xref: /linux/mm/vmalloc.c (revision d42990f486b56ce4381edd42a47119c073b131d5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
37 #include <linux/overflow.h>
38 #include <linux/pgtable.h>
39 #include <linux/uaccess.h>
40 #include <linux/hugetlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/shmparam.h>
43 
44 #include "internal.h"
45 #include "pgalloc-track.h"
46 
47 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
48 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
49 
50 static int __init set_nohugeiomap(char *str)
51 {
52 	ioremap_max_page_shift = PAGE_SHIFT;
53 	return 0;
54 }
55 early_param("nohugeiomap", set_nohugeiomap);
56 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
57 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
58 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
59 
60 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
61 static bool __ro_after_init vmap_allow_huge = true;
62 
63 static int __init set_nohugevmalloc(char *str)
64 {
65 	vmap_allow_huge = false;
66 	return 0;
67 }
68 early_param("nohugevmalloc", set_nohugevmalloc);
69 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
70 static const bool vmap_allow_huge = false;
71 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
72 
73 bool is_vmalloc_addr(const void *x)
74 {
75 	unsigned long addr = (unsigned long)x;
76 
77 	return addr >= VMALLOC_START && addr < VMALLOC_END;
78 }
79 EXPORT_SYMBOL(is_vmalloc_addr);
80 
81 struct vfree_deferred {
82 	struct llist_head list;
83 	struct work_struct wq;
84 };
85 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
86 
87 static void __vunmap(const void *, int);
88 
89 static void free_work(struct work_struct *w)
90 {
91 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
92 	struct llist_node *t, *llnode;
93 
94 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
95 		__vunmap((void *)llnode, 1);
96 }
97 
98 /*** Page table manipulation functions ***/
99 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
100 			phys_addr_t phys_addr, pgprot_t prot,
101 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
102 {
103 	pte_t *pte;
104 	u64 pfn;
105 	unsigned long size = PAGE_SIZE;
106 
107 	pfn = phys_addr >> PAGE_SHIFT;
108 	pte = pte_alloc_kernel_track(pmd, addr, mask);
109 	if (!pte)
110 		return -ENOMEM;
111 	do {
112 		BUG_ON(!pte_none(*pte));
113 
114 #ifdef CONFIG_HUGETLB_PAGE
115 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
116 		if (size != PAGE_SIZE) {
117 			pte_t entry = pfn_pte(pfn, prot);
118 
119 			entry = pte_mkhuge(entry);
120 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
121 			set_huge_pte_at(&init_mm, addr, pte, entry);
122 			pfn += PFN_DOWN(size);
123 			continue;
124 		}
125 #endif
126 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
127 		pfn++;
128 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
129 	*mask |= PGTBL_PTE_MODIFIED;
130 	return 0;
131 }
132 
133 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
134 			phys_addr_t phys_addr, pgprot_t prot,
135 			unsigned int max_page_shift)
136 {
137 	if (max_page_shift < PMD_SHIFT)
138 		return 0;
139 
140 	if (!arch_vmap_pmd_supported(prot))
141 		return 0;
142 
143 	if ((end - addr) != PMD_SIZE)
144 		return 0;
145 
146 	if (!IS_ALIGNED(addr, PMD_SIZE))
147 		return 0;
148 
149 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
150 		return 0;
151 
152 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
153 		return 0;
154 
155 	return pmd_set_huge(pmd, phys_addr, prot);
156 }
157 
158 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
159 			phys_addr_t phys_addr, pgprot_t prot,
160 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
161 {
162 	pmd_t *pmd;
163 	unsigned long next;
164 
165 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
166 	if (!pmd)
167 		return -ENOMEM;
168 	do {
169 		next = pmd_addr_end(addr, end);
170 
171 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
172 					max_page_shift)) {
173 			*mask |= PGTBL_PMD_MODIFIED;
174 			continue;
175 		}
176 
177 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
178 			return -ENOMEM;
179 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
180 	return 0;
181 }
182 
183 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
184 			phys_addr_t phys_addr, pgprot_t prot,
185 			unsigned int max_page_shift)
186 {
187 	if (max_page_shift < PUD_SHIFT)
188 		return 0;
189 
190 	if (!arch_vmap_pud_supported(prot))
191 		return 0;
192 
193 	if ((end - addr) != PUD_SIZE)
194 		return 0;
195 
196 	if (!IS_ALIGNED(addr, PUD_SIZE))
197 		return 0;
198 
199 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
200 		return 0;
201 
202 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
203 		return 0;
204 
205 	return pud_set_huge(pud, phys_addr, prot);
206 }
207 
208 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
209 			phys_addr_t phys_addr, pgprot_t prot,
210 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
211 {
212 	pud_t *pud;
213 	unsigned long next;
214 
215 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
216 	if (!pud)
217 		return -ENOMEM;
218 	do {
219 		next = pud_addr_end(addr, end);
220 
221 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
222 					max_page_shift)) {
223 			*mask |= PGTBL_PUD_MODIFIED;
224 			continue;
225 		}
226 
227 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
228 					max_page_shift, mask))
229 			return -ENOMEM;
230 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
231 	return 0;
232 }
233 
234 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
235 			phys_addr_t phys_addr, pgprot_t prot,
236 			unsigned int max_page_shift)
237 {
238 	if (max_page_shift < P4D_SHIFT)
239 		return 0;
240 
241 	if (!arch_vmap_p4d_supported(prot))
242 		return 0;
243 
244 	if ((end - addr) != P4D_SIZE)
245 		return 0;
246 
247 	if (!IS_ALIGNED(addr, P4D_SIZE))
248 		return 0;
249 
250 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
251 		return 0;
252 
253 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
254 		return 0;
255 
256 	return p4d_set_huge(p4d, phys_addr, prot);
257 }
258 
259 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
260 			phys_addr_t phys_addr, pgprot_t prot,
261 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
262 {
263 	p4d_t *p4d;
264 	unsigned long next;
265 
266 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
267 	if (!p4d)
268 		return -ENOMEM;
269 	do {
270 		next = p4d_addr_end(addr, end);
271 
272 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
273 					max_page_shift)) {
274 			*mask |= PGTBL_P4D_MODIFIED;
275 			continue;
276 		}
277 
278 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
279 					max_page_shift, mask))
280 			return -ENOMEM;
281 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
282 	return 0;
283 }
284 
285 static int vmap_range_noflush(unsigned long addr, unsigned long end,
286 			phys_addr_t phys_addr, pgprot_t prot,
287 			unsigned int max_page_shift)
288 {
289 	pgd_t *pgd;
290 	unsigned long start;
291 	unsigned long next;
292 	int err;
293 	pgtbl_mod_mask mask = 0;
294 
295 	might_sleep();
296 	BUG_ON(addr >= end);
297 
298 	start = addr;
299 	pgd = pgd_offset_k(addr);
300 	do {
301 		next = pgd_addr_end(addr, end);
302 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
303 					max_page_shift, &mask);
304 		if (err)
305 			break;
306 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
307 
308 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
309 		arch_sync_kernel_mappings(start, end);
310 
311 	return err;
312 }
313 
314 int ioremap_page_range(unsigned long addr, unsigned long end,
315 		phys_addr_t phys_addr, pgprot_t prot)
316 {
317 	int err;
318 
319 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
320 				 ioremap_max_page_shift);
321 	flush_cache_vmap(addr, end);
322 	return err;
323 }
324 
325 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
326 			     pgtbl_mod_mask *mask)
327 {
328 	pte_t *pte;
329 
330 	pte = pte_offset_kernel(pmd, addr);
331 	do {
332 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
333 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
334 	} while (pte++, addr += PAGE_SIZE, addr != end);
335 	*mask |= PGTBL_PTE_MODIFIED;
336 }
337 
338 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
339 			     pgtbl_mod_mask *mask)
340 {
341 	pmd_t *pmd;
342 	unsigned long next;
343 	int cleared;
344 
345 	pmd = pmd_offset(pud, addr);
346 	do {
347 		next = pmd_addr_end(addr, end);
348 
349 		cleared = pmd_clear_huge(pmd);
350 		if (cleared || pmd_bad(*pmd))
351 			*mask |= PGTBL_PMD_MODIFIED;
352 
353 		if (cleared)
354 			continue;
355 		if (pmd_none_or_clear_bad(pmd))
356 			continue;
357 		vunmap_pte_range(pmd, addr, next, mask);
358 
359 		cond_resched();
360 	} while (pmd++, addr = next, addr != end);
361 }
362 
363 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
364 			     pgtbl_mod_mask *mask)
365 {
366 	pud_t *pud;
367 	unsigned long next;
368 	int cleared;
369 
370 	pud = pud_offset(p4d, addr);
371 	do {
372 		next = pud_addr_end(addr, end);
373 
374 		cleared = pud_clear_huge(pud);
375 		if (cleared || pud_bad(*pud))
376 			*mask |= PGTBL_PUD_MODIFIED;
377 
378 		if (cleared)
379 			continue;
380 		if (pud_none_or_clear_bad(pud))
381 			continue;
382 		vunmap_pmd_range(pud, addr, next, mask);
383 	} while (pud++, addr = next, addr != end);
384 }
385 
386 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
387 			     pgtbl_mod_mask *mask)
388 {
389 	p4d_t *p4d;
390 	unsigned long next;
391 	int cleared;
392 
393 	p4d = p4d_offset(pgd, addr);
394 	do {
395 		next = p4d_addr_end(addr, end);
396 
397 		cleared = p4d_clear_huge(p4d);
398 		if (cleared || p4d_bad(*p4d))
399 			*mask |= PGTBL_P4D_MODIFIED;
400 
401 		if (cleared)
402 			continue;
403 		if (p4d_none_or_clear_bad(p4d))
404 			continue;
405 		vunmap_pud_range(p4d, addr, next, mask);
406 	} while (p4d++, addr = next, addr != end);
407 }
408 
409 /*
410  * vunmap_range_noflush is similar to vunmap_range, but does not
411  * flush caches or TLBs.
412  *
413  * The caller is responsible for calling flush_cache_vmap() before calling
414  * this function, and flush_tlb_kernel_range after it has returned
415  * successfully (and before the addresses are expected to cause a page fault
416  * or be re-mapped for something else, if TLB flushes are being delayed or
417  * coalesced).
418  *
419  * This is an internal function only. Do not use outside mm/.
420  */
421 void vunmap_range_noflush(unsigned long start, unsigned long end)
422 {
423 	unsigned long next;
424 	pgd_t *pgd;
425 	unsigned long addr = start;
426 	pgtbl_mod_mask mask = 0;
427 
428 	BUG_ON(addr >= end);
429 	pgd = pgd_offset_k(addr);
430 	do {
431 		next = pgd_addr_end(addr, end);
432 		if (pgd_bad(*pgd))
433 			mask |= PGTBL_PGD_MODIFIED;
434 		if (pgd_none_or_clear_bad(pgd))
435 			continue;
436 		vunmap_p4d_range(pgd, addr, next, &mask);
437 	} while (pgd++, addr = next, addr != end);
438 
439 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
440 		arch_sync_kernel_mappings(start, end);
441 }
442 
443 /**
444  * vunmap_range - unmap kernel virtual addresses
445  * @addr: start of the VM area to unmap
446  * @end: end of the VM area to unmap (non-inclusive)
447  *
448  * Clears any present PTEs in the virtual address range, flushes TLBs and
449  * caches. Any subsequent access to the address before it has been re-mapped
450  * is a kernel bug.
451  */
452 void vunmap_range(unsigned long addr, unsigned long end)
453 {
454 	flush_cache_vunmap(addr, end);
455 	vunmap_range_noflush(addr, end);
456 	flush_tlb_kernel_range(addr, end);
457 }
458 
459 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
460 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
461 		pgtbl_mod_mask *mask)
462 {
463 	pte_t *pte;
464 
465 	/*
466 	 * nr is a running index into the array which helps higher level
467 	 * callers keep track of where we're up to.
468 	 */
469 
470 	pte = pte_alloc_kernel_track(pmd, addr, mask);
471 	if (!pte)
472 		return -ENOMEM;
473 	do {
474 		struct page *page = pages[*nr];
475 
476 		if (WARN_ON(!pte_none(*pte)))
477 			return -EBUSY;
478 		if (WARN_ON(!page))
479 			return -ENOMEM;
480 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
481 		(*nr)++;
482 	} while (pte++, addr += PAGE_SIZE, addr != end);
483 	*mask |= PGTBL_PTE_MODIFIED;
484 	return 0;
485 }
486 
487 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
488 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
489 		pgtbl_mod_mask *mask)
490 {
491 	pmd_t *pmd;
492 	unsigned long next;
493 
494 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
495 	if (!pmd)
496 		return -ENOMEM;
497 	do {
498 		next = pmd_addr_end(addr, end);
499 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
500 			return -ENOMEM;
501 	} while (pmd++, addr = next, addr != end);
502 	return 0;
503 }
504 
505 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
506 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
507 		pgtbl_mod_mask *mask)
508 {
509 	pud_t *pud;
510 	unsigned long next;
511 
512 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
513 	if (!pud)
514 		return -ENOMEM;
515 	do {
516 		next = pud_addr_end(addr, end);
517 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
518 			return -ENOMEM;
519 	} while (pud++, addr = next, addr != end);
520 	return 0;
521 }
522 
523 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
524 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
525 		pgtbl_mod_mask *mask)
526 {
527 	p4d_t *p4d;
528 	unsigned long next;
529 
530 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
531 	if (!p4d)
532 		return -ENOMEM;
533 	do {
534 		next = p4d_addr_end(addr, end);
535 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
536 			return -ENOMEM;
537 	} while (p4d++, addr = next, addr != end);
538 	return 0;
539 }
540 
541 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
542 		pgprot_t prot, struct page **pages)
543 {
544 	unsigned long start = addr;
545 	pgd_t *pgd;
546 	unsigned long next;
547 	int err = 0;
548 	int nr = 0;
549 	pgtbl_mod_mask mask = 0;
550 
551 	BUG_ON(addr >= end);
552 	pgd = pgd_offset_k(addr);
553 	do {
554 		next = pgd_addr_end(addr, end);
555 		if (pgd_bad(*pgd))
556 			mask |= PGTBL_PGD_MODIFIED;
557 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
558 		if (err)
559 			return err;
560 	} while (pgd++, addr = next, addr != end);
561 
562 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
563 		arch_sync_kernel_mappings(start, end);
564 
565 	return 0;
566 }
567 
568 /*
569  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
570  * flush caches.
571  *
572  * The caller is responsible for calling flush_cache_vmap() after this
573  * function returns successfully and before the addresses are accessed.
574  *
575  * This is an internal function only. Do not use outside mm/.
