xref: /linux/mm/vmalloc.c (revision cc4589ebfae6f8dbb5cf880a0a67eedab3416492)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 #include <asm/shmparam.h>
33 
34 
35 /*** Page table manipulation functions ***/
36 
37 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
38 {
39 	pte_t *pte;
40 
41 	pte = pte_offset_kernel(pmd, addr);
42 	do {
43 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
44 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
45 	} while (pte++, addr += PAGE_SIZE, addr != end);
46 }
47 
48 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
49 {
50 	pmd_t *pmd;
51 	unsigned long next;
52 
53 	pmd = pmd_offset(pud, addr);
54 	do {
55 		next = pmd_addr_end(addr, end);
56 		if (pmd_none_or_clear_bad(pmd))
57 			continue;
58 		vunmap_pte_range(pmd, addr, next);
59 	} while (pmd++, addr = next, addr != end);
60 }
61 
62 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
63 {
64 	pud_t *pud;
65 	unsigned long next;
66 
67 	pud = pud_offset(pgd, addr);
68 	do {
69 		next = pud_addr_end(addr, end);
70 		if (pud_none_or_clear_bad(pud))
71 			continue;
72 		vunmap_pmd_range(pud, addr, next);
73 	} while (pud++, addr = next, addr != end);
74 }
75 
76 static void vunmap_page_range(unsigned long addr, unsigned long end)
77 {
78 	pgd_t *pgd;
79 	unsigned long next;
80 
81 	BUG_ON(addr >= end);
82 	pgd = pgd_offset_k(addr);
83 	do {
84 		next = pgd_addr_end(addr, end);
85 		if (pgd_none_or_clear_bad(pgd))
86 			continue;
87 		vunmap_pud_range(pgd, addr, next);
88 	} while (pgd++, addr = next, addr != end);
89 }
90 
91 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
92 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
93 {
94 	pte_t *pte;
95 
96 	/*
97 	 * nr is a running index into the array which helps higher level
98 	 * callers keep track of where we're up to.
99 	 */
100 
101 	pte = pte_alloc_kernel(pmd, addr);
102 	if (!pte)
103 		return -ENOMEM;
104 	do {
105 		struct page *page = pages[*nr];
106 
107 		if (WARN_ON(!pte_none(*pte)))
108 			return -EBUSY;
109 		if (WARN_ON(!page))
110 			return -ENOMEM;
111 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
112 		(*nr)++;
113 	} while (pte++, addr += PAGE_SIZE, addr != end);
114 	return 0;
115 }
116 
117 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
118 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
119 {
120 	pmd_t *pmd;
121 	unsigned long next;
122 
123 	pmd = pmd_alloc(&init_mm, pud, addr);
124 	if (!pmd)
125 		return -ENOMEM;
126 	do {
127 		next = pmd_addr_end(addr, end);
128 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
129 			return -ENOMEM;
130 	} while (pmd++, addr = next, addr != end);
131 	return 0;
132 }
133 
134 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
135 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
136 {
137 	pud_t *pud;
138 	unsigned long next;
139 
140 	pud = pud_alloc(&init_mm, pgd, addr);
141 	if (!pud)
142 		return -ENOMEM;
143 	do {
144 		next = pud_addr_end(addr, end);
145 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
146 			return -ENOMEM;
147 	} while (pud++, addr = next, addr != end);
148 	return 0;
149 }
150 
151 /*
152  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
153  * will have pfns corresponding to the "pages" array.
154  *
155  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
156  */
157 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
158 				   pgprot_t prot, struct page **pages)
159 {
160 	pgd_t *pgd;
161 	unsigned long next;
162 	unsigned long addr = start;
163 	int err = 0;
164 	int nr = 0;
165 
166 	BUG_ON(addr >= end);
167 	pgd = pgd_offset_k(addr);
168 	do {
169 		next = pgd_addr_end(addr, end);
170 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
171 		if (err)
172 			return err;
173 	} while (pgd++, addr = next, addr != end);
174 
175 	return nr;
176 }
177 
178 static int vmap_page_range(unsigned long start, unsigned long end,
179 			   pgprot_t prot, struct page **pages)
180 {
181 	int ret;
182 
183 	ret = vmap_page_range_noflush(start, end, prot, pages);
184 	flush_cache_vmap(start, end);
185 	return ret;
186 }
187 
188 int is_vmalloc_or_module_addr(const void *x)
189 {
190 	/*
191 	 * ARM, x86-64 and sparc64 put modules in a special place,
192 	 * and fall back on vmalloc() if that fails. Others
193 	 * just put it in the vmalloc space.
194 	 */
195 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
196 	unsigned long addr = (unsigned long)x;
197 	if (addr >= MODULES_VADDR && addr < MODULES_END)
198 		return 1;
199 #endif
200 	return is_vmalloc_addr(x);
201 }
202 
203 /*
204  * Walk a vmap address to the struct page it maps.
205  */
206 struct page *vmalloc_to_page(const void *vmalloc_addr)
207 {
208 	unsigned long addr = (unsigned long) vmalloc_addr;
209 	struct page *page = NULL;
210 	pgd_t *pgd = pgd_offset_k(addr);
211 
212 	/*
213 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
214 	 * architectures that do not vmalloc module space
215 	 */
216 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
217 
218 	if (!pgd_none(*pgd)) {
219 		pud_t *pud = pud_offset(pgd, addr);
220 		if (!pud_none(*pud)) {
221 			pmd_t *pmd = pmd_offset(pud, addr);
222 			if (!pmd_none(*pmd)) {
223 				pte_t *ptep, pte;
224 
225 				ptep = pte_offset_map(pmd, addr);
226 				pte = *ptep;
227 				if (pte_present(pte))
228 					page = pte_page(pte);
229 				pte_unmap(ptep);
230 			}
231 		}
232 	}
233 	return page;
234 }
235 EXPORT_SYMBOL(vmalloc_to_page);
236 
237 /*
238  * Map a vmalloc()-space virtual address to the physical page frame number.
239  */
240 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
241 {
242 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
243 }
244 EXPORT_SYMBOL(vmalloc_to_pfn);
245 
246 
247 /*** Global kva allocator ***/
248 
249 #define VM_LAZY_FREE	0x01
250 #define VM_LAZY_FREEING	0x02
251 #define VM_VM_AREA	0x04
252 
253 struct vmap_area {
254 	unsigned long va_start;
255 	unsigned long va_end;
256 	unsigned long flags;
257 	struct rb_node rb_node;		/* address sorted rbtree */
258 	struct list_head list;		/* address sorted list */
259 	struct list_head purge_list;	/* "lazy purge" list */
260 	void *private;
261 	struct rcu_head rcu_head;
262 };
263 
264 static DEFINE_SPINLOCK(vmap_area_lock);
265 static struct rb_root vmap_area_root = RB_ROOT;
266 static LIST_HEAD(vmap_area_list);
267 static unsigned long vmap_area_pcpu_hole;
268 
269 static struct vmap_area *__find_vmap_area(unsigned long addr)
270 {
271 	struct rb_node *n = vmap_area_root.rb_node;
272 
273 	while (n) {
274 		struct vmap_area *va;
275 
276 		va = rb_entry(n, struct vmap_area, rb_node);
277 		if (addr < va->va_start)
278 			n = n->rb_left;
279 		else if (addr > va->va_start)
280 			n = n->rb_right;
281 		else
282 			return va;
283 	}
284 
285 	return NULL;
286 }
287 
288 static void __insert_vmap_area(struct vmap_area *va)
289 {
290 	struct rb_node **p = &vmap_area_root.rb_node;
291 	struct rb_node *parent = NULL;
292 	struct rb_node *tmp;
293 
294 	while (*p) {
295 		struct vmap_area *tmp;
296 
297 		parent = *p;
298 		tmp = rb_entry(parent, struct vmap_area, rb_node);
299 		if (va->va_start < tmp->va_end)
300 			p = &(*p)->rb_left;
301 		else if (va->va_end > tmp->va_start)
302 			p = &(*p)->rb_right;
303 		else
304 			BUG();
305 	}
306 
307 	rb_link_node(&va->rb_node, parent, p);
308 	rb_insert_color(&va->rb_node, &vmap_area_root);
309 
310 	/* address-sort this list so it is usable like the vmlist */
311 	tmp = rb_prev(&va->rb_node);
312 	if (tmp) {
313 		struct vmap_area *prev;
314 		prev = rb_entry(tmp, struct vmap_area, rb_node);
315 		list_add_rcu(&va->list, &prev->list);
316 	} else
317 		list_add_rcu(&va->list, &vmap_area_list);
318 }
319 
320 static void purge_vmap_area_lazy(void);
321 
322 /*
323  * Allocate a region of KVA of the specified size and alignment, within the
324  * vstart and vend.
