1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/vmalloc.c 4 * 5 * Copyright (C) 1993 Linus Torvalds 6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 9 * Numa awareness, Christoph Lameter, SGI, June 2005 10 */ 11 12 #include <linux/vmalloc.h> 13 #include <linux/mm.h> 14 #include <linux/module.h> 15 #include <linux/highmem.h> 16 #include <linux/sched/signal.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/interrupt.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/set_memory.h> 23 #include <linux/debugobjects.h> 24 #include <linux/kallsyms.h> 25 #include <linux/list.h> 26 #include <linux/notifier.h> 27 #include <linux/rbtree.h> 28 #include <linux/radix-tree.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/llist.h> 35 #include <linux/bitops.h> 36 #include <linux/rbtree_augmented.h> 37 38 #include <linux/uaccess.h> 39 #include <asm/tlbflush.h> 40 #include <asm/shmparam.h> 41 42 #include "internal.h" 43 44 struct vfree_deferred { 45 struct llist_head list; 46 struct work_struct wq; 47 }; 48 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 49 50 static void __vunmap(const void *, int); 51 52 static void free_work(struct work_struct *w) 53 { 54 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 55 struct llist_node *t, *llnode; 56 57 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 58 __vunmap((void *)llnode, 1); 59 } 60 61 /*** Page table manipulation functions ***/ 62 63 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 64 { 65 pte_t *pte; 66 67 pte = pte_offset_kernel(pmd, addr); 68 do { 69 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 70 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 71 } while (pte++, addr += PAGE_SIZE, addr != end); 72 } 73 74 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 75 { 76 pmd_t *pmd; 77 unsigned long next; 78 79 pmd = pmd_offset(pud, addr); 80 do { 81 next = pmd_addr_end(addr, end); 82 if (pmd_clear_huge(pmd)) 83 continue; 84 if (pmd_none_or_clear_bad(pmd)) 85 continue; 86 vunmap_pte_range(pmd, addr, next); 87 } while (pmd++, addr = next, addr != end); 88 } 89 90 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end) 91 { 92 pud_t *pud; 93 unsigned long next; 94 95 pud = pud_offset(p4d, addr); 96 do { 97 next = pud_addr_end(addr, end); 98 if (pud_clear_huge(pud)) 99 continue; 100 if (pud_none_or_clear_bad(pud)) 101 continue; 102 vunmap_pmd_range(pud, addr, next); 103 } while (pud++, addr = next, addr != end); 104 } 105 106 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end) 107 { 108 p4d_t *p4d; 109 unsigned long next; 110 111 p4d = p4d_offset(pgd, addr); 112 do { 113 next = p4d_addr_end(addr, end); 114 if (p4d_clear_huge(p4d)) 115 continue; 116 if (p4d_none_or_clear_bad(p4d)) 117 continue; 118 vunmap_pud_range(p4d, addr, next); 119 } while (p4d++, addr = next, addr != end); 120 } 121 122 static void vunmap_page_range(unsigned long addr, unsigned long end) 123 { 124 pgd_t *pgd; 125 unsigned long next; 126 127 BUG_ON(addr >= end); 128 pgd = pgd_offset_k(addr); 129 do { 130 next = pgd_addr_end(addr, end); 131 if (pgd_none_or_clear_bad(pgd)) 132 continue; 133 vunmap_p4d_range(pgd, addr, next); 134 } while (pgd++, addr = next, addr != end); 135 } 136 137 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 138 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 139 { 140 pte_t *pte; 141 142 /* 143 * nr is a running index into the array which helps higher level 144 * callers keep track of where we're up to. 145 */ 146 147 pte = pte_alloc_kernel(pmd, addr); 148 if (!pte) 149 return -ENOMEM; 150 do { 151 struct page *page = pages[*nr]; 152 153 if (WARN_ON(!pte_none(*pte))) 154 return -EBUSY; 155 if (WARN_ON(!page)) 156 return -ENOMEM; 157 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 158 (*nr)++; 159 } while (pte++, addr += PAGE_SIZE, addr != end); 160 return 0; 161 } 162 163 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 164 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 165 { 166 pmd_t *pmd; 167 unsigned long next; 168 169 pmd = pmd_alloc(&init_mm, pud, addr); 170 if (!pmd) 171 return -ENOMEM; 172 do { 173 next = pmd_addr_end(addr, end); 174 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 175 return -ENOMEM; 176 } while (pmd++, addr = next, addr != end); 177 return 0; 178 } 179 180 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, 181 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 182 { 183 pud_t *pud; 184 unsigned long next; 185 186 pud = pud_alloc(&init_mm, p4d, addr); 187 if (!pud) 188 return -ENOMEM; 189 do { 190 next = pud_addr_end(addr, end); 191 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 192 return -ENOMEM; 193 } while (pud++, addr = next, addr != end); 194 return 0; 195 } 196 197 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, 198 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 199 { 200 p4d_t *p4d; 201 unsigned long next; 202 203 p4d = p4d_alloc(&init_mm, pgd, addr); 204 if (!p4d) 205 return -ENOMEM; 206 do { 207 next = p4d_addr_end(addr, end); 208 if (vmap_pud_range(p4d, addr, next, prot, pages, nr)) 209 return -ENOMEM; 210 } while (p4d++, addr = next, addr != end); 211 return 0; 212 } 213 214 /* 215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 216 * will have pfns corresponding to the "pages" array. 217 * 218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 219 */ 220 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 221 pgprot_t prot, struct page **pages) 222 { 223 pgd_t *pgd; 224 unsigned long next; 225 unsigned long addr = start; 226 int err = 0; 227 int nr = 0; 228 229 BUG_ON(addr >= end); 230 pgd = pgd_offset_k(addr); 231 do { 232 next = pgd_addr_end(addr, end); 233 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr); 234 if (err) 235 return err; 236 } while (pgd++, addr = next, addr != end); 237 238 return nr; 239 } 240 241 static int vmap_page_range(unsigned long start, unsigned long end, 242 pgprot_t prot, struct page **pages) 243 { 244 int ret; 245 246 ret = vmap_page_range_noflush(start, end, prot, pages); 247 flush_cache_vmap(start, end); 248 return ret; 249 } 250 251 int is_vmalloc_or_module_addr(const void *x) 252 { 253 /* 254 * ARM, x86-64 and sparc64 put modules in a special place, 255 * and fall back on vmalloc() if that fails. Others 256 * just put it in the vmalloc space. 257 */ 258 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 259 unsigned long addr = (unsigned long)x; 260 if (addr >= MODULES_VADDR && addr < MODULES_END) 261 return 1; 262 #endif 263 return is_vmalloc_addr(x); 264 } 265 266 /* 267 * Walk a vmap address to the struct page it maps. 268 */ 269 struct page *vmalloc_to_page(const void *vmalloc_addr) 270 { 271 unsigned long addr = (unsigned long) vmalloc_addr; 272 struct page *page = NULL; 273 pgd_t *pgd = pgd_offset_k(addr); 274 p4d_t *p4d; 275 pud_t *pud; 276 pmd_t *pmd; 277 pte_t *ptep, pte; 278 279 /* 280 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 281 * architectures that do not vmalloc module space 282 */ 283 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 284 285 if (pgd_none(*pgd)) 286 return NULL; 287 p4d = p4d_offset(pgd, addr); 288 if (p4d_none(*p4d)) 289 return NULL; 290 pud = pud_offset(p4d, addr); 291 292 /* 293 * Don't dereference bad PUD or PMD (below) entries. This will also 294 * identify huge mappings, which we may encounter on architectures 295 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be 296 * identified as vmalloc addresses by is_vmalloc_addr(), but are 297 * not [unambiguously] associated with a struct page, so there is 298 * no correct value to return for them. 299 */ 300 WARN_ON_ONCE(pud_bad(*pud)); 301 if (pud_none(*pud) || pud_bad(*pud)) 302 return NULL; 303 pmd = pmd_offset(pud, addr); 304 WARN_ON_ONCE(pmd_bad(*pmd)); 305 if (pmd_none(*pmd) || pmd_bad(*pmd)) 306 return NULL; 307 308 ptep = pte_offset_map(pmd, addr); 309 pte = *ptep; 310 if (pte_present(pte)) 311 page = pte_page(pte); 312 pte_unmap(ptep); 313 return page; 314 } 315 EXPORT_SYMBOL(vmalloc_to_page); 316 317 /* 318 * Map a vmalloc()-space virtual address to the physical page frame number. 319 */ 320 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 321 { 322 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 323 } 324 EXPORT_SYMBOL(vmalloc_to_pfn); 325 326 327 /*** Global kva allocator ***/ 328 329 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 330 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 331 332 #define VM_LAZY_FREE 0x02 333 #define VM_VM_AREA 0x04 334 335 static DEFINE_SPINLOCK(vmap_area_lock); 336 /* Export for kexec only */ 337 LIST_HEAD(vmap_area_list); 338 static LLIST_HEAD(vmap_purge_list); 339 static struct rb_root vmap_area_root = RB_ROOT; 340 static bool vmap_initialized __read_mostly; 341 342 /* 343 * This kmem_cache is used for vmap_area objects. Instead of 344 * allocating from slab we reuse an object from this cache to 345 * make things faster. Especially in "no edge" splitting of 346 * free block. 347 */ 348 static struct kmem_cache *vmap_area_cachep; 349 350 /* 351 * This linked list is used in pair with free_vmap_area_root. 352 * It gives O(1) access to prev/next to perform fast coalescing. 353 */ 354 static LIST_HEAD(free_vmap_area_list); 355 356 /* 357 * This augment red-black tree represents the free vmap space. 358 * All vmap_area objects in this tree are sorted by va->va_start 359 * address. It is used for allocation and merging when a vmap 360 * object is released. 361 * 362 * Each vmap_area node contains a maximum available free block 363 * of its sub-tree, right or left. Therefore it is possible to 364 * find a lowest match of free area. 365 */ 366 static struct rb_root free_vmap_area_root = RB_ROOT; 367 368 static __always_inline unsigned long 369 va_size(struct vmap_area *va) 370 { 371 return (va->va_end - va->va_start); 372 } 373 374 static __always_inline unsigned long 375 get_subtree_max_size(struct rb_node *node) 376 { 377 struct vmap_area *va; 378 379 va = rb_entry_safe(node, struct vmap_area, rb_node); 380 return va ? va->subtree_max_size : 0; 381 } 382 383 /* 384 * Gets called when remove the node and rotate. 385 */ 386 static __always_inline unsigned long 387 compute_subtree_max_size(struct vmap_area *va) 388 { 389 return max3(va_size(va), 390 get_subtree_max_size(va->rb_node.rb_left), 391 get_subtree_max_size(va->rb_node.rb_right)); 392 } 393 394 RB_DECLARE_CALLBACKS(static, free_vmap_area_rb_augment_cb, 395 struct vmap_area, rb_node, unsigned long, subtree_max_size, 396 compute_subtree_max_size) 397 398 static void purge_vmap_area_lazy(void); 399 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 400 static unsigned long lazy_max_pages(void); 401 402 static struct vmap_area *__find_vmap_area(unsigned long addr) 403 { 404 struct rb_node *n = vmap_area_root.rb_node; 405 406 while (n) { 407 struct vmap_area *va; 408 409 va = rb_entry(n, struct vmap_area, rb_node); 410 if (addr < va->va_start) 411 n = n->rb_left; 412 else if (addr >= va->va_end) 413 n = n->rb_right; 414 else 415 return va; 416 } 417 418 return NULL; 419 } 420 421 /* 422 * This function returns back addresses of parent node 423 * and its left or right link for further processing. 424 */ 425 static __always_inline struct rb_node ** 426 find_va_links(struct vmap_area *va, 427 struct rb_root *root, struct rb_node *from, 428 struct rb_node **parent) 429 { 430 struct vmap_area *tmp_va; 431 struct rb_node **link; 432 433 if (root) { 434 link = &root->rb_node; 435 if (unlikely(!*link)) { 436 *parent = NULL; 437 return link; 438 } 439 } else { 440 link = &from; 441 } 442 443 /* 444 * Go to the bottom of the tree. When we hit the last point 445 * we end up with parent rb_node and correct direction, i name 446 * it link, where the new va->rb_node will be attached to. 447 */ 448 do { 449 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 450 451 /* 452 * During the traversal we also do some sanity check. 453 * Trigger the BUG() if there are sides(left/right) 454 * or full overlaps. 