xref: /linux/mm/vmalloc.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 #include <asm/shmparam.h>
33 
34 bool vmap_lazy_unmap __read_mostly = true;
35 
36 /*** Page table manipulation functions ***/
37 
38 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
39 {
40 	pte_t *pte;
41 
42 	pte = pte_offset_kernel(pmd, addr);
43 	do {
44 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
45 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
46 	} while (pte++, addr += PAGE_SIZE, addr != end);
47 }
48 
49 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
50 {
51 	pmd_t *pmd;
52 	unsigned long next;
53 
54 	pmd = pmd_offset(pud, addr);
55 	do {
56 		next = pmd_addr_end(addr, end);
57 		if (pmd_none_or_clear_bad(pmd))
58 			continue;
59 		vunmap_pte_range(pmd, addr, next);
60 	} while (pmd++, addr = next, addr != end);
61 }
62 
63 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
64 {
65 	pud_t *pud;
66 	unsigned long next;
67 
68 	pud = pud_offset(pgd, addr);
69 	do {
70 		next = pud_addr_end(addr, end);
71 		if (pud_none_or_clear_bad(pud))
72 			continue;
73 		vunmap_pmd_range(pud, addr, next);
74 	} while (pud++, addr = next, addr != end);
75 }
76 
77 static void vunmap_page_range(unsigned long addr, unsigned long end)
78 {
79 	pgd_t *pgd;
80 	unsigned long next;
81 
82 	BUG_ON(addr >= end);
83 	pgd = pgd_offset_k(addr);
84 	do {
85 		next = pgd_addr_end(addr, end);
86 		if (pgd_none_or_clear_bad(pgd))
87 			continue;
88 		vunmap_pud_range(pgd, addr, next);
89 	} while (pgd++, addr = next, addr != end);
90 }
91 
92 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
93 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
94 {
95 	pte_t *pte;
96 
97 	/*
98 	 * nr is a running index into the array which helps higher level
99 	 * callers keep track of where we're up to.
100 	 */
101 
102 	pte = pte_alloc_kernel(pmd, addr);
103 	if (!pte)
104 		return -ENOMEM;
105 	do {
106 		struct page *page = pages[*nr];
107 
108 		if (WARN_ON(!pte_none(*pte)))
109 			return -EBUSY;
110 		if (WARN_ON(!page))
111 			return -ENOMEM;
112 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
113 		(*nr)++;
114 	} while (pte++, addr += PAGE_SIZE, addr != end);
115 	return 0;
116 }
117 
118 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
119 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
120 {
121 	pmd_t *pmd;
122 	unsigned long next;
123 
124 	pmd = pmd_alloc(&init_mm, pud, addr);
125 	if (!pmd)
126 		return -ENOMEM;
127 	do {
128 		next = pmd_addr_end(addr, end);
129 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
130 			return -ENOMEM;
131 	} while (pmd++, addr = next, addr != end);
132 	return 0;
133 }
134 
135 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
136 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
137 {
138 	pud_t *pud;
139 	unsigned long next;
140 
141 	pud = pud_alloc(&init_mm, pgd, addr);
142 	if (!pud)
143 		return -ENOMEM;
144 	do {
145 		next = pud_addr_end(addr, end);
146 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
147 			return -ENOMEM;
148 	} while (pud++, addr = next, addr != end);
149 	return 0;
150 }
151 
152 /*
153  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
154  * will have pfns corresponding to the "pages" array.
155  *
156  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
157  */
158 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
159 				   pgprot_t prot, struct page **pages)
160 {
161 	pgd_t *pgd;
162 	unsigned long next;
163 	unsigned long addr = start;
164 	int err = 0;
165 	int nr = 0;
166 
167 	BUG_ON(addr >= end);
168 	pgd = pgd_offset_k(addr);
169 	do {
170 		next = pgd_addr_end(addr, end);
171 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
172 		if (err)
173 			return err;
174 	} while (pgd++, addr = next, addr != end);
175 
176 	return nr;
177 }
178 
179 static int vmap_page_range(unsigned long start, unsigned long end,
180 			   pgprot_t prot, struct page **pages)
181 {
182 	int ret;
183 
184 	ret = vmap_page_range_noflush(start, end, prot, pages);
185 	flush_cache_vmap(start, end);
186 	return ret;
187 }
188 
189 int is_vmalloc_or_module_addr(const void *x)
190 {
191 	/*
192 	 * ARM, x86-64 and sparc64 put modules in a special place,
193 	 * and fall back on vmalloc() if that fails. Others
194 	 * just put it in the vmalloc space.
195 	 */
196 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
197 	unsigned long addr = (unsigned long)x;
198 	if (addr >= MODULES_VADDR && addr < MODULES_END)
199 		return 1;
200 #endif
201 	return is_vmalloc_addr(x);
202 }
203 
204 /*
205  * Walk a vmap address to the struct page it maps.
206  */
207 struct page *vmalloc_to_page(const void *vmalloc_addr)
208 {
209 	unsigned long addr = (unsigned long) vmalloc_addr;
210 	struct page *page = NULL;
211 	pgd_t *pgd = pgd_offset_k(addr);
212 
213 	/*
214 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
215 	 * architectures that do not vmalloc module space
216 	 */
217 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
218 
219 	if (!pgd_none(*pgd)) {
220 		pud_t *pud = pud_offset(pgd, addr);
221 		if (!pud_none(*pud)) {
222 			pmd_t *pmd = pmd_offset(pud, addr);
223 			if (!pmd_none(*pmd)) {
224 				pte_t *ptep, pte;
225 
226 				ptep = pte_offset_map(pmd, addr);
227 				pte = *ptep;
228 				if (pte_present(pte))
229 					page = pte_page(pte);
230 				pte_unmap(ptep);
231 			}
232 		}
233 	}
234 	return page;
235 }
236 EXPORT_SYMBOL(vmalloc_to_page);
237 
238 /*
239  * Map a vmalloc()-space virtual address to the physical page frame number.
240  */
241 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
242 {
243 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
244 }
245 EXPORT_SYMBOL(vmalloc_to_pfn);
246 
247 
248 /*** Global kva allocator ***/
249 
250 #define VM_LAZY_FREE	0x01
251 #define VM_LAZY_FREEING	0x02
252 #define VM_VM_AREA	0x04
253 
254 struct vmap_area {
255 	unsigned long va_start;
256 	unsigned long va_end;
257 	unsigned long flags;
258 	struct rb_node rb_node;		/* address sorted rbtree */
259 	struct list_head list;		/* address sorted list */
260 	struct list_head purge_list;	/* "lazy purge" list */
261 	void *private;
262 	struct rcu_head rcu_head;
263 };
264 
265 static DEFINE_SPINLOCK(vmap_area_lock);
266 static struct rb_root vmap_area_root = RB_ROOT;
267 static LIST_HEAD(vmap_area_list);
268 static unsigned long vmap_area_pcpu_hole;
269 
270 static struct vmap_area *__find_vmap_area(unsigned long addr)
271 {
272 	struct rb_node *n = vmap_area_root.rb_node;
273 
274 	while (n) {
275 		struct vmap_area *va;
276 
277 		va = rb_entry(n, struct vmap_area, rb_node);
278 		if (addr < va->va_start)
279 			n = n->rb_left;
280 		else if (addr > va->va_start)
281 			n = n->rb_right;
282 		else
283 			return va;
284 	}
285 
286 	return NULL;
287 }
288 
289 static void __insert_vmap_area(struct vmap_area *va)
290 {
291 	struct rb_node **p = &vmap_area_root.rb_node;
292 	struct rb_node *parent = NULL;
293 	struct rb_node *tmp;
294 
295 	while (*p) {
296 		struct vmap_area *tmp;
297 
298 		parent = *p;
299 		tmp = rb_entry(parent, struct vmap_area, rb_node);
300 		if (va->va_start < tmp->va_end)
301 			p = &(*p)->rb_left;
302 		else if (va->va_end > tmp->va_start)
303 			p = &(*p)->rb_right;
304 		else
305 			BUG();
306 	}
307 
308 	rb_link_node(&va->rb_node, parent, p);
309 	rb_insert_color(&va->rb_node, &vmap_area_root);
310 
311 	/* address-sort this list so it is usable like the vmlist */
312 	tmp = rb_prev(&va->rb_node);
313 	if (tmp) {
314 		struct vmap_area *prev;
315 		prev = rb_entry(tmp, struct vmap_area, rb_node);
316 		list_add_rcu(&va->list, &prev->list);
317 	} else
318 		list_add_rcu(&va->list, &vmap_area_list);
319 }
320 
321 static void purge_vmap_area_lazy(void);
322 
323 /*
324  * Allocate a region of KVA of the specified size and alignment, within the
325  * vstart and vend.