325  */
326 static struct vmap_area *alloc_vmap_area(unsigned long size,
327 				unsigned long align,
328 				unsigned long vstart, unsigned long vend,
329 				int node, gfp_t gfp_mask)
330 {
331 	struct vmap_area *va;
332 	struct rb_node *n;
333 	unsigned long addr;
334 	int purged = 0;
335 
336 	BUG_ON(!size);
337 	BUG_ON(size & ~PAGE_MASK);
338 
339 	va = kmalloc_node(sizeof(struct vmap_area),
340 			gfp_mask & GFP_RECLAIM_MASK, node);
341 	if (unlikely(!va))
342 		return ERR_PTR(-ENOMEM);
343 
344 retry:
345 	addr = ALIGN(vstart, align);
346 
347 	spin_lock(&vmap_area_lock);
348 	if (addr + size - 1 < addr)
349 		goto overflow;
350 
351 	/* XXX: could have a last_hole cache */
352 	n = vmap_area_root.rb_node;
353 	if (n) {
354 		struct vmap_area *first = NULL;
355 
356 		do {
357 			struct vmap_area *tmp;
358 			tmp = rb_entry(n, struct vmap_area, rb_node);
359 			if (tmp->va_end >= addr) {
360 				if (!first && tmp->va_start < addr + size)
361 					first = tmp;
362 				n = n->rb_left;
363 			} else {
364 				first = tmp;
365 				n = n->rb_right;
366 			}
367 		} while (n);
368 
369 		if (!first)
370 			goto found;
371 
372 		if (first->va_end < addr) {
373 			n = rb_next(&first->rb_node);
374 			if (n)
375 				first = rb_entry(n, struct vmap_area, rb_node);
376 			else
377 				goto found;
378 		}
379 
380 		while (addr + size > first->va_start && addr + size <= vend) {
381 			addr = ALIGN(first->va_end + PAGE_SIZE, align);
382 			if (addr + size - 1 < addr)
383 				goto overflow;
384 
385 			n = rb_next(&first->rb_node);
386 			if (n)
387 				first = rb_entry(n, struct vmap_area, rb_node);
388 			else
389 				goto found;
390 		}
391 	}
392 found:
393 	if (addr + size > vend) {
394 overflow:
395 		spin_unlock(&vmap_area_lock);
396 		if (!purged) {
397 			purge_vmap_area_lazy();
398 			purged = 1;
399 			goto retry;
400 		}
401 		if (printk_ratelimit())
402 			printk(KERN_WARNING
403 				"vmap allocation for size %lu failed: "
404 				"use vmalloc=<size> to increase size.\n", size);
405 		kfree(va);
406 		return ERR_PTR(-EBUSY);
407 	}
408 
409 	BUG_ON(addr & (align-1));
410 
411 	va->va_start = addr;
412 	va->va_end = addr + size;
413 	va->flags = 0;
414 	__insert_vmap_area(va);
415 	spin_unlock(&vmap_area_lock);
416 
417 	return va;
418 }
419 
420 static void rcu_free_va(struct rcu_head *head)
421 {
422 	struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
423 
424 	kfree(va);
425 }
426 
427 static void __free_vmap_area(struct vmap_area *va)
428 {
429 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
430 	rb_erase(&va->rb_node, &vmap_area_root);
431 	RB_CLEAR_NODE(&va->rb_node);
432 	list_del_rcu(&va->list);
433 
434 	/*
435 	 * Track the highest possible candidate for pcpu area
436 	 * allocation.  Areas outside of vmalloc area can be returned
437 	 * here too, consider only end addresses which fall inside
438 	 * vmalloc area proper.
439 	 */
440 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
441 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
442 
443 	call_rcu(&va->rcu_head, rcu_free_va);
444 }
445 
446 /*
447  * Free a region of KVA allocated by alloc_vmap_area
448  */
449 static void free_vmap_area(struct vmap_area *va)
450 {
451 	spin_lock(&vmap_area_lock);
452 	__free_vmap_area(va);
453 	spin_unlock(&vmap_area_lock);
454 }
455 
456 /*
457  * Clear the pagetable entries of a given vmap_area
458  */
459 static void unmap_vmap_area(struct vmap_area *va)
460 {
461 	vunmap_page_range(va->va_start, va->va_end);
462 }
463 
464 static void vmap_debug_free_range(unsigned long start, unsigned long end)
465 {
466 	/*
467 	 * Unmap page tables and force a TLB flush immediately if
468 	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
469 	 * bugs similarly to those in linear kernel virtual address
470 	 * space after a page has been freed.
471 	 *
472 	 * All the lazy freeing logic is still retained, in order to
473 	 * minimise intrusiveness of this debugging feature.
474 	 *
475 	 * This is going to be *slow* (linear kernel virtual address
476 	 * debugging doesn't do a broadcast TLB flush so it is a lot
477 	 * faster).
478 	 */
479 #ifdef CONFIG_DEBUG_PAGEALLOC
480 	vunmap_page_range(start, end);
481 	flush_tlb_kernel_range(start, end);
482 #endif
483 }
484 
485 /*
486  * lazy_max_pages is the maximum amount of virtual address space we gather up
487  * before attempting to purge with a TLB flush.
488  *
489  * There is a tradeoff here: a larger number will cover more kernel page tables
490  * and take slightly longer to purge, but it will linearly reduce the number of
491  * global TLB flushes that must be performed. It would seem natural to scale
492  * this number up linearly with the number of CPUs (because vmapping activity
493  * could also scale linearly with the number of CPUs), however it is likely
494  * that in practice, workloads might be constrained in other ways that mean
495  * vmap activity will not scale linearly with CPUs. Also, I want to be
496  * conservative and not introduce a big latency on huge systems, so go with
497  * a less aggressive log scale. It will still be an improvement over the old
498  * code, and it will be simple to change the scale factor if we find that it
499  * becomes a problem on bigger systems.
500  */
501 static unsigned long lazy_max_pages(void)
502 {
503 	unsigned int log;
504 
505 	log = fls(num_online_cpus());
506 
507 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
508 }
509 
510 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
511 
512 /* for per-CPU blocks */
513 static void purge_fragmented_blocks_allcpus(void);
514 
515 /*
516  * Purges all lazily-freed vmap areas.
517  *
518  * If sync is 0 then don't purge if there is already a purge in progress.
519  * If force_flush is 1, then flush kernel TLBs between *start and *end even
520  * if we found no lazy vmap areas to unmap (callers can use this to optimise
521  * their own TLB flushing).
522  * Returns with *start = min(*start, lowest purged address)
523  *              *end = max(*end, highest purged address)
524  */
525 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
526 					int sync, int force_flush)
527 {
528 	static DEFINE_SPINLOCK(purge_lock);
529 	LIST_HEAD(valist);
530 	struct vmap_area *va;
531 	struct vmap_area *n_va;
532 	int nr = 0;
533 
534 	/*
535 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
536 	 * should not expect such behaviour. This just simplifies locking for
537 	 * the case that isn't actually used at the moment anyway.
538 	 */
539 	if (!sync && !force_flush) {
540 		if (!spin_trylock(&purge_lock))
541 			return;
542 	} else
543 		spin_lock(&purge_lock);
544 
545 	if (sync)
546 		purge_fragmented_blocks_allcpus();
547 
548 	rcu_read_lock();
549 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
550 		if (va->flags & VM_LAZY_FREE) {
551 			if (va->va_start < *start)
552 				*start = va->va_start;
553 			if (va->va_end > *end)
554 				*end = va->va_end;
555 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
556 			unmap_vmap_area(va);
557 			list_add_tail(&va->purge_list, &valist);
558 			va->flags |= VM_LAZY_FREEING;
559 			va->flags &= ~VM_LAZY_FREE;
560 		}
561 	}
562 	rcu_read_unlock();
563 
564 	if (nr)
565 		atomic_sub(nr, &vmap_lazy_nr);
566 
567 	if (nr || force_flush)
568 		flush_tlb_kernel_range(*start, *end);
569 
570 	if (nr) {
571 		spin_lock(&vmap_area_lock);
572 		list_for_each_entry_safe(va, n_va, &valist, purge_list)
573 			__free_vmap_area(va);
574 		spin_unlock(&vmap_area_lock);
575 	}
576 	spin_unlock(&purge_lock);
577 }
578 
579 /*
580  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
581  * is already purging.
582  */
583 static void try_purge_vmap_area_lazy(void)
584 {
585 	unsigned long start = ULONG_MAX, end = 0;
586 
587 	__purge_vmap_area_lazy(&start, &end, 0, 0);
588 }
589 
590 /*
591  * Kick off a purge of the outstanding lazy areas.
592  */
593 static void purge_vmap_area_lazy(void)
594 {
595 	unsigned long start = ULONG_MAX, end = 0;
596 
597 	__purge_vmap_area_lazy(&start, &end, 1, 0);
598 }
599 
600 /*
601  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
602  * called for the correct range previously.
603  */
604 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
605 {
606 	va->flags |= VM_LAZY_FREE;
607 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
608 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
609 		try_purge_vmap_area_lazy();
610 }
611 
612 /*
613  * Free and unmap a vmap area
614  */
615 static void free_unmap_vmap_area(struct vmap_area *va)
616 {
617 	flush_cache_vunmap(va->va_start, va->va_end);
618 	free_unmap_vmap_area_noflush(va);
619 }
620 
621 static struct vmap_area *find_vmap_area(unsigned long addr)
622 {
623 	struct vmap_area *va;
624 
625 	spin_lock(&vmap_area_lock);
626 	va = __find_vmap_area(addr);
627 	spin_unlock(&vmap_area_lock);
628 
629 	return va;
630 }
631 
632 static void free_unmap_vmap_area_addr(unsigned long addr)
633 {
634 	struct vmap_area *va;
635 
636 	va = find_vmap_area(addr);
637 	BUG_ON(!va);
638 	free_unmap_vmap_area(va);
639 }
640 
641 
642 /*** Per cpu kva allocator ***/
643 
644 /*
645  * vmap space is limited especially on 32 bit architectures. Ensure there is
646  * room for at least 16 percpu vmap blocks per CPU.
