xref: /linux/mm/vmalloc.c (revision e18655cf35a5958fbf4ae9ca3ebf28871a3a1801)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/uio.h>
37 #include <linux/bitops.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/overflow.h>
40 #include <linux/pgtable.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 #include <linux/page_owner.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/vmalloc.h>
49 
50 #include "internal.h"
51 #include "pgalloc-track.h"
52 
53 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
54 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
55 
56 static int __init set_nohugeiomap(char *str)
57 {
58 	ioremap_max_page_shift = PAGE_SHIFT;
59 	return 0;
60 }
61 early_param("nohugeiomap", set_nohugeiomap);
62 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
63 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
64 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
65 
66 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
67 static bool __ro_after_init vmap_allow_huge = true;
68 
69 static int __init set_nohugevmalloc(char *str)
70 {
71 	vmap_allow_huge = false;
72 	return 0;
73 }
74 early_param("nohugevmalloc", set_nohugevmalloc);
75 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
76 static const bool vmap_allow_huge = false;
77 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
78 
79 bool is_vmalloc_addr(const void *x)
80 {
81 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
82 
83 	return addr >= VMALLOC_START && addr < VMALLOC_END;
84 }
85 EXPORT_SYMBOL(is_vmalloc_addr);
86 
87 struct vfree_deferred {
88 	struct llist_head list;
89 	struct work_struct wq;
90 };
91 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
92 
93 /*** Page table manipulation functions ***/
94 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
95 			phys_addr_t phys_addr, pgprot_t prot,
96 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
97 {
98 	pte_t *pte;
99 	u64 pfn;
100 	struct page *page;
101 	unsigned long size = PAGE_SIZE;
102 
103 	pfn = phys_addr >> PAGE_SHIFT;
104 	pte = pte_alloc_kernel_track(pmd, addr, mask);
105 	if (!pte)
106 		return -ENOMEM;
107 	do {
108 		if (unlikely(!pte_none(ptep_get(pte)))) {
109 			if (pfn_valid(pfn)) {
110 				page = pfn_to_page(pfn);
111 				dump_page(page, "remapping already mapped page");
112 			}
113 			BUG();
114 		}
115 
116 #ifdef CONFIG_HUGETLB_PAGE
117 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
118 		if (size != PAGE_SIZE) {
119 			pte_t entry = pfn_pte(pfn, prot);
120 
121 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
122 			set_huge_pte_at(&init_mm, addr, pte, entry, size);
123 			pfn += PFN_DOWN(size);
124 			continue;
125 		}
126 #endif
127 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
128 		pfn++;
129 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
130 	*mask |= PGTBL_PTE_MODIFIED;
131 	return 0;
132 }
133 
134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
135 			phys_addr_t phys_addr, pgprot_t prot,
136 			unsigned int max_page_shift)
137 {
138 	if (max_page_shift < PMD_SHIFT)
139 		return 0;
140 
141 	if (!arch_vmap_pmd_supported(prot))
142 		return 0;
143 
144 	if ((end - addr) != PMD_SIZE)
145 		return 0;
146 
147 	if (!IS_ALIGNED(addr, PMD_SIZE))
148 		return 0;
149 
150 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
151 		return 0;
152 
153 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
154 		return 0;
155 
156 	return pmd_set_huge(pmd, phys_addr, prot);
157 }
158 
159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
160 			phys_addr_t phys_addr, pgprot_t prot,
161 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
162 {
163 	pmd_t *pmd;
164 	unsigned long next;
165 
166 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
167 	if (!pmd)
168 		return -ENOMEM;
169 	do {
170 		next = pmd_addr_end(addr, end);
171 
172 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
173 					max_page_shift)) {
174 			*mask |= PGTBL_PMD_MODIFIED;
175 			continue;
176 		}
177 
178 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
179 			return -ENOMEM;
180 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
181 	return 0;
182 }
183 
184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
185 			phys_addr_t phys_addr, pgprot_t prot,
186 			unsigned int max_page_shift)
187 {
188 	if (max_page_shift < PUD_SHIFT)
189 		return 0;
190 
191 	if (!arch_vmap_pud_supported(prot))
192 		return 0;
193 
194 	if ((end - addr) != PUD_SIZE)
195 		return 0;
196 
197 	if (!IS_ALIGNED(addr, PUD_SIZE))
198 		return 0;
199 
200 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
201 		return 0;
202 
203 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
204 		return 0;
205 
206 	return pud_set_huge(pud, phys_addr, prot);
207 }
208 
209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
210 			phys_addr_t phys_addr, pgprot_t prot,
211 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
212 {
213 	pud_t *pud;
214 	unsigned long next;
215 
216 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
217 	if (!pud)
218 		return -ENOMEM;
219 	do {
220 		next = pud_addr_end(addr, end);
221 
222 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
223 					max_page_shift)) {
224 			*mask |= PGTBL_PUD_MODIFIED;
225 			continue;
226 		}
227 
228 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
229 					max_page_shift, mask))
230 			return -ENOMEM;
231 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
232 	return 0;
233 }
234 
235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
236 			phys_addr_t phys_addr, pgprot_t prot,
237 			unsigned int max_page_shift)
238 {
239 	if (max_page_shift < P4D_SHIFT)
240 		return 0;
241 
242 	if (!arch_vmap_p4d_supported(prot))
243 		return 0;
244 
245 	if ((end - addr) != P4D_SIZE)
246 		return 0;
247 
248 	if (!IS_ALIGNED(addr, P4D_SIZE))
249 		return 0;
250 
251 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
252 		return 0;
253 
254 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
255 		return 0;
256 
257 	return p4d_set_huge(p4d, phys_addr, prot);
258 }
259 
260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
261 			phys_addr_t phys_addr, pgprot_t prot,
262 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
263 {
264 	p4d_t *p4d;
265 	unsigned long next;
266 
267 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
268 	if (!p4d)
269 		return -ENOMEM;
270 	do {
271 		next = p4d_addr_end(addr, end);
272 
273 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
274 					max_page_shift)) {
275 			*mask |= PGTBL_P4D_MODIFIED;
276 			continue;
277 		}
278 
279 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
280 					max_page_shift, mask))
281 			return -ENOMEM;
282 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
283 	return 0;
284 }
285 
286 static int vmap_range_noflush(unsigned long addr, unsigned long end,
287 			phys_addr_t phys_addr, pgprot_t prot,
288 			unsigned int max_page_shift)
289 {
290 	pgd_t *pgd;
291 	unsigned long start;
292 	unsigned long next;
293 	int err;
294 	pgtbl_mod_mask mask = 0;
295 
296 	might_sleep();
297 	BUG_ON(addr >= end);
298 
299 	start = addr;
300 	pgd = pgd_offset_k(addr);
301 	do {
302 		next = pgd_addr_end(addr, end);
303 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
304 					max_page_shift, &mask);
305 		if (err)
306 			break;
307 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
308 
309 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
310 		arch_sync_kernel_mappings(start, end);
311 
312 	return err;
313 }
314 
315 int vmap_page_range(unsigned long addr, unsigned long end,
316 		    phys_addr_t phys_addr, pgprot_t prot)
317 {
318 	int err;
319 
320 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
321 				 ioremap_max_page_shift);
322 	flush_cache_vmap(addr, end);
323 	if (!err)
324 		err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
325 					       ioremap_max_page_shift);
326 	return err;
327 }
328 
329 int ioremap_page_range(unsigned long addr, unsigned long end,
330 		phys_addr_t phys_addr, pgprot_t prot)
331 {
332 	struct vm_struct *area;
333 
334 	area = find_vm_area((void *)addr);
335 	if (!area || !(area->flags & VM_IOREMAP)) {
336 		WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr);
337 		return -EINVAL;
338 	}
339 	if (addr != (unsigned long)area->addr ||
340 	    (void *)end != area->addr + get_vm_area_size(area)) {
341 		WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n",
342 			  addr, end, (long)area->addr,
343 			  (long)area->addr + get_vm_area_size(area));
344 		return -ERANGE;
345 	}
346 	return vmap_page_range(addr, end, phys_addr, prot);
347 }
348 
349 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
350 			     pgtbl_mod_mask *mask)
351 {
352 	pte_t *pte;
353 
354 	pte = pte_offset_kernel(pmd, addr);
355 	do {
356 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
357 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
358 	} while (pte++, addr += PAGE_SIZE, addr != end);
359 	*mask |= PGTBL_PTE_MODIFIED;
360 }
361 
362 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
363 			     pgtbl_mod_mask *mask)
364 {
365 	pmd_t *pmd;
366 	unsigned long next;
367 	int cleared;
368 
369 	pmd = pmd_offset(pud, addr);
370 	do {
371 		next = pmd_addr_end(addr, end);
372 
373 		cleared = pmd_clear_huge(pmd);
374 		if (cleared || pmd_bad(*pmd))
375 			*mask |= PGTBL_PMD_MODIFIED;
376 
377 		if (cleared)
378 			continue;
379 		if (pmd_none_or_clear_bad(pmd))
380 			continue;
381 		vunmap_pte_range(pmd, addr, next, mask);
382 
383 		cond_resched();
384 	} while (pmd++, addr = next, addr != end);
385 }
386 
387 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
388 			     pgtbl_mod_mask *mask)
389 {
390 	pud_t *pud;
391 	unsigned long next;
392 	int cleared;
393 
394 	pud = pud_offset(p4d, addr);
395 	do {
396 		next = pud_addr_end(addr, end);
397 
398 		cleared = pud_clear_huge(pud);
399 		if (cleared || pud_bad(*pud))
400 			*mask |= PGTBL_PUD_MODIFIED;
401 
402 		if (cleared)
403 			continue;
404 		if (pud_none_or_clear_bad(pud))
405 			continue;
406 		vunmap_pmd_range(pud, addr, next, mask);
407 	} while (pud++, addr = next, addr != end);
408 }
409 
410 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
411 			     pgtbl_mod_mask *mask)
412 {
413 	p4d_t *p4d;
414 	unsigned long next;
415 
416 	p4d = p4d_offset(pgd, addr);
417 	do {
418 		next = p4d_addr_end(addr, end);
419 
420 		p4d_clear_huge(p4d);
421 		if (p4d_bad(*p4d))
422 			*mask |= PGTBL_P4D_MODIFIED;
423 
424 		if (p4d_none_or_clear_bad(p4d))
425 			continue;
426 		vunmap_pud_range(p4d, addr, next, mask);
427 	} while (p4d++, addr = next, addr != end);
428 }
429 
430 /*
431  * vunmap_range_noflush is similar to vunmap_range, but does not
432  * flush caches or TLBs.
433  *
434  * The caller is responsible for calling flush_cache_vmap() before calling
435  * this function, and flush_tlb_kernel_range after it has returned
436  * successfully (and before the addresses are expected to cause a page fault
437  * or be re-mapped for something else, if TLB flushes are being delayed or
438  * coalesced).
439  *
440  * This is an internal function only. Do not use outside mm/.
441  */
442 void __vunmap_range_noflush(unsigned long start, unsigned long end)
443 {
444 	unsigned long next;
445 	pgd_t *pgd;
446 	unsigned long addr = start;
447 	pgtbl_mod_mask mask = 0;
448 
449 	BUG_ON(addr >= end);
450 	pgd = pgd_offset_k(addr);
451 	do {
452 		next = pgd_addr_end(addr, end);
453 		if (pgd_bad(*pgd))
454 			mask |= PGTBL_PGD_MODIFIED;
455 		if (pgd_none_or_clear_bad(pgd))
456 			continue;
457 		vunmap_p4d_range(pgd, addr, next, &mask);
458 	} while (pgd++, addr = next, addr != end);
459 
460 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
461 		arch_sync_kernel_mappings(start, end);
462 }
463 
464 void vunmap_range_noflush(unsigned long start, unsigned long end)
465 {
466 	kmsan_vunmap_range_noflush(start, end);
467 	__vunmap_range_noflush(start, end);
468 }
469 
470 /**
471  * vunmap_range - unmap kernel virtual addresses
472  * @addr: start of the VM area to unmap
473  * @end: end of the VM area to unmap (non-inclusive)
474  *
475  * Clears any present PTEs in the virtual address range, flushes TLBs and
476  * caches. Any subsequent access to the address before it has been re-mapped
477  * is a kernel bug.
478  */
479 void vunmap_range(unsigned long addr, unsigned long end)
480 {
481 	flush_cache_vunmap(addr, end);
482 	vunmap_range_noflush(addr, end);
483 	flush_tlb_kernel_range(addr, end);
484 }
485 
486 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
487 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
488 		pgtbl_mod_mask *mask)
489 {
490 	pte_t *pte;
491 
492 	/*
493 	 * nr is a running index into the array which helps higher level
494 	 * callers keep track of where we're up to.
495 	 */
496 
497 	pte = pte_alloc_kernel_track(pmd, addr, mask);
498 	if (!pte)
499 		return -ENOMEM;
500 	do {
501 		struct page *page = pages[*nr];
502 
503 		if (WARN_ON(!pte_none(ptep_get(pte))))
504 			return -EBUSY;
505 		if (WARN_ON(!page))
506 			return -ENOMEM;
507 		if (WARN_ON(!pfn_valid(page_to_pfn(page))))
508 			return -EINVAL;
509 
510 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
511 		(*nr)++;
512 	} while (pte++, addr += PAGE_SIZE, addr != end);
513 	*mask |= PGTBL_PTE_MODIFIED;
514 	return 0;
515 }
516 
517 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
518 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
519 		pgtbl_mod_mask *mask)
520 {
521 	pmd_t *pmd;
522 	unsigned long next;
523 
524 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
525 	if (!pmd)
526 		return -ENOMEM;
527 	do {
528 		next = pmd_addr_end(addr, end);
529 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
530 			return -ENOMEM;
531 	} while (pmd++, addr = next, addr != end);
532 	return 0;
533 }
534 
535 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
536 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
537 		pgtbl_mod_mask *mask)
538 {
539 	pud_t *pud;
540 	unsigned long next;
541 
542 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
543 	if (!pud)
544 		return -ENOMEM;
545 	do {
546 		next = pud_addr_end(addr, end);
547 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
548 			return -ENOMEM;
549 	} while (pud++, addr = next, addr != end);
550 	return 0;
551 }
552 
553 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
554 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
555 		pgtbl_mod_mask *mask)
556 {
557 	p4d_t *p4d;
558 	unsigned long next;
559 
560 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
561 	if (!p4d)
562 		return -ENOMEM;
563 	do {
564 		next = p4d_addr_end(addr, end);
565 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
566 			return -ENOMEM;
567 	} while (p4d++, addr = next, addr != end);
568 	return 0;
569 }
570 
571 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
572 		pgprot_t prot, struct page **pages)
573 {
574 	unsigned long start = addr;
575 	pgd_t *pgd;
576 	unsigned long next;
577 	int err = 0;
578 	int nr = 0;
579 	pgtbl_mod_mask mask = 0;
580 
581 	BUG_ON(addr >= end);
582 	pgd = pgd_offset_k(addr);
583 	do {
584 		next = pgd_addr_end(addr, end);
585 		if (pgd_bad(*pgd))
586 			mask |= PGTBL_PGD_MODIFIED;
587 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
588 		if (err)
589 			return err;
590 	} while (pgd++, addr = next, addr != end);
591 
592 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
593 		arch_sync_kernel_mappings(start, end);
594 
595 	return 0;
596 }
597 
598 /*
599  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
600  * flush caches.
601  *
602  * The caller is responsible for calling flush_cache_vmap() after this
603  * function returns successfully and before the addresses are accessed.
604  *
605  * This is an internal function only. Do not use outside mm/.
606  */
607 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
608 		pgprot_t prot, struct page **pages, unsigned int page_shift)
609 {
610 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
611 
612 	WARN_ON(page_shift < PAGE_SHIFT);
613 
614 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
615 			page_shift == PAGE_SHIFT)
616 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
617 
618 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
619 		int err;
620 
621 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
622 					page_to_phys(pages[i]), prot,
623 					page_shift);
624 		if (err)
625 			return err;
626 
627 		addr += 1UL << page_shift;
628 	}
629 
630 	return 0;
631 }
632 
633 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
634 		pgprot_t prot, struct page **pages, unsigned int page_shift)
635 {
636 	int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
637 						 page_shift);
638 
639 	if (ret)
640 		return ret;
641 	return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
642 }
643 
644 /**
645  * vmap_pages_range - map pages to a kernel virtual address
646  * @addr: start of the VM area to map
647  * @end: end of the VM area to map (non-inclusive)
648  * @prot: page protection flags to use
649  * @pages: pages to map (always PAGE_SIZE pages)
650  * @page_shift: maximum shift that the pages may be mapped with, @pages must
651  * be aligned and contiguous up to at least this shift.
652  *
653  * RETURNS:
654  * 0 on success, -errno on failure.
655  */
656 int vmap_pages_range(unsigned long addr, unsigned long end,
657 		pgprot_t prot, struct page **pages, unsigned int page_shift)
658 {
659 	int err;
660 
661 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
662 	flush_cache_vmap(addr, end);
663 	return err;
664 }
665 
666 static int check_sparse_vm_area(struct vm_struct *area, unsigned long start,
667 				unsigned long end)
668 {
669 	might_sleep();
670 	if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS))
671 		return -EINVAL;
672 	if (WARN_ON_ONCE(area->flags & VM_NO_GUARD))
673 		return -EINVAL;
674 	if (WARN_ON_ONCE(!(area->flags & VM_SPARSE)))
675 		return -EINVAL;
676 	if ((end - start) >> PAGE_SHIFT > totalram_pages())
677 		return -E2BIG;
678 	if (start < (unsigned long)area->addr ||
679 	    (void *)end > area->addr + get_vm_area_size(area))
680 		return -ERANGE;
681 	return 0;
682 }
683 
684 /**
685  * vm_area_map_pages - map pages inside given sparse vm_area
686  * @area: vm_area
687  * @start: start address inside vm_area
688  * @end: end address inside vm_area
689  * @pages: pages to map (always PAGE_SIZE pages)
690  */
691 int vm_area_map_pages(struct vm_struct *area, unsigned long start,
692 		      unsigned long end, struct page **pages)
693 {
694 	int err;
695 
696 	err = check_sparse_vm_area(area, start, end);
697 	if (err)
698 		return err;
699 
700 	return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT);
701 }
702 
703 /**
704  * vm_area_unmap_pages - unmap pages inside given sparse vm_area
705  * @area: vm_area
706  * @start: start address inside vm_area
707  * @end: end address inside vm_area
708  */
709 void vm_area_unmap_pages(struct vm_struct *area, unsigned long start,
710 			 unsigned long end)
711 {
712 	if (check_sparse_vm_area(area, start, end))
713 		return;
714 
715 	vunmap_range(start, end);
716 }
717 
718 int is_vmalloc_or_module_addr(const void *x)
719 {
720 	/*
721 	 * ARM, x86-64 and sparc64 put modules in a special place,
722 	 * and fall back on vmalloc() if that fails. Others
723 	 * just put it in the vmalloc space.
724 	 */
725 #if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR)
726 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
727 	if (addr >= MODULES_VADDR && addr < MODULES_END)
728 		return 1;
729 #endif
730 	return is_vmalloc_addr(x);
731 }
732 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
733 
734 /*
735  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
736  * return the tail page that corresponds to the base page address, which
737  * matches small vmap mappings.
738  */
739 struct page *vmalloc_to_page(const void *vmalloc_addr)
740 {
741 	unsigned long addr = (unsigned long) vmalloc_addr;
742 	struct page *page = NULL;
743 	pgd_t *pgd = pgd_offset_k(addr);
744 	p4d_t *p4d;
745 	pud_t *pud;
746 	pmd_t *pmd;
747 	pte_t *ptep, pte;
748 
749 	/*
750 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
751 	 * architectures that do not vmalloc module space
752 	 */
753 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
754 
755 	if (pgd_none(*pgd))
756 		return NULL;
757 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
758 		return NULL; /* XXX: no allowance for huge pgd */
759 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
760 		return NULL;
761 
762 	p4d = p4d_offset(pgd, addr);
763 	if (p4d_none(*p4d))
764 		return NULL;
765 	if (p4d_leaf(*p4d))
766 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
767 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
768 		return NULL;
769 
770 	pud = pud_offset(p4d, addr);
771 	if (pud_none(*pud))
772 		return NULL;
773 	if (pud_leaf(*pud))
774 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
775 	if (WARN_ON_ONCE(pud_bad(*pud)))
776 		return NULL;
777 
778 	pmd = pmd_offset(pud, addr);
779 	if (pmd_none(*pmd))
780 		return NULL;
781 	if (pmd_leaf(*pmd))
782 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
783 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
784 		return NULL;
785 
786 	ptep = pte_offset_kernel(pmd, addr);
787 	pte = ptep_get(ptep);
788 	if (pte_present(pte))
789 		page = pte_page(pte);
790 
791 	return page;
792 }
793 EXPORT_SYMBOL(vmalloc_to_page);
794 
795 /*
796  * Map a vmalloc()-space virtual address to the physical page frame number.