326  */
327 static struct vmap_area *alloc_vmap_area(unsigned long size,
328 				unsigned long align,
329 				unsigned long vstart, unsigned long vend,
330 				int node, gfp_t gfp_mask)
331 {
332 	struct vmap_area *va;
333 	struct rb_node *n;
334 	unsigned long addr;
335 	int purged = 0;
336 
337 	BUG_ON(!size);
338 	BUG_ON(size & ~PAGE_MASK);
339 
340 	va = kmalloc_node(sizeof(struct vmap_area),
341 			gfp_mask & GFP_RECLAIM_MASK, node);
342 	if (unlikely(!va))
343 		return ERR_PTR(-ENOMEM);
344 
345 retry:
346 	addr = ALIGN(vstart, align);
347 
348 	spin_lock(&vmap_area_lock);
349 	if (addr + size - 1 < addr)
350 		goto overflow;
351 
352 	/* XXX: could have a last_hole cache */
353 	n = vmap_area_root.rb_node;
354 	if (n) {
355 		struct vmap_area *first = NULL;
356 
357 		do {
358 			struct vmap_area *tmp;
359 			tmp = rb_entry(n, struct vmap_area, rb_node);
360 			if (tmp->va_end >= addr) {
361 				if (!first && tmp->va_start < addr + size)
362 					first = tmp;
363 				n = n->rb_left;
364 			} else {
365 				first = tmp;
366 				n = n->rb_right;
367 			}
368 		} while (n);
369 
370 		if (!first)
371 			goto found;
372 
373 		if (first->va_end < addr) {
374 			n = rb_next(&first->rb_node);
375 			if (n)
376 				first = rb_entry(n, struct vmap_area, rb_node);
377 			else
378 				goto found;
379 		}
380 
381 		while (addr + size > first->va_start && addr + size <= vend) {
382 			addr = ALIGN(first->va_end + PAGE_SIZE, align);
383 			if (addr + size - 1 < addr)
384 				goto overflow;
385 
386 			n = rb_next(&first->rb_node);
387 			if (n)
388 				first = rb_entry(n, struct vmap_area, rb_node);
389 			else
390 				goto found;
391 		}
392 	}
393 found:
394 	if (addr + size > vend) {
395 overflow:
396 		spin_unlock(&vmap_area_lock);
397 		if (!purged) {
398 			purge_vmap_area_lazy();
399 			purged = 1;
400 			goto retry;
401 		}
402 		if (printk_ratelimit())
403 			printk(KERN_WARNING
404 				"vmap allocation for size %lu failed: "
405 				"use vmalloc=<size> to increase size.\n", size);
406 		kfree(va);
407 		return ERR_PTR(-EBUSY);
408 	}
409 
410 	BUG_ON(addr & (align-1));
411 
412 	va->va_start = addr;
413 	va->va_end = addr + size;
414 	va->flags = 0;
415 	__insert_vmap_area(va);
416 	spin_unlock(&vmap_area_lock);
417 
418 	return va;
419 }
420 
421 static void rcu_free_va(struct rcu_head *head)
422 {
423 	struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
424 
425 	kfree(va);
426 }
427 
428 static void __free_vmap_area(struct vmap_area *va)
429 {
430 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
431 	rb_erase(&va->rb_node, &vmap_area_root);
432 	RB_CLEAR_NODE(&va->rb_node);
433 	list_del_rcu(&va->list);
434 
435 	/*
436 	 * Track the highest possible candidate for pcpu area
437 	 * allocation.  Areas outside of vmalloc area can be returned
438 	 * here too, consider only end addresses which fall inside
439 	 * vmalloc area proper.
440 	 */
441 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
442 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
443 
444 	call_rcu(&va->rcu_head, rcu_free_va);
445 }
446 
447 /*
448  * Free a region of KVA allocated by alloc_vmap_area
449  */
450 static void free_vmap_area(struct vmap_area *va)
451 {
452 	spin_lock(&vmap_area_lock);
453 	__free_vmap_area(va);
454 	spin_unlock(&vmap_area_lock);
455 }
456 
457 /*
458  * Clear the pagetable entries of a given vmap_area
459  */
460 static void unmap_vmap_area(struct vmap_area *va)
461 {
462 	vunmap_page_range(va->va_start, va->va_end);
463 }
464 
465 static void vmap_debug_free_range(unsigned long start, unsigned long end)
466 {
467 	/*
468 	 * Unmap page tables and force a TLB flush immediately if
469 	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
470 	 * bugs similarly to those in linear kernel virtual address
471 	 * space after a page has been freed.
472 	 *
473 	 * All the lazy freeing logic is still retained, in order to
474 	 * minimise intrusiveness of this debugging feature.
475 	 *
476 	 * This is going to be *slow* (linear kernel virtual address
477 	 * debugging doesn't do a broadcast TLB flush so it is a lot
478 	 * faster).
479 	 */
480 #ifdef CONFIG_DEBUG_PAGEALLOC
481 	vunmap_page_range(start, end);
482 	flush_tlb_kernel_range(start, end);
483 #endif
484 }
485 
486 /*
487  * lazy_max_pages is the maximum amount of virtual address space we gather up
488  * before attempting to purge with a TLB flush.
489  *
490  * There is a tradeoff here: a larger number will cover more kernel page tables
491  * and take slightly longer to purge, but it will linearly reduce the number of
492  * global TLB flushes that must be performed. It would seem natural to scale
493  * this number up linearly with the number of CPUs (because vmapping activity
494  * could also scale linearly with the number of CPUs), however it is likely
495  * that in practice, workloads might be constrained in other ways that mean
496  * vmap activity will not scale linearly with CPUs. Also, I want to be
497  * conservative and not introduce a big latency on huge systems, so go with
498  * a less aggressive log scale. It will still be an improvement over the old
499  * code, and it will be simple to change the scale factor if we find that it
500  * becomes a problem on bigger systems.
501  */
502 static unsigned long lazy_max_pages(void)
503 {
504 	unsigned int log;
505 
506 	if (!vmap_lazy_unmap)
507 		return 0;
508 
509 	log = fls(num_online_cpus());
510 
511 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
512 }
513 
514 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
515 
516 /* for per-CPU blocks */
517 static void purge_fragmented_blocks_allcpus(void);
518 
519 /*
520  * Purges all lazily-freed vmap areas.
521  *
522  * If sync is 0 then don't purge if there is already a purge in progress.
523  * If force_flush is 1, then flush kernel TLBs between *start and *end even
524  * if we found no lazy vmap areas to unmap (callers can use this to optimise
525  * their own TLB flushing).
526  * Returns with *start = min(*start, lowest purged address)
527  *              *end = max(*end, highest purged address)
528  */
529 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
530 					int sync, int force_flush)
531 {
532 	static DEFINE_SPINLOCK(purge_lock);
533 	LIST_HEAD(valist);
534 	struct vmap_area *va;
535 	struct vmap_area *n_va;
536 	int nr = 0;
537 
538 	/*
539 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
540 	 * should not expect such behaviour. This just simplifies locking for
541 	 * the case that isn't actually used at the moment anyway.
542 	 */
543 	if (!sync && !force_flush) {
544 		if (!spin_trylock(&purge_lock))
545 			return;
546 	} else
547 		spin_lock(&purge_lock);
548 
549 	if (sync)
550 		purge_fragmented_blocks_allcpus();
551 
552 	rcu_read_lock();
553 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
554 		if (va->flags & VM_LAZY_FREE) {
555 			if (va->va_start < *start)
556 				*start = va->va_start;
557 			if (va->va_end > *end)
558 				*end = va->va_end;
559 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
560 			unmap_vmap_area(va);
561 			list_add_tail(&va->purge_list, &valist);
562 			va->flags |= VM_LAZY_FREEING;
563 			va->flags &= ~VM_LAZY_FREE;
564 		}
565 	}
566 	rcu_read_unlock();
567 
568 	if (nr)
569 		atomic_sub(nr, &vmap_lazy_nr);
570 
571 	if (nr || force_flush)
572 		flush_tlb_kernel_range(*start, *end);
573 
574 	if (nr) {
575 		spin_lock(&vmap_area_lock);
576 		list_for_each_entry_safe(va, n_va, &valist, purge_list)
577 			__free_vmap_area(va);
578 		spin_unlock(&vmap_area_lock);
579 	}
580 	spin_unlock(&purge_lock);
581 }
582 
583 /*
584  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
585  * is already purging.
586  */
587 static void try_purge_vmap_area_lazy(void)
588 {
589 	unsigned long start = ULONG_MAX, end = 0;
590 
591 	__purge_vmap_area_lazy(&start, &end, 0, 0);
592 }
593 
594 /*
595  * Kick off a purge of the outstanding lazy areas.
596  */
597 static void purge_vmap_area_lazy(void)
598 {
599 	unsigned long start = ULONG_MAX, end = 0;
600 
601 	__purge_vmap_area_lazy(&start, &end, 1, 0);
602 }
603 
604 /*
605  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
606  * called for the correct range previously.
607  */
608 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
609 {
610 	va->flags |= VM_LAZY_FREE;
611 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
612 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
613 		try_purge_vmap_area_lazy();
614 }
615 
616 /*
617  * Free and unmap a vmap area
618  */
619 static void free_unmap_vmap_area(struct vmap_area *va)
620 {
621 	flush_cache_vunmap(va->va_start, va->va_end);
622 	free_unmap_vmap_area_noflush(va);
623 }
624 
625 static struct vmap_area *find_vmap_area(unsigned long addr)
626 {
627 	struct vmap_area *va;
628 
629 	spin_lock(&vmap_area_lock);
630 	va = __find_vmap_area(addr);
631 	spin_unlock(&vmap_area_lock);
632 
633 	return va;
634 }
635 
636 static void free_unmap_vmap_area_addr(unsigned long addr)
637 {
638 	struct vmap_area *va;
639 
640 	va = find_vmap_area(addr);
641 	BUG_ON(!va);
642 	free_unmap_vmap_area(va);
643 }
644 
645 
646 /*** Per cpu kva allocator ***/
647 
648 /*
649  * vmap space is limited especially on 32 bit architectures. Ensure there is
650  * room for at least 16 percpu vmap blocks per CPU.
