1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/debugobjects.h> 22 #include <linux/kallsyms.h> 23 #include <linux/list.h> 24 #include <linux/rbtree.h> 25 #include <linux/radix-tree.h> 26 #include <linux/rcupdate.h> 27 #include <linux/pfn.h> 28 #include <linux/kmemleak.h> 29 #include <linux/atomic.h> 30 #include <asm/uaccess.h> 31 #include <asm/tlbflush.h> 32 #include <asm/shmparam.h> 33 34 /*** Page table manipulation functions ***/ 35 36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 37 { 38 pte_t *pte; 39 40 pte = pte_offset_kernel(pmd, addr); 41 do { 42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 43 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 44 } while (pte++, addr += PAGE_SIZE, addr != end); 45 } 46 47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 48 { 49 pmd_t *pmd; 50 unsigned long next; 51 52 pmd = pmd_offset(pud, addr); 53 do { 54 next = pmd_addr_end(addr, end); 55 if (pmd_none_or_clear_bad(pmd)) 56 continue; 57 vunmap_pte_range(pmd, addr, next); 58 } while (pmd++, addr = next, addr != end); 59 } 60 61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 62 { 63 pud_t *pud; 64 unsigned long next; 65 66 pud = pud_offset(pgd, addr); 67 do { 68 next = pud_addr_end(addr, end); 69 if (pud_none_or_clear_bad(pud)) 70 continue; 71 vunmap_pmd_range(pud, addr, next); 72 } while (pud++, addr = next, addr != end); 73 } 74 75 static void vunmap_page_range(unsigned long addr, unsigned long end) 76 { 77 pgd_t *pgd; 78 unsigned long next; 79 80 BUG_ON(addr >= end); 81 pgd = pgd_offset_k(addr); 82 do { 83 next = pgd_addr_end(addr, end); 84 if (pgd_none_or_clear_bad(pgd)) 85 continue; 86 vunmap_pud_range(pgd, addr, next); 87 } while (pgd++, addr = next, addr != end); 88 } 89 90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 91 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 92 { 93 pte_t *pte; 94 95 /* 96 * nr is a running index into the array which helps higher level 97 * callers keep track of where we're up to. 98 */ 99 100 pte = pte_alloc_kernel(pmd, addr); 101 if (!pte) 102 return -ENOMEM; 103 do { 104 struct page *page = pages[*nr]; 105 106 if (WARN_ON(!pte_none(*pte))) 107 return -EBUSY; 108 if (WARN_ON(!page)) 109 return -ENOMEM; 110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 111 (*nr)++; 112 } while (pte++, addr += PAGE_SIZE, addr != end); 113 return 0; 114 } 115 116 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 117 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 118 { 119 pmd_t *pmd; 120 unsigned long next; 121 122 pmd = pmd_alloc(&init_mm, pud, addr); 123 if (!pmd) 124 return -ENOMEM; 125 do { 126 next = pmd_addr_end(addr, end); 127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 128 return -ENOMEM; 129 } while (pmd++, addr = next, addr != end); 130 return 0; 131 } 132 133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 134 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 135 { 136 pud_t *pud; 137 unsigned long next; 138 139 pud = pud_alloc(&init_mm, pgd, addr); 140 if (!pud) 141 return -ENOMEM; 142 do { 143 next = pud_addr_end(addr, end); 144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 145 return -ENOMEM; 146 } while (pud++, addr = next, addr != end); 147 return 0; 148 } 149 150 /* 151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 152 * will have pfns corresponding to the "pages" array. 153 * 154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 155 */ 156 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 157 pgprot_t prot, struct page **pages) 158 { 159 pgd_t *pgd; 160 unsigned long next; 161 unsigned long addr = start; 162 int err = 0; 163 int nr = 0; 164 165 BUG_ON(addr >= end); 166 pgd = pgd_offset_k(addr); 167 do { 168 next = pgd_addr_end(addr, end); 169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 170 if (err) 171 return err; 172 } while (pgd++, addr = next, addr != end); 173 174 return nr; 175 } 176 177 static int vmap_page_range(unsigned long start, unsigned long end, 178 pgprot_t prot, struct page **pages) 179 { 180 int ret; 181 182 ret = vmap_page_range_noflush(start, end, prot, pages); 183 flush_cache_vmap(start, end); 184 return ret; 185 } 186 187 int is_vmalloc_or_module_addr(const void *x) 188 { 189 /* 190 * ARM, x86-64 and sparc64 put modules in a special place, 191 * and fall back on vmalloc() if that fails. Others 192 * just put it in the vmalloc space. 193 */ 194 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 195 unsigned long addr = (unsigned long)x; 196 if (addr >= MODULES_VADDR && addr < MODULES_END) 197 return 1; 198 #endif 199 return is_vmalloc_addr(x); 200 } 201 202 /* 203 * Walk a vmap address to the struct page it maps. 204 */ 205 struct page *vmalloc_to_page(const void *vmalloc_addr) 206 { 207 unsigned long addr = (unsigned long) vmalloc_addr; 208 struct page *page = NULL; 209 pgd_t *pgd = pgd_offset_k(addr); 210 211 /* 212 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 213 * architectures that do not vmalloc module space 214 */ 215 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 216 217 if (!pgd_none(*pgd)) { 218 pud_t *pud = pud_offset(pgd, addr); 219 if (!pud_none(*pud)) { 220 pmd_t *pmd = pmd_offset(pud, addr); 221 if (!pmd_none(*pmd)) { 222 pte_t *ptep, pte; 223 224 ptep = pte_offset_map(pmd, addr); 225 pte = *ptep; 226 if (pte_present(pte)) 227 page = pte_page(pte); 228 pte_unmap(ptep); 229 } 230 } 231 } 232 return page; 233 } 234 EXPORT_SYMBOL(vmalloc_to_page); 235 236 /* 237 * Map a vmalloc()-space virtual address to the physical page frame number. 238 */ 239 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 240 { 241 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 242 } 243 EXPORT_SYMBOL(vmalloc_to_pfn); 244 245 246 /*** Global kva allocator ***/ 247 248 #define VM_LAZY_FREE 0x01 249 #define VM_LAZY_FREEING 0x02 250 #define VM_VM_AREA 0x04 251 252 struct vmap_area { 253 unsigned long va_start; 254 unsigned long va_end; 255 unsigned long flags; 256 struct rb_node rb_node; /* address sorted rbtree */ 257 struct list_head list; /* address sorted list */ 258 struct list_head purge_list; /* "lazy purge" list */ 259 void *private; 260 struct rcu_head rcu_head; 261 }; 262 263 static DEFINE_SPINLOCK(vmap_area_lock); 264 static LIST_HEAD(vmap_area_list); 265 static struct rb_root vmap_area_root = RB_ROOT; 266 267 /* The vmap cache globals are protected by vmap_area_lock */ 268 static struct rb_node *free_vmap_cache; 269 static unsigned long cached_hole_size; 270 static unsigned long cached_vstart; 271 static unsigned long cached_align; 272 273 static unsigned long vmap_area_pcpu_hole; 274 275 static struct vmap_area *__find_vmap_area(unsigned long addr) 276 { 277 struct rb_node *n = vmap_area_root.rb_node; 278 279 while (n) { 280 struct vmap_area *va; 281 282 va = rb_entry(n, struct vmap_area, rb_node); 283 if (addr < va->va_start) 284 n = n->rb_left; 285 else if (addr > va->va_start) 286 n = n->rb_right; 287 else 288 return va; 289 } 290 291 return NULL; 292 } 293 294 static void __insert_vmap_area(struct vmap_area *va) 295 { 296 struct rb_node **p = &vmap_area_root.rb_node; 297 struct rb_node *parent = NULL; 298 struct rb_node *tmp; 299 300 while (*p) { 301 struct vmap_area *tmp_va; 302 303 parent = *p; 304 tmp_va = rb_entry(parent, struct vmap_area, rb_node); 305 if (va->va_start < tmp_va->va_end) 306 p = &(*p)->rb_left; 307 else if (va->va_end > tmp_va->va_start) 308 p = &(*p)->rb_right; 309 else 310 BUG(); 311 } 312 313 rb_link_node(&va->rb_node, parent, p); 314 rb_insert_color(&va->rb_node, &vmap_area_root); 315 316 /* address-sort this list so it is usable like the vmlist */ 317 tmp = rb_prev(&va->rb_node); 318 if (tmp) { 319 struct vmap_area *prev; 320 prev = rb_entry(tmp, struct vmap_area, rb_node); 321 list_add_rcu(&va->list, &prev->list); 322 } else 323 list_add_rcu(&va->list, &vmap_area_list); 324 } 325 326 static void purge_vmap_area_lazy(void); 327 328 /* 329 * Allocate a region of KVA of the specified size and alignment, within the 330 * vstart and vend. 331 */ 332 static struct vmap_area *alloc_vmap_area(unsigned long size, 333 unsigned long align, 334 unsigned long vstart, unsigned long vend, 335 int node, gfp_t gfp_mask) 336 { 337 struct vmap_area *va; 338 struct rb_node *n; 339 unsigned long addr; 340 int purged = 0; 341 struct vmap_area *first; 342 343 BUG_ON(!size); 344 BUG_ON(size & ~PAGE_MASK); 345 BUG_ON(!is_power_of_2(align)); 346 347 va = kmalloc_node(sizeof(struct vmap_area), 348 gfp_mask & GFP_RECLAIM_MASK, node); 349 if (unlikely(!va)) 350 return ERR_PTR(-ENOMEM); 351 352 retry: 353 spin_lock(&vmap_area_lock); 354 /* 355 * Invalidate cache if we have more permissive parameters. 356 * cached_hole_size notes the largest hole noticed _below_ 357 * the vmap_area cached in free_vmap_cache: if size fits 358 * into that hole, we want to scan from vstart to reuse 359 * the hole instead of allocating above free_vmap_cache. 360 * Note that __free_vmap_area may update free_vmap_cache 361 * without updating cached_hole_size or cached_align. 