797  */
798 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
799 {
800 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
801 }
802 EXPORT_SYMBOL(vmalloc_to_pfn);
803 
804 
805 /*** Global kva allocator ***/
806 
807 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
808 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
809 
810 
811 static DEFINE_SPINLOCK(free_vmap_area_lock);
812 static bool vmap_initialized __read_mostly;
813 
814 /*
815  * This kmem_cache is used for vmap_area objects. Instead of
816  * allocating from slab we reuse an object from this cache to
817  * make things faster. Especially in "no edge" splitting of
818  * free block.
819  */
820 static struct kmem_cache *vmap_area_cachep;
821 
822 /*
823  * This linked list is used in pair with free_vmap_area_root.
824  * It gives O(1) access to prev/next to perform fast coalescing.
825  */
826 static LIST_HEAD(free_vmap_area_list);
827 
828 /*
829  * This augment red-black tree represents the free vmap space.
830  * All vmap_area objects in this tree are sorted by va->va_start
831  * address. It is used for allocation and merging when a vmap
832  * object is released.
833  *
834  * Each vmap_area node contains a maximum available free block
835  * of its sub-tree, right or left. Therefore it is possible to
836  * find a lowest match of free area.
837  */
838 static struct rb_root free_vmap_area_root = RB_ROOT;
839 
840 /*
841  * Preload a CPU with one object for "no edge" split case. The
842  * aim is to get rid of allocations from the atomic context, thus
843  * to use more permissive allocation masks.
844  */
845 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
846 
847 /*
848  * This structure defines a single, solid model where a list and
849  * rb-tree are part of one entity protected by the lock. Nodes are
850  * sorted in ascending order, thus for O(1) access to left/right
851  * neighbors a list is used as well as for sequential traversal.
852  */
853 struct rb_list {
854 	struct rb_root root;
855 	struct list_head head;
856 	spinlock_t lock;
857 };
858 
859 /*
860  * A fast size storage contains VAs up to 1M size. A pool consists
861  * of linked between each other ready to go VAs of certain sizes.
862  * An index in the pool-array corresponds to number of pages + 1.
863  */
864 #define MAX_VA_SIZE_PAGES 256
865 
866 struct vmap_pool {
867 	struct list_head head;
868 	unsigned long len;
869 };
870 
871 /*
872  * An effective vmap-node logic. Users make use of nodes instead
873  * of a global heap. It allows to balance an access and mitigate
874  * contention.
875  */
876 static struct vmap_node {
877 	/* Simple size segregated storage. */
878 	struct vmap_pool pool[MAX_VA_SIZE_PAGES];
879 	spinlock_t pool_lock;
880 	bool skip_populate;
881 
882 	/* Bookkeeping data of this node. */
883 	struct rb_list busy;
884 	struct rb_list lazy;
885 
886 	/*
887 	 * Ready-to-free areas.
888 	 */
889 	struct list_head purge_list;
890 	struct work_struct purge_work;
891 	unsigned long nr_purged;
892 } single;
893 
894 /*
895  * Initial setup consists of one single node, i.e. a balancing
896  * is fully disabled. Later on, after vmap is initialized these
897  * parameters are updated based on a system capacity.
898  */
899 static struct vmap_node *vmap_nodes = &single;
900 static __read_mostly unsigned int nr_vmap_nodes = 1;
901 static __read_mostly unsigned int vmap_zone_size = 1;
902 
903 static inline unsigned int
904 addr_to_node_id(unsigned long addr)
905 {
906 	return (addr / vmap_zone_size) % nr_vmap_nodes;
907 }
908 
909 static inline struct vmap_node *
910 addr_to_node(unsigned long addr)
911 {
912 	return &vmap_nodes[addr_to_node_id(addr)];
913 }
914 
915 static inline struct vmap_node *
916 id_to_node(unsigned int id)
917 {
918 	return &vmap_nodes[id % nr_vmap_nodes];
919 }
920 
921 /*
922  * We use the value 0 to represent "no node", that is why
923  * an encoded value will be the node-id incremented by 1.
924  * It is always greater then 0. A valid node_id which can
925  * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id
926  * is not valid 0 is returned.
927  */
928 static unsigned int
929 encode_vn_id(unsigned int node_id)
930 {
931 	/* Can store U8_MAX [0:254] nodes. */
932 	if (node_id < nr_vmap_nodes)
933 		return (node_id + 1) << BITS_PER_BYTE;
934 
935 	/* Warn and no node encoded. */
936 	WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id);
937 	return 0;
938 }
939 
940 /*
941  * Returns an encoded node-id, the valid range is within
942  * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is
943  * returned if extracted data is wrong.
944  */
945 static unsigned int
946 decode_vn_id(unsigned int val)
947 {
948 	unsigned int node_id = (val >> BITS_PER_BYTE) - 1;
949 
950 	/* Can store U8_MAX [0:254] nodes. */
951 	if (node_id < nr_vmap_nodes)
952 		return node_id;
953 
954 	/* If it was _not_ zero, warn. */
955 	WARN_ONCE(node_id != UINT_MAX,
956 		"Decode wrong node id (%d)\n", node_id);
957 
958 	return nr_vmap_nodes;
959 }
960 
961 static bool
962 is_vn_id_valid(unsigned int node_id)
963 {
964 	if (node_id < nr_vmap_nodes)
965 		return true;
966 
967 	return false;
968 }
969 
970 static __always_inline unsigned long
971 va_size(struct vmap_area *va)
972 {
973 	return (va->va_end - va->va_start);
974 }
975 
976 static __always_inline unsigned long
977 get_subtree_max_size(struct rb_node *node)
978 {
979 	struct vmap_area *va;
980 
981 	va = rb_entry_safe(node, struct vmap_area, rb_node);
982 	return va ? va->subtree_max_size : 0;
983 }
984 
985 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
986 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
987 
988 static void reclaim_and_purge_vmap_areas(void);
989 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
990 static void drain_vmap_area_work(struct work_struct *work);
991 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
992 
993 static atomic_long_t nr_vmalloc_pages;
994 
995 unsigned long vmalloc_nr_pages(void)
996 {
997 	return atomic_long_read(&nr_vmalloc_pages);
998 }
999 
1000 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
1001 {
1002 	struct rb_node *n = root->rb_node;
1003 
1004 	addr = (unsigned long)kasan_reset_tag((void *)addr);
1005 
1006 	while (n) {
1007 		struct vmap_area *va;
1008 
1009 		va = rb_entry(n, struct vmap_area, rb_node);
1010 		if (addr < va->va_start)
1011 			n = n->rb_left;
1012 		else if (addr >= va->va_end)
1013 			n = n->rb_right;
1014 		else
1015 			return va;
1016 	}
1017 
1018 	return NULL;
1019 }
1020 
1021 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
1022 static struct vmap_area *
1023 __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root)
1024 {
1025 	struct vmap_area *va = NULL;
1026 	struct rb_node *n = root->rb_node;
1027 
1028 	addr = (unsigned long)kasan_reset_tag((void *)addr);
1029 
1030 	while (n) {
1031 		struct vmap_area *tmp;
1032 
1033 		tmp = rb_entry(n, struct vmap_area, rb_node);
1034 		if (tmp->va_end > addr) {
1035 			va = tmp;
1036 			if (tmp->va_start <= addr)
1037 				break;
1038 
1039 			n = n->rb_left;
1040 		} else
1041 			n = n->rb_right;
1042 	}
1043 
1044 	return va;
1045 }
1046 
1047 /*
1048  * Returns a node where a first VA, that satisfies addr < va_end, resides.
1049  * If success, a node is locked. A user is responsible to unlock it when a
1050  * VA is no longer needed to be accessed.
1051  *
1052  * Returns NULL if nothing found.
1053  */
1054 static struct vmap_node *
1055 find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va)
1056 {
1057 	unsigned long va_start_lowest;
1058 	struct vmap_node *vn;
1059 	int i;
1060 
1061 repeat:
1062 	for (i = 0, va_start_lowest = 0; i < nr_vmap_nodes; i++) {
1063 		vn = &vmap_nodes[i];
1064 
1065 		spin_lock(&vn->busy.lock);
1066 		*va = __find_vmap_area_exceed_addr(addr, &vn->busy.root);
1067 
1068 		if (*va)
1069 			if (!va_start_lowest || (*va)->va_start < va_start_lowest)
1070 				va_start_lowest = (*va)->va_start;
1071 		spin_unlock(&vn->busy.lock);
1072 	}
1073 
1074 	/*
1075 	 * Check if found VA exists, it might have gone away.  In this case we
1076 	 * repeat the search because a VA has been removed concurrently and we
1077 	 * need to proceed to the next one, which is a rare case.
1078 	 */
1079 	if (va_start_lowest) {
1080 		vn = addr_to_node(va_start_lowest);
1081 
1082 		spin_lock(&vn->busy.lock);
1083 		*va = __find_vmap_area(va_start_lowest, &vn->busy.root);
1084 
1085 		if (*va)
1086 			return vn;
1087 
1088 		spin_unlock(&vn->busy.lock);
1089 		goto repeat;
1090 	}
1091 
1092 	return NULL;
1093 }
1094 
1095 /*
1096  * This function returns back addresses of parent node
1097  * and its left or right link for further processing.
1098  *
1099  * Otherwise NULL is returned. In that case all further
1100  * steps regarding inserting of conflicting overlap range
1101  * have to be declined and actually considered as a bug.
1102  */
1103 static __always_inline struct rb_node **
1104 find_va_links(struct vmap_area *va,
1105 	struct rb_root *root, struct rb_node *from,
1106 	struct rb_node **parent)
1107 {
1108 	struct vmap_area *tmp_va;
1109 	struct rb_node **link;
1110 
1111 	if (root) {
1112 		link = &root->rb_node;
1113 		if (unlikely(!*link)) {
1114 			*parent = NULL;
1115 			return link;
1116 		}
1117 	} else {
1118 		link = &from;
1119 	}
1120 
1121 	/*
1122 	 * Go to the bottom of the tree. When we hit the last point
1123 	 * we end up with parent rb_node and correct direction, i name
1124 	 * it link, where the new va->rb_node will be attached to.
1125 	 */
1126 	do {
1127 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
1128 
1129 		/*
1130 		 * During the traversal we also do some sanity check.
1131 		 * Trigger the BUG() if there are sides(left/right)
1132 		 * or full overlaps.
1133 		 */
1134 		if (va->va_end <= tmp_va->va_start)
1135 			link = &(*link)->rb_left;
1136 		else if (va->va_start >= tmp_va->va_end)
1137 			link = &(*link)->rb_right;
1138 		else {
1139 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
1140 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
1141 
1142 			return NULL;
1143 		}
1144 	} while (*link);
1145 
1146 	*parent = &tmp_va->rb_node;
1147 	return link;
1148 }
1149 
1150 static __always_inline struct list_head *
1151 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
1152 {
1153 	struct list_head *list;
1154 
1155 	if (unlikely(!parent))
1156 		/*
1157 		 * The red-black tree where we try to find VA neighbors
1158 		 * before merging or inserting is empty, i.e. it means
1159 		 * there is no free vmap space. Normally it does not
1160 		 * happen but we handle this case anyway.
1161 		 */
1162 		return NULL;
1163 
1164 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
1165 	return (&parent->rb_right == link ? list->next : list);
1166 }
1167 
1168 static __always_inline void
1169 __link_va(struct vmap_area *va, struct rb_root *root,
1170 	struct rb_node *parent, struct rb_node **link,
1171 	struct list_head *head, bool augment)
1172 {
1173 	/*
1174 	 * VA is still not in the list, but we can
1175 	 * identify its future previous list_head node.
1176 	 */
1177 	if (likely(parent)) {
1178 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
1179 		if (&parent->rb_right != link)
1180 			head = head->prev;
1181 	}
1182 
1183 	/* Insert to the rb-tree */
1184 	rb_link_node(&va->rb_node, parent, link);
1185 	if (augment) {
1186 		/*
1187 		 * Some explanation here. Just perform simple insertion
1188 		 * to the tree. We do not set va->subtree_max_size to
1189 		 * its current size before calling rb_insert_augmented().
1190 		 * It is because we populate the tree from the bottom
1191 		 * to parent levels when the node _is_ in the tree.
1192 		 *
1193 		 * Therefore we set subtree_max_size to zero after insertion,
1194 		 * to let __augment_tree_propagate_from() puts everything to
1195 		 * the correct order later on.
1196 		 */
1197 		rb_insert_augmented(&va->rb_node,
1198 			root, &free_vmap_area_rb_augment_cb);
1199 		va->subtree_max_size = 0;
1200 	} else {
1201 		rb_insert_color(&va->rb_node, root);
1202 	}
1203 
1204 	/* Address-sort this list */
1205 	list_add(&va->list, head);
1206 }
1207 
1208 static __always_inline void
1209 link_va(struct vmap_area *va, struct rb_root *root,
1210 	struct rb_node *parent, struct rb_node **link,
1211 	struct list_head *head)
1212 {
1213 	__link_va(va, root, parent, link, head, false);
1214 }
1215 
1216 static __always_inline void
1217 link_va_augment(struct vmap_area *va, struct rb_root *root,
1218 	struct rb_node *parent, struct rb_node **link,
1219 	struct list_head *head)
1220 {
1221 	__link_va(va, root, parent, link, head, true);
1222 }
1223 
1224 static __always_inline void
1225 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
1226 {
1227 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
1228 		return;
1229 
1230 	if (augment)
1231 		rb_erase_augmented(&va->rb_node,
1232 			root, &free_vmap_area_rb_augment_cb);
1233 	else
1234 		rb_erase(&va->rb_node, root);
1235 
1236 	list_del_init(&va->list);
1237 	RB_CLEAR_NODE(&va->rb_node);
1238 }
1239 
1240 static __always_inline void
1241 unlink_va(struct vmap_area *va, struct rb_root *root)
1242 {
1243 	__unlink_va(va, root, false);
1244 }
1245 
1246 static __always_inline void
1247 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1248 {
1249 	__unlink_va(va, root, true);
1250 }
1251 
1252 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1253 /*
1254  * Gets called when remove the node and rotate.
1255  */
1256 static __always_inline unsigned long
1257 compute_subtree_max_size(struct vmap_area *va)
1258 {
1259 	return max3(va_size(va),
1260 		get_subtree_max_size(va->rb_node.rb_left),
1261 		get_subtree_max_size(va->rb_node.rb_right));
1262 }
1263 
1264 static void
1265 augment_tree_propagate_check(void)
1266 {
1267 	struct vmap_area *va;
1268 	unsigned long computed_size;
1269 
1270 	list_for_each_entry(va, &free_vmap_area_list, list) {
1271 		computed_size = compute_subtree_max_size(va);
1272 		if (computed_size != va->subtree_max_size)
1273 			pr_emerg("tree is corrupted: %lu, %lu\n",
1274 				va_size(va), va->subtree_max_size);
1275 	}
1276 }
1277 #endif
1278 
1279 /*
1280  * This function populates subtree_max_size from bottom to upper
1281  * levels starting from VA point. The propagation must be done
1282  * when VA size is modified by changing its va_start/va_end. Or
1283  * in case of newly inserting of VA to the tree.
1284  *
1285  * It means that __augment_tree_propagate_from() must be called:
1286  * - After VA has been inserted to the tree(free path);
1287  * - After VA has been shrunk(allocation path);
1288  * - After VA has been increased(merging path).
1289  *
1290  * Please note that, it does not mean that upper parent nodes
1291  * and their subtree_max_size are recalculated all the time up
1292  * to the root node.
1293  *
1294  *       4--8
1295  *        /\
1296  *       /  \
1297  *      /    \
1298  *    2--2  8--8
1299  *
1300  * For example if we modify the node 4, shrinking it to 2, then
1301  * no any modification is required. If we shrink the node 2 to 1
1302  * its subtree_max_size is updated only, and set to 1. If we shrink
1303  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1304  * node becomes 4--6.
1305  */
1306 static __always_inline void
1307 augment_tree_propagate_from(struct vmap_area *va)
1308 {
1309 	/*
1310 	 * Populate the tree from bottom towards the root until
1311 	 * the calculated maximum available size of checked node
1312 	 * is equal to its current one.
1313 	 */
1314 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1315 
1316 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1317 	augment_tree_propagate_check();
1318 #endif
1319 }
1320 
1321 static void
1322 insert_vmap_area(struct vmap_area *va,
1323 	struct rb_root *root, struct list_head *head)
1324 {
1325 	struct rb_node **link;
1326 	struct rb_node *parent;
1327 
1328 	link = find_va_links(va, root, NULL, &parent);
1329 	if (link)
1330 		link_va(va, root, parent, link, head);
1331 }
1332 
1333 static void
1334 insert_vmap_area_augment(struct vmap_area *va,
1335 	struct rb_node *from, struct rb_root *root,
1336 	struct list_head *head)
1337 {
1338 	struct rb_node **link;
1339 	struct rb_node *parent;
1340 
1341 	if (from)
1342 		link = find_va_links(va, NULL, from, &parent);
1343 	else
1344 		link = find_va_links(va, root, NULL, &parent);
1345 
1346 	if (link) {
1347 		link_va_augment(va, root, parent, link, head);
1348 		augment_tree_propagate_from(va);
1349 	}
1350 }
1351 
1352 /*
1353  * Merge de-allocated chunk of VA memory with previous
1354  * and next free blocks. If coalesce is not done a new
1355  * free area is inserted. If VA has been merged, it is
1356  * freed.
1357  *
1358  * Please note, it can return NULL in case of overlap
1359  * ranges, followed by WARN() report. Despite it is a
1360  * buggy behaviour, a system can be alive and keep
1361  * ongoing.
1362  */
1363 static __always_inline struct vmap_area *
1364 __merge_or_add_vmap_area(struct vmap_area *va,
1365 	struct rb_root *root, struct list_head *head, bool augment)
1366 {
1367 	struct vmap_area *sibling;
1368 	struct list_head *next;
1369 	struct rb_node **link;
1370 	struct rb_node *parent;
1371 	bool merged = false;
1372 
1373 	/*
1374 	 * Find a place in the tree where VA potentially will be
1375 	 * inserted, unless it is merged with its sibling/siblings.
1376 	 */
1377 	link = find_va_links(va, root, NULL, &parent);
1378 	if (!link)
1379 		return NULL;
1380 
1381 	/*
1382 	 * Get next node of VA to check if merging can be done.
1383 	 */
1384 	next = get_va_next_sibling(parent, link);
1385 	if (unlikely(next == NULL))
1386 		goto insert;
1387 
1388 	/*
1389 	 * start            end
1390 	 * |                |
1391 	 * |<------VA------>|<-----Next----->|
1392 	 *                  |                |
1393 	 *                  start            end
1394 	 */
1395 	if (next != head) {
1396 		sibling = list_entry(next, struct vmap_area, list);
1397 		if (sibling->va_start == va->va_end) {
1398 			sibling->va_start = va->va_start;
1399 
1400 			/* Free vmap_area object. */
1401 			kmem_cache_free(vmap_area_cachep, va);
1402 
1403 			/* Point to the new merged area. */
1404 			va = sibling;
1405 			merged = true;
1406 		}
1407 	}
1408 
1409 	/*
1410 	 * start            end
1411 	 * |                |
1412 	 * |<-----Prev----->|<------VA------>|
1413 	 *                  |                |
1414 	 *                  start            end
1415 	 */
1416 	if (next->prev != head) {
1417 		sibling = list_entry(next->prev, struct vmap_area, list);
1418 		if (sibling->va_end == va->va_start) {
1419 			/*
1420 			 * If both neighbors are coalesced, it is important
1421 			 * to unlink the "next" node first, followed by merging
1422 			 * with "previous" one. Otherwise the tree might not be
1423 			 * fully populated if a sibling's augmented value is
1424 			 * "normalized" because of rotation operations.
