1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1993 Linus Torvalds 4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 7 * Numa awareness, Christoph Lameter, SGI, June 2005 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/set_memory.h> 22 #include <linux/debugobjects.h> 23 #include <linux/kallsyms.h> 24 #include <linux/list.h> 25 #include <linux/notifier.h> 26 #include <linux/rbtree.h> 27 #include <linux/xarray.h> 28 #include <linux/io.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/memcontrol.h> 35 #include <linux/llist.h> 36 #include <linux/bitops.h> 37 #include <linux/rbtree_augmented.h> 38 #include <linux/overflow.h> 39 #include <linux/pgtable.h> 40 #include <linux/uaccess.h> 41 #include <linux/hugetlb.h> 42 #include <linux/sched/mm.h> 43 #include <asm/tlbflush.h> 44 #include <asm/shmparam.h> 45 46 #include "internal.h" 47 #include "pgalloc-track.h" 48 49 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 50 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; 51 52 static int __init set_nohugeiomap(char *str) 53 { 54 ioremap_max_page_shift = PAGE_SHIFT; 55 return 0; 56 } 57 early_param("nohugeiomap", set_nohugeiomap); 58 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 59 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; 60 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 61 62 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 63 static bool __ro_after_init vmap_allow_huge = true; 64 65 static int __init set_nohugevmalloc(char *str) 66 { 67 vmap_allow_huge = false; 68 return 0; 69 } 70 early_param("nohugevmalloc", set_nohugevmalloc); 71 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 72 static const bool vmap_allow_huge = false; 73 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 74 75 bool is_vmalloc_addr(const void *x) 76 { 77 unsigned long addr = (unsigned long)kasan_reset_tag(x); 78 79 return addr >= VMALLOC_START && addr < VMALLOC_END; 80 } 81 EXPORT_SYMBOL(is_vmalloc_addr); 82 83 struct vfree_deferred { 84 struct llist_head list; 85 struct work_struct wq; 86 }; 87 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 88 89 static void __vunmap(const void *, int); 90 91 static void free_work(struct work_struct *w) 92 { 93 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 94 struct llist_node *t, *llnode; 95 96 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 97 __vunmap((void *)llnode, 1); 98 } 99 100 /*** Page table manipulation functions ***/ 101 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 102 phys_addr_t phys_addr, pgprot_t prot, 103 unsigned int max_page_shift, pgtbl_mod_mask *mask) 104 { 105 pte_t *pte; 106 u64 pfn; 107 unsigned long size = PAGE_SIZE; 108 109 pfn = phys_addr >> PAGE_SHIFT; 110 pte = pte_alloc_kernel_track(pmd, addr, mask); 111 if (!pte) 112 return -ENOMEM; 113 do { 114 BUG_ON(!pte_none(*pte)); 115 116 #ifdef CONFIG_HUGETLB_PAGE 117 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); 118 if (size != PAGE_SIZE) { 119 pte_t entry = pfn_pte(pfn, prot); 120 121 entry = arch_make_huge_pte(entry, ilog2(size), 0); 122 set_huge_pte_at(&init_mm, addr, pte, entry); 123 pfn += PFN_DOWN(size); 124 continue; 125 } 126 #endif 127 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); 128 pfn++; 129 } while (pte += PFN_DOWN(size), addr += size, addr != end); 130 *mask |= PGTBL_PTE_MODIFIED; 131 return 0; 132 } 133 134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, 135 phys_addr_t phys_addr, pgprot_t prot, 136 unsigned int max_page_shift) 137 { 138 if (max_page_shift < PMD_SHIFT) 139 return 0; 140 141 if (!arch_vmap_pmd_supported(prot)) 142 return 0; 143 144 if ((end - addr) != PMD_SIZE) 145 return 0; 146 147 if (!IS_ALIGNED(addr, PMD_SIZE)) 148 return 0; 149 150 if (!IS_ALIGNED(phys_addr, PMD_SIZE)) 151 return 0; 152 153 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) 154 return 0; 155 156 return pmd_set_huge(pmd, phys_addr, prot); 157 } 158 159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 160 phys_addr_t phys_addr, pgprot_t prot, 161 unsigned int max_page_shift, pgtbl_mod_mask *mask) 162 { 163 pmd_t *pmd; 164 unsigned long next; 165 166 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 167 if (!pmd) 168 return -ENOMEM; 169 do { 170 next = pmd_addr_end(addr, end); 171 172 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, 173 max_page_shift)) { 174 *mask |= PGTBL_PMD_MODIFIED; 175 continue; 176 } 177 178 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) 