455 */ 456 if (va->va_start < tmp_va->va_end && 457 va->va_end <= tmp_va->va_start) 458 link = &(*link)->rb_left; 459 else if (va->va_end > tmp_va->va_start && 460 va->va_start >= tmp_va->va_end) 461 link = &(*link)->rb_right; 462 else 463 BUG(); 464 } while (*link); 465 466 *parent = &tmp_va->rb_node; 467 return link; 468 } 469 470 static __always_inline struct list_head * 471 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 472 { 473 struct list_head *list; 474 475 if (unlikely(!parent)) 476 /* 477 * The red-black tree where we try to find VA neighbors 478 * before merging or inserting is empty, i.e. it means 479 * there is no free vmap space. Normally it does not 480 * happen but we handle this case anyway. 481 */ 482 return NULL; 483 484 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 485 return (&parent->rb_right == link ? list->next : list); 486 } 487 488 static __always_inline void 489 link_va(struct vmap_area *va, struct rb_root *root, 490 struct rb_node *parent, struct rb_node **link, struct list_head *head) 491 { 492 /* 493 * VA is still not in the list, but we can 494 * identify its future previous list_head node. 495 */ 496 if (likely(parent)) { 497 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 498 if (&parent->rb_right != link) 499 head = head->prev; 500 } 501 502 /* Insert to the rb-tree */ 503 rb_link_node(&va->rb_node, parent, link); 504 if (root == &free_vmap_area_root) { 505 /* 506 * Some explanation here. Just perform simple insertion 507 * to the tree. We do not set va->subtree_max_size to 508 * its current size before calling rb_insert_augmented(). 509 * It is because of we populate the tree from the bottom 510 * to parent levels when the node _is_ in the tree. 511 * 512 * Therefore we set subtree_max_size to zero after insertion, 513 * to let __augment_tree_propagate_from() puts everything to 514 * the correct order later on. 515 */ 516 rb_insert_augmented(&va->rb_node, 517 root, &free_vmap_area_rb_augment_cb); 518 va->subtree_max_size = 0; 519 } else { 520 rb_insert_color(&va->rb_node, root); 521 } 522 523 /* Address-sort this list */ 524 list_add(&va->list, head); 525 } 526 527 static __always_inline void 528 unlink_va(struct vmap_area *va, struct rb_root *root) 529 { 530 /* 531 * During merging a VA node can be empty, therefore 532 * not linked with the tree nor list. Just check it. 533 */ 534 if (!RB_EMPTY_NODE(&va->rb_node)) { 535 if (root == &free_vmap_area_root) 536 rb_erase_augmented(&va->rb_node, 537 root, &free_vmap_area_rb_augment_cb); 538 else 539 rb_erase(&va->rb_node, root); 540 541 list_del(&va->list); 542 RB_CLEAR_NODE(&va->rb_node); 543 } 544 } 545 546 #if DEBUG_AUGMENT_PROPAGATE_CHECK 547 static void 548 augment_tree_propagate_check(struct rb_node *n) 549 { 550 struct vmap_area *va; 551 struct rb_node *node; 552 unsigned long size; 553 bool found = false; 554 555 if (n == NULL) 556 return; 557 558 va = rb_entry(n, struct vmap_area, rb_node); 559 size = va->subtree_max_size; 560 node = n; 561 562 while (node) { 563 va = rb_entry(node, struct vmap_area, rb_node); 564 565 if (get_subtree_max_size(node->rb_left) == size) { 566 node = node->rb_left; 567 } else { 568 if (va_size(va) == size) { 569 found = true; 570 break; 571 } 572 573 node = node->rb_right; 574 } 575 } 576 577 if (!found) { 578 va = rb_entry(n, struct vmap_area, rb_node); 579 pr_emerg("tree is corrupted: %lu, %lu\n", 580 va_size(va), va->subtree_max_size); 581 } 582 583 augment_tree_propagate_check(n->rb_left); 584 augment_tree_propagate_check(n->rb_right); 585 } 586 #endif 587 588 /* 589 * This function populates subtree_max_size from bottom to upper 590 * levels starting from VA point. The propagation must be done 591 * when VA size is modified by changing its va_start/va_end. Or 592 * in case of newly inserting of VA to the tree. 593 * 594 * It means that __augment_tree_propagate_from() must be called: 595 * - After VA has been inserted to the tree(free path); 596 * - After VA has been shrunk(allocation path); 597 * - After VA has been increased(merging path). 598 * 599 * Please note that, it does not mean that upper parent nodes 600 * and their subtree_max_size are recalculated all the time up 601 * to the root node. 602 * 603 * 4--8 604 * /\ 605 * / \ 606 * / \ 607 * 2--2 8--8 608 * 609 * For example if we modify the node 4, shrinking it to 2, then 610 * no any modification is required. If we shrink the node 2 to 1 611 * its subtree_max_size is updated only, and set to 1. If we shrink 612 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 613 * node becomes 4--6. 614 */ 615 static __always_inline void 616 augment_tree_propagate_from(struct vmap_area *va) 617 { 618 struct rb_node *node = &va->rb_node; 619 unsigned long new_va_sub_max_size; 620 621 while (node) { 622 va = rb_entry(node, struct vmap_area, rb_node); 623 new_va_sub_max_size = compute_subtree_max_size(va); 624 625 /* 626 * If the newly calculated maximum available size of the 627 * subtree is equal to the current one, then it means that 628 * the tree is propagated correctly. So we have to stop at 629 * this point to save cycles. 630 */ 631 if (va->subtree_max_size == new_va_sub_max_size) 632 break; 633 634 va->subtree_max_size = new_va_sub_max_size; 635 node = rb_parent(&va->rb_node); 636 } 637 638 #if DEBUG_AUGMENT_PROPAGATE_CHECK 639 augment_tree_propagate_check(free_vmap_area_root.rb_node); 640 #endif 641 } 642 643 static void 644 insert_vmap_area(struct vmap_area *va, 645 struct rb_root *root, struct list_head *head) 646 { 647 struct rb_node **link; 648 struct rb_node *parent; 649 650 link = find_va_links(va, root, NULL, &parent); 651 link_va(va, root, parent, link, head); 652 } 653 654 static void 655 insert_vmap_area_augment(struct vmap_area *va, 656 struct rb_node *from, struct rb_root *root, 657 struct list_head *head) 658 { 659 struct rb_node **link; 660 struct rb_node *parent; 661 662 if (from) 663 link = find_va_links(va, NULL, from, &parent); 664 else 665 link = find_va_links(va, root, NULL, &parent); 666 667 link_va(va, root, parent, link, head); 668 augment_tree_propagate_from(va); 669 } 670 671 /* 672 * Merge de-allocated chunk of VA memory with previous 673 * and next free blocks. If coalesce is not done a new 674 * free area is inserted. If VA has been merged, it is 675 * freed. 676 */ 677 static __always_inline void 678 merge_or_add_vmap_area(struct vmap_area *va, 679 struct rb_root *root, struct list_head *head) 680 { 681 struct vmap_area *sibling; 682 struct list_head *next; 683 struct rb_node **link; 684 struct rb_node *parent; 685 bool merged = false; 686 687 /* 688 * Find a place in the tree where VA potentially will be 689 * inserted, unless it is merged with its sibling/siblings. 690 */ 691 link = find_va_links(va, root, NULL, &parent); 692 693 /* 694 * Get next node of VA to check if merging can be done. 695 */ 696 next = get_va_next_sibling(parent, link); 697 if (unlikely(next == NULL)) 698 goto insert; 699 700 /* 701 * start end 702 * | | 703 * |<------VA------>|<-----Next----->| 704 * | | 705 * start end 706 */ 707 if (next != head) { 708 sibling = list_entry(next, struct vmap_area, list); 709 if (sibling->va_start == va->va_end) { 710 sibling->va_start = va->va_start; 711 712 /* Check and update the tree if needed. */ 713 augment_tree_propagate_from(sibling); 714 715 /* Remove this VA, it has been merged. */ 716 unlink_va(va, root); 717 718 /* Free vmap_area object. */ 719 kmem_cache_free(vmap_area_cachep, va); 720 721 /* Point to the new merged area. */ 722 va = sibling; 723 merged = true; 724 } 725 } 726 727 /* 728 * start end 729 * | | 730 * |<-----Prev----->|<------VA------>| 731 * | | 732 * start end 733 */ 734 if (next->prev != head) { 735 sibling = list_entry(next->prev, struct vmap_area, list); 736 if (sibling->va_end == va->va_start) { 737 sibling->va_end = va->va_end; 738 739 /* Check and update the tree if needed. */ 740 augment_tree_propagate_from(sibling); 741 742 /* Remove this VA, it has been merged. */ 743 unlink_va(va, root); 744 745 /* Free vmap_area object. */ 746 kmem_cache_free(vmap_area_cachep, va); 747 748 return; 749 } 750 } 751 752 insert: 753 if (!merged) { 754 link_va(va, root, parent, link, head); 755 augment_tree_propagate_from(va); 756 } 757 } 758 759 static __always_inline bool 760 is_within_this_va(struct vmap_area *va, unsigned long size, 761 unsigned long align, unsigned long vstart) 762 { 763 unsigned long nva_start_addr; 764 765 if (va->va_start > vstart) 766 nva_start_addr = ALIGN(va->va_start, align); 767 else 768 nva_start_addr = ALIGN(vstart, align); 769 770 /* Can be overflowed due to big size or alignment. */ 771 if (nva_start_addr + size < nva_start_addr || 772 nva_start_addr < vstart) 773 return false; 774 775 return (nva_start_addr + size <= va->va_end); 776 } 777 778 /* 779 * Find the first free block(lowest start address) in the tree, 780 * that will accomplish the request corresponding to passing 781 * parameters. 782 */ 783 static __always_inline struct vmap_area * 784 find_vmap_lowest_match(unsigned long size, 785 unsigned long align, unsigned long vstart) 786 { 787 struct vmap_area *va; 788 struct rb_node *node; 789 unsigned long length; 790 791 /* Start from the root. */ 792 node = free_vmap_area_root.rb_node; 793 794 /* Adjust the search size for alignment overhead. */ 795 length = size + align - 1; 796 797 while (node) { 798 va = rb_entry(node, struct vmap_area, rb_node); 799 800 if (get_subtree_max_size(node->rb_left) >= length && 801 vstart < va->va_start) { 802 node = node->rb_left; 803 } else { 804 if (is_within_this_va(va, size, align, vstart)) 805 return va; 806 807 /* 808 * Does not make sense to go deeper towards the right 809 * sub-tree if it does not have a free block that is 810 * equal or bigger to the requested search length. 811 */ 812 if (get_subtree_max_size(node->rb_right) >= length) { 813 node = node->rb_right; 814 continue; 815 } 816 817 /* 818 * OK. We roll back and find the first right sub-tree, 819 * that will satisfy the search criteria. It can happen 820 * only once due to "vstart" restriction. 821 */ 822 while ((node = rb_parent(node))) { 823 va = rb_entry(node, struct vmap_area, rb_node); 824 if (is_within_this_va(va, size, align, vstart)) 825 return va; 826 827 if (get_subtree_max_size(node->rb_right) >= length && 828 vstart <= va->va_start) { 829 node = node->rb_right; 830 break; 831 } 832 } 833 } 834 } 835 836 return NULL; 837 } 838 839 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 840 #include <linux/random.h> 841 842 static struct vmap_area * 843 find_vmap_lowest_linear_match(unsigned long size, 844 unsigned long align, unsigned long vstart) 845 { 846 struct vmap_area *va; 847 848 list_for_each_entry(va, &free_vmap_area_list, list) { 849 if (!is_within_this_va(va, size, align, vstart)) 850 continue; 851 852 return va; 853 } 854 855 return NULL; 856 } 857 858 static void 859 find_vmap_lowest_match_check(unsigned long size) 860 { 861 struct vmap_area *va_1, *va_2; 862 unsigned long vstart; 863 unsigned int rnd; 864 865 get_random_bytes(&rnd, sizeof(rnd)); 866 vstart = VMALLOC_START + rnd; 867 868 va_1 = find_vmap_lowest_match(size, 1, vstart); 869 va_2 = find_vmap_lowest_linear_match(size, 1, vstart); 870 871 if (va_1 != va_2) 872 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 873 va_1, va_2, vstart); 874 } 875 #endif 876 877 enum fit_type { 878 NOTHING_FIT = 0, 879 FL_FIT_TYPE = 1, /* full fit */ 880 LE_FIT_TYPE = 2, /* left edge fit */ 881 RE_FIT_TYPE = 3, /* right edge fit */ 882 NE_FIT_TYPE = 4 /* no edge fit */ 883 }; 884 885 static __always_inline enum fit_type 886 classify_va_fit_type(struct vmap_area *va, 887 unsigned long nva_start_addr, unsigned long size) 888 { 889 enum fit_type type; 890 891 /* Check if it is within VA. */ 892 if (nva_start_addr < va->va_start || 893 nva_start_addr + size > va->va_end) 894 return NOTHING_FIT; 895 896 /* Now classify. */ 897 if (va->va_start == nva_start_addr) { 898 if (va->va_end == nva_start_addr + size) 899 type = FL_FIT_TYPE; 900 else 901 type = LE_FIT_TYPE; 902 } else if (va->va_end == nva_start_addr + size) { 903 type = RE_FIT_TYPE; 904 } else { 905 type = NE_FIT_TYPE; 906 } 907 908 return type; 909 } 910 911 static __always_inline int 912 adjust_va_to_fit_type(struct vmap_area *va, 913 unsigned long nva_start_addr, unsigned long size, 914 enum fit_type type) 915 { 916 struct vmap_area *lva = NULL; 917 918 if (type == FL_FIT_TYPE) { 919 /* 920 * No need to split VA, it fully fits. 921 * 922 * | | 923 * V NVA V 924 * |---------------| 925 */ 926 unlink_va(va, &free_vmap_area_root); 927 kmem_cache_free(vmap_area_cachep, va); 928 } else if (type == LE_FIT_TYPE) { 929 /* 930 * Split left edge of fit VA. 931 * 932 * | | 933 * V NVA V R 934 * |-------|-------| 935 */ 936 va->va_start += size; 937 } else if (type == RE_FIT_TYPE) { 938 /* 939 * Split right edge of fit VA. 940 * 941 * | | 942 * L V NVA V 943 * |-------|-------| 944 */ 945 va->va_end = nva_start_addr; 946 } else if (type == NE_FIT_TYPE) { 947 /* 948 * Split no edge of fit VA. 949 * 950 * | | 951 * L V NVA V R 952 * |---|-------|---| 953 */ 954 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 955 if (unlikely(!lva)) 956 return -1; 957 958 /* 959 * Build the remainder. 