647  */
648 /*
649  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
650  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
651  * instead (we just need a rough idea)
652  */
653 #if BITS_PER_LONG == 32
654 #define VMALLOC_SPACE		(128UL*1024*1024)
655 #else
656 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
657 #endif
658 
659 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
660 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
661 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
662 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
663 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
664 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
665 #define VMAP_BBMAP_BITS		VMAP_MIN(VMAP_BBMAP_BITS_MAX,		\
666 					VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
667 						VMALLOC_PAGES / NR_CPUS / 16))
668 
669 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
670 
671 static bool vmap_initialized __read_mostly = false;
672 
673 struct vmap_block_queue {
674 	spinlock_t lock;
675 	struct list_head free;
676 };
677 
678 struct vmap_block {
679 	spinlock_t lock;
680 	struct vmap_area *va;
681 	struct vmap_block_queue *vbq;
682 	unsigned long free, dirty;
683 	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
684 	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
685 	struct list_head free_list;
686 	struct rcu_head rcu_head;
687 	struct list_head purge;
688 };
689 
690 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
691 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
692 
693 /*
694  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
695  * in the free path. Could get rid of this if we change the API to return a
696  * "cookie" from alloc, to be passed to free. But no big deal yet.
697  */
698 static DEFINE_SPINLOCK(vmap_block_tree_lock);
699 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
700 
701 /*
702  * We should probably have a fallback mechanism to allocate virtual memory
703  * out of partially filled vmap blocks. However vmap block sizing should be
704  * fairly reasonable according to the vmalloc size, so it shouldn't be a
705  * big problem.
706  */
707 
708 static unsigned long addr_to_vb_idx(unsigned long addr)
709 {
710 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
711 	addr /= VMAP_BLOCK_SIZE;
712 	return addr;
713 }
714 
715 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
716 {
717 	struct vmap_block_queue *vbq;
718 	struct vmap_block *vb;
719 	struct vmap_area *va;
720 	unsigned long vb_idx;
721 	int node, err;
722 
723 	node = numa_node_id();
724 
725 	vb = kmalloc_node(sizeof(struct vmap_block),
726 			gfp_mask & GFP_RECLAIM_MASK, node);
727 	if (unlikely(!vb))
728 		return ERR_PTR(-ENOMEM);
729 
730 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
731 					VMALLOC_START, VMALLOC_END,
732 					node, gfp_mask);
733 	if (unlikely(IS_ERR(va))) {
734 		kfree(vb);
735 		return ERR_CAST(va);
736 	}
737 
738 	err = radix_tree_preload(gfp_mask);
739 	if (unlikely(err)) {
740 		kfree(vb);
741 		free_vmap_area(va);
742 		return ERR_PTR(err);
743 	}
744 
745 	spin_lock_init(&vb->lock);
746 	vb->va = va;
747 	vb->free = VMAP_BBMAP_BITS;
748 	vb->dirty = 0;
749 	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
750 	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
751 	INIT_LIST_HEAD(&vb->free_list);
752 
753 	vb_idx = addr_to_vb_idx(va->va_start);
754 	spin_lock(&vmap_block_tree_lock);
755 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
756 	spin_unlock(&vmap_block_tree_lock);
757 	BUG_ON(err);
758 	radix_tree_preload_end();
759 
760 	vbq = &get_cpu_var(vmap_block_queue);
761 	vb->vbq = vbq;
762 	spin_lock(&vbq->lock);
763 	list_add_rcu(&vb->free_list, &vbq->free);
764 	spin_unlock(&vbq->lock);
765 	put_cpu_var(vmap_block_queue);
766 
767 	return vb;
768 }
769 
770 static void rcu_free_vb(struct rcu_head *head)
771 {
772 	struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
773 
774 	kfree(vb);
775 }
776 
777 static void free_vmap_block(struct vmap_block *vb)
778 {
779 	struct vmap_block *tmp;
780 	unsigned long vb_idx;
781 
782 	vb_idx = addr_to_vb_idx(vb->va->va_start);
783 	spin_lock(&vmap_block_tree_lock);
784 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
785 	spin_unlock(&vmap_block_tree_lock);
786 	BUG_ON(tmp != vb);
787 
788 	free_unmap_vmap_area_noflush(vb->va);
789 	call_rcu(&vb->rcu_head, rcu_free_vb);
790 }
791 
792 static void purge_fragmented_blocks(int cpu)
793 {
794 	LIST_HEAD(purge);
795 	struct vmap_block *vb;
796 	struct vmap_block *n_vb;
797 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
798 
799 	rcu_read_lock();
800 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
801 
802 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
803 			continue;
804 
805 		spin_lock(&vb->lock);
806 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
807 			vb->free = 0; /* prevent further allocs after releasing lock */
808 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
809 			bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
810 			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
811 			spin_lock(&vbq->lock);
812 			list_del_rcu(&vb->free_list);
813 			spin_unlock(&vbq->lock);
814 			spin_unlock(&vb->lock);
815 			list_add_tail(&vb->purge, &purge);
816 		} else
817 			spin_unlock(&vb->lock);
818 	}
819 	rcu_read_unlock();
820 
821 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
822 		list_del(&vb->purge);
823 		free_vmap_block(vb);
824 	}
825 }
826 
827 static void purge_fragmented_blocks_thiscpu(void)
828 {
829 	purge_fragmented_blocks(smp_processor_id());
830 }
831 
832 static void purge_fragmented_blocks_allcpus(void)
833 {
834 	int cpu;
835 
836 	for_each_possible_cpu(cpu)
837 		purge_fragmented_blocks(cpu);
838 }
839 
840 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
841 {
842 	struct vmap_block_queue *vbq;
843 	struct vmap_block *vb;
844 	unsigned long addr = 0;
845 	unsigned int order;
846 	int purge = 0;
847 
848 	BUG_ON(size & ~PAGE_MASK);
849 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
850 	order = get_order(size);
851 
852 again:
853 	rcu_read_lock();
854 	vbq = &get_cpu_var(vmap_block_queue);
855 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
856 		int i;
857 
858 		spin_lock(&vb->lock);
859 		if (vb->free < 1UL << order)
860 			goto next;
861 
862 		i = bitmap_find_free_region(vb->alloc_map,
863 						VMAP_BBMAP_BITS, order);
864 
865 		if (i < 0) {
866 			if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
867 				/* fragmented and no outstanding allocations */
868 				BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
869 				purge = 1;
870 			}
871 			goto next;
872 		}
873 		addr = vb->va->va_start + (i << PAGE_SHIFT);
874 		BUG_ON(addr_to_vb_idx(addr) !=
875 				addr_to_vb_idx(vb->va->va_start));
876 		vb->free -= 1UL << order;
877 		if (vb->free == 0) {
878 			spin_lock(&vbq->lock);
879 			list_del_rcu(&vb->free_list);
880 			spin_unlock(&vbq->lock);
881 		}
882 		spin_unlock(&vb->lock);
883 		break;
884 next:
885 		spin_unlock(&vb->lock);
886 	}
887 
888 	if (purge)
889 		purge_fragmented_blocks_thiscpu();
890 
891 	put_cpu_var(vmap_block_queue);
892 	rcu_read_unlock();
893 
894 	if (!addr) {
895 		vb = new_vmap_block(gfp_mask);
896 		if (IS_ERR(vb))
897 			return vb;
898 		goto again;
899 	}
900 
901 	return (void *)addr;
902 }
903 
904 static void vb_free(const void *addr, unsigned long size)
905 {
906 	unsigned long offset;
907 	unsigned long vb_idx;
908 	unsigned int order;
909 	struct vmap_block *vb;
910 
911 	BUG_ON(size & ~PAGE_MASK);
912 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
913 
914 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
915 
916 	order = get_order(size);
917 
918 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
919 
920 	vb_idx = addr_to_vb_idx((unsigned long)addr);
921 	rcu_read_lock();
922 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
923 	rcu_read_unlock();
924 	BUG_ON(!vb);
925 
926 	spin_lock(&vb->lock);
927 	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
928 
929 	vb->dirty += 1UL << order;
930 	if (vb->dirty == VMAP_BBMAP_BITS) {
931 		BUG_ON(vb->free);
932 		spin_unlock(&vb->lock);
933 		free_vmap_block(vb);
934 	} else
935 		spin_unlock(&vb->lock);
936 }
937 
938 /**
939  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
940  *
941  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
942  * to amortize TLB flushing overheads. What this means is that any page you
943  * have now, may, in a former life, have been mapped into kernel virtual
944  * address by the vmap layer and so there might be some CPUs with TLB entries
945  * still referencing that page (additional to the regular 1:1 kernel mapping).
946  *
947  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
948  * be sure that none of the pages we have control over will have any aliases
949  * from the vmap layer.