651  */
652 /*
653  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
654  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
655  * instead (we just need a rough idea)
656  */
657 #if BITS_PER_LONG == 32
658 #define VMALLOC_SPACE		(128UL*1024*1024)
659 #else
660 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
661 #endif
662 
663 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
664 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
665 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
666 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
667 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
668 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
669 #define VMAP_BBMAP_BITS		VMAP_MIN(VMAP_BBMAP_BITS_MAX,		\
670 					VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
671 						VMALLOC_PAGES / NR_CPUS / 16))
672 
673 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
674 
675 static bool vmap_initialized __read_mostly = false;
676 
677 struct vmap_block_queue {
678 	spinlock_t lock;
679 	struct list_head free;
680 };
681 
682 struct vmap_block {
683 	spinlock_t lock;
684 	struct vmap_area *va;
685 	struct vmap_block_queue *vbq;
686 	unsigned long free, dirty;
687 	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
688 	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
689 	struct list_head free_list;
690 	struct rcu_head rcu_head;
691 	struct list_head purge;
692 };
693 
694 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
695 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
696 
697 /*
698  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
699  * in the free path. Could get rid of this if we change the API to return a
700  * "cookie" from alloc, to be passed to free. But no big deal yet.
701  */
702 static DEFINE_SPINLOCK(vmap_block_tree_lock);
703 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
704 
705 /*
706  * We should probably have a fallback mechanism to allocate virtual memory
707  * out of partially filled vmap blocks. However vmap block sizing should be
708  * fairly reasonable according to the vmalloc size, so it shouldn't be a
709  * big problem.
710  */
711 
712 static unsigned long addr_to_vb_idx(unsigned long addr)
713 {
714 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
715 	addr /= VMAP_BLOCK_SIZE;
716 	return addr;
717 }
718 
719 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
720 {
721 	struct vmap_block_queue *vbq;
722 	struct vmap_block *vb;
723 	struct vmap_area *va;
724 	unsigned long vb_idx;
725 	int node, err;
726 
727 	node = numa_node_id();
728 
729 	vb = kmalloc_node(sizeof(struct vmap_block),
730 			gfp_mask & GFP_RECLAIM_MASK, node);
731 	if (unlikely(!vb))
732 		return ERR_PTR(-ENOMEM);
733 
734 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
735 					VMALLOC_START, VMALLOC_END,
736 					node, gfp_mask);
737 	if (unlikely(IS_ERR(va))) {
738 		kfree(vb);
739 		return ERR_CAST(va);
740 	}
741 
742 	err = radix_tree_preload(gfp_mask);
743 	if (unlikely(err)) {
744 		kfree(vb);
745 		free_vmap_area(va);
746 		return ERR_PTR(err);
747 	}
748 
749 	spin_lock_init(&vb->lock);
750 	vb->va = va;
751 	vb->free = VMAP_BBMAP_BITS;
752 	vb->dirty = 0;
753 	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
754 	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
755 	INIT_LIST_HEAD(&vb->free_list);
756 
757 	vb_idx = addr_to_vb_idx(va->va_start);
758 	spin_lock(&vmap_block_tree_lock);
759 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
760 	spin_unlock(&vmap_block_tree_lock);
761 	BUG_ON(err);
762 	radix_tree_preload_end();
763 
764 	vbq = &get_cpu_var(vmap_block_queue);
765 	vb->vbq = vbq;
766 	spin_lock(&vbq->lock);
767 	list_add_rcu(&vb->free_list, &vbq->free);
768 	spin_unlock(&vbq->lock);
769 	put_cpu_var(vmap_block_queue);
770 
771 	return vb;
772 }
773 
774 static void rcu_free_vb(struct rcu_head *head)
775 {
776 	struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
777 
778 	kfree(vb);
779 }
780 
781 static void free_vmap_block(struct vmap_block *vb)
782 {
783 	struct vmap_block *tmp;
784 	unsigned long vb_idx;
785 
786 	vb_idx = addr_to_vb_idx(vb->va->va_start);
787 	spin_lock(&vmap_block_tree_lock);
788 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
789 	spin_unlock(&vmap_block_tree_lock);
790 	BUG_ON(tmp != vb);
791 
792 	free_unmap_vmap_area_noflush(vb->va);
793 	call_rcu(&vb->rcu_head, rcu_free_vb);
794 }
795 
796 static void purge_fragmented_blocks(int cpu)
797 {
798 	LIST_HEAD(purge);
799 	struct vmap_block *vb;
800 	struct vmap_block *n_vb;
801 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
802 
803 	rcu_read_lock();
804 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
805 
806 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
807 			continue;
808 
809 		spin_lock(&vb->lock);
810 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
811 			vb->free = 0; /* prevent further allocs after releasing lock */
812 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
813 			bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
814 			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
815 			spin_lock(&vbq->lock);
816 			list_del_rcu(&vb->free_list);
817 			spin_unlock(&vbq->lock);
818 			spin_unlock(&vb->lock);
819 			list_add_tail(&vb->purge, &purge);
820 		} else
821 			spin_unlock(&vb->lock);
822 	}
823 	rcu_read_unlock();
824 
825 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
826 		list_del(&vb->purge);
827 		free_vmap_block(vb);
828 	}
829 }
830 
831 static void purge_fragmented_blocks_thiscpu(void)
832 {
833 	purge_fragmented_blocks(smp_processor_id());
834 }
835 
836 static void purge_fragmented_blocks_allcpus(void)
837 {
838 	int cpu;
839 
840 	for_each_possible_cpu(cpu)
841 		purge_fragmented_blocks(cpu);
842 }
843 
844 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
845 {
846 	struct vmap_block_queue *vbq;
847 	struct vmap_block *vb;
848 	unsigned long addr = 0;
849 	unsigned int order;
850 	int purge = 0;
851 
852 	BUG_ON(size & ~PAGE_MASK);
853 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
854 	order = get_order(size);
855 
856 again:
857 	rcu_read_lock();
858 	vbq = &get_cpu_var(vmap_block_queue);
859 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
860 		int i;
861 
862 		spin_lock(&vb->lock);
863 		if (vb->free < 1UL << order)
864 			goto next;
865 
866 		i = bitmap_find_free_region(vb->alloc_map,
867 						VMAP_BBMAP_BITS, order);
868 
869 		if (i < 0) {
870 			if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
871 				/* fragmented and no outstanding allocations */
872 				BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
873 				purge = 1;
874 			}
875 			goto next;
876 		}
877 		addr = vb->va->va_start + (i << PAGE_SHIFT);
878 		BUG_ON(addr_to_vb_idx(addr) !=
879 				addr_to_vb_idx(vb->va->va_start));
880 		vb->free -= 1UL << order;
881 		if (vb->free == 0) {
882 			spin_lock(&vbq->lock);
883 			list_del_rcu(&vb->free_list);
884 			spin_unlock(&vbq->lock);
885 		}
886 		spin_unlock(&vb->lock);
887 		break;
888 next:
889 		spin_unlock(&vb->lock);
890 	}
891 
892 	if (purge)
893 		purge_fragmented_blocks_thiscpu();
894 
895 	put_cpu_var(vmap_block_queue);
896 	rcu_read_unlock();
897 
898 	if (!addr) {
899 		vb = new_vmap_block(gfp_mask);
900 		if (IS_ERR(vb))
901 			return vb;
902 		goto again;
903 	}
904 
905 	return (void *)addr;
906 }
907 
908 static void vb_free(const void *addr, unsigned long size)
909 {
910 	unsigned long offset;
911 	unsigned long vb_idx;
912 	unsigned int order;
913 	struct vmap_block *vb;
914 
915 	BUG_ON(size & ~PAGE_MASK);
916 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
917 
918 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
919 
920 	order = get_order(size);
921 
922 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
923 
924 	vb_idx = addr_to_vb_idx((unsigned long)addr);
925 	rcu_read_lock();
926 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
927 	rcu_read_unlock();
928 	BUG_ON(!vb);
929 
930 	spin_lock(&vb->lock);
931 	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
932 
933 	vb->dirty += 1UL << order;
934 	if (vb->dirty == VMAP_BBMAP_BITS) {
935 		BUG_ON(vb->free);
936 		spin_unlock(&vb->lock);
937 		free_vmap_block(vb);
938 	} else
939 		spin_unlock(&vb->lock);
940 }
941 
942 /**
943  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
944  *
945  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
946  * to amortize TLB flushing overheads. What this means is that any page you
947  * have now, may, in a former life, have been mapped into kernel virtual
948  * address by the vmap layer and so there might be some CPUs with TLB entries
949  * still referencing that page (additional to the regular 1:1 kernel mapping).
950  *
951  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
952  * be sure that none of the pages we have control over will have any aliases
953  * from the vmap layer.