576  */
577 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
578 		pgprot_t prot, struct page **pages, unsigned int page_shift)
579 {
580 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
581 
582 	WARN_ON(page_shift < PAGE_SHIFT);
583 
584 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
585 			page_shift == PAGE_SHIFT)
586 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
587 
588 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
589 		int err;
590 
591 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
592 					__pa(page_address(pages[i])), prot,
593 					page_shift);
594 		if (err)
595 			return err;
596 
597 		addr += 1UL << page_shift;
598 	}
599 
600 	return 0;
601 }
602 
603 /**
604  * vmap_pages_range - map pages to a kernel virtual address
605  * @addr: start of the VM area to map
606  * @end: end of the VM area to map (non-inclusive)
607  * @prot: page protection flags to use
608  * @pages: pages to map (always PAGE_SIZE pages)
609  * @page_shift: maximum shift that the pages may be mapped with, @pages must
610  * be aligned and contiguous up to at least this shift.
611  *
612  * RETURNS:
613  * 0 on success, -errno on failure.
614  */
615 static int vmap_pages_range(unsigned long addr, unsigned long end,
616 		pgprot_t prot, struct page **pages, unsigned int page_shift)
617 {
618 	int err;
619 
620 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
621 	flush_cache_vmap(addr, end);
622 	return err;
623 }
624 
625 int is_vmalloc_or_module_addr(const void *x)
626 {
627 	/*
628 	 * ARM, x86-64 and sparc64 put modules in a special place,
629 	 * and fall back on vmalloc() if that fails. Others
630 	 * just put it in the vmalloc space.
631 	 */
632 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
633 	unsigned long addr = (unsigned long)x;
634 	if (addr >= MODULES_VADDR && addr < MODULES_END)
635 		return 1;
636 #endif
637 	return is_vmalloc_addr(x);
638 }
639 
640 /*
641  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
642  * return the tail page that corresponds to the base page address, which
643  * matches small vmap mappings.
644  */
645 struct page *vmalloc_to_page(const void *vmalloc_addr)
646 {
647 	unsigned long addr = (unsigned long) vmalloc_addr;
648 	struct page *page = NULL;
649 	pgd_t *pgd = pgd_offset_k(addr);
650 	p4d_t *p4d;
651 	pud_t *pud;
652 	pmd_t *pmd;
653 	pte_t *ptep, pte;
654 
655 	/*
656 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
657 	 * architectures that do not vmalloc module space
658 	 */
659 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
660 
661 	if (pgd_none(*pgd))
662 		return NULL;
663 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
664 		return NULL; /* XXX: no allowance for huge pgd */
665 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
666 		return NULL;
667 
668 	p4d = p4d_offset(pgd, addr);
669 	if (p4d_none(*p4d))
670 		return NULL;
671 	if (p4d_leaf(*p4d))
672 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
673 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
674 		return NULL;
675 
676 	pud = pud_offset(p4d, addr);
677 	if (pud_none(*pud))
678 		return NULL;
679 	if (pud_leaf(*pud))
680 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
681 	if (WARN_ON_ONCE(pud_bad(*pud)))
682 		return NULL;
683 
684 	pmd = pmd_offset(pud, addr);
685 	if (pmd_none(*pmd))
686 		return NULL;
687 	if (pmd_leaf(*pmd))
688 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
689 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
690 		return NULL;
691 
692 	ptep = pte_offset_map(pmd, addr);
693 	pte = *ptep;
694 	if (pte_present(pte))
695 		page = pte_page(pte);
696 	pte_unmap(ptep);
697 
698 	return page;
699 }
700 EXPORT_SYMBOL(vmalloc_to_page);
701 
702 /*
703  * Map a vmalloc()-space virtual address to the physical page frame number.
704  */
705 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
706 {
707 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
708 }
709 EXPORT_SYMBOL(vmalloc_to_pfn);
710 
711 
712 /*** Global kva allocator ***/
713 
714 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
715 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
716 
717 
718 static DEFINE_SPINLOCK(vmap_area_lock);
719 static DEFINE_SPINLOCK(free_vmap_area_lock);
720 /* Export for kexec only */
721 LIST_HEAD(vmap_area_list);
722 static struct rb_root vmap_area_root = RB_ROOT;
723 static bool vmap_initialized __read_mostly;
724 
725 static struct rb_root purge_vmap_area_root = RB_ROOT;
726 static LIST_HEAD(purge_vmap_area_list);
727 static DEFINE_SPINLOCK(purge_vmap_area_lock);
728 
729 /*
730  * This kmem_cache is used for vmap_area objects. Instead of
731  * allocating from slab we reuse an object from this cache to
732  * make things faster. Especially in "no edge" splitting of
733  * free block.
734  */
735 static struct kmem_cache *vmap_area_cachep;
736 
737 /*
738  * This linked list is used in pair with free_vmap_area_root.
739  * It gives O(1) access to prev/next to perform fast coalescing.
740  */
741 static LIST_HEAD(free_vmap_area_list);
742 
743 /*
744  * This augment red-black tree represents the free vmap space.
745  * All vmap_area objects in this tree are sorted by va->va_start
746  * address. It is used for allocation and merging when a vmap
747  * object is released.
748  *
749  * Each vmap_area node contains a maximum available free block
750  * of its sub-tree, right or left. Therefore it is possible to
751  * find a lowest match of free area.
752  */
753 static struct rb_root free_vmap_area_root = RB_ROOT;
754 
755 /*
756  * Preload a CPU with one object for "no edge" split case. The
757  * aim is to get rid of allocations from the atomic context, thus
758  * to use more permissive allocation masks.
759  */
760 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
761 
762 static __always_inline unsigned long
763 va_size(struct vmap_area *va)
764 {
765 	return (va->va_end - va->va_start);
766 }
767 
768 static __always_inline unsigned long
769 get_subtree_max_size(struct rb_node *node)
770 {
771 	struct vmap_area *va;
772 
773 	va = rb_entry_safe(node, struct vmap_area, rb_node);
774 	return va ? va->subtree_max_size : 0;
775 }
776 
777 /*
778  * Gets called when remove the node and rotate.
779  */
780 static __always_inline unsigned long
781 compute_subtree_max_size(struct vmap_area *va)
782 {
783 	return max3(va_size(va),
784 		get_subtree_max_size(va->rb_node.rb_left),
785 		get_subtree_max_size(va->rb_node.rb_right));
786 }
787 
788 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
789 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
790 
791 static void purge_vmap_area_lazy(void);
792 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
793 static unsigned long lazy_max_pages(void);
794 
795 static atomic_long_t nr_vmalloc_pages;
796 
797 unsigned long vmalloc_nr_pages(void)
798 {
799 	return atomic_long_read(&nr_vmalloc_pages);
800 }
801 
802 static struct vmap_area *__find_vmap_area(unsigned long addr)
803 {
804 	struct rb_node *n = vmap_area_root.rb_node;
805 
806 	while (n) {
807 		struct vmap_area *va;
808 
809 		va = rb_entry(n, struct vmap_area, rb_node);
810 		if (addr < va->va_start)
811 			n = n->rb_left;
812 		else if (addr >= va->va_end)
813 			n = n->rb_right;
814 		else
815 			return va;
816 	}
817 
818 	return NULL;
819 }
820 
821 /*
822  * This function returns back addresses of parent node
823  * and its left or right link for further processing.
824  *
825  * Otherwise NULL is returned. In that case all further
826  * steps regarding inserting of conflicting overlap range
827  * have to be declined and actually considered as a bug.
828  */
829 static __always_inline struct rb_node **
830 find_va_links(struct vmap_area *va,
831 	struct rb_root *root, struct rb_node *from,
832 	struct rb_node **parent)
833 {
834 	struct vmap_area *tmp_va;
835 	struct rb_node **link;
836 
837 	if (root) {
838 		link = &root->rb_node;
839 		if (unlikely(!*link)) {
840 			*parent = NULL;
841 			return link;
842 		}
843 	} else {
844 		link = &from;
845 	}
846 
847 	/*
848 	 * Go to the bottom of the tree. When we hit the last point
849 	 * we end up with parent rb_node and correct direction, i name
850 	 * it link, where the new va->rb_node will be attached to.
851 	 */
852 	do {
853 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
854 
855 		/*
856 		 * During the traversal we also do some sanity check.
857 		 * Trigger the BUG() if there are sides(left/right)
858 		 * or full overlaps.
859 		 */
860 		if (va->va_start < tmp_va->va_end &&
861 				va->va_end <= tmp_va->va_start)
862 			link = &(*link)->rb_left;
863 		else if (va->va_end > tmp_va->va_start &&
864 				va->va_start >= tmp_va->va_end)
865 			link = &(*link)->rb_right;
866 		else {
867 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
868 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
869 
870 			return NULL;
871 		}
872 	} while (*link);
873 
874 	*parent = &tmp_va->rb_node;
875 	return link;
876 }
877 
878 static __always_inline struct list_head *
879 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
880 {
881 	struct list_head *list;
882 
883 	if (unlikely(!parent))
884 		/*
885 		 * The red-black tree where we try to find VA neighbors
886 		 * before merging or inserting is empty, i.e. it means
887 		 * there is no free vmap space. Normally it does not
888 		 * happen but we handle this case anyway.
889 		 */
890 		return NULL;
891 
892 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
893 	return (&parent->rb_right == link ? list->next : list);
894 }
895 
896 static __always_inline void
897 link_va(struct vmap_area *va, struct rb_root *root,
898 	struct rb_node *parent, struct rb_node **link, struct list_head *head)
899 {
900 	/*
901 	 * VA is still not in the list, but we can
902 	 * identify its future previous list_head node.
903 	 */
904 	if (likely(parent)) {
905 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
906 		if (&parent->rb_right != link)
907 			head = head->prev;
908 	}
909 
910 	/* Insert to the rb-tree */
911 	rb_link_node(&va->rb_node, parent, link);
912 	if (root == &free_vmap_area_root) {
913 		/*
914 		 * Some explanation here. Just perform simple insertion
915 		 * to the tree. We do not set va->subtree_max_size to
916 		 * its current size before calling rb_insert_augmented().
917 		 * It is because of we populate the tree from the bottom
918 		 * to parent levels when the node _is_ in the tree.
919 		 *
920 		 * Therefore we set subtree_max_size to zero after insertion,
921 		 * to let __augment_tree_propagate_from() puts everything to
922 		 * the correct order later on.
923 		 */
924 		rb_insert_augmented(&va->rb_node,
925 			root, &free_vmap_area_rb_augment_cb);
926 		va->subtree_max_size = 0;
927 	} else {
928 		rb_insert_color(&va->rb_node, root);
929 	}
930 
931 	/* Address-sort this list */
932 	list_add(&va->list, head);
933 }
934 
935 static __always_inline void
936 unlink_va(struct vmap_area *va, struct rb_root *root)
937 {
938 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
939 		return;
940 
941 	if (root == &free_vmap_area_root)
942 		rb_erase_augmented(&va->rb_node,
943 			root, &free_vmap_area_rb_augment_cb);
944 	else
945 		rb_erase(&va->rb_node, root);
946 
947 	list_del(&va->list);
948 	RB_CLEAR_NODE(&va->rb_node);
949 }
950 
951 #if DEBUG_AUGMENT_PROPAGATE_CHECK
952 static void
953 augment_tree_propagate_check(void)
954 {
955 	struct vmap_area *va;
956 	unsigned long computed_size;
957 
958 	list_for_each_entry(va, &free_vmap_area_list, list) {
959 		computed_size = compute_subtree_max_size(va);
960 		if (computed_size != va->subtree_max_size)
961 			pr_emerg("tree is corrupted: %lu, %lu\n",
962 				va_size(va), va->subtree_max_size);
963 	}
964 }
965 #endif
966 
967 /*
968  * This function populates subtree_max_size from bottom to upper
969  * levels starting from VA point. The propagation must be done
970  * when VA size is modified by changing its va_start/va_end. Or
971  * in case of newly inserting of VA to the tree.
972  *
973  * It means that __augment_tree_propagate_from() must be called:
974  * - After VA has been inserted to the tree(free path);
975  * - After VA has been shrunk(allocation path);
976  * - After VA has been increased(merging path).
977  *
978  * Please note that, it does not mean that upper parent nodes
979  * and their subtree_max_size are recalculated all the time up
980  * to the root node.
981  *
982  *       4--8
983  *        /\
984  *       /  \
985  *      /    \
986  *    2--2  8--8
987  *
988  * For example if we modify the node 4, shrinking it to 2, then
989  * no any modification is required. If we shrink the node 2 to 1
990  * its subtree_max_size is updated only, and set to 1. If we shrink
991  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
992  * node becomes 4--6.
993  */
994 static __always_inline void
995 augment_tree_propagate_from(struct vmap_area *va)
996 {
997 	/*
998 	 * Populate the tree from bottom towards the root until
999 	 * the calculated maximum available size of checked node
1000 	 * is equal to its current one.
1001 	 */
1002 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1003 
1004 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1005 	augment_tree_propagate_check();
1006 #endif
1007 }
1008 
1009 static void
1010 insert_vmap_area(struct vmap_area *va,
1011 	struct rb_root *root, struct list_head *head)
1012 {
1013 	struct rb_node **link;
1014 	struct rb_node *parent;
1015 
1016 	link = find_va_links(va, root, NULL, &parent);
1017 	if (link)
1018 		link_va(va, root, parent, link, head);
1019 }
1020 
1021 static void
1022 insert_vmap_area_augment(struct vmap_area *va,
1023 	struct rb_node *from, struct rb_root *root,
1024 	struct list_head *head)
1025 {
1026 	struct rb_node **link;
1027 	struct rb_node *parent;
1028 
1029 	if (from)
1030 		link = find_va_links(va, NULL, from, &parent);
1031 	else
1032 		link = find_va_links(va, root, NULL, &parent);
1033 
1034 	if (link) {
1035 		link_va(va, root, parent, link, head);
1036 		augment_tree_propagate_from(va);
1037 	}
1038 }
1039 
1040 /*
1041  * Merge de-allocated chunk of VA memory with previous
1042  * and next free blocks. If coalesce is not done a new
1043  * free area is inserted. If VA has been merged, it is
1044  * freed.
1045  *
1046  * Please note, it can return NULL in case of overlap
1047  * ranges, followed by WARN() report. Despite it is a
1048  * buggy behaviour, a system can be alive and keep
1049  * ongoing.
1050  */
1051 static __always_inline struct vmap_area *
1052 merge_or_add_vmap_area(struct vmap_area *va,
1053 	struct rb_root *root, struct list_head *head)
1054 {
1055 	struct vmap_area *sibling;
1056 	struct list_head *next;
1057 	struct rb_node **link;
1058 	struct rb_node *parent;
1059 	bool merged = false;
1060 
1061 	/*
1062 	 * Find a place in the tree where VA potentially will be
1063 	 * inserted, unless it is merged with its sibling/siblings.
1064 	 */
1065 	link = find_va_links(va, root, NULL, &parent);
1066 	if (!link)
1067 		return NULL;
1068 
1069 	/*
1070 	 * Get next node of VA to check if merging can be done.
