_MUTEX(vmap_purge_lock);
1789 
1790 /* for per-CPU blocks */
1791 static void purge_fragmented_blocks_allcpus(void);
1792 
1793 /*
1794  * Purges all lazily-freed vmap areas.
1795  */
1796 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1797 {
1798 	unsigned long resched_threshold;
1799 	unsigned int num_purged_areas = 0;
1800 	struct list_head local_purge_list;
1801 	struct vmap_area *va, *n_va;
1802 
1803 	lockdep_assert_held(&vmap_purge_lock);
1804 
1805 	spin_lock(&purge_vmap_area_lock);
1806 	purge_vmap_area_root = RB_ROOT;
1807 	list_replace_init(&purge_vmap_area_list, &local_purge_list);
1808 	spin_unlock(&purge_vmap_area_lock);
1809 
1810 	if (unlikely(list_empty(&local_purge_list)))
1811 		goto out;
1812 
1813 	start = min(start,
1814 		list_first_entry(&local_purge_list,
1815 			struct vmap_area, list)->va_start);
1816 
1817 	end = max(end,
1818 		list_last_entry(&local_purge_list,
1819 			struct vmap_area, list)->va_end);
1820 
1821 	flush_tlb_kernel_range(start, end);
1822 	resched_threshold = lazy_max_pages() << 1;
1823 
1824 	spin_lock(&free_vmap_area_lock);
1825 	list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
1826 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1827 		unsigned long orig_start = va->va_start;
1828 		unsigned long orig_end = va->va_end;
1829 
1830 		/*
1831 		 * Finally insert or merge lazily-freed area. It is
1832 		 * detached and there is no need to "unlink" it from
1833 		 * anything.
1834 		 */
1835 		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1836 				&free_vmap_area_list);
1837 
1838 		if (!va)
1839 			continue;
1840 
1841 		if (is_vmalloc_or_module_addr((void *)orig_start))
1842 			kasan_release_vmalloc(orig_start, orig_end,
1843 					      va->va_start, va->va_end);
1844 
1845 		atomic_long_sub(nr, &vmap_lazy_nr);
1846 		num_purged_areas++;
1847 
1848 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1849 			cond_resched_lock(&free_vmap_area_lock);
1850 	}
1851 	spin_unlock(&free_vmap_area_lock);
1852 
1853 out:
1854 	trace_purge_vmap_area_lazy(start, end, num_purged_areas);
1855 	return num_purged_areas > 0;
1856 }
1857 
1858 /*
1859  * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
1860  */
1861 static void reclaim_and_purge_vmap_areas(void)
1862 
1863 {
1864 	mutex_lock(&vmap_purge_lock);
1865 	purge_fragmented_blocks_allcpus();
1866 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1867 	mutex_unlock(&vmap_purge_lock);
1868 }
1869 
1870 static void drain_vmap_area_work(struct work_struct *work)
1871 {
1872 	unsigned long nr_lazy;
1873 
1874 	do {
1875 		mutex_lock(&vmap_purge_lock);
1876 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1877 		mutex_unlock(&vmap_purge_lock);
1878 
1879 		/* Recheck if further work is required. */
1880 		nr_lazy = atomic_long_read(&vmap_lazy_nr);
1881 	} while (nr_lazy > lazy_max_pages());
1882 }
1883 
1884 /*
1885  * Free a vmap area, caller ensuring that the area has been unmapped,
1886  * unlinked and flush_cache_vunmap had been called for the correct
1887  * range previously.
1888  */
1889 static void free_vmap_area_noflush(struct vmap_area *va)
1890 {
1891 	unsigned long nr_lazy_max = lazy_max_pages();
1892 	unsigned long va_start = va->va_start;
1893 	unsigned long nr_lazy;
1894 
1895 	if (WARN_ON_ONCE(!list_empty(&va->list)))
1896 		return;
1897 
1898 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1899 				PAGE_SHIFT, &vmap_lazy_nr);
1900 
1901 	/*
1902 	 * Merge or place it to the purge tree/list.
1903 	 */
1904 	spin_lock(&purge_vmap_area_lock);
1905 	merge_or_add_vmap_area(va,
1906 		&purge_vmap_area_root, &purge_vmap_area_list);
1907 	spin_unlock(&purge_vmap_area_lock);
1908 
1909 	trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
1910 
1911 	/* After this point, we may free va at any time */
1912 	if (unlikely(nr_lazy > nr_lazy_max))
1913 		schedule_work(&drain_vmap_work);
1914 }
1915 
1916 /*
1917  * Free and unmap a vmap area
1918  */
1919 static void free_unmap_vmap_area(struct vmap_area *va)
1920 {
1921 	flush_cache_vunmap(va->va_start, va->va_end);
1922 	vunmap_range_noflush(va->va_start, va->va_end);
1923 	if (debug_pagealloc_enabled_static())
1924 		flush_tlb_kernel_range(va->va_start, va->va_end);
1925 
1926 	free_vmap_area_noflush(va);
1927 }
1928 
1929 struct vmap_area *find_vmap_area(unsigned long addr)
1930 {
1931 	struct vmap_area *va;
1932 
1933 	spin_lock(&vmap_area_lock);
1934 	va = __find_vmap_area(addr, &vmap_area_root);
1935 	spin_unlock(&vmap_area_lock);
1936 
1937 	return va;
1938 }
1939 
1940 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
1941 {
1942 	struct vmap_area *va;
1943 
1944 	spin_lock(&vmap_area_lock);
1945 	va = __find_vmap_area(addr, &vmap_area_root);
1946 	if (va)
1947 		unlink_va(va, &vmap_area_root);
1948 	spin_unlock(&vmap_area_lock);
1949 
1950 	return va;
1951 }
1952 
1953 /*** Per cpu kva allocator ***/
1954 
1955 /*
1956  * vmap space is limited especially on 32 bit architectures. Ensure there is
1957  * room for at least 16 percpu vmap blocks per CPU.
1958  */
1959 /*
1960  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1961  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1962  * instead (we just need a rough idea)
1963  */
1964 #if BITS_PER_LONG == 32
1965 #define VMALLOC_SPACE		(128UL*1024*1024)
1966 #else
1967 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1968 #endif
1969 
1970 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1971 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1972 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1973 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1974 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1975 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1976 #define VMAP_BBMAP_BITS		\
1977 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1978 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1979 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1980 
1981 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1982 
1983 /*
1984  * Purge threshold to prevent overeager purging of fragmented blocks for
1985  * regular operations: Purge if vb->free is less than 1/4 of the capacity.
1986  */
1987 #define VMAP_PURGE_THRESHOLD	(VMAP_BBMAP_BITS / 4)
1988 
1989 #define VMAP_RAM		0x1 /* indicates vm_map_ram area*/
1990 #define VMAP_BLOCK		0x2 /* mark out the vmap_block sub-type*/
1991 #define VMAP_FLAGS_MASK		0x3
1992 
1993 struct vmap_block_queue {
1994 	spinlock_t lock;
1995 	struct list_head free;
1996 
1997 	/*
1998 	 * An xarray requires an extra memory dynamically to
1999 	 * be allocated. If it is an issue, we can use rb-tree
2000 	 * instead.
2001 	 */
2002 	struct xarray vmap_blocks;
2003 };
2004 
2005 struct vmap_block {
2006 	spinlock_t lock;
2007 	struct vmap_area *va;
2008 	unsigned long free, dirty;
2009 	DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
2010 	unsigned long dirty_min, dirty_max; /*< dirty range */
2011 	struct list_head free_list;
2012 	struct rcu_head rcu_head;
2013 	struct list_head purge;
2014 };
2015 
2016 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
2017 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
2018 
2019 /*
2020  * In order to fast access to any "vmap_block" associated with a
2021  * specific address, we use a hash.
2022  *
2023  * A per-cpu vmap_block_queue is used in both ways, to serialize
2024  * an access to free block chains among CPUs(alloc path) and it
2025  * also acts as a vmap_block hash(alloc/free paths). It means we
2026  * overload it, since we already have the per-cpu array which is
2027  * used as a hash table. When used as a hash a 'cpu' passed to
2028  * per_cpu() is not actually a CPU but rather a hash index.
2029  *
2030  * A hash function is addr_to_vb_xa() which hashes any address
2031  * to a specific index(in a hash) it belongs to. This then uses a
2032  * per_cpu() macro to access an array with generated index.
2033  *
2034  * An example:
2035  *
2036  *  CPU_1  CPU_2  CPU_0
2037  *    |      |      |
2038  *    V      V      V
2039  * 0     10     20     30     40     50     60
2040  * |------|------|------|------|------|------|...<vmap address space>
2041  *   CPU0   CPU1   CPU2   CPU0   CPU1   CPU2
2042  *
2043  * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
2044  *   it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
2045  *
2046  * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
2047  *   it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
2048  *
2049  * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
2050  *   it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
2051  *
2052  * This technique almost always avoids lock contention on insert/remove,
2053  * however xarray spinlocks protect against any contention that remains.
2054  */
2055 static struct xarray *
2056 addr_to_vb_xa(unsigned long addr)
2057 {
2058 	int index = (addr / VMAP_BLOCK_SIZE) % num_possible_cpus();
2059 
2060 	return &per_cpu(vmap_block_queue, index).vmap_blocks;
2061 }
2062 
2063 /*
2064  * We should probably have a fallback mechanism to allocate virtual memory
2065  * out of partially filled vmap blocks. However vmap block sizing should be
2066  * fairly reasonable according to the vmalloc size, so it shouldn't be a
2067  * big problem.