950  */
951 void vm_unmap_aliases(void)
952 {
953 	unsigned long start = ULONG_MAX, end = 0;
954 	int cpu;
955 	int flush = 0;
956 
957 	if (unlikely(!vmap_initialized))
958 		return;
959 
960 	for_each_possible_cpu(cpu) {
961 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
962 		struct vmap_block *vb;
963 
964 		rcu_read_lock();
965 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
966 			int i;
967 
968 			spin_lock(&vb->lock);
969 			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
970 			while (i < VMAP_BBMAP_BITS) {
971 				unsigned long s, e;
972 				int j;
973 				j = find_next_zero_bit(vb->dirty_map,
974 					VMAP_BBMAP_BITS, i);
975 
976 				s = vb->va->va_start + (i << PAGE_SHIFT);
977 				e = vb->va->va_start + (j << PAGE_SHIFT);
978 				vunmap_page_range(s, e);
979 				flush = 1;
980 
981 				if (s < start)
982 					start = s;
983 				if (e > end)
984 					end = e;
985 
986 				i = j;
987 				i = find_next_bit(vb->dirty_map,
988 							VMAP_BBMAP_BITS, i);
989 			}
990 			spin_unlock(&vb->lock);
991 		}
992 		rcu_read_unlock();
993 	}
994 
995 	__purge_vmap_area_lazy(&start, &end, 1, flush);
996 }
997 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
998 
999 /**
1000  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1001  * @mem: the pointer returned by vm_map_ram
1002  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1003  */
1004 void vm_unmap_ram(const void *mem, unsigned int count)
1005 {
1006 	unsigned long size = count << PAGE_SHIFT;
1007 	unsigned long addr = (unsigned long)mem;
1008 
1009 	BUG_ON(!addr);
1010 	BUG_ON(addr < VMALLOC_START);
1011 	BUG_ON(addr > VMALLOC_END);
1012 	BUG_ON(addr & (PAGE_SIZE-1));
1013 
1014 	debug_check_no_locks_freed(mem, size);
1015 	vmap_debug_free_range(addr, addr+size);
1016 
1017 	if (likely(count <= VMAP_MAX_ALLOC))
1018 		vb_free(mem, size);
1019 	else
1020 		free_unmap_vmap_area_addr(addr);
1021 }
1022 EXPORT_SYMBOL(vm_unmap_ram);
1023 
1024 /**
1025  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1026  * @pages: an array of pointers to the pages to be mapped
1027  * @count: number of pages
1028  * @node: prefer to allocate data structures on this node
1029  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1030  *
1031  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1032  */
1033 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1034 {
1035 	unsigned long size = count << PAGE_SHIFT;
1036 	unsigned long addr;
1037 	void *mem;
1038 
1039 	if (likely(count <= VMAP_MAX_ALLOC)) {
1040 		mem = vb_alloc(size, GFP_KERNEL);
1041 		if (IS_ERR(mem))
1042 			return NULL;
1043 		addr = (unsigned long)mem;
1044 	} else {
1045 		struct vmap_area *va;
1046 		va = alloc_vmap_area(size, PAGE_SIZE,
1047 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1048 		if (IS_ERR(va))
1049 			return NULL;
1050 
1051 		addr = va->va_start;
1052 		mem = (void *)addr;
1053 	}
1054 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1055 		vm_unmap_ram(mem, count);
1056 		return NULL;
1057 	}
1058 	return mem;
1059 }
1060 EXPORT_SYMBOL(vm_map_ram);
1061 
1062 /**
1063  * vm_area_register_early - register vmap area early during boot
1064  * @vm: vm_struct to register
1065  * @align: requested alignment
1066  *
1067  * This function is used to register kernel vm area before
1068  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1069  * proper values on entry and other fields should be zero.  On return,
1070  * vm->addr contains the allocated address.
1071  *
1072  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1073  */
1074 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1075 {
1076 	static size_t vm_init_off __initdata;
1077 	unsigned long addr;
1078 
1079 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1080 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1081 
1082 	vm->addr = (void *)addr;
1083 
1084 	vm->next = vmlist;
1085 	vmlist = vm;
1086 }
1087 
1088 void __init vmalloc_init(void)
1089 {
1090 	struct vmap_area *va;
1091 	struct vm_struct *tmp;
1092 	int i;
1093 
1094 	for_each_possible_cpu(i) {
1095 		struct vmap_block_queue *vbq;
1096 
1097 		vbq = &per_cpu(vmap_block_queue, i);
1098 		spin_lock_init(&vbq->lock);
1099 		INIT_LIST_HEAD(&vbq->free);
1100 	}
1101 
1102 	/* Import existing vmlist entries. */
1103 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1104 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1105 		va->flags = tmp->flags | VM_VM_AREA;
1106 		va->va_start = (unsigned long)tmp->addr;
1107 		va->va_end = va->va_start + tmp->size;
1108 		__insert_vmap_area(va);
1109 	}
1110 
1111 	vmap_area_pcpu_hole = VMALLOC_END;
1112 
1113 	vmap_initialized = true;
1114 }
1115 
1116 /**
1117  * map_kernel_range_noflush - map kernel VM area with the specified pages
1118  * @addr: start of the VM area to map
1119  * @size: size of the VM area to map
1120  * @prot: page protection flags to use
1121  * @pages: pages to map
1122  *
1123  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1124  * specify should have been allocated using get_vm_area() and its
1125  * friends.
1126  *
1127  * NOTE:
1128  * This function does NOT do any cache flushing.  The caller is
1129  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1130  * before calling this function.
1131  *
1132  * RETURNS:
1133  * The number of pages mapped on success, -errno on failure.
1134  */
1135 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1136 			     pgprot_t prot, struct page **pages)
1137 {
1138 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1139 }
1140 
1141 /**
1142  * unmap_kernel_range_noflush - unmap kernel VM area
1143  * @addr: start of the VM area to unmap
1144  * @size: size of the VM area to unmap
1145  *
1146  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1147  * specify should have been allocated using get_vm_area() and its
1148  * friends.
1149  *
1150  * NOTE:
1151  * This function does NOT do any cache flushing.  The caller is
1152  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1153  * before calling this function and flush_tlb_kernel_range() after.
1154  */
1155 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1156 {
1157 	vunmap_page_range(addr, addr + size);
1158 }
1159 
1160 /**
1161  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1162  * @addr: start of the VM area to unmap
1163  * @size: size of the VM area to unmap
1164  *
1165  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1166  * the unmapping and tlb after.
1167  */
1168 void unmap_kernel_range(unsigned long addr, unsigned long size)
1169 {
1170 	unsigned long end = addr + size;
1171 
1172 	flush_cache_vunmap(addr, end);
1173 	vunmap_page_range(addr, end);
1174 	flush_tlb_kernel_range(addr, end);
1175 }
1176 
1177 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1178 {
1179 	unsigned long addr = (unsigned long)area->addr;
1180 	unsigned long end = addr + area->size - PAGE_SIZE;
1181 	int err;
1182 
1183 	err = vmap_page_range(addr, end, prot, *pages);
1184 	if (err > 0) {
1185 		*pages += err;
1186 		err = 0;
1187 	}
1188 
1189 	return err;
1190 }
1191 EXPORT_SYMBOL_GPL(map_vm_area);
1192 
1193 /*** Old vmalloc interfaces ***/
1194 DEFINE_RWLOCK(vmlist_lock);
1195 struct vm_struct *vmlist;
1196 
1197 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1198 			      unsigned long flags, void *caller)
1199 {
1200 	struct vm_struct *tmp, **p;
1201 
1202 	vm->flags = flags;
1203 	vm->addr = (void *)va->va_start;
1204 	vm->size = va->va_end - va->va_start;
1205 	vm->caller = caller;
1206 	va->private = vm;
1207 	va->flags |= VM_VM_AREA;
1208 
1209 	write_lock(&vmlist_lock);
1210 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1211 		if (tmp->addr >= vm->addr)
1212 			break;
1213 	}
1214 	vm->next = *p;
1215 	*p = vm;
1216 	write_unlock(&vmlist_lock);
1217 }
1218 
1219 static struct vm_struct *__get_vm_area_node(unsigned long size,
1220 		unsigned long align, unsigned long flags, unsigned long start,
1221 		unsigned long end, int node, gfp_t gfp_mask, void *caller)
1222 {
1223 	static struct vmap_area *va;
1224 	struct vm_struct *area;
1225 
1226 	BUG_ON(in_interrupt());
1227 	if (flags & VM_IOREMAP) {
1228 		int bit = fls(size);
1229 
1230 		if (bit > IOREMAP_MAX_ORDER)
1231 			bit = IOREMAP_MAX_ORDER;
1232 		else if (bit < PAGE_SHIFT)
1233 			bit = PAGE_SHIFT;
1234 
1235 		align = 1ul << bit;
1236 	}
1237 
1238 	size = PAGE_ALIGN(size);
1239 	if (unlikely(!size))
1240 		return NULL;
1241 
1242 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1243 	if (unlikely(!area))
1244 		return NULL;
1245 
1246 	/*
1247 	 * We always allocate a guard page.
1248 	 */
1249 	size += PAGE_SIZE;
1250 
1251 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1252 	if (IS_ERR(va)) {
1253 		kfree(area);
1254 		return NULL;
1255 	}
1256 
1257 	insert_vmalloc_vm(area, va, flags, caller);
1258 	return area;
1259 }
1260 
1261 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1262 				unsigned long start, unsigned long end)
1263 {
1264 	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1265 						__builtin_return_address(0));
1266 }
1267 EXPORT_SYMBOL_GPL(__get_vm_area);
1268 
1269 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1270 				       unsigned long start, unsigned long end,
1271 				       void *caller)
1272 {
1273 	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1274 				  caller);
1275 }
1276 
1277 /**
1278  *	get_vm_area  -  reserve a contiguous kernel virtual area
1279  *	@size:		size of the area
1280  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1281  *
1282  *	Search an area of @size in the kernel virtual mapping area,
1283  *	and reserved it for out purposes.  Returns the area descriptor
1284  *	on success or %NULL on failure.