960 */ 961 lva->va_start = va->va_start; 962 lva->va_end = nva_start_addr; 963 964 /* 965 * Shrink this VA to remaining size. 966 */ 967 va->va_start = nva_start_addr + size; 968 } else { 969 return -1; 970 } 971 972 if (type != FL_FIT_TYPE) { 973 augment_tree_propagate_from(va); 974 975 if (lva) /* type == NE_FIT_TYPE */ 976 insert_vmap_area_augment(lva, &va->rb_node, 977 &free_vmap_area_root, &free_vmap_area_list); 978 } 979 980 return 0; 981 } 982 983 /* 984 * Returns a start address of the newly allocated area, if success. 985 * Otherwise a vend is returned that indicates failure. 986 */ 987 static __always_inline unsigned long 988 __alloc_vmap_area(unsigned long size, unsigned long align, 989 unsigned long vstart, unsigned long vend, int node) 990 { 991 unsigned long nva_start_addr; 992 struct vmap_area *va; 993 enum fit_type type; 994 int ret; 995 996 va = find_vmap_lowest_match(size, align, vstart); 997 if (unlikely(!va)) 998 return vend; 999 1000 if (va->va_start > vstart) 1001 nva_start_addr = ALIGN(va->va_start, align); 1002 else 1003 nva_start_addr = ALIGN(vstart, align); 1004 1005 /* Check the "vend" restriction. */ 1006 if (nva_start_addr + size > vend) 1007 return vend; 1008 1009 /* Classify what we have found. */ 1010 type = classify_va_fit_type(va, nva_start_addr, size); 1011 if (WARN_ON_ONCE(type == NOTHING_FIT)) 1012 return vend; 1013 1014 /* Update the free vmap_area. */ 1015 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type); 1016 if (ret) 1017 return vend; 1018 1019 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1020 find_vmap_lowest_match_check(size); 1021 #endif 1022 1023 return nva_start_addr; 1024 } 1025 1026 /* 1027 * Allocate a region of KVA of the specified size and alignment, within the 1028 * vstart and vend. 1029 */ 1030 static struct vmap_area *alloc_vmap_area(unsigned long size, 1031 unsigned long align, 1032 unsigned long vstart, unsigned long vend, 1033 int node, gfp_t gfp_mask) 1034 { 1035 struct vmap_area *va; 1036 unsigned long addr; 1037 int purged = 0; 1038 1039 BUG_ON(!size); 1040 BUG_ON(offset_in_page(size)); 1041 BUG_ON(!is_power_of_2(align)); 1042 1043 if (unlikely(!vmap_initialized)) 1044 return ERR_PTR(-EBUSY); 1045 1046 might_sleep(); 1047 1048 va = kmem_cache_alloc_node(vmap_area_cachep, 1049 gfp_mask & GFP_RECLAIM_MASK, node); 1050 if (unlikely(!va)) 1051 return ERR_PTR(-ENOMEM); 1052 1053 /* 1054 * Only scan the relevant parts containing pointers to other objects 1055 * to avoid false negatives. 1056 */ 1057 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); 1058 1059 retry: 1060 spin_lock(&vmap_area_lock); 1061 1062 /* 1063 * If an allocation fails, the "vend" address is 1064 * returned. Therefore trigger the overflow path. 1065 */ 1066 addr = __alloc_vmap_area(size, align, vstart, vend, node); 1067 if (unlikely(addr == vend)) 1068 goto overflow; 1069 1070 va->va_start = addr; 1071 va->va_end = addr + size; 1072 va->flags = 0; 1073 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1074 1075 spin_unlock(&vmap_area_lock); 1076 1077 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1078 BUG_ON(va->va_start < vstart); 1079 BUG_ON(va->va_end > vend); 1080 1081 return va; 1082 1083 overflow: 1084 spin_unlock(&vmap_area_lock); 1085 if (!purged) { 1086 purge_vmap_area_lazy(); 1087 purged = 1; 1088 goto retry; 1089 } 1090 1091 if (gfpflags_allow_blocking(gfp_mask)) { 1092 unsigned long freed = 0; 1093 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 1094 if (freed > 0) { 1095 purged = 0; 1096 goto retry; 1097 } 1098 } 1099 1100 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 1101 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 1102 size); 1103 1104 kmem_cache_free(vmap_area_cachep, va); 1105 return ERR_PTR(-EBUSY); 1106 } 1107 1108 int register_vmap_purge_notifier(struct notifier_block *nb) 1109 { 1110 return blocking_notifier_chain_register(&vmap_notify_list, nb); 1111 } 1112 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 1113 1114 int unregister_vmap_purge_notifier(struct notifier_block *nb) 1115 { 1116 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 1117 } 1118 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 1119 1120 static void __free_vmap_area(struct vmap_area *va) 1121 { 1122 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 1123 1124 /* 1125 * Remove from the busy tree/list. 1126 */ 1127 unlink_va(va, &vmap_area_root); 1128 1129 /* 1130 * Merge VA with its neighbors, otherwise just add it. 1131 */ 1132 merge_or_add_vmap_area(va, 1133 &free_vmap_area_root, &free_vmap_area_list); 1134 } 1135 1136 /* 1137 * Free a region of KVA allocated by alloc_vmap_area 1138 */ 1139 static void free_vmap_area(struct vmap_area *va) 1140 { 1141 spin_lock(&vmap_area_lock); 1142 __free_vmap_area(va); 1143 spin_unlock(&vmap_area_lock); 1144 } 1145 1146 /* 1147 * Clear the pagetable entries of a given vmap_area 1148 */ 1149 static void unmap_vmap_area(struct vmap_area *va) 1150 { 1151 vunmap_page_range(va->va_start, va->va_end); 1152 } 1153 1154 /* 1155 * lazy_max_pages is the maximum amount of virtual address space we gather up 1156 * before attempting to purge with a TLB flush. 1157 * 1158 * There is a tradeoff here: a larger number will cover more kernel page tables 1159 * and take slightly longer to purge, but it will linearly reduce the number of 1160 * global TLB flushes that must be performed. It would seem natural to scale 1161 * this number up linearly with the number of CPUs (because vmapping activity 1162 * could also scale linearly with the number of CPUs), however it is likely 1163 * that in practice, workloads might be constrained in other ways that mean 1164 * vmap activity will not scale linearly with CPUs. Also, I want to be 1165 * conservative and not introduce a big latency on huge systems, so go with 1166 * a less aggressive log scale. It will still be an improvement over the old 1167 * code, and it will be simple to change the scale factor if we find that it 1168 * becomes a problem on bigger systems. 1169 */ 1170 static unsigned long lazy_max_pages(void) 1171 { 1172 unsigned int log; 1173 1174 log = fls(num_online_cpus()); 1175 1176 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 1177 } 1178 1179 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 1180 1181 /* 1182 * Serialize vmap purging. There is no actual criticial section protected 1183 * by this look, but we want to avoid concurrent calls for performance 1184 * reasons and to make the pcpu_get_vm_areas more deterministic. 1185 */ 1186 static DEFINE_MUTEX(vmap_purge_lock); 1187 1188 /* for per-CPU blocks */ 1189 static void purge_fragmented_blocks_allcpus(void); 1190 1191 /* 1192 * called before a call to iounmap() if the caller wants vm_area_struct's 1193 * immediately freed. 1194 */ 1195 void set_iounmap_nonlazy(void) 1196 { 1197 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1); 1198 } 1199 1200 /* 1201 * Purges all lazily-freed vmap areas. 1202 */ 1203 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 1204 { 1205 unsigned long resched_threshold; 1206 struct llist_node *valist; 1207 struct vmap_area *va; 1208 struct vmap_area *n_va; 1209 1210 lockdep_assert_held(&vmap_purge_lock); 1211 1212 valist = llist_del_all(&vmap_purge_list); 1213 if (unlikely(valist == NULL)) 1214 return false; 1215 1216 /* 1217 * TODO: to calculate a flush range without looping. 1218 * The list can be up to lazy_max_pages() elements. 1219 */ 1220 llist_for_each_entry(va, valist, purge_list) { 1221 if (va->va_start < start) 1222 start = va->va_start; 1223 if (va->va_end > end) 1224 end = va->va_end; 1225 } 1226 1227 flush_tlb_kernel_range(start, end); 1228 resched_threshold = lazy_max_pages() << 1; 1229 1230 spin_lock(&vmap_area_lock); 1231 llist_for_each_entry_safe(va, n_va, valist, purge_list) { 1232 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 1233 1234 __free_vmap_area(va); 1235 atomic_long_sub(nr, &vmap_lazy_nr); 1236 1237 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 1238 cond_resched_lock(&vmap_area_lock); 1239 } 1240 spin_unlock(&vmap_area_lock); 1241 return true; 1242 } 1243 1244 /* 1245 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 1246 * is already purging. 1247 */ 1248 static void try_purge_vmap_area_lazy(void) 1249 { 1250 if (mutex_trylock(&vmap_purge_lock)) { 1251 __purge_vmap_area_lazy(ULONG_MAX, 0); 1252 mutex_unlock(&vmap_purge_lock); 1253 } 1254 } 1255 1256 /* 1257 * Kick off a purge of the outstanding lazy areas. 1258 */ 1259 static void purge_vmap_area_lazy(void) 1260 { 1261 mutex_lock(&vmap_purge_lock); 1262 purge_fragmented_blocks_allcpus(); 1263 __purge_vmap_area_lazy(ULONG_MAX, 0); 1264 mutex_unlock(&vmap_purge_lock); 1265 } 1266 1267 /* 1268 * Free a vmap area, caller ensuring that the area has been unmapped 1269 * and flush_cache_vunmap had been called for the correct range 1270 * previously. 1271 */ 1272 static void free_vmap_area_noflush(struct vmap_area *va) 1273 { 1274 unsigned long nr_lazy; 1275 1276 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 1277 PAGE_SHIFT, &vmap_lazy_nr); 1278 1279 /* After this point, we may free va at any time */ 1280 llist_add(&va->purge_list, &vmap_purge_list); 1281 1282 if (unlikely(nr_lazy > lazy_max_pages())) 1283 try_purge_vmap_area_lazy(); 1284 } 1285 1286 /* 1287 * Free and unmap a vmap area 1288 */ 1289 static void free_unmap_vmap_area(struct vmap_area *va) 1290 { 1291 flush_cache_vunmap(va->va_start, va->va_end); 1292 unmap_vmap_area(va); 1293 if (debug_pagealloc_enabled()) 1294 flush_tlb_kernel_range(va->va_start, va->va_end); 1295 1296 free_vmap_area_noflush(va); 1297 } 1298 1299 static struct vmap_area *find_vmap_area(unsigned long addr) 1300 { 1301 struct vmap_area *va; 1302 1303 spin_lock(&vmap_area_lock); 1304 va = __find_vmap_area(addr); 1305 spin_unlock(&vmap_area_lock); 1306 1307 return va; 1308 } 1309 1310 /*** Per cpu kva allocator ***/ 1311 1312 /* 1313 * vmap space is limited especially on 32 bit architectures. Ensure there is 1314 * room for at least 16 percpu vmap blocks per CPU. 1315 */ 1316 /* 1317 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 1318 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 1319 * instead (we just need a rough idea) 1320 */ 1321 #if BITS_PER_LONG == 32 1322 #define VMALLOC_SPACE (128UL*1024*1024) 1323 #else 1324 #define VMALLOC_SPACE (128UL*1024*1024*1024) 1325 #endif 1326 1327 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 1328 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 1329 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 1330 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 1331 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 1332 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 1333 #define VMAP_BBMAP_BITS \ 1334 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 1335 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 1336 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 1337 1338 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 1339 1340 struct vmap_block_queue { 1341 spinlock_t lock; 1342 struct list_head free; 1343 }; 1344 1345 struct vmap_block { 1346 spinlock_t lock; 1347 struct vmap_area *va; 1348 unsigned long free, dirty; 1349 unsigned long dirty_min, dirty_max; /*< dirty range */ 1350 struct list_head free_list; 1351 struct rcu_head rcu_head; 1352 struct list_head purge; 1353 }; 1354 1355 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 1356 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 1357 1358 /* 1359 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 1360 * in the free path. Could get rid of this if we change the API to return a 1361 * "cookie" from alloc, to be passed to free. But no big deal yet. 1362 */ 1363 static DEFINE_SPINLOCK(vmap_block_tree_lock); 1364 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 1365 1366 /* 1367 * We should probably have a fallback mechanism to allocate virtual memory 1368 * out of partially filled vmap blocks. However vmap block sizing should be 1369 * fairly reasonable according to the vmalloc size, so it shouldn't be a 1370 * big problem. 