362 */ 363 if (!free_vmap_cache || 364 size < cached_hole_size || 365 vstart < cached_vstart || 366 align < cached_align) { 367 nocache: 368 cached_hole_size = 0; 369 free_vmap_cache = NULL; 370 } 371 /* record if we encounter less permissive parameters */ 372 cached_vstart = vstart; 373 cached_align = align; 374 375 /* find starting point for our search */ 376 if (free_vmap_cache) { 377 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 378 addr = ALIGN(first->va_end, align); 379 if (addr < vstart) 380 goto nocache; 381 if (addr + size - 1 < addr) 382 goto overflow; 383 384 } else { 385 addr = ALIGN(vstart, align); 386 if (addr + size - 1 < addr) 387 goto overflow; 388 389 n = vmap_area_root.rb_node; 390 first = NULL; 391 392 while (n) { 393 struct vmap_area *tmp; 394 tmp = rb_entry(n, struct vmap_area, rb_node); 395 if (tmp->va_end >= addr) { 396 first = tmp; 397 if (tmp->va_start <= addr) 398 break; 399 n = n->rb_left; 400 } else 401 n = n->rb_right; 402 } 403 404 if (!first) 405 goto found; 406 } 407 408 /* from the starting point, walk areas until a suitable hole is found */ 409 while (addr + size > first->va_start && addr + size <= vend) { 410 if (addr + cached_hole_size < first->va_start) 411 cached_hole_size = first->va_start - addr; 412 addr = ALIGN(first->va_end, align); 413 if (addr + size - 1 < addr) 414 goto overflow; 415 416 n = rb_next(&first->rb_node); 417 if (n) 418 first = rb_entry(n, struct vmap_area, rb_node); 419 else 420 goto found; 421 } 422 423 found: 424 if (addr + size > vend) 425 goto overflow; 426 427 va->va_start = addr; 428 va->va_end = addr + size; 429 va->flags = 0; 430 __insert_vmap_area(va); 431 free_vmap_cache = &va->rb_node; 432 spin_unlock(&vmap_area_lock); 433 434 BUG_ON(va->va_start & (align-1)); 435 BUG_ON(va->va_start < vstart); 436 BUG_ON(va->va_end > vend); 437 438 return va; 439 440 overflow: 441 spin_unlock(&vmap_area_lock); 442 if (!purged) { 443 purge_vmap_area_lazy(); 444 purged = 1; 445 goto retry; 446 } 447 if (printk_ratelimit()) 448 printk(KERN_WARNING 449 "vmap allocation for size %lu failed: " 450 "use vmalloc=<size> to increase size.\n", size); 451 kfree(va); 452 return ERR_PTR(-EBUSY); 453 } 454 455 static void __free_vmap_area(struct vmap_area *va) 456 { 457 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 458 459 if (free_vmap_cache) { 460 if (va->va_end < cached_vstart) { 461 free_vmap_cache = NULL; 462 } else { 463 struct vmap_area *cache; 464 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 465 if (va->va_start <= cache->va_start) { 466 free_vmap_cache = rb_prev(&va->rb_node); 467 /* 468 * We don't try to update cached_hole_size or 469 * cached_align, but it won't go very wrong. 470 */ 471 } 472 } 473 } 474 rb_erase(&va->rb_node, &vmap_area_root); 475 RB_CLEAR_NODE(&va->rb_node); 476 list_del_rcu(&va->list); 477 478 /* 479 * Track the highest possible candidate for pcpu area 480 * allocation. Areas outside of vmalloc area can be returned 481 * here too, consider only end addresses which fall inside 482 * vmalloc area proper. 483 */ 484 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 485 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 486 487 kfree_rcu(va, rcu_head); 488 } 489 490 /* 491 * Free a region of KVA allocated by alloc_vmap_area 492 */ 493 static void free_vmap_area(struct vmap_area *va) 494 { 495 spin_lock(&vmap_area_lock); 496 __free_vmap_area(va); 497 spin_unlock(&vmap_area_lock); 498 } 499 500 /* 501 * Clear the pagetable entries of a given vmap_area 502 */ 503 static void unmap_vmap_area(struct vmap_area *va) 504 { 505 vunmap_page_range(va->va_start, va->va_end); 506 } 507 508 static void vmap_debug_free_range(unsigned long start, unsigned long end) 509 { 510 /* 511 * Unmap page tables and force a TLB flush immediately if 512 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free 513 * bugs similarly to those in linear kernel virtual address 514 * space after a page has been freed. 515 * 516 * All the lazy freeing logic is still retained, in order to 517 * minimise intrusiveness of this debugging feature. 518 * 519 * This is going to be *slow* (linear kernel virtual address 520 * debugging doesn't do a broadcast TLB flush so it is a lot 521 * faster). 522 */ 523 #ifdef CONFIG_DEBUG_PAGEALLOC 524 vunmap_page_range(start, end); 525 flush_tlb_kernel_range(start, end); 526 #endif 527 } 528 529 /* 530 * lazy_max_pages is the maximum amount of virtual address space we gather up 531 * before attempting to purge with a TLB flush. 532 * 533 * There is a tradeoff here: a larger number will cover more kernel page tables 534 * and take slightly longer to purge, but it will linearly reduce the number of 535 * global TLB flushes that must be performed. It would seem natural to scale 536 * this number up linearly with the number of CPUs (because vmapping activity 537 * could also scale linearly with the number of CPUs), however it is likely 538 * that in practice, workloads might be constrained in other ways that mean 539 * vmap activity will not scale linearly with CPUs. Also, I want to be 540 * conservative and not introduce a big latency on huge systems, so go with 541 * a less aggressive log scale. It will still be an improvement over the old 542 * code, and it will be simple to change the scale factor if we find that it 543 * becomes a problem on bigger systems. 544 */ 545 static unsigned long lazy_max_pages(void) 546 { 547 unsigned int log; 548 549 log = fls(num_online_cpus()); 550 551 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 552 } 553 554 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 555 556 /* for per-CPU blocks */ 557 static void purge_fragmented_blocks_allcpus(void); 558 559 /* 560 * called before a call to iounmap() if the caller wants vm_area_struct's 561 * immediately freed. 562 */ 563 void set_iounmap_nonlazy(void) 564 { 565 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); 566 } 567 568 /* 569 * Purges all lazily-freed vmap areas. 570 * 571 * If sync is 0 then don't purge if there is already a purge in progress. 572 * If force_flush is 1, then flush kernel TLBs between *start and *end even 573 * if we found no lazy vmap areas to unmap (callers can use this to optimise 574 * their own TLB flushing). 575 * Returns with *start = min(*start, lowest purged address) 576 * *end = max(*end, highest purged address) 577 */ 578 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 579 int sync, int force_flush) 580 { 581 static DEFINE_SPINLOCK(purge_lock); 582 LIST_HEAD(valist); 583 struct vmap_area *va; 584 struct vmap_area *n_va; 585 int nr = 0; 586 587 /* 588 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 589 * should not expect such behaviour. This just simplifies locking for 590 * the case that isn't actually used at the moment anyway. 591 */ 592 if (!sync && !force_flush) { 593 if (!spin_trylock(&purge_lock)) 594 return; 595 } else 596 spin_lock(&purge_lock); 597 598 if (sync) 599 purge_fragmented_blocks_allcpus(); 600 601 rcu_read_lock(); 602 list_for_each_entry_rcu(va, &vmap_area_list, list) { 603 if (va->flags & VM_LAZY_FREE) { 604 if (va->va_start < *start) 605 *start = va->va_start; 606 if (va->va_end > *end) 607 *end = va->va_end; 608 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 609 list_add_tail(&va->purge_list, &valist); 610 va->flags |= VM_LAZY_FREEING; 611 va->flags &= ~VM_LAZY_FREE; 612 } 613 } 614 rcu_read_unlock(); 615 616 if (nr) 617 atomic_sub(nr, &vmap_lazy_nr); 618 619 if (nr || force_flush) 620 flush_tlb_kernel_range(*start, *end); 621 622 if (nr) { 623 spin_lock(&vmap_area_lock); 624 list_for_each_entry_safe(va, n_va, &valist, purge_list) 625 __free_vmap_area(va); 626 spin_unlock(&vmap_area_lock); 627 } 628 spin_unlock(&purge_lock); 629 } 630 631 /* 632 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 633 * is already purging. 634 */ 635 static void try_purge_vmap_area_lazy(void) 636 { 637 unsigned long start = ULONG_MAX, end = 0; 638 639 __purge_vmap_area_lazy(&start, &end, 0, 0); 640 } 641 642 /* 643 * Kick off a purge of the outstanding lazy areas. 644 */ 645 static void purge_vmap_area_lazy(void) 646 { 647 unsigned long start = ULONG_MAX, end = 0; 648 649 __purge_vmap_area_lazy(&start, &end, 1, 0); 650 } 651 652 /* 653 * Free a vmap area, caller ensuring that the area has been unmapped 654 * and flush_cache_vunmap had been called for the correct range 655 * previously. 656 */ 657 static void free_vmap_area_noflush(struct vmap_area *va) 658 { 659 va->flags |= VM_LAZY_FREE; 660 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 661 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 662 try_purge_vmap_area_lazy(); 663 } 664 665 /* 666 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been 667 * called for the correct range previously. 