2068  */
2069 
2070 static unsigned long addr_to_vb_idx(unsigned long addr)
2071 {
2072 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2073 	addr /= VMAP_BLOCK_SIZE;
2074 	return addr;
2075 }
2076 
2077 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2078 {
2079 	unsigned long addr;
2080 
2081 	addr = va_start + (pages_off << PAGE_SHIFT);
2082 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2083 	return (void *)addr;
2084 }
2085 
2086 /**
2087  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2088  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
2089  * @order:    how many 2^order pages should be occupied in newly allocated block
2090  * @gfp_mask: flags for the page level allocator
2091  *
2092  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2093  */
2094 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2095 {
2096 	struct vmap_block_queue *vbq;
2097 	struct vmap_block *vb;
2098 	struct vmap_area *va;
2099 	struct xarray *xa;
2100 	unsigned long vb_idx;
2101 	int node, err;
2102 	void *vaddr;
2103 
2104 	node = numa_node_id();
2105 
2106 	vb = kmalloc_node(sizeof(struct vmap_block),
2107 			gfp_mask & GFP_RECLAIM_MASK, node);
2108 	if (unlikely(!vb))
2109 		return ERR_PTR(-ENOMEM);
2110 
2111 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2112 					VMALLOC_START, VMALLOC_END,
2113 					node, gfp_mask,
2114 					VMAP_RAM|VMAP_BLOCK);
2115 	if (IS_ERR(va)) {
2116 		kfree(vb);
2117 		return ERR_CAST(va);
2118 	}
2119 
2120 	vaddr = vmap_block_vaddr(va->va_start, 0);
2121 	spin_lock_init(&vb->lock);
2122 	vb->va = va;
2123 	/* At least something should be left free */
2124 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2125 	bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2126 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
2127 	vb->dirty = 0;
2128 	vb->dirty_min = VMAP_BBMAP_BITS;
2129 	vb->dirty_max = 0;
2130 	bitmap_set(vb->used_map, 0, (1UL << order));
2131 	INIT_LIST_HEAD(&vb->free_list);
2132 
2133 	xa = addr_to_vb_xa(va->va_start);
2134 	vb_idx = addr_to_vb_idx(va->va_start);
2135 	err = xa_insert(xa, vb_idx, vb, gfp_mask);
2136 	if (err) {
2137 		kfree(vb);
2138 		free_vmap_area(va);
2139 		return ERR_PTR(err);
2140 	}
2141 
2142 	vbq = raw_cpu_ptr(&vmap_block_queue);
2143 	spin_lock(&vbq->lock);
2144 	list_add_tail_rcu(&vb->free_list, &vbq->free);
2145 	spin_unlock(&vbq->lock);
2146 
2147 	return vaddr;
2148 }
2149 
2150 static void free_vmap_block(struct vmap_block *vb)
2151 {
2152 	struct vmap_block *tmp;
2153 	struct xarray *xa;
2154 
2155 	xa = addr_to_vb_xa(vb->va->va_start);
2156 	tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2157 	BUG_ON(tmp != vb);
2158 
2159 	spin_lock(&vmap_area_lock);
2160 	unlink_va(vb->va, &vmap_area_root);
2161 	spin_unlock(&vmap_area_lock);
2162 
2163 	free_vmap_area_noflush(vb->va);
2164 	kfree_rcu(vb, rcu_head);
2165 }
2166 
2167 static bool purge_fragmented_block(struct vmap_block *vb,
2168 		struct vmap_block_queue *vbq, struct list_head *purge_list,
2169 		bool force_purge)
2170 {
2171 	if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2172 	    vb->dirty == VMAP_BBMAP_BITS)
2173 		return false;
2174 
2175 	/* Don't overeagerly purge usable blocks unless requested */
2176 	if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2177 		return false;
2178 
2179 	/* prevent further allocs after releasing lock */
2180 	WRITE_ONCE(vb->free, 0);
2181 	/* prevent purging it again */
2182 	WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2183 	vb->dirty_min = 0;
2184 	vb->dirty_max = VMAP_BBMAP_BITS;
2185 	spin_lock(&vbq->lock);
2186 	list_del_rcu(&vb->free_list);
2187 	spin_unlock(&vbq->lock);
2188 	list_add_tail(&vb->purge, purge_list);
2189 	return true;
2190 }
2191 
2192 static void free_purged_blocks(struct list_head *purge_list)
2193 {
2194 	struct vmap_block *vb, *n_vb;
2195 
2196 	list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2197 		list_del(&vb->purge);
2198 		free_vmap_block(vb);
2199 	}
2200 }
2201 
2202 static void purge_fragmented_blocks(int cpu)
2203 {
2204 	LIST_HEAD(purge);
2205 	struct vmap_block *vb;
2206 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2207 
2208 	rcu_read_lock();
2209 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2210 		unsigned long free = READ_ONCE(vb->free);
2211 		unsigned long dirty = READ_ONCE(vb->dirty);
2212 
2213 		if (free + dirty != VMAP_BBMAP_BITS ||
2214 		    dirty == VMAP_BBMAP_BITS)
2215 			continue;
2216 
2217 		spin_lock(&vb->lock);
2218 		purge_fragmented_block(vb, vbq, &purge, true);
2219 		spin_unlock(&vb->lock);
2220 	}
2221 	rcu_read_unlock();
2222 	free_purged_blocks(&purge);
2223 }
2224 
2225 static void purge_fragmented_blocks_allcpus(void)
2226 {
2227 	int cpu;
2228 
2229 	for_each_possible_cpu(cpu)
2230 		purge_fragmented_blocks(cpu);
2231 }
2232 
2233 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2234 {
2235 	struct vmap_block_queue *vbq;
2236 	struct vmap_block *vb;
2237 	void *vaddr = NULL;
2238 	unsigned int order;
2239 
2240 	BUG_ON(offset_in_page(size));
2241 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2242 	if (WARN_ON(size == 0)) {
2243 		/*
2244 		 * Allocating 0 bytes isn't what caller wants since
2245 		 * get_order(0) returns funny result. Just warn and terminate
2246 		 * early.
2247 		 */
2248 		return NULL;
2249 	}
2250 	order = get_order(size);
2251 
2252 	rcu_read_lock();
2253 	vbq = raw_cpu_ptr(&vmap_block_queue);
2254 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2255 		unsigned long pages_off;
2256 
2257 		if (READ_ONCE(vb->free) < (1UL << order))
2258 			continue;
2259 
2260 		spin_lock(&vb->lock);
2261 		if (vb->free < (1UL << order)) {
2262 			spin_unlock(&vb->lock);
2263 			continue;
2264 		}
2265 
2266 		pages_off = VMAP_BBMAP_BITS - vb->free;
2267 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2268 		WRITE_ONCE(vb->free, vb->free - (1UL << order));
2269 		bitmap_set(vb->used_map, pages_off, (1UL << order));
2270 		if (vb->free == 0) {
2271 			spin_lock(&vbq->lock);
2272 			list_del_rcu(&vb->free_list);
2273 			spin_unlock(&vbq->lock);
2274 		}
2275 
2276 		spin_unlock(&vb->lock);
2277 		break;
2278 	}
2279 
2280 	rcu_read_unlock();
2281 
2282 	/* Allocate new block if nothing was found */
2283 	if (!vaddr)
2284 		vaddr = new_vmap_block(order, gfp_mask);
2285 
2286 	return vaddr;
2287 }
2288 
2289 static void vb_free(unsigned long addr, unsigned long size)
2290 {
2291 	unsigned long offset;
2292 	unsigned int order;
2293 	struct vmap_block *vb;
2294 	struct xarray *xa;
2295 
2296 	BUG_ON(offset_in_page(size));
2297 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2298 
2299 	flush_cache_vunmap(addr, addr + size);
2300 
2301 	order = get_order(size);
2302 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2303 
2304 	xa = addr_to_vb_xa(addr);
2305 	vb = xa_load(xa, addr_to_vb_idx(addr));
2306 
2307 	spin_lock(&vb->lock);
2308 	bitmap_clear(vb->used_map, offset, (1UL << order));
2309 	spin_unlock(&vb->lock);
2310 
2311 	vunmap_range_noflush(addr, addr + size);
2312 
2313 	if (debug_pagealloc_enabled_static())
2314 		flush_tlb_kernel_range(addr, addr + size);
2315 
2316 	spin_lock(&vb->lock);
2317 
2318 	/* Expand the not yet TLB flushed dirty range */
2319 	vb->dirty_min = min(vb->dirty_min, offset);
2320 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2321 
2322 	WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2323 	if (vb->dirty == VMAP_BBMAP_BITS) {
2324 		BUG_ON(vb->free);
2325 		spin_unlock(&vb->lock);
2326 		free_vmap_block(vb);
2327 	} else
2328 		spin_unlock(&vb->lock);
2329 }
2330 
2331 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2332 {
2333 	LIST_HEAD(purge_list);
2334 	int cpu;
2335 
2336 	if (unlikely(!vmap_initialized))
2337 		return;
2338 
2339 	mutex_lock(&vmap_purge_lock);
2340 
2341 	for_each_possible_cpu(cpu) {
2342 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2343 		struct vmap_block *vb;
2344 		unsigned long idx;
2345 
2346 		rcu_read_lock();
2347 		xa_for_each(&vbq->vmap_blocks, idx, vb) {
2348 			spin_lock(&vb->lock);
2349 
2350 			/*
2351 			 * Try to purge a fragmented block first. If it's
2352 			 * not purgeable, check whether there is dirty
2353 			 * space to be flushed.
2354 			 */
2355 			if (!purge_fragmented_block(vb, vbq, &purge_list, false) &&
2356 			    vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2357 				unsigned long va_start = vb->va->va_start;
2358 				unsigned long s, e;
2359 
2360 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2361 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2362 
2363 				start = min(s, start);
2364 				end   = max(e, end);
2365 
2366 				/* Prevent that this is flushed again */
2367 				vb->dirty_min = VMAP_BBMAP_BITS;
2368 				vb->dirty_max = 0;
2369 
2370 				flush = 1;
2371 			}
2372 			spin_unlock(&vb->lock);
2373 		}
2374 		rcu_read_unlock();
2375 	}
2376 	free_purged_blocks(&purge_list);
2377 
2378 	if (!__purge_vmap_area_lazy(start, end) && flush)
2379 		flush_tlb_kernel_range(start, end);
2380 	mutex_unlock(&vmap_purge_lock);
2381 }
2382 
2383 /**
2384  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2385  *
2386  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2387  * to amortize TLB flushing overheads. What this means is that any page you
2388  * have now, may, in a former life, have been mapped into kernel virtual
2389  * address by the vmap layer and so there might be some CPUs with TLB entries
2390  * still referencing that page (additional to the regular 1:1 kernel mapping).
2391  *
2392  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2393  * be sure that none of the pages we have control over will have any aliases
2394  * from the vmap layer.
2395  */
2396 void vm_unmap_aliases(void)
2397 {
2398 	unsigned long start = ULONG_MAX, end = 0;
2399 	int flush = 0;
2400 
2401 	_vm_unmap_aliases(start, end, flush);
2402 }
2403 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2404 
2405 /**
2406  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2407  * @mem: the pointer returned by vm_map_ram
2408  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2409  */
2410 void vm_unmap_ram(const void *mem, unsigned int count)
2411 {
2412 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2413 	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2414 	struct vmap_area *va;
2415 
2416 	might_sleep();
2417 	BUG_ON(!addr);
2418 	BUG_ON(addr < VMALLOC_START);
2419 	BUG_ON(addr > VMALLOC_END);
2420 	BUG_ON(!PAGE_ALIGNED(addr));
2421 
2422 	kasan_poison_vmalloc(mem, size);
2423 
2424 	if (likely(count <= VMAP_MAX_ALLOC)) {
2425 		debug_check_no_locks_freed(mem, size);
2426 		vb_free(addr, size);
2427 		return;
2428 	}
2429 
2430 	va = find_unlink_vmap_area(addr);
2431 	if (WARN_ON_ONCE(!va))
2432 		return;
2433 
2434 	debug_check_no_locks_freed((void *)va->va_start,
2435 				    (va->va_end - va->va_start));
2436 	free_unmap_vmap_area(va);
2437 }
2438 EXPORT_SYMBOL(vm_unmap_ram);
2439 
2440 /**
2441  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2442  * @pages: an array of pointers to the pages to be mapped
2443  * @count: number of pages
2444  * @node: prefer to allocate data structures on this node
2445  *
2446  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2447  * faster than vmap so it's good.  But if you mix long-life and short-life
2448  * objects with vm_map_ram(), it could consume lots of address space through
2449  * fragmentation (especially on a 32bit machine).  You could see failures in
2450  * the end.  Please use this function for short-lived objects.