1425 			 */
1426 			if (merged)
1427 				__unlink_va(va, root, augment);
1428 
1429 			sibling->va_end = va->va_end;
1430 
1431 			/* Free vmap_area object. */
1432 			kmem_cache_free(vmap_area_cachep, va);
1433 
1434 			/* Point to the new merged area. */
1435 			va = sibling;
1436 			merged = true;
1437 		}
1438 	}
1439 
1440 insert:
1441 	if (!merged)
1442 		__link_va(va, root, parent, link, head, augment);
1443 
1444 	return va;
1445 }
1446 
1447 static __always_inline struct vmap_area *
1448 merge_or_add_vmap_area(struct vmap_area *va,
1449 	struct rb_root *root, struct list_head *head)
1450 {
1451 	return __merge_or_add_vmap_area(va, root, head, false);
1452 }
1453 
1454 static __always_inline struct vmap_area *
1455 merge_or_add_vmap_area_augment(struct vmap_area *va,
1456 	struct rb_root *root, struct list_head *head)
1457 {
1458 	va = __merge_or_add_vmap_area(va, root, head, true);
1459 	if (va)
1460 		augment_tree_propagate_from(va);
1461 
1462 	return va;
1463 }
1464 
1465 static __always_inline bool
1466 is_within_this_va(struct vmap_area *va, unsigned long size,
1467 	unsigned long align, unsigned long vstart)
1468 {
1469 	unsigned long nva_start_addr;
1470 
1471 	if (va->va_start > vstart)
1472 		nva_start_addr = ALIGN(va->va_start, align);
1473 	else
1474 		nva_start_addr = ALIGN(vstart, align);
1475 
1476 	/* Can be overflowed due to big size or alignment. */
1477 	if (nva_start_addr + size < nva_start_addr ||
1478 			nva_start_addr < vstart)
1479 		return false;
1480 
1481 	return (nva_start_addr + size <= va->va_end);
1482 }
1483 
1484 /*
1485  * Find the first free block(lowest start address) in the tree,
1486  * that will accomplish the request corresponding to passing
1487  * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1488  * a search length is adjusted to account for worst case alignment
1489  * overhead.
1490  */
1491 static __always_inline struct vmap_area *
1492 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1493 	unsigned long align, unsigned long vstart, bool adjust_search_size)
1494 {
1495 	struct vmap_area *va;
1496 	struct rb_node *node;
1497 	unsigned long length;
1498 
1499 	/* Start from the root. */
1500 	node = root->rb_node;
1501 
1502 	/* Adjust the search size for alignment overhead. */
1503 	length = adjust_search_size ? size + align - 1 : size;
1504 
1505 	while (node) {
1506 		va = rb_entry(node, struct vmap_area, rb_node);
1507 
1508 		if (get_subtree_max_size(node->rb_left) >= length &&
1509 				vstart < va->va_start) {
1510 			node = node->rb_left;
1511 		} else {
1512 			if (is_within_this_va(va, size, align, vstart))
1513 				return va;
1514 
1515 			/*
1516 			 * Does not make sense to go deeper towards the right
1517 			 * sub-tree if it does not have a free block that is
1518 			 * equal or bigger to the requested search length.
1519 			 */
1520 			if (get_subtree_max_size(node->rb_right) >= length) {
1521 				node = node->rb_right;
1522 				continue;
1523 			}
1524 
1525 			/*
1526 			 * OK. We roll back and find the first right sub-tree,
1527 			 * that will satisfy the search criteria. It can happen
1528 			 * due to "vstart" restriction or an alignment overhead
1529 			 * that is bigger then PAGE_SIZE.
1530 			 */
1531 			while ((node = rb_parent(node))) {
1532 				va = rb_entry(node, struct vmap_area, rb_node);
1533 				if (is_within_this_va(va, size, align, vstart))
1534 					return va;
1535 
1536 				if (get_subtree_max_size(node->rb_right) >= length &&
1537 						vstart <= va->va_start) {
1538 					/*
1539 					 * Shift the vstart forward. Please note, we update it with
1540 					 * parent's start address adding "1" because we do not want
1541 					 * to enter same sub-tree after it has already been checked
1542 					 * and no suitable free block found there.
1543 					 */
1544 					vstart = va->va_start + 1;
1545 					node = node->rb_right;
1546 					break;
1547 				}
1548 			}
1549 		}
1550 	}
1551 
1552 	return NULL;
1553 }
1554 
1555 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1556 #include <linux/random.h>
1557 
1558 static struct vmap_area *
1559 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1560 	unsigned long align, unsigned long vstart)
1561 {
1562 	struct vmap_area *va;
1563 
1564 	list_for_each_entry(va, head, list) {
1565 		if (!is_within_this_va(va, size, align, vstart))
1566 			continue;
1567 
1568 		return va;
1569 	}
1570 
1571 	return NULL;
1572 }
1573 
1574 static void
1575 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1576 			     unsigned long size, unsigned long align)
1577 {
1578 	struct vmap_area *va_1, *va_2;
1579 	unsigned long vstart;
1580 	unsigned int rnd;
1581 
1582 	get_random_bytes(&rnd, sizeof(rnd));
1583 	vstart = VMALLOC_START + rnd;
1584 
1585 	va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1586 	va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1587 
1588 	if (va_1 != va_2)
1589 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1590 			va_1, va_2, vstart);
1591 }
1592 #endif
1593 
1594 enum fit_type {
1595 	NOTHING_FIT = 0,
1596 	FL_FIT_TYPE = 1,	/* full fit */
1597 	LE_FIT_TYPE = 2,	/* left edge fit */
1598 	RE_FIT_TYPE = 3,	/* right edge fit */
1599 	NE_FIT_TYPE = 4		/* no edge fit */
1600 };
1601 
1602 static __always_inline enum fit_type
1603 classify_va_fit_type(struct vmap_area *va,
1604 	unsigned long nva_start_addr, unsigned long size)
1605 {
1606 	enum fit_type type;
1607 
1608 	/* Check if it is within VA. */
1609 	if (nva_start_addr < va->va_start ||
1610 			nva_start_addr + size > va->va_end)
1611 		return NOTHING_FIT;
1612 
1613 	/* Now classify. */
1614 	if (va->va_start == nva_start_addr) {
1615 		if (va->va_end == nva_start_addr + size)
1616 			type = FL_FIT_TYPE;
1617 		else
1618 			type = LE_FIT_TYPE;
1619 	} else if (va->va_end == nva_start_addr + size) {
1620 		type = RE_FIT_TYPE;
1621 	} else {
1622 		type = NE_FIT_TYPE;
1623 	}
1624 
1625 	return type;
1626 }
1627 
1628 static __always_inline int
1629 va_clip(struct rb_root *root, struct list_head *head,
1630 		struct vmap_area *va, unsigned long nva_start_addr,
1631 		unsigned long size)
1632 {
1633 	struct vmap_area *lva = NULL;
1634 	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1635 
1636 	if (type == FL_FIT_TYPE) {
1637 		/*
1638 		 * No need to split VA, it fully fits.
1639 		 *
1640 		 * |               |
1641 		 * V      NVA      V
1642 		 * |---------------|
1643 		 */
1644 		unlink_va_augment(va, root);
1645 		kmem_cache_free(vmap_area_cachep, va);
1646 	} else if (type == LE_FIT_TYPE) {
1647 		/*
1648 		 * Split left edge of fit VA.
1649 		 *
1650 		 * |       |
1651 		 * V  NVA  V   R
1652 		 * |-------|-------|
1653 		 */
1654 		va->va_start += size;
1655 	} else if (type == RE_FIT_TYPE) {
1656 		/*
1657 		 * Split right edge of fit VA.
1658 		 *
1659 		 *         |       |
1660 		 *     L   V  NVA  V
1661 		 * |-------|-------|
1662 		 */
1663 		va->va_end = nva_start_addr;
1664 	} else if (type == NE_FIT_TYPE) {
1665 		/*
1666 		 * Split no edge of fit VA.
1667 		 *
1668 		 *     |       |
1669 		 *   L V  NVA  V R
1670 		 * |---|-------|---|
1671 		 */
1672 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1673 		if (unlikely(!lva)) {
1674 			/*
1675 			 * For percpu allocator we do not do any pre-allocation
1676 			 * and leave it as it is. The reason is it most likely
1677 			 * never ends up with NE_FIT_TYPE splitting. In case of
1678 			 * percpu allocations offsets and sizes are aligned to
1679 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1680 			 * are its main fitting cases.
1681 			 *
1682 			 * There are a few exceptions though, as an example it is
1683 			 * a first allocation (early boot up) when we have "one"
1684 			 * big free space that has to be split.
1685 			 *
1686 			 * Also we can hit this path in case of regular "vmap"
1687 			 * allocations, if "this" current CPU was not preloaded.
1688 			 * See the comment in alloc_vmap_area() why. If so, then
1689 			 * GFP_NOWAIT is used instead to get an extra object for
1690 			 * split purpose. That is rare and most time does not
1691 			 * occur.
1692 			 *
1693 			 * What happens if an allocation gets failed. Basically,
1694 			 * an "overflow" path is triggered to purge lazily freed
1695 			 * areas to free some memory, then, the "retry" path is
1696 			 * triggered to repeat one more time. See more details
1697 			 * in alloc_vmap_area() function.
1698 			 */
1699 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1700 			if (!lva)
1701 				return -1;
1702 		}
1703 
1704 		/*
1705 		 * Build the remainder.
1706 		 */
1707 		lva->va_start = va->va_start;
1708 		lva->va_end = nva_start_addr;
1709 
1710 		/*
1711 		 * Shrink this VA to remaining size.
1712 		 */
1713 		va->va_start = nva_start_addr + size;
1714 	} else {
1715 		return -1;
1716 	}
1717 
1718 	if (type != FL_FIT_TYPE) {
1719 		augment_tree_propagate_from(va);
1720 
1721 		if (lva)	/* type == NE_FIT_TYPE */
1722 			insert_vmap_area_augment(lva, &va->rb_node, root, head);
1723 	}
1724 
1725 	return 0;
1726 }
1727 
1728 static unsigned long
1729 va_alloc(struct vmap_area *va,
1730 		struct rb_root *root, struct list_head *head,
1731 		unsigned long size, unsigned long align,
1732 		unsigned long vstart, unsigned long vend)
1733 {
1734 	unsigned long nva_start_addr;
1735 	int ret;
1736 
1737 	if (va->va_start > vstart)
1738 		nva_start_addr = ALIGN(va->va_start, align);
1739 	else
1740 		nva_start_addr = ALIGN(vstart, align);
1741 
1742 	/* Check the "vend" restriction. */
1743 	if (nva_start_addr + size > vend)
1744 		return vend;
1745 
1746 	/* Update the free vmap_area. */
1747 	ret = va_clip(root, head, va, nva_start_addr, size);
1748 	if (WARN_ON_ONCE(ret))
1749 		return vend;
1750 
1751 	return nva_start_addr;
1752 }
1753 
1754 /*
1755  * Returns a start address of the newly allocated area, if success.
1756  * Otherwise a vend is returned that indicates failure.
1757  */
1758 static __always_inline unsigned long
1759 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1760 	unsigned long size, unsigned long align,
1761 	unsigned long vstart, unsigned long vend)
1762 {
1763 	bool adjust_search_size = true;
1764 	unsigned long nva_start_addr;
1765 	struct vmap_area *va;
1766 
1767 	/*
1768 	 * Do not adjust when:
1769 	 *   a) align <= PAGE_SIZE, because it does not make any sense.
1770 	 *      All blocks(their start addresses) are at least PAGE_SIZE
1771 	 *      aligned anyway;
1772 	 *   b) a short range where a requested size corresponds to exactly
1773 	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1774 	 *      With adjusted search length an allocation would not succeed.
1775 	 */
1776 	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1777 		adjust_search_size = false;
1778 
1779 	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1780 	if (unlikely(!va))
1781 		return vend;
1782 
1783 	nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend);
1784 	if (nva_start_addr == vend)
1785 		return vend;
1786 
1787 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1788 	find_vmap_lowest_match_check(root, head, size, align);
1789 #endif
1790 
1791 	return nva_start_addr;
1792 }
1793 
1794 /*
1795  * Free a region of KVA allocated by alloc_vmap_area
1796  */
1797 static void free_vmap_area(struct vmap_area *va)
1798 {
1799 	struct vmap_node *vn = addr_to_node(va->va_start);
1800 
1801 	/*
1802 	 * Remove from the busy tree/list.
1803 	 */
1804 	spin_lock(&vn->busy.lock);
1805 	unlink_va(va, &vn->busy.root);
1806 	spin_unlock(&vn->busy.lock);
1807 
1808 	/*
1809 	 * Insert/Merge it back to the free tree/list.
1810 	 */
1811 	spin_lock(&free_vmap_area_lock);
1812 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1813 	spin_unlock(&free_vmap_area_lock);
1814 }
1815 
1816 static inline void
1817 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1818 {
1819 	struct vmap_area *va = NULL, *tmp;
1820 
1821 	/*
1822 	 * Preload this CPU with one extra vmap_area object. It is used
1823 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1824 	 * a CPU that does an allocation is preloaded.
1825 	 *
1826 	 * We do it in non-atomic context, thus it allows us to use more
1827 	 * permissive allocation masks to be more stable under low memory
1828 	 * condition and high memory pressure.
1829 	 */
1830 	if (!this_cpu_read(ne_fit_preload_node))
1831 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1832 
1833 	spin_lock(lock);
1834 
1835 	tmp = NULL;
1836 	if (va && !__this_cpu_try_cmpxchg(ne_fit_preload_node, &tmp, va))
1837 		kmem_cache_free(vmap_area_cachep, va);
1838 }
1839 
1840 static struct vmap_pool *
1841 size_to_va_pool(struct vmap_node *vn, unsigned long size)
1842 {
1843 	unsigned int idx = (size - 1) / PAGE_SIZE;
1844 
1845 	if (idx < MAX_VA_SIZE_PAGES)
1846 		return &vn->pool[idx];
1847 
1848 	return NULL;
1849 }
1850 
1851 static bool
1852 node_pool_add_va(struct vmap_node *n, struct vmap_area *va)
1853 {
1854 	struct vmap_pool *vp;
1855 
1856 	vp = size_to_va_pool(n, va_size(va));
1857 	if (!vp)
1858 		return false;
1859 
1860 	spin_lock(&n->pool_lock);
1861 	list_add(&va->list, &vp->head);
1862 	WRITE_ONCE(vp->len, vp->len + 1);
1863 	spin_unlock(&n->pool_lock);
1864 
1865 	return true;
1866 }
1867 
1868 static struct vmap_area *
1869 node_pool_del_va(struct vmap_node *vn, unsigned long size,
1870 		unsigned long align, unsigned long vstart,
1871 		unsigned long vend)
1872 {
1873 	struct vmap_area *va = NULL;
1874 	struct vmap_pool *vp;
1875 	int err = 0;
1876 
1877 	vp = size_to_va_pool(vn, size);
1878 	if (!vp || list_empty(&vp->head))
1879 		return NULL;
1880 
1881 	spin_lock(&vn->pool_lock);
1882 	if (!list_empty(&vp->head)) {
1883 		va = list_first_entry(&vp->head, struct vmap_area, list);
1884 
1885 		if (IS_ALIGNED(va->va_start, align)) {
1886 			/*
1887 			 * Do some sanity check and emit a warning
1888 			 * if one of below checks detects an error.
1889 			 */
1890 			err |= (va_size(va) != size);
1891 			err |= (va->va_start < vstart);
1892 			err |= (va->va_end > vend);
1893 
1894 			if (!WARN_ON_ONCE(err)) {
1895 				list_del_init(&va->list);
1896 				WRITE_ONCE(vp->len, vp->len - 1);
1897 			} else {
1898 				va = NULL;
1899 			}
1900 		} else {
1901 			list_move_tail(&va->list, &vp->head);
1902 			va = NULL;
1903 		}
1904 	}
1905 	spin_unlock(&vn->pool_lock);
1906 
1907 	return va;
1908 }
1909 
1910 static struct vmap_area *
1911 node_alloc(unsigned long size, unsigned long align,
1912 		unsigned long vstart, unsigned long vend,
1913 		unsigned long *addr, unsigned int *vn_id)
1914 {
1915 	struct vmap_area *va;
1916 
1917 	*vn_id = 0;
1918 	*addr = vend;
1919 
1920 	/*
1921 	 * Fallback to a global heap if not vmalloc or there
1922 	 * is only one node.
1923 	 */
1924 	if (vstart != VMALLOC_START || vend != VMALLOC_END ||
1925 			nr_vmap_nodes == 1)
1926 		return NULL;
1927 
1928 	*vn_id = raw_smp_processor_id() % nr_vmap_nodes;
1929 	va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend);
1930 	*vn_id = encode_vn_id(*vn_id);
1931 
1932 	if (va)
1933 		*addr = va->va_start;
1934 
1935 	return va;
1936 }
1937 
1938 static inline void setup_vmalloc_vm(struct vm_struct *vm,
1939 	struct vmap_area *va, unsigned long flags, const void *caller)
1940 {
1941 	vm->flags = flags;
1942 	vm->addr = (void *)va->va_start;
1943 	vm->size = va_size(va);
1944 	vm->caller = caller;
1945 	va->vm = vm;
1946 }
1947 
1948 /*
1949  * Allocate a region of KVA of the specified size and alignment, within the
1950  * vstart and vend. If vm is passed in, the two will also be bound.
1951  */
1952 static struct vmap_area *alloc_vmap_area(unsigned long size,
1953 				unsigned long align,
1954 				unsigned long vstart, unsigned long vend,
1955 				int node, gfp_t gfp_mask,
1956 				unsigned long va_flags, struct vm_struct *vm)
1957 {
1958 	struct vmap_node *vn;
1959 	struct vmap_area *va;
1960 	unsigned long freed;
1961 	unsigned long addr;
1962 	unsigned int vn_id;
1963 	int purged = 0;
1964 	int ret;
1965 
1966 	if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1967 		return ERR_PTR(-EINVAL);
1968 
1969 	if (unlikely(!vmap_initialized))
1970 		return ERR_PTR(-EBUSY);
1971 
1972 	might_sleep();
1973 
1974 	/*
1975 	 * If a VA is obtained from a global heap(if it fails here)
1976 	 * it is anyway marked with this "vn_id" so it is returned
1977 	 * to this pool's node later. Such way gives a possibility
1978 	 * to populate pools based on users demand.
1979 	 *
1980 	 * On success a ready to go VA is returned.
1981 	 */
1982 	va = node_alloc(size, align, vstart, vend, &addr, &vn_id);
1983 	if (!va) {
1984 		gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1985 
1986 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1987 		if (unlikely(!va))
1988 			return ERR_PTR(-ENOMEM);
1989 
1990 		/*
1991 		 * Only scan the relevant parts containing pointers to other objects
1992 		 * to avoid false negatives.
1993 		 */
1994 		kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1995 	}
1996 
1997 retry:
1998 	if (addr == vend) {
1999 		preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
2000 		addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
2001 			size, align, vstart, vend);
2002 		spin_unlock(&free_vmap_area_lock);
2003 	}
2004 
2005 	trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
2006 
2007 	/*
2008 	 * If an allocation fails, the "vend" address is
2009 	 * returned. Therefore trigger the overflow path.
2010 	 */
2011 	if (unlikely(addr == vend))
2012 		goto overflow;
2013 
2014 	va->va_start = addr;
2015 	va->va_end = addr + size;
2016 	va->vm = NULL;
2017 	va->flags = (va_flags | vn_id);
2018 
2019 	if (vm) {
2020 		vm->addr = (void *)va->va_start;
2021 		vm->size = va_size(va);
2022 		va->vm = vm;
2023 	}
2024 
2025 	vn = addr_to_node(va->va_start);
2026 
2027 	spin_lock(&vn->busy.lock);
2028 	insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
2029 	spin_unlock(&vn->busy.lock);
2030 
2031 	BUG_ON(!IS_ALIGNED(va->va_start, align));
2032 	BUG_ON(va->va_start < vstart);
2033 	BUG_ON(va->va_end > vend);
2034 
2035 	ret = kasan_populate_vmalloc(addr, size);
2036 	if (ret) {
2037 		free_vmap_area(va);
2038 		return ERR_PTR(ret);
2039 	}
2040 
2041 	return va;
2042 
2043 overflow:
2044 	if (!purged) {
2045 		reclaim_and_purge_vmap_areas();
2046 		purged = 1;
2047 		goto retry;
2048 	}
2049 
2050 	freed = 0;
2051 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
2052 
2053 	if (freed > 0) {
2054 		purged = 0;
2055 		goto retry;
2056 	}
2057 
2058 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
2059 		pr_warn("vmalloc_node_range for size %lu failed: Address range restricted to %#lx - %#lx\n",
2060 				size, vstart, vend);
2061 
2062 	kmem_cache_free(vmap_area_cachep, va);
2063 	return ERR_PTR(-EBUSY);
2064 }
2065 
2066 int register_vmap_purge_notifier(struct notifier_block *nb)
2067 {
2068 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
2069 }
2070 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
2071 
2072 int unregister_vmap_purge_notifier(struct notifier_block *nb)
2073 {
2074 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
2075 }
2076 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
2077 
2078 /*
2079  * lazy_max_pages is the maximum amount of virtual address space we gather up
2080  * before attempting to purge with a TLB flush.