1371 */ 1372 1373 static unsigned long addr_to_vb_idx(unsigned long addr) 1374 { 1375 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 1376 addr /= VMAP_BLOCK_SIZE; 1377 return addr; 1378 } 1379 1380 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 1381 { 1382 unsigned long addr; 1383 1384 addr = va_start + (pages_off << PAGE_SHIFT); 1385 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 1386 return (void *)addr; 1387 } 1388 1389 /** 1390 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 1391 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 1392 * @order: how many 2^order pages should be occupied in newly allocated block 1393 * @gfp_mask: flags for the page level allocator 1394 * 1395 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 1396 */ 1397 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 1398 { 1399 struct vmap_block_queue *vbq; 1400 struct vmap_block *vb; 1401 struct vmap_area *va; 1402 unsigned long vb_idx; 1403 int node, err; 1404 void *vaddr; 1405 1406 node = numa_node_id(); 1407 1408 vb = kmalloc_node(sizeof(struct vmap_block), 1409 gfp_mask & GFP_RECLAIM_MASK, node); 1410 if (unlikely(!vb)) 1411 return ERR_PTR(-ENOMEM); 1412 1413 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 1414 VMALLOC_START, VMALLOC_END, 1415 node, gfp_mask); 1416 if (IS_ERR(va)) { 1417 kfree(vb); 1418 return ERR_CAST(va); 1419 } 1420 1421 err = radix_tree_preload(gfp_mask); 1422 if (unlikely(err)) { 1423 kfree(vb); 1424 free_vmap_area(va); 1425 return ERR_PTR(err); 1426 } 1427 1428 vaddr = vmap_block_vaddr(va->va_start, 0); 1429 spin_lock_init(&vb->lock); 1430 vb->va = va; 1431 /* At least something should be left free */ 1432 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 1433 vb->free = VMAP_BBMAP_BITS - (1UL << order); 1434 vb->dirty = 0; 1435 vb->dirty_min = VMAP_BBMAP_BITS; 1436 vb->dirty_max = 0; 1437 INIT_LIST_HEAD(&vb->free_list); 1438 1439 vb_idx = addr_to_vb_idx(va->va_start); 1440 spin_lock(&vmap_block_tree_lock); 1441 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 1442 spin_unlock(&vmap_block_tree_lock); 1443 BUG_ON(err); 1444 radix_tree_preload_end(); 1445 1446 vbq = &get_cpu_var(vmap_block_queue); 1447 spin_lock(&vbq->lock); 1448 list_add_tail_rcu(&vb->free_list, &vbq->free); 1449 spin_unlock(&vbq->lock); 1450 put_cpu_var(vmap_block_queue); 1451 1452 return vaddr; 1453 } 1454 1455 static void free_vmap_block(struct vmap_block *vb) 1456 { 1457 struct vmap_block *tmp; 1458 unsigned long vb_idx; 1459 1460 vb_idx = addr_to_vb_idx(vb->va->va_start); 1461 spin_lock(&vmap_block_tree_lock); 1462 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 1463 spin_unlock(&vmap_block_tree_lock); 1464 BUG_ON(tmp != vb); 1465 1466 free_vmap_area_noflush(vb->va); 1467 kfree_rcu(vb, rcu_head); 1468 } 1469 1470 static void purge_fragmented_blocks(int cpu) 1471 { 1472 LIST_HEAD(purge); 1473 struct vmap_block *vb; 1474 struct vmap_block *n_vb; 1475 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1476 1477 rcu_read_lock(); 1478 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1479 1480 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 1481 continue; 1482 1483 spin_lock(&vb->lock); 1484 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 1485 vb->free = 0; /* prevent further allocs after releasing lock */ 1486 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 1487 vb->dirty_min = 0; 1488 vb->dirty_max = VMAP_BBMAP_BITS; 1489 spin_lock(&vbq->lock); 1490 list_del_rcu(&vb->free_list); 1491 spin_unlock(&vbq->lock); 1492 spin_unlock(&vb->lock); 1493 list_add_tail(&vb->purge, &purge); 1494 } else 1495 spin_unlock(&vb->lock); 1496 } 1497 rcu_read_unlock(); 1498 1499 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 1500 list_del(&vb->purge); 1501 free_vmap_block(vb); 1502 } 1503 } 1504 1505 static void purge_fragmented_blocks_allcpus(void) 1506 { 1507 int cpu; 1508 1509 for_each_possible_cpu(cpu) 1510 purge_fragmented_blocks(cpu); 1511 } 1512 1513 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 1514 { 1515 struct vmap_block_queue *vbq; 1516 struct vmap_block *vb; 1517 void *vaddr = NULL; 1518 unsigned int order; 1519 1520 BUG_ON(offset_in_page(size)); 1521 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1522 if (WARN_ON(size == 0)) { 1523 /* 1524 * Allocating 0 bytes isn't what caller wants since 1525 * get_order(0) returns funny result. Just warn and terminate 1526 * early. 1527 */ 1528 return NULL; 1529 } 1530 order = get_order(size); 1531 1532 rcu_read_lock(); 1533 vbq = &get_cpu_var(vmap_block_queue); 1534 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1535 unsigned long pages_off; 1536 1537 spin_lock(&vb->lock); 1538 if (vb->free < (1UL << order)) { 1539 spin_unlock(&vb->lock); 1540 continue; 1541 } 1542 1543 pages_off = VMAP_BBMAP_BITS - vb->free; 1544 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 1545 vb->free -= 1UL << order; 1546 if (vb->free == 0) { 1547 spin_lock(&vbq->lock); 1548 list_del_rcu(&vb->free_list); 1549 spin_unlock(&vbq->lock); 1550 } 1551 1552 spin_unlock(&vb->lock); 1553 break; 1554 } 1555 1556 put_cpu_var(vmap_block_queue); 1557 rcu_read_unlock(); 1558 1559 /* Allocate new block if nothing was found */ 1560 if (!vaddr) 1561 vaddr = new_vmap_block(order, gfp_mask); 1562 1563 return vaddr; 1564 } 1565 1566 static void vb_free(const void *addr, unsigned long size) 1567 { 1568 unsigned long offset; 1569 unsigned long vb_idx; 1570 unsigned int order; 1571 struct vmap_block *vb; 1572 1573 BUG_ON(offset_in_page(size)); 1574 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1575 1576 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 1577 1578 order = get_order(size); 1579 1580 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 1581 offset >>= PAGE_SHIFT; 1582 1583 vb_idx = addr_to_vb_idx((unsigned long)addr); 1584 rcu_read_lock(); 1585 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 1586 rcu_read_unlock(); 1587 BUG_ON(!vb); 1588 1589 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 1590 1591 if (debug_pagealloc_enabled()) 1592 flush_tlb_kernel_range((unsigned long)addr, 1593 (unsigned long)addr + size); 1594 1595 spin_lock(&vb->lock); 1596 1597 /* Expand dirty range */ 1598 vb->dirty_min = min(vb->dirty_min, offset); 1599 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 1600 1601 vb->dirty += 1UL << order; 1602 if (vb->dirty == VMAP_BBMAP_BITS) { 1603 BUG_ON(vb->free); 1604 spin_unlock(&vb->lock); 1605 free_vmap_block(vb); 1606 } else 1607 spin_unlock(&vb->lock); 1608 } 1609 1610 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 1611 { 1612 int cpu; 1613 1614 if (unlikely(!vmap_initialized)) 1615 return; 1616 1617 might_sleep(); 1618 1619 for_each_possible_cpu(cpu) { 1620 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1621 struct vmap_block *vb; 1622 1623 rcu_read_lock(); 1624 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1625 spin_lock(&vb->lock); 1626 if (vb->dirty) { 1627 unsigned long va_start = vb->va->va_start; 1628 unsigned long s, e; 1629 1630 s = va_start + (vb->dirty_min << PAGE_SHIFT); 1631 e = va_start + (vb->dirty_max << PAGE_SHIFT); 1632 1633 start = min(s, start); 1634 end = max(e, end); 1635 1636 flush = 1; 1637 } 1638 spin_unlock(&vb->lock); 1639 } 1640 rcu_read_unlock(); 1641 } 1642 1643 mutex_lock(&vmap_purge_lock); 1644 purge_fragmented_blocks_allcpus(); 1645 if (!__purge_vmap_area_lazy(start, end) && flush) 1646 flush_tlb_kernel_range(start, end); 1647 mutex_unlock(&vmap_purge_lock); 1648 } 1649 1650 /** 1651 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1652 * 1653 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1654 * to amortize TLB flushing overheads. What this means is that any page you 1655 * have now, may, in a former life, have been mapped into kernel virtual 1656 * address by the vmap layer and so there might be some CPUs with TLB entries 1657 * still referencing that page (additional to the regular 1:1 kernel mapping). 1658 * 1659 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1660 * be sure that none of the pages we have control over will have any aliases 1661 * from the vmap layer. 1662 */ 1663 void vm_unmap_aliases(void) 1664 { 1665 unsigned long start = ULONG_MAX, end = 0; 1666 int flush = 0; 1667 1668 _vm_unmap_aliases(start, end, flush); 1669 } 1670 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1671 1672 /** 1673 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1674 * @mem: the pointer returned by vm_map_ram 1675 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1676 */ 1677 void vm_unmap_ram(const void *mem, unsigned int count) 1678 { 1679 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1680 unsigned long addr = (unsigned long)mem; 1681 struct vmap_area *va; 1682 1683 might_sleep(); 1684 BUG_ON(!addr); 1685 BUG_ON(addr < VMALLOC_START); 1686 BUG_ON(addr > VMALLOC_END); 1687 BUG_ON(!PAGE_ALIGNED(addr)); 1688 1689 if (likely(count <= VMAP_MAX_ALLOC)) { 1690 debug_check_no_locks_freed(mem, size); 1691 vb_free(mem, size); 1692 return; 1693 } 1694 1695 va = find_vmap_area(addr); 1696 BUG_ON(!va); 1697 debug_check_no_locks_freed((void *)va->va_start, 1698 (va->va_end - va->va_start)); 1699 free_unmap_vmap_area(va); 1700 } 1701 EXPORT_SYMBOL(vm_unmap_ram); 1702 1703 /** 1704 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1705 * @pages: an array of pointers to the pages to be mapped 1706 * @count: number of pages 1707 * @node: prefer to allocate data structures on this node 1708 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1709 * 1710 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 1711 * faster than vmap so it's good. But if you mix long-life and short-life 1712 * objects with vm_map_ram(), it could consume lots of address space through 1713 * fragmentation (especially on a 32bit machine). You could see failures in 1714 * the end. Please use this function for short-lived objects. 1715 * 1716 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1717 */ 1718 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1719 { 1720 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1721 unsigned long addr; 1722 void *mem; 1723 1724 if (likely(count <= VMAP_MAX_ALLOC)) { 1725 mem = vb_alloc(size, GFP_KERNEL); 1726 if (IS_ERR(mem)) 1727 return NULL; 1728 addr = (unsigned long)mem; 1729 } else { 1730 struct vmap_area *va; 1731 va = alloc_vmap_area(size, PAGE_SIZE, 1732 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1733 if (IS_ERR(va)) 1734 return NULL; 1735 1736 addr = va->va_start; 1737 mem = (void *)addr; 1738 } 1739 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1740 vm_unmap_ram(mem, count); 1741 return NULL; 1742 } 1743 return mem; 1744 } 1745 EXPORT_SYMBOL(vm_map_ram); 1746 1747 static struct vm_struct *vmlist __initdata; 1748 1749 /** 1750 * vm_area_add_early - add vmap area early during boot 1751 * @vm: vm_struct to add 1752 * 1753 * This function is used to add fixed kernel vm area to vmlist before 1754 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1755 * should contain proper values and the other fields should be zero. 1756 * 1757 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1758 */ 1759 void __init vm_area_add_early(struct vm_struct *vm) 1760 { 1761 struct vm_struct *tmp, **p; 1762 1763 BUG_ON(vmap_initialized); 1764 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1765 if (tmp->addr >= vm->addr) { 1766 BUG_ON(tmp->addr < vm->addr + vm->size); 1767 break; 1768 } else 1769 BUG_ON(tmp->addr + tmp->size > vm->addr); 1770 } 1771 vm->next = *p; 1772 *p = vm; 1773 } 1774 1775 /** 1776 * vm_area_register_early - register vmap area early during boot 1777 * @vm: vm_struct to register 1778 * @align: requested alignment 1779 * 1780 * This function is used to register kernel vm area before 1781 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1782 * proper values on entry and other fields should be zero. On return, 1783 * vm->addr contains the allocated address. 