2451  *
2452  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2453  */
2454 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2455 {
2456 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2457 	unsigned long addr;
2458 	void *mem;
2459 
2460 	if (likely(count <= VMAP_MAX_ALLOC)) {
2461 		mem = vb_alloc(size, GFP_KERNEL);
2462 		if (IS_ERR(mem))
2463 			return NULL;
2464 		addr = (unsigned long)mem;
2465 	} else {
2466 		struct vmap_area *va;
2467 		va = alloc_vmap_area(size, PAGE_SIZE,
2468 				VMALLOC_START, VMALLOC_END,
2469 				node, GFP_KERNEL, VMAP_RAM);
2470 		if (IS_ERR(va))
2471 			return NULL;
2472 
2473 		addr = va->va_start;
2474 		mem = (void *)addr;
2475 	}
2476 
2477 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2478 				pages, PAGE_SHIFT) < 0) {
2479 		vm_unmap_ram(mem, count);
2480 		return NULL;
2481 	}
2482 
2483 	/*
2484 	 * Mark the pages as accessible, now that they are mapped.
2485 	 * With hardware tag-based KASAN, marking is skipped for
2486 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2487 	 */
2488 	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2489 
2490 	return mem;
2491 }
2492 EXPORT_SYMBOL(vm_map_ram);
2493 
2494 static struct vm_struct *vmlist __initdata;
2495 
2496 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2497 {
2498 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2499 	return vm->page_order;
2500 #else
2501 	return 0;
2502 #endif
2503 }
2504 
2505 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2506 {
2507 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2508 	vm->page_order = order;
2509 #else
2510 	BUG_ON(order != 0);
2511 #endif
2512 }
2513 
2514 /**
2515  * vm_area_add_early - add vmap area early during boot
2516  * @vm: vm_struct to add
2517  *
2518  * This function is used to add fixed kernel vm area to vmlist before
2519  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2520  * should contain proper values and the other fields should be zero.
2521  *
2522  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2523  */
2524 void __init vm_area_add_early(struct vm_struct *vm)
2525 {
2526 	struct vm_struct *tmp, **p;
2527 
2528 	BUG_ON(vmap_initialized);
2529 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2530 		if (tmp->addr >= vm->addr) {
2531 			BUG_ON(tmp->addr < vm->addr + vm->size);
2532 			break;
2533 		} else
2534 			BUG_ON(tmp->addr + tmp->size > vm->addr);
2535 	}
2536 	vm->next = *p;
2537 	*p = vm;
2538 }
2539 
2540 /**
2541  * vm_area_register_early - register vmap area early during boot
2542  * @vm: vm_struct to register
2543  * @align: requested alignment
2544  *
2545  * This function is used to register kernel vm area before
2546  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
2547  * proper values on entry and other fields should be zero.  On return,
2548  * vm->addr contains the allocated address.
2549  *
2550  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2551  */
2552 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2553 {
2554 	unsigned long addr = ALIGN(VMALLOC_START, align);
2555 	struct vm_struct *cur, **p;
2556 
2557 	BUG_ON(vmap_initialized);
2558 
2559 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2560 		if ((unsigned long)cur->addr - addr >= vm->size)
2561 			break;
2562 		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2563 	}
2564 
2565 	BUG_ON(addr > VMALLOC_END - vm->size);
2566 	vm->addr = (void *)addr;
2567 	vm->next = *p;
2568 	*p = vm;
2569 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2570 }
2571 
2572 static void vmap_init_free_space(void)
2573 {
2574 	unsigned long vmap_start = 1;
2575 	const unsigned long vmap_end = ULONG_MAX;
2576 	struct vmap_area *busy, *free;
2577 
2578 	/*
2579 	 *     B     F     B     B     B     F
2580 	 * -|-----|.....|-----|-----|-----|.....|-
2581 	 *  |           The KVA space           |
2582 	 *  |<--------------------------------->|
2583 	 */
2584 	list_for_each_entry(busy, &vmap_area_list, list) {
2585 		if (busy->va_start - vmap_start > 0) {
2586 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2587 			if (!WARN_ON_ONCE(!free)) {
2588 				free->va_start = vmap_start;
2589 				free->va_end = busy->va_start;
2590 
2591 				insert_vmap_area_augment(free, NULL,
2592 					&free_vmap_area_root,
2593 						&free_vmap_area_list);
2594 			}
2595 		}
2596 
2597 		vmap_start = busy->va_end;
2598 	}
2599 
2600 	if (vmap_end - vmap_start > 0) {
2601 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2602 		if (!WARN_ON_ONCE(!free)) {
2603 			free->va_start = vmap_start;
2604 			free->va_end = vmap_end;
2605 
2606 			insert_vmap_area_augment(free, NULL,
2607 				&free_vmap_area_root,
2608 					&free_vmap_area_list);
2609 		}
2610 	}
2611 }
2612 
2613 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2614 	struct vmap_area *va, unsigned long flags, const void *caller)
2615 {
2616 	vm->flags = flags;
2617 	vm->addr = (void *)va->va_start;
2618 	vm->size = va->va_end - va->va_start;
2619 	vm->caller = caller;
2620 	va->vm = vm;
2621 }
2622 
2623 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2624 			      unsigned long flags, const void *caller)
2625 {
2626 	spin_lock(&vmap_area_lock);
2627 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2628 	spin_unlock(&vmap_area_lock);
2629 }
2630 
2631 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2632 {
2633 	/*
2634 	 * Before removing VM_UNINITIALIZED,
2635 	 * we should make sure that vm has proper values.
2636 	 * Pair with smp_rmb() in show_numa_info().
2637 	 */
2638 	smp_wmb();
2639 	vm->flags &= ~VM_UNINITIALIZED;
2640 }
2641 
2642 static struct vm_struct *__get_vm_area_node(unsigned long size,
2643 		unsigned long align, unsigned long shift, unsigned long flags,
2644 		unsigned long start, unsigned long end, int node,
2645 		gfp_t gfp_mask, const void *caller)
2646 {
2647 	struct vmap_area *va;
2648 	struct vm_struct *area;
2649 	unsigned long requested_size = size;
2650 
2651 	BUG_ON(in_interrupt());
2652 	size = ALIGN(size, 1ul << shift);
2653 	if (unlikely(!size))
2654 		return NULL;
2655 
2656 	if (flags & VM_IOREMAP)
2657 		align = 1ul << clamp_t(int, get_count_order_long(size),
2658 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2659 
2660 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2661 	if (unlikely(!area))
2662 		return NULL;
2663 
2664 	if (!(flags & VM_NO_GUARD))
2665 		size += PAGE_SIZE;
2666 
2667 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0);
2668 	if (IS_ERR(va)) {
2669 		kfree(area);
2670 		return NULL;
2671 	}
2672 
2673 	setup_vmalloc_vm(area, va, flags, caller);
2674 
2675 	/*
2676 	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2677 	 * best-effort approach, as they can be mapped outside of vmalloc code.
2678 	 * For VM_ALLOC mappings, the pages are marked as accessible after
2679 	 * getting mapped in __vmalloc_node_range().
2680 	 * With hardware tag-based KASAN, marking is skipped for
2681 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2682 	 */
2683 	if (!(flags & VM_ALLOC))
2684 		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2685 						    KASAN_VMALLOC_PROT_NORMAL);
2686 
2687 	return area;
2688 }
2689 
2690 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2691 				       unsigned long start, unsigned long end,
2692 				       const void *caller)
2693 {
2694 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2695 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2696 }
2697 
2698 /**
2699  * get_vm_area - reserve a contiguous kernel virtual area
2700  * @size:	 size of the area
2701  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2702  *
2703  * Search an area of @size in the kernel virtual mapping area,
2704  * and reserved it for out purposes.  Returns the area descriptor
2705  * on success or %NULL on failure.
2706  *
2707  * Return: the area descriptor on success or %NULL on failure.
2708  */
2709 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2710 {
2711 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2712 				  VMALLOC_START, VMALLOC_END,
2713 				  NUMA_NO_NODE, GFP_KERNEL,
2714 				  __builtin_return_address(0));
2715 }
2716 
2717 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2718 				const void *caller)
2719 {
2720 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2721 				  VMALLOC_START, VMALLOC_END,
2722 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2723 }
2724 
2725 /**
2726  * find_vm_area - find a continuous kernel virtual area
2727  * @addr:	  base address
2728  *
2729  * Search for the kernel VM area starting at @addr, and return it.
2730  * It is up to the caller to do all required locking to keep the returned
2731  * pointer valid.
2732  *
2733  * Return: the area descriptor on success or %NULL on failure.
2734  */
2735 struct vm_struct *find_vm_area(const void *addr)
2736 {
2737 	struct vmap_area *va;
2738 
2739 	va = find_vmap_area((unsigned long)addr);
2740 	if (!va)
2741 		return NULL;
2742 
2743 	return va->vm;
2744 }
2745 
2746 /**
2747  * remove_vm_area - find and remove a continuous kernel virtual area
2748  * @addr:	    base address
2749  *
2750  * Search for the kernel VM area starting at @addr, and remove it.
2751  * This function returns the found VM area, but using it is NOT safe
2752  * on SMP machines, except for its size or flags.
2753  *
2754  * Return: the area descriptor on success or %NULL on failure.
2755  */
2756 struct vm_struct *remove_vm_area(const void *addr)
2757 {
2758 	struct vmap_area *va;
2759 	struct vm_struct *vm;
2760 
2761 	might_sleep();
2762 
2763 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2764 			addr))
2765 		return NULL;
2766 
2767 	va = find_unlink_vmap_area((unsigned long)addr);
2768 	if (!va || !va->vm)
2769 		return NULL;
2770 	vm = va->vm;
2771 
2772 	debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
2773 	debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
2774 	kasan_free_module_shadow(vm);
2775 	kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
2776 
2777 	free_unmap_vmap_area(va);
2778 	return vm;
2779 }
2780 
2781 static inline void set_area_direct_map(const struct vm_struct *area,
2782 				       int (*set_direct_map)(struct page *page))
2783 {
2784 	int i;
2785 
2786 	/* HUGE_VMALLOC passes small pages to set_direct_map */
2787 	for (i = 0; i < area->nr_pages; i++)
2788 		if (page_address(area->pages[i]))
2789 			set_direct_map(area->pages[i]);
2790 }
2791 
2792 /*
2793  * Flush the vm mapping and reset the direct map.
2794  */
2795 static void vm_reset_perms(struct vm_struct *area)
2796 {
2797 	unsigned long start = ULONG_MAX, end = 0;
2798 	unsigned int page_order = vm_area_page_order(area);
2799 	int flush_dmap = 0;
2800 	int i;
2801 
2802 	/*
2803 	 * Find the start and end range of the direct mappings to make sure that
2804 	 * the vm_unmap_aliases() flush includes the direct map.
2805 	 */
2806 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2807 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2808 
2809 		if (addr) {
2810 			unsigned long page_size;
2811 
2812 			page_size = PAGE_SIZE << page_order;
2813 			start = min(addr, start);
2814 			end = max(addr + page_size, end);
2815 			flush_dmap = 1;
2816 		}
2817 	}
2818 
2819 	/*
2820 	 * Set direct map to something invalid so that it won't be cached if
2821 	 * there are any accesses after the TLB flush, then flush the TLB and
2822 	 * reset the direct map permissions to the default.