2081  *
2082  * There is a tradeoff here: a larger number will cover more kernel page tables
2083  * and take slightly longer to purge, but it will linearly reduce the number of
2084  * global TLB flushes that must be performed. It would seem natural to scale
2085  * this number up linearly with the number of CPUs (because vmapping activity
2086  * could also scale linearly with the number of CPUs), however it is likely
2087  * that in practice, workloads might be constrained in other ways that mean
2088  * vmap activity will not scale linearly with CPUs. Also, I want to be
2089  * conservative and not introduce a big latency on huge systems, so go with
2090  * a less aggressive log scale. It will still be an improvement over the old
2091  * code, and it will be simple to change the scale factor if we find that it
2092  * becomes a problem on bigger systems.
2093  */
2094 static unsigned long lazy_max_pages(void)
2095 {
2096 	unsigned int log;
2097 
2098 	log = fls(num_online_cpus());
2099 
2100 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
2101 }
2102 
2103 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
2104 
2105 /*
2106  * Serialize vmap purging.  There is no actual critical section protected
2107  * by this lock, but we want to avoid concurrent calls for performance
2108  * reasons and to make the pcpu_get_vm_areas more deterministic.
2109  */
2110 static DEFINE_MUTEX(vmap_purge_lock);
2111 
2112 /* for per-CPU blocks */
2113 static void purge_fragmented_blocks_allcpus(void);
2114 static cpumask_t purge_nodes;
2115 
2116 static void
2117 reclaim_list_global(struct list_head *head)
2118 {
2119 	struct vmap_area *va, *n;
2120 
2121 	if (list_empty(head))
2122 		return;
2123 
2124 	spin_lock(&free_vmap_area_lock);
2125 	list_for_each_entry_safe(va, n, head, list)
2126 		merge_or_add_vmap_area_augment(va,
2127 			&free_vmap_area_root, &free_vmap_area_list);
2128 	spin_unlock(&free_vmap_area_lock);
2129 }
2130 
2131 static void
2132 decay_va_pool_node(struct vmap_node *vn, bool full_decay)
2133 {
2134 	LIST_HEAD(decay_list);
2135 	struct rb_root decay_root = RB_ROOT;
2136 	struct vmap_area *va, *nva;
2137 	unsigned long n_decay;
2138 	int i;
2139 
2140 	for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
2141 		LIST_HEAD(tmp_list);
2142 
2143 		if (list_empty(&vn->pool[i].head))
2144 			continue;
2145 
2146 		/* Detach the pool, so no-one can access it. */
2147 		spin_lock(&vn->pool_lock);
2148 		list_replace_init(&vn->pool[i].head, &tmp_list);
2149 		spin_unlock(&vn->pool_lock);
2150 
2151 		if (full_decay)
2152 			WRITE_ONCE(vn->pool[i].len, 0);
2153 
2154 		/* Decay a pool by ~25% out of left objects. */
2155 		n_decay = vn->pool[i].len >> 2;
2156 
2157 		list_for_each_entry_safe(va, nva, &tmp_list, list) {
2158 			list_del_init(&va->list);
2159 			merge_or_add_vmap_area(va, &decay_root, &decay_list);
2160 
2161 			if (!full_decay) {
2162 				WRITE_ONCE(vn->pool[i].len, vn->pool[i].len - 1);
2163 
2164 				if (!--n_decay)
2165 					break;
2166 			}
2167 		}
2168 
2169 		/*
2170 		 * Attach the pool back if it has been partly decayed.
2171 		 * Please note, it is supposed that nobody(other contexts)
2172 		 * can populate the pool therefore a simple list replace
2173 		 * operation takes place here.
2174 		 */
2175 		if (!full_decay && !list_empty(&tmp_list)) {
2176 			spin_lock(&vn->pool_lock);
2177 			list_replace_init(&tmp_list, &vn->pool[i].head);
2178 			spin_unlock(&vn->pool_lock);
2179 		}
2180 	}
2181 
2182 	reclaim_list_global(&decay_list);
2183 }
2184 
2185 static void
2186 kasan_release_vmalloc_node(struct vmap_node *vn)
2187 {
2188 	struct vmap_area *va;
2189 	unsigned long start, end;
2190 
2191 	start = list_first_entry(&vn->purge_list, struct vmap_area, list)->va_start;
2192 	end = list_last_entry(&vn->purge_list, struct vmap_area, list)->va_end;
2193 
2194 	list_for_each_entry(va, &vn->purge_list, list) {
2195 		if (is_vmalloc_or_module_addr((void *) va->va_start))
2196 			kasan_release_vmalloc(va->va_start, va->va_end,
2197 				va->va_start, va->va_end,
2198 				KASAN_VMALLOC_PAGE_RANGE);
2199 	}
2200 
2201 	kasan_release_vmalloc(start, end, start, end, KASAN_VMALLOC_TLB_FLUSH);
2202 }
2203 
2204 static void purge_vmap_node(struct work_struct *work)
2205 {
2206 	struct vmap_node *vn = container_of(work,
2207 		struct vmap_node, purge_work);
2208 	unsigned long nr_purged_pages = 0;
2209 	struct vmap_area *va, *n_va;
2210 	LIST_HEAD(local_list);
2211 
2212 	if (IS_ENABLED(CONFIG_KASAN_VMALLOC))
2213 		kasan_release_vmalloc_node(vn);
2214 
2215 	vn->nr_purged = 0;
2216 
2217 	list_for_each_entry_safe(va, n_va, &vn->purge_list, list) {
2218 		unsigned long nr = va_size(va) >> PAGE_SHIFT;
2219 		unsigned int vn_id = decode_vn_id(va->flags);
2220 
2221 		list_del_init(&va->list);
2222 
2223 		nr_purged_pages += nr;
2224 		vn->nr_purged++;
2225 
2226 		if (is_vn_id_valid(vn_id) && !vn->skip_populate)
2227 			if (node_pool_add_va(vn, va))
2228 				continue;
2229 
2230 		/* Go back to global. */
2231 		list_add(&va->list, &local_list);
2232 	}
2233 
2234 	atomic_long_sub(nr_purged_pages, &vmap_lazy_nr);
2235 
2236 	reclaim_list_global(&local_list);
2237 }
2238 
2239 /*
2240  * Purges all lazily-freed vmap areas.
2241  */
2242 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end,
2243 		bool full_pool_decay)
2244 {
2245 	unsigned long nr_purged_areas = 0;
2246 	unsigned int nr_purge_helpers;
2247 	unsigned int nr_purge_nodes;
2248 	struct vmap_node *vn;
2249 	int i;
2250 
2251 	lockdep_assert_held(&vmap_purge_lock);
2252 
2253 	/*
2254 	 * Use cpumask to mark which node has to be processed.
2255 	 */
2256 	purge_nodes = CPU_MASK_NONE;
2257 
2258 	for (i = 0; i < nr_vmap_nodes; i++) {
2259 		vn = &vmap_nodes[i];
2260 
2261 		INIT_LIST_HEAD(&vn->purge_list);
2262 		vn->skip_populate = full_pool_decay;
2263 		decay_va_pool_node(vn, full_pool_decay);
2264 
2265 		if (RB_EMPTY_ROOT(&vn->lazy.root))
2266 			continue;
2267 
2268 		spin_lock(&vn->lazy.lock);
2269 		WRITE_ONCE(vn->lazy.root.rb_node, NULL);
2270 		list_replace_init(&vn->lazy.head, &vn->purge_list);
2271 		spin_unlock(&vn->lazy.lock);
2272 
2273 		start = min(start, list_first_entry(&vn->purge_list,
2274 			struct vmap_area, list)->va_start);
2275 
2276 		end = max(end, list_last_entry(&vn->purge_list,
2277 			struct vmap_area, list)->va_end);
2278 
2279 		cpumask_set_cpu(i, &purge_nodes);
2280 	}
2281 
2282 	nr_purge_nodes = cpumask_weight(&purge_nodes);
2283 	if (nr_purge_nodes > 0) {
2284 		flush_tlb_kernel_range(start, end);
2285 
2286 		/* One extra worker is per a lazy_max_pages() full set minus one. */
2287 		nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages();
2288 		nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1;
2289 
2290 		for_each_cpu(i, &purge_nodes) {
2291 			vn = &vmap_nodes[i];
2292 
2293 			if (nr_purge_helpers > 0) {
2294 				INIT_WORK(&vn->purge_work, purge_vmap_node);
2295 
2296 				if (cpumask_test_cpu(i, cpu_online_mask))
2297 					schedule_work_on(i, &vn->purge_work);
2298 				else
2299 					schedule_work(&vn->purge_work);
2300 
2301 				nr_purge_helpers--;
2302 			} else {
2303 				vn->purge_work.func = NULL;
2304 				purge_vmap_node(&vn->purge_work);
2305 				nr_purged_areas += vn->nr_purged;
2306 			}
2307 		}
2308 
2309 		for_each_cpu(i, &purge_nodes) {
2310 			vn = &vmap_nodes[i];
2311 
2312 			if (vn->purge_work.func) {
2313 				flush_work(&vn->purge_work);
2314 				nr_purged_areas += vn->nr_purged;
2315 			}
2316 		}
2317 	}
2318 
2319 	trace_purge_vmap_area_lazy(start, end, nr_purged_areas);
2320 	return nr_purged_areas > 0;
2321 }
2322 
2323 /*
2324  * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
2325  */
2326 static void reclaim_and_purge_vmap_areas(void)
2327 
2328 {
2329 	mutex_lock(&vmap_purge_lock);
2330 	purge_fragmented_blocks_allcpus();
2331 	__purge_vmap_area_lazy(ULONG_MAX, 0, true);
2332 	mutex_unlock(&vmap_purge_lock);
2333 }
2334 
2335 static void drain_vmap_area_work(struct work_struct *work)
2336 {
2337 	mutex_lock(&vmap_purge_lock);
2338 	__purge_vmap_area_lazy(ULONG_MAX, 0, false);
2339 	mutex_unlock(&vmap_purge_lock);
2340 }
2341 
2342 /*
2343  * Free a vmap area, caller ensuring that the area has been unmapped,
2344  * unlinked and flush_cache_vunmap had been called for the correct
2345  * range previously.
2346  */
2347 static void free_vmap_area_noflush(struct vmap_area *va)
2348 {
2349 	unsigned long nr_lazy_max = lazy_max_pages();
2350 	unsigned long va_start = va->va_start;
2351 	unsigned int vn_id = decode_vn_id(va->flags);
2352 	struct vmap_node *vn;
2353 	unsigned long nr_lazy;
2354 
2355 	if (WARN_ON_ONCE(!list_empty(&va->list)))
2356 		return;
2357 
2358 	nr_lazy = atomic_long_add_return(va_size(va) >> PAGE_SHIFT,
2359 					 &vmap_lazy_nr);
2360 
2361 	/*
2362 	 * If it was request by a certain node we would like to
2363 	 * return it to that node, i.e. its pool for later reuse.
2364 	 */
2365 	vn = is_vn_id_valid(vn_id) ?
2366 		id_to_node(vn_id):addr_to_node(va->va_start);
2367 
2368 	spin_lock(&vn->lazy.lock);
2369 	insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head);
2370 	spin_unlock(&vn->lazy.lock);
2371 
2372 	trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
2373 
2374 	/* After this point, we may free va at any time */
2375 	if (unlikely(nr_lazy > nr_lazy_max))
2376 		schedule_work(&drain_vmap_work);
2377 }
2378 
2379 /*
2380  * Free and unmap a vmap area
2381  */
2382 static void free_unmap_vmap_area(struct vmap_area *va)
2383 {
2384 	flush_cache_vunmap(va->va_start, va->va_end);
2385 	vunmap_range_noflush(va->va_start, va->va_end);
2386 	if (debug_pagealloc_enabled_static())
2387 		flush_tlb_kernel_range(va->va_start, va->va_end);
2388 
2389 	free_vmap_area_noflush(va);
2390 }
2391 
2392 struct vmap_area *find_vmap_area(unsigned long addr)
2393 {
2394 	struct vmap_node *vn;
2395 	struct vmap_area *va;
2396 	int i, j;
2397 
2398 	if (unlikely(!vmap_initialized))
2399 		return NULL;
2400 
2401 	/*
2402 	 * An addr_to_node_id(addr) converts an address to a node index
2403 	 * where a VA is located. If VA spans several zones and passed
2404 	 * addr is not the same as va->va_start, what is not common, we
2405 	 * may need to scan extra nodes. See an example:
2406 	 *
2407 	 *      <----va---->
2408 	 * -|-----|-----|-----|-----|-
2409 	 *     1     2     0     1
2410 	 *
2411 	 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed
2412 	 * addr is within 2 or 0 nodes we should do extra work.
2413 	 */
2414 	i = j = addr_to_node_id(addr);
2415 	do {
2416 		vn = &vmap_nodes[i];
2417 
2418 		spin_lock(&vn->busy.lock);
2419 		va = __find_vmap_area(addr, &vn->busy.root);
2420 		spin_unlock(&vn->busy.lock);
2421 
2422 		if (va)
2423 			return va;
2424 	} while ((i = (i + 1) % nr_vmap_nodes) != j);
2425 
2426 	return NULL;
2427 }
2428 
2429 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
2430 {
2431 	struct vmap_node *vn;
2432 	struct vmap_area *va;
2433 	int i, j;
2434 
2435 	/*
2436 	 * Check the comment in the find_vmap_area() about the loop.
2437 	 */
2438 	i = j = addr_to_node_id(addr);
2439 	do {
2440 		vn = &vmap_nodes[i];
2441 
2442 		spin_lock(&vn->busy.lock);
2443 		va = __find_vmap_area(addr, &vn->busy.root);
2444 		if (va)
2445 			unlink_va(va, &vn->busy.root);
2446 		spin_unlock(&vn->busy.lock);
2447 
2448 		if (va)
2449 			return va;
2450 	} while ((i = (i + 1) % nr_vmap_nodes) != j);
2451 
2452 	return NULL;
2453 }
2454 
2455 /*** Per cpu kva allocator ***/
2456 
2457 /*
2458  * vmap space is limited especially on 32 bit architectures. Ensure there is
2459  * room for at least 16 percpu vmap blocks per CPU.
2460  */
2461 /*
2462  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
2463  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
2464  * instead (we just need a rough idea)
2465  */
2466 #if BITS_PER_LONG == 32
2467 #define VMALLOC_SPACE		(128UL*1024*1024)
2468 #else
2469 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
2470 #endif
2471 
2472 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
2473 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
2474 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
2475 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
2476 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
2477 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
2478 #define VMAP_BBMAP_BITS		\
2479 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
2480 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
2481 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
2482 
2483 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
2484 
2485 /*
2486  * Purge threshold to prevent overeager purging of fragmented blocks for
2487  * regular operations: Purge if vb->free is less than 1/4 of the capacity.
2488  */
2489 #define VMAP_PURGE_THRESHOLD	(VMAP_BBMAP_BITS / 4)
2490 
2491 #define VMAP_RAM		0x1 /* indicates vm_map_ram area*/
2492 #define VMAP_BLOCK		0x2 /* mark out the vmap_block sub-type*/
2493 #define VMAP_FLAGS_MASK		0x3
2494 
2495 struct vmap_block_queue {
2496 	spinlock_t lock;
2497 	struct list_head free;
2498 
2499 	/*
2500 	 * An xarray requires an extra memory dynamically to
2501 	 * be allocated. If it is an issue, we can use rb-tree
2502 	 * instead.
2503 	 */
2504 	struct xarray vmap_blocks;
2505 };
2506 
2507 struct vmap_block {
2508 	spinlock_t lock;
2509 	struct vmap_area *va;
2510 	unsigned long free, dirty;
2511 	DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
2512 	unsigned long dirty_min, dirty_max; /*< dirty range */
2513 	struct list_head free_list;
2514 	struct rcu_head rcu_head;
2515 	struct list_head purge;
2516 	unsigned int cpu;
2517 };
2518 
2519 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
2520 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
2521 
2522 /*
2523  * In order to fast access to any "vmap_block" associated with a
2524  * specific address, we use a hash.
2525  *
2526  * A per-cpu vmap_block_queue is used in both ways, to serialize
2527  * an access to free block chains among CPUs(alloc path) and it
2528  * also acts as a vmap_block hash(alloc/free paths). It means we
2529  * overload it, since we already have the per-cpu array which is
2530  * used as a hash table. When used as a hash a 'cpu' passed to
2531  * per_cpu() is not actually a CPU but rather a hash index.
2532  *
2533  * A hash function is addr_to_vb_xa() which hashes any address
2534  * to a specific index(in a hash) it belongs to. This then uses a
2535  * per_cpu() macro to access an array with generated index.
2536  *
2537  * An example:
2538  *
2539  *  CPU_1  CPU_2  CPU_0
2540  *    |      |      |
2541  *    V      V      V
2542  * 0     10     20     30     40     50     60
2543  * |------|------|------|------|------|------|...<vmap address space>
2544  *   CPU0   CPU1   CPU2   CPU0   CPU1   CPU2
2545  *
2546  * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
2547  *   it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
2548  *
2549  * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
2550  *   it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
2551  *
2552  * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
2553  *   it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
2554  *
2555  * This technique almost always avoids lock contention on insert/remove,
2556  * however xarray spinlocks protect against any contention that remains.
2557  */
2558 static struct xarray *
2559 addr_to_vb_xa(unsigned long addr)
2560 {
2561 	int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids;
2562 
2563 	/*
2564 	 * Please note, nr_cpu_ids points on a highest set
2565 	 * possible bit, i.e. we never invoke cpumask_next()
2566 	 * if an index points on it which is nr_cpu_ids - 1.
2567 	 */
2568 	if (!cpu_possible(index))
2569 		index = cpumask_next(index, cpu_possible_mask);
2570 
2571 	return &per_cpu(vmap_block_queue, index).vmap_blocks;
2572 }
2573 
2574 /*
2575  * We should probably have a fallback mechanism to allocate virtual memory
2576  * out of partially filled vmap blocks. However vmap block sizing should be
2577  * fairly reasonable according to the vmalloc size, so it shouldn't be a
2578  * big problem.
2579  */
2580 
2581 static unsigned long addr_to_vb_idx(unsigned long addr)
2582 {
2583 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2584 	addr /= VMAP_BLOCK_SIZE;
2585 	return addr;
2586 }
2587 
2588 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2589 {
2590 	unsigned long addr;
2591 
2592 	addr = va_start + (pages_off << PAGE_SHIFT);
2593 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2594 	return (void *)addr;
2595 }
2596 
2597 /**
2598  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2599  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
2600  * @order:    how many 2^order pages should be occupied in newly allocated block
2601  * @gfp_mask: flags for the page level allocator
2602  *
2603  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2604  */
2605 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2606 {
2607 	struct vmap_block_queue *vbq;
2608 	struct vmap_block *vb;
2609 	struct vmap_area *va;
2610 	struct xarray *xa;
2611 	unsigned long vb_idx;
2612 	int node, err;
2613 	void *vaddr;
2614 
2615 	node = numa_node_id();
2616 
2617 	vb = kmalloc_node(sizeof(struct vmap_block),
2618 			gfp_mask & GFP_RECLAIM_MASK, node);
2619 	if (unlikely(!vb))
2620 		return ERR_PTR(-ENOMEM);
2621 
2622 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2623 					VMALLOC_START, VMALLOC_END,
2624 					node, gfp_mask,
2625 					VMAP_RAM|VMAP_BLOCK, NULL);
2626 	if (IS_ERR(va)) {
2627 		kfree(vb);
2628 		return ERR_CAST(va);
2629 	}
2630 
2631 	vaddr = vmap_block_vaddr(va->va_start, 0);
2632 	spin_lock_init(&vb->lock);
2633 	vb->va = va;
2634 	/* At least something should be left free */
2635 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2636 	bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2637 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
2638 	vb->dirty = 0;
2639 	vb->dirty_min = VMAP_BBMAP_BITS;
2640 	vb->dirty_max = 0;
2641 	bitmap_set(vb->used_map, 0, (1UL << order));
2642 	INIT_LIST_HEAD(&vb->free_list);
2643 	vb->cpu = raw_smp_processor_id();
2644 
2645 	xa = addr_to_vb_xa(va->va_start);
2646 	vb_idx = addr_to_vb_idx(va->va_start);
2647 	err = xa_insert(xa, vb_idx, vb, gfp_mask);
2648 	if (err) {
2649 		kfree(vb);
2650 		free_vmap_area(va);
2651 		return ERR_PTR(err);
2652 	}
2653 	/*
2654 	 * list_add_tail_rcu could happened in another core
2655 	 * rather than vb->cpu due to task migration, which
2656 	 * is safe as list_add_tail_rcu will ensure the list's
2657 	 * integrity together with list_for_each_rcu from read
2658 	 * side.