1285  */
1286 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1287 {
1288 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1289 				-1, GFP_KERNEL, __builtin_return_address(0));
1290 }
1291 
1292 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1293 				void *caller)
1294 {
1295 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1296 						-1, GFP_KERNEL, caller);
1297 }
1298 
1299 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1300 				   int node, gfp_t gfp_mask)
1301 {
1302 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1303 				  node, gfp_mask, __builtin_return_address(0));
1304 }
1305 
1306 static struct vm_struct *find_vm_area(const void *addr)
1307 {
1308 	struct vmap_area *va;
1309 
1310 	va = find_vmap_area((unsigned long)addr);
1311 	if (va && va->flags & VM_VM_AREA)
1312 		return va->private;
1313 
1314 	return NULL;
1315 }
1316 
1317 /**
1318  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1319  *	@addr:		base address
1320  *
1321  *	Search for the kernel VM area starting at @addr, and remove it.
1322  *	This function returns the found VM area, but using it is NOT safe
1323  *	on SMP machines, except for its size or flags.
1324  */
1325 struct vm_struct *remove_vm_area(const void *addr)
1326 {
1327 	struct vmap_area *va;
1328 
1329 	va = find_vmap_area((unsigned long)addr);
1330 	if (va && va->flags & VM_VM_AREA) {
1331 		struct vm_struct *vm = va->private;
1332 		struct vm_struct *tmp, **p;
1333 		/*
1334 		 * remove from list and disallow access to this vm_struct
1335 		 * before unmap. (address range confliction is maintained by
1336 		 * vmap.)
1337 		 */
1338 		write_lock(&vmlist_lock);
1339 		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1340 			;
1341 		*p = tmp->next;
1342 		write_unlock(&vmlist_lock);
1343 
1344 		vmap_debug_free_range(va->va_start, va->va_end);
1345 		free_unmap_vmap_area(va);
1346 		vm->size -= PAGE_SIZE;
1347 
1348 		return vm;
1349 	}
1350 	return NULL;
1351 }
1352 
1353 static void __vunmap(const void *addr, int deallocate_pages)
1354 {
1355 	struct vm_struct *area;
1356 
1357 	if (!addr)
1358 		return;
1359 
1360 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1361 		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1362 		return;
1363 	}
1364 
1365 	area = remove_vm_area(addr);
1366 	if (unlikely(!area)) {
1367 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1368 				addr);
1369 		return;
1370 	}
1371 
1372 	debug_check_no_locks_freed(addr, area->size);
1373 	debug_check_no_obj_freed(addr, area->size);
1374 
1375 	if (deallocate_pages) {
1376 		int i;
1377 
1378 		for (i = 0; i < area->nr_pages; i++) {
1379 			struct page *page = area->pages[i];
1380 
1381 			BUG_ON(!page);
1382 			__free_page(page);
1383 		}
1384 
1385 		if (area->flags & VM_VPAGES)
1386 			vfree(area->pages);
1387 		else
1388 			kfree(area->pages);
1389 	}
1390 
1391 	kfree(area);
1392 	return;
1393 }
1394 
1395 /**
1396  *	vfree  -  release memory allocated by vmalloc()
1397  *	@addr:		memory base address
1398  *
1399  *	Free the virtually continuous memory area starting at @addr, as
1400  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1401  *	NULL, no operation is performed.
1402  *
1403  *	Must not be called in interrupt context.
1404  */
1405 void vfree(const void *addr)
1406 {
1407 	BUG_ON(in_interrupt());
1408 
1409 	kmemleak_free(addr);
1410 
1411 	__vunmap(addr, 1);
1412 }
1413 EXPORT_SYMBOL(vfree);
1414 
1415 /**
1416  *	vunmap  -  release virtual mapping obtained by vmap()
1417  *	@addr:		memory base address
1418  *
1419  *	Free the virtually contiguous memory area starting at @addr,
1420  *	which was created from the page array passed to vmap().
1421  *
1422  *	Must not be called in interrupt context.
1423  */
1424 void vunmap(const void *addr)
1425 {
1426 	BUG_ON(in_interrupt());
1427 	might_sleep();
1428 	__vunmap(addr, 0);
1429 }
1430 EXPORT_SYMBOL(vunmap);
1431 
1432 /**
1433  *	vmap  -  map an array of pages into virtually contiguous space
1434  *	@pages:		array of page pointers
1435  *	@count:		number of pages to map
1436  *	@flags:		vm_area->flags
1437  *	@prot:		page protection for the mapping
1438  *
1439  *	Maps @count pages from @pages into contiguous kernel virtual
1440  *	space.
1441  */
1442 void *vmap(struct page **pages, unsigned int count,
1443 		unsigned long flags, pgprot_t prot)
1444 {
1445 	struct vm_struct *area;
1446 
1447 	might_sleep();
1448 
1449 	if (count > totalram_pages)
1450 		return NULL;
1451 
1452 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1453 					__builtin_return_address(0));
1454 	if (!area)
1455 		return NULL;
1456 
1457 	if (map_vm_area(area, prot, &pages)) {
1458 		vunmap(area->addr);
1459 		return NULL;
1460 	}
1461 
1462 	return area->addr;
1463 }
1464 EXPORT_SYMBOL(vmap);
1465 
1466 static void *__vmalloc_node(unsigned long size, unsigned long align,
1467 			    gfp_t gfp_mask, pgprot_t prot,
1468 			    int node, void *caller);
1469 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1470 				 pgprot_t prot, int node, void *caller)
1471 {
1472 	struct page **pages;
1473 	unsigned int nr_pages, array_size, i;
1474 	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1475 
1476 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1477 	array_size = (nr_pages * sizeof(struct page *));
1478 
1479 	area->nr_pages = nr_pages;
1480 	/* Please note that the recursion is strictly bounded. */
1481 	if (array_size > PAGE_SIZE) {
1482 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1483 				PAGE_KERNEL, node, caller);
1484 		area->flags |= VM_VPAGES;
1485 	} else {
1486 		pages = kmalloc_node(array_size, nested_gfp, node);
1487 	}
1488 	area->pages = pages;
1489 	area->caller = caller;
1490 	if (!area->pages) {
1491 		remove_vm_area(area->addr);
1492 		kfree(area);
1493 		return NULL;
1494 	}
1495 
1496 	for (i = 0; i < area->nr_pages; i++) {
1497 		struct page *page;
1498 
1499 		if (node < 0)
1500 			page = alloc_page(gfp_mask);
1501 		else
1502 			page = alloc_pages_node(node, gfp_mask, 0);
1503 
1504 		if (unlikely(!page)) {
1505 			/* Successfully allocated i pages, free them in __vunmap() */
1506 			area->nr_pages = i;
1507 			goto fail;
1508 		}
1509 		area->pages[i] = page;
1510 	}
1511 
1512 	if (map_vm_area(area, prot, &pages))
1513 		goto fail;
1514 	return area->addr;
1515 
1516 fail:
1517 	vfree(area->addr);
1518 	return NULL;
1519 }
1520 
1521 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1522 {
1523 	void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
1524 					 __builtin_return_address(0));
1525 
1526 	/*
1527 	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1528 	 * structures allocated in the __get_vm_area_node() function contain
1529 	 * references to the virtual address of the vmalloc'ed block.
1530 	 */
1531 	kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
1532 
1533 	return addr;
1534 }
1535 
1536 /**
1537  *	__vmalloc_node  -  allocate virtually contiguous memory
1538  *	@size:		allocation size
1539  *	@align:		desired alignment
1540  *	@gfp_mask:	flags for the page level allocator
1541  *	@prot:		protection mask for the allocated pages
1542  *	@node:		node to use for allocation or -1
1543  *	@caller:	caller's return address
1544  *
1545  *	Allocate enough pages to cover @size from the page level
1546  *	allocator with @gfp_mask flags.  Map them into contiguous
1547  *	kernel virtual space, using a pagetable protection of @prot.
1548  */
1549 static void *__vmalloc_node(unsigned long size, unsigned long align,
1550 			    gfp_t gfp_mask, pgprot_t prot,
1551 			    int node, void *caller)
1552 {
1553 	struct vm_struct *area;
1554 	void *addr;
1555 	unsigned long real_size = size;
1556 
1557 	size = PAGE_ALIGN(size);
1558 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1559 		return NULL;
1560 
1561 	area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START,
1562 				  VMALLOC_END, node, gfp_mask, caller);
1563 
1564 	if (!area)
1565 		return NULL;
1566 
1567 	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1568 
1569 	/*
1570 	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1571 	 * structures allocated in the __get_vm_area_node() function contain
1572 	 * references to the virtual address of the vmalloc'ed block.