1784 * 1785 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1786 */ 1787 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1788 { 1789 static size_t vm_init_off __initdata; 1790 unsigned long addr; 1791 1792 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1793 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1794 1795 vm->addr = (void *)addr; 1796 1797 vm_area_add_early(vm); 1798 } 1799 1800 static void vmap_init_free_space(void) 1801 { 1802 unsigned long vmap_start = 1; 1803 const unsigned long vmap_end = ULONG_MAX; 1804 struct vmap_area *busy, *free; 1805 1806 /* 1807 * B F B B B F 1808 * -|-----|.....|-----|-----|-----|.....|- 1809 * | The KVA space | 1810 * |<--------------------------------->| 1811 */ 1812 list_for_each_entry(busy, &vmap_area_list, list) { 1813 if (busy->va_start - vmap_start > 0) { 1814 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1815 if (!WARN_ON_ONCE(!free)) { 1816 free->va_start = vmap_start; 1817 free->va_end = busy->va_start; 1818 1819 insert_vmap_area_augment(free, NULL, 1820 &free_vmap_area_root, 1821 &free_vmap_area_list); 1822 } 1823 } 1824 1825 vmap_start = busy->va_end; 1826 } 1827 1828 if (vmap_end - vmap_start > 0) { 1829 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1830 if (!WARN_ON_ONCE(!free)) { 1831 free->va_start = vmap_start; 1832 free->va_end = vmap_end; 1833 1834 insert_vmap_area_augment(free, NULL, 1835 &free_vmap_area_root, 1836 &free_vmap_area_list); 1837 } 1838 } 1839 } 1840 1841 void __init vmalloc_init(void) 1842 { 1843 struct vmap_area *va; 1844 struct vm_struct *tmp; 1845 int i; 1846 1847 /* 1848 * Create the cache for vmap_area objects. 1849 */ 1850 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 1851 1852 for_each_possible_cpu(i) { 1853 struct vmap_block_queue *vbq; 1854 struct vfree_deferred *p; 1855 1856 vbq = &per_cpu(vmap_block_queue, i); 1857 spin_lock_init(&vbq->lock); 1858 INIT_LIST_HEAD(&vbq->free); 1859 p = &per_cpu(vfree_deferred, i); 1860 init_llist_head(&p->list); 1861 INIT_WORK(&p->wq, free_work); 1862 } 1863 1864 /* Import existing vmlist entries. */ 1865 for (tmp = vmlist; tmp; tmp = tmp->next) { 1866 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1867 if (WARN_ON_ONCE(!va)) 1868 continue; 1869 1870 va->flags = VM_VM_AREA; 1871 va->va_start = (unsigned long)tmp->addr; 1872 va->va_end = va->va_start + tmp->size; 1873 va->vm = tmp; 1874 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1875 } 1876 1877 /* 1878 * Now we can initialize a free vmap space. 1879 */ 1880 vmap_init_free_space(); 1881 vmap_initialized = true; 1882 } 1883 1884 /** 1885 * map_kernel_range_noflush - map kernel VM area with the specified pages 1886 * @addr: start of the VM area to map 1887 * @size: size of the VM area to map 1888 * @prot: page protection flags to use 1889 * @pages: pages to map 1890 * 1891 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1892 * specify should have been allocated using get_vm_area() and its 1893 * friends. 1894 * 1895 * NOTE: 1896 * This function does NOT do any cache flushing. The caller is 1897 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1898 * before calling this function. 1899 * 1900 * RETURNS: 1901 * The number of pages mapped on success, -errno on failure. 1902 */ 1903 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1904 pgprot_t prot, struct page **pages) 1905 { 1906 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1907 } 1908 1909 /** 1910 * unmap_kernel_range_noflush - unmap kernel VM area 1911 * @addr: start of the VM area to unmap 1912 * @size: size of the VM area to unmap 1913 * 1914 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1915 * specify should have been allocated using get_vm_area() and its 1916 * friends. 1917 * 1918 * NOTE: 1919 * This function does NOT do any cache flushing. The caller is 1920 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1921 * before calling this function and flush_tlb_kernel_range() after. 1922 */ 1923 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1924 { 1925 vunmap_page_range(addr, addr + size); 1926 } 1927 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1928 1929 /** 1930 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1931 * @addr: start of the VM area to unmap 1932 * @size: size of the VM area to unmap 1933 * 1934 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1935 * the unmapping and tlb after. 1936 */ 1937 void unmap_kernel_range(unsigned long addr, unsigned long size) 1938 { 1939 unsigned long end = addr + size; 1940 1941 flush_cache_vunmap(addr, end); 1942 vunmap_page_range(addr, end); 1943 flush_tlb_kernel_range(addr, end); 1944 } 1945 EXPORT_SYMBOL_GPL(unmap_kernel_range); 1946 1947 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) 1948 { 1949 unsigned long addr = (unsigned long)area->addr; 1950 unsigned long end = addr + get_vm_area_size(area); 1951 int err; 1952 1953 err = vmap_page_range(addr, end, prot, pages); 1954 1955 return err > 0 ? 0 : err; 1956 } 1957 EXPORT_SYMBOL_GPL(map_vm_area); 1958 1959 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1960 unsigned long flags, const void *caller) 1961 { 1962 spin_lock(&vmap_area_lock); 1963 vm->flags = flags; 1964 vm->addr = (void *)va->va_start; 1965 vm->size = va->va_end - va->va_start; 1966 vm->caller = caller; 1967 va->vm = vm; 1968 va->flags |= VM_VM_AREA; 1969 spin_unlock(&vmap_area_lock); 1970 } 1971 1972 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 1973 { 1974 /* 1975 * Before removing VM_UNINITIALIZED, 1976 * we should make sure that vm has proper values. 1977 * Pair with smp_rmb() in show_numa_info(). 1978 */ 1979 smp_wmb(); 1980 vm->flags &= ~VM_UNINITIALIZED; 1981 } 1982 1983 static struct vm_struct *__get_vm_area_node(unsigned long size, 1984 unsigned long align, unsigned long flags, unsigned long start, 1985 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 1986 { 1987 struct vmap_area *va; 1988 struct vm_struct *area; 1989 1990 BUG_ON(in_interrupt()); 1991 size = PAGE_ALIGN(size); 1992 if (unlikely(!size)) 1993 return NULL; 1994 1995 if (flags & VM_IOREMAP) 1996 align = 1ul << clamp_t(int, get_count_order_long(size), 1997 PAGE_SHIFT, IOREMAP_MAX_ORDER); 1998 1999 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 2000 if (unlikely(!area)) 2001 return NULL; 2002 2003 if (!(flags & VM_NO_GUARD)) 2004 size += PAGE_SIZE; 2005 2006 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 2007 if (IS_ERR(va)) { 2008 kfree(area); 2009 return NULL; 2010 } 2011 2012 setup_vmalloc_vm(area, va, flags, caller); 2013 2014 return area; 2015 } 2016 2017 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 2018 unsigned long start, unsigned long end) 2019 { 2020 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 2021 GFP_KERNEL, __builtin_return_address(0)); 2022 } 2023 EXPORT_SYMBOL_GPL(__get_vm_area); 2024 2025 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 2026 unsigned long start, unsigned long end, 2027 const void *caller) 2028 { 2029 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 2030 GFP_KERNEL, caller); 2031 } 2032 2033 /** 2034 * get_vm_area - reserve a contiguous kernel virtual area 2035 * @size: size of the area 2036 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 2037 * 2038 * Search an area of @size in the kernel virtual mapping area, 2039 * and reserved it for out purposes. Returns the area descriptor 2040 * on success or %NULL on failure. 2041 * 2042 * Return: the area descriptor on success or %NULL on failure. 2043 */ 2044 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 2045 { 2046 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 2047 NUMA_NO_NODE, GFP_KERNEL, 2048 __builtin_return_address(0)); 2049 } 2050 2051 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 2052 const void *caller) 2053 { 2054 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 2055 NUMA_NO_NODE, GFP_KERNEL, caller); 2056 } 2057 2058 /** 2059 * find_vm_area - find a continuous kernel virtual area 2060 * @addr: base address 2061 * 2062 * Search for the kernel VM area starting at @addr, and return it. 2063 * It is up to the caller to do all required locking to keep the returned 2064 * pointer valid. 2065 * 2066 * Return: pointer to the found area or %NULL on faulure 2067 */ 2068 struct vm_struct *find_vm_area(const void *addr) 2069 { 2070 struct vmap_area *va; 2071 2072 va = find_vmap_area((unsigned long)addr); 2073 if (va && va->flags & VM_VM_AREA) 2074 return va->vm; 2075 2076 return NULL; 2077 } 2078 2079 /** 2080 * remove_vm_area - find and remove a continuous kernel virtual area 2081 * @addr: base address 2082 * 2083 * Search for the kernel VM area starting at @addr, and remove it. 2084 * This function returns the found VM area, but using it is NOT safe 2085 * on SMP machines, except for its size or flags. 2086 * 2087 * Return: pointer to the found area or %NULL on faulure 2088 */ 2089 struct vm_struct *remove_vm_area(const void *addr) 2090 { 2091 struct vmap_area *va; 2092 2093 might_sleep(); 2094 2095 va = find_vmap_area((unsigned long)addr); 2096 if (va && va->flags & VM_VM_AREA) { 2097 struct vm_struct *vm = va->vm; 2098 2099 spin_lock(&vmap_area_lock); 2100 va->vm = NULL; 2101 va->flags &= ~VM_VM_AREA; 2102 va->flags |= VM_LAZY_FREE; 2103 spin_unlock(&vmap_area_lock); 2104 2105 kasan_free_shadow(vm); 2106 free_unmap_vmap_area(va); 2107 2108 return vm; 2109 } 2110 return NULL; 2111 } 2112 2113 static inline void set_area_direct_map(const struct vm_struct *area, 2114 int (*set_direct_map)(struct page *page)) 2115 { 2116 int i; 2117 2118 for (i = 0; i < area->nr_pages; i++) 2119 if (page_address(area->pages[i])) 2120 set_direct_map(area->pages[i]); 2121 } 2122 2123 /* Handle removing and resetting vm mappings related to the vm_struct. */ 2124 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) 2125 { 2126 unsigned long start = ULONG_MAX, end = 0; 2127 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; 2128 int flush_dmap = 0; 2129 int i; 2130 2131 remove_vm_area(area->addr); 2132 2133 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ 2134 if (!flush_reset) 2135 return; 2136 2137 /* 2138 * If not deallocating pages, just do the flush of the VM area and 2139 * return. 2140 */ 2141 if (!deallocate_pages) { 2142 vm_unmap_aliases(); 2143 return; 2144 } 2145 2146 /* 2147 * If execution gets here, flush the vm mapping and reset the direct 2148 * map. Find the start and end range of the direct mappings to make sure 2149 * the vm_unmap_aliases() flush includes the direct map. 2150 */ 2151 for (i = 0; i < area->nr_pages; i++) { 2152 unsigned long addr = (unsigned long)page_address(area->pages[i]); 2153 if (addr) { 2154 start = min(addr, start); 2155 end = max(addr + PAGE_SIZE, end); 2156 flush_dmap = 1; 2157 } 2158 } 2159 2160 /* 2161 * Set direct map to something invalid so that it won't be cached if 2162 * there are any accesses after the TLB flush, then flush the TLB and 2163 * reset the direct map permissions to the default. 