2659 	 */
2660 	vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu);
2661 	spin_lock(&vbq->lock);
2662 	list_add_tail_rcu(&vb->free_list, &vbq->free);
2663 	spin_unlock(&vbq->lock);
2664 
2665 	return vaddr;
2666 }
2667 
2668 static void free_vmap_block(struct vmap_block *vb)
2669 {
2670 	struct vmap_node *vn;
2671 	struct vmap_block *tmp;
2672 	struct xarray *xa;
2673 
2674 	xa = addr_to_vb_xa(vb->va->va_start);
2675 	tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2676 	BUG_ON(tmp != vb);
2677 
2678 	vn = addr_to_node(vb->va->va_start);
2679 	spin_lock(&vn->busy.lock);
2680 	unlink_va(vb->va, &vn->busy.root);
2681 	spin_unlock(&vn->busy.lock);
2682 
2683 	free_vmap_area_noflush(vb->va);
2684 	kfree_rcu(vb, rcu_head);
2685 }
2686 
2687 static bool purge_fragmented_block(struct vmap_block *vb,
2688 		struct list_head *purge_list, bool force_purge)
2689 {
2690 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu);
2691 
2692 	if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2693 	    vb->dirty == VMAP_BBMAP_BITS)
2694 		return false;
2695 
2696 	/* Don't overeagerly purge usable blocks unless requested */
2697 	if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2698 		return false;
2699 
2700 	/* prevent further allocs after releasing lock */
2701 	WRITE_ONCE(vb->free, 0);
2702 	/* prevent purging it again */
2703 	WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2704 	vb->dirty_min = 0;
2705 	vb->dirty_max = VMAP_BBMAP_BITS;
2706 	spin_lock(&vbq->lock);
2707 	list_del_rcu(&vb->free_list);
2708 	spin_unlock(&vbq->lock);
2709 	list_add_tail(&vb->purge, purge_list);
2710 	return true;
2711 }
2712 
2713 static void free_purged_blocks(struct list_head *purge_list)
2714 {
2715 	struct vmap_block *vb, *n_vb;
2716 
2717 	list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2718 		list_del(&vb->purge);
2719 		free_vmap_block(vb);
2720 	}
2721 }
2722 
2723 static void purge_fragmented_blocks(int cpu)
2724 {
2725 	LIST_HEAD(purge);
2726 	struct vmap_block *vb;
2727 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2728 
2729 	rcu_read_lock();
2730 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2731 		unsigned long free = READ_ONCE(vb->free);
2732 		unsigned long dirty = READ_ONCE(vb->dirty);
2733 
2734 		if (free + dirty != VMAP_BBMAP_BITS ||
2735 		    dirty == VMAP_BBMAP_BITS)
2736 			continue;
2737 
2738 		spin_lock(&vb->lock);
2739 		purge_fragmented_block(vb, &purge, true);
2740 		spin_unlock(&vb->lock);
2741 	}
2742 	rcu_read_unlock();
2743 	free_purged_blocks(&purge);
2744 }
2745 
2746 static void purge_fragmented_blocks_allcpus(void)
2747 {
2748 	int cpu;
2749 
2750 	for_each_possible_cpu(cpu)
2751 		purge_fragmented_blocks(cpu);
2752 }
2753 
2754 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2755 {
2756 	struct vmap_block_queue *vbq;
2757 	struct vmap_block *vb;
2758 	void *vaddr = NULL;
2759 	unsigned int order;
2760 
2761 	BUG_ON(offset_in_page(size));
2762 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2763 	if (WARN_ON(size == 0)) {
2764 		/*
2765 		 * Allocating 0 bytes isn't what caller wants since
2766 		 * get_order(0) returns funny result. Just warn and terminate
2767 		 * early.
2768 		 */
2769 		return ERR_PTR(-EINVAL);
2770 	}
2771 	order = get_order(size);
2772 
2773 	rcu_read_lock();
2774 	vbq = raw_cpu_ptr(&vmap_block_queue);
2775 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2776 		unsigned long pages_off;
2777 
2778 		if (READ_ONCE(vb->free) < (1UL << order))
2779 			continue;
2780 
2781 		spin_lock(&vb->lock);
2782 		if (vb->free < (1UL << order)) {
2783 			spin_unlock(&vb->lock);
2784 			continue;
2785 		}
2786 
2787 		pages_off = VMAP_BBMAP_BITS - vb->free;
2788 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2789 		WRITE_ONCE(vb->free, vb->free - (1UL << order));
2790 		bitmap_set(vb->used_map, pages_off, (1UL << order));
2791 		if (vb->free == 0) {
2792 			spin_lock(&vbq->lock);
2793 			list_del_rcu(&vb->free_list);
2794 			spin_unlock(&vbq->lock);
2795 		}
2796 
2797 		spin_unlock(&vb->lock);
2798 		break;
2799 	}
2800 
2801 	rcu_read_unlock();
2802 
2803 	/* Allocate new block if nothing was found */
2804 	if (!vaddr)
2805 		vaddr = new_vmap_block(order, gfp_mask);
2806 
2807 	return vaddr;
2808 }
2809 
2810 static void vb_free(unsigned long addr, unsigned long size)
2811 {
2812 	unsigned long offset;
2813 	unsigned int order;
2814 	struct vmap_block *vb;
2815 	struct xarray *xa;
2816 
2817 	BUG_ON(offset_in_page(size));
2818 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2819 
2820 	flush_cache_vunmap(addr, addr + size);
2821 
2822 	order = get_order(size);
2823 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2824 
2825 	xa = addr_to_vb_xa(addr);
2826 	vb = xa_load(xa, addr_to_vb_idx(addr));
2827 
2828 	spin_lock(&vb->lock);
2829 	bitmap_clear(vb->used_map, offset, (1UL << order));
2830 	spin_unlock(&vb->lock);
2831 
2832 	vunmap_range_noflush(addr, addr + size);
2833 
2834 	if (debug_pagealloc_enabled_static())
2835 		flush_tlb_kernel_range(addr, addr + size);
2836 
2837 	spin_lock(&vb->lock);
2838 
2839 	/* Expand the not yet TLB flushed dirty range */
2840 	vb->dirty_min = min(vb->dirty_min, offset);
2841 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2842 
2843 	WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2844 	if (vb->dirty == VMAP_BBMAP_BITS) {
2845 		BUG_ON(vb->free);
2846 		spin_unlock(&vb->lock);
2847 		free_vmap_block(vb);
2848 	} else
2849 		spin_unlock(&vb->lock);
2850 }
2851 
2852 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2853 {
2854 	LIST_HEAD(purge_list);
2855 	int cpu;
2856 
2857 	if (unlikely(!vmap_initialized))
2858 		return;
2859 
2860 	mutex_lock(&vmap_purge_lock);
2861 
2862 	for_each_possible_cpu(cpu) {
2863 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2864 		struct vmap_block *vb;
2865 		unsigned long idx;
2866 
2867 		rcu_read_lock();
2868 		xa_for_each(&vbq->vmap_blocks, idx, vb) {
2869 			spin_lock(&vb->lock);
2870 
2871 			/*
2872 			 * Try to purge a fragmented block first. If it's
2873 			 * not purgeable, check whether there is dirty
2874 			 * space to be flushed.
2875 			 */
2876 			if (!purge_fragmented_block(vb, &purge_list, false) &&
2877 			    vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2878 				unsigned long va_start = vb->va->va_start;
2879 				unsigned long s, e;
2880 
2881 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2882 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2883 
2884 				start = min(s, start);
2885 				end   = max(e, end);
2886 
2887 				/* Prevent that this is flushed again */
2888 				vb->dirty_min = VMAP_BBMAP_BITS;
2889 				vb->dirty_max = 0;
2890 
2891 				flush = 1;
2892 			}
2893 			spin_unlock(&vb->lock);
2894 		}
2895 		rcu_read_unlock();
2896 	}
2897 	free_purged_blocks(&purge_list);
2898 
2899 	if (!__purge_vmap_area_lazy(start, end, false) && flush)
2900 		flush_tlb_kernel_range(start, end);
2901 	mutex_unlock(&vmap_purge_lock);
2902 }
2903 
2904 /**
2905  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2906  *
2907  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2908  * to amortize TLB flushing overheads. What this means is that any page you
2909  * have now, may, in a former life, have been mapped into kernel virtual
2910  * address by the vmap layer and so there might be some CPUs with TLB entries
2911  * still referencing that page (additional to the regular 1:1 kernel mapping).
2912  *
2913  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2914  * be sure that none of the pages we have control over will have any aliases
2915  * from the vmap layer.
2916  */
2917 void vm_unmap_aliases(void)
2918 {
2919 	unsigned long start = ULONG_MAX, end = 0;
2920 	int flush = 0;
2921 
2922 	_vm_unmap_aliases(start, end, flush);
2923 }
2924 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2925 
2926 /**
2927  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2928  * @mem: the pointer returned by vm_map_ram
2929  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2930  */
2931 void vm_unmap_ram(const void *mem, unsigned int count)
2932 {
2933 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2934 	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2935 	struct vmap_area *va;
2936 
2937 	might_sleep();
2938 	BUG_ON(!addr);
2939 	BUG_ON(addr < VMALLOC_START);
2940 	BUG_ON(addr > VMALLOC_END);
2941 	BUG_ON(!PAGE_ALIGNED(addr));
2942 
2943 	kasan_poison_vmalloc(mem, size);
2944 
2945 	if (likely(count <= VMAP_MAX_ALLOC)) {
2946 		debug_check_no_locks_freed(mem, size);
2947 		vb_free(addr, size);
2948 		return;
2949 	}
2950 
2951 	va = find_unlink_vmap_area(addr);
2952 	if (WARN_ON_ONCE(!va))
2953 		return;
2954 
2955 	debug_check_no_locks_freed((void *)va->va_start, va_size(va));
2956 	free_unmap_vmap_area(va);
2957 }
2958 EXPORT_SYMBOL(vm_unmap_ram);
2959 
2960 /**
2961  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2962  * @pages: an array of pointers to the pages to be mapped
2963  * @count: number of pages
2964  * @node: prefer to allocate data structures on this node
2965  *
2966  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2967  * faster than vmap so it's good.  But if you mix long-life and short-life
2968  * objects with vm_map_ram(), it could consume lots of address space through
2969  * fragmentation (especially on a 32bit machine).  You could see failures in
2970  * the end.  Please use this function for short-lived objects.
2971  *
2972  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2973  */
2974 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2975 {
2976 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2977 	unsigned long addr;
2978 	void *mem;
2979 
2980 	if (likely(count <= VMAP_MAX_ALLOC)) {
2981 		mem = vb_alloc(size, GFP_KERNEL);
2982 		if (IS_ERR(mem))
2983 			return NULL;
2984 		addr = (unsigned long)mem;
2985 	} else {
2986 		struct vmap_area *va;
2987 		va = alloc_vmap_area(size, PAGE_SIZE,
2988 				VMALLOC_START, VMALLOC_END,
2989 				node, GFP_KERNEL, VMAP_RAM,
2990 				NULL);
2991 		if (IS_ERR(va))
2992 			return NULL;
2993 
2994 		addr = va->va_start;
2995 		mem = (void *)addr;
2996 	}
2997 
2998 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2999 				pages, PAGE_SHIFT) < 0) {
3000 		vm_unmap_ram(mem, count);
3001 		return NULL;
3002 	}
3003 
3004 	/*
3005 	 * Mark the pages as accessible, now that they are mapped.
3006 	 * With hardware tag-based KASAN, marking is skipped for
3007 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3008 	 */
3009 	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
3010 
3011 	return mem;
3012 }
3013 EXPORT_SYMBOL(vm_map_ram);
3014 
3015 static struct vm_struct *vmlist __initdata;
3016 
3017 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
3018 {
3019 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3020 	return vm->page_order;
3021 #else
3022 	return 0;
3023 #endif
3024 }
3025 
3026 unsigned int get_vm_area_page_order(struct vm_struct *vm)
3027 {
3028 	return vm_area_page_order(vm);
3029 }
3030 
3031 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
3032 {
3033 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3034 	vm->page_order = order;
3035 #else
3036 	BUG_ON(order != 0);
3037 #endif
3038 }
3039 
3040 /**
3041  * vm_area_add_early - add vmap area early during boot
3042  * @vm: vm_struct to add
3043  *
3044  * This function is used to add fixed kernel vm area to vmlist before
3045  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
3046  * should contain proper values and the other fields should be zero.
3047  *
3048  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3049  */
3050 void __init vm_area_add_early(struct vm_struct *vm)
3051 {
3052 	struct vm_struct *tmp, **p;
3053 
3054 	BUG_ON(vmap_initialized);
3055 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
3056 		if (tmp->addr >= vm->addr) {
3057 			BUG_ON(tmp->addr < vm->addr + vm->size);
3058 			break;
3059 		} else
3060 			BUG_ON(tmp->addr + tmp->size > vm->addr);
3061 	}
3062 	vm->next = *p;
3063 	*p = vm;
3064 }
3065 
3066 /**
3067  * vm_area_register_early - register vmap area early during boot
3068  * @vm: vm_struct to register
3069  * @align: requested alignment
3070  *
3071  * This function is used to register kernel vm area before
3072  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
3073  * proper values on entry and other fields should be zero.  On return,
3074  * vm->addr contains the allocated address.
3075  *
3076  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3077  */
3078 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
3079 {
3080 	unsigned long addr = ALIGN(VMALLOC_START, align);
3081 	struct vm_struct *cur, **p;
3082 
3083 	BUG_ON(vmap_initialized);
3084 
3085 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
3086 		if ((unsigned long)cur->addr - addr >= vm->size)
3087 			break;
3088 		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
3089 	}
3090 
3091 	BUG_ON(addr > VMALLOC_END - vm->size);
3092 	vm->addr = (void *)addr;
3093 	vm->next = *p;
3094 	*p = vm;
3095 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
3096 }
3097 
3098 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
3099 {
3100 	/*
3101 	 * Before removing VM_UNINITIALIZED,
3102 	 * we should make sure that vm has proper values.
3103 	 * Pair with smp_rmb() in show_numa_info().
3104 	 */
3105 	smp_wmb();
3106 	vm->flags &= ~VM_UNINITIALIZED;
3107 }
3108 
3109 struct vm_struct *__get_vm_area_node(unsigned long size,
3110 		unsigned long align, unsigned long shift, unsigned long flags,
3111 		unsigned long start, unsigned long end, int node,
3112 		gfp_t gfp_mask, const void *caller)
3113 {
3114 	struct vmap_area *va;
3115 	struct vm_struct *area;
3116 	unsigned long requested_size = size;
3117 
3118 	BUG_ON(in_interrupt());
3119 	size = ALIGN(size, 1ul << shift);
3120 	if (unlikely(!size))
3121 		return NULL;
3122 
3123 	if (flags & VM_IOREMAP)
3124 		align = 1ul << clamp_t(int, get_count_order_long(size),
3125 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
3126 
3127 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
3128 	if (unlikely(!area))
3129 		return NULL;
3130 
3131 	if (!(flags & VM_NO_GUARD))
3132 		size += PAGE_SIZE;
3133 
3134 	area->flags = flags;
3135 	area->caller = caller;
3136 
3137 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area);
3138 	if (IS_ERR(va)) {
3139 		kfree(area);
3140 		return NULL;
3141 	}
3142 
3143 	/*
3144 	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
3145 	 * best-effort approach, as they can be mapped outside of vmalloc code.
3146 	 * For VM_ALLOC mappings, the pages are marked as accessible after
3147 	 * getting mapped in __vmalloc_node_range().
3148 	 * With hardware tag-based KASAN, marking is skipped for
3149 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3150 	 */
3151 	if (!(flags & VM_ALLOC))
3152 		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
3153 						    KASAN_VMALLOC_PROT_NORMAL);
3154 
3155 	return area;
3156 }
3157 
3158 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
3159 				       unsigned long start, unsigned long end,
3160 				       const void *caller)
3161 {
3162 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
3163 				  NUMA_NO_NODE, GFP_KERNEL, caller);
3164 }
3165 
3166 /**
3167  * get_vm_area - reserve a contiguous kernel virtual area
3168  * @size:	 size of the area
3169  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
3170  *
3171  * Search an area of @size in the kernel virtual mapping area,
3172  * and reserved it for out purposes.  Returns the area descriptor
3173  * on success or %NULL on failure.
3174  *
3175  * Return: the area descriptor on success or %NULL on failure.
3176  */
3177 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
3178 {
3179 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3180 				  VMALLOC_START, VMALLOC_END,
3181 				  NUMA_NO_NODE, GFP_KERNEL,
3182 				  __builtin_return_address(0));
3183 }
3184 
3185 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
3186 				const void *caller)
3187 {
3188 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3189 				  VMALLOC_START, VMALLOC_END,
3190 				  NUMA_NO_NODE, GFP_KERNEL, caller);
3191 }
3192 
3193 /**
3194  * find_vm_area - find a continuous kernel virtual area
3195  * @addr:	  base address
3196  *
3197  * Search for the kernel VM area starting at @addr, and return it.
3198  * It is up to the caller to do all required locking to keep the returned
3199  * pointer valid.
3200  *
3201  * Return: the area descriptor on success or %NULL on failure.
3202  */
3203 struct vm_struct *find_vm_area(const void *addr)
3204 {
3205 	struct vmap_area *va;
3206 
3207 	va = find_vmap_area((unsigned long)addr);
3208 	if (!va)
3209 		return NULL;
3210 
3211 	return va->vm;
3212 }
3213 
3214 /**
3215  * remove_vm_area - find and remove a continuous kernel virtual area
3216  * @addr:	    base address
3217  *
3218  * Search for the kernel VM area starting at @addr, and remove it.
3219  * This function returns the found VM area, but using it is NOT safe
3220  * on SMP machines, except for its size or flags.
3221  *
3222  * Return: the area descriptor on success or %NULL on failure.
3223  */
3224 struct vm_struct *remove_vm_area(const void *addr)
3225 {
3226 	struct vmap_area *va;
3227 	struct vm_struct *vm;
3228 
3229 	might_sleep();
3230 
3231 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
3232 			addr))
3233 		return NULL;
3234 
3235 	va = find_unlink_vmap_area((unsigned long)addr);
3236 	if (!va || !va->vm)
3237 		return NULL;
3238 	vm = va->vm;
3239 
3240 	debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
3241 	debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
3242 	kasan_free_module_shadow(vm);
3243 	kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
3244 
3245 	free_unmap_vmap_area(va);
3246 	return vm;
3247 }
3248 
3249 static inline void set_area_direct_map(const struct vm_struct *area,
3250 				       int (*set_direct_map)(struct page *page))
3251 {
3252 	int i;
3253 
3254 	/* HUGE_VMALLOC passes small pages to set_direct_map */
3255 	for (i = 0; i < area->nr_pages; i++)
3256 		if (page_address(area->pages[i]))
3257 			set_direct_map(area->pages[i]);
3258 }
3259 
3260 /*
3261  * Flush the vm mapping and reset the direct map.
3262  */
3263 static void vm_reset_perms(struct vm_struct *area)
3264 {
3265 	unsigned long start = ULONG_MAX, end = 0;
3266 	unsigned int page_order = vm_area_page_order(area);
3267 	int flush_dmap = 0;
3268 	int i;
3269 
3270 	/*
3271 	 * Find the start and end range of the direct mappings to make sure that
3272 	 * the vm_unmap_aliases() flush includes the direct map.
3273 	 */
3274 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
3275 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
3276 
3277 		if (addr) {
3278 			unsigned long page_size;
3279 
3280 			page_size = PAGE_SIZE << page_order;
3281 			start = min(addr, start);
3282 			end = max(addr + page_size, end);
3283 			flush_dmap = 1;
3284 		}
3285 	}
3286 
3287 	/*
3288 	 * Set direct map to something invalid so that it won't be cached if
3289 	 * there are any accesses after the TLB flush, then flush the TLB and
3290 	 * reset the direct map permissions to the default.
3291 	 */
3292 	set_area_direct_map(area, set_direct_map_invalid_noflush);
3293 	_vm_unmap_aliases(start, end, flush_dmap);
3294 	set_area_direct_map(area, set_direct_map_default_noflush);
3295 }
3296 
3297 static void delayed_vfree_work(struct work_struct *w)
3298 {
3299 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
3300 	struct llist_node *t, *llnode;
3301 
3302 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
3303 		vfree(llnode);
3304 }
3305 
3306 /**
3307  * vfree_atomic - release memory allocated by vmalloc()
3308  * @addr:	  memory base address
3309  *
3310  * This one is just like vfree() but can be called in any atomic context
3311  * except NMIs.
3312  */
3313 void vfree_atomic(const void *addr)
3314 {
3315 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
3316 
3317 	BUG_ON(in_nmi());
3318 	kmemleak_free(addr);
3319 
3320 	/*
3321 	 * Use raw_cpu_ptr() because this can be called from preemptible
3322 	 * context. Preemption is absolutely fine here, because the llist_add()
3323 	 * implementation is lockless, so it works even if we are adding to
3324 	 * another cpu's list. schedule_work() should be fine with this too.