1071 	 */
1072 	next = get_va_next_sibling(parent, link);
1073 	if (unlikely(next == NULL))
1074 		goto insert;
1075 
1076 	/*
1077 	 * start            end
1078 	 * |                |
1079 	 * |<------VA------>|<-----Next----->|
1080 	 *                  |                |
1081 	 *                  start            end
1082 	 */
1083 	if (next != head) {
1084 		sibling = list_entry(next, struct vmap_area, list);
1085 		if (sibling->va_start == va->va_end) {
1086 			sibling->va_start = va->va_start;
1087 
1088 			/* Free vmap_area object. */
1089 			kmem_cache_free(vmap_area_cachep, va);
1090 
1091 			/* Point to the new merged area. */
1092 			va = sibling;
1093 			merged = true;
1094 		}
1095 	}
1096 
1097 	/*
1098 	 * start            end
1099 	 * |                |
1100 	 * |<-----Prev----->|<------VA------>|
1101 	 *                  |                |
1102 	 *                  start            end
1103 	 */
1104 	if (next->prev != head) {
1105 		sibling = list_entry(next->prev, struct vmap_area, list);
1106 		if (sibling->va_end == va->va_start) {
1107 			/*
1108 			 * If both neighbors are coalesced, it is important
1109 			 * to unlink the "next" node first, followed by merging
1110 			 * with "previous" one. Otherwise the tree might not be
1111 			 * fully populated if a sibling's augmented value is
1112 			 * "normalized" because of rotation operations.
1113 			 */
1114 			if (merged)
1115 				unlink_va(va, root);
1116 
1117 			sibling->va_end = va->va_end;
1118 
1119 			/* Free vmap_area object. */
1120 			kmem_cache_free(vmap_area_cachep, va);
1121 
1122 			/* Point to the new merged area. */
1123 			va = sibling;
1124 			merged = true;
1125 		}
1126 	}
1127 
1128 insert:
1129 	if (!merged)
1130 		link_va(va, root, parent, link, head);
1131 
1132 	return va;
1133 }
1134 
1135 static __always_inline struct vmap_area *
1136 merge_or_add_vmap_area_augment(struct vmap_area *va,
1137 	struct rb_root *root, struct list_head *head)
1138 {
1139 	va = merge_or_add_vmap_area(va, root, head);
1140 	if (va)
1141 		augment_tree_propagate_from(va);
1142 
1143 	return va;
1144 }
1145 
1146 static __always_inline bool
1147 is_within_this_va(struct vmap_area *va, unsigned long size,
1148 	unsigned long align, unsigned long vstart)
1149 {
1150 	unsigned long nva_start_addr;
1151 
1152 	if (va->va_start > vstart)
1153 		nva_start_addr = ALIGN(va->va_start, align);
1154 	else
1155 		nva_start_addr = ALIGN(vstart, align);
1156 
1157 	/* Can be overflowed due to big size or alignment. */
1158 	if (nva_start_addr + size < nva_start_addr ||
1159 			nva_start_addr < vstart)
1160 		return false;
1161 
1162 	return (nva_start_addr + size <= va->va_end);
1163 }
1164 
1165 /*
1166  * Find the first free block(lowest start address) in the tree,
1167  * that will accomplish the request corresponding to passing
1168  * parameters.
1169  */
1170 static __always_inline struct vmap_area *
1171 find_vmap_lowest_match(unsigned long size,
1172 	unsigned long align, unsigned long vstart)
1173 {
1174 	struct vmap_area *va;
1175 	struct rb_node *node;
1176 	unsigned long length;
1177 
1178 	/* Start from the root. */
1179 	node = free_vmap_area_root.rb_node;
1180 
1181 	/* Adjust the search size for alignment overhead. */
1182 	length = size + align - 1;
1183 
1184 	while (node) {
1185 		va = rb_entry(node, struct vmap_area, rb_node);
1186 
1187 		if (get_subtree_max_size(node->rb_left) >= length &&
1188 				vstart < va->va_start) {
1189 			node = node->rb_left;
1190 		} else {
1191 			if (is_within_this_va(va, size, align, vstart))
1192 				return va;
1193 
1194 			/*
1195 			 * Does not make sense to go deeper towards the right
1196 			 * sub-tree if it does not have a free block that is
1197 			 * equal or bigger to the requested search length.
1198 			 */
1199 			if (get_subtree_max_size(node->rb_right) >= length) {
1200 				node = node->rb_right;
1201 				continue;
1202 			}
1203 
1204 			/*
1205 			 * OK. We roll back and find the first right sub-tree,
1206 			 * that will satisfy the search criteria. It can happen
1207 			 * only once due to "vstart" restriction.
1208 			 */
1209 			while ((node = rb_parent(node))) {
1210 				va = rb_entry(node, struct vmap_area, rb_node);
1211 				if (is_within_this_va(va, size, align, vstart))
1212 					return va;
1213 
1214 				if (get_subtree_max_size(node->rb_right) >= length &&
1215 						vstart <= va->va_start) {
1216 					node = node->rb_right;
1217 					break;
1218 				}
1219 			}
1220 		}
1221 	}
1222 
1223 	return NULL;
1224 }
1225 
1226 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1227 #include <linux/random.h>
1228 
1229 static struct vmap_area *
1230 find_vmap_lowest_linear_match(unsigned long size,
1231 	unsigned long align, unsigned long vstart)
1232 {
1233 	struct vmap_area *va;
1234 
1235 	list_for_each_entry(va, &free_vmap_area_list, list) {
1236 		if (!is_within_this_va(va, size, align, vstart))
1237 			continue;
1238 
1239 		return va;
1240 	}
1241 
1242 	return NULL;
1243 }
1244 
1245 static void
1246 find_vmap_lowest_match_check(unsigned long size)
1247 {
1248 	struct vmap_area *va_1, *va_2;
1249 	unsigned long vstart;
1250 	unsigned int rnd;
1251 
1252 	get_random_bytes(&rnd, sizeof(rnd));
1253 	vstart = VMALLOC_START + rnd;
1254 
1255 	va_1 = find_vmap_lowest_match(size, 1, vstart);
1256 	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
1257 
1258 	if (va_1 != va_2)
1259 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1260 			va_1, va_2, vstart);
1261 }
1262 #endif
1263 
1264 enum fit_type {
1265 	NOTHING_FIT = 0,
1266 	FL_FIT_TYPE = 1,	/* full fit */
1267 	LE_FIT_TYPE = 2,	/* left edge fit */
1268 	RE_FIT_TYPE = 3,	/* right edge fit */
1269 	NE_FIT_TYPE = 4		/* no edge fit */
1270 };
1271 
1272 static __always_inline enum fit_type
1273 classify_va_fit_type(struct vmap_area *va,
1274 	unsigned long nva_start_addr, unsigned long size)
1275 {
1276 	enum fit_type type;
1277 
1278 	/* Check if it is within VA. */
1279 	if (nva_start_addr < va->va_start ||
1280 			nva_start_addr + size > va->va_end)
1281 		return NOTHING_FIT;
1282 
1283 	/* Now classify. */
1284 	if (va->va_start == nva_start_addr) {
1285 		if (va->va_end == nva_start_addr + size)
1286 			type = FL_FIT_TYPE;
1287 		else
1288 			type = LE_FIT_TYPE;
1289 	} else if (va->va_end == nva_start_addr + size) {
1290 		type = RE_FIT_TYPE;
1291 	} else {
1292 		type = NE_FIT_TYPE;
1293 	}
1294 
1295 	return type;
1296 }
1297 
1298 static __always_inline int
1299 adjust_va_to_fit_type(struct vmap_area *va,
1300 	unsigned long nva_start_addr, unsigned long size,
1301 	enum fit_type type)
1302 {
1303 	struct vmap_area *lva = NULL;
1304 
1305 	if (type == FL_FIT_TYPE) {
1306 		/*
1307 		 * No need to split VA, it fully fits.
1308 		 *
1309 		 * |               |
1310 		 * V      NVA      V
1311 		 * |---------------|
1312 		 */
1313 		unlink_va(va, &free_vmap_area_root);
1314 		kmem_cache_free(vmap_area_cachep, va);
1315 	} else if (type == LE_FIT_TYPE) {
1316 		/*
1317 		 * Split left edge of fit VA.
1318 		 *
1319 		 * |       |
1320 		 * V  NVA  V   R
1321 		 * |-------|-------|
1322 		 */
1323 		va->va_start += size;
1324 	} else if (type == RE_FIT_TYPE) {
1325 		/*
1326 		 * Split right edge of fit VA.
1327 		 *
1328 		 *         |       |
1329 		 *     L   V  NVA  V
1330 		 * |-------|-------|
1331 		 */
1332 		va->va_end = nva_start_addr;
1333 	} else if (type == NE_FIT_TYPE) {
1334 		/*
1335 		 * Split no edge of fit VA.
1336 		 *
1337 		 *     |       |
1338 		 *   L V  NVA  V R
1339 		 * |---|-------|---|
1340 		 */
1341 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1342 		if (unlikely(!lva)) {
1343 			/*
1344 			 * For percpu allocator we do not do any pre-allocation
1345 			 * and leave it as it is. The reason is it most likely
1346 			 * never ends up with NE_FIT_TYPE splitting. In case of
1347 			 * percpu allocations offsets and sizes are aligned to
1348 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1349 			 * are its main fitting cases.
1350 			 *
1351 			 * There are a few exceptions though, as an example it is
1352 			 * a first allocation (early boot up) when we have "one"
1353 			 * big free space that has to be split.
1354 			 *
1355 			 * Also we can hit this path in case of regular "vmap"
1356 			 * allocations, if "this" current CPU was not preloaded.
1357 			 * See the comment in alloc_vmap_area() why. If so, then
1358 			 * GFP_NOWAIT is used instead to get an extra object for
1359 			 * split purpose. That is rare and most time does not
1360 			 * occur.
1361 			 *
1362 			 * What happens if an allocation gets failed. Basically,
1363 			 * an "overflow" path is triggered to purge lazily freed
1364 			 * areas to free some memory, then, the "retry" path is
1365 			 * triggered to repeat one more time. See more details
1366 			 * in alloc_vmap_area() function.
1367 			 */
1368 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1369 			if (!lva)
1370 				return -1;
1371 		}
1372 
1373 		/*
1374 		 * Build the remainder.
1375 		 */
1376 		lva->va_start = va->va_start;
1377 		lva->va_end = nva_start_addr;
1378 
1379 		/*
1380 		 * Shrink this VA to remaining size.
1381 		 */
1382 		va->va_start = nva_start_addr + size;
1383 	} else {
1384 		return -1;
1385 	}
1386 
1387 	if (type != FL_FIT_TYPE) {
1388 		augment_tree_propagate_from(va);
1389 
1390 		if (lva)	/* type == NE_FIT_TYPE */
1391 			insert_vmap_area_augment(lva, &va->rb_node,
1392 				&free_vmap_area_root, &free_vmap_area_list);
1393 	}
1394 
1395 	return 0;
1396 }
1397 
1398 /*
1399  * Returns a start address of the newly allocated area, if success.
1400  * Otherwise a vend is returned that indicates failure.
1401  */
1402 static __always_inline unsigned long
1403 __alloc_vmap_area(unsigned long size, unsigned long align,
1404 	unsigned long vstart, unsigned long vend)
1405 {
1406 	unsigned long nva_start_addr;
1407 	struct vmap_area *va;
1408 	enum fit_type type;
1409 	int ret;
1410 
1411 	va = find_vmap_lowest_match(size, align, vstart);
1412 	if (unlikely(!va))
1413 		return vend;
1414 
1415 	if (va->va_start > vstart)
1416 		nva_start_addr = ALIGN(va->va_start, align);
1417 	else
1418 		nva_start_addr = ALIGN(vstart, align);
1419 
1420 	/* Check the "vend" restriction. */
1421 	if (nva_start_addr + size > vend)
1422 		return vend;
1423 
1424 	/* Classify what we have found. */
1425 	type = classify_va_fit_type(va, nva_start_addr, size);
1426 	if (WARN_ON_ONCE(type == NOTHING_FIT))
1427 		return vend;
1428 
1429 	/* Update the free vmap_area. */
1430 	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1431 	if (ret)
1432 		return vend;
1433 
1434 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1435 	find_vmap_lowest_match_check(size);
1436 #endif
1437 
1438 	return nva_start_addr;
1439 }
1440 
1441 /*
1442  * Free a region of KVA allocated by alloc_vmap_area
1443  */
1444 static void free_vmap_area(struct vmap_area *va)
1445 {
1446 	/*
1447 	 * Remove from the busy tree/list.
1448 	 */
1449 	spin_lock(&vmap_area_lock);
1450 	unlink_va(va, &vmap_area_root);
1451 	spin_unlock(&vmap_area_lock);
1452 
1453 	/*
1454 	 * Insert/Merge it back to the free tree/list.
1455 	 */
1456 	spin_lock(&free_vmap_area_lock);
1457 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1458 	spin_unlock(&free_vmap_area_lock);
1459 }
1460 
1461 static inline void
1462 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1463 {
1464 	struct vmap_area *va = NULL;
1465 
1466 	/*
1467 	 * Preload this CPU with one extra vmap_area object. It is used
1468 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1469 	 * a CPU that does an allocation is preloaded.
1470 	 *
1471 	 * We do it in non-atomic context, thus it allows us to use more
1472 	 * permissive allocation masks to be more stable under low memory
1473 	 * condition and high memory pressure.
1474 	 */
1475 	if (!this_cpu_read(ne_fit_preload_node))
1476 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1477 
1478 	spin_lock(lock);
1479 
1480 	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1481 		kmem_cache_free(vmap_area_cachep, va);
1482 }
1483 
1484 /*
1485  * Allocate a region of KVA of the specified size and alignment, within the
1486  * vstart and vend.
1487  */
1488 static struct vmap_area *alloc_vmap_area(unsigned long size,
1489 				unsigned long align,
1490 				unsigned long vstart, unsigned long vend,
1491 				int node, gfp_t gfp_mask)
1492 {
1493 	struct vmap_area *va;
1494 	unsigned long addr;
1495 	int purged = 0;
1496 	int ret;
1497 
1498 	BUG_ON(!size);
1499 	BUG_ON(offset_in_page(size));
1500 	BUG_ON(!is_power_of_2(align));
1501 
1502 	if (unlikely(!vmap_initialized))
1503 		return ERR_PTR(-EBUSY);
1504 
1505 	might_sleep();
1506 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1507 
1508 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1509 	if (unlikely(!va))
1510 		return ERR_PTR(-ENOMEM);
1511 
1512 	/*
1513 	 * Only scan the relevant parts containing pointers to other objects
1514 	 * to avoid false negatives.
1515 	 */
1516 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1517 
1518 retry:
1519 	preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1520 	addr = __alloc_vmap_area(size, align, vstart, vend);
1521 	spin_unlock(&free_vmap_area_lock);
1522 
1523 	/*
1524 	 * If an allocation fails, the "vend" address is
1525 	 * returned. Therefore trigger the overflow path.