179 return -ENOMEM; 180 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); 181 return 0; 182 } 183 184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, 185 phys_addr_t phys_addr, pgprot_t prot, 186 unsigned int max_page_shift) 187 { 188 if (max_page_shift < PUD_SHIFT) 189 return 0; 190 191 if (!arch_vmap_pud_supported(prot)) 192 return 0; 193 194 if ((end - addr) != PUD_SIZE) 195 return 0; 196 197 if (!IS_ALIGNED(addr, PUD_SIZE)) 198 return 0; 199 200 if (!IS_ALIGNED(phys_addr, PUD_SIZE)) 201 return 0; 202 203 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) 204 return 0; 205 206 return pud_set_huge(pud, phys_addr, prot); 207 } 208 209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 210 phys_addr_t phys_addr, pgprot_t prot, 211 unsigned int max_page_shift, pgtbl_mod_mask *mask) 212 { 213 pud_t *pud; 214 unsigned long next; 215 216 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 217 if (!pud) 218 return -ENOMEM; 219 do { 220 next = pud_addr_end(addr, end); 221 222 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, 223 max_page_shift)) { 224 *mask |= PGTBL_PUD_MODIFIED; 225 continue; 226 } 227 228 if (vmap_pmd_range(pud, addr, next, phys_addr, prot, 229 max_page_shift, mask)) 230 return -ENOMEM; 231 } while (pud++, phys_addr += (next - addr), addr = next, addr != end); 232 return 0; 233 } 234 235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, 236 phys_addr_t phys_addr, pgprot_t prot, 237 unsigned int max_page_shift) 238 { 239 if (max_page_shift < P4D_SHIFT) 240 return 0; 241 242 if (!arch_vmap_p4d_supported(prot)) 243 return 0; 244 245 if ((end - addr) != P4D_SIZE) 246 return 0; 247 248 if (!IS_ALIGNED(addr, P4D_SIZE)) 249 return 0; 250 251 if (!IS_ALIGNED(phys_addr, P4D_SIZE)) 252 return 0; 253 254 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) 255 return 0; 256 257 return p4d_set_huge(p4d, phys_addr, prot); 258 } 259 260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 261 phys_addr_t phys_addr, pgprot_t prot, 262 unsigned int max_page_shift, pgtbl_mod_mask *mask) 263 { 264 p4d_t *p4d; 265 unsigned long next; 266 267 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 268 if (!p4d) 269 return -ENOMEM; 270 do { 271 next = p4d_addr_end(addr, end); 272 273 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, 274 max_page_shift)) { 275 *mask |= PGTBL_P4D_MODIFIED; 276 continue; 277 } 278 279 if (vmap_pud_range(p4d, addr, next, phys_addr, prot, 280 max_page_shift, mask)) 281 return -ENOMEM; 282 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); 283 return 0; 284 } 285 286 static int vmap_range_noflush(unsigned long addr, unsigned long end, 287 phys_addr_t phys_addr, pgprot_t prot, 288 unsigned int max_page_shift) 289 { 290 pgd_t *pgd; 291 unsigned long start; 292 unsigned long next; 293 int err; 294 pgtbl_mod_mask mask = 0; 295 296 might_sleep(); 297 BUG_ON(addr >= end); 298 299 start = addr; 300 pgd = pgd_offset_k(addr); 301 do { 302 next = pgd_addr_end(addr, end); 303 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, 304 max_page_shift, &mask); 305 if (err) 306 break; 307 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); 308 309 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 310 arch_sync_kernel_mappings(start, end); 311 312 return err; 313 } 314 315 int ioremap_page_range(unsigned long addr, unsigned long end, 316 phys_addr_t phys_addr, pgprot_t prot) 317 { 318 int err; 319 320 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), 321 ioremap_max_page_shift); 322 flush_cache_vmap(addr, end); 323 return err; 324 } 325 326 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 327 pgtbl_mod_mask *mask) 328 { 329 pte_t *pte; 330 331 pte = pte_offset_kernel(pmd, addr); 332 do { 333 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 334 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 335 } while (pte++, addr += PAGE_SIZE, addr != end); 336 *mask |= PGTBL_PTE_MODIFIED; 337 } 338 339 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 340 pgtbl_mod_mask *mask) 341 { 342 pmd_t *pmd; 343 unsigned long next; 344 int cleared; 345 346 pmd = pmd_offset(pud, addr); 347 do { 348 next = pmd_addr_end(addr, end); 349 350 cleared = pmd_clear_huge(pmd); 351 if (cleared || pmd_bad(*pmd)) 352 *mask |= PGTBL_PMD_MODIFIED; 353 354 if (cleared) 355 continue; 356 if (pmd_none_or_clear_bad(pmd)) 357 continue; 358 vunmap_pte_range(pmd, addr, next, mask); 359 360 cond_resched(); 361 } while (pmd++, addr = next, addr != end); 362 } 363 364 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 365 pgtbl_mod_mask *mask) 366 { 367 pud_t *pud; 368 unsigned long next; 369 int cleared; 370 371 pud = pud_offset(p4d, addr); 372 do { 373 next = pud_addr_end(addr, end); 374 375 cleared = pud_clear_huge(pud); 376 if (cleared || pud_bad(*pud)) 377 *mask |= PGTBL_PUD_MODIFIED; 378 379 if (cleared) 380 continue; 381 if (pud_none_or_clear_bad(pud)) 382 continue; 383 vunmap_pmd_range(pud, addr, next, mask); 384 } while (pud++, addr = next, addr != end); 385 } 386 387 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 388 pgtbl_mod_mask *mask) 389 { 390 p4d_t *p4d; 391 unsigned long next; 392 393 p4d = p4d_offset(pgd, addr); 394 do { 395 next = p4d_addr_end(addr, end); 396 397 p4d_clear_huge(p4d); 398 if (p4d_bad(*p4d)) 399 *mask |= PGTBL_P4D_MODIFIED; 400 401 if (p4d_none_or_clear_bad(p4d)) 402 continue; 403 vunmap_pud_range(p4d, addr, next, mask); 404 } while (p4d++, addr = next, addr != end); 405 } 406 407 /* 408 * vunmap_range_noflush is similar to vunmap_range, but does not 409 * flush caches or TLBs. 410 * 411 * The caller is responsible for calling flush_cache_vmap() before calling 412 * this function, and flush_tlb_kernel_range after it has returned 413 * successfully (and before the addresses are expected to cause a page fault 414 * or be re-mapped for something else, if TLB flushes are being delayed or 415 * coalesced). 416 * 417 * This is an internal function only. Do not use outside mm/. 418 */ 419 void vunmap_range_noflush(unsigned long start, unsigned long end) 420 { 421 unsigned long next; 422 pgd_t *pgd; 423 unsigned long addr = start; 424 pgtbl_mod_mask mask = 0; 425 426 BUG_ON(addr >= end); 427 pgd = pgd_offset_k(addr); 428 do { 429 next = pgd_addr_end(addr, end); 430 if (pgd_bad(*pgd)) 431 mask |= PGTBL_PGD_MODIFIED; 432 if (pgd_none_or_clear_bad(pgd)) 433 continue; 434 vunmap_p4d_range(pgd, addr, next, &mask); 435 } while (pgd++, addr = next, addr != end); 436 437 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 438 arch_sync_kernel_mappings(start, end); 439 } 440 441 /** 442 * vunmap_range - unmap kernel virtual addresses 443 * @addr: start of the VM area to unmap 444 * @end: end of the VM area to unmap (non-inclusive) 445 * 446 * Clears any present PTEs in the virtual address range, flushes TLBs and 447 * caches. Any subsequent access to the address before it has been re-mapped 448 * is a kernel bug. 449 */ 450 void vunmap_range(unsigned long addr, unsigned long end) 451 { 452 flush_cache_vunmap(addr, end); 453 vunmap_range_noflush(addr, end); 454 flush_tlb_kernel_range(addr, end); 455 } 456 457 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, 458 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 459 pgtbl_mod_mask *mask) 460 { 461 pte_t *pte; 462 463 /* 464 * nr is a running index into the array which helps higher level 465 * callers keep track of where we're up to. 466 */ 467 468 pte = pte_alloc_kernel_track(pmd, addr, mask); 469 if (!pte) 470 return -ENOMEM; 471 do { 472 struct page *page = pages[*nr]; 473 474 if (WARN_ON(!pte_none(*pte))) 475 return -EBUSY; 476 if (WARN_ON(!page)) 477 return -ENOMEM; 478 if (WARN_ON(!pfn_valid(page_to_pfn(page)))) 479 return -EINVAL; 480 481 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 482 (*nr)++; 483 } while (pte++, addr += PAGE_SIZE, addr != end); 484 *mask |= PGTBL_PTE_MODIFIED; 485 return 0; 486 } 487 488 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, 489 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 490 pgtbl_mod_mask *mask) 491 { 492 pmd_t *pmd; 493 unsigned long next; 494 495 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 496 if (!pmd) 497 return -ENOMEM; 498 do { 499 next = pmd_addr_end(addr, end); 500 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) 501 return -ENOMEM; 502 } while (pmd++, addr = next, addr != end); 503 return 0; 504 } 505 506 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, 507 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 508 pgtbl_mod_mask *mask) 509 { 510 pud_t *pud; 511 unsigned long next; 512 513 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 514 if (!pud) 515 return -ENOMEM; 516 do { 517 next = pud_addr_end(addr, end); 518 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) 519 return -ENOMEM; 520 } while (pud++, addr = next, addr != end); 521 return 0; 522 } 523 524 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, 525 