668 */ 669 static void free_unmap_vmap_area_noflush(struct vmap_area *va) 670 { 671 unmap_vmap_area(va); 672 free_vmap_area_noflush(va); 673 } 674 675 /* 676 * Free and unmap a vmap area 677 */ 678 static void free_unmap_vmap_area(struct vmap_area *va) 679 { 680 flush_cache_vunmap(va->va_start, va->va_end); 681 free_unmap_vmap_area_noflush(va); 682 } 683 684 static struct vmap_area *find_vmap_area(unsigned long addr) 685 { 686 struct vmap_area *va; 687 688 spin_lock(&vmap_area_lock); 689 va = __find_vmap_area(addr); 690 spin_unlock(&vmap_area_lock); 691 692 return va; 693 } 694 695 static void free_unmap_vmap_area_addr(unsigned long addr) 696 { 697 struct vmap_area *va; 698 699 va = find_vmap_area(addr); 700 BUG_ON(!va); 701 free_unmap_vmap_area(va); 702 } 703 704 705 /*** Per cpu kva allocator ***/ 706 707 /* 708 * vmap space is limited especially on 32 bit architectures. Ensure there is 709 * room for at least 16 percpu vmap blocks per CPU. 710 */ 711 /* 712 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 713 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 714 * instead (we just need a rough idea) 715 */ 716 #if BITS_PER_LONG == 32 717 #define VMALLOC_SPACE (128UL*1024*1024) 718 #else 719 #define VMALLOC_SPACE (128UL*1024*1024*1024) 720 #endif 721 722 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 723 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 724 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 725 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 726 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 727 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 728 #define VMAP_BBMAP_BITS \ 729 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 730 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 731 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 732 733 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 734 735 static bool vmap_initialized __read_mostly = false; 736 737 struct vmap_block_queue { 738 spinlock_t lock; 739 struct list_head free; 740 }; 741 742 struct vmap_block { 743 spinlock_t lock; 744 struct vmap_area *va; 745 struct vmap_block_queue *vbq; 746 unsigned long free, dirty; 747 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); 748 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); 749 struct list_head free_list; 750 struct rcu_head rcu_head; 751 struct list_head purge; 752 }; 753 754 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 755 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 756 757 /* 758 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 759 * in the free path. Could get rid of this if we change the API to return a 760 * "cookie" from alloc, to be passed to free. But no big deal yet. 761 */ 762 static DEFINE_SPINLOCK(vmap_block_tree_lock); 763 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 764 765 /* 766 * We should probably have a fallback mechanism to allocate virtual memory 767 * out of partially filled vmap blocks. However vmap block sizing should be 768 * fairly reasonable according to the vmalloc size, so it shouldn't be a 769 * big problem. 770 */ 771 772 static unsigned long addr_to_vb_idx(unsigned long addr) 773 { 774 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 775 addr /= VMAP_BLOCK_SIZE; 776 return addr; 777 } 778 779 static struct vmap_block *new_vmap_block(gfp_t gfp_mask) 780 { 781 struct vmap_block_queue *vbq; 782 struct vmap_block *vb; 783 struct vmap_area *va; 784 unsigned long vb_idx; 785 int node, err; 786 787 node = numa_node_id(); 788 789 vb = kmalloc_node(sizeof(struct vmap_block), 790 gfp_mask & GFP_RECLAIM_MASK, node); 791 if (unlikely(!vb)) 792 return ERR_PTR(-ENOMEM); 793 794 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 795 VMALLOC_START, VMALLOC_END, 796 node, gfp_mask); 797 if (IS_ERR(va)) { 798 kfree(vb); 799 return ERR_CAST(va); 800 } 801 802 err = radix_tree_preload(gfp_mask); 803 if (unlikely(err)) { 804 kfree(vb); 805 free_vmap_area(va); 806 return ERR_PTR(err); 807 } 808 809 spin_lock_init(&vb->lock); 810 vb->va = va; 811 vb->free = VMAP_BBMAP_BITS; 812 vb->dirty = 0; 813 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); 814 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); 815 INIT_LIST_HEAD(&vb->free_list); 816 817 vb_idx = addr_to_vb_idx(va->va_start); 818 spin_lock(&vmap_block_tree_lock); 819 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 820 spin_unlock(&vmap_block_tree_lock); 821 BUG_ON(err); 822 radix_tree_preload_end(); 823 824 vbq = &get_cpu_var(vmap_block_queue); 825 vb->vbq = vbq; 826 spin_lock(&vbq->lock); 827 list_add_rcu(&vb->free_list, &vbq->free); 828 spin_unlock(&vbq->lock); 829 put_cpu_var(vmap_block_queue); 830 831 return vb; 832 } 833 834 static void free_vmap_block(struct vmap_block *vb) 835 { 836 struct vmap_block *tmp; 837 unsigned long vb_idx; 838 839 vb_idx = addr_to_vb_idx(vb->va->va_start); 840 spin_lock(&vmap_block_tree_lock); 841 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 842 spin_unlock(&vmap_block_tree_lock); 843 BUG_ON(tmp != vb); 844 845 free_vmap_area_noflush(vb->va); 846 kfree_rcu(vb, rcu_head); 847 } 848 849 static void purge_fragmented_blocks(int cpu) 850 { 851 LIST_HEAD(purge); 852 struct vmap_block *vb; 853 struct vmap_block *n_vb; 854 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 855 856 rcu_read_lock(); 857 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 858 859 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 860 continue; 861 862 spin_lock(&vb->lock); 863 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 864 vb->free = 0; /* prevent further allocs after releasing lock */ 865 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 866 bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS); 867 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS); 868 spin_lock(&vbq->lock); 869 list_del_rcu(&vb->free_list); 870 spin_unlock(&vbq->lock); 871 spin_unlock(&vb->lock); 872 list_add_tail(&vb->purge, &purge); 873 } else 874 spin_unlock(&vb->lock); 875 } 876 rcu_read_unlock(); 877 878 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 879 list_del(&vb->purge); 880 free_vmap_block(vb); 881 } 882 } 883 884 static void purge_fragmented_blocks_thiscpu(void) 885 { 886 purge_fragmented_blocks(smp_processor_id()); 887 } 888 889 static void purge_fragmented_blocks_allcpus(void) 890 { 891 int cpu; 892 893 for_each_possible_cpu(cpu) 894 purge_fragmented_blocks(cpu); 895 } 896 897 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 898 { 899 struct vmap_block_queue *vbq; 900 struct vmap_block *vb; 901 unsigned long addr = 0; 902 unsigned int order; 903 int purge = 0; 904 905 BUG_ON(size & ~PAGE_MASK); 906 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 907 order = get_order(size); 908 909 again: 910 rcu_read_lock(); 911 vbq = &get_cpu_var(vmap_block_queue); 912 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 913 int i; 914 915 spin_lock(&vb->lock); 916 if (vb->free < 1UL << order) 917 goto next; 918 919 i = bitmap_find_free_region(vb->alloc_map, 920 VMAP_BBMAP_BITS, order); 921 922 if (i < 0) { 923 if (vb->free + vb->dirty == VMAP_BBMAP_BITS) { 924 /* fragmented and no outstanding allocations */ 925 BUG_ON(vb->dirty != VMAP_BBMAP_BITS); 926 purge = 1; 927 } 928 goto next; 929 } 930 addr = vb->va->va_start + (i << PAGE_SHIFT); 931 BUG_ON(addr_to_vb_idx(addr) != 932 addr_to_vb_idx(vb->va->va_start)); 933 vb->free -= 1UL << order; 934 if (vb->free == 0) { 935 spin_lock(&vbq->lock); 936 list_del_rcu(&vb->free_list); 937 spin_unlock(&vbq->lock); 938 } 939 spin_unlock(&vb->lock); 940 break; 941 next: 942 spin_unlock(&vb->lock); 943 } 944 945 if (purge) 946 purge_fragmented_blocks_thiscpu(); 947 948 put_cpu_var(vmap_block_queue); 949 rcu_read_unlock(); 950 951 if (!addr) { 952 vb = new_vmap_block(gfp_mask); 953 if (IS_ERR(vb)) 954 return vb; 955 goto again; 956 } 957 958 return (void *)addr; 959 } 960 961 static void vb_free(const void *addr, unsigned long size) 962 { 963 unsigned long offset; 964 unsigned long vb_idx; 965 unsigned int order; 966 struct vmap_block *vb; 967 968 BUG_ON(size & ~PAGE_MASK); 969 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 970 971 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 972 973 order = get_order(size); 974 975 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 976 977 vb_idx = addr_to_vb_idx((unsigned long)addr); 978 rcu_read_lock(); 979 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 980 rcu_read_unlock(); 981 BUG_ON(!vb); 982 983 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 984 985 spin_lock(&vb->lock); 986 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order)); 987 988 vb->dirty += 1UL << order; 989 if (vb->dirty == VMAP_BBMAP_BITS) { 990 BUG_ON(vb->free); 991 spin_unlock(&vb->lock); 992 free_vmap_block(vb); 993 } else 994 spin_unlock(&vb->lock); 995 } 996 997 /** 998 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 999 * 1000 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1001 * to amortize TLB flushing overheads. What this means is that any page you 1002 * have now, may, in a former life, have been mapped into kernel virtual 1003 * address by the vmap layer and so there might be some CPUs with TLB entries 1004 * still referencing that page (additional to the regular 1:1 kernel mapping). 1005 * 1006 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1007 * be sure that none of the pages we have control over will have any aliases 1008 * from the vmap layer. 