1526 	 */
1527 	if (unlikely(addr == vend))
1528 		goto overflow;
1529 
1530 	va->va_start = addr;
1531 	va->va_end = addr + size;
1532 	va->vm = NULL;
1533 
1534 	spin_lock(&vmap_area_lock);
1535 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1536 	spin_unlock(&vmap_area_lock);
1537 
1538 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1539 	BUG_ON(va->va_start < vstart);
1540 	BUG_ON(va->va_end > vend);
1541 
1542 	ret = kasan_populate_vmalloc(addr, size);
1543 	if (ret) {
1544 		free_vmap_area(va);
1545 		return ERR_PTR(ret);
1546 	}
1547 
1548 	return va;
1549 
1550 overflow:
1551 	if (!purged) {
1552 		purge_vmap_area_lazy();
1553 		purged = 1;
1554 		goto retry;
1555 	}
1556 
1557 	if (gfpflags_allow_blocking(gfp_mask)) {
1558 		unsigned long freed = 0;
1559 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1560 		if (freed > 0) {
1561 			purged = 0;
1562 			goto retry;
1563 		}
1564 	}
1565 
1566 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1567 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1568 			size);
1569 
1570 	kmem_cache_free(vmap_area_cachep, va);
1571 	return ERR_PTR(-EBUSY);
1572 }
1573 
1574 int register_vmap_purge_notifier(struct notifier_block *nb)
1575 {
1576 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1577 }
1578 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1579 
1580 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1581 {
1582 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1583 }
1584 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1585 
1586 /*
1587  * lazy_max_pages is the maximum amount of virtual address space we gather up
1588  * before attempting to purge with a TLB flush.
1589  *
1590  * There is a tradeoff here: a larger number will cover more kernel page tables
1591  * and take slightly longer to purge, but it will linearly reduce the number of
1592  * global TLB flushes that must be performed. It would seem natural to scale
1593  * this number up linearly with the number of CPUs (because vmapping activity
1594  * could also scale linearly with the number of CPUs), however it is likely
1595  * that in practice, workloads might be constrained in other ways that mean
1596  * vmap activity will not scale linearly with CPUs. Also, I want to be
1597  * conservative and not introduce a big latency on huge systems, so go with
1598  * a less aggressive log scale. It will still be an improvement over the old
1599  * code, and it will be simple to change the scale factor if we find that it
1600  * becomes a problem on bigger systems.
1601  */
1602 static unsigned long lazy_max_pages(void)
1603 {
1604 	unsigned int log;
1605 
1606 	log = fls(num_online_cpus());
1607 
1608 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1609 }
1610 
1611 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1612 
1613 /*
1614  * Serialize vmap purging.  There is no actual critical section protected
1615  * by this look, but we want to avoid concurrent calls for performance
1616  * reasons and to make the pcpu_get_vm_areas more deterministic.
1617  */
1618 static DEFINE_MUTEX(vmap_purge_lock);
1619 
1620 /* for per-CPU blocks */
1621 static void purge_fragmented_blocks_allcpus(void);
1622 
1623 #ifdef CONFIG_X86_64
1624 /*
1625  * called before a call to iounmap() if the caller wants vm_area_struct's
1626  * immediately freed.
1627  */
1628 void set_iounmap_nonlazy(void)
1629 {
1630 	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1631 }
1632 #endif /* CONFIG_X86_64 */
1633 
1634 /*
1635  * Purges all lazily-freed vmap areas.
1636  */
1637 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1638 {
1639 	unsigned long resched_threshold;
1640 	struct list_head local_pure_list;
1641 	struct vmap_area *va, *n_va;
1642 
1643 	lockdep_assert_held(&vmap_purge_lock);
1644 
1645 	spin_lock(&purge_vmap_area_lock);
1646 	purge_vmap_area_root = RB_ROOT;
1647 	list_replace_init(&purge_vmap_area_list, &local_pure_list);
1648 	spin_unlock(&purge_vmap_area_lock);
1649 
1650 	if (unlikely(list_empty(&local_pure_list)))
1651 		return false;
1652 
1653 	start = min(start,
1654 		list_first_entry(&local_pure_list,
1655 			struct vmap_area, list)->va_start);
1656 
1657 	end = max(end,
1658 		list_last_entry(&local_pure_list,
1659 			struct vmap_area, list)->va_end);
1660 
1661 	flush_tlb_kernel_range(start, end);
1662 	resched_threshold = lazy_max_pages() << 1;
1663 
1664 	spin_lock(&free_vmap_area_lock);
1665 	list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
1666 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1667 		unsigned long orig_start = va->va_start;
1668 		unsigned long orig_end = va->va_end;
1669 
1670 		/*
1671 		 * Finally insert or merge lazily-freed area. It is
1672 		 * detached and there is no need to "unlink" it from
1673 		 * anything.
1674 		 */
1675 		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1676 				&free_vmap_area_list);
1677 
1678 		if (!va)
1679 			continue;
1680 
1681 		if (is_vmalloc_or_module_addr((void *)orig_start))
1682 			kasan_release_vmalloc(orig_start, orig_end,
1683 					      va->va_start, va->va_end);
1684 
1685 		atomic_long_sub(nr, &vmap_lazy_nr);
1686 
1687 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1688 			cond_resched_lock(&free_vmap_area_lock);
1689 	}
1690 	spin_unlock(&free_vmap_area_lock);
1691 	return true;
1692 }
1693 
1694 /*
1695  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1696  * is already purging.
1697  */
1698 static void try_purge_vmap_area_lazy(void)
1699 {
1700 	if (mutex_trylock(&vmap_purge_lock)) {
1701 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1702 		mutex_unlock(&vmap_purge_lock);
1703 	}
1704 }
1705 
1706 /*
1707  * Kick off a purge of the outstanding lazy areas.
1708  */
1709 static void purge_vmap_area_lazy(void)
1710 {
1711 	mutex_lock(&vmap_purge_lock);
1712 	purge_fragmented_blocks_allcpus();
1713 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1714 	mutex_unlock(&vmap_purge_lock);
1715 }
1716 
1717 /*
1718  * Free a vmap area, caller ensuring that the area has been unmapped
1719  * and flush_cache_vunmap had been called for the correct range
1720  * previously.
1721  */
1722 static void free_vmap_area_noflush(struct vmap_area *va)
1723 {
1724 	unsigned long nr_lazy;
1725 
1726 	spin_lock(&vmap_area_lock);
1727 	unlink_va(va, &vmap_area_root);
1728 	spin_unlock(&vmap_area_lock);
1729 
1730 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1731 				PAGE_SHIFT, &vmap_lazy_nr);
1732 
1733 	/*
1734 	 * Merge or place it to the purge tree/list.
1735 	 */
1736 	spin_lock(&purge_vmap_area_lock);
1737 	merge_or_add_vmap_area(va,
1738 		&purge_vmap_area_root, &purge_vmap_area_list);
1739 	spin_unlock(&purge_vmap_area_lock);
1740 
1741 	/* After this point, we may free va at any time */
1742 	if (unlikely(nr_lazy > lazy_max_pages()))
1743 		try_purge_vmap_area_lazy();
1744 }
1745 
1746 /*
1747  * Free and unmap a vmap area
1748  */
1749 static void free_unmap_vmap_area(struct vmap_area *va)
1750 {
1751 	flush_cache_vunmap(va->va_start, va->va_end);
1752 	vunmap_range_noflush(va->va_start, va->va_end);
1753 	if (debug_pagealloc_enabled_static())
1754 		flush_tlb_kernel_range(va->va_start, va->va_end);
1755 
1756 	free_vmap_area_noflush(va);
1757 }
1758 
1759 static struct vmap_area *find_vmap_area(unsigned long addr)
1760 {
1761 	struct vmap_area *va;
1762 
1763 	spin_lock(&vmap_area_lock);
1764 	va = __find_vmap_area(addr);
1765 	spin_unlock(&vmap_area_lock);
1766 
1767 	return va;
1768 }
1769 
1770 /*** Per cpu kva allocator ***/
1771 
1772 /*
1773  * vmap space is limited especially on 32 bit architectures. Ensure there is
1774  * room for at least 16 percpu vmap blocks per CPU.
1775  */
1776 /*
1777  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1778  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1779  * instead (we just need a rough idea)
1780  */
1781 #if BITS_PER_LONG == 32
1782 #define VMALLOC_SPACE		(128UL*1024*1024)
1783 #else
1784 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1785 #endif
1786 
1787 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1788 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1789 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1790 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1791 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1792 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1793 #define VMAP_BBMAP_BITS		\
1794 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1795 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1796 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1797 
1798 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1799 
1800 struct vmap_block_queue {
1801 	spinlock_t lock;
1802 	struct list_head free;
1803 };
1804 
1805 struct vmap_block {
1806 	spinlock_t lock;
1807 	struct vmap_area *va;
1808 	unsigned long free, dirty;
1809 	unsigned long dirty_min, dirty_max; /*< dirty range */
1810 	struct list_head free_list;
1811 	struct rcu_head rcu_head;
1812 	struct list_head purge;
1813 };
1814 
1815 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1816 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1817 
1818 /*
1819  * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1820  * in the free path. Could get rid of this if we change the API to return a
1821  * "cookie" from alloc, to be passed to free. But no big deal yet.
1822  */
1823 static DEFINE_XARRAY(vmap_blocks);
1824 
1825 /*
1826  * We should probably have a fallback mechanism to allocate virtual memory
1827  * out of partially filled vmap blocks. However vmap block sizing should be
1828  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1829  * big problem.
1830  */
1831 
1832 static unsigned long addr_to_vb_idx(unsigned long addr)
1833 {
1834 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1835 	addr /= VMAP_BLOCK_SIZE;
1836 	return addr;
1837 }
1838 
1839 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1840 {
1841 	unsigned long addr;
1842 
1843 	addr = va_start + (pages_off << PAGE_SHIFT);
1844 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1845 	return (void *)addr;
1846 }
1847 
1848 /**
1849  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1850  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1851  * @order:    how many 2^order pages should be occupied in newly allocated block
1852  * @gfp_mask: flags for the page level allocator
1853  *
1854  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1855  */
1856 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1857 {
1858 	struct vmap_block_queue *vbq;
1859 	struct vmap_block *vb;
1860 	struct vmap_area *va;
1861 	unsigned long vb_idx;
1862 	int node, err;
1863 	void *vaddr;
1864 
1865 	node = numa_node_id();
1866 
1867 	vb = kmalloc_node(sizeof(struct vmap_block),
1868 			gfp_mask & GFP_RECLAIM_MASK, node);
1869 	if (unlikely(!vb))
1870 		return ERR_PTR(-ENOMEM);
1871 
1872 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1873 					VMALLOC_START, VMALLOC_END,
1874 					node, gfp_mask);
1875 	if (IS_ERR(va)) {
1876 		kfree(vb);
1877 		return ERR_CAST(va);
1878 	}
1879 
1880 	vaddr = vmap_block_vaddr(va->va_start, 0);
1881 	spin_lock_init(&vb->lock);
1882 	vb->va = va;
1883 	/* At least something should be left free */
1884 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1885 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1886 	vb->dirty = 0;
1887 	vb->dirty_min = VMAP_BBMAP_BITS;
1888 	vb->dirty_max = 0;
1889 	INIT_LIST_HEAD(&vb->free_list);
1890 
1891 	vb_idx = addr_to_vb_idx(va->va_start);
1892 	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1893 	if (err) {
1894 		kfree(vb);
1895 		free_vmap_area(va);
1896 		return ERR_PTR(err);
1897 	}
1898 
1899 	vbq = &get_cpu_var(vmap_block_queue);
1900 	spin_lock(&vbq->lock);
1901 	list_add_tail_rcu(&vb->free_list, &vbq->free);
1902 	spin_unlock(&vbq->lock);
1903 	put_cpu_var(vmap_block_queue);
1904 
1905 	return vaddr;
1906 }
1907 
1908 static void free_vmap_block(struct vmap_block *vb)
1909 {
1910 	struct vmap_block *tmp;
1911 
1912 	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1913 	BUG_ON(tmp != vb);
1914 
1915 	free_vmap_area_noflush(vb->va);
1916 	kfree_rcu(vb, rcu_head);
1917 }
1918 
1919 static void purge_fragmented_blocks(int cpu)
1920 {
1921 	LIST_HEAD(purge);
1922 	struct vmap_block *vb;
1923 	struct vmap_block *n_vb;
1924 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1925 
1926 	rcu_read_lock();
1927 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1928 
1929 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1930 			continue;
1931 
1932 		spin_lock(&vb->lock);
1933 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1934 			vb->free = 0; /* prevent further allocs after releasing lock */
1935 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1936 			vb->dirty_min = 0;
1937 			vb->dirty_max = VMAP_BBMAP_BITS;
1938 			spin_lock(&vbq->lock);
1939 			list_del_rcu(&vb->free_list);
1940 			spin_unlock(&vbq->lock);
1941 			spin_unlock(&vb->lock);
1942 			list_add_tail(&vb->purge, &purge);
1943 		} else
1944 			spin_unlock(&vb->lock);
1945 	}
1946 	rcu_read_unlock();
1947 
1948 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1949 		list_del(&vb->purge);
1950 		free_vmap_block(vb);
1951 	}
1952 }
1953 
1954 static void purge_fragmented_blocks_allcpus(void)
1955 {
1956 	int cpu;
1957 
1958 	for_each_possible_cpu(cpu)
1959 		purge_fragmented_blocks(cpu);
1960 }
1961 
1962 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1963 {
1964 	struct vmap_block_queue *vbq;
1965 	struct vmap_block *vb;
1966 	void *vaddr = NULL;
1967 	unsigned int order;
1968 
1969 	BUG_ON(offset_in_page(size));
1970 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1971 	if (WARN_ON(size == 0)) {
1972 		/*
1973 		 * Allocating 0 bytes isn't what caller wants since
1974 		 * get_order(0) returns funny result. Just warn and terminate
1975 		 * early.