2823 	 */
2824 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2825 	_vm_unmap_aliases(start, end, flush_dmap);
2826 	set_area_direct_map(area, set_direct_map_default_noflush);
2827 }
2828 
2829 static void delayed_vfree_work(struct work_struct *w)
2830 {
2831 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
2832 	struct llist_node *t, *llnode;
2833 
2834 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
2835 		vfree(llnode);
2836 }
2837 
2838 /**
2839  * vfree_atomic - release memory allocated by vmalloc()
2840  * @addr:	  memory base address
2841  *
2842  * This one is just like vfree() but can be called in any atomic context
2843  * except NMIs.
2844  */
2845 void vfree_atomic(const void *addr)
2846 {
2847 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2848 
2849 	BUG_ON(in_nmi());
2850 	kmemleak_free(addr);
2851 
2852 	/*
2853 	 * Use raw_cpu_ptr() because this can be called from preemptible
2854 	 * context. Preemption is absolutely fine here, because the llist_add()
2855 	 * implementation is lockless, so it works even if we are adding to
2856 	 * another cpu's list. schedule_work() should be fine with this too.
2857 	 */
2858 	if (addr && llist_add((struct llist_node *)addr, &p->list))
2859 		schedule_work(&p->wq);
2860 }
2861 
2862 /**
2863  * vfree - Release memory allocated by vmalloc()
2864  * @addr:  Memory base address
2865  *
2866  * Free the virtually continuous memory area starting at @addr, as obtained
2867  * from one of the vmalloc() family of APIs.  This will usually also free the
2868  * physical memory underlying the virtual allocation, but that memory is
2869  * reference counted, so it will not be freed until the last user goes away.
2870  *
2871  * If @addr is NULL, no operation is performed.
2872  *
2873  * Context:
2874  * May sleep if called *not* from interrupt context.
2875  * Must not be called in NMI context (strictly speaking, it could be
2876  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2877  * conventions for vfree() arch-dependent would be a really bad idea).
2878  */
2879 void vfree(const void *addr)
2880 {
2881 	struct vm_struct *vm;
2882 	int i;
2883 
2884 	if (unlikely(in_interrupt())) {
2885 		vfree_atomic(addr);
2886 		return;
2887 	}
2888 
2889 	BUG_ON(in_nmi());
2890 	kmemleak_free(addr);
2891 	might_sleep();
2892 
2893 	if (!addr)
2894 		return;
2895 
2896 	vm = remove_vm_area(addr);
2897 	if (unlikely(!vm)) {
2898 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2899 				addr);
2900 		return;
2901 	}
2902 
2903 	if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
2904 		vm_reset_perms(vm);
2905 	for (i = 0; i < vm->nr_pages; i++) {
2906 		struct page *page = vm->pages[i];
2907 
2908 		BUG_ON(!page);
2909 		mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2910 		/*
2911 		 * High-order allocs for huge vmallocs are split, so
2912 		 * can be freed as an array of order-0 allocations
2913 		 */
2914 		__free_page(page);
2915 		cond_resched();
2916 	}
2917 	atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
2918 	kvfree(vm->pages);
2919 	kfree(vm);
2920 }
2921 EXPORT_SYMBOL(vfree);
2922 
2923 /**
2924  * vunmap - release virtual mapping obtained by vmap()
2925  * @addr:   memory base address
2926  *
2927  * Free the virtually contiguous memory area starting at @addr,
2928  * which was created from the page array passed to vmap().
2929  *
2930  * Must not be called in interrupt context.
2931  */
2932 void vunmap(const void *addr)
2933 {
2934 	struct vm_struct *vm;
2935 
2936 	BUG_ON(in_interrupt());
2937 	might_sleep();
2938 
2939 	if (!addr)
2940 		return;
2941 	vm = remove_vm_area(addr);
2942 	if (unlikely(!vm)) {
2943 		WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
2944 				addr);
2945 		return;
2946 	}
2947 	kfree(vm);
2948 }
2949 EXPORT_SYMBOL(vunmap);
2950 
2951 /**
2952  * vmap - map an array of pages into virtually contiguous space
2953  * @pages: array of page pointers
2954  * @count: number of pages to map
2955  * @flags: vm_area->flags
2956  * @prot: page protection for the mapping
2957  *
2958  * Maps @count pages from @pages into contiguous kernel virtual space.
2959  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2960  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2961  * are transferred from the caller to vmap(), and will be freed / dropped when
2962  * vfree() is called on the return value.
2963  *
2964  * Return: the address of the area or %NULL on failure
2965  */
2966 void *vmap(struct page **pages, unsigned int count,
2967 	   unsigned long flags, pgprot_t prot)
2968 {
2969 	struct vm_struct *area;
2970 	unsigned long addr;
2971 	unsigned long size;		/* In bytes */
2972 
2973 	might_sleep();
2974 
2975 	if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
2976 		return NULL;
2977 
2978 	/*
2979 	 * Your top guard is someone else's bottom guard. Not having a top
2980 	 * guard compromises someone else's mappings too.
2981 	 */
2982 	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2983 		flags &= ~VM_NO_GUARD;
2984 
2985 	if (count > totalram_pages())
2986 		return NULL;
2987 
2988 	size = (unsigned long)count << PAGE_SHIFT;
2989 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2990 	if (!area)
2991 		return NULL;
2992 
2993 	addr = (unsigned long)area->addr;
2994 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2995 				pages, PAGE_SHIFT) < 0) {
2996 		vunmap(area->addr);
2997 		return NULL;
2998 	}
2999 
3000 	if (flags & VM_MAP_PUT_PAGES) {
3001 		area->pages = pages;
3002 		area->nr_pages = count;
3003 	}
3004 	return area->addr;
3005 }
3006 EXPORT_SYMBOL(vmap);
3007 
3008 #ifdef CONFIG_VMAP_PFN
3009 struct vmap_pfn_data {
3010 	unsigned long	*pfns;
3011 	pgprot_t	prot;
3012 	unsigned int	idx;
3013 };
3014 
3015 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
3016 {
3017 	struct vmap_pfn_data *data = private;
3018 	unsigned long pfn = data->pfns[data->idx];
3019 	pte_t ptent;
3020 
3021 	if (WARN_ON_ONCE(pfn_valid(pfn)))
3022 		return -EINVAL;
3023 
3024 	ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
3025 	set_pte_at(&init_mm, addr, pte, ptent);
3026 
3027 	data->idx++;
3028 	return 0;
3029 }
3030 
3031 /**
3032  * vmap_pfn - map an array of PFNs into virtually contiguous space
3033  * @pfns: array of PFNs
3034  * @count: number of pages to map
3035  * @prot: page protection for the mapping
3036  *
3037  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
3038  * the start address of the mapping.
3039  */
3040 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
3041 {
3042 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
3043 	struct vm_struct *area;
3044 
3045 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
3046 			__builtin_return_address(0));
3047 	if (!area)
3048 		return NULL;
3049 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3050 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
3051 		free_vm_area(area);
3052 		return NULL;
3053 	}
3054 
3055 	flush_cache_vmap((unsigned long)area->addr,
3056 			 (unsigned long)area->addr + count * PAGE_SIZE);
3057 
3058 	return area->addr;
3059 }
3060 EXPORT_SYMBOL_GPL(vmap_pfn);
3061 #endif /* CONFIG_VMAP_PFN */
3062 
3063 static inline unsigned int
3064 vm_area_alloc_pages(gfp_t gfp, int nid,
3065 		unsigned int order, unsigned int nr_pages, struct page **pages)
3066 {
3067 	unsigned int nr_allocated = 0;
3068 	gfp_t alloc_gfp = gfp;
3069 	bool nofail = false;
3070 	struct page *page;
3071 	int i;
3072 
3073 	/*
3074 	 * For order-0 pages we make use of bulk allocator, if
3075 	 * the page array is partly or not at all populated due
3076 	 * to fails, fallback to a single page allocator that is
3077 	 * more permissive.
3078 	 */
3079 	if (!order) {
3080 		/* bulk allocator doesn't support nofail req. officially */
3081 		gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
3082 
3083 		while (nr_allocated < nr_pages) {
3084 			unsigned int nr, nr_pages_request;
3085 
3086 			/*
3087 			 * A maximum allowed request is hard-coded and is 100
3088 			 * pages per call. That is done in order to prevent a
3089 			 * long preemption off scenario in the bulk-allocator
3090 			 * so the range is [1:100].
3091 			 */
3092 			nr_pages_request = min(100U, nr_pages - nr_allocated);
3093 
3094 			/* memory allocation should consider mempolicy, we can't
3095 			 * wrongly use nearest node when nid == NUMA_NO_NODE,
3096 			 * otherwise memory may be allocated in only one node,
3097 			 * but mempolicy wants to alloc memory by interleaving.
3098 			 */
3099 			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3100 				nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
3101 							nr_pages_request,
3102 							pages + nr_allocated);
3103 
3104 			else
3105 				nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
3106 							nr_pages_request,
3107 							pages + nr_allocated);
3108 
3109 			nr_allocated += nr;
3110 			cond_resched();
3111 
3112 			/*
3113 			 * If zero or pages were obtained partly,
3114 			 * fallback to a single page allocator.
3115 			 */
3116 			if (nr != nr_pages_request)
3117 				break;
3118 		}
3119 	} else if (gfp & __GFP_NOFAIL) {
3120 		/*
3121 		 * Higher order nofail allocations are really expensive and
3122 		 * potentially dangerous (pre-mature OOM, disruptive reclaim
3123 		 * and compaction etc.
3124 		 */
3125 		alloc_gfp &= ~__GFP_NOFAIL;
3126 		nofail = true;
3127 	}
3128 
3129 	/* High-order pages or fallback path if "bulk" fails. */
3130 	while (nr_allocated < nr_pages) {
3131 		if (fatal_signal_pending(current))
3132 			break;
3133 
3134 		if (nid == NUMA_NO_NODE)
3135 			page = alloc_pages(alloc_gfp, order);
3136 		else
3137 			page = alloc_pages_node(nid, alloc_gfp, order);
3138 		if (unlikely(!page)) {
3139 			if (!nofail)
3140 				break;
3141 
3142 			/* fall back to the zero order allocations */
3143 			alloc_gfp |= __GFP_NOFAIL;
3144 			order = 0;
3145 			continue;
3146 		}
3147 
3148 		/*
3149 		 * Higher order allocations must be able to be treated as
3150 		 * indepdenent small pages by callers (as they can with
3151 		 * small-page vmallocs). Some drivers do their own refcounting
3152 		 * on vmalloc_to_page() pages, some use page->mapping,
3153 		 * page->lru, etc.
3154 		 */
3155 		if (order)
3156 			split_page(page, order);
3157 
3158 		/*
3159 		 * Careful, we allocate and map page-order pages, but
3160 		 * tracking is done per PAGE_SIZE page so as to keep the
3161 		 * vm_struct APIs independent of the physical/mapped size.