954  */
955 void vm_unmap_aliases(void)
956 {
957 	unsigned long start = ULONG_MAX, end = 0;
958 	int cpu;
959 	int flush = 0;
960 
961 	if (unlikely(!vmap_initialized))
962 		return;
963 
964 	for_each_possible_cpu(cpu) {
965 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
966 		struct vmap_block *vb;
967 
968 		rcu_read_lock();
969 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
970 			int i;
971 
972 			spin_lock(&vb->lock);
973 			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
974 			while (i < VMAP_BBMAP_BITS) {
975 				unsigned long s, e;
976 				int j;
977 				j = find_next_zero_bit(vb->dirty_map,
978 					VMAP_BBMAP_BITS, i);
979 
980 				s = vb->va->va_start + (i << PAGE_SHIFT);
981 				e = vb->va->va_start + (j << PAGE_SHIFT);
982 				vunmap_page_range(s, e);
983 				flush = 1;
984 
985 				if (s < start)
986 					start = s;
987 				if (e > end)
988 					end = e;
989 
990 				i = j;
991 				i = find_next_bit(vb->dirty_map,
992 							VMAP_BBMAP_BITS, i);
993 			}
994 			spin_unlock(&vb->lock);
995 		}
996 		rcu_read_unlock();
997 	}
998 
999 	__purge_vmap_area_lazy(&start, &end, 1, flush);
1000 }
1001 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1002 
1003 /**
1004  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1005  * @mem: the pointer returned by vm_map_ram
1006  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1007  */
1008 void vm_unmap_ram(const void *mem, unsigned int count)
1009 {
1010 	unsigned long size = count << PAGE_SHIFT;
1011 	unsigned long addr = (unsigned long)mem;
1012 
1013 	BUG_ON(!addr);
1014 	BUG_ON(addr < VMALLOC_START);
1015 	BUG_ON(addr > VMALLOC_END);
1016 	BUG_ON(addr & (PAGE_SIZE-1));
1017 
1018 	debug_check_no_locks_freed(mem, size);
1019 	vmap_debug_free_range(addr, addr+size);
1020 
1021 	if (likely(count <= VMAP_MAX_ALLOC))
1022 		vb_free(mem, size);
1023 	else
1024 		free_unmap_vmap_area_addr(addr);
1025 }
1026 EXPORT_SYMBOL(vm_unmap_ram);
1027 
1028 /**
1029  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1030  * @pages: an array of pointers to the pages to be mapped
1031  * @count: number of pages
1032  * @node: prefer to allocate data structures on this node
1033  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1034  *
1035  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1036  */
1037 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1038 {
1039 	unsigned long size = count << PAGE_SHIFT;
1040 	unsigned long addr;
1041 	void *mem;
1042 
1043 	if (likely(count <= VMAP_MAX_ALLOC)) {
1044 		mem = vb_alloc(size, GFP_KERNEL);
1045 		if (IS_ERR(mem))
1046 			return NULL;
1047 		addr = (unsigned long)mem;
1048 	} else {
1049 		struct vmap_area *va;
1050 		va = alloc_vmap_area(size, PAGE_SIZE,
1051 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1052 		if (IS_ERR(va))
1053 			return NULL;
1054 
1055 		addr = va->va_start;
1056 		mem = (void *)addr;
1057 	}
1058 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1059 		vm_unmap_ram(mem, count);
1060 		return NULL;
1061 	}
1062 	return mem;
1063 }
1064 EXPORT_SYMBOL(vm_map_ram);
1065 
1066 /**
1067  * vm_area_register_early - register vmap area early during boot
1068  * @vm: vm_struct to register
1069  * @align: requested alignment
1070  *
1071  * This function is used to register kernel vm area before
1072  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1073  * proper values on entry and other fields should be zero.  On return,
1074  * vm->addr contains the allocated address.
1075  *
1076  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1077  */
1078 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1079 {
1080 	static size_t vm_init_off __initdata;
1081 	unsigned long addr;
1082 
1083 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1084 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1085 
1086 	vm->addr = (void *)addr;
1087 
1088 	vm->next = vmlist;
1089 	vmlist = vm;
1090 }
1091 
1092 void __init vmalloc_init(void)
1093 {
1094 	struct vmap_area *va;
1095 	struct vm_struct *tmp;
1096 	int i;
1097 
1098 	for_each_possible_cpu(i) {
1099 		struct vmap_block_queue *vbq;
1100 
1101 		vbq = &per_cpu(vmap_block_queue, i);
1102 		spin_lock_init(&vbq->lock);
1103 		INIT_LIST_HEAD(&vbq->free);
1104 	}
1105 
1106 	/* Import existing vmlist entries. */
1107 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1108 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1109 		va->flags = tmp->flags | VM_VM_AREA;
1110 		va->va_start = (unsigned long)tmp->addr;
1111 		va->va_end = va->va_start + tmp->size;
1112 		__insert_vmap_area(va);
1113 	}
1114 
1115 	vmap_area_pcpu_hole = VMALLOC_END;
1116 
1117 	vmap_initialized = true;
1118 }
1119 
1120 /**
1121  * map_kernel_range_noflush - map kernel VM area with the specified pages
1122  * @addr: start of the VM area to map
1123  * @size: size of the VM area to map
1124  * @prot: page protection flags to use
1125  * @pages: pages to map
1126  *
1127  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1128  * specify should have been allocated using get_vm_area() and its
1129  * friends.
1130  *
1131  * NOTE:
1132  * This function does NOT do any cache flushing.  The caller is
1133  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1134  * before calling this function.
1135  *
1136  * RETURNS:
1137  * The number of pages mapped on success, -errno on failure.
1138  */
1139 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1140 			     pgprot_t prot, struct page **pages)
1141 {
1142 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1143 }
1144 
1145 /**
1146  * unmap_kernel_range_noflush - unmap kernel VM area
1147  * @addr: start of the VM area to unmap
1148  * @size: size of the VM area to unmap
1149  *
1150  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1151  * specify should have been allocated using get_vm_area() and its
1152  * friends.
1153  *
1154  * NOTE:
1155  * This function does NOT do any cache flushing.  The caller is
1156  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1157  * before calling this function and flush_tlb_kernel_range() after.
1158  */
1159 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1160 {
1161 	vunmap_page_range(addr, addr + size);
1162 }
1163 
1164 /**
1165  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1166  * @addr: start of the VM area to unmap
1167  * @size: size of the VM area to unmap
1168  *
1169  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1170  * the unmapping and tlb after.
1171  */
1172 void unmap_kernel_range(unsigned long addr, unsigned long size)
1173 {
1174 	unsigned long end = addr + size;
1175 
1176 	flush_cache_vunmap(addr, end);
1177 	vunmap_page_range(addr, end);
1178 	flush_tlb_kernel_range(addr, end);
1179 }
1180 
1181 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1182 {
1183 	unsigned long addr = (unsigned long)area->addr;
1184 	unsigned long end = addr + area->size - PAGE_SIZE;
1185 	int err;
1186 
1187 	err = vmap_page_range(addr, end, prot, *pages);
1188 	if (err > 0) {
1189 		*pages += err;
1190 		err = 0;
1191 	}
1192 
1193 	return err;
1194 }
1195 EXPORT_SYMBOL_GPL(map_vm_area);
1196 
1197 /*** Old vmalloc interfaces ***/
1198 DEFINE_RWLOCK(vmlist_lock);
1199 struct vm_struct *vmlist;
1200 
1201 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1202 			      unsigned long flags, void *caller)
1203 {
1204 	struct vm_struct *tmp, **p;
1205 
1206 	vm->flags = flags;
1207 	vm->addr = (void *)va->va_start;
1208 	vm->size = va->va_end - va->va_start;
1209 	vm->caller = caller;
1210 	va->private = vm;
1211 	va->flags |= VM_VM_AREA;
1212 
1213 	write_lock(&vmlist_lock);
1214 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1215 		if (tmp->addr >= vm->addr)
1216 			break;
1217 	}
1218 	vm->next = *p;
1219 	*p = vm;
1220 	write_unlock(&vmlist_lock);
1221 }
1222 
1223 static struct vm_struct *__get_vm_area_node(unsigned long size,
1224 		unsigned long align, unsigned long flags, unsigned long start,
1225 		unsigned long end, int node, gfp_t gfp_mask, void *caller)
1226 {
1227 	static struct vmap_area *va;
1228 	struct vm_struct *area;
1229 
1230 	BUG_ON(in_interrupt());
1231 	if (flags & VM_IOREMAP) {
1232 		int bit = fls(size);
1233 
1234 		if (bit > IOREMAP_MAX_ORDER)
1235 			bit = IOREMAP_MAX_ORDER;
1236 		else if (bit < PAGE_SHIFT)
1237 			bit = PAGE_SHIFT;
1238 
1239 		align = 1ul << bit;
1240 	}
1241 
1242 	size = PAGE_ALIGN(size);
1243 	if (unlikely(!size))
1244 		return NULL;
1245 
1246 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1247 	if (unlikely(!area))
1248 		return NULL;
1249 
1250 	/*
1251 	 * We always allocate a guard page.
1252 	 */
1253 	size += PAGE_SIZE;
1254 
1255 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1256 	if (IS_ERR(va)) {
1257 		kfree(area);
1258 		return NULL;
1259 	}
1260 
1261 	insert_vmalloc_vm(area, va, flags, caller);
1262 	return area;
1263 }
1264 
1265 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1266 				unsigned long start, unsigned long end)
1267 {
1268 	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1269 						__builtin_return_address(0));
1270 }
1271 EXPORT_SYMBOL_GPL(__get_vm_area);
1272 
1273 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1274 				       unsigned long start, unsigned long end,
1275 				       void *caller)
1276 {
1277 	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1278 				  caller);
1279 }
1280 
1281 /**
1282  *	get_vm_area  -  reserve a contiguous kernel virtual area
1283  *	@size:		size of the area
1284  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1285  *
1286  *	Search an area of @size in the kernel virtual mapping area,
1287  *	and reserved it for out purposes.  Returns the area descriptor
1288  *	on success or %NULL on failure.