1976 		 */
1977 		return NULL;
1978 	}
1979 	order = get_order(size);
1980 
1981 	rcu_read_lock();
1982 	vbq = &get_cpu_var(vmap_block_queue);
1983 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1984 		unsigned long pages_off;
1985 
1986 		spin_lock(&vb->lock);
1987 		if (vb->free < (1UL << order)) {
1988 			spin_unlock(&vb->lock);
1989 			continue;
1990 		}
1991 
1992 		pages_off = VMAP_BBMAP_BITS - vb->free;
1993 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1994 		vb->free -= 1UL << order;
1995 		if (vb->free == 0) {
1996 			spin_lock(&vbq->lock);
1997 			list_del_rcu(&vb->free_list);
1998 			spin_unlock(&vbq->lock);
1999 		}
2000 
2001 		spin_unlock(&vb->lock);
2002 		break;
2003 	}
2004 
2005 	put_cpu_var(vmap_block_queue);
2006 	rcu_read_unlock();
2007 
2008 	/* Allocate new block if nothing was found */
2009 	if (!vaddr)
2010 		vaddr = new_vmap_block(order, gfp_mask);
2011 
2012 	return vaddr;
2013 }
2014 
2015 static void vb_free(unsigned long addr, unsigned long size)
2016 {
2017 	unsigned long offset;
2018 	unsigned int order;
2019 	struct vmap_block *vb;
2020 
2021 	BUG_ON(offset_in_page(size));
2022 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2023 
2024 	flush_cache_vunmap(addr, addr + size);
2025 
2026 	order = get_order(size);
2027 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2028 	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2029 
2030 	vunmap_range_noflush(addr, addr + size);
2031 
2032 	if (debug_pagealloc_enabled_static())
2033 		flush_tlb_kernel_range(addr, addr + size);
2034 
2035 	spin_lock(&vb->lock);
2036 
2037 	/* Expand dirty range */
2038 	vb->dirty_min = min(vb->dirty_min, offset);
2039 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2040 
2041 	vb->dirty += 1UL << order;
2042 	if (vb->dirty == VMAP_BBMAP_BITS) {
2043 		BUG_ON(vb->free);
2044 		spin_unlock(&vb->lock);
2045 		free_vmap_block(vb);
2046 	} else
2047 		spin_unlock(&vb->lock);
2048 }
2049 
2050 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2051 {
2052 	int cpu;
2053 
2054 	if (unlikely(!vmap_initialized))
2055 		return;
2056 
2057 	might_sleep();
2058 
2059 	for_each_possible_cpu(cpu) {
2060 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2061 		struct vmap_block *vb;
2062 
2063 		rcu_read_lock();
2064 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2065 			spin_lock(&vb->lock);
2066 			if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2067 				unsigned long va_start = vb->va->va_start;
2068 				unsigned long s, e;
2069 
2070 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2071 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2072 
2073 				start = min(s, start);
2074 				end   = max(e, end);
2075 
2076 				flush = 1;
2077 			}
2078 			spin_unlock(&vb->lock);
2079 		}
2080 		rcu_read_unlock();
2081 	}
2082 
2083 	mutex_lock(&vmap_purge_lock);
2084 	purge_fragmented_blocks_allcpus();
2085 	if (!__purge_vmap_area_lazy(start, end) && flush)
2086 		flush_tlb_kernel_range(start, end);
2087 	mutex_unlock(&vmap_purge_lock);
2088 }
2089 
2090 /**
2091  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2092  *
2093  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2094  * to amortize TLB flushing overheads. What this means is that any page you
2095  * have now, may, in a former life, have been mapped into kernel virtual
2096  * address by the vmap layer and so there might be some CPUs with TLB entries
2097  * still referencing that page (additional to the regular 1:1 kernel mapping).
2098  *
2099  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2100  * be sure that none of the pages we have control over will have any aliases
2101  * from the vmap layer.
2102  */
2103 void vm_unmap_aliases(void)
2104 {
2105 	unsigned long start = ULONG_MAX, end = 0;
2106 	int flush = 0;
2107 
2108 	_vm_unmap_aliases(start, end, flush);
2109 }
2110 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2111 
2112 /**
2113  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2114  * @mem: the pointer returned by vm_map_ram
2115  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2116  */
2117 void vm_unmap_ram(const void *mem, unsigned int count)
2118 {
2119 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2120 	unsigned long addr = (unsigned long)mem;
2121 	struct vmap_area *va;
2122 
2123 	might_sleep();
2124 	BUG_ON(!addr);
2125 	BUG_ON(addr < VMALLOC_START);
2126 	BUG_ON(addr > VMALLOC_END);
2127 	BUG_ON(!PAGE_ALIGNED(addr));
2128 
2129 	kasan_poison_vmalloc(mem, size);
2130 
2131 	if (likely(count <= VMAP_MAX_ALLOC)) {
2132 		debug_check_no_locks_freed(mem, size);
2133 		vb_free(addr, size);
2134 		return;
2135 	}
2136 
2137 	va = find_vmap_area(addr);
2138 	BUG_ON(!va);
2139 	debug_check_no_locks_freed((void *)va->va_start,
2140 				    (va->va_end - va->va_start));
2141 	free_unmap_vmap_area(va);
2142 }
2143 EXPORT_SYMBOL(vm_unmap_ram);
2144 
2145 /**
2146  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2147  * @pages: an array of pointers to the pages to be mapped
2148  * @count: number of pages
2149  * @node: prefer to allocate data structures on this node
2150  *
2151  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2152  * faster than vmap so it's good.  But if you mix long-life and short-life
2153  * objects with vm_map_ram(), it could consume lots of address space through
2154  * fragmentation (especially on a 32bit machine).  You could see failures in
2155  * the end.  Please use this function for short-lived objects.
2156  *
2157  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2158  */
2159 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2160 {
2161 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2162 	unsigned long addr;
2163 	void *mem;
2164 
2165 	if (likely(count <= VMAP_MAX_ALLOC)) {
2166 		mem = vb_alloc(size, GFP_KERNEL);
2167 		if (IS_ERR(mem))
2168 			return NULL;
2169 		addr = (unsigned long)mem;
2170 	} else {
2171 		struct vmap_area *va;
2172 		va = alloc_vmap_area(size, PAGE_SIZE,
2173 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2174 		if (IS_ERR(va))
2175 			return NULL;
2176 
2177 		addr = va->va_start;
2178 		mem = (void *)addr;
2179 	}
2180 
2181 	kasan_unpoison_vmalloc(mem, size);
2182 
2183 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2184 				pages, PAGE_SHIFT) < 0) {
2185 		vm_unmap_ram(mem, count);
2186 		return NULL;
2187 	}
2188 
2189 	return mem;
2190 }
2191 EXPORT_SYMBOL(vm_map_ram);
2192 
2193 static struct vm_struct *vmlist __initdata;
2194 
2195 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2196 {
2197 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2198 	return vm->page_order;
2199 #else
2200 	return 0;
2201 #endif
2202 }
2203 
2204 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2205 {
2206 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2207 	vm->page_order = order;
2208 #else
2209 	BUG_ON(order != 0);
2210 #endif
2211 }
2212 
2213 /**
2214  * vm_area_add_early - add vmap area early during boot
2215  * @vm: vm_struct to add
2216  *
2217  * This function is used to add fixed kernel vm area to vmlist before
2218  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2219  * should contain proper values and the other fields should be zero.
2220  *
2221  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2222  */
2223 void __init vm_area_add_early(struct vm_struct *vm)
2224 {
2225 	struct vm_struct *tmp, **p;
2226 
2227 	BUG_ON(vmap_initialized);
2228 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2229 		if (tmp->addr >= vm->addr) {
2230 			BUG_ON(tmp->addr < vm->addr + vm->size);
2231 			break;
2232 		} else
2233 			BUG_ON(tmp->addr + tmp->size > vm->addr);
2234 	}
2235 	vm->next = *p;
2236 	*p = vm;
2237 }
2238 
2239 /**
2240  * vm_area_register_early - register vmap area early during boot
2241  * @vm: vm_struct to register
2242  * @align: requested alignment
2243  *
2244  * This function is used to register kernel vm area before
2245  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
2246  * proper values on entry and other fields should be zero.  On return,
2247  * vm->addr contains the allocated address.
2248  *
2249  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2250  */
2251 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2252 {
2253 	static size_t vm_init_off __initdata;
2254 	unsigned long addr;
2255 
2256 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
2257 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
2258 
2259 	vm->addr = (void *)addr;
2260 
2261 	vm_area_add_early(vm);
2262 }
2263 
2264 static void vmap_init_free_space(void)
2265 {
2266 	unsigned long vmap_start = 1;
2267 	const unsigned long vmap_end = ULONG_MAX;
2268 	struct vmap_area *busy, *free;
2269 
2270 	/*
2271 	 *     B     F     B     B     B     F
2272 	 * -|-----|.....|-----|-----|-----|.....|-
2273 	 *  |           The KVA space           |
2274 	 *  |<--------------------------------->|
2275 	 */
2276 	list_for_each_entry(busy, &vmap_area_list, list) {
2277 		if (busy->va_start - vmap_start > 0) {
2278 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2279 			if (!WARN_ON_ONCE(!free)) {
2280 				free->va_start = vmap_start;
2281 				free->va_end = busy->va_start;
2282 
2283 				insert_vmap_area_augment(free, NULL,
2284 					&free_vmap_area_root,
2285 						&free_vmap_area_list);
2286 			}
2287 		}
2288 
2289 		vmap_start = busy->va_end;
2290 	}
2291 
2292 	if (vmap_end - vmap_start > 0) {
2293 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2294 		if (!WARN_ON_ONCE(!free)) {
2295 			free->va_start = vmap_start;
2296 			free->va_end = vmap_end;
2297 
2298 			insert_vmap_area_augment(free, NULL,
2299 				&free_vmap_area_root,
2300 					&free_vmap_area_list);
2301 		}
2302 	}
2303 }
2304 
2305 void __init vmalloc_init(void)
2306 {
2307 	struct vmap_area *va;
2308 	struct vm_struct *tmp;
2309 	int i;
2310 
2311 	/*
2312 	 * Create the cache for vmap_area objects.
2313 	 */
2314 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2315 
2316 	for_each_possible_cpu(i) {
2317 		struct vmap_block_queue *vbq;
2318 		struct vfree_deferred *p;
2319 
2320 		vbq = &per_cpu(vmap_block_queue, i);
2321 		spin_lock_init(&vbq->lock);
2322 		INIT_LIST_HEAD(&vbq->free);
2323 		p = &per_cpu(vfree_deferred, i);
2324 		init_llist_head(&p->list);
2325 		INIT_WORK(&p->wq, free_work);
2326 	}
2327 
2328 	/* Import existing vmlist entries. */
2329 	for (tmp = vmlist; tmp; tmp = tmp->next) {
2330 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2331 		if (WARN_ON_ONCE(!va))
2332 			continue;
2333 
2334 		va->va_start = (unsigned long)tmp->addr;
2335 		va->va_end = va->va_start + tmp->size;
2336 		va->vm = tmp;
2337 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2338 	}
2339 
2340 	/*
2341 	 * Now we can initialize a free vmap space.
2342 	 */
2343 	vmap_init_free_space();
2344 	vmap_initialized = true;
2345 }
2346 
2347 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2348 	struct vmap_area *va, unsigned long flags, const void *caller)
2349 {
2350 	vm->flags = flags;
2351 	vm->addr = (void *)va->va_start;
2352 	vm->size = va->va_end - va->va_start;
2353 	vm->caller = caller;
2354 	va->vm = vm;
2355 }
2356 
2357 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2358 			      unsigned long flags, const void *caller)
2359 {
2360 	spin_lock(&vmap_area_lock);
2361 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2362 	spin_unlock(&vmap_area_lock);
2363 }
2364 
2365 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2366 {
2367 	/*
2368 	 * Before removing VM_UNINITIALIZED,
2369 	 * we should make sure that vm has proper values.
2370 	 * Pair with smp_rmb() in show_numa_info().
2371 	 */
2372 	smp_wmb();
2373 	vm->flags &= ~VM_UNINITIALIZED;
2374 }
2375 
2376 static struct vm_struct *__get_vm_area_node(unsigned long size,
2377 		unsigned long align, unsigned long shift, unsigned long flags,
2378 		unsigned long start, unsigned long end, int node,
2379 		gfp_t gfp_mask, const void *caller)
2380 {
2381 	struct vmap_area *va;
2382 	struct vm_struct *area;
2383 	unsigned long requested_size = size;
2384 
2385 	BUG_ON(in_interrupt());
2386 	size = ALIGN(size, 1ul << shift);
2387 	if (unlikely(!size))
2388 		return NULL;
2389 
2390 	if (flags & VM_IOREMAP)
2391 		align = 1ul << clamp_t(int, get_count_order_long(size),
2392 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2393 
2394 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2395 	if (unlikely(!area))
2396 		return NULL;
2397 
2398 	if (!(flags & VM_NO_GUARD))
2399 		size += PAGE_SIZE;
2400 
2401 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2402 	if (IS_ERR(va)) {
2403 		kfree(area);
2404 		return NULL;
2405 	}
2406 
2407 	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2408 
2409 	setup_vmalloc_vm(area, va, flags, caller);
2410 
2411 	return area;
2412 }
2413 
2414 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2415 				       unsigned long start, unsigned long end,
2416 				       const void *caller)
2417 {
2418 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2419 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2420 }
2421 
2422 /**
2423  * get_vm_area - reserve a contiguous kernel virtual area
2424  * @size:	 size of the area
2425  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2426  *
2427  * Search an area of @size in the kernel virtual mapping area,
2428  * and reserved it for out purposes.  Returns the area descriptor
2429  * on success or %NULL on failure.
2430  *
2431  * Return: the area descriptor on success or %NULL on failure.
2432  */
2433 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2434 {
2435 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2436 				  VMALLOC_START, VMALLOC_END,
2437 				  NUMA_NO_NODE, GFP_KERNEL,
2438 				  __builtin_return_address(0));
2439 }
2440 
2441 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2442 				const void *caller)
2443 {
2444 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2445 				  VMALLOC_START, VMALLOC_END,
2446 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2447 }
2448 
2449 /**
2450  * find_vm_area - find a continuous kernel virtual area
2451  * @addr:	  base address
2452  *
2453  * Search for the kernel VM area starting at @addr, and return it.
2454  * It is up to the caller to do all required locking to keep the returned
2455  * pointer valid.
2456  *
2457  * Return: the area descriptor on success or %NULL on failure.
2458  */
2459 struct vm_struct *find_vm_area(const void *addr)
2460 {
2461 	struct vmap_area *va;
2462 
2463 	va = find_vmap_area((unsigned long)addr);
2464 	if (!va)
2465 		return NULL;
2466 
2467 	return va->vm;
2468 }
2469 
2470 /**
2471  * remove_vm_area - find and remove a continuous kernel virtual area
2472  * @addr:	    base address
2473  *
2474  * Search for the kernel VM area starting at @addr, and remove it.
2475  * This function returns the found VM area, but using it is NOT safe
2476  * on SMP machines, except for its size or flags.
2477  *
2478  * Return: the area descriptor on success or %NULL on failure.
2479  */
2480 struct vm_struct *remove_vm_area(const void *addr)
2481 {
2482 	struct vmap_area *va;
2483 
2484 	might_sleep();
2485 
2486 	spin_lock(&vmap_area_lock);
2487 	va = __find_vmap_area((unsigned long)addr);
2488 	if (va && va->vm) {
2489 		struct vm_struct *vm = va->vm;
2490 
2491 		va->vm = NULL;
2492 		spin_unlock(&vmap_area_lock);
2493 
2494 		kasan_free_shadow(vm);
2495 		free_unmap_vmap_area(va);
2496 
2497 		return vm;
2498 	}
2499 
2500 	spin_unlock(&vmap_area_lock);
2501 	return NULL;
2502 }
2503 
2504 static inline void set_area_direct_map(const struct vm_struct *area,
2505 				       int (*set_direct_map)(struct page *page))
2506 {
2507 	int i;
2508 
2509 	/* HUGE_VMALLOC passes small pages to set_direct_map */
2510 	for (i = 0; i < area->nr_pages; i++)
2511 		if (page_address(area->pages[i]))
2512 			set_direct_map(area->pages[i]);
2513 }
2514 
2515 /* Handle removing and resetting vm mappings related to the vm_struct. */
2516 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2517 {
2518 	unsigned long start = ULONG_MAX, end = 0;
2519 	unsigned int page_order = vm_area_page_order(area);
2520 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2521 	int flush_dmap = 0;
2522 	int i;
2523 
2524 	remove_vm_area(area->addr);
2525 
2526 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2527 	if (!flush_reset)
2528 		return;
2529 
2530 	/*
2531 	 * If not deallocating pages, just do the flush of the VM area and
2532 	 * return.