3162 		 */
3163 		for (i = 0; i < (1U << order); i++)
3164 			pages[nr_allocated + i] = page + i;
3165 
3166 		cond_resched();
3167 		nr_allocated += 1U << order;
3168 	}
3169 
3170 	return nr_allocated;
3171 }
3172 
3173 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3174 				 pgprot_t prot, unsigned int page_shift,
3175 				 int node)
3176 {
3177 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3178 	bool nofail = gfp_mask & __GFP_NOFAIL;
3179 	unsigned long addr = (unsigned long)area->addr;
3180 	unsigned long size = get_vm_area_size(area);
3181 	unsigned long array_size;
3182 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
3183 	unsigned int page_order;
3184 	unsigned int flags;
3185 	int ret;
3186 
3187 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3188 
3189 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3190 		gfp_mask |= __GFP_HIGHMEM;
3191 
3192 	/* Please note that the recursion is strictly bounded. */
3193 	if (array_size > PAGE_SIZE) {
3194 		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
3195 					area->caller);
3196 	} else {
3197 		area->pages = kmalloc_node(array_size, nested_gfp, node);
3198 	}
3199 
3200 	if (!area->pages) {
3201 		warn_alloc(gfp_mask, NULL,
3202 			"vmalloc error: size %lu, failed to allocated page array size %lu",
3203 			nr_small_pages * PAGE_SIZE, array_size);
3204 		free_vm_area(area);
3205 		return NULL;
3206 	}
3207 
3208 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3209 	page_order = vm_area_page_order(area);
3210 
3211 	area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3212 		node, page_order, nr_small_pages, area->pages);
3213 
3214 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3215 	if (gfp_mask & __GFP_ACCOUNT) {
3216 		int i;
3217 
3218 		for (i = 0; i < area->nr_pages; i++)
3219 			mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3220 	}
3221 
3222 	/*
3223 	 * If not enough pages were obtained to accomplish an
3224 	 * allocation request, free them via vfree() if any.
3225 	 */
3226 	if (area->nr_pages != nr_small_pages) {
3227 		/*
3228 		 * vm_area_alloc_pages() can fail due to insufficient memory but
3229 		 * also:-
3230 		 *
3231 		 * - a pending fatal signal
3232 		 * - insufficient huge page-order pages
3233 		 *
3234 		 * Since we always retry allocations at order-0 in the huge page
3235 		 * case a warning for either is spurious.
3236 		 */
3237 		if (!fatal_signal_pending(current) && page_order == 0)
3238 			warn_alloc(gfp_mask, NULL,
3239 				"vmalloc error: size %lu, failed to allocate pages",
3240 				area->nr_pages * PAGE_SIZE);
3241 		goto fail;
3242 	}
3243 
3244 	/*
3245 	 * page tables allocations ignore external gfp mask, enforce it
3246 	 * by the scope API
3247 	 */
3248 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3249 		flags = memalloc_nofs_save();
3250 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3251 		flags = memalloc_noio_save();
3252 
3253 	do {
3254 		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3255 			page_shift);
3256 		if (nofail && (ret < 0))
3257 			schedule_timeout_uninterruptible(1);
3258 	} while (nofail && (ret < 0));
3259 
3260 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3261 		memalloc_nofs_restore(flags);
3262 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3263 		memalloc_noio_restore(flags);
3264 
3265 	if (ret < 0) {
3266 		warn_alloc(gfp_mask, NULL,
3267 			"vmalloc error: size %lu, failed to map pages",
3268 			area->nr_pages * PAGE_SIZE);
3269 		goto fail;
3270 	}
3271 
3272 	return area->addr;
3273 
3274 fail:
3275 	vfree(area->addr);
3276 	return NULL;
3277 }
3278 
3279 /**
3280  * __vmalloc_node_range - allocate virtually contiguous memory
3281  * @size:		  allocation size
3282  * @align:		  desired alignment
3283  * @start:		  vm area range start
3284  * @end:		  vm area range end
3285  * @gfp_mask:		  flags for the page level allocator
3286  * @prot:		  protection mask for the allocated pages
3287  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3288  * @node:		  node to use for allocation or NUMA_NO_NODE
3289  * @caller:		  caller's return address
3290  *
3291  * Allocate enough pages to cover @size from the page level
3292  * allocator with @gfp_mask flags. Please note that the full set of gfp
3293  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3294  * supported.
3295  * Zone modifiers are not supported. From the reclaim modifiers
3296  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3297  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3298  * __GFP_RETRY_MAYFAIL are not supported).
3299  *
3300  * __GFP_NOWARN can be used to suppress failures messages.
3301  *
3302  * Map them into contiguous kernel virtual space, using a pagetable
3303  * protection of @prot.
3304  *
3305  * Return: the address of the area or %NULL on failure
3306  */
3307 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3308 			unsigned long start, unsigned long end, gfp_t gfp_mask,
3309 			pgprot_t prot, unsigned long vm_flags, int node,
3310 			const void *caller)
3311 {
3312 	struct vm_struct *area;
3313 	void *ret;
3314 	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3315 	unsigned long real_size = size;
3316 	unsigned long real_align = align;
3317 	unsigned int shift = PAGE_SHIFT;
3318 
3319 	if (WARN_ON_ONCE(!size))
3320 		return NULL;
3321 
3322 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3323 		warn_alloc(gfp_mask, NULL,
3324 			"vmalloc error: size %lu, exceeds total pages",
3325 			real_size);
3326 		return NULL;
3327 	}
3328 
3329 	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3330 		unsigned long size_per_node;
3331 
3332 		/*
3333 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3334 		 * others like modules don't yet expect huge pages in
3335 		 * their allocations due to apply_to_page_range not
3336 		 * supporting them.
3337 		 */
3338 
3339 		size_per_node = size;
3340 		if (node == NUMA_NO_NODE)
3341 			size_per_node /= num_online_nodes();
3342 		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3343 			shift = PMD_SHIFT;
3344 		else
3345 			shift = arch_vmap_pte_supported_shift(size_per_node);
3346 
3347 		align = max(real_align, 1UL << shift);
3348 		size = ALIGN(real_size, 1UL << shift);
3349 	}
3350 
3351 again:
3352 	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3353 				  VM_UNINITIALIZED | vm_flags, start, end, node,
3354 				  gfp_mask, caller);
3355 	if (!area) {
3356 		bool nofail = gfp_mask & __GFP_NOFAIL;
3357 		warn_alloc(gfp_mask, NULL,
3358 			"vmalloc error: size %lu, vm_struct allocation failed%s",
3359 			real_size, (nofail) ? ". Retrying." : "");
3360 		if (nofail) {
3361 			schedule_timeout_uninterruptible(1);
3362 			goto again;
3363 		}
3364 		goto fail;
3365 	}
3366 
3367 	/*
3368 	 * Prepare arguments for __vmalloc_area_node() and
3369 	 * kasan_unpoison_vmalloc().
3370 	 */
3371 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3372 		if (kasan_hw_tags_enabled()) {
3373 			/*
3374 			 * Modify protection bits to allow tagging.
3375 			 * This must be done before mapping.
3376 			 */
3377 			prot = arch_vmap_pgprot_tagged(prot);
3378 
3379 			/*
3380 			 * Skip page_alloc poisoning and zeroing for physical
3381 			 * pages backing VM_ALLOC mapping. Memory is instead
3382 			 * poisoned and zeroed by kasan_unpoison_vmalloc().
3383 			 */
3384 			gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
3385 		}
3386 
3387 		/* Take note that the mapping is PAGE_KERNEL. */
3388 		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3389 	}
3390 
3391 	/* Allocate physical pages and map them into vmalloc space. */
3392 	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3393 	if (!ret)
3394 		goto fail;
3395 
3396 	/*
3397 	 * Mark the pages as accessible, now that they are mapped.
3398 	 * The condition for setting KASAN_VMALLOC_INIT should complement the
3399 	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3400 	 * to make sure that memory is initialized under the same conditions.
3401 	 * Tag-based KASAN modes only assign tags to normal non-executable
3402 	 * allocations, see __kasan_unpoison_vmalloc().
3403 	 */
3404 	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3405 	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3406 	    (gfp_mask & __GFP_SKIP_ZERO))
3407 		kasan_flags |= KASAN_VMALLOC_INIT;
3408 	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3409 	area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3410 
3411 	/*
3412 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3413 	 * flag. It means that vm_struct is not fully initialized.
3414 	 * Now, it is fully initialized, so remove this flag here.
3415 	 */
3416 	clear_vm_uninitialized_flag(area);
3417 
3418 	size = PAGE_ALIGN(size);
3419 	if (!(vm_flags & VM_DEFER_KMEMLEAK))
3420 		kmemleak_vmalloc(area, size, gfp_mask);
3421 
3422 	return area->addr;
3423 
3424 fail:
3425 	if (shift > PAGE_SHIFT) {
3426 		shift = PAGE_SHIFT;
3427 		align = real_align;
3428 		size = real_size;
3429 		goto again;
3430 	}
3431 
3432 	return NULL;
3433 }
3434 
3435 /**
3436  * __vmalloc_node - allocate virtually contiguous memory
3437  * @size:	    allocation size
3438  * @align:	    desired alignment
3439  * @gfp_mask:	    flags for the page level allocator
3440  * @node:	    node to use for allocation or NUMA_NO_NODE
3441  * @caller:	    caller's return address
3442  *
3443  * Allocate enough pages to cover @size from the page level allocator with
3444  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3445  *
3446  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3447  * and __GFP_NOFAIL are not supported
3448  *
3449  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3450  * with mm people.
3451  *
3452  * Return: pointer to the allocated memory or %NULL on error
3453  */
3454 void *__vmalloc_node(unsigned long size, unsigned long align,
3455 			    gfp_t gfp_mask, int node, const void *caller)
3456 {
3457 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3458 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3459 }
3460 /*
3461  * This is only for performance analysis of vmalloc and stress purpose.
3462  * It is required by vmalloc test module, therefore do not use it other
3463  * than that.
3464  */
3465 #ifdef CONFIG_TEST_VMALLOC_MODULE
3466 EXPORT_SYMBOL_GPL(__vmalloc_node);
3467 #endif
3468 
3469 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3470 {
3471 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3472 				__builtin_return_address(0));
3473 }
3474 EXPORT_SYMBOL(__vmalloc);
3475 
3476 /**
3477  * vmalloc - allocate virtually contiguous memory
3478  * @size:    allocation size
3479  *
3480  * Allocate enough pages to cover @size from the page level
3481  * allocator and map them into contiguous kernel virtual space.
3482  *
3483  * For tight control over page level allocator and protection flags
3484  * use __vmalloc() instead.
3485  *
3486  * Return: pointer to the allocated memory or %NULL on error
3487  */
3488 void *vmalloc(unsigned long size)
3489 {
3490 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3491 				__builtin_return_address(0));
3492 }
3493 EXPORT_SYMBOL(vmalloc);
3494 
3495 /**
3496  * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3497  * @size:      allocation size
3498  * @gfp_mask:  flags for the page level allocator
3499  *
3500  * Allocate enough pages to cover @size from the page level
3501  * allocator and map them into contiguous kernel virtual space.
3502  * If @size is greater than or equal to PMD_SIZE, allow using
3503  * huge pages for the memory
3504  *
3505  * Return: pointer to the allocated memory or %NULL on error
3506  */
3507 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3508 {
3509 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3510 				    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3511 				    NUMA_NO_NODE, __builtin_return_address(0));
3512 }
3513 EXPORT_SYMBOL_GPL(vmalloc_huge);
3514 
3515 /**
3516  * vzalloc - allocate virtually contiguous memory with zero fill
3517  * @size:    allocation size
3518  *
3519  * Allocate enough pages to cover @size from the page level
3520  * allocator and map them into contiguous kernel virtual space.
3521  * The memory allocated is set to zero.
3522  *
3523  * For tight control over page level allocator and protection flags
3524  * use __vmalloc() instead.