1009 */ 1010 void vm_unmap_aliases(void) 1011 { 1012 unsigned long start = ULONG_MAX, end = 0; 1013 int cpu; 1014 int flush = 0; 1015 1016 if (unlikely(!vmap_initialized)) 1017 return; 1018 1019 for_each_possible_cpu(cpu) { 1020 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1021 struct vmap_block *vb; 1022 1023 rcu_read_lock(); 1024 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1025 int i; 1026 1027 spin_lock(&vb->lock); 1028 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); 1029 while (i < VMAP_BBMAP_BITS) { 1030 unsigned long s, e; 1031 int j; 1032 j = find_next_zero_bit(vb->dirty_map, 1033 VMAP_BBMAP_BITS, i); 1034 1035 s = vb->va->va_start + (i << PAGE_SHIFT); 1036 e = vb->va->va_start + (j << PAGE_SHIFT); 1037 flush = 1; 1038 1039 if (s < start) 1040 start = s; 1041 if (e > end) 1042 end = e; 1043 1044 i = j; 1045 i = find_next_bit(vb->dirty_map, 1046 VMAP_BBMAP_BITS, i); 1047 } 1048 spin_unlock(&vb->lock); 1049 } 1050 rcu_read_unlock(); 1051 } 1052 1053 __purge_vmap_area_lazy(&start, &end, 1, flush); 1054 } 1055 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1056 1057 /** 1058 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1059 * @mem: the pointer returned by vm_map_ram 1060 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1061 */ 1062 void vm_unmap_ram(const void *mem, unsigned int count) 1063 { 1064 unsigned long size = count << PAGE_SHIFT; 1065 unsigned long addr = (unsigned long)mem; 1066 1067 BUG_ON(!addr); 1068 BUG_ON(addr < VMALLOC_START); 1069 BUG_ON(addr > VMALLOC_END); 1070 BUG_ON(addr & (PAGE_SIZE-1)); 1071 1072 debug_check_no_locks_freed(mem, size); 1073 vmap_debug_free_range(addr, addr+size); 1074 1075 if (likely(count <= VMAP_MAX_ALLOC)) 1076 vb_free(mem, size); 1077 else 1078 free_unmap_vmap_area_addr(addr); 1079 } 1080 EXPORT_SYMBOL(vm_unmap_ram); 1081 1082 /** 1083 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1084 * @pages: an array of pointers to the pages to be mapped 1085 * @count: number of pages 1086 * @node: prefer to allocate data structures on this node 1087 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1088 * 1089 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1090 */ 1091 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1092 { 1093 unsigned long size = count << PAGE_SHIFT; 1094 unsigned long addr; 1095 void *mem; 1096 1097 if (likely(count <= VMAP_MAX_ALLOC)) { 1098 mem = vb_alloc(size, GFP_KERNEL); 1099 if (IS_ERR(mem)) 1100 return NULL; 1101 addr = (unsigned long)mem; 1102 } else { 1103 struct vmap_area *va; 1104 va = alloc_vmap_area(size, PAGE_SIZE, 1105 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1106 if (IS_ERR(va)) 1107 return NULL; 1108 1109 addr = va->va_start; 1110 mem = (void *)addr; 1111 } 1112 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1113 vm_unmap_ram(mem, count); 1114 return NULL; 1115 } 1116 return mem; 1117 } 1118 EXPORT_SYMBOL(vm_map_ram); 1119 1120 /** 1121 * vm_area_register_early - register vmap area early during boot 1122 * @vm: vm_struct to register 1123 * @align: requested alignment 1124 * 1125 * This function is used to register kernel vm area before 1126 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1127 * proper values on entry and other fields should be zero. On return, 1128 * vm->addr contains the allocated address. 1129 * 1130 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1131 */ 1132 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1133 { 1134 static size_t vm_init_off __initdata; 1135 unsigned long addr; 1136 1137 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1138 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1139 1140 vm->addr = (void *)addr; 1141 1142 vm->next = vmlist; 1143 vmlist = vm; 1144 } 1145 1146 void __init vmalloc_init(void) 1147 { 1148 struct vmap_area *va; 1149 struct vm_struct *tmp; 1150 int i; 1151 1152 for_each_possible_cpu(i) { 1153 struct vmap_block_queue *vbq; 1154 1155 vbq = &per_cpu(vmap_block_queue, i); 1156 spin_lock_init(&vbq->lock); 1157 INIT_LIST_HEAD(&vbq->free); 1158 } 1159 1160 /* Import existing vmlist entries. */ 1161 for (tmp = vmlist; tmp; tmp = tmp->next) { 1162 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1163 va->flags = tmp->flags | VM_VM_AREA; 1164 va->va_start = (unsigned long)tmp->addr; 1165 va->va_end = va->va_start + tmp->size; 1166 __insert_vmap_area(va); 1167 } 1168 1169 vmap_area_pcpu_hole = VMALLOC_END; 1170 1171 vmap_initialized = true; 1172 } 1173 1174 /** 1175 * map_kernel_range_noflush - map kernel VM area with the specified pages 1176 * @addr: start of the VM area to map 1177 * @size: size of the VM area to map 1178 * @prot: page protection flags to use 1179 * @pages: pages to map 1180 * 1181 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1182 * specify should have been allocated using get_vm_area() and its 1183 * friends. 1184 * 1185 * NOTE: 1186 * This function does NOT do any cache flushing. The caller is 1187 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1188 * before calling this function. 1189 * 1190 * RETURNS: 1191 * The number of pages mapped on success, -errno on failure. 1192 */ 1193 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1194 pgprot_t prot, struct page **pages) 1195 { 1196 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1197 } 1198 1199 /** 1200 * unmap_kernel_range_noflush - unmap kernel VM area 1201 * @addr: start of the VM area to unmap 1202 * @size: size of the VM area to unmap 1203 * 1204 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1205 * specify should have been allocated using get_vm_area() and its 1206 * friends. 1207 * 1208 * NOTE: 1209 * This function does NOT do any cache flushing. The caller is 1210 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1211 * before calling this function and flush_tlb_kernel_range() after. 1212 */ 1213 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1214 { 1215 vunmap_page_range(addr, addr + size); 1216 } 1217 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1218 1219 /** 1220 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1221 * @addr: start of the VM area to unmap 1222 * @size: size of the VM area to unmap 1223 * 1224 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1225 * the unmapping and tlb after. 1226 */ 1227 void unmap_kernel_range(unsigned long addr, unsigned long size) 1228 { 1229 unsigned long end = addr + size; 1230 1231 flush_cache_vunmap(addr, end); 1232 vunmap_page_range(addr, end); 1233 flush_tlb_kernel_range(addr, end); 1234 } 1235 1236 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 1237 { 1238 unsigned long addr = (unsigned long)area->addr; 1239 unsigned long end = addr + area->size - PAGE_SIZE; 1240 int err; 1241 1242 err = vmap_page_range(addr, end, prot, *pages); 1243 if (err > 0) { 1244 *pages += err; 1245 err = 0; 1246 } 1247 1248 return err; 1249 } 1250 EXPORT_SYMBOL_GPL(map_vm_area); 1251 1252 /*** Old vmalloc interfaces ***/ 1253 DEFINE_RWLOCK(vmlist_lock); 1254 struct vm_struct *vmlist; 1255 1256 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1257 unsigned long flags, void *caller) 1258 { 1259 vm->flags = flags; 1260 vm->addr = (void *)va->va_start; 1261 vm->size = va->va_end - va->va_start; 1262 vm->caller = caller; 1263 va->private = vm; 1264 va->flags |= VM_VM_AREA; 1265 } 1266 1267 static void insert_vmalloc_vmlist(struct vm_struct *vm) 1268 { 1269 struct vm_struct *tmp, **p; 1270 1271 vm->flags &= ~VM_UNLIST; 1272 write_lock(&vmlist_lock); 1273 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1274 if (tmp->addr >= vm->addr) 1275 break; 1276 } 1277 vm->next = *p; 1278 *p = vm; 1279 write_unlock(&vmlist_lock); 1280 } 1281 1282 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1283 unsigned long flags, void *caller) 1284 { 1285 setup_vmalloc_vm(vm, va, flags, caller); 1286 insert_vmalloc_vmlist(vm); 1287 } 1288 1289 static struct vm_struct *__get_vm_area_node(unsigned long size, 1290 unsigned long align, unsigned long flags, unsigned long start, 1291 unsigned long end, int node, gfp_t gfp_mask, void *caller) 1292 { 1293 static struct vmap_area *va; 1294 struct vm_struct *area; 1295 1296 BUG_ON(in_interrupt()); 1297 if (flags & VM_IOREMAP) { 1298 int bit = fls(size); 1299 1300 if (bit > IOREMAP_MAX_ORDER) 1301 bit = IOREMAP_MAX_ORDER; 1302 else if (bit < PAGE_SHIFT) 1303 bit = PAGE_SHIFT; 1304 1305 align = 1ul << bit; 1306 } 1307 1308 size = PAGE_ALIGN(size); 1309 if (unlikely(!size)) 1310 return NULL; 1311 1312 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1313 if (unlikely(!area)) 1314 return NULL; 1315 1316 /* 1317 * We always allocate a guard page. 1318 */ 1319 size += PAGE_SIZE; 1320 1321 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1322 if (IS_ERR(va)) { 1323 kfree(area); 1324 return NULL; 1325 } 1326 1327 /* 1328 * When this function is called from __vmalloc_node_range, 1329 * we do not add vm_struct to vmlist here to avoid 1330 * accessing uninitialized members of vm_struct such as 1331 * pages and nr_pages fields. They will be set later. 