2533 	 */
2534 	if (!deallocate_pages) {
2535 		vm_unmap_aliases();
2536 		return;
2537 	}
2538 
2539 	/*
2540 	 * If execution gets here, flush the vm mapping and reset the direct
2541 	 * map. Find the start and end range of the direct mappings to make sure
2542 	 * the vm_unmap_aliases() flush includes the direct map.
2543 	 */
2544 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2545 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2546 		if (addr) {
2547 			unsigned long page_size;
2548 
2549 			page_size = PAGE_SIZE << page_order;
2550 			start = min(addr, start);
2551 			end = max(addr + page_size, end);
2552 			flush_dmap = 1;
2553 		}
2554 	}
2555 
2556 	/*
2557 	 * Set direct map to something invalid so that it won't be cached if
2558 	 * there are any accesses after the TLB flush, then flush the TLB and
2559 	 * reset the direct map permissions to the default.
2560 	 */
2561 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2562 	_vm_unmap_aliases(start, end, flush_dmap);
2563 	set_area_direct_map(area, set_direct_map_default_noflush);
2564 }
2565 
2566 static void __vunmap(const void *addr, int deallocate_pages)
2567 {
2568 	struct vm_struct *area;
2569 
2570 	if (!addr)
2571 		return;
2572 
2573 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2574 			addr))
2575 		return;
2576 
2577 	area = find_vm_area(addr);
2578 	if (unlikely(!area)) {
2579 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2580 				addr);
2581 		return;
2582 	}
2583 
2584 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2585 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2586 
2587 	kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2588 
2589 	vm_remove_mappings(area, deallocate_pages);
2590 
2591 	if (deallocate_pages) {
2592 		unsigned int page_order = vm_area_page_order(area);
2593 		int i;
2594 
2595 		for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2596 			struct page *page = area->pages[i];
2597 
2598 			BUG_ON(!page);
2599 			__free_pages(page, page_order);
2600 			cond_resched();
2601 		}
2602 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2603 
2604 		kvfree(area->pages);
2605 	}
2606 
2607 	kfree(area);
2608 }
2609 
2610 static inline void __vfree_deferred(const void *addr)
2611 {
2612 	/*
2613 	 * Use raw_cpu_ptr() because this can be called from preemptible
2614 	 * context. Preemption is absolutely fine here, because the llist_add()
2615 	 * implementation is lockless, so it works even if we are adding to
2616 	 * another cpu's list. schedule_work() should be fine with this too.
2617 	 */
2618 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2619 
2620 	if (llist_add((struct llist_node *)addr, &p->list))
2621 		schedule_work(&p->wq);
2622 }
2623 
2624 /**
2625  * vfree_atomic - release memory allocated by vmalloc()
2626  * @addr:	  memory base address
2627  *
2628  * This one is just like vfree() but can be called in any atomic context
2629  * except NMIs.
2630  */
2631 void vfree_atomic(const void *addr)
2632 {
2633 	BUG_ON(in_nmi());
2634 
2635 	kmemleak_free(addr);
2636 
2637 	if (!addr)
2638 		return;
2639 	__vfree_deferred(addr);
2640 }
2641 
2642 static void __vfree(const void *addr)
2643 {
2644 	if (unlikely(in_interrupt()))
2645 		__vfree_deferred(addr);
2646 	else
2647 		__vunmap(addr, 1);
2648 }
2649 
2650 /**
2651  * vfree - Release memory allocated by vmalloc()
2652  * @addr:  Memory base address
2653  *
2654  * Free the virtually continuous memory area starting at @addr, as obtained
2655  * from one of the vmalloc() family of APIs.  This will usually also free the
2656  * physical memory underlying the virtual allocation, but that memory is
2657  * reference counted, so it will not be freed until the last user goes away.
2658  *
2659  * If @addr is NULL, no operation is performed.
2660  *
2661  * Context:
2662  * May sleep if called *not* from interrupt context.
2663  * Must not be called in NMI context (strictly speaking, it could be
2664  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2665  * conventions for vfree() arch-dependent would be a really bad idea).
2666  */
2667 void vfree(const void *addr)
2668 {
2669 	BUG_ON(in_nmi());
2670 
2671 	kmemleak_free(addr);
2672 
2673 	might_sleep_if(!in_interrupt());
2674 
2675 	if (!addr)
2676 		return;
2677 
2678 	__vfree(addr);
2679 }
2680 EXPORT_SYMBOL(vfree);
2681 
2682 /**
2683  * vunmap - release virtual mapping obtained by vmap()
2684  * @addr:   memory base address
2685  *
2686  * Free the virtually contiguous memory area starting at @addr,
2687  * which was created from the page array passed to vmap().
2688  *
2689  * Must not be called in interrupt context.
2690  */
2691 void vunmap(const void *addr)
2692 {
2693 	BUG_ON(in_interrupt());
2694 	might_sleep();
2695 	if (addr)
2696 		__vunmap(addr, 0);
2697 }
2698 EXPORT_SYMBOL(vunmap);
2699 
2700 /**
2701  * vmap - map an array of pages into virtually contiguous space
2702  * @pages: array of page pointers
2703  * @count: number of pages to map
2704  * @flags: vm_area->flags
2705  * @prot: page protection for the mapping
2706  *
2707  * Maps @count pages from @pages into contiguous kernel virtual space.
2708  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2709  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2710  * are transferred from the caller to vmap(), and will be freed / dropped when
2711  * vfree() is called on the return value.
2712  *
2713  * Return: the address of the area or %NULL on failure
2714  */
2715 void *vmap(struct page **pages, unsigned int count,
2716 	   unsigned long flags, pgprot_t prot)
2717 {
2718 	struct vm_struct *area;
2719 	unsigned long addr;
2720 	unsigned long size;		/* In bytes */
2721 
2722 	might_sleep();
2723 
2724 	if (count > totalram_pages())
2725 		return NULL;
2726 
2727 	size = (unsigned long)count << PAGE_SHIFT;
2728 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2729 	if (!area)
2730 		return NULL;
2731 
2732 	addr = (unsigned long)area->addr;
2733 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2734 				pages, PAGE_SHIFT) < 0) {
2735 		vunmap(area->addr);
2736 		return NULL;
2737 	}
2738 
2739 	if (flags & VM_MAP_PUT_PAGES) {
2740 		area->pages = pages;
2741 		area->nr_pages = count;
2742 	}
2743 	return area->addr;
2744 }
2745 EXPORT_SYMBOL(vmap);
2746 
2747 #ifdef CONFIG_VMAP_PFN
2748 struct vmap_pfn_data {
2749 	unsigned long	*pfns;
2750 	pgprot_t	prot;
2751 	unsigned int	idx;
2752 };
2753 
2754 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2755 {
2756 	struct vmap_pfn_data *data = private;
2757 
2758 	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2759 		return -EINVAL;
2760 	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2761 	return 0;
2762 }
2763 
2764 /**
2765  * vmap_pfn - map an array of PFNs into virtually contiguous space
2766  * @pfns: array of PFNs
2767  * @count: number of pages to map
2768  * @prot: page protection for the mapping
2769  *
2770  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2771  * the start address of the mapping.
2772  */
2773 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2774 {
2775 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2776 	struct vm_struct *area;
2777 
2778 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2779 			__builtin_return_address(0));
2780 	if (!area)
2781 		return NULL;
2782 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2783 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2784 		free_vm_area(area);
2785 		return NULL;
2786 	}
2787 	return area->addr;
2788 }
2789 EXPORT_SYMBOL_GPL(vmap_pfn);
2790 #endif /* CONFIG_VMAP_PFN */
2791 
2792 static inline unsigned int
2793 vm_area_alloc_pages(gfp_t gfp, int nid,
2794 		unsigned int order, unsigned long nr_pages, struct page **pages)
2795 {
2796 	unsigned int nr_allocated = 0;
2797 
2798 	/*
2799 	 * For order-0 pages we make use of bulk allocator, if
2800 	 * the page array is partly or not at all populated due
2801 	 * to fails, fallback to a single page allocator that is
2802 	 * more permissive.
2803 	 */
2804 	if (!order)
2805 		nr_allocated = alloc_pages_bulk_array_node(
2806 			gfp, nid, nr_pages, pages);
2807 	else
2808 		/*
2809 		 * Compound pages required for remap_vmalloc_page if
2810 		 * high-order pages.
2811 		 */
2812 		gfp |= __GFP_COMP;
2813 
2814 	/* High-order pages or fallback path if "bulk" fails. */
2815 	while (nr_allocated < nr_pages) {
2816 		struct page *page;
2817 		int i;
2818 
2819 		page = alloc_pages_node(nid, gfp, order);
2820 		if (unlikely(!page))
2821 			break;
2822 
2823 		/*
2824 		 * Careful, we allocate and map page-order pages, but
2825 		 * tracking is done per PAGE_SIZE page so as to keep the
2826 		 * vm_struct APIs independent of the physical/mapped size.
2827 		 */
2828 		for (i = 0; i < (1U << order); i++)
2829 			pages[nr_allocated + i] = page + i;
2830 
2831 		if (gfpflags_allow_blocking(gfp))
2832 			cond_resched();
2833 
2834 		nr_allocated += 1U << order;
2835 	}
2836 
2837 	return nr_allocated;
2838 }
2839 
2840 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2841 				 pgprot_t prot, unsigned int page_shift,
2842 				 int node)
2843 {
2844 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2845 	unsigned long addr = (unsigned long)area->addr;
2846 	unsigned long size = get_vm_area_size(area);
2847 	unsigned long array_size;
2848 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
2849 	unsigned int page_order;
2850 
2851 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
2852 	gfp_mask |= __GFP_NOWARN;
2853 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2854 		gfp_mask |= __GFP_HIGHMEM;
2855 
2856 	/* Please note that the recursion is strictly bounded. */
2857 	if (array_size > PAGE_SIZE) {
2858 		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2859 					area->caller);
2860 	} else {
2861 		area->pages = kmalloc_node(array_size, nested_gfp, node);
2862 	}
2863 
2864 	if (!area->pages) {
2865 		warn_alloc(gfp_mask, NULL,
2866 			"vmalloc error: size %lu, failed to allocated page array size %lu",
2867 			nr_small_pages * PAGE_SIZE, array_size);
2868 		free_vm_area(area);
2869 		return NULL;
2870 	}
2871 
2872 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
2873 	page_order = vm_area_page_order(area);
2874 
2875 	area->nr_pages = vm_area_alloc_pages(gfp_mask, node,
2876 		page_order, nr_small_pages, area->pages);
2877 
2878 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2879 
2880 	/*
2881 	 * If not enough pages were obtained to accomplish an
2882 	 * allocation request, free them via __vfree() if any.
2883 	 */
2884 	if (area->nr_pages != nr_small_pages) {
2885 		warn_alloc(gfp_mask, NULL,
2886 			"vmalloc error: size %lu, page order %u, failed to allocate pages",
2887 			area->nr_pages * PAGE_SIZE, page_order);
2888 		goto fail;
2889 	}
2890 
2891 	if (vmap_pages_range(addr, addr + size, prot, area->pages,
2892 			page_shift) < 0) {
2893 		warn_alloc(gfp_mask, NULL,
2894 			"vmalloc error: size %lu, failed to map pages",
2895 			area->nr_pages * PAGE_SIZE);
2896 		goto fail;
2897 	}
2898 
2899 	return area->addr;
2900 
2901 fail:
2902 	__vfree(area->addr);
2903 	return NULL;
2904 }
2905 
2906 /**
2907  * __vmalloc_node_range - allocate virtually contiguous memory
2908  * @size:		  allocation size
2909  * @align:		  desired alignment
2910  * @start:		  vm area range start
2911  * @end:		  vm area range end
2912  * @gfp_mask:		  flags for the page level allocator
2913  * @prot:		  protection mask for the allocated pages
2914  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
2915  * @node:		  node to use for allocation or NUMA_NO_NODE
2916  * @caller:		  caller's return address
2917  *
2918  * Allocate enough pages to cover @size from the page level
2919  * allocator with @gfp_mask flags.  Map them into contiguous
2920  * kernel virtual space, using a pagetable protection of @prot.
2921  *
2922  * Return: the address of the area or %NULL on failure
2923  */
2924 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2925 			unsigned long start, unsigned long end, gfp_t gfp_mask,
2926 			pgprot_t prot, unsigned long vm_flags, int node,
2927 			const void *caller)
2928 {
2929 	struct vm_struct *area;
2930 	void *addr;
2931 	unsigned long real_size = size;
2932 	unsigned long real_align = align;
2933 	unsigned int shift = PAGE_SHIFT;
2934 
2935 	if (WARN_ON_ONCE(!size))
2936 		return NULL;
2937 
2938 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
2939 		warn_alloc(gfp_mask, NULL,
2940 			"vmalloc error: size %lu, exceeds total pages",
2941 			real_size);
2942 		return NULL;
2943 	}
2944 
2945 	if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP)) {
2946 		unsigned long size_per_node;
2947 
2948 		/*
2949 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
2950 		 * others like modules don't yet expect huge pages in
2951 		 * their allocations due to apply_to_page_range not
2952 		 * supporting them.
2953 		 */
2954 
2955 		size_per_node = size;
2956 		if (node == NUMA_NO_NODE)
2957 			size_per_node /= num_online_nodes();
2958 		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
2959 			shift = PMD_SHIFT;
2960 		else
2961 			shift = arch_vmap_pte_supported_shift(size_per_node);
2962 
2963 		align = max(real_align, 1UL << shift);
2964 		size = ALIGN(real_size, 1UL << shift);
2965 	}
2966 
2967 again:
2968 	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
2969 				  VM_UNINITIALIZED | vm_flags, start, end, node,
2970 				  gfp_mask, caller);
2971 	if (!area) {
2972 		warn_alloc(gfp_mask, NULL,
2973 			"vmalloc error: size %lu, vm_struct allocation failed",
2974 			real_size);
2975 		goto fail;
2976 	}
2977 
2978 	addr = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
2979 	if (!addr)
2980 		goto fail;
2981 
2982 	/*
2983 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2984 	 * flag. It means that vm_struct is not fully initialized.
2985 	 * Now, it is fully initialized, so remove this flag here.