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 526 pgtbl_mod_mask *mask) 527 { 528 p4d_t *p4d; 529 unsigned long next; 530 531 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 532 if (!p4d) 533 return -ENOMEM; 534 do { 535 next = p4d_addr_end(addr, end); 536 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) 537 return -ENOMEM; 538 } while (p4d++, addr = next, addr != end); 539 return 0; 540 } 541 542 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, 543 pgprot_t prot, struct page **pages) 544 { 545 unsigned long start = addr; 546 pgd_t *pgd; 547 unsigned long next; 548 int err = 0; 549 int nr = 0; 550 pgtbl_mod_mask mask = 0; 551 552 BUG_ON(addr >= end); 553 pgd = pgd_offset_k(addr); 554 do { 555 next = pgd_addr_end(addr, end); 556 if (pgd_bad(*pgd)) 557 mask |= PGTBL_PGD_MODIFIED; 558 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); 559 if (err) 560 return err; 561 } while (pgd++, addr = next, addr != end); 562 563 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 564 arch_sync_kernel_mappings(start, end); 565 566 return 0; 567 } 568 569 /* 570 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not 571 * flush caches. 572 * 573 * The caller is responsible for calling flush_cache_vmap() after this 574 * function returns successfully and before the addresses are accessed. 575 * 576 * This is an internal function only. Do not use outside mm/. 577 */ 578 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 579 pgprot_t prot, struct page **pages, unsigned int page_shift) 580 { 581 unsigned int i, nr = (end - addr) >> PAGE_SHIFT; 582 583 WARN_ON(page_shift < PAGE_SHIFT); 584 585 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || 586 page_shift == PAGE_SHIFT) 587 return vmap_small_pages_range_noflush(addr, end, prot, pages); 588 589 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { 590 int err; 591 592 err = vmap_range_noflush(addr, addr + (1UL << page_shift), 593 __pa(page_address(pages[i])), prot, 594 page_shift); 595 if (err) 596 return err; 597 598 addr += 1UL << page_shift; 599 } 600 601 return 0; 602 } 603 604 /** 605 * vmap_pages_range - map pages to a kernel virtual address 606 * @addr: start of the VM area to map 607 * @end: end of the VM area to map (non-inclusive) 608 * @prot: page protection flags to use 609 * @pages: pages to map (always PAGE_SIZE pages) 610 * @page_shift: maximum shift that the pages may be mapped with, @pages must 611 * be aligned and contiguous up to at least this shift. 612 * 613 * RETURNS: 614 * 0 on success, -errno on failure. 615 */ 616 static int vmap_pages_range(unsigned long addr, unsigned long end, 617 pgprot_t prot, struct page **pages, unsigned int page_shift) 618 { 619 int err; 620 621 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 622 flush_cache_vmap(addr, end); 623 return err; 624 } 625 626 int is_vmalloc_or_module_addr(const void *x) 627 { 628 /* 629 * ARM, x86-64 and sparc64 put modules in a special place, 630 * and fall back on vmalloc() if that fails. Others 631 * just put it in the vmalloc space. 632 */ 633 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 634 unsigned long addr = (unsigned long)kasan_reset_tag(x); 635 if (addr >= MODULES_VADDR && addr < MODULES_END) 636 return 1; 637 #endif 638 return is_vmalloc_addr(x); 639 } 640 641 /* 642 * Walk a vmap address to the struct page it maps. Huge vmap mappings will 643 * return the tail page that corresponds to the base page address, which 644 * matches small vmap mappings. 645 */ 646 struct page *vmalloc_to_page(const void *vmalloc_addr) 647 { 648 unsigned long addr = (unsigned long) vmalloc_addr; 649 struct page *page = NULL; 650 pgd_t *pgd = pgd_offset_k(addr); 651 p4d_t *p4d; 652 pud_t *pud; 653 pmd_t *pmd; 654 pte_t *ptep, pte; 655 656 /* 657 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 658 * architectures that do not vmalloc module space 659 */ 660 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 661 662 if (pgd_none(*pgd)) 663 return NULL; 664 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 665 return NULL; /* XXX: no allowance for huge pgd */ 666 if (WARN_ON_ONCE(pgd_bad(*pgd))) 667 return NULL; 668 669 p4d = p4d_offset(pgd, addr); 670 if (p4d_none(*p4d)) 671 return NULL; 672 if (p4d_leaf(*p4d)) 673 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); 674 if (WARN_ON_ONCE(p4d_bad(*p4d))) 675 return NULL; 676 677 pud = pud_offset(p4d, addr); 678 if (pud_none(*pud)) 679 return NULL; 680 if (pud_leaf(*pud)) 681 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 682 if (WARN_ON_ONCE(pud_bad(*pud))) 683 return NULL; 684 685 pmd = pmd_offset(pud, addr); 686 if (pmd_none(*pmd)) 687 return NULL; 688 if (pmd_leaf(*pmd)) 689 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 690 if (WARN_ON_ONCE(pmd_bad(*pmd))) 691 return NULL; 692 693 ptep = pte_offset_map(pmd, addr); 694 pte = *ptep; 695 if (pte_present(pte)) 696 page = pte_page(pte); 697 pte_unmap(ptep); 698 699 return page; 700 } 701 EXPORT_SYMBOL(vmalloc_to_page); 702 703 /* 704 * Map a vmalloc()-space virtual address to the physical page frame number. 