1332 * To distinguish it from others, we use a VM_UNLIST flag. 1333 */ 1334 if (flags & VM_UNLIST) 1335 setup_vmalloc_vm(area, va, flags, caller); 1336 else 1337 insert_vmalloc_vm(area, va, flags, caller); 1338 1339 return area; 1340 } 1341 1342 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1343 unsigned long start, unsigned long end) 1344 { 1345 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, 1346 __builtin_return_address(0)); 1347 } 1348 EXPORT_SYMBOL_GPL(__get_vm_area); 1349 1350 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1351 unsigned long start, unsigned long end, 1352 void *caller) 1353 { 1354 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, 1355 caller); 1356 } 1357 1358 /** 1359 * get_vm_area - reserve a contiguous kernel virtual area 1360 * @size: size of the area 1361 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1362 * 1363 * Search an area of @size in the kernel virtual mapping area, 1364 * and reserved it for out purposes. Returns the area descriptor 1365 * on success or %NULL on failure. 1366 */ 1367 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1368 { 1369 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1370 -1, GFP_KERNEL, __builtin_return_address(0)); 1371 } 1372 1373 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1374 void *caller) 1375 { 1376 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1377 -1, GFP_KERNEL, caller); 1378 } 1379 1380 static struct vm_struct *find_vm_area(const void *addr) 1381 { 1382 struct vmap_area *va; 1383 1384 va = find_vmap_area((unsigned long)addr); 1385 if (va && va->flags & VM_VM_AREA) 1386 return va->private; 1387 1388 return NULL; 1389 } 1390 1391 /** 1392 * remove_vm_area - find and remove a continuous kernel virtual area 1393 * @addr: base address 1394 * 1395 * Search for the kernel VM area starting at @addr, and remove it. 1396 * This function returns the found VM area, but using it is NOT safe 1397 * on SMP machines, except for its size or flags. 1398 */ 1399 struct vm_struct *remove_vm_area(const void *addr) 1400 { 1401 struct vmap_area *va; 1402 1403 va = find_vmap_area((unsigned long)addr); 1404 if (va && va->flags & VM_VM_AREA) { 1405 struct vm_struct *vm = va->private; 1406 1407 if (!(vm->flags & VM_UNLIST)) { 1408 struct vm_struct *tmp, **p; 1409 /* 1410 * remove from list and disallow access to 1411 * this vm_struct before unmap. (address range 1412 * confliction is maintained by vmap.) 1413 */ 1414 write_lock(&vmlist_lock); 1415 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) 1416 ; 1417 *p = tmp->next; 1418 write_unlock(&vmlist_lock); 1419 } 1420 1421 vmap_debug_free_range(va->va_start, va->va_end); 1422 free_unmap_vmap_area(va); 1423 vm->size -= PAGE_SIZE; 1424 1425 return vm; 1426 } 1427 return NULL; 1428 } 1429 1430 static void __vunmap(const void *addr, int deallocate_pages) 1431 { 1432 struct vm_struct *area; 1433 1434 if (!addr) 1435 return; 1436 1437 if ((PAGE_SIZE-1) & (unsigned long)addr) { 1438 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 1439 return; 1440 } 1441 1442 area = remove_vm_area(addr); 1443 if (unlikely(!area)) { 1444 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1445 addr); 1446 return; 1447 } 1448 1449 debug_check_no_locks_freed(addr, area->size); 1450 debug_check_no_obj_freed(addr, area->size); 1451 1452 if (deallocate_pages) { 1453 int i; 1454 1455 for (i = 0; i < area->nr_pages; i++) { 1456 struct page *page = area->pages[i]; 1457 1458 BUG_ON(!page); 1459 __free_page(page); 1460 } 1461 1462 if (area->flags & VM_VPAGES) 1463 vfree(area->pages); 1464 else 1465 kfree(area->pages); 1466 } 1467 1468 kfree(area); 1469 return; 1470 } 1471 1472 /** 1473 * vfree - release memory allocated by vmalloc() 1474 * @addr: memory base address 1475 * 1476 * Free the virtually continuous memory area starting at @addr, as 1477 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1478 * NULL, no operation is performed. 1479 * 1480 * Must not be called in interrupt context. 1481 */ 1482 void vfree(const void *addr) 1483 { 1484 BUG_ON(in_interrupt()); 1485 1486 kmemleak_free(addr); 1487 1488 __vunmap(addr, 1); 1489 } 1490 EXPORT_SYMBOL(vfree); 1491 1492 /** 1493 * vunmap - release virtual mapping obtained by vmap() 1494 * @addr: memory base address 1495 * 1496 * Free the virtually contiguous memory area starting at @addr, 1497 * which was created from the page array passed to vmap(). 1498 * 1499 * Must not be called in interrupt context. 1500 */ 1501 void vunmap(const void *addr) 1502 { 1503 BUG_ON(in_interrupt()); 1504 might_sleep(); 1505 __vunmap(addr, 0); 1506 } 1507 EXPORT_SYMBOL(vunmap); 1508 1509 /** 1510 * vmap - map an array of pages into virtually contiguous space 1511 * @pages: array of page pointers 1512 * @count: number of pages to map 1513 * @flags: vm_area->flags 1514 * @prot: page protection for the mapping 1515 * 1516 * Maps @count pages from @pages into contiguous kernel virtual 1517 * space. 1518 */ 1519 void *vmap(struct page **pages, unsigned int count, 1520 unsigned long flags, pgprot_t prot) 1521 { 1522 struct vm_struct *area; 1523 1524 might_sleep(); 1525 1526 if (count > totalram_pages) 1527 return NULL; 1528 1529 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1530 __builtin_return_address(0)); 1531 if (!area) 1532 return NULL; 1533 1534 if (map_vm_area(area, prot, &pages)) { 1535 vunmap(area->addr); 1536 return NULL; 1537 } 1538 1539 return area->addr; 1540 } 1541 EXPORT_SYMBOL(vmap); 1542 1543 static void *__vmalloc_node(unsigned long size, unsigned long align, 1544 gfp_t gfp_mask, pgprot_t prot, 1545 int node, void *caller); 1546 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1547 pgprot_t prot, int node, void *caller) 1548 { 1549 const int order = 0; 1550 struct page **pages; 1551 unsigned int nr_pages, array_size, i; 1552 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1553 1554 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 1555 array_size = (nr_pages * sizeof(struct page *)); 1556 1557 area->nr_pages = nr_pages; 1558 /* Please note that the recursion is strictly bounded. */ 1559 if (array_size > PAGE_SIZE) { 1560 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, 1561 PAGE_KERNEL, node, caller); 1562 area->flags |= VM_VPAGES; 1563 } else { 1564 pages = kmalloc_node(array_size, nested_gfp, node); 1565 } 1566 area->pages = pages; 1567 area->caller = caller; 1568 if (!area->pages) { 1569 remove_vm_area(area->addr); 1570 kfree(area); 1571 return NULL; 1572 } 1573 1574 for (i = 0; i < area->nr_pages; i++) { 1575 struct page *page; 1576 gfp_t tmp_mask = gfp_mask | __GFP_NOWARN; 1577 1578 if (node < 0) 1579 page = alloc_page(tmp_mask); 1580 else 1581 page = alloc_pages_node(node, tmp_mask, order); 1582 1583 if (unlikely(!page)) { 1584 /* Successfully allocated i pages, free them in __vunmap() */ 1585 area->nr_pages = i; 1586 goto fail; 1587 } 1588 area->pages[i] = page; 1589 } 1590 1591 if (map_vm_area(area, prot, &pages)) 1592 goto fail; 1593 return area->addr; 1594 1595 fail: 1596 warn_alloc_failed(gfp_mask, order, 1597 "vmalloc: allocation failure, allocated %ld of %ld bytes\n", 1598 (area->nr_pages*PAGE_SIZE), area->size); 1599 vfree(area->addr); 1600 return NULL; 1601 } 1602 1603 /** 1604 * __vmalloc_node_range - allocate virtually contiguous memory 1605 * @size: allocation size 1606 * @align: desired alignment 1607 * @start: vm area range start 1608 * @end: vm area range end 1609 * @gfp_mask: flags for the page level allocator 1610 * @prot: protection mask for the allocated pages 1611 * @node: node to use for allocation or -1 1612 * @caller: caller's return address 1613 * 1614 * Allocate enough pages to cover @size from the page level 1615 * allocator with @gfp_mask flags. Map them into contiguous 1616 * kernel virtual space, using a pagetable protection of @prot. 1617 */ 1618 void *__vmalloc_node_range(unsigned long size, unsigned long align, 1619 unsigned long start, unsigned long end, gfp_t gfp_mask, 1620 pgprot_t prot, int node, void *caller) 1621 { 1622 struct vm_struct *area; 1623 void *addr; 1624 unsigned long real_size = size; 1625 1626 size = PAGE_ALIGN(size); 1627 if (!size || (size >> PAGE_SHIFT) > totalram_pages) 1628 goto fail; 1629 1630 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST, 1631 start, end, node, gfp_mask, caller); 1632 if (!area) 1633 goto fail; 1634 1635 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller); 1636 1637 /* 1638 * In this function, newly allocated vm_struct is not added 1639 * to vmlist at __get_vm_area_node(). so, it is added here. 1640 */ 1641 insert_vmalloc_vmlist(area); 1642 1643 /* 1644 * A ref_count = 3 is needed because the vm_struct and vmap_area 1645 * structures allocated in the __get_vm_area_node() function contain 1646 * references to the virtual address of the vmalloc'ed block. 