2986 	 */
2987 	clear_vm_uninitialized_flag(area);
2988 
2989 	size = PAGE_ALIGN(size);
2990 	kmemleak_vmalloc(area, size, gfp_mask);
2991 
2992 	return addr;
2993 
2994 fail:
2995 	if (shift > PAGE_SHIFT) {
2996 		shift = PAGE_SHIFT;
2997 		align = real_align;
2998 		size = real_size;
2999 		goto again;
3000 	}
3001 
3002 	return NULL;
3003 }
3004 
3005 /**
3006  * __vmalloc_node - allocate virtually contiguous memory
3007  * @size:	    allocation size
3008  * @align:	    desired alignment
3009  * @gfp_mask:	    flags for the page level allocator
3010  * @node:	    node to use for allocation or NUMA_NO_NODE
3011  * @caller:	    caller's return address
3012  *
3013  * Allocate enough pages to cover @size from the page level allocator with
3014  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3015  *
3016  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3017  * and __GFP_NOFAIL are not supported
3018  *
3019  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3020  * with mm people.
3021  *
3022  * Return: pointer to the allocated memory or %NULL on error
3023  */
3024 void *__vmalloc_node(unsigned long size, unsigned long align,
3025 			    gfp_t gfp_mask, int node, const void *caller)
3026 {
3027 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3028 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3029 }
3030 /*
3031  * This is only for performance analysis of vmalloc and stress purpose.
3032  * It is required by vmalloc test module, therefore do not use it other
3033  * than that.
3034  */
3035 #ifdef CONFIG_TEST_VMALLOC_MODULE
3036 EXPORT_SYMBOL_GPL(__vmalloc_node);
3037 #endif
3038 
3039 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3040 {
3041 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3042 				__builtin_return_address(0));
3043 }
3044 EXPORT_SYMBOL(__vmalloc);
3045 
3046 /**
3047  * vmalloc - allocate virtually contiguous memory
3048  * @size:    allocation size
3049  *
3050  * Allocate enough pages to cover @size from the page level
3051  * allocator and map them into contiguous kernel virtual space.
3052  *
3053  * For tight control over page level allocator and protection flags
3054  * use __vmalloc() instead.
3055  *
3056  * Return: pointer to the allocated memory or %NULL on error
3057  */
3058 void *vmalloc(unsigned long size)
3059 {
3060 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3061 				__builtin_return_address(0));
3062 }
3063 EXPORT_SYMBOL(vmalloc);
3064 
3065 /**
3066  * vmalloc_no_huge - allocate virtually contiguous memory using small pages
3067  * @size:    allocation size
3068  *
3069  * Allocate enough non-huge pages to cover @size from the page level
3070  * allocator and map them into contiguous kernel virtual space.
3071  *
3072  * Return: pointer to the allocated memory or %NULL on error
3073  */
3074 void *vmalloc_no_huge(unsigned long size)
3075 {
3076 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3077 				    GFP_KERNEL, PAGE_KERNEL, VM_NO_HUGE_VMAP,
3078 				    NUMA_NO_NODE, __builtin_return_address(0));
3079 }
3080 EXPORT_SYMBOL(vmalloc_no_huge);
3081 
3082 /**
3083  * vzalloc - allocate virtually contiguous memory with zero fill
3084  * @size:    allocation size
3085  *
3086  * Allocate enough pages to cover @size from the page level
3087  * allocator and map them into contiguous kernel virtual space.
3088  * The memory allocated is set to zero.
3089  *
3090  * For tight control over page level allocator and protection flags
3091  * use __vmalloc() instead.
3092  *
3093  * Return: pointer to the allocated memory or %NULL on error
3094  */
3095 void *vzalloc(unsigned long size)
3096 {
3097 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3098 				__builtin_return_address(0));
3099 }
3100 EXPORT_SYMBOL(vzalloc);
3101 
3102 /**
3103  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3104  * @size: allocation size
3105  *
3106  * The resulting memory area is zeroed so it can be mapped to userspace
3107  * without leaking data.
3108  *
3109  * Return: pointer to the allocated memory or %NULL on error
3110  */
3111 void *vmalloc_user(unsigned long size)
3112 {
3113 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3114 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3115 				    VM_USERMAP, NUMA_NO_NODE,
3116 				    __builtin_return_address(0));
3117 }
3118 EXPORT_SYMBOL(vmalloc_user);
3119 
3120 /**
3121  * vmalloc_node - allocate memory on a specific node
3122  * @size:	  allocation size
3123  * @node:	  numa node
3124  *
3125  * Allocate enough pages to cover @size from the page level
3126  * allocator and map them into contiguous kernel virtual space.
3127  *
3128  * For tight control over page level allocator and protection flags
3129  * use __vmalloc() instead.
3130  *
3131  * Return: pointer to the allocated memory or %NULL on error
3132  */
3133 void *vmalloc_node(unsigned long size, int node)
3134 {
3135 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
3136 			__builtin_return_address(0));
3137 }
3138 EXPORT_SYMBOL(vmalloc_node);
3139 
3140 /**
3141  * vzalloc_node - allocate memory on a specific node with zero fill
3142  * @size:	allocation size
3143  * @node:	numa node
3144  *
3145  * Allocate enough pages to cover @size from the page level
3146  * allocator and map them into contiguous kernel virtual space.
3147  * The memory allocated is set to zero.
3148  *
3149  * Return: pointer to the allocated memory or %NULL on error
3150  */
3151 void *vzalloc_node(unsigned long size, int node)
3152 {
3153 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3154 				__builtin_return_address(0));
3155 }
3156 EXPORT_SYMBOL(vzalloc_node);
3157 
3158 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3159 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3160 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3161 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3162 #else
3163 /*
3164  * 64b systems should always have either DMA or DMA32 zones. For others
3165  * GFP_DMA32 should do the right thing and use the normal zone.
3166  */
3167 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3168 #endif
3169 
3170 /**
3171  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3172  * @size:	allocation size
3173  *
3174  * Allocate enough 32bit PA addressable pages to cover @size from the
3175  * page level allocator and map them into contiguous kernel virtual space.
3176  *
3177  * Return: pointer to the allocated memory or %NULL on error
3178  */
3179 void *vmalloc_32(unsigned long size)
3180 {
3181 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3182 			__builtin_return_address(0));
3183 }
3184 EXPORT_SYMBOL(vmalloc_32);
3185 
3186 /**
3187  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3188  * @size:	     allocation size
3189  *
3190  * The resulting memory area is 32bit addressable and zeroed so it can be
3191  * mapped to userspace without leaking data.
3192  *
3193  * Return: pointer to the allocated memory or %NULL on error
3194  */
3195 void *vmalloc_32_user(unsigned long size)
3196 {
3197 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3198 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3199 				    VM_USERMAP, NUMA_NO_NODE,
3200 				    __builtin_return_address(0));
3201 }
3202 EXPORT_SYMBOL(vmalloc_32_user);
3203 
3204 /*
3205  * small helper routine , copy contents to buf from addr.
3206  * If the page is not present, fill zero.
3207  */
3208 
3209 static int aligned_vread(char *buf, char *addr, unsigned long count)
3210 {
3211 	struct page *p;
3212 	int copied = 0;
3213 
3214 	while (count) {
3215 		unsigned long offset, length;
3216 
3217 		offset = offset_in_page(addr);
3218 		length = PAGE_SIZE - offset;
3219 		if (length > count)
3220 			length = count;
3221 		p = vmalloc_to_page(addr);
3222 		/*
3223 		 * To do safe access to this _mapped_ area, we need
3224 		 * lock. But adding lock here means that we need to add
3225 		 * overhead of vmalloc()/vfree() calls for this _debug_
3226 		 * interface, rarely used. Instead of that, we'll use
3227 		 * kmap() and get small overhead in this access function.
3228 		 */
3229 		if (p) {
3230 			/* We can expect USER0 is not used -- see vread() */
3231 			void *map = kmap_atomic(p);
3232 			memcpy(buf, map + offset, length);
3233 			kunmap_atomic(map);
3234 		} else
3235 			memset(buf, 0, length);
3236 
3237 		addr += length;
3238 		buf += length;
3239 		copied += length;
3240 		count -= length;
3241 	}
3242 	return copied;
3243 }
3244 
3245 /**
3246  * vread() - read vmalloc area in a safe way.
3247  * @buf:     buffer for reading data
3248  * @addr:    vm address.
3249  * @count:   number of bytes to be read.
3250  *
3251  * This function checks that addr is a valid vmalloc'ed area, and
3252  * copy data from that area to a given buffer. If the given memory range
3253  * of [addr...addr+count) includes some valid address, data is copied to
3254  * proper area of @buf. If there are memory holes, they'll be zero-filled.
3255  * IOREMAP area is treated as memory hole and no copy is done.
3256  *
3257  * If [addr...addr+count) doesn't includes any intersects with alive
3258  * vm_struct area, returns 0. @buf should be kernel's buffer.
3259  *
3260  * Note: In usual ops, vread() is never necessary because the caller
3261  * should know vmalloc() area is valid and can use memcpy().
3262  * This is for routines which have to access vmalloc area without
3263  * any information, as /proc/kcore.
3264  *
3265  * Return: number of bytes for which addr and buf should be increased
3266  * (same number as @count) or %0 if [addr...addr+count) doesn't
3267  * include any intersection with valid vmalloc area
3268  */
3269 long vread(char *buf, char *addr, unsigned long count)
3270 {
3271 	struct vmap_area *va;
3272 	struct vm_struct *vm;
3273 	char *vaddr, *buf_start = buf;
3274 	unsigned long buflen = count;
3275 	unsigned long n;
3276 
3277 	/* Don't allow overflow */
3278 	if ((unsigned long) addr + count < count)
3279 		count = -(unsigned long) addr;
3280 
3281 	spin_lock(&vmap_area_lock);
3282 	va = __find_vmap_area((unsigned long)addr);
3283 	if (!va)
3284 		goto finished;
3285 	list_for_each_entry_from(va, &vmap_area_list, list) {
3286 		if (!count)
3287 			break;
3288 
3289 		if (!va->vm)
3290 			continue;
3291 
3292 		vm = va->vm;
3293 		vaddr = (char *) vm->addr;
3294 		if (addr >= vaddr + get_vm_area_size(vm))
3295 			continue;
3296 		while (addr < vaddr) {
3297 			if (count == 0)
3298 				goto finished;
3299 			*buf = '\0';
3300 			buf++;
3301 			addr++;
3302 			count--;
3303 		}
3304 		n = vaddr + get_vm_area_size(vm) - addr;
3305 		if (n > count)
3306 			n = count;
3307 		if (!(vm->flags & VM_IOREMAP))
3308 			aligned_vread(buf, addr, n);
3309 		else /* IOREMAP area is treated as memory hole */
3310 			memset(buf, 0, n);
3311 		buf += n;
3312 		addr += n;
3313 		count -= n;
3314 	}
3315 finished:
3316 	spin_unlock(&vmap_area_lock);
3317 
3318 	if (buf == buf_start)
3319 		return 0;
3320 	/* zero-fill memory holes */
3321 	if (buf != buf_start + buflen)
3322 		memset(buf, 0, buflen - (buf - buf_start));
3323 
3324 	return buflen;
3325 }
3326 
3327 /**
3328  * remap_vmalloc_range_partial - map vmalloc pages to userspace
3329  * @vma:		vma to cover
3330  * @uaddr:		target user address to start at
3331  * @kaddr:		virtual address of vmalloc kernel memory
3332  * @pgoff:		offset from @kaddr to start at
3333  * @size:		size of map area
3334  *
3335  * Returns:	0 for success, -Exxx on failure
3336  *
3337  * This function checks that @kaddr is a valid vmalloc'ed area,
3338  * and that it is big enough to cover the range starting at
3339  * @uaddr in @vma. Will return failure if that criteria isn't
3340  * met.
3341  *
3342  * Similar to remap_pfn_range() (see mm/memory.c)
3343  */
3344 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3345 				void *kaddr, unsigned long pgoff,
3346 				unsigned long size)
3347 {
3348 	struct vm_struct *area;
3349 	unsigned long off;
3350 	unsigned long end_index;
3351 
3352 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3353 		return -EINVAL;
3354 
3355 	size = PAGE_ALIGN(size);
3356 
3357 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3358 		return -EINVAL;
3359 
3360 	area = find_vm_area(kaddr);
3361 	if (!area)
3362 		return -EINVAL;
3363 
3364 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3365 		return -EINVAL;
3366 
3367 	if (check_add_overflow(size, off, &end_index) ||
3368 	    end_index > get_vm_area_size(area))
3369 		return -EINVAL;
3370 	kaddr += off;
3371 
3372 	do {
3373 		struct page *page = vmalloc_to_page(kaddr);
3374 		int ret;
3375 
3376 		ret = vm_insert_page(vma, uaddr, page);
3377 		if (ret)
3378 			return ret;
3379 
3380 		uaddr += PAGE_SIZE;
3381 		kaddr += PAGE_SIZE;
3382 		size -= PAGE_SIZE;
3383 	} while (size > 0);
3384 
3385 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3386 
3387 	return 0;
3388 }
3389 
3390 /**
3391  * remap_vmalloc_range - map vmalloc pages to userspace
3392  * @vma:		vma to cover (map full range of vma)
3393  * @addr:		vmalloc memory
3394  * @pgoff:		number of pages into addr before first page to map
3395  *
3396  * Returns:	0 for success, -Exxx on failure
3397  *
3398  * This function checks that addr is a valid vmalloc'ed area, and
3399  * that it is big enough to cover the vma. Will return failure if
3400  * that criteria isn't met.
3401  *
3402  * Similar to remap_pfn_range() (see mm/memory.c)
3403  */
3404 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3405 						unsigned long pgoff)
3406 {
3407 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3408 					   addr, pgoff,
3409 					   vma->vm_end - vma->vm_start);
3410 }
3411 EXPORT_SYMBOL(remap_vmalloc_range);
3412 
3413 void free_vm_area(struct vm_struct *area)
3414 {
3415 	struct vm_struct *ret;
3416 	ret = remove_vm_area(area->addr);
3417 	BUG_ON(ret != area);
3418 	kfree(area);
3419 }
3420 EXPORT_SYMBOL_GPL(free_vm_area);
3421 
3422 #ifdef CONFIG_SMP
3423 static struct vmap_area *node_to_va(struct rb_node *n)
3424 {
3425 	return rb_entry_safe(n, struct vmap_area, rb_node);
3426 }
3427 
3428 /**
3429  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3430  * @addr: target address
3431  *
3432  * Returns: vmap_area if it is found. If there is no such area
3433  *   the first highest(reverse order) vmap_area is returned
3434  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3435  *   if there are no any areas before @addr.