3525  *
3526  * Return: pointer to the allocated memory or %NULL on error
3527  */
3528 void *vzalloc(unsigned long size)
3529 {
3530 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3531 				__builtin_return_address(0));
3532 }
3533 EXPORT_SYMBOL(vzalloc);
3534 
3535 /**
3536  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3537  * @size: allocation size
3538  *
3539  * The resulting memory area is zeroed so it can be mapped to userspace
3540  * without leaking data.
3541  *
3542  * Return: pointer to the allocated memory or %NULL on error
3543  */
3544 void *vmalloc_user(unsigned long size)
3545 {
3546 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3547 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3548 				    VM_USERMAP, NUMA_NO_NODE,
3549 				    __builtin_return_address(0));
3550 }
3551 EXPORT_SYMBOL(vmalloc_user);
3552 
3553 /**
3554  * vmalloc_node - allocate memory on a specific node
3555  * @size:	  allocation size
3556  * @node:	  numa node
3557  *
3558  * Allocate enough pages to cover @size from the page level
3559  * allocator and map them into contiguous kernel virtual space.
3560  *
3561  * For tight control over page level allocator and protection flags
3562  * use __vmalloc() instead.
3563  *
3564  * Return: pointer to the allocated memory or %NULL on error
3565  */
3566 void *vmalloc_node(unsigned long size, int node)
3567 {
3568 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
3569 			__builtin_return_address(0));
3570 }
3571 EXPORT_SYMBOL(vmalloc_node);
3572 
3573 /**
3574  * vzalloc_node - allocate memory on a specific node with zero fill
3575  * @size:	allocation size
3576  * @node:	numa node
3577  *
3578  * Allocate enough pages to cover @size from the page level
3579  * allocator and map them into contiguous kernel virtual space.
3580  * The memory allocated is set to zero.
3581  *
3582  * Return: pointer to the allocated memory or %NULL on error
3583  */
3584 void *vzalloc_node(unsigned long size, int node)
3585 {
3586 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3587 				__builtin_return_address(0));
3588 }
3589 EXPORT_SYMBOL(vzalloc_node);
3590 
3591 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3592 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3593 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3594 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3595 #else
3596 /*
3597  * 64b systems should always have either DMA or DMA32 zones. For others
3598  * GFP_DMA32 should do the right thing and use the normal zone.
3599  */
3600 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3601 #endif
3602 
3603 /**
3604  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3605  * @size:	allocation size
3606  *
3607  * Allocate enough 32bit PA addressable pages to cover @size from the
3608  * page level allocator and map them into contiguous kernel virtual space.
3609  *
3610  * Return: pointer to the allocated memory or %NULL on error
3611  */
3612 void *vmalloc_32(unsigned long size)
3613 {
3614 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3615 			__builtin_return_address(0));
3616 }
3617 EXPORT_SYMBOL(vmalloc_32);
3618 
3619 /**
3620  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3621  * @size:	     allocation size
3622  *
3623  * The resulting memory area is 32bit addressable and zeroed so it can be
3624  * mapped to userspace without leaking data.
3625  *
3626  * Return: pointer to the allocated memory or %NULL on error
3627  */
3628 void *vmalloc_32_user(unsigned long size)
3629 {
3630 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3631 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3632 				    VM_USERMAP, NUMA_NO_NODE,
3633 				    __builtin_return_address(0));
3634 }
3635 EXPORT_SYMBOL(vmalloc_32_user);
3636 
3637 /*
3638  * Atomically zero bytes in the iterator.
3639  *
3640  * Returns the number of zeroed bytes.
3641  */
3642 static size_t zero_iter(struct iov_iter *iter, size_t count)
3643 {
3644 	size_t remains = count;
3645 
3646 	while (remains > 0) {
3647 		size_t num, copied;
3648 
3649 		num = min_t(size_t, remains, PAGE_SIZE);
3650 		copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
3651 		remains -= copied;
3652 
3653 		if (copied < num)
3654 			break;
3655 	}
3656 
3657 	return count - remains;
3658 }
3659 
3660 /*
3661  * small helper routine, copy contents to iter from addr.
3662  * If the page is not present, fill zero.
3663  *
3664  * Returns the number of copied bytes.
3665  */
3666 static size_t aligned_vread_iter(struct iov_iter *iter,
3667 				 const char *addr, size_t count)
3668 {
3669 	size_t remains = count;
3670 	struct page *page;
3671 
3672 	while (remains > 0) {
3673 		unsigned long offset, length;
3674 		size_t copied = 0;
3675 
3676 		offset = offset_in_page(addr);
3677 		length = PAGE_SIZE - offset;
3678 		if (length > remains)
3679 			length = remains;
3680 		page = vmalloc_to_page(addr);
3681 		/*
3682 		 * To do safe access to this _mapped_ area, we need lock. But
3683 		 * adding lock here means that we need to add overhead of
3684 		 * vmalloc()/vfree() calls for this _debug_ interface, rarely
3685 		 * used. Instead of that, we'll use an local mapping via
3686 		 * copy_page_to_iter_nofault() and accept a small overhead in
3687 		 * this access function.
3688 		 */
3689 		if (page)
3690 			copied = copy_page_to_iter_nofault(page, offset,
3691 							   length, iter);
3692 		else
3693 			copied = zero_iter(iter, length);
3694 
3695 		addr += copied;
3696 		remains -= copied;
3697 
3698 		if (copied != length)
3699 			break;
3700 	}
3701 
3702 	return count - remains;
3703 }
3704 
3705 /*
3706  * Read from a vm_map_ram region of memory.
3707  *
3708  * Returns the number of copied bytes.
3709  */
3710 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
3711 				  size_t count, unsigned long flags)
3712 {
3713 	char *start;
3714 	struct vmap_block *vb;
3715 	struct xarray *xa;
3716 	unsigned long offset;
3717 	unsigned int rs, re;
3718 	size_t remains, n;
3719 
3720 	/*
3721 	 * If it's area created by vm_map_ram() interface directly, but
3722 	 * not further subdividing and delegating management to vmap_block,
3723 	 * handle it here.
3724 	 */
3725 	if (!(flags & VMAP_BLOCK))
3726 		return aligned_vread_iter(iter, addr, count);
3727 
3728 	remains = count;
3729 
3730 	/*
3731 	 * Area is split into regions and tracked with vmap_block, read out
3732 	 * each region and zero fill the hole between regions.
3733 	 */
3734 	xa = addr_to_vb_xa((unsigned long) addr);
3735 	vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
3736 	if (!vb)
3737 		goto finished_zero;
3738 
3739 	spin_lock(&vb->lock);
3740 	if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
3741 		spin_unlock(&vb->lock);
3742 		goto finished_zero;
3743 	}
3744 
3745 	for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
3746 		size_t copied;
3747 
3748 		if (remains == 0)
3749 			goto finished;
3750 
3751 		start = vmap_block_vaddr(vb->va->va_start, rs);
3752 
3753 		if (addr < start) {
3754 			size_t to_zero = min_t(size_t, start - addr, remains);
3755 			size_t zeroed = zero_iter(iter, to_zero);
3756 
3757 			addr += zeroed;
3758 			remains -= zeroed;
3759 
3760 			if (remains == 0 || zeroed != to_zero)
3761 				goto finished;
3762 		}
3763 
3764 		/*it could start reading from the middle of used region*/
3765 		offset = offset_in_page(addr);
3766 		n = ((re - rs + 1) << PAGE_SHIFT) - offset;
3767 		if (n > remains)
3768 			n = remains;
3769 
3770 		copied = aligned_vread_iter(iter, start + offset, n);
3771 
3772 		addr += copied;
3773 		remains -= copied;
3774 
3775 		if (copied != n)
3776 			goto finished;
3777 	}
3778 
3779 	spin_unlock(&vb->lock);
3780 
3781 finished_zero:
3782 	/* zero-fill the left dirty or free regions */
3783 	return count - remains + zero_iter(iter, remains);
3784 finished:
3785 	/* We couldn't copy/zero everything */
3786 	spin_unlock(&vb->lock);
3787 	return count - remains;
3788 }
3789 
3790 /**
3791  * vread_iter() - read vmalloc area in a safe way to an iterator.
3792  * @iter:         the iterator to which data should be written.
3793  * @addr:         vm address.
3794  * @count:        number of bytes to be read.
3795  *
3796  * This function checks that addr is a valid vmalloc'ed area, and
3797  * copy data from that area to a given buffer. If the given memory range
3798  * of [addr...addr+count) includes some valid address, data is copied to
3799  * proper area of @buf. If there are memory holes, they'll be zero-filled.
3800  * IOREMAP area is treated as memory hole and no copy is done.
3801  *
3802  * If [addr...addr+count) doesn't includes any intersects with alive
3803  * vm_struct area, returns 0. @buf should be kernel's buffer.
3804  *
3805  * Note: In usual ops, vread() is never necessary because the caller
3806  * should know vmalloc() area is valid and can use memcpy().
3807  * This is for routines which have to access vmalloc area without
3808  * any information, as /proc/kcore.
3809  *
3810  * Return: number of bytes for which addr and buf should be increased
3811  * (same number as @count) or %0 if [addr...addr+count) doesn't
3812  * include any intersection with valid vmalloc area
3813  */
3814 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
3815 {
3816 	struct vmap_area *va;
3817 	struct vm_struct *vm;
3818 	char *vaddr;
3819 	size_t n, size, flags, remains;
3820 
3821 	addr = kasan_reset_tag(addr);
3822 
3823 	/* Don't allow overflow */
3824 	if ((unsigned long) addr + count < count)
3825 		count = -(unsigned long) addr;
3826 
3827 	remains = count;
3828 
3829 	spin_lock(&vmap_area_lock);
3830 	va = find_vmap_area_exceed_addr((unsigned long)addr);
3831 	if (!va)
3832 		goto finished_zero;
3833 
3834 	/* no intersects with alive vmap_area */
3835 	if ((unsigned long)addr + remains <= va->va_start)
3836 		goto finished_zero;
3837 
3838 	list_for_each_entry_from(va, &vmap_area_list, list) {
3839 		size_t copied;
3840 
3841 		if (remains == 0)
3842 			goto finished;
3843 
3844 		vm = va->vm;
3845 		flags = va->flags & VMAP_FLAGS_MASK;
3846 		/*
3847 		 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
3848 		 * be set together with VMAP_RAM.