1647 */ 1648 kmemleak_alloc(addr, real_size, 3, gfp_mask); 1649 1650 return addr; 1651 1652 fail: 1653 warn_alloc_failed(gfp_mask, 0, 1654 "vmalloc: allocation failure: %lu bytes\n", 1655 real_size); 1656 return NULL; 1657 } 1658 1659 /** 1660 * __vmalloc_node - allocate virtually contiguous memory 1661 * @size: allocation size 1662 * @align: desired alignment 1663 * @gfp_mask: flags for the page level allocator 1664 * @prot: protection mask for the allocated pages 1665 * @node: node to use for allocation or -1 1666 * @caller: caller's return address 1667 * 1668 * Allocate enough pages to cover @size from the page level 1669 * allocator with @gfp_mask flags. Map them into contiguous 1670 * kernel virtual space, using a pagetable protection of @prot. 1671 */ 1672 static void *__vmalloc_node(unsigned long size, unsigned long align, 1673 gfp_t gfp_mask, pgprot_t prot, 1674 int node, void *caller) 1675 { 1676 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 1677 gfp_mask, prot, node, caller); 1678 } 1679 1680 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1681 { 1682 return __vmalloc_node(size, 1, gfp_mask, prot, -1, 1683 __builtin_return_address(0)); 1684 } 1685 EXPORT_SYMBOL(__vmalloc); 1686 1687 static inline void *__vmalloc_node_flags(unsigned long size, 1688 int node, gfp_t flags) 1689 { 1690 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 1691 node, __builtin_return_address(0)); 1692 } 1693 1694 /** 1695 * vmalloc - allocate virtually contiguous memory 1696 * @size: allocation size 1697 * Allocate enough pages to cover @size from the page level 1698 * allocator and map them into contiguous kernel virtual space. 1699 * 1700 * For tight control over page level allocator and protection flags 1701 * use __vmalloc() instead. 1702 */ 1703 void *vmalloc(unsigned long size) 1704 { 1705 return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM); 1706 } 1707 EXPORT_SYMBOL(vmalloc); 1708 1709 /** 1710 * vzalloc - allocate virtually contiguous memory with zero fill 1711 * @size: allocation size 1712 * Allocate enough pages to cover @size from the page level 1713 * allocator and map them into contiguous kernel virtual space. 1714 * The memory allocated is set to zero. 1715 * 1716 * For tight control over page level allocator and protection flags 1717 * use __vmalloc() instead. 1718 */ 1719 void *vzalloc(unsigned long size) 1720 { 1721 return __vmalloc_node_flags(size, -1, 1722 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1723 } 1724 EXPORT_SYMBOL(vzalloc); 1725 1726 /** 1727 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1728 * @size: allocation size 1729 * 1730 * The resulting memory area is zeroed so it can be mapped to userspace 1731 * without leaking data. 1732 */ 1733 void *vmalloc_user(unsigned long size) 1734 { 1735 struct vm_struct *area; 1736 void *ret; 1737 1738 ret = __vmalloc_node(size, SHMLBA, 1739 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1740 PAGE_KERNEL, -1, __builtin_return_address(0)); 1741 if (ret) { 1742 area = find_vm_area(ret); 1743 area->flags |= VM_USERMAP; 1744 } 1745 return ret; 1746 } 1747 EXPORT_SYMBOL(vmalloc_user); 1748 1749 /** 1750 * vmalloc_node - allocate memory on a specific node 1751 * @size: allocation size 1752 * @node: numa node 1753 * 1754 * Allocate enough pages to cover @size from the page level 1755 * allocator and map them into contiguous kernel virtual space. 1756 * 1757 * For tight control over page level allocator and protection flags 1758 * use __vmalloc() instead. 1759 */ 1760 void *vmalloc_node(unsigned long size, int node) 1761 { 1762 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1763 node, __builtin_return_address(0)); 1764 } 1765 EXPORT_SYMBOL(vmalloc_node); 1766 1767 /** 1768 * vzalloc_node - allocate memory on a specific node with zero fill 1769 * @size: allocation size 1770 * @node: numa node 1771 * 1772 * Allocate enough pages to cover @size from the page level 1773 * allocator and map them into contiguous kernel virtual space. 1774 * The memory allocated is set to zero. 1775 * 1776 * For tight control over page level allocator and protection flags 1777 * use __vmalloc_node() instead. 1778 */ 1779 void *vzalloc_node(unsigned long size, int node) 1780 { 1781 return __vmalloc_node_flags(size, node, 1782 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1783 } 1784 EXPORT_SYMBOL(vzalloc_node); 1785 1786 #ifndef PAGE_KERNEL_EXEC 1787 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1788 #endif 1789 1790 /** 1791 * vmalloc_exec - allocate virtually contiguous, executable memory 1792 * @size: allocation size 1793 * 1794 * Kernel-internal function to allocate enough pages to cover @size 1795 * the page level allocator and map them into contiguous and 1796 * executable kernel virtual space. 1797 * 1798 * For tight control over page level allocator and protection flags 1799 * use __vmalloc() instead. 1800 */ 1801 1802 void *vmalloc_exec(unsigned long size) 1803 { 1804 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1805 -1, __builtin_return_address(0)); 1806 } 1807 1808 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1809 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1810 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1811 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1812 #else 1813 #define GFP_VMALLOC32 GFP_KERNEL 1814 #endif 1815 1816 /** 1817 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1818 * @size: allocation size 1819 * 1820 * Allocate enough 32bit PA addressable pages to cover @size from the 1821 * page level allocator and map them into contiguous kernel virtual space. 1822 */ 1823 void *vmalloc_32(unsigned long size) 1824 { 1825 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 1826 -1, __builtin_return_address(0)); 1827 } 1828 EXPORT_SYMBOL(vmalloc_32); 1829 1830 /** 1831 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1832 * @size: allocation size 1833 * 1834 * The resulting memory area is 32bit addressable and zeroed so it can be 1835 * mapped to userspace without leaking data. 1836 */ 1837 void *vmalloc_32_user(unsigned long size) 1838 { 1839 struct vm_struct *area; 1840 void *ret; 1841 1842 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1843 -1, __builtin_return_address(0)); 1844 if (ret) { 1845 area = find_vm_area(ret); 1846 area->flags |= VM_USERMAP; 1847 } 1848 return ret; 1849 } 1850 EXPORT_SYMBOL(vmalloc_32_user); 1851 1852 /* 1853 * small helper routine , copy contents to buf from addr. 1854 * If the page is not present, fill zero. 1855 */ 1856 1857 static int aligned_vread(char *buf, char *addr, unsigned long count) 1858 { 1859 struct page *p; 1860 int copied = 0; 1861 1862 while (count) { 1863 unsigned long offset, length; 1864 1865 offset = (unsigned long)addr & ~PAGE_MASK; 1866 length = PAGE_SIZE - offset; 1867 if (length > count) 1868 length = count; 1869 p = vmalloc_to_page(addr); 1870 /* 1871 * To do safe access to this _mapped_ area, we need 1872 * lock. But adding lock here means that we need to add 1873 * overhead of vmalloc()/vfree() calles for this _debug_ 1874 * interface, rarely used. Instead of that, we'll use 1875 * kmap() and get small overhead in this access function. 1876 */ 1877 if (p) { 1878 /* 1879 * we can expect USER0 is not used (see vread/vwrite's 1880 * function description) 1881 */ 1882 void *map = kmap_atomic(p, KM_USER0); 1883 memcpy(buf, map + offset, length); 1884 kunmap_atomic(map, KM_USER0); 1885 } else 1886 memset(buf, 0, length); 1887 1888 addr += length; 1889 buf += length; 1890 copied += length; 1891 count -= length; 1892 } 1893 return copied; 1894 } 1895 1896 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 1897 { 1898 struct page *p; 1899 int copied = 0; 1900 1901 while (count) { 1902 unsigned long offset, length; 1903 1904 offset = (unsigned long)addr & ~PAGE_MASK; 1905 length = PAGE_SIZE - offset; 1906 if (length > count) 1907 length = count; 1908 p = vmalloc_to_page(addr); 1909 /* 1910 * To do safe access to this _mapped_ area, we need 1911 * lock. But adding lock here means that we need to add 1912 * overhead of vmalloc()/vfree() calles for this _debug_ 1913 * interface, rarely used. Instead of that, we'll use 1914 * kmap() and get small overhead in this access function. 1915 */ 1916 if (p) { 1917 /* 1918 * we can expect USER0 is not used (see vread/vwrite's 1919 * function description) 1920 */ 1921 void *map = kmap_atomic(p, KM_USER0); 1922 memcpy(map + offset, buf, length); 1923 kunmap_atomic(map, KM_USER0); 1924 } 1925 addr += length; 1926 buf += length; 1927 copied += length; 1928 count -= length; 1929 } 1930 return copied; 1931 } 1932 1933 /** 1934 * vread() - read vmalloc area in a safe way. 1935 * @buf: buffer for reading data 1936 * @addr: vm address. 1937 * @count: number of bytes to be read. 1938 * 1939 * Returns # of bytes which addr and buf should be increased. 1940 * (same number to @count). Returns 0 if [addr...addr+count) doesn't 1941 * includes any intersect with alive vmalloc area. 1942 * 1943 * This function checks that addr is a valid vmalloc'ed area, and 1944 * copy data from that area to a given buffer. If the given memory range 1945 * of [addr...addr+count) includes some valid address, data is copied to 1946 * proper area of @buf. If there are memory holes, they'll be zero-filled. 1947 * IOREMAP area is treated as memory hole and no copy is done. 1948 * 1949 * If [addr...addr+count) doesn't includes any intersects with alive 1950 * vm_struct area, returns 0. 1951 * @buf should be kernel's buffer. Because this function uses KM_USER0, 1952 * the caller should guarantee KM_USER0 is not used. 1953 * 1954 * Note: In usual ops, vread() is never necessary because the caller 1955 * should know vmalloc() area is valid and can use memcpy(). 