705 */ 706 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 707 { 708 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 709 } 710 EXPORT_SYMBOL(vmalloc_to_pfn); 711 712 713 /*** Global kva allocator ***/ 714 715 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 716 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 717 718 719 static DEFINE_SPINLOCK(vmap_area_lock); 720 static DEFINE_SPINLOCK(free_vmap_area_lock); 721 /* Export for kexec only */ 722 LIST_HEAD(vmap_area_list); 723 static struct rb_root vmap_area_root = RB_ROOT; 724 static bool vmap_initialized __read_mostly; 725 726 static struct rb_root purge_vmap_area_root = RB_ROOT; 727 static LIST_HEAD(purge_vmap_area_list); 728 static DEFINE_SPINLOCK(purge_vmap_area_lock); 729 730 /* 731 * This kmem_cache is used for vmap_area objects. Instead of 732 * allocating from slab we reuse an object from this cache to 733 * make things faster. Especially in "no edge" splitting of 734 * free block. 735 */ 736 static struct kmem_cache *vmap_area_cachep; 737 738 /* 739 * This linked list is used in pair with free_vmap_area_root. 740 * It gives O(1) access to prev/next to perform fast coalescing. 741 */ 742 static LIST_HEAD(free_vmap_area_list); 743 744 /* 745 * This augment red-black tree represents the free vmap space. 746 * All vmap_area objects in this tree are sorted by va->va_start 747 * address. It is used for allocation and merging when a vmap 748 * object is released. 749 * 750 * Each vmap_area node contains a maximum available free block 751 * of its sub-tree, right or left. Therefore it is possible to 752 * find a lowest match of free area. 753 */ 754 static struct rb_root free_vmap_area_root = RB_ROOT; 755 756 /* 757 * Preload a CPU with one object for "no edge" split case. The 758 * aim is to get rid of allocations from the atomic context, thus 759 * to use more permissive allocation masks. 760 */ 761 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 762 763 static __always_inline unsigned long 764 va_size(struct vmap_area *va) 765 { 766 return (va->va_end - va->va_start); 767 } 768 769 static __always_inline unsigned long 770 get_subtree_max_size(struct rb_node *node) 771 { 772 struct vmap_area *va; 773 774 va = rb_entry_safe(node, struct vmap_area, rb_node); 775 return va ? va->subtree_max_size : 0; 776 } 777 778 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 779 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 780 781 static void purge_vmap_area_lazy(void); 782 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 783 static void drain_vmap_area_work(struct work_struct *work); 784 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); 785 786 static atomic_long_t nr_vmalloc_pages; 787 788 unsigned long vmalloc_nr_pages(void) 789 { 790 return atomic_long_read(&nr_vmalloc_pages); 791 } 792 793 /* Look up the first VA which satisfies addr < va_end, NULL if none. */ 794 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr) 795 { 796 struct vmap_area *va = NULL; 797 struct rb_node *n = vmap_area_root.rb_node; 798 799 addr = (unsigned long)kasan_reset_tag((void *)addr); 800 801 while (n) { 802 struct vmap_area *tmp; 803 804 tmp = rb_entry(n, struct vmap_area, rb_node); 805 if (tmp->va_end > addr) { 806 va = tmp; 807 if (tmp->va_start <= addr) 808 break; 809 810 n = n->rb_left; 811 } else 812 n = n->rb_right; 813 } 814 815 return va; 816 } 817 818 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root) 819 { 820 struct rb_node *n = root->rb_node; 821 822 addr = (unsigned long)kasan_reset_tag((void *)addr); 823 824 while (n) { 825 struct vmap_area *va; 826 827 va = rb_entry(n, struct vmap_area, rb_node); 828 if (addr < va->va_start) 829 n = n->rb_left; 830 else if (addr >= va->va_end) 831 n = n->rb_right; 832 else 833 return va; 834 } 835 836 return NULL; 837 } 838 839 /* 840 * This function returns back addresses of parent node 841 * and its left or right link for further processing. 