3849 		 */
3850 		WARN_ON(flags == VMAP_BLOCK);
3851 
3852 		if (!vm && !flags)
3853 			continue;
3854 
3855 		if (vm && (vm->flags & VM_UNINITIALIZED))
3856 			continue;
3857 
3858 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3859 		smp_rmb();
3860 
3861 		vaddr = (char *) va->va_start;
3862 		size = vm ? get_vm_area_size(vm) : va_size(va);
3863 
3864 		if (addr >= vaddr + size)
3865 			continue;
3866 
3867 		if (addr < vaddr) {
3868 			size_t to_zero = min_t(size_t, vaddr - addr, remains);
3869 			size_t zeroed = zero_iter(iter, to_zero);
3870 
3871 			addr += zeroed;
3872 			remains -= zeroed;
3873 
3874 			if (remains == 0 || zeroed != to_zero)
3875 				goto finished;
3876 		}
3877 
3878 		n = vaddr + size - addr;
3879 		if (n > remains)
3880 			n = remains;
3881 
3882 		if (flags & VMAP_RAM)
3883 			copied = vmap_ram_vread_iter(iter, addr, n, flags);
3884 		else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE))))
3885 			copied = aligned_vread_iter(iter, addr, n);
3886 		else /* IOREMAP | SPARSE area is treated as memory hole */
3887 			copied = zero_iter(iter, n);
3888 
3889 		addr += copied;
3890 		remains -= copied;
3891 
3892 		if (copied != n)
3893 			goto finished;
3894 	}
3895 
3896 finished_zero:
3897 	spin_unlock(&vmap_area_lock);
3898 	/* zero-fill memory holes */
3899 	return count - remains + zero_iter(iter, remains);
3900 finished:
3901 	/* Nothing remains, or We couldn't copy/zero everything. */
3902 	spin_unlock(&vmap_area_lock);
3903 
3904 	return count - remains;
3905 }
3906 
3907 /**
3908  * remap_vmalloc_range_partial - map vmalloc pages to userspace
3909  * @vma:		vma to cover
3910  * @uaddr:		target user address to start at
3911  * @kaddr:		virtual address of vmalloc kernel memory
3912  * @pgoff:		offset from @kaddr to start at
3913  * @size:		size of map area
3914  *
3915  * Returns:	0 for success, -Exxx on failure
3916  *
3917  * This function checks that @kaddr is a valid vmalloc'ed area,
3918  * and that it is big enough to cover the range starting at
3919  * @uaddr in @vma. Will return failure if that criteria isn't
3920  * met.
3921  *
3922  * Similar to remap_pfn_range() (see mm/memory.c)
3923  */
3924 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3925 				void *kaddr, unsigned long pgoff,
3926 				unsigned long size)
3927 {
3928 	struct vm_struct *area;
3929 	unsigned long off;
3930 	unsigned long end_index;
3931 
3932 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3933 		return -EINVAL;
3934 
3935 	size = PAGE_ALIGN(size);
3936 
3937 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3938 		return -EINVAL;
3939 
3940 	area = find_vm_area(kaddr);
3941 	if (!area)
3942 		return -EINVAL;
3943 
3944 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3945 		return -EINVAL;
3946 
3947 	if (check_add_overflow(size, off, &end_index) ||
3948 	    end_index > get_vm_area_size(area))
3949 		return -EINVAL;
3950 	kaddr += off;
3951 
3952 	do {
3953 		struct page *page = vmalloc_to_page(kaddr);
3954 		int ret;
3955 
3956 		ret = vm_insert_page(vma, uaddr, page);
3957 		if (ret)
3958 			return ret;
3959 
3960 		uaddr += PAGE_SIZE;
3961 		kaddr += PAGE_SIZE;
3962 		size -= PAGE_SIZE;
3963 	} while (size > 0);
3964 
3965 	vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
3966 
3967 	return 0;
3968 }
3969 
3970 /**
3971  * remap_vmalloc_range - map vmalloc pages to userspace
3972  * @vma:		vma to cover (map full range of vma)
3973  * @addr:		vmalloc memory
3974  * @pgoff:		number of pages into addr before first page to map
3975  *
3976  * Returns:	0 for success, -Exxx on failure
3977  *
3978  * This function checks that addr is a valid vmalloc'ed area, and
3979  * that it is big enough to cover the vma. Will return failure if
3980  * that criteria isn't met.
3981  *
3982  * Similar to remap_pfn_range() (see mm/memory.c)
3983  */
3984 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3985 						unsigned long pgoff)
3986 {
3987 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3988 					   addr, pgoff,
3989 					   vma->vm_end - vma->vm_start);
3990 }
3991 EXPORT_SYMBOL(remap_vmalloc_range);
3992 
3993 void free_vm_area(struct vm_struct *area)
3994 {
3995 	struct vm_struct *ret;
3996 	ret = remove_vm_area(area->addr);
3997 	BUG_ON(ret != area);
3998 	kfree(area);
3999 }
4000 EXPORT_SYMBOL_GPL(free_vm_area);
4001 
4002 #ifdef CONFIG_SMP
4003 static struct vmap_area *node_to_va(struct rb_node *n)
4004 {
4005 	return rb_entry_safe(n, struct vmap_area, rb_node);
4006 }
4007 
4008 /**
4009  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
4010  * @addr: target address
4011  *
4012  * Returns: vmap_area if it is found. If there is no such area
4013  *   the first highest(reverse order) vmap_area is returned
4014  *   i.e. va->va_start < addr && va->va_end < addr or NULL
4015  *   if there are no any areas before @addr.
4016  */
4017 static struct vmap_area *
4018 pvm_find_va_enclose_addr(unsigned long addr)
4019 {
4020 	struct vmap_area *va, *tmp;
4021 	struct rb_node *n;
4022 
4023 	n = free_vmap_area_root.rb_node;
4024 	va = NULL;
4025 
4026 	while (n) {
4027 		tmp = rb_entry(n, struct vmap_area, rb_node);
4028 		if (tmp->va_start <= addr) {
4029 			va = tmp;
4030 			if (tmp->va_end >= addr)
4031 				break;
4032 
4033 			n = n->rb_right;
4034 		} else {
4035 			n = n->rb_left;
4036 		}
4037 	}
4038 
4039 	return va;
4040 }
4041 
4042 /**
4043  * pvm_determine_end_from_reverse - find the highest aligned address
4044  * of free block below VMALLOC_END
4045  * @va:
4046  *   in - the VA we start the search(reverse order);
4047  *   out - the VA with the highest aligned end address.
4048  * @align: alignment for required highest address
4049  *
4050  * Returns: determined end address within vmap_area
4051  */
4052 static unsigned long
4053 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
4054 {
4055 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4056 	unsigned long addr;
4057 
4058 	if (likely(*va)) {
4059 		list_for_each_entry_from_reverse((*va),
4060 				&free_vmap_area_list, list) {
4061 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
4062 			if ((*va)->va_start < addr)
4063 				return addr;
4064 		}
4065 	}
4066 
4067 	return 0;
4068 }
4069 
4070 /**
4071  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4072  * @offsets: array containing offset of each area
4073  * @sizes: array containing size of each area
4074  * @nr_vms: the number of areas to allocate
4075  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4076  *
4077  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4078  *	    vm_structs on success, %NULL on failure
4079  *
4080  * Percpu allocator wants to use congruent vm areas so that it can
4081  * maintain the offsets among percpu areas.  This function allocates
4082  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
4083  * be scattered pretty far, distance between two areas easily going up
4084  * to gigabytes.  To avoid interacting with regular vmallocs, these
4085  * areas are allocated from top.
4086  *
4087  * Despite its complicated look, this allocator is rather simple. It
4088  * does everything top-down and scans free blocks from the end looking
4089  * for matching base. While scanning, if any of the areas do not fit the
4090  * base address is pulled down to fit the area. Scanning is repeated till
4091  * all the areas fit and then all necessary data structures are inserted
4092  * and the result is returned.
4093  */
4094 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4095 				     const size_t *sizes, int nr_vms,
4096 				     size_t align)
4097 {
4098 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4099 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4100 	struct vmap_area **vas, *va;
4101 	struct vm_struct **vms;
4102 	int area, area2, last_area, term_area;
4103 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
4104 	bool purged = false;
4105 
4106 	/* verify parameters and allocate data structures */
4107 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4108 	for (last_area = 0, area = 0; area < nr_vms; area++) {
4109 		start = offsets[area];
4110 		end = start + sizes[area];
4111 
4112 		/* is everything aligned properly? */
4113 		BUG_ON(!IS_ALIGNED(offsets[area], align));
4114 		BUG_ON(!IS_ALIGNED(sizes[area], align));
4115 
4116 		/* detect the area with the highest address */
4117 		if (start > offsets[last_area])
4118 			last_area = area;
4119 
4120 		for (area2 = area + 1; area2 < nr_vms; area2++) {
4121 			unsigned long start2 = offsets[area2];
4122 			unsigned long end2 = start2 + sizes[area2];
4123 
4124 			BUG_ON(start2 < end && start < end2);
4125 		}
4126 	}
4127 	last_end = offsets[last_area] + sizes[last_area];
4128 
4129 	if (vmalloc_end - vmalloc_start < last_end) {
4130 		WARN_ON(true);
4131 		return NULL;
4132 	}
4133 
4134 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4135 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4136 	if (!vas || !vms)
4137 		goto err_free2;
4138 
4139 	for (area = 0; area < nr_vms; area++) {
4140 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4141 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4142 		if (!vas[area] || !vms[area])
4143 			goto err_free;
4144 	}
4145 retry:
4146 	spin_lock(&free_vmap_area_lock);
4147 
4148 	/* start scanning - we scan from the top, begin with the last area */
4149 	area = term_area = last_area;
4150 	start = offsets[area];
4151 	end = start + sizes[area];
4152 
4153 	va = pvm_find_va_enclose_addr(vmalloc_end);
4154 	base = pvm_determine_end_from_reverse(&va, align) - end;
4155 
4156 	while (true) {
4157 		/*
4158 		 * base might have underflowed, add last_end before
4159 		 * comparing.
4160 		 */
4161 		if (base + last_end < vmalloc_start + last_end)
4162 			goto overflow;
4163 
4164 		/*
4165 		 * Fitting base has not been found.
4166 		 */
4167 		if (va == NULL)
4168 			goto overflow;
4169 
4170 		/*
4171 		 * If required width exceeds current VA block, move
4172 		 * base downwards and then recheck.
4173 		 */
4174 		if (base + end > va->va_end) {
4175 			base = pvm_determine_end_from_reverse(&va, align) - end;
4176 			term_area = area;
4177 			continue;
4178 		}
4179 
4180 		/*
4181 		 * If this VA does not fit, move base downwards and recheck.
4182 		 */
4183 		if (base + start < va->va_start) {
4184 			va = node_to_va(rb_prev(&va->rb_node));
4185 			base = pvm_determine_end_from_reverse(&va, align) - end;
4186 			term_area = area;
4187 			continue;
4188 		}
4189 
4190 		/*
4191 		 * This area fits, move on to the previous one.  If
4192 		 * the previous one is the terminal one, we're done.
4193 		 */
4194 		area = (area + nr_vms - 1) % nr_vms;
4195 		if (area == term_area)
4196 			break;
4197 
4198 		start = offsets[area];
4199 		end = start + sizes[area];
4200 		va = pvm_find_va_enclose_addr(base + end);
4201 	}
4202 
4203 	/* we've found a fitting base, insert all va's */
4204 	for (area = 0; area < nr_vms; area++) {
4205 		int ret;
4206 
4207 		start = base + offsets[area];
4208 		size = sizes[area];
4209 
4210 		va = pvm_find_va_enclose_addr(start);
4211 		if (WARN_ON_ONCE(va == NULL))
4212 			/* It is a BUG(), but trigger recovery instead. */
4213 			goto recovery;
4214 
4215 		ret = adjust_va_to_fit_type(&free_vmap_area_root,
4216 					    &free_vmap_area_list,
4217 					    va, start, size);
4218 		if (WARN_ON_ONCE(unlikely(ret)))
4219 			/* It is a BUG(), but trigger recovery instead. */
4220 			goto recovery;
4221 
4222 		/* Allocated area. */
4223 		va = vas[area];
4224 		va->va_start = start;
4225 		va->va_end = start + size;
4226 	}
4227 
4228 	spin_unlock(&free_vmap_area_lock);
4229 
4230 	/* populate the kasan shadow space */
4231 	for (area = 0; area < nr_vms; area++) {
4232 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4233 			goto err_free_shadow;
4234 	}
4235 
4236 	/* insert all vm's */
4237 	spin_lock(&vmap_area_lock);
4238 	for (area = 0; area < nr_vms; area++) {
4239 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
4240 
4241 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
4242 				 pcpu_get_vm_areas);
4243 	}
4244 	spin_unlock(&vmap_area_lock);
4245 
4246 	/*
4247 	 * Mark allocated areas as accessible. Do it now as a best-effort
4248 	 * approach, as they can be mapped outside of vmalloc code.