1956 * This is for routines which have to access vmalloc area without 1957 * any informaion, as /dev/kmem. 1958 * 1959 */ 1960 1961 long vread(char *buf, char *addr, unsigned long count) 1962 { 1963 struct vm_struct *tmp; 1964 char *vaddr, *buf_start = buf; 1965 unsigned long buflen = count; 1966 unsigned long n; 1967 1968 /* Don't allow overflow */ 1969 if ((unsigned long) addr + count < count) 1970 count = -(unsigned long) addr; 1971 1972 read_lock(&vmlist_lock); 1973 for (tmp = vmlist; count && tmp; tmp = tmp->next) { 1974 vaddr = (char *) tmp->addr; 1975 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1976 continue; 1977 while (addr < vaddr) { 1978 if (count == 0) 1979 goto finished; 1980 *buf = '\0'; 1981 buf++; 1982 addr++; 1983 count--; 1984 } 1985 n = vaddr + tmp->size - PAGE_SIZE - addr; 1986 if (n > count) 1987 n = count; 1988 if (!(tmp->flags & VM_IOREMAP)) 1989 aligned_vread(buf, addr, n); 1990 else /* IOREMAP area is treated as memory hole */ 1991 memset(buf, 0, n); 1992 buf += n; 1993 addr += n; 1994 count -= n; 1995 } 1996 finished: 1997 read_unlock(&vmlist_lock); 1998 1999 if (buf == buf_start) 2000 return 0; 2001 /* zero-fill memory holes */ 2002 if (buf != buf_start + buflen) 2003 memset(buf, 0, buflen - (buf - buf_start)); 2004 2005 return buflen; 2006 } 2007 2008 /** 2009 * vwrite() - write vmalloc area in a safe way. 2010 * @buf: buffer for source data 2011 * @addr: vm address. 2012 * @count: number of bytes to be read. 2013 * 2014 * Returns # of bytes which addr and buf should be incresed. 2015 * (same number to @count). 2016 * If [addr...addr+count) doesn't includes any intersect with valid 2017 * vmalloc area, returns 0. 2018 * 2019 * This function checks that addr is a valid vmalloc'ed area, and 2020 * copy data from a buffer to the given addr. If specified range of 2021 * [addr...addr+count) includes some valid address, data is copied from 2022 * proper area of @buf. If there are memory holes, no copy to hole. 2023 * IOREMAP area is treated as memory hole and no copy is done. 2024 * 2025 * If [addr...addr+count) doesn't includes any intersects with alive 2026 * vm_struct area, returns 0. 2027 * @buf should be kernel's buffer. Because this function uses KM_USER0, 2028 * the caller should guarantee KM_USER0 is not used. 2029 * 2030 * Note: In usual ops, vwrite() is never necessary because the caller 2031 * should know vmalloc() area is valid and can use memcpy(). 2032 * This is for routines which have to access vmalloc area without 2033 * any informaion, as /dev/kmem. 2034 */ 2035 2036 long vwrite(char *buf, char *addr, unsigned long count) 2037 { 2038 struct vm_struct *tmp; 2039 char *vaddr; 2040 unsigned long n, buflen; 2041 int copied = 0; 2042 2043 /* Don't allow overflow */ 2044 if ((unsigned long) addr + count < count) 2045 count = -(unsigned long) addr; 2046 buflen = count; 2047 2048 read_lock(&vmlist_lock); 2049 for (tmp = vmlist; count && tmp; tmp = tmp->next) { 2050 vaddr = (char *) tmp->addr; 2051 if (addr >= vaddr + tmp->size - PAGE_SIZE) 2052 continue; 2053 while (addr < vaddr) { 2054 if (count == 0) 2055 goto finished; 2056 buf++; 2057 addr++; 2058 count--; 2059 } 2060 n = vaddr + tmp->size - PAGE_SIZE - addr; 2061 if (n > count) 2062 n = count; 2063 if (!(tmp->flags & VM_IOREMAP)) { 2064 aligned_vwrite(buf, addr, n); 2065 copied++; 2066 } 2067 buf += n; 2068 addr += n; 2069 count -= n; 2070 } 2071 finished: 2072 read_unlock(&vmlist_lock); 2073 if (!copied) 2074 return 0; 2075 return buflen; 2076 } 2077 2078 /** 2079 * remap_vmalloc_range - map vmalloc pages to userspace 2080 * @vma: vma to cover (map full range of vma) 2081 * @addr: vmalloc memory 2082 * @pgoff: number of pages into addr before first page to map 2083 * 2084 * Returns: 0 for success, -Exxx on failure 2085 * 2086 * This function checks that addr is a valid vmalloc'ed area, and 2087 * that it is big enough to cover the vma. Will return failure if 2088 * that criteria isn't met. 2089 * 2090 * Similar to remap_pfn_range() (see mm/memory.c) 2091 */ 2092 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2093 unsigned long pgoff) 2094 { 2095 struct vm_struct *area; 2096 unsigned long uaddr = vma->vm_start; 2097 unsigned long usize = vma->vm_end - vma->vm_start; 2098 2099 if ((PAGE_SIZE-1) & (unsigned long)addr) 2100 return -EINVAL; 2101 2102 area = find_vm_area(addr); 2103 if (!area) 2104 return -EINVAL; 2105 2106 if (!(area->flags & VM_USERMAP)) 2107 return -EINVAL; 2108 2109 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 2110 return -EINVAL; 2111 2112 addr += pgoff << PAGE_SHIFT; 2113 do { 2114 struct page *page = vmalloc_to_page(addr); 2115 int ret; 2116 2117 ret = vm_insert_page(vma, uaddr, page); 2118 if (ret) 2119 return ret; 2120 2121 uaddr += PAGE_SIZE; 2122 addr += PAGE_SIZE; 2123 usize -= PAGE_SIZE; 2124 } while (usize > 0); 2125 2126 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 2127 vma->vm_flags |= VM_RESERVED; 2128 2129 return 0; 2130 } 2131 EXPORT_SYMBOL(remap_vmalloc_range); 2132 2133 /* 2134 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2135 * have one. 2136 */ 2137 void __attribute__((weak)) vmalloc_sync_all(void) 2138 { 2139 } 2140 2141 2142 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 2143 { 2144 /* apply_to_page_range() does all the hard work. */ 2145 return 0; 2146 } 2147 2148 /** 2149 * alloc_vm_area - allocate a range of kernel address space 2150 * @size: size of the area 2151 * 2152 * Returns: NULL on failure, vm_struct on success 2153 * 2154 * This function reserves a range of kernel address space, and 2155 * allocates pagetables to map that range. No actual mappings 2156 * are created. If the kernel address space is not shared 2157 * between processes, it syncs the pagetable across all 2158 * processes. 2159 */ 2160 struct vm_struct *alloc_vm_area(size_t size) 2161 { 2162 struct vm_struct *area; 2163 2164 area = get_vm_area_caller(size, VM_IOREMAP, 2165 __builtin_return_address(0)); 2166 if (area == NULL) 2167 return NULL; 2168 2169 /* 2170 * This ensures that page tables are constructed for this region 2171 * of kernel virtual address space and mapped into init_mm. 2172 */ 2173 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2174 area->size, f, NULL)) { 2175 free_vm_area(area); 2176 return NULL; 2177 } 2178 2179 /* 2180 * If the allocated address space is passed to a hypercall 2181 * before being used then we cannot rely on a page fault to 2182 * trigger an update of the page tables. So sync all the page 2183 * tables here. 2184 */ 2185 vmalloc_sync_all(); 2186 2187 return area; 2188 } 2189 EXPORT_SYMBOL_GPL(alloc_vm_area); 2190 2191 void free_vm_area(struct vm_struct *area) 2192 { 2193 struct vm_struct *ret; 2194 ret = remove_vm_area(area->addr); 2195 BUG_ON(ret != area); 2196 kfree(area); 2197 } 2198 EXPORT_SYMBOL_GPL(free_vm_area); 2199 2200 #ifdef CONFIG_SMP 2201 static struct vmap_area *node_to_va(struct rb_node *n) 2202 { 2203 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; 2204 } 2205 2206 /** 2207 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2208 * @end: target address 2209 * @pnext: out arg for the next vmap_area 2210 * @pprev: out arg for the previous vmap_area 2211 * 2212 * Returns: %true if either or both of next and prev are found, 2213 * %false if no vmap_area exists 2214 * 2215 * Find vmap_areas end addresses of which enclose @end. ie. if not 2216 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2217 */ 2218 static bool pvm_find_next_prev(unsigned long end, 2219 struct vmap_area **pnext, 2220 struct vmap_area **pprev) 2221 { 2222 struct rb_node *n = vmap_area_root.rb_node; 2223 struct vmap_area *va = NULL; 2224 2225 while (n) { 2226 va = rb_entry(n, struct vmap_area, rb_node); 2227 if (end < va->va_end) 2228 n = n->rb_left; 2229 else if (end > va->va_end) 2230 n = n->rb_right; 2231 else 2232 break; 2233 } 2234 2235 if (!va) 2236 return false; 2237 2238 if (va->va_end > end) { 2239 *pnext = va; 2240 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2241 } else { 2242 *pprev = va; 2243 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2244 } 2245 return true; 2246 } 2247 2248 /** 2249 * pvm_determine_end - find the highest aligned address between two vmap_areas 2250 * @pnext: in/out arg for the next vmap_area 2251 * @pprev: in/out arg for the previous vmap_area 2252 * @align: alignment 2253 * 2254 * Returns: determined end address 2255 * 2256 * Find the highest aligned address between *@pnext and *@pprev below 2257 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2258 * down address is between the end addresses of the two vmap_areas. 