3436  */
3437 static struct vmap_area *
3438 pvm_find_va_enclose_addr(unsigned long addr)
3439 {
3440 	struct vmap_area *va, *tmp;
3441 	struct rb_node *n;
3442 
3443 	n = free_vmap_area_root.rb_node;
3444 	va = NULL;
3445 
3446 	while (n) {
3447 		tmp = rb_entry(n, struct vmap_area, rb_node);
3448 		if (tmp->va_start <= addr) {
3449 			va = tmp;
3450 			if (tmp->va_end >= addr)
3451 				break;
3452 
3453 			n = n->rb_right;
3454 		} else {
3455 			n = n->rb_left;
3456 		}
3457 	}
3458 
3459 	return va;
3460 }
3461 
3462 /**
3463  * pvm_determine_end_from_reverse - find the highest aligned address
3464  * of free block below VMALLOC_END
3465  * @va:
3466  *   in - the VA we start the search(reverse order);
3467  *   out - the VA with the highest aligned end address.
3468  * @align: alignment for required highest address
3469  *
3470  * Returns: determined end address within vmap_area
3471  */
3472 static unsigned long
3473 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3474 {
3475 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3476 	unsigned long addr;
3477 
3478 	if (likely(*va)) {
3479 		list_for_each_entry_from_reverse((*va),
3480 				&free_vmap_area_list, list) {
3481 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3482 			if ((*va)->va_start < addr)
3483 				return addr;
3484 		}
3485 	}
3486 
3487 	return 0;
3488 }
3489 
3490 /**
3491  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3492  * @offsets: array containing offset of each area
3493  * @sizes: array containing size of each area
3494  * @nr_vms: the number of areas to allocate
3495  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3496  *
3497  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3498  *	    vm_structs on success, %NULL on failure
3499  *
3500  * Percpu allocator wants to use congruent vm areas so that it can
3501  * maintain the offsets among percpu areas.  This function allocates
3502  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3503  * be scattered pretty far, distance between two areas easily going up
3504  * to gigabytes.  To avoid interacting with regular vmallocs, these
3505  * areas are allocated from top.
3506  *
3507  * Despite its complicated look, this allocator is rather simple. It
3508  * does everything top-down and scans free blocks from the end looking
3509  * for matching base. While scanning, if any of the areas do not fit the
3510  * base address is pulled down to fit the area. Scanning is repeated till
3511  * all the areas fit and then all necessary data structures are inserted
3512  * and the result is returned.
3513  */
3514 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3515 				     const size_t *sizes, int nr_vms,
3516 				     size_t align)
3517 {
3518 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3519 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3520 	struct vmap_area **vas, *va;
3521 	struct vm_struct **vms;
3522 	int area, area2, last_area, term_area;
3523 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3524 	bool purged = false;
3525 	enum fit_type type;
3526 
3527 	/* verify parameters and allocate data structures */
3528 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3529 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3530 		start = offsets[area];
3531 		end = start + sizes[area];
3532 
3533 		/* is everything aligned properly? */
3534 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3535 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3536 
3537 		/* detect the area with the highest address */
3538 		if (start > offsets[last_area])
3539 			last_area = area;
3540 
3541 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3542 			unsigned long start2 = offsets[area2];
3543 			unsigned long end2 = start2 + sizes[area2];
3544 
3545 			BUG_ON(start2 < end && start < end2);
3546 		}
3547 	}
3548 	last_end = offsets[last_area] + sizes[last_area];
3549 
3550 	if (vmalloc_end - vmalloc_start < last_end) {
3551 		WARN_ON(true);
3552 		return NULL;
3553 	}
3554 
3555 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3556 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3557 	if (!vas || !vms)
3558 		goto err_free2;
3559 
3560 	for (area = 0; area < nr_vms; area++) {
3561 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3562 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3563 		if (!vas[area] || !vms[area])
3564 			goto err_free;
3565 	}
3566 retry:
3567 	spin_lock(&free_vmap_area_lock);
3568 
3569 	/* start scanning - we scan from the top, begin with the last area */
3570 	area = term_area = last_area;
3571 	start = offsets[area];
3572 	end = start + sizes[area];
3573 
3574 	va = pvm_find_va_enclose_addr(vmalloc_end);
3575 	base = pvm_determine_end_from_reverse(&va, align) - end;
3576 
3577 	while (true) {
3578 		/*
3579 		 * base might have underflowed, add last_end before
3580 		 * comparing.
3581 		 */
3582 		if (base + last_end < vmalloc_start + last_end)
3583 			goto overflow;
3584 
3585 		/*
3586 		 * Fitting base has not been found.
3587 		 */
3588 		if (va == NULL)
3589 			goto overflow;
3590 
3591 		/*
3592 		 * If required width exceeds current VA block, move
3593 		 * base downwards and then recheck.
3594 		 */
3595 		if (base + end > va->va_end) {
3596 			base = pvm_determine_end_from_reverse(&va, align) - end;
3597 			term_area = area;
3598 			continue;
3599 		}
3600 
3601 		/*
3602 		 * If this VA does not fit, move base downwards and recheck.
3603 		 */
3604 		if (base + start < va->va_start) {
3605 			va = node_to_va(rb_prev(&va->rb_node));
3606 			base = pvm_determine_end_from_reverse(&va, align) - end;
3607 			term_area = area;
3608 			continue;
3609 		}
3610 
3611 		/*
3612 		 * This area fits, move on to the previous one.  If
3613 		 * the previous one is the terminal one, we're done.
3614 		 */
3615 		area = (area + nr_vms - 1) % nr_vms;
3616 		if (area == term_area)
3617 			break;
3618 
3619 		start = offsets[area];
3620 		end = start + sizes[area];
3621 		va = pvm_find_va_enclose_addr(base + end);
3622 	}
3623 
3624 	/* we've found a fitting base, insert all va's */
3625 	for (area = 0; area < nr_vms; area++) {
3626 		int ret;
3627 
3628 		start = base + offsets[area];
3629 		size = sizes[area];
3630 
3631 		va = pvm_find_va_enclose_addr(start);
3632 		if (WARN_ON_ONCE(va == NULL))
3633 			/* It is a BUG(), but trigger recovery instead. */
3634 			goto recovery;
3635 
3636 		type = classify_va_fit_type(va, start, size);
3637 		if (WARN_ON_ONCE(type == NOTHING_FIT))
3638 			/* It is a BUG(), but trigger recovery instead. */
3639 			goto recovery;
3640 
3641 		ret = adjust_va_to_fit_type(va, start, size, type);
3642 		if (unlikely(ret))
3643 			goto recovery;
3644 
3645 		/* Allocated area. */
3646 		va = vas[area];
3647 		va->va_start = start;
3648 		va->va_end = start + size;
3649 	}
3650 
3651 	spin_unlock(&free_vmap_area_lock);
3652 
3653 	/* populate the kasan shadow space */
3654 	for (area = 0; area < nr_vms; area++) {
3655 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3656 			goto err_free_shadow;
3657 
3658 		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3659 				       sizes[area]);
3660 	}
3661 
3662 	/* insert all vm's */
3663 	spin_lock(&vmap_area_lock);
3664 	for (area = 0; area < nr_vms; area++) {
3665 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3666 
3667 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3668 				 pcpu_get_vm_areas);
3669 	}
3670 	spin_unlock(&vmap_area_lock);
3671 
3672 	kfree(vas);
3673 	return vms;
3674 
3675 recovery:
3676 	/*
3677 	 * Remove previously allocated areas. There is no
3678 	 * need in removing these areas from the busy tree,
3679 	 * because they are inserted only on the final step
3680 	 * and when pcpu_get_vm_areas() is success.
3681 	 */
3682 	while (area--) {
3683 		orig_start = vas[area]->va_start;
3684 		orig_end = vas[area]->va_end;
3685 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3686 				&free_vmap_area_list);
3687 		if (va)
3688 			kasan_release_vmalloc(orig_start, orig_end,
3689 				va->va_start, va->va_end);
3690 		vas[area] = NULL;
3691 	}
3692 
3693 overflow:
3694 	spin_unlock(&free_vmap_area_lock);
3695 	if (!purged) {
3696 		purge_vmap_area_lazy();
3697 		purged = true;
3698 
3699 		/* Before "retry", check if we recover. */
3700 		for (area = 0; area < nr_vms; area++) {
3701 			if (vas[area])
3702 				continue;
3703 
3704 			vas[area] = kmem_cache_zalloc(
3705 				vmap_area_cachep, GFP_KERNEL);
3706 			if (!vas[area])
3707 				goto err_free;
3708 		}
3709 
3710 		goto retry;
3711 	}
3712 
3713 err_free:
3714 	for (area = 0; area < nr_vms; area++) {
3715 		if (vas[area])
3716 			kmem_cache_free(vmap_area_cachep, vas[area]);
3717 
3718 		kfree(vms[area]);
3719 	}
3720 err_free2:
3721 	kfree(vas);
3722 	kfree(vms);
3723 	return NULL;
3724 
3725 err_free_shadow:
3726 	spin_lock(&free_vmap_area_lock);
3727 	/*
3728 	 * We release all the vmalloc shadows, even the ones for regions that
3729 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
3730 	 * being able to tolerate this case.
3731 	 */
3732 	for (area = 0; area < nr_vms; area++) {
3733 		orig_start = vas[area]->va_start;
3734 		orig_end = vas[area]->va_end;
3735 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3736 				&free_vmap_area_list);
3737 		if (va)
3738 			kasan_release_vmalloc(orig_start, orig_end,
3739 				va->va_start, va->va_end);
3740 		vas[area] = NULL;
3741 		kfree(vms[area]);
3742 	}
3743 	spin_unlock(&free_vmap_area_lock);
3744 	kfree(vas);
3745 	kfree(vms);
3746 	return NULL;
3747 }
3748 
3749 /**
3750  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3751  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3752  * @nr_vms: the number of allocated areas
3753  *
3754  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3755  */
3756 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3757 {
3758 	int i;
3759 
3760 	for (i = 0; i < nr_vms; i++)
3761 		free_vm_area(vms[i]);
3762 	kfree(vms);
3763 }
3764 #endif	/* CONFIG_SMP */
3765 
3766 #ifdef CONFIG_PRINTK
3767 bool vmalloc_dump_obj(void *object)
3768 {
3769 	struct vm_struct *vm;
3770 	void *objp = (void *)PAGE_ALIGN((unsigned long)object);
3771 
3772 	vm = find_vm_area(objp);
3773 	if (!vm)
3774 		return false;
3775 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
3776 		vm->nr_pages, (unsigned long)vm->addr, vm->caller);
3777 	return true;
3778 }
3779 #endif
3780 
3781 #ifdef CONFIG_PROC_FS
3782 static void *s_start(struct seq_file *m, loff_t *pos)
3783 	__acquires(&vmap_purge_lock)
3784 	__acquires(&vmap_area_lock)
3785 {
3786 	mutex_lock(&vmap_purge_lock);
3787 	spin_lock(&vmap_area_lock);
3788 
3789 	return seq_list_start(&vmap_area_list, *pos);
3790 }
3791 
3792 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3793 {
3794 	return seq_list_next(p, &vmap_area_list, pos);
3795 }
3796 
3797 static void s_stop(struct seq_file *m, void *p)
3798 	__releases(&vmap_area_lock)
3799 	__releases(&vmap_purge_lock)
3800 {
3801 	spin_unlock(&vmap_area_lock);
3802 	mutex_unlock(&vmap_purge_lock);
3803 }
3804 
3805 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3806 {
3807 	if (IS_ENABLED(CONFIG_NUMA)) {
3808 		unsigned int nr, *counters = m->private;
3809 
3810 		if (!counters)
3811 			return;
3812 
3813 		if (v->flags & VM_UNINITIALIZED)
3814 			return;
3815 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3816 		smp_rmb();
3817 
3818 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3819 
3820 		for (nr = 0; nr < v->nr_pages; nr++)
3821 			counters[page_to_nid(v->pages[nr])]++;
3822 
3823 		for_each_node_state(nr, N_HIGH_MEMORY)
3824 			if (counters[nr])
3825 				seq_printf(m, " N%u=%u", nr, counters[nr]);
3826 	}
3827 }
3828 
3829 static void show_purge_info(struct seq_file *m)
3830 {
3831 	struct vmap_area *va;
3832 
3833 	spin_lock(&purge_vmap_area_lock);
3834 	list_for_each_entry(va, &purge_vmap_area_list, list) {
3835 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3836 			(void *)va->va_start, (void *)va->va_end,
3837 			va->va_end - va->va_start);
3838 	}
3839 	spin_unlock(&purge_vmap_area_lock);
3840 }
3841 
3842 static int s_show(struct seq_file *m, void *p)
3843 {
3844 	struct vmap_area *va;
3845 	struct vm_struct *v;
3846 
3847 	va = list_entry(p, struct vmap_area, list);
3848 
3849 	/*
3850 	 * s_show can encounter race with remove_vm_area, !vm on behalf
3851 	 * of vmap area is being tear down or vm_map_ram allocation.
3852 	 */
3853 	if (!va->vm) {
3854 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3855 			(void *)va->va_start, (void *)va->va_end,
3856 			va->va_end - va->va_start);
3857 
3858 		return 0;
3859 	}
3860 
3861 	v = va->vm;
3862 
3863 	seq_printf(m, "0x%pK-0x%pK %7ld",
3864 		v->addr, v->addr + v->size, v->size);
3865 
3866 	if (v->caller)
3867 		seq_printf(m, " %pS", v->caller);
3868 
3869 	if (v->nr_pages)
3870 		seq_printf(m, " pages=%d", v->nr_pages);
3871 
3872 	if (v->phys_addr)
3873 		seq_printf(m, " phys=%pa", &v->phys_addr);
3874 
3875 	if (v->flags & VM_IOREMAP)
3876 		seq_puts(m, " ioremap");
3877 
3878 	if (v->flags & VM_ALLOC)
3879 		seq_puts(m, " vmalloc");
3880 
3881 	if (v->flags & VM_MAP)
3882 		seq_puts(m, " vmap");
3883 
3884 	if (v->flags & VM_USERMAP)
3885 		seq_puts(m, " user");
3886 
3887 	if (v->flags & VM_DMA_COHERENT)
3888 		seq_puts(m, " dma-coherent");
3889 
3890 	if (is_vmalloc_addr(v->pages))
3891 		seq_puts(m, " vpages");
3892 
3893 	show_numa_info(m, v);
3894 	seq_putc(m, '\n');
3895 
3896 	/*
3897 	 * As a final step, dump "unpurged" areas.
3898 	 */
3899 	if (list_is_last(&va->list, &vmap_area_list))
3900 		show_purge_info(m);
3901 
3902 	return 0;
3903 }
3904 
3905 static const struct seq_operations vmalloc_op = {
3906 	.start = s_start,
3907 	.next = s_next,
3908 	.stop = s_stop,
3909 	.show = s_show,
3910 };
3911 
3912 static int __init proc_vmalloc_init(void)
3913 {
3914 	if (IS_ENABLED(CONFIG_NUMA))
3915 		proc_create_seq_private("vmallocinfo", 0400, NULL,
3916 				&vmalloc_op,
3917 				nr_node_ids * sizeof(unsigned int), NULL);
3918 	else
3919 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3920 	return 0;
3921 }
3922 module_init(proc_vmalloc_init);
3923 
3924 #endif
3925