3325 	 */
3326 	if (addr && llist_add((struct llist_node *)addr, &p->list))
3327 		schedule_work(&p->wq);
3328 }
3329 
3330 /**
3331  * vfree - Release memory allocated by vmalloc()
3332  * @addr:  Memory base address
3333  *
3334  * Free the virtually continuous memory area starting at @addr, as obtained
3335  * from one of the vmalloc() family of APIs.  This will usually also free the
3336  * physical memory underlying the virtual allocation, but that memory is
3337  * reference counted, so it will not be freed until the last user goes away.
3338  *
3339  * If @addr is NULL, no operation is performed.
3340  *
3341  * Context:
3342  * May sleep if called *not* from interrupt context.
3343  * Must not be called in NMI context (strictly speaking, it could be
3344  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
3345  * conventions for vfree() arch-dependent would be a really bad idea).
3346  */
3347 void vfree(const void *addr)
3348 {
3349 	struct vm_struct *vm;
3350 	int i;
3351 
3352 	if (unlikely(in_interrupt())) {
3353 		vfree_atomic(addr);
3354 		return;
3355 	}
3356 
3357 	BUG_ON(in_nmi());
3358 	kmemleak_free(addr);
3359 	might_sleep();
3360 
3361 	if (!addr)
3362 		return;
3363 
3364 	vm = remove_vm_area(addr);
3365 	if (unlikely(!vm)) {
3366 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
3367 				addr);
3368 		return;
3369 	}
3370 
3371 	if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
3372 		vm_reset_perms(vm);
3373 	for (i = 0; i < vm->nr_pages; i++) {
3374 		struct page *page = vm->pages[i];
3375 
3376 		BUG_ON(!page);
3377 		mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
3378 		/*
3379 		 * High-order allocs for huge vmallocs are split, so
3380 		 * can be freed as an array of order-0 allocations
3381 		 */
3382 		__free_page(page);
3383 		cond_resched();
3384 	}
3385 	atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
3386 	kvfree(vm->pages);
3387 	kfree(vm);
3388 }
3389 EXPORT_SYMBOL(vfree);
3390 
3391 /**
3392  * vunmap - release virtual mapping obtained by vmap()
3393  * @addr:   memory base address
3394  *
3395  * Free the virtually contiguous memory area starting at @addr,
3396  * which was created from the page array passed to vmap().
3397  *
3398  * Must not be called in interrupt context.
3399  */
3400 void vunmap(const void *addr)
3401 {
3402 	struct vm_struct *vm;
3403 
3404 	BUG_ON(in_interrupt());
3405 	might_sleep();
3406 
3407 	if (!addr)
3408 		return;
3409 	vm = remove_vm_area(addr);
3410 	if (unlikely(!vm)) {
3411 		WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
3412 				addr);
3413 		return;
3414 	}
3415 	kfree(vm);
3416 }
3417 EXPORT_SYMBOL(vunmap);
3418 
3419 /**
3420  * vmap - map an array of pages into virtually contiguous space
3421  * @pages: array of page pointers
3422  * @count: number of pages to map
3423  * @flags: vm_area->flags
3424  * @prot: page protection for the mapping
3425  *
3426  * Maps @count pages from @pages into contiguous kernel virtual space.
3427  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
3428  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
3429  * are transferred from the caller to vmap(), and will be freed / dropped when
3430  * vfree() is called on the return value.
3431  *
3432  * Return: the address of the area or %NULL on failure
3433  */
3434 void *vmap(struct page **pages, unsigned int count,
3435 	   unsigned long flags, pgprot_t prot)
3436 {
3437 	struct vm_struct *area;
3438 	unsigned long addr;
3439 	unsigned long size;		/* In bytes */
3440 
3441 	might_sleep();
3442 
3443 	if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
3444 		return NULL;
3445 
3446 	/*
3447 	 * Your top guard is someone else's bottom guard. Not having a top
3448 	 * guard compromises someone else's mappings too.
3449 	 */
3450 	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
3451 		flags &= ~VM_NO_GUARD;
3452 
3453 	if (count > totalram_pages())
3454 		return NULL;
3455 
3456 	size = (unsigned long)count << PAGE_SHIFT;
3457 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
3458 	if (!area)
3459 		return NULL;
3460 
3461 	addr = (unsigned long)area->addr;
3462 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
3463 				pages, PAGE_SHIFT) < 0) {
3464 		vunmap(area->addr);
3465 		return NULL;
3466 	}
3467 
3468 	if (flags & VM_MAP_PUT_PAGES) {
3469 		area->pages = pages;
3470 		area->nr_pages = count;
3471 	}
3472 	return area->addr;
3473 }
3474 EXPORT_SYMBOL(vmap);
3475 
3476 #ifdef CONFIG_VMAP_PFN
3477 struct vmap_pfn_data {
3478 	unsigned long	*pfns;
3479 	pgprot_t	prot;
3480 	unsigned int	idx;
3481 };
3482 
3483 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
3484 {
3485 	struct vmap_pfn_data *data = private;
3486 	unsigned long pfn = data->pfns[data->idx];
3487 	pte_t ptent;
3488 
3489 	if (WARN_ON_ONCE(pfn_valid(pfn)))
3490 		return -EINVAL;
3491 
3492 	ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
3493 	set_pte_at(&init_mm, addr, pte, ptent);
3494 
3495 	data->idx++;
3496 	return 0;
3497 }
3498 
3499 /**
3500  * vmap_pfn - map an array of PFNs into virtually contiguous space
3501  * @pfns: array of PFNs
3502  * @count: number of pages to map
3503  * @prot: page protection for the mapping
3504  *
3505  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
3506  * the start address of the mapping.
3507  */
3508 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
3509 {
3510 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
3511 	struct vm_struct *area;
3512 
3513 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
3514 			__builtin_return_address(0));
3515 	if (!area)
3516 		return NULL;
3517 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3518 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
3519 		free_vm_area(area);
3520 		return NULL;
3521 	}
3522 
3523 	flush_cache_vmap((unsigned long)area->addr,
3524 			 (unsigned long)area->addr + count * PAGE_SIZE);
3525 
3526 	return area->addr;
3527 }
3528 EXPORT_SYMBOL_GPL(vmap_pfn);
3529 #endif /* CONFIG_VMAP_PFN */
3530 
3531 static inline unsigned int
3532 vm_area_alloc_pages(gfp_t gfp, int nid,
3533 		unsigned int order, unsigned int nr_pages, struct page **pages)
3534 {
3535 	unsigned int nr_allocated = 0;
3536 	struct page *page;
3537 	int i;
3538 
3539 	/*
3540 	 * For order-0 pages we make use of bulk allocator, if
3541 	 * the page array is partly or not at all populated due
3542 	 * to fails, fallback to a single page allocator that is
3543 	 * more permissive.
3544 	 */
3545 	if (!order) {
3546 		while (nr_allocated < nr_pages) {
3547 			unsigned int nr, nr_pages_request;
3548 
3549 			/*
3550 			 * A maximum allowed request is hard-coded and is 100
3551 			 * pages per call. That is done in order to prevent a
3552 			 * long preemption off scenario in the bulk-allocator
3553 			 * so the range is [1:100].
3554 			 */
3555 			nr_pages_request = min(100U, nr_pages - nr_allocated);
3556 
3557 			/* memory allocation should consider mempolicy, we can't
3558 			 * wrongly use nearest node when nid == NUMA_NO_NODE,
3559 			 * otherwise memory may be allocated in only one node,
3560 			 * but mempolicy wants to alloc memory by interleaving.
3561 			 */
3562 			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3563 				nr = alloc_pages_bulk_array_mempolicy_noprof(gfp,
3564 							nr_pages_request,
3565 							pages + nr_allocated);
3566 			else
3567 				nr = alloc_pages_bulk_array_node_noprof(gfp, nid,
3568 							nr_pages_request,
3569 							pages + nr_allocated);
3570 
3571 			nr_allocated += nr;
3572 			cond_resched();
3573 
3574 			/*
3575 			 * If zero or pages were obtained partly,
3576 			 * fallback to a single page allocator.
3577 			 */
3578 			if (nr != nr_pages_request)
3579 				break;
3580 		}
3581 	}
3582 
3583 	/* High-order pages or fallback path if "bulk" fails. */
3584 	while (nr_allocated < nr_pages) {
3585 		if (!(gfp & __GFP_NOFAIL) && fatal_signal_pending(current))
3586 			break;
3587 
3588 		if (nid == NUMA_NO_NODE)
3589 			page = alloc_pages_noprof(gfp, order);
3590 		else
3591 			page = alloc_pages_node_noprof(nid, gfp, order);
3592 
3593 		if (unlikely(!page))
3594 			break;
3595 
3596 		/*
3597 		 * High-order allocations must be able to be treated as
3598 		 * independent small pages by callers (as they can with
3599 		 * small-page vmallocs). Some drivers do their own refcounting
3600 		 * on vmalloc_to_page() pages, some use page->mapping,
3601 		 * page->lru, etc.
3602 		 */
3603 		if (order)
3604 			split_page(page, order);
3605 
3606 		/*
3607 		 * Careful, we allocate and map page-order pages, but
3608 		 * tracking is done per PAGE_SIZE page so as to keep the
3609 		 * vm_struct APIs independent of the physical/mapped size.
3610 		 */
3611 		for (i = 0; i < (1U << order); i++)
3612 			pages[nr_allocated + i] = page + i;
3613 
3614 		cond_resched();
3615 		nr_allocated += 1U << order;
3616 	}
3617 
3618 	return nr_allocated;
3619 }
3620 
3621 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3622 				 pgprot_t prot, unsigned int page_shift,
3623 				 int node)
3624 {
3625 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3626 	bool nofail = gfp_mask & __GFP_NOFAIL;
3627 	unsigned long addr = (unsigned long)area->addr;
3628 	unsigned long size = get_vm_area_size(area);
3629 	unsigned long array_size;
3630 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
3631 	unsigned int page_order;
3632 	unsigned int flags;
3633 	int ret;
3634 
3635 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3636 
3637 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3638 		gfp_mask |= __GFP_HIGHMEM;
3639 
3640 	/* Please note that the recursion is strictly bounded. */
3641 	if (array_size > PAGE_SIZE) {
3642 		area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node,
3643 					area->caller);
3644 	} else {
3645 		area->pages = kmalloc_node_noprof(array_size, nested_gfp, node);
3646 	}
3647 
3648 	if (!area->pages) {
3649 		warn_alloc(gfp_mask, NULL,
3650 			"vmalloc error: size %lu, failed to allocated page array size %lu",
3651 			nr_small_pages * PAGE_SIZE, array_size);
3652 		free_vm_area(area);
3653 		return NULL;
3654 	}
3655 
3656 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3657 	page_order = vm_area_page_order(area);
3658 
3659 	/*
3660 	 * High-order nofail allocations are really expensive and
3661 	 * potentially dangerous (pre-mature OOM, disruptive reclaim
3662 	 * and compaction etc.
3663 	 *
3664 	 * Please note, the __vmalloc_node_range_noprof() falls-back
3665 	 * to order-0 pages if high-order attempt is unsuccessful.
3666 	 */
3667 	area->nr_pages = vm_area_alloc_pages((page_order ?
3668 		gfp_mask & ~__GFP_NOFAIL : gfp_mask) | __GFP_NOWARN,
3669 		node, page_order, nr_small_pages, area->pages);
3670 
3671 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3672 	if (gfp_mask & __GFP_ACCOUNT) {
3673 		int i;
3674 
3675 		for (i = 0; i < area->nr_pages; i++)
3676 			mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3677 	}
3678 
3679 	/*
3680 	 * If not enough pages were obtained to accomplish an
3681 	 * allocation request, free them via vfree() if any.
3682 	 */
3683 	if (area->nr_pages != nr_small_pages) {
3684 		/*
3685 		 * vm_area_alloc_pages() can fail due to insufficient memory but
3686 		 * also:-
3687 		 *
3688 		 * - a pending fatal signal
3689 		 * - insufficient huge page-order pages
3690 		 *
3691 		 * Since we always retry allocations at order-0 in the huge page
3692 		 * case a warning for either is spurious.
3693 		 */
3694 		if (!fatal_signal_pending(current) && page_order == 0)
3695 			warn_alloc(gfp_mask, NULL,
3696 				"vmalloc error: size %lu, failed to allocate pages",
3697 				area->nr_pages * PAGE_SIZE);
3698 		goto fail;
3699 	}
3700 
3701 	/*
3702 	 * page tables allocations ignore external gfp mask, enforce it
3703 	 * by the scope API
3704 	 */
3705 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3706 		flags = memalloc_nofs_save();
3707 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3708 		flags = memalloc_noio_save();
3709 
3710 	do {
3711 		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3712 			page_shift);
3713 		if (nofail && (ret < 0))
3714 			schedule_timeout_uninterruptible(1);
3715 	} while (nofail && (ret < 0));
3716 
3717 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3718 		memalloc_nofs_restore(flags);
3719 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3720 		memalloc_noio_restore(flags);
3721 
3722 	if (ret < 0) {
3723 		warn_alloc(gfp_mask, NULL,
3724 			"vmalloc error: size %lu, failed to map pages",
3725 			area->nr_pages * PAGE_SIZE);
3726 		goto fail;
3727 	}
3728 
3729 	return area->addr;
3730 
3731 fail:
3732 	vfree(area->addr);
3733 	return NULL;
3734 }
3735 
3736 /**
3737  * __vmalloc_node_range - allocate virtually contiguous memory
3738  * @size:		  allocation size
3739  * @align:		  desired alignment
3740  * @start:		  vm area range start
3741  * @end:		  vm area range end
3742  * @gfp_mask:		  flags for the page level allocator
3743  * @prot:		  protection mask for the allocated pages
3744  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3745  * @node:		  node to use for allocation or NUMA_NO_NODE
3746  * @caller:		  caller's return address
3747  *
3748  * Allocate enough pages to cover @size from the page level
3749  * allocator with @gfp_mask flags. Please note that the full set of gfp
3750  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3751  * supported.
3752  * Zone modifiers are not supported. From the reclaim modifiers
3753  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3754  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3755  * __GFP_RETRY_MAYFAIL are not supported).
3756  *
3757  * __GFP_NOWARN can be used to suppress failures messages.
3758  *
3759  * Map them into contiguous kernel virtual space, using a pagetable
3760  * protection of @prot.
3761  *
3762  * Return: the address of the area or %NULL on failure
3763  */
3764 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
3765 			unsigned long start, unsigned long end, gfp_t gfp_mask,
3766 			pgprot_t prot, unsigned long vm_flags, int node,
3767 			const void *caller)
3768 {
3769 	struct vm_struct *area;
3770 	void *ret;
3771 	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3772 	unsigned long real_size = size;
3773 	unsigned long real_align = align;
3774 	unsigned int shift = PAGE_SHIFT;
3775 
3776 	if (WARN_ON_ONCE(!size))
3777 		return NULL;
3778 
3779 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3780 		warn_alloc(gfp_mask, NULL,
3781 			"vmalloc error: size %lu, exceeds total pages",
3782 			real_size);
3783 		return NULL;
3784 	}
3785 
3786 	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3787 		/*
3788 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3789 		 * others like modules don't yet expect huge pages in
3790 		 * their allocations due to apply_to_page_range not
3791 		 * supporting them.
3792 		 */
3793 
3794 		if (arch_vmap_pmd_supported(prot) && size >= PMD_SIZE)
3795 			shift = PMD_SHIFT;
3796 		else
3797 			shift = arch_vmap_pte_supported_shift(size);
3798 
3799 		align = max(real_align, 1UL << shift);
3800 		size = ALIGN(real_size, 1UL << shift);
3801 	}
3802 
3803 again:
3804 	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3805 				  VM_UNINITIALIZED | vm_flags, start, end, node,
3806 				  gfp_mask, caller);
3807 	if (!area) {
3808 		bool nofail = gfp_mask & __GFP_NOFAIL;
3809 		warn_alloc(gfp_mask, NULL,
3810 			"vmalloc error: size %lu, vm_struct allocation failed%s",
3811 			real_size, (nofail) ? ". Retrying." : "");
3812 		if (nofail) {
3813 			schedule_timeout_uninterruptible(1);
3814 			goto again;
3815 		}
3816 		goto fail;
3817 	}
3818 
3819 	/*
3820 	 * Prepare arguments for __vmalloc_area_node() and
3821 	 * kasan_unpoison_vmalloc().
3822 	 */
3823 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3824 		if (kasan_hw_tags_enabled()) {
3825 			/*
3826 			 * Modify protection bits to allow tagging.
3827 			 * This must be done before mapping.
3828 			 */
3829 			prot = arch_vmap_pgprot_tagged(prot);
3830 
3831 			/*
3832 			 * Skip page_alloc poisoning and zeroing for physical
3833 			 * pages backing VM_ALLOC mapping. Memory is instead
3834 			 * poisoned and zeroed by kasan_unpoison_vmalloc().
3835 			 */
3836 			gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
3837 		}
3838 
3839 		/* Take note that the mapping is PAGE_KERNEL. */
3840 		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3841 	}
3842 
3843 	/* Allocate physical pages and map them into vmalloc space. */
3844 	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3845 	if (!ret)
3846 		goto fail;
3847 
3848 	/*
3849 	 * Mark the pages as accessible, now that they are mapped.
3850 	 * The condition for setting KASAN_VMALLOC_INIT should complement the
3851 	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3852 	 * to make sure that memory is initialized under the same conditions.
3853 	 * Tag-based KASAN modes only assign tags to normal non-executable
3854 	 * allocations, see __kasan_unpoison_vmalloc().
3855 	 */
3856 	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3857 	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3858 	    (gfp_mask & __GFP_SKIP_ZERO))
3859 		kasan_flags |= KASAN_VMALLOC_INIT;
3860 	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3861 	area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3862 
3863 	/*
3864 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3865 	 * flag. It means that vm_struct is not fully initialized.
3866 	 * Now, it is fully initialized, so remove this flag here.
3867 	 */
3868 	clear_vm_uninitialized_flag(area);
3869 
3870 	size = PAGE_ALIGN(size);
3871 	if (!(vm_flags & VM_DEFER_KMEMLEAK))
3872 		kmemleak_vmalloc(area, size, gfp_mask);
3873 
3874 	return area->addr;
3875 
3876 fail:
3877 	if (shift > PAGE_SHIFT) {
3878 		shift = PAGE_SHIFT;
3879 		align = real_align;
3880 		size = real_size;
3881 		goto again;
3882 	}
3883 
3884 	return NULL;
3885 }
3886 
3887 /**
3888  * __vmalloc_node - allocate virtually contiguous memory
3889  * @size:	    allocation size
3890  * @align:	    desired alignment
3891  * @gfp_mask:	    flags for the page level allocator
3892  * @node:	    node to use for allocation or NUMA_NO_NODE
3893  * @caller:	    caller's return address
3894  *
3895  * Allocate enough pages to cover @size from the page level allocator with
3896  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3897  *
3898  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3899  * and __GFP_NOFAIL are not supported
3900  *
3901  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3902  * with mm people.
3903  *
3904  * Return: pointer to the allocated memory or %NULL on error
3905  */
3906 void *__vmalloc_node_noprof(unsigned long size, unsigned long align,
3907 			    gfp_t gfp_mask, int node, const void *caller)
3908 {
3909 	return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END,
3910 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3911 }
3912 /*
3913  * This is only for performance analysis of vmalloc and stress purpose.
3914  * It is required by vmalloc test module, therefore do not use it other
3915  * than that.
3916  */
3917 #ifdef CONFIG_TEST_VMALLOC_MODULE
3918 EXPORT_SYMBOL_GPL(__vmalloc_node_noprof);
3919 #endif
3920 
3921 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
3922 {
3923 	return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE,
3924 				__builtin_return_address(0));
3925 }
3926 EXPORT_SYMBOL(__vmalloc_noprof);
3927 
3928 /**
3929  * vmalloc - allocate virtually contiguous memory
3930  * @size:    allocation size
3931  *
3932  * Allocate enough pages to cover @size from the page level
3933  * allocator and map them into contiguous kernel virtual space.
3934  *
3935  * For tight control over page level allocator and protection flags
3936  * use __vmalloc() instead.
3937  *
3938  * Return: pointer to the allocated memory or %NULL on error
3939  */
3940 void *vmalloc_noprof(unsigned long size)
3941 {
3942 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3943 				__builtin_return_address(0));
3944 }
3945 EXPORT_SYMBOL(vmalloc_noprof);
3946 
3947 /**
3948  * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3949  * @size:      allocation size
3950  * @gfp_mask:  flags for the page level allocator
3951  *
3952  * Allocate enough pages to cover @size from the page level
3953  * allocator and map them into contiguous kernel virtual space.