1573 	 */
1574 	kmemleak_alloc(addr, real_size, 3, gfp_mask);
1575 
1576 	return addr;
1577 }
1578 
1579 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1580 {
1581 	return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1582 				__builtin_return_address(0));
1583 }
1584 EXPORT_SYMBOL(__vmalloc);
1585 
1586 /**
1587  *	vmalloc  -  allocate virtually contiguous memory
1588  *	@size:		allocation size
1589  *	Allocate enough pages to cover @size from the page level
1590  *	allocator and map them into contiguous kernel virtual space.
1591  *
1592  *	For tight control over page level allocator and protection flags
1593  *	use __vmalloc() instead.
1594  */
1595 void *vmalloc(unsigned long size)
1596 {
1597 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1598 					-1, __builtin_return_address(0));
1599 }
1600 EXPORT_SYMBOL(vmalloc);
1601 
1602 /**
1603  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1604  * @size: allocation size
1605  *
1606  * The resulting memory area is zeroed so it can be mapped to userspace
1607  * without leaking data.
1608  */
1609 void *vmalloc_user(unsigned long size)
1610 {
1611 	struct vm_struct *area;
1612 	void *ret;
1613 
1614 	ret = __vmalloc_node(size, SHMLBA,
1615 			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1616 			     PAGE_KERNEL, -1, __builtin_return_address(0));
1617 	if (ret) {
1618 		area = find_vm_area(ret);
1619 		area->flags |= VM_USERMAP;
1620 	}
1621 	return ret;
1622 }
1623 EXPORT_SYMBOL(vmalloc_user);
1624 
1625 /**
1626  *	vmalloc_node  -  allocate memory on a specific node
1627  *	@size:		allocation size
1628  *	@node:		numa node
1629  *
1630  *	Allocate enough pages to cover @size from the page level
1631  *	allocator and map them into contiguous kernel virtual space.
1632  *
1633  *	For tight control over page level allocator and protection flags
1634  *	use __vmalloc() instead.
1635  */
1636 void *vmalloc_node(unsigned long size, int node)
1637 {
1638 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1639 					node, __builtin_return_address(0));
1640 }
1641 EXPORT_SYMBOL(vmalloc_node);
1642 
1643 #ifndef PAGE_KERNEL_EXEC
1644 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1645 #endif
1646 
1647 /**
1648  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1649  *	@size:		allocation size
1650  *
1651  *	Kernel-internal function to allocate enough pages to cover @size
1652  *	the page level allocator and map them into contiguous and
1653  *	executable kernel virtual space.
1654  *
1655  *	For tight control over page level allocator and protection flags
1656  *	use __vmalloc() instead.
1657  */
1658 
1659 void *vmalloc_exec(unsigned long size)
1660 {
1661 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1662 			      -1, __builtin_return_address(0));
1663 }
1664 
1665 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1666 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1667 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1668 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1669 #else
1670 #define GFP_VMALLOC32 GFP_KERNEL
1671 #endif
1672 
1673 /**
1674  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1675  *	@size:		allocation size
1676  *
1677  *	Allocate enough 32bit PA addressable pages to cover @size from the
1678  *	page level allocator and map them into contiguous kernel virtual space.
1679  */
1680 void *vmalloc_32(unsigned long size)
1681 {
1682 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1683 			      -1, __builtin_return_address(0));
1684 }
1685 EXPORT_SYMBOL(vmalloc_32);
1686 
1687 /**
1688  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1689  *	@size:		allocation size
1690  *
1691  * The resulting memory area is 32bit addressable and zeroed so it can be
1692  * mapped to userspace without leaking data.
1693  */
1694 void *vmalloc_32_user(unsigned long size)
1695 {
1696 	struct vm_struct *area;
1697 	void *ret;
1698 
1699 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1700 			     -1, __builtin_return_address(0));
1701 	if (ret) {
1702 		area = find_vm_area(ret);
1703 		area->flags |= VM_USERMAP;
1704 	}
1705 	return ret;
1706 }
1707 EXPORT_SYMBOL(vmalloc_32_user);
1708 
1709 /*
1710  * small helper routine , copy contents to buf from addr.
1711  * If the page is not present, fill zero.
1712  */
1713 
1714 static int aligned_vread(char *buf, char *addr, unsigned long count)
1715 {
1716 	struct page *p;
1717 	int copied = 0;
1718 
1719 	while (count) {
1720 		unsigned long offset, length;
1721 
1722 		offset = (unsigned long)addr & ~PAGE_MASK;
1723 		length = PAGE_SIZE - offset;
1724 		if (length > count)
1725 			length = count;
1726 		p = vmalloc_to_page(addr);
1727 		/*
1728 		 * To do safe access to this _mapped_ area, we need
1729 		 * lock. But adding lock here means that we need to add
1730 		 * overhead of vmalloc()/vfree() calles for this _debug_
1731 		 * interface, rarely used. Instead of that, we'll use
1732 		 * kmap() and get small overhead in this access function.
1733 		 */
1734 		if (p) {
1735 			/*
1736 			 * we can expect USER0 is not used (see vread/vwrite's
1737 			 * function description)
1738 			 */
1739 			void *map = kmap_atomic(p, KM_USER0);
1740 			memcpy(buf, map + offset, length);
1741 			kunmap_atomic(map, KM_USER0);
1742 		} else
1743 			memset(buf, 0, length);
1744 
1745 		addr += length;
1746 		buf += length;
1747 		copied += length;
1748 		count -= length;
1749 	}
1750 	return copied;
1751 }
1752 
1753 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1754 {
1755 	struct page *p;
1756 	int copied = 0;
1757 
1758 	while (count) {
1759 		unsigned long offset, length;
1760 
1761 		offset = (unsigned long)addr & ~PAGE_MASK;
1762 		length = PAGE_SIZE - offset;
1763 		if (length > count)
1764 			length = count;
1765 		p = vmalloc_to_page(addr);
1766 		/*
1767 		 * To do safe access to this _mapped_ area, we need
1768 		 * lock. But adding lock here means that we need to add
1769 		 * overhead of vmalloc()/vfree() calles for this _debug_
1770 		 * interface, rarely used. Instead of that, we'll use
1771 		 * kmap() and get small overhead in this access function.
1772 		 */
1773 		if (p) {
1774 			/*
1775 			 * we can expect USER0 is not used (see vread/vwrite's
1776 			 * function description)
1777 			 */
1778 			void *map = kmap_atomic(p, KM_USER0);
1779 			memcpy(map + offset, buf, length);
1780 			kunmap_atomic(map, KM_USER0);
1781 		}
1782 		addr += length;
1783 		buf += length;
1784 		copied += length;
1785 		count -= length;
1786 	}
1787 	return copied;
1788 }
1789 
1790 /**
1791  *	vread() -  read vmalloc area in a safe way.
1792  *	@buf:		buffer for reading data
1793  *	@addr:		vm address.
1794  *	@count:		number of bytes to be read.
1795  *
1796  *	Returns # of bytes which addr and buf should be increased.
1797  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1798  *	includes any intersect with alive vmalloc area.
1799  *
1800  *	This function checks that addr is a valid vmalloc'ed area, and
1801  *	copy data from that area to a given buffer. If the given memory range
1802  *	of [addr...addr+count) includes some valid address, data is copied to
1803  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1804  *	IOREMAP area is treated as memory hole and no copy is done.
1805  *
1806  *	If [addr...addr+count) doesn't includes any intersects with alive
1807  *	vm_struct area, returns 0.
1808  *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1809  *	the caller should guarantee KM_USER0 is not used.
1810  *
1811  *	Note: In usual ops, vread() is never necessary because the caller
1812  *	should know vmalloc() area is valid and can use memcpy().
1813  *	This is for routines which have to access vmalloc area without
1814  *	any informaion, as /dev/kmem.
1815  *
1816  */
1817 
1818 long vread(char *buf, char *addr, unsigned long count)
1819 {
1820 	struct vm_struct *tmp;
1821 	char *vaddr, *buf_start = buf;
1822 	unsigned long buflen = count;
1823 	unsigned long n;
1824 
1825 	/* Don't allow overflow */
1826 	if ((unsigned long) addr + count < count)
1827 		count = -(unsigned long) addr;
1828 
1829 	read_lock(&vmlist_lock);
1830 	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1831 		vaddr = (char *) tmp->addr;
1832 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1833 			continue;
1834 		while (addr < vaddr) {
1835 			if (count == 0)
1836 				goto finished;
1837 			*buf = '\0';
1838 			buf++;
1839 			addr++;
1840 			count--;
1841 		}
1842 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1843 		if (n > count)
1844 			n = count;
1845 		if (!(tmp->flags & VM_IOREMAP))
1846 			aligned_vread(buf, addr, n);
1847 		else /* IOREMAP area is treated as memory hole */
1848 			memset(buf, 0, n);
1849 		buf += n;
1850 		addr += n;
1851 		count -= n;
1852 	}
1853 finished:
1854 	read_unlock(&vmlist_lock);
1855 
1856 	if (buf == buf_start)
1857 		return 0;
1858 	/* zero-fill memory holes */
1859 	if (buf != buf_start + buflen)
1860 		memset(buf, 0, buflen - (buf - buf_start));
1861 
1862 	return buflen;
1863 }
1864 
1865 /**
1866  *	vwrite() -  write vmalloc area in a safe way.
1867  *	@buf:		buffer for source data
1868  *	@addr:		vm address.
1869  *	@count:		number of bytes to be read.
1870  *
1871  *	Returns # of bytes which addr and buf should be incresed.