1289  */
1290 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1291 {
1292 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1293 				-1, GFP_KERNEL, __builtin_return_address(0));
1294 }
1295 
1296 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1297 				void *caller)
1298 {
1299 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1300 						-1, GFP_KERNEL, caller);
1301 }
1302 
1303 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1304 				   int node, gfp_t gfp_mask)
1305 {
1306 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1307 				  node, gfp_mask, __builtin_return_address(0));
1308 }
1309 
1310 static struct vm_struct *find_vm_area(const void *addr)
1311 {
1312 	struct vmap_area *va;
1313 
1314 	va = find_vmap_area((unsigned long)addr);
1315 	if (va && va->flags & VM_VM_AREA)
1316 		return va->private;
1317 
1318 	return NULL;
1319 }
1320 
1321 /**
1322  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1323  *	@addr:		base address
1324  *
1325  *	Search for the kernel VM area starting at @addr, and remove it.
1326  *	This function returns the found VM area, but using it is NOT safe
1327  *	on SMP machines, except for its size or flags.
1328  */
1329 struct vm_struct *remove_vm_area(const void *addr)
1330 {
1331 	struct vmap_area *va;
1332 
1333 	va = find_vmap_area((unsigned long)addr);
1334 	if (va && va->flags & VM_VM_AREA) {
1335 		struct vm_struct *vm = va->private;
1336 		struct vm_struct *tmp, **p;
1337 		/*
1338 		 * remove from list and disallow access to this vm_struct
1339 		 * before unmap. (address range confliction is maintained by
1340 		 * vmap.)
1341 		 */
1342 		write_lock(&vmlist_lock);
1343 		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1344 			;
1345 		*p = tmp->next;
1346 		write_unlock(&vmlist_lock);
1347 
1348 		vmap_debug_free_range(va->va_start, va->va_end);
1349 		free_unmap_vmap_area(va);
1350 		vm->size -= PAGE_SIZE;
1351 
1352 		return vm;
1353 	}
1354 	return NULL;
1355 }
1356 
1357 static void __vunmap(const void *addr, int deallocate_pages)
1358 {
1359 	struct vm_struct *area;
1360 
1361 	if (!addr)
1362 		return;
1363 
1364 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1365 		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1366 		return;
1367 	}
1368 
1369 	area = remove_vm_area(addr);
1370 	if (unlikely(!area)) {
1371 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1372 				addr);
1373 		return;
1374 	}
1375 
1376 	debug_check_no_locks_freed(addr, area->size);
1377 	debug_check_no_obj_freed(addr, area->size);
1378 
1379 	if (deallocate_pages) {
1380 		int i;
1381 
1382 		for (i = 0; i < area->nr_pages; i++) {
1383 			struct page *page = area->pages[i];
1384 
1385 			BUG_ON(!page);
1386 			__free_page(page);
1387 		}
1388 
1389 		if (area->flags & VM_VPAGES)
1390 			vfree(area->pages);
1391 		else
1392 			kfree(area->pages);
1393 	}
1394 
1395 	kfree(area);
1396 	return;
1397 }
1398 
1399 /**
1400  *	vfree  -  release memory allocated by vmalloc()
1401  *	@addr:		memory base address
1402  *
1403  *	Free the virtually continuous memory area starting at @addr, as
1404  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1405  *	NULL, no operation is performed.
1406  *
1407  *	Must not be called in interrupt context.
1408  */
1409 void vfree(const void *addr)
1410 {
1411 	BUG_ON(in_interrupt());
1412 
1413 	kmemleak_free(addr);
1414 
1415 	__vunmap(addr, 1);
1416 }
1417 EXPORT_SYMBOL(vfree);
1418 
1419 /**
1420  *	vunmap  -  release virtual mapping obtained by vmap()
1421  *	@addr:		memory base address
1422  *
1423  *	Free the virtually contiguous memory area starting at @addr,
1424  *	which was created from the page array passed to vmap().
1425  *
1426  *	Must not be called in interrupt context.
1427  */
1428 void vunmap(const void *addr)
1429 {
1430 	BUG_ON(in_interrupt());
1431 	might_sleep();
1432 	__vunmap(addr, 0);
1433 }
1434 EXPORT_SYMBOL(vunmap);
1435 
1436 /**
1437  *	vmap  -  map an array of pages into virtually contiguous space
1438  *	@pages:		array of page pointers
1439  *	@count:		number of pages to map
1440  *	@flags:		vm_area->flags
1441  *	@prot:		page protection for the mapping
1442  *
1443  *	Maps @count pages from @pages into contiguous kernel virtual
1444  *	space.
1445  */
1446 void *vmap(struct page **pages, unsigned int count,
1447 		unsigned long flags, pgprot_t prot)
1448 {
1449 	struct vm_struct *area;
1450 
1451 	might_sleep();
1452 
1453 	if (count > totalram_pages)
1454 		return NULL;
1455 
1456 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1457 					__builtin_return_address(0));
1458 	if (!area)
1459 		return NULL;
1460 
1461 	if (map_vm_area(area, prot, &pages)) {
1462 		vunmap(area->addr);
1463 		return NULL;
1464 	}
1465 
1466 	return area->addr;
1467 }
1468 EXPORT_SYMBOL(vmap);
1469 
1470 static void *__vmalloc_node(unsigned long size, unsigned long align,
1471 			    gfp_t gfp_mask, pgprot_t prot,
1472 			    int node, void *caller);
1473 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1474 				 pgprot_t prot, int node, void *caller)
1475 {
1476 	struct page **pages;
1477 	unsigned int nr_pages, array_size, i;
1478 	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1479 
1480 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1481 	array_size = (nr_pages * sizeof(struct page *));
1482 
1483 	area->nr_pages = nr_pages;
1484 	/* Please note that the recursion is strictly bounded. */
1485 	if (array_size > PAGE_SIZE) {
1486 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1487 				PAGE_KERNEL, node, caller);
1488 		area->flags |= VM_VPAGES;
1489 	} else {
1490 		pages = kmalloc_node(array_size, nested_gfp, node);
1491 	}
1492 	area->pages = pages;
1493 	area->caller = caller;
1494 	if (!area->pages) {
1495 		remove_vm_area(area->addr);
1496 		kfree(area);
1497 		return NULL;
1498 	}
1499 
1500 	for (i = 0; i < area->nr_pages; i++) {
1501 		struct page *page;
1502 
1503 		if (node < 0)
1504 			page = alloc_page(gfp_mask);
1505 		else
1506 			page = alloc_pages_node(node, gfp_mask, 0);
1507 
1508 		if (unlikely(!page)) {
1509 			/* Successfully allocated i pages, free them in __vunmap() */
1510 			area->nr_pages = i;
1511 			goto fail;
1512 		}
1513 		area->pages[i] = page;
1514 	}
1515 
1516 	if (map_vm_area(area, prot, &pages))
1517 		goto fail;
1518 	return area->addr;
1519 
1520 fail:
1521 	vfree(area->addr);
1522 	return NULL;
1523 }
1524 
1525 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1526 {
1527 	void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
1528 					 __builtin_return_address(0));
1529 
1530 	/*
1531 	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1532 	 * structures allocated in the __get_vm_area_node() function contain
1533 	 * references to the virtual address of the vmalloc'ed block.
1534 	 */
1535 	kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
1536 
1537 	return addr;
1538 }
1539 
1540 /**
1541  *	__vmalloc_node  -  allocate virtually contiguous memory
1542  *	@size:		allocation size
1543  *	@align:		desired alignment
1544  *	@gfp_mask:	flags for the page level allocator
1545  *	@prot:		protection mask for the allocated pages
1546  *	@node:		node to use for allocation or -1
1547  *	@caller:	caller's return address
1548  *
1549  *	Allocate enough pages to cover @size from the page level
1550  *	allocator with @gfp_mask flags.  Map them into contiguous
1551  *	kernel virtual space, using a pagetable protection of @prot.
1552  */
1553 static void *__vmalloc_node(unsigned long size, unsigned long align,
1554 			    gfp_t gfp_mask, pgprot_t prot,
1555 			    int node, void *caller)
1556 {
1557 	struct vm_struct *area;
1558 	void *addr;
1559 	unsigned long real_size = size;
1560 
1561 	size = PAGE_ALIGN(size);
1562 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1563 		return NULL;
1564 
1565 	area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START,
1566 				  VMALLOC_END, node, gfp_mask, caller);
1567 
1568 	if (!area)
1569 		return NULL;
1570 
1571 	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1572 
1573 	/*
1574 	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1575 	 * structures allocated in the __get_vm_area_node() function contain
1576 	 * references to the virtual address of the vmalloc'ed block.