2164 */ 2165 set_area_direct_map(area, set_direct_map_invalid_noflush); 2166 _vm_unmap_aliases(start, end, flush_dmap); 2167 set_area_direct_map(area, set_direct_map_default_noflush); 2168 } 2169 2170 static void __vunmap(const void *addr, int deallocate_pages) 2171 { 2172 struct vm_struct *area; 2173 2174 if (!addr) 2175 return; 2176 2177 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 2178 addr)) 2179 return; 2180 2181 area = find_vm_area(addr); 2182 if (unlikely(!area)) { 2183 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 2184 addr); 2185 return; 2186 } 2187 2188 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 2189 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 2190 2191 vm_remove_mappings(area, deallocate_pages); 2192 2193 if (deallocate_pages) { 2194 int i; 2195 2196 for (i = 0; i < area->nr_pages; i++) { 2197 struct page *page = area->pages[i]; 2198 2199 BUG_ON(!page); 2200 __free_pages(page, 0); 2201 } 2202 2203 kvfree(area->pages); 2204 } 2205 2206 kfree(area); 2207 return; 2208 } 2209 2210 static inline void __vfree_deferred(const void *addr) 2211 { 2212 /* 2213 * Use raw_cpu_ptr() because this can be called from preemptible 2214 * context. Preemption is absolutely fine here, because the llist_add() 2215 * implementation is lockless, so it works even if we are adding to 2216 * nother cpu's list. schedule_work() should be fine with this too. 2217 */ 2218 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 2219 2220 if (llist_add((struct llist_node *)addr, &p->list)) 2221 schedule_work(&p->wq); 2222 } 2223 2224 /** 2225 * vfree_atomic - release memory allocated by vmalloc() 2226 * @addr: memory base address 2227 * 2228 * This one is just like vfree() but can be called in any atomic context 2229 * except NMIs. 2230 */ 2231 void vfree_atomic(const void *addr) 2232 { 2233 BUG_ON(in_nmi()); 2234 2235 kmemleak_free(addr); 2236 2237 if (!addr) 2238 return; 2239 __vfree_deferred(addr); 2240 } 2241 2242 static void __vfree(const void *addr) 2243 { 2244 if (unlikely(in_interrupt())) 2245 __vfree_deferred(addr); 2246 else 2247 __vunmap(addr, 1); 2248 } 2249 2250 /** 2251 * vfree - release memory allocated by vmalloc() 2252 * @addr: memory base address 2253 * 2254 * Free the virtually continuous memory area starting at @addr, as 2255 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 2256 * NULL, no operation is performed. 2257 * 2258 * Must not be called in NMI context (strictly speaking, only if we don't 2259 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 2260 * conventions for vfree() arch-depenedent would be a really bad idea) 2261 * 2262 * May sleep if called *not* from interrupt context. 2263 * 2264 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node) 2265 */ 2266 void vfree(const void *addr) 2267 { 2268 BUG_ON(in_nmi()); 2269 2270 kmemleak_free(addr); 2271 2272 might_sleep_if(!in_interrupt()); 2273 2274 if (!addr) 2275 return; 2276 2277 __vfree(addr); 2278 } 2279 EXPORT_SYMBOL(vfree); 2280 2281 /** 2282 * vunmap - release virtual mapping obtained by vmap() 2283 * @addr: memory base address 2284 * 2285 * Free the virtually contiguous memory area starting at @addr, 2286 * which was created from the page array passed to vmap(). 2287 * 2288 * Must not be called in interrupt context. 2289 */ 2290 void vunmap(const void *addr) 2291 { 2292 BUG_ON(in_interrupt()); 2293 might_sleep(); 2294 if (addr) 2295 __vunmap(addr, 0); 2296 } 2297 EXPORT_SYMBOL(vunmap); 2298 2299 /** 2300 * vmap - map an array of pages into virtually contiguous space 2301 * @pages: array of page pointers 2302 * @count: number of pages to map 2303 * @flags: vm_area->flags 2304 * @prot: page protection for the mapping 2305 * 2306 * Maps @count pages from @pages into contiguous kernel virtual 2307 * space. 2308 * 2309 * Return: the address of the area or %NULL on failure 2310 */ 2311 void *vmap(struct page **pages, unsigned int count, 2312 unsigned long flags, pgprot_t prot) 2313 { 2314 struct vm_struct *area; 2315 unsigned long size; /* In bytes */ 2316 2317 might_sleep(); 2318 2319 if (count > totalram_pages()) 2320 return NULL; 2321 2322 size = (unsigned long)count << PAGE_SHIFT; 2323 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 2324 if (!area) 2325 return NULL; 2326 2327 if (map_vm_area(area, prot, pages)) { 2328 vunmap(area->addr); 2329 return NULL; 2330 } 2331 2332 return area->addr; 2333 } 2334 EXPORT_SYMBOL(vmap); 2335 2336 static void *__vmalloc_node(unsigned long size, unsigned long align, 2337 gfp_t gfp_mask, pgprot_t prot, 2338 int node, const void *caller); 2339 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 2340 pgprot_t prot, int node) 2341 { 2342 struct page **pages; 2343 unsigned int nr_pages, array_size, i; 2344 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 2345 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; 2346 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ? 2347 0 : 2348 __GFP_HIGHMEM; 2349 2350 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 2351 array_size = (nr_pages * sizeof(struct page *)); 2352 2353 area->nr_pages = nr_pages; 2354 /* Please note that the recursion is strictly bounded. */ 2355 if (array_size > PAGE_SIZE) { 2356 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask, 2357 PAGE_KERNEL, node, area->caller); 2358 } else { 2359 pages = kmalloc_node(array_size, nested_gfp, node); 2360 } 2361 area->pages = pages; 2362 if (!area->pages) { 2363 remove_vm_area(area->addr); 2364 kfree(area); 2365 return NULL; 2366 } 2367 2368 for (i = 0; i < area->nr_pages; i++) { 2369 struct page *page; 2370 2371 if (node == NUMA_NO_NODE) 2372 page = alloc_page(alloc_mask|highmem_mask); 2373 else 2374 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0); 2375 2376 if (unlikely(!page)) { 2377 /* Successfully allocated i pages, free them in __vunmap() */ 2378 area->nr_pages = i; 2379 goto fail; 2380 } 2381 area->pages[i] = page; 2382 if (gfpflags_allow_blocking(gfp_mask|highmem_mask)) 2383 cond_resched(); 2384 } 2385 2386 if (map_vm_area(area, prot, pages)) 2387 goto fail; 2388 return area->addr; 2389 2390 fail: 2391 warn_alloc(gfp_mask, NULL, 2392 "vmalloc: allocation failure, allocated %ld of %ld bytes", 2393 (area->nr_pages*PAGE_SIZE), area->size); 2394 __vfree(area->addr); 2395 return NULL; 2396 } 2397 2398 /** 2399 * __vmalloc_node_range - allocate virtually contiguous memory 2400 * @size: allocation size 2401 * @align: desired alignment 2402 * @start: vm area range start 2403 * @end: vm area range end 2404 * @gfp_mask: flags for the page level allocator 2405 * @prot: protection mask for the allocated pages 2406 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 2407 * @node: node to use for allocation or NUMA_NO_NODE 2408 * @caller: caller's return address 2409 * 2410 * Allocate enough pages to cover @size from the page level 2411 * allocator with @gfp_mask flags. Map them into contiguous 2412 * kernel virtual space, using a pagetable protection of @prot. 2413 * 2414 * Return: the address of the area or %NULL on failure 2415 */ 2416 void *__vmalloc_node_range(unsigned long size, unsigned long align, 2417 unsigned long start, unsigned long end, gfp_t gfp_mask, 2418 pgprot_t prot, unsigned long vm_flags, int node, 2419 const void *caller) 2420 { 2421 struct vm_struct *area; 2422 void *addr; 2423 unsigned long real_size = size; 2424 2425 size = PAGE_ALIGN(size); 2426 if (!size || (size >> PAGE_SHIFT) > totalram_pages()) 2427 goto fail; 2428 2429 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | 2430 vm_flags, start, end, node, gfp_mask, caller); 2431 if (!area) 2432 goto fail; 2433 2434 addr = __vmalloc_area_node(area, gfp_mask, prot, node); 2435 if (!addr) 2436 return NULL; 2437 2438 /* 2439 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 2440 * flag. It means that vm_struct is not fully initialized. 2441 * Now, it is fully initialized, so remove this flag here. 2442 */ 2443 clear_vm_uninitialized_flag(area); 2444 2445 kmemleak_vmalloc(area, size, gfp_mask); 2446 2447 return addr; 2448 2449 fail: 2450 warn_alloc(gfp_mask, NULL, 2451 "vmalloc: allocation failure: %lu bytes", real_size); 2452 return NULL; 2453 } 2454 2455 /* 2456 * This is only for performance analysis of vmalloc and stress purpose. 2457 * It is required by vmalloc test module, therefore do not use it other 2458 * than that. 2459 */ 2460 #ifdef CONFIG_TEST_VMALLOC_MODULE 2461 EXPORT_SYMBOL_GPL(__vmalloc_node_range); 2462 #endif 2463 2464 /** 2465 * __vmalloc_node - allocate virtually contiguous memory 2466 * @size: allocation size 2467 * @align: desired alignment 2468 * @gfp_mask: flags for the page level allocator 2469 * @prot: protection mask for the allocated pages 2470 * @node: node to use for allocation or NUMA_NO_NODE 2471 * @caller: caller's return address 2472 * 2473 * Allocate enough pages to cover @size from the page level 2474 * allocator with @gfp_mask flags. Map them into contiguous 2475 * kernel virtual space, using a pagetable protection of @prot. 2476 * 2477 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 2478 * and __GFP_NOFAIL are not supported 2479 * 2480 * Any use of gfp flags outside of GFP_KERNEL should be consulted 2481 * with mm people. 2482 * 2483 * Return: pointer to the allocated memory or %NULL on error 2484 */ 2485 static void *__vmalloc_node(unsigned long size, unsigned long align, 2486 gfp_t gfp_mask, pgprot_t prot, 2487 int node, const void *caller) 2488 { 2489 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 2490 gfp_mask, prot, 0, node, caller); 2491 } 2492 2493 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 2494 { 2495 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 2496 __builtin_return_address(0)); 2497 } 2498 EXPORT_SYMBOL(__vmalloc); 2499 2500 static inline void *__vmalloc_node_flags(unsigned long size, 2501 int node, gfp_t flags) 2502 { 2503 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 2504 node, __builtin_return_address(0)); 2505 } 2506 2507 2508 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags, 2509 void *caller) 2510 { 2511 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller); 2512 } 2513 2514 /** 2515 * vmalloc - allocate virtually contiguous memory 2516 * @size: allocation size 2517 * 2518 * Allocate enough pages to cover @size from the page level 2519 * allocator and map them into contiguous kernel virtual space. 2520 * 2521 * For tight control over page level allocator and protection flags 2522 * use __vmalloc() instead. 2523 * 2524 * Return: pointer to the allocated memory or %NULL on error 2525 */ 2526 void *vmalloc(unsigned long size) 2527 { 2528 return __vmalloc_node_flags(size, NUMA_NO_NODE, 2529 GFP_KERNEL); 2530 } 2531 EXPORT_SYMBOL(vmalloc); 2532 2533 /** 2534 * vzalloc - allocate virtually contiguous memory with zero fill 2535 * @size: allocation size 2536 * 2537 * Allocate enough pages to cover @size from the page level 2538 * allocator and map them into contiguous kernel virtual space. 2539 * The memory allocated is set to zero. 2540 * 2541 * For tight control over page level allocator and protection flags 2542 * use __vmalloc() instead. 2543 * 2544 * Return: pointer to the allocated memory or %NULL on error 2545 */ 2546 void *vzalloc(unsigned long size) 2547 { 2548 return __vmalloc_node_flags(size, NUMA_NO_NODE, 2549 GFP_KERNEL | __GFP_ZERO); 2550 } 2551 EXPORT_SYMBOL(vzalloc); 2552 2553 /** 2554 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 2555 * @size: allocation size 2556 * 2557 * The resulting memory area is zeroed so it can be mapped to userspace 2558 * without leaking data. 2559 * 2560 * Return: pointer to the allocated memory or %NULL on error 2561 */ 2562 void *vmalloc_user(unsigned long size) 2563 { 2564 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2565 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 2566 VM_USERMAP, NUMA_NO_NODE, 2567 __builtin_return_address(0)); 2568 } 2569 EXPORT_SYMBOL(vmalloc_user); 2570 2571 /** 2572 * vmalloc_node - allocate memory on a specific node 2573 * @size: allocation size 2574 * @node: numa node 2575 * 2576 * Allocate enough pages to cover @size from the page level 2577 * allocator and map them into contiguous kernel virtual space. 2578 * 2579 * For tight control over page level allocator and protection flags 2580 * use __vmalloc() instead. 2581 * 2582 * Return: pointer to the allocated memory or %NULL on error 2583 */ 2584 void *vmalloc_node(unsigned long size, int node) 2585 { 2586 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL, 2587 node, __builtin_return_address(0)); 2588 } 2589 EXPORT_SYMBOL(vmalloc_node); 2590 2591 /** 2592 * vzalloc_node - allocate memory on a specific node with zero fill 2593 * @size: allocation size 2594 * @node: numa node 2595 * 2596 * Allocate enough pages to cover @size from the page level 2597 * allocator and map them into contiguous kernel virtual space. 2598 * The memory allocated is set to zero. 2599 * 2600 * For tight control over page level allocator and protection flags 2601 * use __vmalloc_node() instead. 