842 * 843 * Otherwise NULL is returned. In that case all further 844 * steps regarding inserting of conflicting overlap range 845 * have to be declined and actually considered as a bug. 846 */ 847 static __always_inline struct rb_node ** 848 find_va_links(struct vmap_area *va, 849 struct rb_root *root, struct rb_node *from, 850 struct rb_node **parent) 851 { 852 struct vmap_area *tmp_va; 853 struct rb_node **link; 854 855 if (root) { 856 link = &root->rb_node; 857 if (unlikely(!*link)) { 858 *parent = NULL; 859 return link; 860 } 861 } else { 862 link = &from; 863 } 864 865 /* 866 * Go to the bottom of the tree. When we hit the last point 867 * we end up with parent rb_node and correct direction, i name 868 * it link, where the new va->rb_node will be attached to. 869 */ 870 do { 871 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 872 873 /* 874 * During the traversal we also do some sanity check. 875 * Trigger the BUG() if there are sides(left/right) 876 * or full overlaps. 877 */ 878 if (va->va_end <= tmp_va->va_start) 879 link = &(*link)->rb_left; 880 else if (va->va_start >= tmp_va->va_end) 881 link = &(*link)->rb_right; 882 else { 883 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", 884 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); 885 886 return NULL; 887 } 888 } while (*link); 889 890 *parent = &tmp_va->rb_node; 891 return link; 892 } 893 894 static __always_inline struct list_head * 895 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 896 { 897 struct list_head *list; 898 899 if (unlikely(!parent)) 900 /* 901 * The red-black tree where we try to find VA neighbors 902 * before merging or inserting is empty, i.e. it means 903 * there is no free vmap space. Normally it does not 904 * happen but we handle this case anyway. 905 */ 906 return NULL; 907 908 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 909 return (&parent->rb_right == link ? list->next : list); 910 } 911 912 static __always_inline void 913 __link_va(struct vmap_area *va, struct rb_root *root, 914 struct rb_node *parent, struct rb_node **link, 915 struct list_head *head, bool augment) 916 { 917 /* 918 * VA is still not in the list, but we can 919 * identify its future previous list_head node. 920 */ 921 if (likely(parent)) { 922 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 923 if (&parent->rb_right != link) 924 head = head->prev; 925 } 926 927 /* Insert to the rb-tree */ 928 rb_link_node(&va->rb_node, parent, link); 929 if (augment) { 930 /* 931 * Some explanation here. Just perform simple insertion 932 * to the tree. We do not set va->subtree_max_size to 933 * its current size before calling rb_insert_augmented(). 934 * It is because we populate the tree from the bottom 935 * to parent levels when the node _is_ in the tree. 936 * 937 * Therefore we set subtree_max_size to zero after insertion, 938 * to let __augment_tree_propagate_from() puts everything to 939 * the correct order later on. 940 */ 941 rb_insert_augmented(&va->rb_node, 942 root, &free_vmap_area_rb_augment_cb); 943 va->subtree_max_size = 0; 944 } else { 945 rb_insert_color(&va->rb_node, root); 946 } 947 948 /* Address-sort this list */ 949 list_add(&va->list, head); 950 } 951 952 static __always_inline void 953 link_va(struct vmap_area *va, struct rb_root *root, 954 struct rb_node *parent, struct rb_node **link, 955 struct list_head *head) 956 { 957 __link_va(va, root, parent, link, head, false); 958 } 959 960 static __always_inline void 961 link_va_augment(struct vmap_area *va, struct rb_root *root, 962 struct rb_node *parent, struct rb_node **link, 963 struct list_head *head) 964 { 965 __link_va(va, root, parent, link, head, true); 966 } 967 968 static __always_inline void 969 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment) 970 { 971 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 972 return; 973 974 if (augment) 975 rb_erase_augmented(&va->rb_node, 976 root, &free_vmap_area_rb_augment_cb); 977 else 978 rb_erase(&va->rb_node, root); 979 980 list_del_init(&va->list); 981 RB_CLEAR_NODE(&va->rb_node); 982 } 983 984 static __always_inline void 985 unlink_va(struct vmap_area *va, struct rb_root *root) 986 { 987 __unlink_va(va, root, false); 988 } 989 990 static __always_inline void 991 unlink_va_augment(struct vmap_area *va, struct rb_root *root) 992 { 993 __unlink_va(va, root, true); 994 } 995 996 #if DEBUG_AUGMENT_PROPAGATE_CHECK 997 /* 998 * Gets called when remove the node and rotate. 