1872  *	(same number to @count).
1873  *	If [addr...addr+count) doesn't includes any intersect with valid
1874  *	vmalloc area, returns 0.
1875  *
1876  *	This function checks that addr is a valid vmalloc'ed area, and
1877  *	copy data from a buffer to the given addr. If specified range of
1878  *	[addr...addr+count) includes some valid address, data is copied from
1879  *	proper area of @buf. If there are memory holes, no copy to hole.
1880  *	IOREMAP area is treated as memory hole and no copy is done.
1881  *
1882  *	If [addr...addr+count) doesn't includes any intersects with alive
1883  *	vm_struct area, returns 0.
1884  *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1885  *	the caller should guarantee KM_USER0 is not used.
1886  *
1887  *	Note: In usual ops, vwrite() is never necessary because the caller
1888  *	should know vmalloc() area is valid and can use memcpy().
1889  *	This is for routines which have to access vmalloc area without
1890  *	any informaion, as /dev/kmem.
1891  *
1892  *	The caller should guarantee KM_USER1 is not used.
1893  */
1894 
1895 long vwrite(char *buf, char *addr, unsigned long count)
1896 {
1897 	struct vm_struct *tmp;
1898 	char *vaddr;
1899 	unsigned long n, buflen;
1900 	int copied = 0;
1901 
1902 	/* Don't allow overflow */
1903 	if ((unsigned long) addr + count < count)
1904 		count = -(unsigned long) addr;
1905 	buflen = count;
1906 
1907 	read_lock(&vmlist_lock);
1908 	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1909 		vaddr = (char *) tmp->addr;
1910 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1911 			continue;
1912 		while (addr < vaddr) {
1913 			if (count == 0)
1914 				goto finished;
1915 			buf++;
1916 			addr++;
1917 			count--;
1918 		}
1919 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1920 		if (n > count)
1921 			n = count;
1922 		if (!(tmp->flags & VM_IOREMAP)) {
1923 			aligned_vwrite(buf, addr, n);
1924 			copied++;
1925 		}
1926 		buf += n;
1927 		addr += n;
1928 		count -= n;
1929 	}
1930 finished:
1931 	read_unlock(&vmlist_lock);
1932 	if (!copied)
1933 		return 0;
1934 	return buflen;
1935 }
1936 
1937 /**
1938  *	remap_vmalloc_range  -  map vmalloc pages to userspace
1939  *	@vma:		vma to cover (map full range of vma)
1940  *	@addr:		vmalloc memory
1941  *	@pgoff:		number of pages into addr before first page to map
1942  *
1943  *	Returns:	0 for success, -Exxx on failure
1944  *
1945  *	This function checks that addr is a valid vmalloc'ed area, and
1946  *	that it is big enough to cover the vma. Will return failure if
1947  *	that criteria isn't met.
1948  *
1949  *	Similar to remap_pfn_range() (see mm/memory.c)
1950  */
1951 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1952 						unsigned long pgoff)
1953 {
1954 	struct vm_struct *area;
1955 	unsigned long uaddr = vma->vm_start;
1956 	unsigned long usize = vma->vm_end - vma->vm_start;
1957 
1958 	if ((PAGE_SIZE-1) & (unsigned long)addr)
1959 		return -EINVAL;
1960 
1961 	area = find_vm_area(addr);
1962 	if (!area)
1963 		return -EINVAL;
1964 
1965 	if (!(area->flags & VM_USERMAP))
1966 		return -EINVAL;
1967 
1968 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1969 		return -EINVAL;
1970 
1971 	addr += pgoff << PAGE_SHIFT;
1972 	do {
1973 		struct page *page = vmalloc_to_page(addr);
1974 		int ret;
1975 
1976 		ret = vm_insert_page(vma, uaddr, page);
1977 		if (ret)
1978 			return ret;
1979 
1980 		uaddr += PAGE_SIZE;
1981 		addr += PAGE_SIZE;
1982 		usize -= PAGE_SIZE;
1983 	} while (usize > 0);
1984 
1985 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
1986 	vma->vm_flags |= VM_RESERVED;
1987 
1988 	return 0;
1989 }
1990 EXPORT_SYMBOL(remap_vmalloc_range);
1991 
1992 /*
1993  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1994  * have one.
1995  */
1996 void  __attribute__((weak)) vmalloc_sync_all(void)
1997 {
1998 }
1999 
2000 
2001 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2002 {
2003 	/* apply_to_page_range() does all the hard work. */
2004 	return 0;
2005 }
2006 
2007 /**
2008  *	alloc_vm_area - allocate a range of kernel address space
2009  *	@size:		size of the area
2010  *
2011  *	Returns:	NULL on failure, vm_struct on success
2012  *
2013  *	This function reserves a range of kernel address space, and
2014  *	allocates pagetables to map that range.  No actual mappings
2015  *	are created.  If the kernel address space is not shared
2016  *	between processes, it syncs the pagetable across all
2017  *	processes.
2018  */
2019 struct vm_struct *alloc_vm_area(size_t size)
2020 {
2021 	struct vm_struct *area;
2022 
2023 	area = get_vm_area_caller(size, VM_IOREMAP,
2024 				__builtin_return_address(0));
2025 	if (area == NULL)
2026 		return NULL;
2027 
2028 	/*
2029 	 * This ensures that page tables are constructed for this region
2030 	 * of kernel virtual address space and mapped into init_mm.
2031 	 */
2032 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2033 				area->size, f, NULL)) {
2034 		free_vm_area(area);
2035 		return NULL;
2036 	}
2037 
2038 	/* Make sure the pagetables are constructed in process kernel
2039 	   mappings */
2040 	vmalloc_sync_all();
2041 
2042 	return area;
2043 }
2044 EXPORT_SYMBOL_GPL(alloc_vm_area);
2045 
2046 void free_vm_area(struct vm_struct *area)
2047 {
2048 	struct vm_struct *ret;
2049 	ret = remove_vm_area(area->addr);
2050 	BUG_ON(ret != area);
2051 	kfree(area);
2052 }
2053 EXPORT_SYMBOL_GPL(free_vm_area);
2054 
2055 static struct vmap_area *node_to_va(struct rb_node *n)
2056 {
2057 	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2058 }
2059 
2060 /**
2061  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2062  * @end: target address
2063  * @pnext: out arg for the next vmap_area
2064  * @pprev: out arg for the previous vmap_area
2065  *
2066  * Returns: %true if either or both of next and prev are found,
2067  *	    %false if no vmap_area exists
2068  *
2069  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2070  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2071  */
2072 static bool pvm_find_next_prev(unsigned long end,
2073 			       struct vmap_area **pnext,
2074 			       struct vmap_area **pprev)
2075 {
2076 	struct rb_node *n = vmap_area_root.rb_node;
2077 	struct vmap_area *va = NULL;
2078 
2079 	while (n) {
2080 		va = rb_entry(n, struct vmap_area, rb_node);
2081 		if (end < va->va_end)
2082 			n = n->rb_left;
2083 		else if (end > va->va_end)
2084 			n = n->rb_right;
2085 		else
2086 			break;
2087 	}
2088 
2089 	if (!va)
2090 		return false;
2091 
2092 	if (va->va_end > end) {
2093 		*pnext = va;
2094 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2095 	} else {
2096 		*pprev = va;
2097 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2098 	}
2099 	return true;
2100 }
2101 
2102 /**
2103  * pvm_determine_end - find the highest aligned address between two vmap_areas
2104  * @pnext: in/out arg for the next vmap_area
2105  * @pprev: in/out arg for the previous vmap_area
2106  * @align: alignment
2107  *
2108  * Returns: determined end address
2109  *
2110  * Find the highest aligned address between *@pnext and *@pprev below
2111  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2112  * down address is between the end addresses of the two vmap_areas.
2113  *
2114  * Please note that the address returned by this function may fall
2115  * inside *@pnext vmap_area.  The caller is responsible for checking
2116  * that.
2117  */
2118 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2119 				       struct vmap_area **pprev,
2120 				       unsigned long align)
2121 {
2122 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2123 	unsigned long addr;
2124 
2125 	if (*pnext)
2126 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2127 	else
2128 		addr = vmalloc_end;
2129 
2130 	while (*pprev && (*pprev)->va_end > addr) {
2131 		*pnext = *pprev;
2132 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2133 	}
2134 
2135 	return addr;
2136 }
2137 
2138 /**
2139  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2140  * @offsets: array containing offset of each area
2141  * @sizes: array containing size of each area
2142  * @nr_vms: the number of areas to allocate
2143  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2144  * @gfp_mask: allocation mask
2145  *
2146  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2147  *	    vm_structs on success, %NULL on failure
2148  *
2149  * Percpu allocator wants to use congruent vm areas so that it can
2150  * maintain the offsets among percpu areas.  This function allocates
2151  * congruent vmalloc areas for it.  These areas tend to be scattered
2152  * pretty far, distance between two areas easily going up to
2153  * gigabytes.  To avoid interacting with regular vmallocs, these areas
2154  * are allocated from top.
2155  *
2156  * Despite its complicated look, this allocator is rather simple.  It
2157  * does everything top-down and scans areas from the end looking for
2158  * matching slot.  While scanning, if any of the areas overlaps with
2159  * existing vmap_area, the base address is pulled down to fit the
2160  * area.  Scanning is repeated till all the areas fit and then all
2161  * necessary data structres are inserted and the result is returned.