2259 * 2260 * Please note that the address returned by this function may fall 2261 * inside *@pnext vmap_area. The caller is responsible for checking 2262 * that. 2263 */ 2264 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2265 struct vmap_area **pprev, 2266 unsigned long align) 2267 { 2268 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2269 unsigned long addr; 2270 2271 if (*pnext) 2272 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2273 else 2274 addr = vmalloc_end; 2275 2276 while (*pprev && (*pprev)->va_end > addr) { 2277 *pnext = *pprev; 2278 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2279 } 2280 2281 return addr; 2282 } 2283 2284 /** 2285 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2286 * @offsets: array containing offset of each area 2287 * @sizes: array containing size of each area 2288 * @nr_vms: the number of areas to allocate 2289 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2290 * 2291 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2292 * vm_structs on success, %NULL on failure 2293 * 2294 * Percpu allocator wants to use congruent vm areas so that it can 2295 * maintain the offsets among percpu areas. This function allocates 2296 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 2297 * be scattered pretty far, distance between two areas easily going up 2298 * to gigabytes. To avoid interacting with regular vmallocs, these 2299 * areas are allocated from top. 2300 * 2301 * Despite its complicated look, this allocator is rather simple. It 2302 * does everything top-down and scans areas from the end looking for 2303 * matching slot. While scanning, if any of the areas overlaps with 2304 * existing vmap_area, the base address is pulled down to fit the 2305 * area. Scanning is repeated till all the areas fit and then all 2306 * necessary data structres are inserted and the result is returned. 2307 */ 2308 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2309 const size_t *sizes, int nr_vms, 2310 size_t align) 2311 { 2312 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2313 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2314 struct vmap_area **vas, *prev, *next; 2315 struct vm_struct **vms; 2316 int area, area2, last_area, term_area; 2317 unsigned long base, start, end, last_end; 2318 bool purged = false; 2319 2320 /* verify parameters and allocate data structures */ 2321 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); 2322 for (last_area = 0, area = 0; area < nr_vms; area++) { 2323 start = offsets[area]; 2324 end = start + sizes[area]; 2325 2326 /* is everything aligned properly? */ 2327 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2328 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2329 2330 /* detect the area with the highest address */ 2331 if (start > offsets[last_area]) 2332 last_area = area; 2333 2334 for (area2 = 0; area2 < nr_vms; area2++) { 2335 unsigned long start2 = offsets[area2]; 2336 unsigned long end2 = start2 + sizes[area2]; 2337 2338 if (area2 == area) 2339 continue; 2340 2341 BUG_ON(start2 >= start && start2 < end); 2342 BUG_ON(end2 <= end && end2 > start); 2343 } 2344 } 2345 last_end = offsets[last_area] + sizes[last_area]; 2346 2347 if (vmalloc_end - vmalloc_start < last_end) { 2348 WARN_ON(true); 2349 return NULL; 2350 } 2351 2352 vms = kzalloc(sizeof(vms[0]) * nr_vms, GFP_KERNEL); 2353 vas = kzalloc(sizeof(vas[0]) * nr_vms, GFP_KERNEL); 2354 if (!vas || !vms) 2355 goto err_free; 2356 2357 for (area = 0; area < nr_vms; area++) { 2358 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); 2359 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 2360 if (!vas[area] || !vms[area]) 2361 goto err_free; 2362 } 2363 retry: 2364 spin_lock(&vmap_area_lock); 2365 2366 /* start scanning - we scan from the top, begin with the last area */ 2367 area = term_area = last_area; 2368 start = offsets[area]; 2369 end = start + sizes[area]; 2370 2371 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2372 base = vmalloc_end - last_end; 2373 goto found; 2374 } 2375 base = pvm_determine_end(&next, &prev, align) - end; 2376 2377 while (true) { 2378 BUG_ON(next && next->va_end <= base + end); 2379 BUG_ON(prev && prev->va_end > base + end); 2380 2381 /* 2382 * base might have underflowed, add last_end before 2383 * comparing. 2384 */ 2385 if (base + last_end < vmalloc_start + last_end) { 2386 spin_unlock(&vmap_area_lock); 2387 if (!purged) { 2388 purge_vmap_area_lazy(); 2389 purged = true; 2390 goto retry; 2391 } 2392 goto err_free; 2393 } 2394 2395 /* 2396 * If next overlaps, move base downwards so that it's 2397 * right below next and then recheck. 2398 */ 2399 if (next && next->va_start < base + end) { 2400 base = pvm_determine_end(&next, &prev, align) - end; 2401 term_area = area; 2402 continue; 2403 } 2404 2405 /* 2406 * If prev overlaps, shift down next and prev and move 2407 * base so that it's right below new next and then 2408 * recheck. 2409 */ 2410 if (prev && prev->va_end > base + start) { 2411 next = prev; 2412 prev = node_to_va(rb_prev(&next->rb_node)); 2413 base = pvm_determine_end(&next, &prev, align) - end; 2414 term_area = area; 2415 continue; 2416 } 2417 2418 /* 2419 * This area fits, move on to the previous one. If 2420 * the previous one is the terminal one, we're done. 2421 */ 2422 area = (area + nr_vms - 1) % nr_vms; 2423 if (area == term_area) 2424 break; 2425 start = offsets[area]; 2426 end = start + sizes[area]; 2427 pvm_find_next_prev(base + end, &next, &prev); 2428 } 2429 found: 2430 /* we've found a fitting base, insert all va's */ 2431 for (area = 0; area < nr_vms; area++) { 2432 struct vmap_area *va = vas[area]; 2433 2434 va->va_start = base + offsets[area]; 2435 va->va_end = va->va_start + sizes[area]; 2436 __insert_vmap_area(va); 2437 } 2438 2439 vmap_area_pcpu_hole = base + offsets[last_area]; 2440 2441 spin_unlock(&vmap_area_lock); 2442 2443 /* insert all vm's */ 2444 for (area = 0; area < nr_vms; area++) 2445 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2446 pcpu_get_vm_areas); 2447 2448 kfree(vas); 2449 return vms; 2450 2451 err_free: 2452 for (area = 0; area < nr_vms; area++) { 2453 if (vas) 2454 kfree(vas[area]); 2455 if (vms) 2456 kfree(vms[area]); 2457 } 2458 kfree(vas); 2459 kfree(vms); 2460 return NULL; 2461 } 2462 2463 /** 2464 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2465 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2466 * @nr_vms: the number of allocated areas 2467 * 2468 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2469 */ 2470 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2471 { 2472 int i; 2473 2474 for (i = 0; i < nr_vms; i++) 2475 free_vm_area(vms[i]); 2476 kfree(vms); 2477 } 2478 #endif /* CONFIG_SMP */ 2479 2480 #ifdef CONFIG_PROC_FS 2481 static void *s_start(struct seq_file *m, loff_t *pos) 2482 __acquires(&vmlist_lock) 2483 { 2484 loff_t n = *pos; 2485 struct vm_struct *v; 2486 2487 read_lock(&vmlist_lock); 2488 v = vmlist; 2489 while (n > 0 && v) { 2490 n--; 2491 v = v->next; 2492 } 2493 if (!n) 2494 return v; 2495 2496 return NULL; 2497 2498 } 2499 2500 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2501 { 2502 struct vm_struct *v = p; 2503 2504 ++*pos; 2505 return v->next; 2506 } 2507 2508 static void s_stop(struct seq_file *m, void *p) 2509 __releases(&vmlist_lock) 2510 { 2511 read_unlock(&vmlist_lock); 2512 } 2513 2514 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2515 { 2516 if (NUMA_BUILD) { 2517 unsigned int nr, *counters = m->private; 2518 2519 if (!counters) 2520 return; 2521 2522 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2523 2524 for (nr = 0; nr < v->nr_pages; nr++) 2525 counters[page_to_nid(v->pages[nr])]++; 2526 2527 for_each_node_state(nr, N_HIGH_MEMORY) 2528 if (counters[nr]) 2529 seq_printf(m, " N%u=%u", nr, counters[nr]); 2530 } 2531 } 2532 2533 static int s_show(struct seq_file *m, void *p) 2534 { 2535 struct vm_struct *v = p; 2536 2537 seq_printf(m, "0x%p-0x%p %7ld", 2538 v->addr, v->addr + v->size, v->size); 2539 2540 if (v->caller) 2541 seq_printf(m, " %pS", v->caller); 2542 2543 if (v->nr_pages) 2544 seq_printf(m, " pages=%d", v->nr_pages); 2545 2546 if (v->phys_addr) 2547 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); 2548 2549 if (v->flags & VM_IOREMAP) 2550 seq_printf(m, " ioremap"); 2551 2552 if (v->flags & VM_ALLOC) 2553 seq_printf(m, " vmalloc"); 2554 2555 if (v->flags & VM_MAP) 2556 seq_printf(m, " vmap"); 2557 2558 if (v->flags & VM_USERMAP) 2559 seq_printf(m, " user"); 2560 2561 if (v->flags & VM_VPAGES) 2562 seq_printf(m, " vpages"); 2563 2564 show_numa_info(m, v); 2565 seq_putc(m, '\n'); 2566 return 0; 2567 } 2568 2569 static const struct seq_operations vmalloc_op = { 2570 .start = s_start, 2571 .next = s_next, 2572 .stop = s_stop, 2573 .show = s_show, 2574 }; 2575 2576 static int vmalloc_open(struct inode *inode, struct file *file) 2577 { 2578 unsigned int *ptr = NULL; 2579 int ret; 2580 2581 if (NUMA_BUILD) { 2582 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 2583 if (ptr == NULL) 2584 return -ENOMEM; 2585 } 2586 ret = seq_open(file, &vmalloc_op); 2587 if (!ret) { 2588 struct seq_file *m = file->private_data; 2589 m->private = ptr; 2590 } else 2591 kfree(ptr); 2592 return ret; 2593 } 2594 2595 static const struct file_operations proc_vmalloc_operations = { 2596 .open = vmalloc_open, 2597 .read = seq_read, 2598 .llseek = seq_lseek, 2599 .release = seq_release_private, 2600 }; 2601 2602 static int __init proc_vmalloc_init(void) 2603 { 2604 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 2605 return 0; 2606 } 2607 module_init(proc_vmalloc_init); 2608 #endif 2609 2610