4249 	 * With hardware tag-based KASAN, marking is skipped for
4250 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4251 	 */
4252 	for (area = 0; area < nr_vms; area++)
4253 		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4254 				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4255 
4256 	kfree(vas);
4257 	return vms;
4258 
4259 recovery:
4260 	/*
4261 	 * Remove previously allocated areas. There is no
4262 	 * need in removing these areas from the busy tree,
4263 	 * because they are inserted only on the final step
4264 	 * and when pcpu_get_vm_areas() is success.
4265 	 */
4266 	while (area--) {
4267 		orig_start = vas[area]->va_start;
4268 		orig_end = vas[area]->va_end;
4269 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4270 				&free_vmap_area_list);
4271 		if (va)
4272 			kasan_release_vmalloc(orig_start, orig_end,
4273 				va->va_start, va->va_end);
4274 		vas[area] = NULL;
4275 	}
4276 
4277 overflow:
4278 	spin_unlock(&free_vmap_area_lock);
4279 	if (!purged) {
4280 		reclaim_and_purge_vmap_areas();
4281 		purged = true;
4282 
4283 		/* Before "retry", check if we recover. */
4284 		for (area = 0; area < nr_vms; area++) {
4285 			if (vas[area])
4286 				continue;
4287 
4288 			vas[area] = kmem_cache_zalloc(
4289 				vmap_area_cachep, GFP_KERNEL);
4290 			if (!vas[area])
4291 				goto err_free;
4292 		}
4293 
4294 		goto retry;
4295 	}
4296 
4297 err_free:
4298 	for (area = 0; area < nr_vms; area++) {
4299 		if (vas[area])
4300 			kmem_cache_free(vmap_area_cachep, vas[area]);
4301 
4302 		kfree(vms[area]);
4303 	}
4304 err_free2:
4305 	kfree(vas);
4306 	kfree(vms);
4307 	return NULL;
4308 
4309 err_free_shadow:
4310 	spin_lock(&free_vmap_area_lock);
4311 	/*
4312 	 * We release all the vmalloc shadows, even the ones for regions that
4313 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
4314 	 * being able to tolerate this case.
4315 	 */
4316 	for (area = 0; area < nr_vms; area++) {
4317 		orig_start = vas[area]->va_start;
4318 		orig_end = vas[area]->va_end;
4319 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4320 				&free_vmap_area_list);
4321 		if (va)
4322 			kasan_release_vmalloc(orig_start, orig_end,
4323 				va->va_start, va->va_end);
4324 		vas[area] = NULL;
4325 		kfree(vms[area]);
4326 	}
4327 	spin_unlock(&free_vmap_area_lock);
4328 	kfree(vas);
4329 	kfree(vms);
4330 	return NULL;
4331 }
4332 
4333 /**
4334  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4335  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4336  * @nr_vms: the number of allocated areas
4337  *
4338  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4339  */
4340 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4341 {
4342 	int i;
4343 
4344 	for (i = 0; i < nr_vms; i++)
4345 		free_vm_area(vms[i]);
4346 	kfree(vms);
4347 }
4348 #endif	/* CONFIG_SMP */
4349 
4350 #ifdef CONFIG_PRINTK
4351 bool vmalloc_dump_obj(void *object)
4352 {
4353 	void *objp = (void *)PAGE_ALIGN((unsigned long)object);
4354 	const void *caller;
4355 	struct vm_struct *vm;
4356 	struct vmap_area *va;
4357 	unsigned long addr;
4358 	unsigned int nr_pages;
4359 
4360 	if (!spin_trylock(&vmap_area_lock))
4361 		return false;
4362 	va = __find_vmap_area((unsigned long)objp, &vmap_area_root);
4363 	if (!va) {
4364 		spin_unlock(&vmap_area_lock);
4365 		return false;
4366 	}
4367 
4368 	vm = va->vm;
4369 	if (!vm) {
4370 		spin_unlock(&vmap_area_lock);
4371 		return false;
4372 	}
4373 	addr = (unsigned long)vm->addr;
4374 	caller = vm->caller;
4375 	nr_pages = vm->nr_pages;
4376 	spin_unlock(&vmap_area_lock);
4377 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4378 		nr_pages, addr, caller);
4379 	return true;
4380 }
4381 #endif
4382 
4383 #ifdef CONFIG_PROC_FS
4384 static void *s_start(struct seq_file *m, loff_t *pos)
4385 	__acquires(&vmap_purge_lock)
4386 	__acquires(&vmap_area_lock)
4387 {
4388 	mutex_lock(&vmap_purge_lock);
4389 	spin_lock(&vmap_area_lock);
4390 
4391 	return seq_list_start(&vmap_area_list, *pos);
4392 }
4393 
4394 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4395 {
4396 	return seq_list_next(p, &vmap_area_list, pos);
4397 }
4398 
4399 static void s_stop(struct seq_file *m, void *p)
4400 	__releases(&vmap_area_lock)
4401 	__releases(&vmap_purge_lock)
4402 {
4403 	spin_unlock(&vmap_area_lock);
4404 	mutex_unlock(&vmap_purge_lock);
4405 }
4406 
4407 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4408 {
4409 	if (IS_ENABLED(CONFIG_NUMA)) {
4410 		unsigned int nr, *counters = m->private;
4411 		unsigned int step = 1U << vm_area_page_order(v);
4412 
4413 		if (!counters)
4414 			return;
4415 
4416 		if (v->flags & VM_UNINITIALIZED)
4417 			return;
4418 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4419 		smp_rmb();
4420 
4421 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4422 
4423 		for (nr = 0; nr < v->nr_pages; nr += step)
4424 			counters[page_to_nid(v->pages[nr])] += step;
4425 		for_each_node_state(nr, N_HIGH_MEMORY)
4426 			if (counters[nr])
4427 				seq_printf(m, " N%u=%u", nr, counters[nr]);
4428 	}
4429 }
4430 
4431 static void show_purge_info(struct seq_file *m)
4432 {
4433 	struct vmap_area *va;
4434 
4435 	spin_lock(&purge_vmap_area_lock);
4436 	list_for_each_entry(va, &purge_vmap_area_list, list) {
4437 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4438 			(void *)va->va_start, (void *)va->va_end,
4439 			va->va_end - va->va_start);
4440 	}
4441 	spin_unlock(&purge_vmap_area_lock);
4442 }
4443 
4444 static int s_show(struct seq_file *m, void *p)
4445 {
4446 	struct vmap_area *va;
4447 	struct vm_struct *v;
4448 
4449 	va = list_entry(p, struct vmap_area, list);
4450 
4451 	if (!va->vm) {
4452 		if (va->flags & VMAP_RAM)
4453 			seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4454 				(void *)va->va_start, (void *)va->va_end,
4455 				va->va_end - va->va_start);
4456 
4457 		goto final;
4458 	}
4459 
4460 	v = va->vm;
4461 
4462 	seq_printf(m, "0x%pK-0x%pK %7ld",
4463 		v->addr, v->addr + v->size, v->size);
4464 
4465 	if (v->caller)
4466 		seq_printf(m, " %pS", v->caller);
4467 
4468 	if (v->nr_pages)
4469 		seq_printf(m, " pages=%d", v->nr_pages);
4470 
4471 	if (v->phys_addr)
4472 		seq_printf(m, " phys=%pa", &v->phys_addr);
4473 
4474 	if (v->flags & VM_IOREMAP)
4475 		seq_puts(m, " ioremap");
4476 
4477 	if (v->flags & VM_SPARSE)
4478 		seq_puts(m, " sparse");
4479 
4480 	if (v->flags & VM_ALLOC)
4481 		seq_puts(m, " vmalloc");
4482 
4483 	if (v->flags & VM_MAP)
4484 		seq_puts(m, " vmap");
4485 
4486 	if (v->flags & VM_USERMAP)
4487 		seq_puts(m, " user");
4488 
4489 	if (v->flags & VM_DMA_COHERENT)
4490 		seq_puts(m, " dma-coherent");
4491 
4492 	if (is_vmalloc_addr(v->pages))
4493 		seq_puts(m, " vpages");
4494 
4495 	show_numa_info(m, v);
4496 	seq_putc(m, '\n');
4497 
4498 	/*
4499 	 * As a final step, dump "unpurged" areas.
4500 	 */
4501 final:
4502 	if (list_is_last(&va->list, &vmap_area_list))
4503 		show_purge_info(m);
4504 
4505 	return 0;
4506 }
4507 
4508 static const struct seq_operations vmalloc_op = {
4509 	.start = s_start,
4510 	.next = s_next,
4511 	.stop = s_stop,
4512 	.show = s_show,
4513 };
4514 
4515 static int __init proc_vmalloc_init(void)
4516 {
4517 	if (IS_ENABLED(CONFIG_NUMA))
4518 		proc_create_seq_private("vmallocinfo", 0400, NULL,
4519 				&vmalloc_op,
4520 				nr_node_ids * sizeof(unsigned int), NULL);
4521 	else
4522 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4523 	return 0;
4524 }
4525 module_init(proc_vmalloc_init);
4526 
4527 #endif
4528 
4529 void __init vmalloc_init(void)
4530 {
4531 	struct vmap_area *va;
4532 	struct vm_struct *tmp;
4533 	int i;
4534 
4535 	/*
4536 	 * Create the cache for vmap_area objects.
4537 	 */
4538 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
4539 
4540 	for_each_possible_cpu(i) {
4541 		struct vmap_block_queue *vbq;
4542 		struct vfree_deferred *p;
4543 
4544 		vbq = &per_cpu(vmap_block_queue, i);
4545 		spin_lock_init(&vbq->lock);
4546 		INIT_LIST_HEAD(&vbq->free);
4547 		p = &per_cpu(vfree_deferred, i);
4548 		init_llist_head(&p->list);
4549 		INIT_WORK(&p->wq, delayed_vfree_work);
4550 		xa_init(&vbq->vmap_blocks);
4551 	}
4552 
4553 	/* Import existing vmlist entries. */
4554 	for (tmp = vmlist; tmp; tmp = tmp->next) {
4555 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4556 		if (WARN_ON_ONCE(!va))
4557 			continue;
4558 
4559 		va->va_start = (unsigned long)tmp->addr;
4560 		va->va_end = va->va_start + tmp->size;
4561 		va->vm = tmp;
4562 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
4563 	}
4564 
4565 	/*
4566 	 * Now we can initialize a free vmap space.
4567 	 */
4568 	vmap_init_free_space();
4569 	vmap_initialized = true;
4570 }
4571