999 */ 1000 static __always_inline unsigned long 1001 compute_subtree_max_size(struct vmap_area *va) 1002 { 1003 return max3(va_size(va), 1004 get_subtree_max_size(va->rb_node.rb_left), 1005 get_subtree_max_size(va->rb_node.rb_right)); 1006 } 1007 1008 static void 1009 augment_tree_propagate_check(void) 1010 { 1011 struct vmap_area *va; 1012 unsigned long computed_size; 1013 1014 list_for_each_entry(va, &free_vmap_area_list, list) { 1015 computed_size = compute_subtree_max_size(va); 1016 if (computed_size != va->subtree_max_size) 1017 pr_emerg("tree is corrupted: %lu, %lu\n", 1018 va_size(va), va->subtree_max_size); 1019 } 1020 } 1021 #endif 1022 1023 /* 1024 * This function populates subtree_max_size from bottom to upper 1025 * levels starting from VA point. The propagation must be done 1026 * when VA size is modified by changing its va_start/va_end. Or 1027 * in case of newly inserting of VA to the tree. 1028 * 1029 * It means that __augment_tree_propagate_from() must be called: 1030 * - After VA has been inserted to the tree(free path); 1031 * - After VA has been shrunk(allocation path); 1032 * - After VA has been increased(merging path). 1033 * 1034 * Please note that, it does not mean that upper parent nodes 1035 * and their subtree_max_size are recalculated all the time up 1036 * to the root node. 1037 * 1038 * 4--8 1039 * /\ 1040 * / \ 1041 * / \ 1042 * 2--2 8--8 1043 * 1044 * For example if we modify the node 4, shrinking it to 2, then 1045 * no any modification is required. If we shrink the node 2 to 1 1046 * its subtree_max_size is updated only, and set to 1. If we shrink 1047 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 1048 * node becomes 4--6. 1049 */ 1050 static __always_inline void 1051 augment_tree_propagate_from(struct vmap_area *va) 1052 { 1053 /* 1054 * Populate the tree from bottom towards the root until 1055 * the calculated maximum available size of checked node 1056 * is equal to its current one. 1057 */ 1058 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); 1059 1060 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1061 augment_tree_propagate_check(); 1062 #endif 1063 } 1064 1065 static void 1066 insert_vmap_area(struct vmap_area *va, 1067 struct rb_root *root, struct list_head *head) 1068 { 1069 struct rb_node **link; 1070 struct rb_node *parent; 1071 1072 link = find_va_links(va, root, NULL, &parent); 1073 if (link) 1074 link_va(va, root, parent, link, head); 1075 } 1076 1077 static void 1078 insert_vmap_area_augment(struct vmap_area *va, 1079 struct rb_node *from, struct rb_root *root, 1080 struct list_head *head) 1081 { 1082 struct rb_node **link; 1083 struct rb_node *parent; 1084 1085 if (from) 1086 link = find_va_links(va, NULL, from, &parent); 1087 else 1088 link = find_va_links(va, root, NULL, &parent); 1089 1090 if (link) { 1091 link_va_augment(va, root, parent, link, head); 1092 augment_tree_propagate_from(va); 1093 } 1094 } 1095 1096 /* 1097 * Merge de-allocated chunk of VA memory with previous 1098 * and next free blocks. If coalesce is not done a new 1099 * free area is inserted. If VA has been merged, it is 1100 * freed. 1101 * 1102 * Please note, it can return NULL in case of overlap 1103 * ranges, followed by WARN() report. Despite it is a 1104 * buggy behaviour, a system can be alive and keep 1105 * ongoing. 1106 */ 1107 static __always_inline struct vmap_area * 1108 __merge_or_add_vmap_area(struct vmap_area *va, 1109 struct rb_root *root, struct list_head *head, bool augment) 1110 { 1111 struct vmap_area *sibling; 1112 struct list_head *next; 1113 struct rb_node **link; 1114 struct rb_node *parent; 1115 bool merged = false; 1116 1117 /* 1118 * Find a place in the tree where VA potentially will be 1119 * inserted, unless it is merged with its sibling/siblings. 