1577 	 */
1578 	kmemleak_alloc(addr, real_size, 3, gfp_mask);
1579 
1580 	return addr;
1581 }
1582 
1583 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1584 {
1585 	return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1586 				__builtin_return_address(0));
1587 }
1588 EXPORT_SYMBOL(__vmalloc);
1589 
1590 /**
1591  *	vmalloc  -  allocate virtually contiguous memory
1592  *	@size:		allocation size
1593  *	Allocate enough pages to cover @size from the page level
1594  *	allocator and map them into contiguous kernel virtual space.
1595  *
1596  *	For tight control over page level allocator and protection flags
1597  *	use __vmalloc() instead.
1598  */
1599 void *vmalloc(unsigned long size)
1600 {
1601 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1602 					-1, __builtin_return_address(0));
1603 }
1604 EXPORT_SYMBOL(vmalloc);
1605 
1606 /**
1607  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1608  * @size: allocation size
1609  *
1610  * The resulting memory area is zeroed so it can be mapped to userspace
1611  * without leaking data.
1612  */
1613 void *vmalloc_user(unsigned long size)
1614 {
1615 	struct vm_struct *area;
1616 	void *ret;
1617 
1618 	ret = __vmalloc_node(size, SHMLBA,
1619 			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1620 			     PAGE_KERNEL, -1, __builtin_return_address(0));
1621 	if (ret) {
1622 		area = find_vm_area(ret);
1623 		area->flags |= VM_USERMAP;
1624 	}
1625 	return ret;
1626 }
1627 EXPORT_SYMBOL(vmalloc_user);
1628 
1629 /**
1630  *	vmalloc_node  -  allocate memory on a specific node
1631  *	@size:		allocation size
1632  *	@node:		numa node
1633  *
1634  *	Allocate enough pages to cover @size from the page level
1635  *	allocator and map them into contiguous kernel virtual space.
1636  *
1637  *	For tight control over page level allocator and protection flags
1638  *	use __vmalloc() instead.
1639  */
1640 void *vmalloc_node(unsigned long size, int node)
1641 {
1642 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1643 					node, __builtin_return_address(0));
1644 }
1645 EXPORT_SYMBOL(vmalloc_node);
1646 
1647 #ifndef PAGE_KERNEL_EXEC
1648 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1649 #endif
1650 
1651 /**
1652  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1653  *	@size:		allocation size
1654  *
1655  *	Kernel-internal function to allocate enough pages to cover @size
1656  *	the page level allocator and map them into contiguous and
1657  *	executable kernel virtual space.
1658  *
1659  *	For tight control over page level allocator and protection flags
1660  *	use __vmalloc() instead.
1661  */
1662 
1663 void *vmalloc_exec(unsigned long size)
1664 {
1665 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1666 			      -1, __builtin_return_address(0));
1667 }
1668 
1669 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1670 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1671 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1672 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1673 #else
1674 #define GFP_VMALLOC32 GFP_KERNEL
1675 #endif
1676 
1677 /**
1678  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1679  *	@size:		allocation size
1680  *
1681  *	Allocate enough 32bit PA addressable pages to cover @size from the
1682  *	page level allocator and map them into contiguous kernel virtual space.
1683  */
1684 void *vmalloc_32(unsigned long size)
1685 {
1686 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1687 			      -1, __builtin_return_address(0));
1688 }
1689 EXPORT_SYMBOL(vmalloc_32);
1690 
1691 /**
1692  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1693  *	@size:		allocation size
1694  *
1695  * The resulting memory area is 32bit addressable and zeroed so it can be
1696  * mapped to userspace without leaking data.
1697  */
1698 void *vmalloc_32_user(unsigned long size)
1699 {
1700 	struct vm_struct *area;
1701 	void *ret;
1702 
1703 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1704 			     -1, __builtin_return_address(0));
1705 	if (ret) {
1706 		area = find_vm_area(ret);
1707 		area->flags |= VM_USERMAP;
1708 	}
1709 	return ret;
1710 }
1711 EXPORT_SYMBOL(vmalloc_32_user);
1712 
1713 /*
1714  * small helper routine , copy contents to buf from addr.
1715  * If the page is not present, fill zero.
1716  */
1717 
1718 static int aligned_vread(char *buf, char *addr, unsigned long count)
1719 {
1720 	struct page *p;
1721 	int copied = 0;
1722 
1723 	while (count) {
1724 		unsigned long offset, length;
1725 
1726 		offset = (unsigned long)addr & ~PAGE_MASK;
1727 		length = PAGE_SIZE - offset;
1728 		if (length > count)
1729 			length = count;
1730 		p = vmalloc_to_page(addr);
1731 		/*
1732 		 * To do safe access to this _mapped_ area, we need
1733 		 * lock. But adding lock here means that we need to add
1734 		 * overhead of vmalloc()/vfree() calles for this _debug_
1735 		 * interface, rarely used. Instead of that, we'll use
1736 		 * kmap() and get small overhead in this access function.
1737 		 */
1738 		if (p) {
1739 			/*
1740 			 * we can expect USER0 is not used (see vread/vwrite's
1741 			 * function description)
1742 			 */
1743 			void *map = kmap_atomic(p, KM_USER0);
1744 			memcpy(buf, map + offset, length);
1745 			kunmap_atomic(map, KM_USER0);
1746 		} else
1747 			memset(buf, 0, length);
1748 
1749 		addr += length;
1750 		buf += length;
1751 		copied += length;
1752 		count -= length;
1753 	}
1754 	return copied;
1755 }
1756 
1757 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1758 {
1759 	struct page *p;
1760 	int copied = 0;
1761 
1762 	while (count) {
1763 		unsigned long offset, length;
1764 
1765 		offset = (unsigned long)addr & ~PAGE_MASK;
1766 		length = PAGE_SIZE - offset;
1767 		if (length > count)
1768 			length = count;
1769 		p = vmalloc_to_page(addr);
1770 		/*
1771 		 * To do safe access to this _mapped_ area, we need
1772 		 * lock. But adding lock here means that we need to add
1773 		 * overhead of vmalloc()/vfree() calles for this _debug_
1774 		 * interface, rarely used. Instead of that, we'll use
1775 		 * kmap() and get small overhead in this access function.
1776 		 */
1777 		if (p) {
1778 			/*
1779 			 * we can expect USER0 is not used (see vread/vwrite's
1780 			 * function description)
1781 			 */
1782 			void *map = kmap_atomic(p, KM_USER0);
1783 			memcpy(map + offset, buf, length);
1784 			kunmap_atomic(map, KM_USER0);
1785 		}
1786 		addr += length;
1787 		buf += length;
1788 		copied += length;
1789 		count -= length;
1790 	}
1791 	return copied;
1792 }
1793 
1794 /**
1795  *	vread() -  read vmalloc area in a safe way.
1796  *	@buf:		buffer for reading data
1797  *	@addr:		vm address.
1798  *	@count:		number of bytes to be read.
1799  *
1800  *	Returns # of bytes which addr and buf should be increased.
1801  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1802  *	includes any intersect with alive vmalloc area.
1803  *
1804  *	This function checks that addr is a valid vmalloc'ed area, and
1805  *	copy data from that area to a given buffer. If the given memory range
1806  *	of [addr...addr+count) includes some valid address, data is copied to
1807  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1808  *	IOREMAP area is treated as memory hole and no copy is done.
1809  *
1810  *	If [addr...addr+count) doesn't includes any intersects with alive
1811  *	vm_struct area, returns 0.
1812  *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1813  *	the caller should guarantee KM_USER0 is not used.
1814  *
1815  *	Note: In usual ops, vread() is never necessary because the caller
1816  *	should know vmalloc() area is valid and can use memcpy().
1817  *	This is for routines which have to access vmalloc area without
1818  *	any informaion, as /dev/kmem.
1819  *
1820  */
1821 
1822 long vread(char *buf, char *addr, unsigned long count)
1823 {
1824 	struct vm_struct *tmp;
1825 	char *vaddr, *buf_start = buf;
1826 	unsigned long buflen = count;
1827 	unsigned long n;
1828 
1829 	/* Don't allow overflow */
1830 	if ((unsigned long) addr + count < count)
1831 		count = -(unsigned long) addr;
1832 
1833 	read_lock(&vmlist_lock);
1834 	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1835 		vaddr = (char *) tmp->addr;
1836 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1837 			continue;
1838 		while (addr < vaddr) {
1839 			if (count == 0)
1840 				goto finished;
1841 			*buf = '\0';
1842 			buf++;
1843 			addr++;
1844 			count--;
1845 		}
1846 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1847 		if (n > count)
1848 			n = count;
1849 		if (!(tmp->flags & VM_IOREMAP))
1850 			aligned_vread(buf, addr, n);
1851 		else /* IOREMAP area is treated as memory hole */
1852 			memset(buf, 0, n);
1853 		buf += n;
1854 		addr += n;
1855 		count -= n;
1856 	}
1857 finished:
1858 	read_unlock(&vmlist_lock);
1859 
1860 	if (buf == buf_start)
1861 		return 0;
1862 	/* zero-fill memory holes */
1863 	if (buf != buf_start + buflen)
1864 		memset(buf, 0, buflen - (buf - buf_start));
1865 
1866 	return buflen;
1867 }
1868 
1869 /**
1870  *	vwrite() -  write vmalloc area in a safe way.
1871  *	@buf:		buffer for source data
1872  *	@addr:		vm address.
1873  *	@count:		number of bytes to be read.
1874  *
1875  *	Returns # of bytes which addr and buf should be incresed.