2162  */
2163 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2164 				     const size_t *sizes, int nr_vms,
2165 				     size_t align, gfp_t gfp_mask)
2166 {
2167 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2168 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2169 	struct vmap_area **vas, *prev, *next;
2170 	struct vm_struct **vms;
2171 	int area, area2, last_area, term_area;
2172 	unsigned long base, start, end, last_end;
2173 	bool purged = false;
2174 
2175 	gfp_mask &= GFP_RECLAIM_MASK;
2176 
2177 	/* verify parameters and allocate data structures */
2178 	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2179 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2180 		start = offsets[area];
2181 		end = start + sizes[area];
2182 
2183 		/* is everything aligned properly? */
2184 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2185 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2186 
2187 		/* detect the area with the highest address */
2188 		if (start > offsets[last_area])
2189 			last_area = area;
2190 
2191 		for (area2 = 0; area2 < nr_vms; area2++) {
2192 			unsigned long start2 = offsets[area2];
2193 			unsigned long end2 = start2 + sizes[area2];
2194 
2195 			if (area2 == area)
2196 				continue;
2197 
2198 			BUG_ON(start2 >= start && start2 < end);
2199 			BUG_ON(end2 <= end && end2 > start);
2200 		}
2201 	}
2202 	last_end = offsets[last_area] + sizes[last_area];
2203 
2204 	if (vmalloc_end - vmalloc_start < last_end) {
2205 		WARN_ON(true);
2206 		return NULL;
2207 	}
2208 
2209 	vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask);
2210 	vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask);
2211 	if (!vas || !vms)
2212 		goto err_free;
2213 
2214 	for (area = 0; area < nr_vms; area++) {
2215 		vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask);
2216 		vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask);
2217 		if (!vas[area] || !vms[area])
2218 			goto err_free;
2219 	}
2220 retry:
2221 	spin_lock(&vmap_area_lock);
2222 
2223 	/* start scanning - we scan from the top, begin with the last area */
2224 	area = term_area = last_area;
2225 	start = offsets[area];
2226 	end = start + sizes[area];
2227 
2228 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2229 		base = vmalloc_end - last_end;
2230 		goto found;
2231 	}
2232 	base = pvm_determine_end(&next, &prev, align) - end;
2233 
2234 	while (true) {
2235 		BUG_ON(next && next->va_end <= base + end);
2236 		BUG_ON(prev && prev->va_end > base + end);
2237 
2238 		/*
2239 		 * base might have underflowed, add last_end before
2240 		 * comparing.
2241 		 */
2242 		if (base + last_end < vmalloc_start + last_end) {
2243 			spin_unlock(&vmap_area_lock);
2244 			if (!purged) {
2245 				purge_vmap_area_lazy();
2246 				purged = true;
2247 				goto retry;
2248 			}
2249 			goto err_free;
2250 		}
2251 
2252 		/*
2253 		 * If next overlaps, move base downwards so that it's
2254 		 * right below next and then recheck.
2255 		 */
2256 		if (next && next->va_start < base + end) {
2257 			base = pvm_determine_end(&next, &prev, align) - end;
2258 			term_area = area;
2259 			continue;
2260 		}
2261 
2262 		/*
2263 		 * If prev overlaps, shift down next and prev and move
2264 		 * base so that it's right below new next and then
2265 		 * recheck.
2266 		 */
2267 		if (prev && prev->va_end > base + start)  {
2268 			next = prev;
2269 			prev = node_to_va(rb_prev(&next->rb_node));
2270 			base = pvm_determine_end(&next, &prev, align) - end;
2271 			term_area = area;
2272 			continue;
2273 		}
2274 
2275 		/*
2276 		 * This area fits, move on to the previous one.  If
2277 		 * the previous one is the terminal one, we're done.
2278 		 */
2279 		area = (area + nr_vms - 1) % nr_vms;
2280 		if (area == term_area)
2281 			break;
2282 		start = offsets[area];
2283 		end = start + sizes[area];
2284 		pvm_find_next_prev(base + end, &next, &prev);
2285 	}
2286 found:
2287 	/* we've found a fitting base, insert all va's */
2288 	for (area = 0; area < nr_vms; area++) {
2289 		struct vmap_area *va = vas[area];
2290 
2291 		va->va_start = base + offsets[area];
2292 		va->va_end = va->va_start + sizes[area];
2293 		__insert_vmap_area(va);
2294 	}
2295 
2296 	vmap_area_pcpu_hole = base + offsets[last_area];
2297 
2298 	spin_unlock(&vmap_area_lock);
2299 
2300 	/* insert all vm's */
2301 	for (area = 0; area < nr_vms; area++)
2302 		insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2303 				  pcpu_get_vm_areas);
2304 
2305 	kfree(vas);
2306 	return vms;
2307 
2308 err_free:
2309 	for (area = 0; area < nr_vms; area++) {
2310 		if (vas)
2311 			kfree(vas[area]);
2312 		if (vms)
2313 			kfree(vms[area]);
2314 	}
2315 	kfree(vas);
2316 	kfree(vms);
2317 	return NULL;
2318 }
2319 
2320 /**
2321  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2322  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2323  * @nr_vms: the number of allocated areas
2324  *
2325  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2326  */
2327 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2328 {
2329 	int i;
2330 
2331 	for (i = 0; i < nr_vms; i++)
2332 		free_vm_area(vms[i]);
2333 	kfree(vms);
2334 }
2335 
2336 #ifdef CONFIG_PROC_FS
2337 static void *s_start(struct seq_file *m, loff_t *pos)
2338 {
2339 	loff_t n = *pos;
2340 	struct vm_struct *v;
2341 
2342 	read_lock(&vmlist_lock);
2343 	v = vmlist;
2344 	while (n > 0 && v) {
2345 		n--;
2346 		v = v->next;
2347 	}
2348 	if (!n)
2349 		return v;
2350 
2351 	return NULL;
2352 
2353 }
2354 
2355 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2356 {
2357 	struct vm_struct *v = p;
2358 
2359 	++*pos;
2360 	return v->next;
2361 }
2362 
2363 static void s_stop(struct seq_file *m, void *p)
2364 {
2365 	read_unlock(&vmlist_lock);
2366 }
2367 
2368 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2369 {
2370 	if (NUMA_BUILD) {
2371 		unsigned int nr, *counters = m->private;
2372 
2373 		if (!counters)
2374 			return;
2375 
2376 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2377 
2378 		for (nr = 0; nr < v->nr_pages; nr++)
2379 			counters[page_to_nid(v->pages[nr])]++;
2380 
2381 		for_each_node_state(nr, N_HIGH_MEMORY)
2382 			if (counters[nr])
2383 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2384 	}
2385 }
2386 
2387 static int s_show(struct seq_file *m, void *p)
2388 {
2389 	struct vm_struct *v = p;
2390 
2391 	seq_printf(m, "0x%p-0x%p %7ld",
2392 		v->addr, v->addr + v->size, v->size);
2393 
2394 	if (v->caller) {
2395 		char buff[KSYM_SYMBOL_LEN];
2396 
2397 		seq_putc(m, ' ');
2398 		sprint_symbol(buff, (unsigned long)v->caller);
2399 		seq_puts(m, buff);
2400 	}
2401 
2402 	if (v->nr_pages)
2403 		seq_printf(m, " pages=%d", v->nr_pages);
2404 
2405 	if (v->phys_addr)
2406 		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2407 
2408 	if (v->flags & VM_IOREMAP)
2409 		seq_printf(m, " ioremap");
2410 
2411 	if (v->flags & VM_ALLOC)
2412 		seq_printf(m, " vmalloc");
2413 
2414 	if (v->flags & VM_MAP)
2415 		seq_printf(m, " vmap");
2416 
2417 	if (v->flags & VM_USERMAP)
2418 		seq_printf(m, " user");
2419 
2420 	if (v->flags & VM_VPAGES)
2421 		seq_printf(m, " vpages");
2422 
2423 	show_numa_info(m, v);
2424 	seq_putc(m, '\n');
2425 	return 0;
2426 }
2427 
2428 static const struct seq_operations vmalloc_op = {
2429 	.start = s_start,
2430 	.next = s_next,
2431 	.stop = s_stop,
2432 	.show = s_show,
2433 };
2434 
2435 static int vmalloc_open(struct inode *inode, struct file *file)
2436 {
2437 	unsigned int *ptr = NULL;
2438 	int ret;
2439 
2440 	if (NUMA_BUILD) {
2441 		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2442 		if (ptr == NULL)
2443 			return -ENOMEM;
2444 	}
2445 	ret = seq_open(file, &vmalloc_op);
2446 	if (!ret) {
2447 		struct seq_file *m = file->private_data;
2448 		m->private = ptr;
2449 	} else
2450 		kfree(ptr);
2451 	return ret;
2452 }
2453 
2454 static const struct file_operations proc_vmalloc_operations = {
2455 	.open		= vmalloc_open,
2456 	.read		= seq_read,
2457 	.llseek		= seq_lseek,
2458 	.release	= seq_release_private,
2459 };
2460 
2461 static int __init proc_vmalloc_init(void)
2462 {
2463 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2464 	return 0;
2465 }
2466 module_init(proc_vmalloc_init);
2467 #endif
2468 
2469