2602 * 2603 * Return: pointer to the allocated memory or %NULL on error 2604 */ 2605 void *vzalloc_node(unsigned long size, int node) 2606 { 2607 return __vmalloc_node_flags(size, node, 2608 GFP_KERNEL | __GFP_ZERO); 2609 } 2610 EXPORT_SYMBOL(vzalloc_node); 2611 2612 /** 2613 * vmalloc_exec - allocate virtually contiguous, executable memory 2614 * @size: allocation size 2615 * 2616 * Kernel-internal function to allocate enough pages to cover @size 2617 * the page level allocator and map them into contiguous and 2618 * executable kernel virtual space. 2619 * 2620 * For tight control over page level allocator and protection flags 2621 * use __vmalloc() instead. 2622 * 2623 * Return: pointer to the allocated memory or %NULL on error 2624 */ 2625 void *vmalloc_exec(unsigned long size) 2626 { 2627 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 2628 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS, 2629 NUMA_NO_NODE, __builtin_return_address(0)); 2630 } 2631 2632 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 2633 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 2634 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 2635 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 2636 #else 2637 /* 2638 * 64b systems should always have either DMA or DMA32 zones. For others 2639 * GFP_DMA32 should do the right thing and use the normal zone. 2640 */ 2641 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 2642 #endif 2643 2644 /** 2645 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 2646 * @size: allocation size 2647 * 2648 * Allocate enough 32bit PA addressable pages to cover @size from the 2649 * page level allocator and map them into contiguous kernel virtual space. 2650 * 2651 * Return: pointer to the allocated memory or %NULL on error 2652 */ 2653 void *vmalloc_32(unsigned long size) 2654 { 2655 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 2656 NUMA_NO_NODE, __builtin_return_address(0)); 2657 } 2658 EXPORT_SYMBOL(vmalloc_32); 2659 2660 /** 2661 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 2662 * @size: allocation size 2663 * 2664 * The resulting memory area is 32bit addressable and zeroed so it can be 2665 * mapped to userspace without leaking data. 2666 * 2667 * Return: pointer to the allocated memory or %NULL on error 2668 */ 2669 void *vmalloc_32_user(unsigned long size) 2670 { 2671 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2672 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 2673 VM_USERMAP, NUMA_NO_NODE, 2674 __builtin_return_address(0)); 2675 } 2676 EXPORT_SYMBOL(vmalloc_32_user); 2677 2678 /* 2679 * small helper routine , copy contents to buf from addr. 2680 * If the page is not present, fill zero. 2681 */ 2682 2683 static int aligned_vread(char *buf, char *addr, unsigned long count) 2684 { 2685 struct page *p; 2686 int copied = 0; 2687 2688 while (count) { 2689 unsigned long offset, length; 2690 2691 offset = offset_in_page(addr); 2692 length = PAGE_SIZE - offset; 2693 if (length > count) 2694 length = count; 2695 p = vmalloc_to_page(addr); 2696 /* 2697 * To do safe access to this _mapped_ area, we need 2698 * lock. But adding lock here means that we need to add 2699 * overhead of vmalloc()/vfree() calles for this _debug_ 2700 * interface, rarely used. Instead of that, we'll use 2701 * kmap() and get small overhead in this access function. 2702 */ 2703 if (p) { 2704 /* 2705 * we can expect USER0 is not used (see vread/vwrite's 2706 * function description) 2707 */ 2708 void *map = kmap_atomic(p); 2709 memcpy(buf, map + offset, length); 2710 kunmap_atomic(map); 2711 } else 2712 memset(buf, 0, length); 2713 2714 addr += length; 2715 buf += length; 2716 copied += length; 2717 count -= length; 2718 } 2719 return copied; 2720 } 2721 2722 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 2723 { 2724 struct page *p; 2725 int copied = 0; 2726 2727 while (count) { 2728 unsigned long offset, length; 2729 2730 offset = offset_in_page(addr); 2731 length = PAGE_SIZE - offset; 2732 if (length > count) 2733 length = count; 2734 p = vmalloc_to_page(addr); 2735 /* 2736 * To do safe access to this _mapped_ area, we need 2737 * lock. But adding lock here means that we need to add 2738 * overhead of vmalloc()/vfree() calles for this _debug_ 2739 * interface, rarely used. Instead of that, we'll use 2740 * kmap() and get small overhead in this access function. 2741 */ 2742 if (p) { 2743 /* 2744 * we can expect USER0 is not used (see vread/vwrite's 2745 * function description) 2746 */ 2747 void *map = kmap_atomic(p); 2748 memcpy(map + offset, buf, length); 2749 kunmap_atomic(map); 2750 } 2751 addr += length; 2752 buf += length; 2753 copied += length; 2754 count -= length; 2755 } 2756 return copied; 2757 } 2758 2759 /** 2760 * vread() - read vmalloc area in a safe way. 2761 * @buf: buffer for reading data 2762 * @addr: vm address. 2763 * @count: number of bytes to be read. 2764 * 2765 * This function checks that addr is a valid vmalloc'ed area, and 2766 * copy data from that area to a given buffer. If the given memory range 2767 * of [addr...addr+count) includes some valid address, data is copied to 2768 * proper area of @buf. If there are memory holes, they'll be zero-filled. 2769 * IOREMAP area is treated as memory hole and no copy is done. 2770 * 2771 * If [addr...addr+count) doesn't includes any intersects with alive 2772 * vm_struct area, returns 0. @buf should be kernel's buffer. 2773 * 2774 * Note: In usual ops, vread() is never necessary because the caller 2775 * should know vmalloc() area is valid and can use memcpy(). 2776 * This is for routines which have to access vmalloc area without 2777 * any informaion, as /dev/kmem. 2778 * 2779 * Return: number of bytes for which addr and buf should be increased 2780 * (same number as @count) or %0 if [addr...addr+count) doesn't 2781 * include any intersection with valid vmalloc area 2782 */ 2783 long vread(char *buf, char *addr, unsigned long count) 2784 { 2785 struct vmap_area *va; 2786 struct vm_struct *vm; 2787 char *vaddr, *buf_start = buf; 2788 unsigned long buflen = count; 2789 unsigned long n; 2790 2791 /* Don't allow overflow */ 2792 if ((unsigned long) addr + count < count) 2793 count = -(unsigned long) addr; 2794 2795 spin_lock(&vmap_area_lock); 2796 list_for_each_entry(va, &vmap_area_list, list) { 2797 if (!count) 2798 break; 2799 2800 if (!(va->flags & VM_VM_AREA)) 2801 continue; 2802 2803 vm = va->vm; 2804 vaddr = (char *) vm->addr; 2805 if (addr >= vaddr + get_vm_area_size(vm)) 2806 continue; 2807 while (addr < vaddr) { 2808 if (count == 0) 2809 goto finished; 2810 *buf = '\0'; 2811 buf++; 2812 addr++; 2813 count--; 2814 } 2815 n = vaddr + get_vm_area_size(vm) - addr; 2816 if (n > count) 2817 n = count; 2818 if (!(vm->flags & VM_IOREMAP)) 2819 aligned_vread(buf, addr, n); 2820 else /* IOREMAP area is treated as memory hole */ 2821 memset(buf, 0, n); 2822 buf += n; 2823 addr += n; 2824 count -= n; 2825 } 2826 finished: 2827 spin_unlock(&vmap_area_lock); 2828 2829 if (buf == buf_start) 2830 return 0; 2831 /* zero-fill memory holes */ 2832 if (buf != buf_start + buflen) 2833 memset(buf, 0, buflen - (buf - buf_start)); 2834 2835 return buflen; 2836 } 2837 2838 /** 2839 * vwrite() - write vmalloc area in a safe way. 2840 * @buf: buffer for source data 2841 * @addr: vm address. 2842 * @count: number of bytes to be read. 2843 * 2844 * This function checks that addr is a valid vmalloc'ed area, and 2845 * copy data from a buffer to the given addr. If specified range of 2846 * [addr...addr+count) includes some valid address, data is copied from 2847 * proper area of @buf. If there are memory holes, no copy to hole. 2848 * IOREMAP area is treated as memory hole and no copy is done. 2849 * 2850 * If [addr...addr+count) doesn't includes any intersects with alive 2851 * vm_struct area, returns 0. @buf should be kernel's buffer. 2852 * 2853 * Note: In usual ops, vwrite() is never necessary because the caller 2854 * should know vmalloc() area is valid and can use memcpy(). 2855 * This is for routines which have to access vmalloc area without 2856 * any informaion, as /dev/kmem. 2857 * 2858 * Return: number of bytes for which addr and buf should be 2859 * increased (same number as @count) or %0 if [addr...addr+count) 2860 * doesn't include any intersection with valid vmalloc area 2861 */ 2862 long vwrite(char *buf, char *addr, unsigned long count) 2863 { 2864 struct vmap_area *va; 2865 struct vm_struct *vm; 2866 char *vaddr; 2867 unsigned long n, buflen; 2868 int copied = 0; 2869 2870 /* Don't allow overflow */ 2871 if ((unsigned long) addr + count < count) 2872 count = -(unsigned long) addr; 2873 buflen = count; 2874 2875 spin_lock(&vmap_area_lock); 2876 list_for_each_entry(va, &vmap_area_list, list) { 2877 if (!count) 2878 break; 2879 2880 if (!(va->flags & VM_VM_AREA)) 2881 continue; 2882 2883 vm = va->vm; 2884 vaddr = (char *) vm->addr; 2885 if (addr >= vaddr + get_vm_area_size(vm)) 2886 continue; 2887 while (addr < vaddr) { 2888 if (count == 0) 2889 goto finished; 2890 buf++; 2891 addr++; 2892 count--; 2893 } 2894 n = vaddr + get_vm_area_size(vm) - addr; 2895 if (n > count) 2896 n = count; 2897 if (!(vm->flags & VM_IOREMAP)) { 2898 aligned_vwrite(buf, addr, n); 2899 copied++; 2900 } 2901 buf += n; 2902 addr += n; 2903 count -= n; 2904 } 2905 finished: 2906 spin_unlock(&vmap_area_lock); 2907 if (!copied) 2908 return 0; 2909 return buflen; 2910 } 2911 2912 /** 2913 * remap_vmalloc_range_partial - map vmalloc pages to userspace 2914 * @vma: vma to cover 2915 * @uaddr: target user address to start at 2916 * @kaddr: virtual address of vmalloc kernel memory 2917 * @size: size of map area 2918 * 2919 * Returns: 0 for success, -Exxx on failure 2920 * 2921 * This function checks that @kaddr is a valid vmalloc'ed area, 2922 * and that it is big enough to cover the range starting at 2923 * @uaddr in @vma. Will return failure if that criteria isn't 2924 * met. 2925 * 2926 * Similar to remap_pfn_range() (see mm/memory.c) 2927 */ 2928 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 2929 void *kaddr, unsigned long size) 2930 { 2931 struct vm_struct *area; 2932 2933 size = PAGE_ALIGN(size); 2934 2935 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 2936 return -EINVAL; 2937 2938 area = find_vm_area(kaddr); 2939 if (!area) 2940 return -EINVAL; 2941 2942 if (!(area->flags & VM_USERMAP)) 2943 return -EINVAL; 2944 2945 if (kaddr + size > area->addr + get_vm_area_size(area)) 2946 return -EINVAL; 2947 2948 do { 2949 struct page *page = vmalloc_to_page(kaddr); 2950 int ret; 2951 2952 ret = vm_insert_page(vma, uaddr, page); 2953 if (ret) 2954 return ret; 2955 2956 uaddr += PAGE_SIZE; 2957 kaddr += PAGE_SIZE; 2958 size -= PAGE_SIZE; 2959 } while (size > 0); 2960 2961 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 2962 2963 return 0; 2964 } 2965 EXPORT_SYMBOL(remap_vmalloc_range_partial); 2966 2967 /** 2968 * remap_vmalloc_range - map vmalloc pages to userspace 2969 * @vma: vma to cover (map full range of vma) 2970 * @addr: vmalloc memory 2971 * @pgoff: number of pages into addr before first page to map 2972 * 2973 * Returns: 0 for success, -Exxx on failure 2974 * 2975 * This function checks that addr is a valid vmalloc'ed area, and 2976 * that it is big enough to cover the vma. Will return failure if 2977 * that criteria isn't met. 2978 * 2979 * Similar to remap_pfn_range() (see mm/memory.c) 2980 */ 2981 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2982 unsigned long pgoff) 2983 { 2984 return remap_vmalloc_range_partial(vma, vma->vm_start, 2985 addr + (pgoff << PAGE_SHIFT), 2986 vma->vm_end - vma->vm_start); 2987 } 2988 EXPORT_SYMBOL(remap_vmalloc_range); 2989 2990 /* 2991 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2992 * have one. 2993 */ 2994 void __weak vmalloc_sync_all(void) 2995 { 2996 } 2997 2998 2999 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 3000 { 3001 pte_t ***p = data; 3002 3003 if (p) { 3004 *(*p) = pte; 3005 (*p)++; 3006 } 3007 return 0; 3008 } 3009 3010 /** 3011 * alloc_vm_area - allocate a range of kernel address space 3012 * @size: size of the area 3013 * @ptes: returns the PTEs for the address space 3014 * 3015 * Returns: NULL on failure, vm_struct on success 3016 * 3017 * This function reserves a range of kernel address space, and 3018 * allocates pagetables to map that range. No actual mappings 3019 * are created. 