1876  *	(same number to @count).
1877  *	If [addr...addr+count) doesn't includes any intersect with valid
1878  *	vmalloc area, returns 0.
1879  *
1880  *	This function checks that addr is a valid vmalloc'ed area, and
1881  *	copy data from a buffer to the given addr. If specified range of
1882  *	[addr...addr+count) includes some valid address, data is copied from
1883  *	proper area of @buf. If there are memory holes, no copy to hole.
1884  *	IOREMAP area is treated as memory hole and no copy is done.
1885  *
1886  *	If [addr...addr+count) doesn't includes any intersects with alive
1887  *	vm_struct area, returns 0.
1888  *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1889  *	the caller should guarantee KM_USER0 is not used.
1890  *
1891  *	Note: In usual ops, vwrite() is never necessary because the caller
1892  *	should know vmalloc() area is valid and can use memcpy().
1893  *	This is for routines which have to access vmalloc area without
1894  *	any informaion, as /dev/kmem.
1895  *
1896  *	The caller should guarantee KM_USER1 is not used.
1897  */
1898 
1899 long vwrite(char *buf, char *addr, unsigned long count)
1900 {
1901 	struct vm_struct *tmp;
1902 	char *vaddr;
1903 	unsigned long n, buflen;
1904 	int copied = 0;
1905 
1906 	/* Don't allow overflow */
1907 	if ((unsigned long) addr + count < count)
1908 		count = -(unsigned long) addr;
1909 	buflen = count;
1910 
1911 	read_lock(&vmlist_lock);
1912 	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1913 		vaddr = (char *) tmp->addr;
1914 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1915 			continue;
1916 		while (addr < vaddr) {
1917 			if (count == 0)
1918 				goto finished;
1919 			buf++;
1920 			addr++;
1921 			count--;
1922 		}
1923 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1924 		if (n > count)
1925 			n = count;
1926 		if (!(tmp->flags & VM_IOREMAP)) {
1927 			aligned_vwrite(buf, addr, n);
1928 			copied++;
1929 		}
1930 		buf += n;
1931 		addr += n;
1932 		count -= n;
1933 	}
1934 finished:
1935 	read_unlock(&vmlist_lock);
1936 	if (!copied)
1937 		return 0;
1938 	return buflen;
1939 }
1940 
1941 /**
1942  *	remap_vmalloc_range  -  map vmalloc pages to userspace
1943  *	@vma:		vma to cover (map full range of vma)
1944  *	@addr:		vmalloc memory
1945  *	@pgoff:		number of pages into addr before first page to map
1946  *
1947  *	Returns:	0 for success, -Exxx on failure
1948  *
1949  *	This function checks that addr is a valid vmalloc'ed area, and
1950  *	that it is big enough to cover the vma. Will return failure if
1951  *	that criteria isn't met.
1952  *
1953  *	Similar to remap_pfn_range() (see mm/memory.c)
1954  */
1955 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1956 						unsigned long pgoff)
1957 {
1958 	struct vm_struct *area;
1959 	unsigned long uaddr = vma->vm_start;
1960 	unsigned long usize = vma->vm_end - vma->vm_start;
1961 
1962 	if ((PAGE_SIZE-1) & (unsigned long)addr)
1963 		return -EINVAL;
1964 
1965 	area = find_vm_area(addr);
1966 	if (!area)
1967 		return -EINVAL;
1968 
1969 	if (!(area->flags & VM_USERMAP))
1970 		return -EINVAL;
1971 
1972 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1973 		return -EINVAL;
1974 
1975 	addr += pgoff << PAGE_SHIFT;
1976 	do {
1977 		struct page *page = vmalloc_to_page(addr);
1978 		int ret;
1979 
1980 		ret = vm_insert_page(vma, uaddr, page);
1981 		if (ret)
1982 			return ret;
1983 
1984 		uaddr += PAGE_SIZE;
1985 		addr += PAGE_SIZE;
1986 		usize -= PAGE_SIZE;
1987 	} while (usize > 0);
1988 
1989 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
1990 	vma->vm_flags |= VM_RESERVED;
1991 
1992 	return 0;
1993 }
1994 EXPORT_SYMBOL(remap_vmalloc_range);
1995 
1996 /*
1997  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1998  * have one.
1999  */
2000 void  __attribute__((weak)) vmalloc_sync_all(void)
2001 {
2002 }
2003 
2004 
2005 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2006 {
2007 	/* apply_to_page_range() does all the hard work. */
2008 	return 0;
2009 }
2010 
2011 /**
2012  *	alloc_vm_area - allocate a range of kernel address space
2013  *	@size:		size of the area
2014  *
2015  *	Returns:	NULL on failure, vm_struct on success
2016  *
2017  *	This function reserves a range of kernel address space, and
2018  *	allocates pagetables to map that range.  No actual mappings
2019  *	are created.  If the kernel address space is not shared
2020  *	between processes, it syncs the pagetable across all
2021  *	processes.
2022  */
2023 struct vm_struct *alloc_vm_area(size_t size)
2024 {
2025 	struct vm_struct *area;
2026 
2027 	area = get_vm_area_caller(size, VM_IOREMAP,
2028 				__builtin_return_address(0));
2029 	if (area == NULL)
2030 		return NULL;
2031 
2032 	/*
2033 	 * This ensures that page tables are constructed for this region
2034 	 * of kernel virtual address space and mapped into init_mm.
2035 	 */
2036 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2037 				area->size, f, NULL)) {
2038 		free_vm_area(area);
2039 		return NULL;
2040 	}
2041 
2042 	/* Make sure the pagetables are constructed in process kernel
2043 	   mappings */
2044 	vmalloc_sync_all();
2045 
2046 	return area;
2047 }
2048 EXPORT_SYMBOL_GPL(alloc_vm_area);
2049 
2050 void free_vm_area(struct vm_struct *area)
2051 {
2052 	struct vm_struct *ret;
2053 	ret = remove_vm_area(area->addr);
2054 	BUG_ON(ret != area);
2055 	kfree(area);
2056 }
2057 EXPORT_SYMBOL_GPL(free_vm_area);
2058 
2059 static struct vmap_area *node_to_va(struct rb_node *n)
2060 {
2061 	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2062 }
2063 
2064 /**
2065  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2066  * @end: target address
2067  * @pnext: out arg for the next vmap_area
2068  * @pprev: out arg for the previous vmap_area
2069  *
2070  * Returns: %true if either or both of next and prev are found,
2071  *	    %false if no vmap_area exists
2072  *
2073  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2074  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2075  */
2076 static bool pvm_find_next_prev(unsigned long end,
2077 			       struct vmap_area **pnext,
2078 			       struct vmap_area **pprev)
2079 {
2080 	struct rb_node *n = vmap_area_root.rb_node;
2081 	struct vmap_area *va = NULL;
2082 
2083 	while (n) {
2084 		va = rb_entry(n, struct vmap_area, rb_node);
2085 		if (end < va->va_end)
2086 			n = n->rb_left;
2087 		else if (end > va->va_end)
2088 			n = n->rb_right;
2089 		else
2090 			break;
2091 	}
2092 
2093 	if (!va)
2094 		return false;
2095 
2096 	if (va->va_end > end) {
2097 		*pnext = va;
2098 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2099 	} else {
2100 		*pprev = va;
2101 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2102 	}
2103 	return true;
2104 }
2105 
2106 /**
2107  * pvm_determine_end - find the highest aligned address between two vmap_areas
2108  * @pnext: in/out arg for the next vmap_area
2109  * @pprev: in/out arg for the previous vmap_area
2110  * @align: alignment
2111  *
2112  * Returns: determined end address
2113  *
2114  * Find the highest aligned address between *@pnext and *@pprev below
2115  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2116  * down address is between the end addresses of the two vmap_areas.
2117  *
2118  * Please note that the address returned by this function may fall
2119  * inside *@pnext vmap_area.  The caller is responsible for checking
2120  * that.
2121  */
2122 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2123 				       struct vmap_area **pprev,
2124 				       unsigned long align)
2125 {
2126 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2127 	unsigned long addr;
2128 
2129 	if (*pnext)
2130 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2131 	else
2132 		addr = vmalloc_end;
2133 
2134 	while (*pprev && (*pprev)->va_end > addr) {
2135 		*pnext = *pprev;
2136 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2137 	}
2138 
2139 	return addr;
2140 }
2141 
2142 /**
2143  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2144  * @offsets: array containing offset of each area
2145  * @sizes: array containing size of each area
2146  * @nr_vms: the number of areas to allocate
2147  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2148  * @gfp_mask: allocation mask
2149  *
2150  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2151  *	    vm_structs on success, %NULL on failure
2152  *
2153  * Percpu allocator wants to use congruent vm areas so that it can
2154  * maintain the offsets among percpu areas.  This function allocates
2155  * congruent vmalloc areas for it.  These areas tend to be scattered
2156  * pretty far, distance between two areas easily going up to
2157  * gigabytes.  To avoid interacting with regular vmallocs, these areas
2158  * are allocated from top.
2159  *
2160  * Despite its complicated look, this allocator is rather simple.  It
2161  * does everything top-down and scans areas from the end looking for
2162  * matching slot.  While scanning, if any of the areas overlaps with
2163  * existing vmap_area, the base address is pulled down to fit the
2164  * area.  Scanning is repeated till all the areas fit and then all
2165  * necessary data structres are inserted and the result is returned.