3954  * If @size is greater than or equal to PMD_SIZE, allow using
3955  * huge pages for the memory
3956  *
3957  * Return: pointer to the allocated memory or %NULL on error
3958  */
3959 void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask)
3960 {
3961 	return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
3962 				    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3963 				    NUMA_NO_NODE, __builtin_return_address(0));
3964 }
3965 EXPORT_SYMBOL_GPL(vmalloc_huge_noprof);
3966 
3967 /**
3968  * vzalloc - allocate virtually contiguous memory with zero fill
3969  * @size:    allocation size
3970  *
3971  * Allocate enough pages to cover @size from the page level
3972  * allocator and map them into contiguous kernel virtual space.
3973  * The memory allocated is set to zero.
3974  *
3975  * For tight control over page level allocator and protection flags
3976  * use __vmalloc() instead.
3977  *
3978  * Return: pointer to the allocated memory or %NULL on error
3979  */
3980 void *vzalloc_noprof(unsigned long size)
3981 {
3982 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3983 				__builtin_return_address(0));
3984 }
3985 EXPORT_SYMBOL(vzalloc_noprof);
3986 
3987 /**
3988  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3989  * @size: allocation size
3990  *
3991  * The resulting memory area is zeroed so it can be mapped to userspace
3992  * without leaking data.
3993  *
3994  * Return: pointer to the allocated memory or %NULL on error
3995  */
3996 void *vmalloc_user_noprof(unsigned long size)
3997 {
3998 	return __vmalloc_node_range_noprof(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3999 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
4000 				    VM_USERMAP, NUMA_NO_NODE,
4001 				    __builtin_return_address(0));
4002 }
4003 EXPORT_SYMBOL(vmalloc_user_noprof);
4004 
4005 /**
4006  * vmalloc_node - allocate memory on a specific node
4007  * @size:	  allocation size
4008  * @node:	  numa node
4009  *
4010  * Allocate enough pages to cover @size from the page level
4011  * allocator and map them into contiguous kernel virtual space.
4012  *
4013  * For tight control over page level allocator and protection flags
4014  * use __vmalloc() instead.
4015  *
4016  * Return: pointer to the allocated memory or %NULL on error
4017  */
4018 void *vmalloc_node_noprof(unsigned long size, int node)
4019 {
4020 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node,
4021 			__builtin_return_address(0));
4022 }
4023 EXPORT_SYMBOL(vmalloc_node_noprof);
4024 
4025 /**
4026  * vzalloc_node - allocate memory on a specific node with zero fill
4027  * @size:	allocation size
4028  * @node:	numa node
4029  *
4030  * Allocate enough pages to cover @size from the page level
4031  * allocator and map them into contiguous kernel virtual space.
4032  * The memory allocated is set to zero.
4033  *
4034  * Return: pointer to the allocated memory or %NULL on error
4035  */
4036 void *vzalloc_node_noprof(unsigned long size, int node)
4037 {
4038 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node,
4039 				__builtin_return_address(0));
4040 }
4041 EXPORT_SYMBOL(vzalloc_node_noprof);
4042 
4043 /**
4044  * vrealloc - reallocate virtually contiguous memory; contents remain unchanged
4045  * @p: object to reallocate memory for
4046  * @size: the size to reallocate
4047  * @flags: the flags for the page level allocator
4048  *
4049  * If @p is %NULL, vrealloc() behaves exactly like vmalloc(). If @size is 0 and
4050  * @p is not a %NULL pointer, the object pointed to is freed.
4051  *
4052  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4053  * initial memory allocation, every subsequent call to this API for the same
4054  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4055  * __GFP_ZERO is not fully honored by this API.
4056  *
4057  * In any case, the contents of the object pointed to are preserved up to the
4058  * lesser of the new and old sizes.
4059  *
4060  * This function must not be called concurrently with itself or vfree() for the
4061  * same memory allocation.
4062  *
4063  * Return: pointer to the allocated memory; %NULL if @size is zero or in case of
4064  *         failure
4065  */
4066 void *vrealloc_noprof(const void *p, size_t size, gfp_t flags)
4067 {
4068 	size_t old_size = 0;
4069 	void *n;
4070 
4071 	if (!size) {
4072 		vfree(p);
4073 		return NULL;
4074 	}
4075 
4076 	if (p) {
4077 		struct vm_struct *vm;
4078 
4079 		vm = find_vm_area(p);
4080 		if (unlikely(!vm)) {
4081 			WARN(1, "Trying to vrealloc() nonexistent vm area (%p)\n", p);
4082 			return NULL;
4083 		}
4084 
4085 		old_size = get_vm_area_size(vm);
4086 	}
4087 
4088 	/*
4089 	 * TODO: Shrink the vm_area, i.e. unmap and free unused pages. What
4090 	 * would be a good heuristic for when to shrink the vm_area?
4091 	 */
4092 	if (size <= old_size) {
4093 		/* Zero out spare memory. */
4094 		if (want_init_on_alloc(flags))
4095 			memset((void *)p + size, 0, old_size - size);
4096 
4097 		return (void *)p;
4098 	}
4099 
4100 	/* TODO: Grow the vm_area, i.e. allocate and map additional pages. */
4101 	n = __vmalloc_noprof(size, flags);
4102 	if (!n)
4103 		return NULL;
4104 
4105 	if (p) {
4106 		memcpy(n, p, old_size);
4107 		vfree(p);
4108 	}
4109 
4110 	return n;
4111 }
4112 
4113 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
4114 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4115 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
4116 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
4117 #else
4118 /*
4119  * 64b systems should always have either DMA or DMA32 zones. For others
4120  * GFP_DMA32 should do the right thing and use the normal zone.
4121  */
4122 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4123 #endif
4124 
4125 /**
4126  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
4127  * @size:	allocation size
4128  *
4129  * Allocate enough 32bit PA addressable pages to cover @size from the
4130  * page level allocator and map them into contiguous kernel virtual space.
4131  *
4132  * Return: pointer to the allocated memory or %NULL on error
4133  */
4134 void *vmalloc_32_noprof(unsigned long size)
4135 {
4136 	return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
4137 			__builtin_return_address(0));
4138 }
4139 EXPORT_SYMBOL(vmalloc_32_noprof);
4140 
4141 /**
4142  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
4143  * @size:	     allocation size
4144  *
4145  * The resulting memory area is 32bit addressable and zeroed so it can be
4146  * mapped to userspace without leaking data.
4147  *
4148  * Return: pointer to the allocated memory or %NULL on error
4149  */
4150 void *vmalloc_32_user_noprof(unsigned long size)
4151 {
4152 	return __vmalloc_node_range_noprof(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
4153 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
4154 				    VM_USERMAP, NUMA_NO_NODE,
4155 				    __builtin_return_address(0));
4156 }
4157 EXPORT_SYMBOL(vmalloc_32_user_noprof);
4158 
4159 /*
4160  * Atomically zero bytes in the iterator.
4161  *
4162  * Returns the number of zeroed bytes.
4163  */
4164 static size_t zero_iter(struct iov_iter *iter, size_t count)
4165 {
4166 	size_t remains = count;
4167 
4168 	while (remains > 0) {
4169 		size_t num, copied;
4170 
4171 		num = min_t(size_t, remains, PAGE_SIZE);
4172 		copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
4173 		remains -= copied;
4174 
4175 		if (copied < num)
4176 			break;
4177 	}
4178 
4179 	return count - remains;
4180 }
4181 
4182 /*
4183  * small helper routine, copy contents to iter from addr.
4184  * If the page is not present, fill zero.
4185  *
4186  * Returns the number of copied bytes.
4187  */
4188 static size_t aligned_vread_iter(struct iov_iter *iter,
4189 				 const char *addr, size_t count)
4190 {
4191 	size_t remains = count;
4192 	struct page *page;
4193 
4194 	while (remains > 0) {
4195 		unsigned long offset, length;
4196 		size_t copied = 0;
4197 
4198 		offset = offset_in_page(addr);
4199 		length = PAGE_SIZE - offset;
4200 		if (length > remains)
4201 			length = remains;
4202 		page = vmalloc_to_page(addr);
4203 		/*
4204 		 * To do safe access to this _mapped_ area, we need lock. But
4205 		 * adding lock here means that we need to add overhead of
4206 		 * vmalloc()/vfree() calls for this _debug_ interface, rarely
4207 		 * used. Instead of that, we'll use an local mapping via
4208 		 * copy_page_to_iter_nofault() and accept a small overhead in
4209 		 * this access function.
4210 		 */
4211 		if (page)
4212 			copied = copy_page_to_iter_nofault(page, offset,
4213 							   length, iter);
4214 		else
4215 			copied = zero_iter(iter, length);
4216 
4217 		addr += copied;
4218 		remains -= copied;
4219 
4220 		if (copied != length)
4221 			break;
4222 	}
4223 
4224 	return count - remains;
4225 }
4226 
4227 /*
4228  * Read from a vm_map_ram region of memory.
4229  *
4230  * Returns the number of copied bytes.
4231  */
4232 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
4233 				  size_t count, unsigned long flags)
4234 {
4235 	char *start;
4236 	struct vmap_block *vb;
4237 	struct xarray *xa;
4238 	unsigned long offset;
4239 	unsigned int rs, re;
4240 	size_t remains, n;
4241 
4242 	/*
4243 	 * If it's area created by vm_map_ram() interface directly, but
4244 	 * not further subdividing and delegating management to vmap_block,
4245 	 * handle it here.
4246 	 */
4247 	if (!(flags & VMAP_BLOCK))
4248 		return aligned_vread_iter(iter, addr, count);
4249 
4250 	remains = count;
4251 
4252 	/*
4253 	 * Area is split into regions and tracked with vmap_block, read out
4254 	 * each region and zero fill the hole between regions.
4255 	 */
4256 	xa = addr_to_vb_xa((unsigned long) addr);
4257 	vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
4258 	if (!vb)
4259 		goto finished_zero;
4260 
4261 	spin_lock(&vb->lock);
4262 	if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
4263 		spin_unlock(&vb->lock);
4264 		goto finished_zero;
4265 	}
4266 
4267 	for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
4268 		size_t copied;
4269 
4270 		if (remains == 0)
4271 			goto finished;
4272 
4273 		start = vmap_block_vaddr(vb->va->va_start, rs);
4274 
4275 		if (addr < start) {
4276 			size_t to_zero = min_t(size_t, start - addr, remains);
4277 			size_t zeroed = zero_iter(iter, to_zero);
4278 
4279 			addr += zeroed;
4280 			remains -= zeroed;
4281 
4282 			if (remains == 0 || zeroed != to_zero)
4283 				goto finished;
4284 		}
4285 
4286 		/*it could start reading from the middle of used region*/
4287 		offset = offset_in_page(addr);
4288 		n = ((re - rs + 1) << PAGE_SHIFT) - offset;
4289 		if (n > remains)
4290 			n = remains;
4291 
4292 		copied = aligned_vread_iter(iter, start + offset, n);
4293 
4294 		addr += copied;
4295 		remains -= copied;
4296 
4297 		if (copied != n)
4298 			goto finished;
4299 	}
4300 
4301 	spin_unlock(&vb->lock);
4302 
4303 finished_zero:
4304 	/* zero-fill the left dirty or free regions */
4305 	return count - remains + zero_iter(iter, remains);
4306 finished:
4307 	/* We couldn't copy/zero everything */
4308 	spin_unlock(&vb->lock);
4309 	return count - remains;
4310 }
4311 
4312 /**
4313  * vread_iter() - read vmalloc area in a safe way to an iterator.
4314  * @iter:         the iterator to which data should be written.
4315  * @addr:         vm address.
4316  * @count:        number of bytes to be read.
4317  *
4318  * This function checks that addr is a valid vmalloc'ed area, and
4319  * copy data from that area to a given buffer. If the given memory range
4320  * of [addr...addr+count) includes some valid address, data is copied to
4321  * proper area of @buf. If there are memory holes, they'll be zero-filled.
4322  * IOREMAP area is treated as memory hole and no copy is done.
4323  *
4324  * If [addr...addr+count) doesn't includes any intersects with alive
4325  * vm_struct area, returns 0. @buf should be kernel's buffer.
4326  *
4327  * Note: In usual ops, vread() is never necessary because the caller
4328  * should know vmalloc() area is valid and can use memcpy().
4329  * This is for routines which have to access vmalloc area without
4330  * any information, as /proc/kcore.
4331  *
4332  * Return: number of bytes for which addr and buf should be increased
4333  * (same number as @count) or %0 if [addr...addr+count) doesn't
4334  * include any intersection with valid vmalloc area
4335  */
4336 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
4337 {
4338 	struct vmap_node *vn;
4339 	struct vmap_area *va;
4340 	struct vm_struct *vm;
4341 	char *vaddr;
4342 	size_t n, size, flags, remains;
4343 	unsigned long next;
4344 
4345 	addr = kasan_reset_tag(addr);
4346 
4347 	/* Don't allow overflow */
4348 	if ((unsigned long) addr + count < count)
4349 		count = -(unsigned long) addr;
4350 
4351 	remains = count;
4352 
4353 	vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va);
4354 	if (!vn)
4355 		goto finished_zero;
4356 
4357 	/* no intersects with alive vmap_area */
4358 	if ((unsigned long)addr + remains <= va->va_start)
4359 		goto finished_zero;
4360 
4361 	do {
4362 		size_t copied;
4363 
4364 		if (remains == 0)
4365 			goto finished;
4366 
4367 		vm = va->vm;
4368 		flags = va->flags & VMAP_FLAGS_MASK;
4369 		/*
4370 		 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
4371 		 * be set together with VMAP_RAM.
4372 		 */
4373 		WARN_ON(flags == VMAP_BLOCK);
4374 
4375 		if (!vm && !flags)
4376 			goto next_va;
4377 
4378 		if (vm && (vm->flags & VM_UNINITIALIZED))
4379 			goto next_va;
4380 
4381 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4382 		smp_rmb();
4383 
4384 		vaddr = (char *) va->va_start;
4385 		size = vm ? get_vm_area_size(vm) : va_size(va);
4386 
4387 		if (addr >= vaddr + size)
4388 			goto next_va;
4389 
4390 		if (addr < vaddr) {
4391 			size_t to_zero = min_t(size_t, vaddr - addr, remains);
4392 			size_t zeroed = zero_iter(iter, to_zero);
4393 
4394 			addr += zeroed;
4395 			remains -= zeroed;
4396 
4397 			if (remains == 0 || zeroed != to_zero)
4398 				goto finished;
4399 		}
4400 
4401 		n = vaddr + size - addr;
4402 		if (n > remains)
4403 			n = remains;
4404 
4405 		if (flags & VMAP_RAM)
4406 			copied = vmap_ram_vread_iter(iter, addr, n, flags);
4407 		else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE))))
4408 			copied = aligned_vread_iter(iter, addr, n);
4409 		else /* IOREMAP | SPARSE area is treated as memory hole */
4410 			copied = zero_iter(iter, n);
4411 
4412 		addr += copied;
4413 		remains -= copied;
4414 
4415 		if (copied != n)
4416 			goto finished;
4417 
4418 	next_va:
4419 		next = va->va_end;
4420 		spin_unlock(&vn->busy.lock);
4421 	} while ((vn = find_vmap_area_exceed_addr_lock(next, &va)));
4422 
4423 finished_zero:
4424 	if (vn)
4425 		spin_unlock(&vn->busy.lock);
4426 
4427 	/* zero-fill memory holes */
4428 	return count - remains + zero_iter(iter, remains);
4429 finished:
4430 	/* Nothing remains, or We couldn't copy/zero everything. */
4431 	if (vn)
4432 		spin_unlock(&vn->busy.lock);
4433 
4434 	return count - remains;
4435 }
4436 
4437 /**
4438  * remap_vmalloc_range_partial - map vmalloc pages to userspace
4439  * @vma:		vma to cover
4440  * @uaddr:		target user address to start at
4441  * @kaddr:		virtual address of vmalloc kernel memory
4442  * @pgoff:		offset from @kaddr to start at
4443  * @size:		size of map area
4444  *
4445  * Returns:	0 for success, -Exxx on failure
4446  *
4447  * This function checks that @kaddr is a valid vmalloc'ed area,
4448  * and that it is big enough to cover the range starting at
4449  * @uaddr in @vma. Will return failure if that criteria isn't
4450  * met.
4451  *
4452  * Similar to remap_pfn_range() (see mm/memory.c)
4453  */
4454 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
4455 				void *kaddr, unsigned long pgoff,
4456 				unsigned long size)
4457 {
4458 	struct vm_struct *area;
4459 	unsigned long off;
4460 	unsigned long end_index;
4461 
4462 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
4463 		return -EINVAL;
4464 
4465 	size = PAGE_ALIGN(size);
4466 
4467 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
4468 		return -EINVAL;
4469 
4470 	area = find_vm_area(kaddr);
4471 	if (!area)
4472 		return -EINVAL;
4473 
4474 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
4475 		return -EINVAL;
4476 
4477 	if (check_add_overflow(size, off, &end_index) ||
4478 	    end_index > get_vm_area_size(area))
4479 		return -EINVAL;
4480 	kaddr += off;
4481 
4482 	do {
4483 		struct page *page = vmalloc_to_page(kaddr);
4484 		int ret;
4485 
4486 		ret = vm_insert_page(vma, uaddr, page);
4487 		if (ret)
4488 			return ret;
4489 
4490 		uaddr += PAGE_SIZE;
4491 		kaddr += PAGE_SIZE;
4492 		size -= PAGE_SIZE;
4493 	} while (size > 0);
4494 
4495 	vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
4496 
4497 	return 0;
4498 }
4499 
4500 /**
4501  * remap_vmalloc_range - map vmalloc pages to userspace
4502  * @vma:		vma to cover (map full range of vma)
4503  * @addr:		vmalloc memory
4504  * @pgoff:		number of pages into addr before first page to map
4505  *
4506  * Returns:	0 for success, -Exxx on failure
4507  *
4508  * This function checks that addr is a valid vmalloc'ed area, and
4509  * that it is big enough to cover the vma. Will return failure if
4510  * that criteria isn't met.
4511  *
4512  * Similar to remap_pfn_range() (see mm/memory.c)
4513  */
4514 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
4515 						unsigned long pgoff)
4516 {
4517 	return remap_vmalloc_range_partial(vma, vma->vm_start,
4518 					   addr, pgoff,
4519 					   vma->vm_end - vma->vm_start);
4520 }
4521 EXPORT_SYMBOL(remap_vmalloc_range);
4522 
4523 void free_vm_area(struct vm_struct *area)
4524 {
4525 	struct vm_struct *ret;
4526 	ret = remove_vm_area(area->addr);
4527 	BUG_ON(ret != area);
4528 	kfree(area);
4529 }
4530 EXPORT_SYMBOL_GPL(free_vm_area);
4531 
4532 #ifdef CONFIG_SMP
4533 static struct vmap_area *node_to_va(struct rb_node *n)
4534 {
4535 	return rb_entry_safe(n, struct vmap_area, rb_node);
4536 }
4537 
4538 /**
4539  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
4540  * @addr: target address
4541  *
4542  * Returns: vmap_area if it is found. If there is no such area
4543  *   the first highest(reverse order) vmap_area is returned
4544  *   i.e. va->va_start < addr && va->va_end < addr or NULL
4545  *   if there are no any areas before @addr.
4546  */
4547 static struct vmap_area *
4548 pvm_find_va_enclose_addr(unsigned long addr)
4549 {
4550 	struct vmap_area *va, *tmp;
4551 	struct rb_node *n;
4552 
4553 	n = free_vmap_area_root.rb_node;
4554 	va = NULL;
4555 
4556 	while (n) {
4557 		tmp = rb_entry(n, struct vmap_area, rb_node);
4558 		if (tmp->va_start <= addr) {
4559 			va = tmp;
4560 			if (tmp->va_end >= addr)
4561 				break;
4562 
4563 			n = n->rb_right;
4564 		} else {
4565 			n = n->rb_left;
4566 		}
4567 	}
4568 
4569 	return va;
4570 }
4571 
4572 /**
4573  * pvm_determine_end_from_reverse - find the highest aligned address
4574  * of free block below VMALLOC_END
4575  * @va:
4576  *   in - the VA we start the search(reverse order);
4577  *   out - the VA with the highest aligned end address.
4578  * @align: alignment for required highest address
4579  *
4580  * Returns: determined end address within vmap_area
4581  */
4582 static unsigned long
4583 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
4584 {
4585 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4586 	unsigned long addr;
4587 
4588 	if (likely(*va)) {
4589 		list_for_each_entry_from_reverse((*va),
4590 				&free_vmap_area_list, list) {
4591 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
4592 			if ((*va)->va_start < addr)
4593 				return addr;
4594 		}
4595 	}
4596 
4597 	return 0;
4598 }
4599 
4600 /**
4601  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4602  * @offsets: array containing offset of each area
4603  * @sizes: array containing size of each area
4604  * @nr_vms: the number of areas to allocate
4605  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4606  *
4607  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4608  *	    vm_structs on success, %NULL on failure
4609  *
4610  * Percpu allocator wants to use congruent vm areas so that it can
4611  * maintain the offsets among percpu areas.  This function allocates
4612  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
4613  * be scattered pretty far, distance between two areas easily going up
4614  * to gigabytes.  To avoid interacting with regular vmallocs, these
4615  * areas are allocated from top.