3020 * 3021 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 3022 * allocated for the VM area are returned. 3023 */ 3024 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 3025 { 3026 struct vm_struct *area; 3027 3028 area = get_vm_area_caller(size, VM_IOREMAP, 3029 __builtin_return_address(0)); 3030 if (area == NULL) 3031 return NULL; 3032 3033 /* 3034 * This ensures that page tables are constructed for this region 3035 * of kernel virtual address space and mapped into init_mm. 3036 */ 3037 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 3038 size, f, ptes ? &ptes : NULL)) { 3039 free_vm_area(area); 3040 return NULL; 3041 } 3042 3043 return area; 3044 } 3045 EXPORT_SYMBOL_GPL(alloc_vm_area); 3046 3047 void free_vm_area(struct vm_struct *area) 3048 { 3049 struct vm_struct *ret; 3050 ret = remove_vm_area(area->addr); 3051 BUG_ON(ret != area); 3052 kfree(area); 3053 } 3054 EXPORT_SYMBOL_GPL(free_vm_area); 3055 3056 #ifdef CONFIG_SMP 3057 static struct vmap_area *node_to_va(struct rb_node *n) 3058 { 3059 return rb_entry_safe(n, struct vmap_area, rb_node); 3060 } 3061 3062 /** 3063 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 3064 * @addr: target address 3065 * 3066 * Returns: vmap_area if it is found. If there is no such area 3067 * the first highest(reverse order) vmap_area is returned 3068 * i.e. va->va_start < addr && va->va_end < addr or NULL 3069 * if there are no any areas before @addr. 3070 */ 3071 static struct vmap_area * 3072 pvm_find_va_enclose_addr(unsigned long addr) 3073 { 3074 struct vmap_area *va, *tmp; 3075 struct rb_node *n; 3076 3077 n = free_vmap_area_root.rb_node; 3078 va = NULL; 3079 3080 while (n) { 3081 tmp = rb_entry(n, struct vmap_area, rb_node); 3082 if (tmp->va_start <= addr) { 3083 va = tmp; 3084 if (tmp->va_end >= addr) 3085 break; 3086 3087 n = n->rb_right; 3088 } else { 3089 n = n->rb_left; 3090 } 3091 } 3092 3093 return va; 3094 } 3095 3096 /** 3097 * pvm_determine_end_from_reverse - find the highest aligned address 3098 * of free block below VMALLOC_END 3099 * @va: 3100 * in - the VA we start the search(reverse order); 3101 * out - the VA with the highest aligned end address. 3102 * 3103 * Returns: determined end address within vmap_area 3104 */ 3105 static unsigned long 3106 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 3107 { 3108 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3109 unsigned long addr; 3110 3111 if (likely(*va)) { 3112 list_for_each_entry_from_reverse((*va), 3113 &free_vmap_area_list, list) { 3114 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 3115 if ((*va)->va_start < addr) 3116 return addr; 3117 } 3118 } 3119 3120 return 0; 3121 } 3122 3123 /** 3124 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 3125 * @offsets: array containing offset of each area 3126 * @sizes: array containing size of each area 3127 * @nr_vms: the number of areas to allocate 3128 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 3129 * 3130 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 3131 * vm_structs on success, %NULL on failure 3132 * 3133 * Percpu allocator wants to use congruent vm areas so that it can 3134 * maintain the offsets among percpu areas. This function allocates 3135 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 3136 * be scattered pretty far, distance between two areas easily going up 3137 * to gigabytes. To avoid interacting with regular vmallocs, these 3138 * areas are allocated from top. 3139 * 3140 * Despite its complicated look, this allocator is rather simple. It 3141 * does everything top-down and scans free blocks from the end looking 3142 * for matching base. While scanning, if any of the areas do not fit the 3143 * base address is pulled down to fit the area. Scanning is repeated till 3144 * all the areas fit and then all necessary data structures are inserted 3145 * and the result is returned. 3146 */ 3147 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 3148 const size_t *sizes, int nr_vms, 3149 size_t align) 3150 { 3151 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 3152 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3153 struct vmap_area **vas, *va; 3154 struct vm_struct **vms; 3155 int area, area2, last_area, term_area; 3156 unsigned long base, start, size, end, last_end; 3157 bool purged = false; 3158 enum fit_type type; 3159 3160 /* verify parameters and allocate data structures */ 3161 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 3162 for (last_area = 0, area = 0; area < nr_vms; area++) { 3163 start = offsets[area]; 3164 end = start + sizes[area]; 3165 3166 /* is everything aligned properly? */ 3167 BUG_ON(!IS_ALIGNED(offsets[area], align)); 3168 BUG_ON(!IS_ALIGNED(sizes[area], align)); 3169 3170 /* detect the area with the highest address */ 3171 if (start > offsets[last_area]) 3172 last_area = area; 3173 3174 for (area2 = area + 1; area2 < nr_vms; area2++) { 3175 unsigned long start2 = offsets[area2]; 3176 unsigned long end2 = start2 + sizes[area2]; 3177 3178 BUG_ON(start2 < end && start < end2); 3179 } 3180 } 3181 last_end = offsets[last_area] + sizes[last_area]; 3182 3183 if (vmalloc_end - vmalloc_start < last_end) { 3184 WARN_ON(true); 3185 return NULL; 3186 } 3187 3188 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 3189 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 3190 if (!vas || !vms) 3191 goto err_free2; 3192 3193 for (area = 0; area < nr_vms; area++) { 3194 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 3195 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 3196 if (!vas[area] || !vms[area]) 3197 goto err_free; 3198 } 3199 retry: 3200 spin_lock(&vmap_area_lock); 3201 3202 /* start scanning - we scan from the top, begin with the last area */ 3203 area = term_area = last_area; 3204 start = offsets[area]; 3205 end = start + sizes[area]; 3206 3207 va = pvm_find_va_enclose_addr(vmalloc_end); 3208 base = pvm_determine_end_from_reverse(&va, align) - end; 3209 3210 while (true) { 3211 /* 3212 * base might have underflowed, add last_end before 3213 * comparing. 3214 */ 3215 if (base + last_end < vmalloc_start + last_end) 3216 goto overflow; 3217 3218 /* 3219 * Fitting base has not been found. 3220 */ 3221 if (va == NULL) 3222 goto overflow; 3223 3224 /* 3225 * If this VA does not fit, move base downwards and recheck. 3226 */ 3227 if (base + start < va->va_start || base + end > va->va_end) { 3228 va = node_to_va(rb_prev(&va->rb_node)); 3229 base = pvm_determine_end_from_reverse(&va, align) - end; 3230 term_area = area; 3231 continue; 3232 } 3233 3234 /* 3235 * This area fits, move on to the previous one. If 3236 * the previous one is the terminal one, we're done. 3237 */ 3238 area = (area + nr_vms - 1) % nr_vms; 3239 if (area == term_area) 3240 break; 3241 3242 start = offsets[area]; 3243 end = start + sizes[area]; 3244 va = pvm_find_va_enclose_addr(base + end); 3245 } 3246 3247 /* we've found a fitting base, insert all va's */ 3248 for (area = 0; area < nr_vms; area++) { 3249 int ret; 3250 3251 start = base + offsets[area]; 3252 size = sizes[area]; 3253 3254 va = pvm_find_va_enclose_addr(start); 3255 if (WARN_ON_ONCE(va == NULL)) 3256 /* It is a BUG(), but trigger recovery instead. */ 3257 goto recovery; 3258 3259 type = classify_va_fit_type(va, start, size); 3260 if (WARN_ON_ONCE(type == NOTHING_FIT)) 3261 /* It is a BUG(), but trigger recovery instead. */ 3262 goto recovery; 3263 3264 ret = adjust_va_to_fit_type(va, start, size, type); 3265 if (unlikely(ret)) 3266 goto recovery; 3267 3268 /* Allocated area. */ 3269 va = vas[area]; 3270 va->va_start = start; 3271 va->va_end = start + size; 3272 3273 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 3274 } 3275 3276 spin_unlock(&vmap_area_lock); 3277 3278 /* insert all vm's */ 3279 for (area = 0; area < nr_vms; area++) 3280 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 3281 pcpu_get_vm_areas); 3282 3283 kfree(vas); 3284 return vms; 3285 3286 recovery: 3287 /* Remove previously inserted areas. */ 3288 while (area--) { 3289 __free_vmap_area(vas[area]); 3290 vas[area] = NULL; 3291 } 3292 3293 overflow: 3294 spin_unlock(&vmap_area_lock); 3295 if (!purged) { 3296 purge_vmap_area_lazy(); 3297 purged = true; 3298 3299 /* Before "retry", check if we recover. */ 3300 for (area = 0; area < nr_vms; area++) { 3301 if (vas[area]) 3302 continue; 3303 3304 vas[area] = kmem_cache_zalloc( 3305 vmap_area_cachep, GFP_KERNEL); 3306 if (!vas[area]) 3307 goto err_free; 3308 } 3309 3310 goto retry; 3311 } 3312 3313 err_free: 3314 for (area = 0; area < nr_vms; area++) { 3315 if (vas[area]) 3316 kmem_cache_free(vmap_area_cachep, vas[area]); 3317 3318 kfree(vms[area]); 3319 } 3320 err_free2: 3321 kfree(vas); 3322 kfree(vms); 3323 return NULL; 3324 } 3325 3326 /** 3327 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 3328 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 3329 * @nr_vms: the number of allocated areas 3330 * 3331 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 3332 */ 3333 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 3334 { 3335 int i; 3336 3337 for (i = 0; i < nr_vms; i++) 3338 free_vm_area(vms[i]); 3339 kfree(vms); 3340 } 3341 #endif /* CONFIG_SMP */ 3342 3343 #ifdef CONFIG_PROC_FS 3344 static void *s_start(struct seq_file *m, loff_t *pos) 3345 __acquires(&vmap_area_lock) 3346 { 3347 spin_lock(&vmap_area_lock); 3348 return seq_list_start(&vmap_area_list, *pos); 3349 } 3350 3351 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 3352 { 3353 return seq_list_next(p, &vmap_area_list, pos); 3354 } 3355 3356 static void s_stop(struct seq_file *m, void *p) 3357 __releases(&vmap_area_lock) 3358 { 3359 spin_unlock(&vmap_area_lock); 3360 } 3361 3362 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 3363 { 3364 if (IS_ENABLED(CONFIG_NUMA)) { 3365 unsigned int nr, *counters = m->private; 3366 3367 if (!counters) 3368 return; 3369 3370 if (v->flags & VM_UNINITIALIZED) 3371 return; 3372 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 3373 smp_rmb(); 3374 3375 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 3376 3377 for (nr = 0; nr < v->nr_pages; nr++) 3378 counters[page_to_nid(v->pages[nr])]++; 3379 3380 for_each_node_state(nr, N_HIGH_MEMORY) 3381 if (counters[nr]) 3382 seq_printf(m, " N%u=%u", nr, counters[nr]); 3383 } 3384 } 3385 3386 static int s_show(struct seq_file *m, void *p) 3387 { 3388 struct vmap_area *va; 3389 struct vm_struct *v; 3390 3391 va = list_entry(p, struct vmap_area, list); 3392 3393 /* 3394 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on 3395 * behalf of vmap area is being tear down or vm_map_ram allocation. 3396 */ 3397 if (!(va->flags & VM_VM_AREA)) { 3398 seq_printf(m, "0x%pK-0x%pK %7ld %s\n", 3399 (void *)va->va_start, (void *)va->va_end, 3400 va->va_end - va->va_start, 3401 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram"); 3402 3403 return 0; 3404 } 3405 3406 v = va->vm; 3407 3408 seq_printf(m, "0x%pK-0x%pK %7ld", 3409 v->addr, v->addr + v->size, v->size); 3410 3411 if (v->caller) 3412 seq_printf(m, " %pS", v->caller); 3413 3414 if (v->nr_pages) 3415 seq_printf(m, " pages=%d", v->nr_pages); 3416 3417 if (v->phys_addr) 3418 seq_printf(m, " phys=%pa", &v->phys_addr); 3419 3420 if (v->flags & VM_IOREMAP) 3421 seq_puts(m, " ioremap"); 3422 3423 if (v->flags & VM_ALLOC) 3424 seq_puts(m, " vmalloc"); 3425 3426 if (v->flags & VM_MAP) 3427 seq_puts(m, " vmap"); 3428 3429 if (v->flags & VM_USERMAP) 3430 seq_puts(m, " user"); 3431 3432 if (is_vmalloc_addr(v->pages)) 3433 seq_puts(m, " vpages"); 3434 3435 show_numa_info(m, v); 3436 seq_putc(m, '\n'); 3437 return 0; 3438 } 3439 3440 static const struct seq_operations vmalloc_op = { 3441 .start = s_start, 3442 .next = s_next, 3443 .stop = s_stop, 3444 .show = s_show, 3445 }; 3446 3447 static int __init proc_vmalloc_init(void) 3448 { 3449 if (IS_ENABLED(CONFIG_NUMA)) 3450 proc_create_seq_private("vmallocinfo", 0400, NULL, 3451 &vmalloc_op, 3452 nr_node_ids * sizeof(unsigned int), NULL); 3453 else 3454 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 3455 return 0; 3456 } 3457 module_init(proc_vmalloc_init); 3458 3459 #endif 3460