2166  */
2167 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2168 				     const size_t *sizes, int nr_vms,
2169 				     size_t align, gfp_t gfp_mask)
2170 {
2171 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2172 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2173 	struct vmap_area **vas, *prev, *next;
2174 	struct vm_struct **vms;
2175 	int area, area2, last_area, term_area;
2176 	unsigned long base, start, end, last_end;
2177 	bool purged = false;
2178 
2179 	gfp_mask &= GFP_RECLAIM_MASK;
2180 
2181 	/* verify parameters and allocate data structures */
2182 	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2183 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2184 		start = offsets[area];
2185 		end = start + sizes[area];
2186 
2187 		/* is everything aligned properly? */
2188 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2189 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2190 
2191 		/* detect the area with the highest address */
2192 		if (start > offsets[last_area])
2193 			last_area = area;
2194 
2195 		for (area2 = 0; area2 < nr_vms; area2++) {
2196 			unsigned long start2 = offsets[area2];
2197 			unsigned long end2 = start2 + sizes[area2];
2198 
2199 			if (area2 == area)
2200 				continue;
2201 
2202 			BUG_ON(start2 >= start && start2 < end);
2203 			BUG_ON(end2 <= end && end2 > start);
2204 		}
2205 	}
2206 	last_end = offsets[last_area] + sizes[last_area];
2207 
2208 	if (vmalloc_end - vmalloc_start < last_end) {
2209 		WARN_ON(true);
2210 		return NULL;
2211 	}
2212 
2213 	vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask);
2214 	vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask);
2215 	if (!vas || !vms)
2216 		goto err_free;
2217 
2218 	for (area = 0; area < nr_vms; area++) {
2219 		vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask);
2220 		vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask);
2221 		if (!vas[area] || !vms[area])
2222 			goto err_free;
2223 	}
2224 retry:
2225 	spin_lock(&vmap_area_lock);
2226 
2227 	/* start scanning - we scan from the top, begin with the last area */
2228 	area = term_area = last_area;
2229 	start = offsets[area];
2230 	end = start + sizes[area];
2231 
2232 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2233 		base = vmalloc_end - last_end;
2234 		goto found;
2235 	}
2236 	base = pvm_determine_end(&next, &prev, align) - end;
2237 
2238 	while (true) {
2239 		BUG_ON(next && next->va_end <= base + end);
2240 		BUG_ON(prev && prev->va_end > base + end);
2241 
2242 		/*
2243 		 * base might have underflowed, add last_end before
2244 		 * comparing.
2245 		 */
2246 		if (base + last_end < vmalloc_start + last_end) {
2247 			spin_unlock(&vmap_area_lock);
2248 			if (!purged) {
2249 				purge_vmap_area_lazy();
2250 				purged = true;
2251 				goto retry;
2252 			}
2253 			goto err_free;
2254 		}
2255 
2256 		/*
2257 		 * If next overlaps, move base downwards so that it's
2258 		 * right below next and then recheck.
2259 		 */
2260 		if (next && next->va_start < base + end) {
2261 			base = pvm_determine_end(&next, &prev, align) - end;
2262 			term_area = area;
2263 			continue;
2264 		}
2265 
2266 		/*
2267 		 * If prev overlaps, shift down next and prev and move
2268 		 * base so that it's right below new next and then
2269 		 * recheck.
2270 		 */
2271 		if (prev && prev->va_end > base + start)  {
2272 			next = prev;
2273 			prev = node_to_va(rb_prev(&next->rb_node));
2274 			base = pvm_determine_end(&next, &prev, align) - end;
2275 			term_area = area;
2276 			continue;
2277 		}
2278 
2279 		/*
2280 		 * This area fits, move on to the previous one.  If
2281 		 * the previous one is the terminal one, we're done.
2282 		 */
2283 		area = (area + nr_vms - 1) % nr_vms;
2284 		if (area == term_area)
2285 			break;
2286 		start = offsets[area];
2287 		end = start + sizes[area];
2288 		pvm_find_next_prev(base + end, &next, &prev);
2289 	}
2290 found:
2291 	/* we've found a fitting base, insert all va's */
2292 	for (area = 0; area < nr_vms; area++) {
2293 		struct vmap_area *va = vas[area];
2294 
2295 		va->va_start = base + offsets[area];
2296 		va->va_end = va->va_start + sizes[area];
2297 		__insert_vmap_area(va);
2298 	}
2299 
2300 	vmap_area_pcpu_hole = base + offsets[last_area];
2301 
2302 	spin_unlock(&vmap_area_lock);
2303 
2304 	/* insert all vm's */
2305 	for (area = 0; area < nr_vms; area++)
2306 		insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2307 				  pcpu_get_vm_areas);
2308 
2309 	kfree(vas);
2310 	return vms;
2311 
2312 err_free:
2313 	for (area = 0; area < nr_vms; area++) {
2314 		if (vas)
2315 			kfree(vas[area]);
2316 		if (vms)
2317 			kfree(vms[area]);
2318 	}
2319 	kfree(vas);
2320 	kfree(vms);
2321 	return NULL;
2322 }
2323 
2324 /**
2325  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2326  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2327  * @nr_vms: the number of allocated areas
2328  *
2329  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2330  */
2331 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2332 {
2333 	int i;
2334 
2335 	for (i = 0; i < nr_vms; i++)
2336 		free_vm_area(vms[i]);
2337 	kfree(vms);
2338 }
2339 
2340 #ifdef CONFIG_PROC_FS
2341 static void *s_start(struct seq_file *m, loff_t *pos)
2342 {
2343 	loff_t n = *pos;
2344 	struct vm_struct *v;
2345 
2346 	read_lock(&vmlist_lock);
2347 	v = vmlist;
2348 	while (n > 0 && v) {
2349 		n--;
2350 		v = v->next;
2351 	}
2352 	if (!n)
2353 		return v;
2354 
2355 	return NULL;
2356 
2357 }
2358 
2359 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2360 {
2361 	struct vm_struct *v = p;
2362 
2363 	++*pos;
2364 	return v->next;
2365 }
2366 
2367 static void s_stop(struct seq_file *m, void *p)
2368 {
2369 	read_unlock(&vmlist_lock);
2370 }
2371 
2372 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2373 {
2374 	if (NUMA_BUILD) {
2375 		unsigned int nr, *counters = m->private;
2376 
2377 		if (!counters)
2378 			return;
2379 
2380 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2381 
2382 		for (nr = 0; nr < v->nr_pages; nr++)
2383 			counters[page_to_nid(v->pages[nr])]++;
2384 
2385 		for_each_node_state(nr, N_HIGH_MEMORY)
2386 			if (counters[nr])
2387 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2388 	}
2389 }
2390 
2391 static int s_show(struct seq_file *m, void *p)
2392 {
2393 	struct vm_struct *v = p;
2394 
2395 	seq_printf(m, "0x%p-0x%p %7ld",
2396 		v->addr, v->addr + v->size, v->size);
2397 
2398 	if (v->caller) {
2399 		char buff[KSYM_SYMBOL_LEN];
2400 
2401 		seq_putc(m, ' ');
2402 		sprint_symbol(buff, (unsigned long)v->caller);
2403 		seq_puts(m, buff);
2404 	}
2405 
2406 	if (v->nr_pages)
2407 		seq_printf(m, " pages=%d", v->nr_pages);
2408 
2409 	if (v->phys_addr)
2410 		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2411 
2412 	if (v->flags & VM_IOREMAP)
2413 		seq_printf(m, " ioremap");
2414 
2415 	if (v->flags & VM_ALLOC)
2416 		seq_printf(m, " vmalloc");
2417 
2418 	if (v->flags & VM_MAP)
2419 		seq_printf(m, " vmap");
2420 
2421 	if (v->flags & VM_USERMAP)
2422 		seq_printf(m, " user");
2423 
2424 	if (v->flags & VM_VPAGES)
2425 		seq_printf(m, " vpages");
2426 
2427 	show_numa_info(m, v);
2428 	seq_putc(m, '\n');
2429 	return 0;
2430 }
2431 
2432 static const struct seq_operations vmalloc_op = {
2433 	.start = s_start,
2434 	.next = s_next,
2435 	.stop = s_stop,
2436 	.show = s_show,
2437 };
2438 
2439 static int vmalloc_open(struct inode *inode, struct file *file)
2440 {
2441 	unsigned int *ptr = NULL;
2442 	int ret;
2443 
2444 	if (NUMA_BUILD) {
2445 		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2446 		if (ptr == NULL)
2447 			return -ENOMEM;
2448 	}
2449 	ret = seq_open(file, &vmalloc_op);
2450 	if (!ret) {
2451 		struct seq_file *m = file->private_data;
2452 		m->private = ptr;
2453 	} else
2454 		kfree(ptr);
2455 	return ret;
2456 }
2457 
2458 static const struct file_operations proc_vmalloc_operations = {
2459 	.open		= vmalloc_open,
2460 	.read		= seq_read,
2461 	.llseek		= seq_lseek,
2462 	.release	= seq_release_private,
2463 };
2464 
2465 static int __init proc_vmalloc_init(void)
2466 {
2467 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2468 	return 0;
2469 }
2470 module_init(proc_vmalloc_init);
2471 #endif
2472 
2473