4616  *
4617  * Despite its complicated look, this allocator is rather simple. It
4618  * does everything top-down and scans free blocks from the end looking
4619  * for matching base. While scanning, if any of the areas do not fit the
4620  * base address is pulled down to fit the area. Scanning is repeated till
4621  * all the areas fit and then all necessary data structures are inserted
4622  * and the result is returned.
4623  */
4624 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4625 				     const size_t *sizes, int nr_vms,
4626 				     size_t align)
4627 {
4628 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4629 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4630 	struct vmap_area **vas, *va;
4631 	struct vm_struct **vms;
4632 	int area, area2, last_area, term_area;
4633 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
4634 	bool purged = false;
4635 
4636 	/* verify parameters and allocate data structures */
4637 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4638 	for (last_area = 0, area = 0; area < nr_vms; area++) {
4639 		start = offsets[area];
4640 		end = start + sizes[area];
4641 
4642 		/* is everything aligned properly? */
4643 		BUG_ON(!IS_ALIGNED(offsets[area], align));
4644 		BUG_ON(!IS_ALIGNED(sizes[area], align));
4645 
4646 		/* detect the area with the highest address */
4647 		if (start > offsets[last_area])
4648 			last_area = area;
4649 
4650 		for (area2 = area + 1; area2 < nr_vms; area2++) {
4651 			unsigned long start2 = offsets[area2];
4652 			unsigned long end2 = start2 + sizes[area2];
4653 
4654 			BUG_ON(start2 < end && start < end2);
4655 		}
4656 	}
4657 	last_end = offsets[last_area] + sizes[last_area];
4658 
4659 	if (vmalloc_end - vmalloc_start < last_end) {
4660 		WARN_ON(true);
4661 		return NULL;
4662 	}
4663 
4664 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4665 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4666 	if (!vas || !vms)
4667 		goto err_free2;
4668 
4669 	for (area = 0; area < nr_vms; area++) {
4670 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4671 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4672 		if (!vas[area] || !vms[area])
4673 			goto err_free;
4674 	}
4675 retry:
4676 	spin_lock(&free_vmap_area_lock);
4677 
4678 	/* start scanning - we scan from the top, begin with the last area */
4679 	area = term_area = last_area;
4680 	start = offsets[area];
4681 	end = start + sizes[area];
4682 
4683 	va = pvm_find_va_enclose_addr(vmalloc_end);
4684 	base = pvm_determine_end_from_reverse(&va, align) - end;
4685 
4686 	while (true) {
4687 		/*
4688 		 * base might have underflowed, add last_end before
4689 		 * comparing.
4690 		 */
4691 		if (base + last_end < vmalloc_start + last_end)
4692 			goto overflow;
4693 
4694 		/*
4695 		 * Fitting base has not been found.
4696 		 */
4697 		if (va == NULL)
4698 			goto overflow;
4699 
4700 		/*
4701 		 * If required width exceeds current VA block, move
4702 		 * base downwards and then recheck.
4703 		 */
4704 		if (base + end > va->va_end) {
4705 			base = pvm_determine_end_from_reverse(&va, align) - end;
4706 			term_area = area;
4707 			continue;
4708 		}
4709 
4710 		/*
4711 		 * If this VA does not fit, move base downwards and recheck.
4712 		 */
4713 		if (base + start < va->va_start) {
4714 			va = node_to_va(rb_prev(&va->rb_node));
4715 			base = pvm_determine_end_from_reverse(&va, align) - end;
4716 			term_area = area;
4717 			continue;
4718 		}
4719 
4720 		/*
4721 		 * This area fits, move on to the previous one.  If
4722 		 * the previous one is the terminal one, we're done.
4723 		 */
4724 		area = (area + nr_vms - 1) % nr_vms;
4725 		if (area == term_area)
4726 			break;
4727 
4728 		start = offsets[area];
4729 		end = start + sizes[area];
4730 		va = pvm_find_va_enclose_addr(base + end);
4731 	}
4732 
4733 	/* we've found a fitting base, insert all va's */
4734 	for (area = 0; area < nr_vms; area++) {
4735 		int ret;
4736 
4737 		start = base + offsets[area];
4738 		size = sizes[area];
4739 
4740 		va = pvm_find_va_enclose_addr(start);
4741 		if (WARN_ON_ONCE(va == NULL))
4742 			/* It is a BUG(), but trigger recovery instead. */
4743 			goto recovery;
4744 
4745 		ret = va_clip(&free_vmap_area_root,
4746 			&free_vmap_area_list, va, start, size);
4747 		if (WARN_ON_ONCE(unlikely(ret)))
4748 			/* It is a BUG(), but trigger recovery instead. */
4749 			goto recovery;
4750 
4751 		/* Allocated area. */
4752 		va = vas[area];
4753 		va->va_start = start;
4754 		va->va_end = start + size;
4755 	}
4756 
4757 	spin_unlock(&free_vmap_area_lock);
4758 
4759 	/* populate the kasan shadow space */
4760 	for (area = 0; area < nr_vms; area++) {
4761 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4762 			goto err_free_shadow;
4763 	}
4764 
4765 	/* insert all vm's */
4766 	for (area = 0; area < nr_vms; area++) {
4767 		struct vmap_node *vn = addr_to_node(vas[area]->va_start);
4768 
4769 		spin_lock(&vn->busy.lock);
4770 		insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head);
4771 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
4772 				 pcpu_get_vm_areas);
4773 		spin_unlock(&vn->busy.lock);
4774 	}
4775 
4776 	/*
4777 	 * Mark allocated areas as accessible. Do it now as a best-effort
4778 	 * approach, as they can be mapped outside of vmalloc code.
4779 	 * With hardware tag-based KASAN, marking is skipped for
4780 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4781 	 */
4782 	for (area = 0; area < nr_vms; area++)
4783 		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4784 				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4785 
4786 	kfree(vas);
4787 	return vms;
4788 
4789 recovery:
4790 	/*
4791 	 * Remove previously allocated areas. There is no
4792 	 * need in removing these areas from the busy tree,
4793 	 * because they are inserted only on the final step
4794 	 * and when pcpu_get_vm_areas() is success.
4795 	 */
4796 	while (area--) {
4797 		orig_start = vas[area]->va_start;
4798 		orig_end = vas[area]->va_end;
4799 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4800 				&free_vmap_area_list);
4801 		if (va)
4802 			kasan_release_vmalloc(orig_start, orig_end,
4803 				va->va_start, va->va_end,
4804 				KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH);
4805 		vas[area] = NULL;
4806 	}
4807 
4808 overflow:
4809 	spin_unlock(&free_vmap_area_lock);
4810 	if (!purged) {
4811 		reclaim_and_purge_vmap_areas();
4812 		purged = true;
4813 
4814 		/* Before "retry", check if we recover. */
4815 		for (area = 0; area < nr_vms; area++) {
4816 			if (vas[area])
4817 				continue;
4818 
4819 			vas[area] = kmem_cache_zalloc(
4820 				vmap_area_cachep, GFP_KERNEL);
4821 			if (!vas[area])
4822 				goto err_free;
4823 		}
4824 
4825 		goto retry;
4826 	}
4827 
4828 err_free:
4829 	for (area = 0; area < nr_vms; area++) {
4830 		if (vas[area])
4831 			kmem_cache_free(vmap_area_cachep, vas[area]);
4832 
4833 		kfree(vms[area]);
4834 	}
4835 err_free2:
4836 	kfree(vas);
4837 	kfree(vms);
4838 	return NULL;
4839 
4840 err_free_shadow:
4841 	spin_lock(&free_vmap_area_lock);
4842 	/*
4843 	 * We release all the vmalloc shadows, even the ones for regions that
4844 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
4845 	 * being able to tolerate this case.
4846 	 */
4847 	for (area = 0; area < nr_vms; area++) {
4848 		orig_start = vas[area]->va_start;
4849 		orig_end = vas[area]->va_end;
4850 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4851 				&free_vmap_area_list);
4852 		if (va)
4853 			kasan_release_vmalloc(orig_start, orig_end,
4854 				va->va_start, va->va_end,
4855 				KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH);
4856 		vas[area] = NULL;
4857 		kfree(vms[area]);
4858 	}
4859 	spin_unlock(&free_vmap_area_lock);
4860 	kfree(vas);
4861 	kfree(vms);
4862 	return NULL;
4863 }
4864 
4865 /**
4866  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4867  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4868  * @nr_vms: the number of allocated areas
4869  *
4870  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4871  */
4872 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4873 {
4874 	int i;
4875 
4876 	for (i = 0; i < nr_vms; i++)
4877 		free_vm_area(vms[i]);
4878 	kfree(vms);
4879 }
4880 #endif	/* CONFIG_SMP */
4881 
4882 #ifdef CONFIG_PRINTK
4883 bool vmalloc_dump_obj(void *object)
4884 {
4885 	const void *caller;
4886 	struct vm_struct *vm;
4887 	struct vmap_area *va;
4888 	struct vmap_node *vn;
4889 	unsigned long addr;
4890 	unsigned int nr_pages;
4891 
4892 	addr = PAGE_ALIGN((unsigned long) object);
4893 	vn = addr_to_node(addr);
4894 
4895 	if (!spin_trylock(&vn->busy.lock))
4896 		return false;
4897 
4898 	va = __find_vmap_area(addr, &vn->busy.root);
4899 	if (!va || !va->vm) {
4900 		spin_unlock(&vn->busy.lock);
4901 		return false;
4902 	}
4903 
4904 	vm = va->vm;
4905 	addr = (unsigned long) vm->addr;
4906 	caller = vm->caller;
4907 	nr_pages = vm->nr_pages;
4908 	spin_unlock(&vn->busy.lock);
4909 
4910 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4911 		nr_pages, addr, caller);
4912 
4913 	return true;
4914 }
4915 #endif
4916 
4917 #ifdef CONFIG_PROC_FS
4918 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4919 {
4920 	if (IS_ENABLED(CONFIG_NUMA)) {
4921 		unsigned int nr, *counters = m->private;
4922 		unsigned int step = 1U << vm_area_page_order(v);
4923 
4924 		if (!counters)
4925 			return;
4926 
4927 		if (v->flags & VM_UNINITIALIZED)
4928 			return;
4929 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4930 		smp_rmb();
4931 
4932 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4933 
4934 		for (nr = 0; nr < v->nr_pages; nr += step)
4935 			counters[page_to_nid(v->pages[nr])] += step;
4936 		for_each_node_state(nr, N_HIGH_MEMORY)
4937 			if (counters[nr])
4938 				seq_printf(m, " N%u=%u", nr, counters[nr]);
4939 	}
4940 }
4941 
4942 static void show_purge_info(struct seq_file *m)
4943 {
4944 	struct vmap_node *vn;
4945 	struct vmap_area *va;
4946 	int i;
4947 
4948 	for (i = 0; i < nr_vmap_nodes; i++) {
4949 		vn = &vmap_nodes[i];
4950 
4951 		spin_lock(&vn->lazy.lock);
4952 		list_for_each_entry(va, &vn->lazy.head, list) {
4953 			seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4954 				(void *)va->va_start, (void *)va->va_end,
4955 				va_size(va));
4956 		}
4957 		spin_unlock(&vn->lazy.lock);
4958 	}
4959 }
4960 
4961 static int vmalloc_info_show(struct seq_file *m, void *p)
4962 {
4963 	struct vmap_node *vn;
4964 	struct vmap_area *va;
4965 	struct vm_struct *v;
4966 	int i;
4967 
4968 	for (i = 0; i < nr_vmap_nodes; i++) {
4969 		vn = &vmap_nodes[i];
4970 
4971 		spin_lock(&vn->busy.lock);
4972 		list_for_each_entry(va, &vn->busy.head, list) {
4973 			if (!va->vm) {
4974 				if (va->flags & VMAP_RAM)
4975 					seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4976 						(void *)va->va_start, (void *)va->va_end,
4977 						va_size(va));
4978 
4979 				continue;
4980 			}
4981 
4982 			v = va->vm;
4983 
4984 			seq_printf(m, "0x%pK-0x%pK %7ld",
4985 				v->addr, v->addr + v->size, v->size);
4986 
4987 			if (v->caller)
4988 				seq_printf(m, " %pS", v->caller);
4989 
4990 			if (v->nr_pages)
4991 				seq_printf(m, " pages=%d", v->nr_pages);
4992 
4993 			if (v->phys_addr)
4994 				seq_printf(m, " phys=%pa", &v->phys_addr);
4995 
4996 			if (v->flags & VM_IOREMAP)
4997 				seq_puts(m, " ioremap");
4998 
4999 			if (v->flags & VM_SPARSE)
5000 				seq_puts(m, " sparse");
5001 
5002 			if (v->flags & VM_ALLOC)
5003 				seq_puts(m, " vmalloc");
5004 
5005 			if (v->flags & VM_MAP)
5006 				seq_puts(m, " vmap");
5007 
5008 			if (v->flags & VM_USERMAP)
5009 				seq_puts(m, " user");
5010 
5011 			if (v->flags & VM_DMA_COHERENT)
5012 				seq_puts(m, " dma-coherent");
5013 
5014 			if (is_vmalloc_addr(v->pages))
5015 				seq_puts(m, " vpages");
5016 
5017 			show_numa_info(m, v);
5018 			seq_putc(m, '\n');
5019 		}
5020 		spin_unlock(&vn->busy.lock);
5021 	}
5022 
5023 	/*
5024 	 * As a final step, dump "unpurged" areas.
5025 	 */
5026 	show_purge_info(m);
5027 	return 0;
5028 }
5029 
5030 static int __init proc_vmalloc_init(void)
5031 {
5032 	void *priv_data = NULL;
5033 
5034 	if (IS_ENABLED(CONFIG_NUMA))
5035 		priv_data = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
5036 
5037 	proc_create_single_data("vmallocinfo",
5038 		0400, NULL, vmalloc_info_show, priv_data);
5039 
5040 	return 0;
5041 }
5042 module_init(proc_vmalloc_init);
5043 
5044 #endif
5045 
5046 static void __init vmap_init_free_space(void)
5047 {
5048 	unsigned long vmap_start = 1;
5049 	const unsigned long vmap_end = ULONG_MAX;
5050 	struct vmap_area *free;
5051 	struct vm_struct *busy;
5052 
5053 	/*
5054 	 *     B     F     B     B     B     F
5055 	 * -|-----|.....|-----|-----|-----|.....|-
5056 	 *  |           The KVA space           |
5057 	 *  |<--------------------------------->|
5058 	 */
5059 	for (busy = vmlist; busy; busy = busy->next) {
5060 		if ((unsigned long) busy->addr - vmap_start > 0) {
5061 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5062 			if (!WARN_ON_ONCE(!free)) {
5063 				free->va_start = vmap_start;
5064 				free->va_end = (unsigned long) busy->addr;
5065 
5066 				insert_vmap_area_augment(free, NULL,
5067 					&free_vmap_area_root,
5068 						&free_vmap_area_list);
5069 			}
5070 		}
5071 
5072 		vmap_start = (unsigned long) busy->addr + busy->size;
5073 	}
5074 
5075 	if (vmap_end - vmap_start > 0) {
5076 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5077 		if (!WARN_ON_ONCE(!free)) {
5078 			free->va_start = vmap_start;
5079 			free->va_end = vmap_end;
5080 
5081 			insert_vmap_area_augment(free, NULL,
5082 				&free_vmap_area_root,
5083 					&free_vmap_area_list);
5084 		}
5085 	}
5086 }
5087 
5088 static void vmap_init_nodes(void)
5089 {
5090 	struct vmap_node *vn;
5091 	int i, n;
5092 
5093 #if BITS_PER_LONG == 64
5094 	/*
5095 	 * A high threshold of max nodes is fixed and bound to 128,
5096 	 * thus a scale factor is 1 for systems where number of cores
5097 	 * are less or equal to specified threshold.
5098 	 *
5099 	 * As for NUMA-aware notes. For bigger systems, for example
5100 	 * NUMA with multi-sockets, where we can end-up with thousands
5101 	 * of cores in total, a "sub-numa-clustering" should be added.
5102 	 *
5103 	 * In this case a NUMA domain is considered as a single entity
5104 	 * with dedicated sub-nodes in it which describe one group or
5105 	 * set of cores. Therefore a per-domain purging is supposed to
5106 	 * be added as well as a per-domain balancing.
5107 	 */
5108 	n = clamp_t(unsigned int, num_possible_cpus(), 1, 128);
5109 
5110 	if (n > 1) {
5111 		vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN);
5112 		if (vn) {
5113 			/* Node partition is 16 pages. */
5114 			vmap_zone_size = (1 << 4) * PAGE_SIZE;
5115 			nr_vmap_nodes = n;
5116 			vmap_nodes = vn;
5117 		} else {
5118 			pr_err("Failed to allocate an array. Disable a node layer\n");
5119 		}
5120 	}
5121 #endif
5122 
5123 	for (n = 0; n < nr_vmap_nodes; n++) {
5124 		vn = &vmap_nodes[n];
5125 		vn->busy.root = RB_ROOT;
5126 		INIT_LIST_HEAD(&vn->busy.head);
5127 		spin_lock_init(&vn->busy.lock);
5128 
5129 		vn->lazy.root = RB_ROOT;
5130 		INIT_LIST_HEAD(&vn->lazy.head);
5131 		spin_lock_init(&vn->lazy.lock);
5132 
5133 		for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
5134 			INIT_LIST_HEAD(&vn->pool[i].head);
5135 			WRITE_ONCE(vn->pool[i].len, 0);
5136 		}
5137 
5138 		spin_lock_init(&vn->pool_lock);
5139 	}
5140 }
5141 
5142 static unsigned long
5143 vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5144 {
5145 	unsigned long count;
5146 	struct vmap_node *vn;
5147 	int i, j;
5148 
5149 	for (count = 0, i = 0; i < nr_vmap_nodes; i++) {
5150 		vn = &vmap_nodes[i];
5151 
5152 		for (j = 0; j < MAX_VA_SIZE_PAGES; j++)
5153 			count += READ_ONCE(vn->pool[j].len);
5154 	}
5155 
5156 	return count ? count : SHRINK_EMPTY;
5157 }
5158 
5159 static unsigned long
5160 vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5161 {
5162 	int i;
5163 
5164 	for (i = 0; i < nr_vmap_nodes; i++)
5165 		decay_va_pool_node(&vmap_nodes[i], true);
5166 
5167 	return SHRINK_STOP;
5168 }
5169 
5170 void __init vmalloc_init(void)
5171 {
5172 	struct shrinker *vmap_node_shrinker;
5173 	struct vmap_area *va;
5174 	struct vmap_node *vn;
5175 	struct vm_struct *tmp;
5176 	int i;
5177 
5178 	/*
5179 	 * Create the cache for vmap_area objects.
5180 	 */
5181 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
5182 
5183 	for_each_possible_cpu(i) {
5184 		struct vmap_block_queue *vbq;
5185 		struct vfree_deferred *p;
5186 
5187 		vbq = &per_cpu(vmap_block_queue, i);
5188 		spin_lock_init(&vbq->lock);
5189 		INIT_LIST_HEAD(&vbq->free);
5190 		p = &per_cpu(vfree_deferred, i);
5191 		init_llist_head(&p->list);
5192 		INIT_WORK(&p->wq, delayed_vfree_work);
5193 		xa_init(&vbq->vmap_blocks);
5194 	}
5195 
5196 	/*
5197 	 * Setup nodes before importing vmlist.
5198 	 */
5199 	vmap_init_nodes();
5200 
5201 	/* Import existing vmlist entries. */
5202 	for (tmp = vmlist; tmp; tmp = tmp->next) {
5203 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5204 		if (WARN_ON_ONCE(!va))
5205 			continue;
5206 
5207 		va->va_start = (unsigned long)tmp->addr;
5208 		va->va_end = va->va_start + tmp->size;
5209 		va->vm = tmp;
5210 
5211 		vn = addr_to_node(va->va_start);
5212 		insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
5213 	}
5214 
5215 	/*
5216 	 * Now we can initialize a free vmap space.
5217 	 */
5218 	vmap_init_free_space();
5219 	vmap_initialized = true;
5220 
5221 	vmap_node_shrinker = shrinker_alloc(0, "vmap-node");
5222 	if (!vmap_node_shrinker) {
5223 		pr_err("Failed to allocate vmap-node shrinker!\n");
5224 		return;
5225 	}
5226 
5227 	vmap_node_shrinker->count_objects = vmap_node_shrink_count;
5228 	vmap_node_shrinker->scan_objects = vmap_node_shrink_scan;
5229 	shrinker_register(vmap_node_shrinker);
5230 }
5231