1120 */ 1121 link = find_va_links(va, root, NULL, &parent); 1122 if (!link) 1123 return NULL; 1124 1125 /* 1126 * Get next node of VA to check if merging can be done. 1127 */ 1128 next = get_va_next_sibling(parent, link); 1129 if (unlikely(next == NULL)) 1130 goto insert; 1131 1132 /* 1133 * start end 1134 * | | 1135 * |<------VA------>|<-----Next----->| 1136 * | | 1137 * start end 1138 */ 1139 if (next != head) { 1140 sibling = list_entry(next, struct vmap_area, list); 1141 if (sibling->va_start == va->va_end) { 1142 sibling->va_start = va->va_start; 1143 1144 /* Free vmap_area object. */ 1145 kmem_cache_free(vmap_area_cachep, va); 1146 1147 /* Point to the new merged area. */ 1148 va = sibling; 1149 merged = true; 1150 } 1151 } 1152 1153 /* 1154 * start end 1155 * | | 1156 * |<-----Prev----->|<------VA------>| 1157 * | | 1158 * start end 1159 */ 1160 if (next->prev != head) { 1161 sibling = list_entry(next->prev, struct vmap_area, list); 1162 if (sibling->va_end == va->va_start) { 1163 /* 1164 * If both neighbors are coalesced, it is important 1165 * to unlink the "next" node first, followed by merging 1166 * with "previous" one. Otherwise the tree might not be 1167 * fully populated if a sibling's augmented value is 1168 * "normalized" because of rotation operations. 1169 */ 1170 if (merged) 1171 __unlink_va(va, root, augment); 1172 1173 sibling->va_end = va->va_end; 1174 1175 /* Free vmap_area object. */ 1176 kmem_cache_free(vmap_area_cachep, va); 1177 1178 /* Point to the new merged area. */ 1179 va = sibling; 1180 merged = true; 1181 } 1182 } 1183 1184 insert: 1185 if (!merged) 1186 __link_va(va, root, parent, link, head, augment); 1187 1188 return va; 1189 } 1190 1191 static __always_inline struct vmap_area * 1192 merge_or_add_vmap_area(struct vmap_area *va, 1193 struct rb_root *root, struct list_head *head) 1194 { 1195 return __merge_or_add_vmap_area(va, root, head, false); 1196 } 1197 1198 static __always_inline struct vmap_area * 1199 merge_or_add_vmap_area_augment(struct vmap_area *va, 1200 struct rb_root *root, struct list_head *head) 1201 { 1202 va = __merge_or_add_vmap_area(va, root, head, true); 1203 if (va) 1204 augment_tree_propagate_from(va); 1205 1206 return va; 1207 } 1208 1209 static __always_inline bool 1210 is_within_this_va(struct vmap_area *va, unsigned long size, 1211 unsigned long align, unsigned long vstart) 1212 { 1213 unsigned long nva_start_addr; 1214 1215 if (va->va_start > vstart) 1216 nva_start_addr = ALIGN(va->va_start, align); 1217 else 1218 nva_start_addr = ALIGN(vstart, align); 1219 1220 /* Can be overflowed due to big size or alignment. */ 1221 if (nva_start_addr + size < nva_start_addr || 1222 nva_start_addr < vstart) 1223 return false; 1224 1225 return (nva_start_addr + size <= va->va_end); 1226 } 1227 1228 /* 1229 * Find the first free block(lowest start address) in the tree, 1230 * that will accomplish the request corresponding to passing 1231 * parameters. Please note, with an alignment bigger than PAGE_SIZE, 1232 * a search length is adjusted to account for worst case alignment 1233 * overhead. 1234 */ 1235 static __always_inline struct vmap_area * 1236 find_vmap_lowest_match(struct rb_root *root, unsigned long size, 1237 unsigned long align, unsigned long vstart, bool adjust_search_size) 1238 { 1239 struct vmap_area *va; 1240 struct rb_node *node; 1241 unsigned long length; 1242 1243 /* Start from the root. */ 1244 node = root->rb_node; 1245 1246 /* Adjust the search size for alignment overhead. */ 1247 length = adjust_search_size ? size + align - 1 : size; 1248 1249 while (node) { 1250 va = rb_entry(node, struct vmap_area, rb_node); 1251 1252 if (get_subtree_max_size(node->rb_left) >= length && 1253 vstart < va->va_start) { 1254 node = node->rb_left; 1255 } else { 1256 if (is_within_this_va(va, size, align, vstart)) 1257 return va; 1258 1259 /* 1260 * Does not make sense to go deeper towards the right 1261 * sub-tree if it does not have a free block that is 1262 * equal or bigger to the requested search length. 1263 */ 1264 if (get_subtree_max_size(node->rb_right) >= length) { 1265 node = node->rb_right; 1266 continue; 1267 } 1268 1269 /* 1270 * OK. We roll back and find the first right sub-tree, 1271 * that will satisfy the search criteria. It can happen 1272 * due to "vstart" restriction or an alignment overhead 1273 * that is bigger then PAGE_SIZE. 1274 */ 1275 while ((node = rb_parent(node))) { 1276 va = rb_entry(node, struct vmap_area, rb_node); 1277 if (is_within_this_va(va, size, align, vstart)) 1278 return va; 1279 1280 if (get_subtree_max_size(node->rb_right) >= length && 1281 vstart <= va->va_start) { 1282 /* 1283 * Shift the vstart forward. Please note, we update it with 1284 * parent's start address adding "1" because we do not want 1285 * to enter same sub-tree after it has already been checked 1286 * and no suitable free block found there. 1287 */ 1288 vstart = va->va_start + 1; 1289 node = node->rb_right; 1290 break; 1291 } 1292 } 1293 } 1294 } 1295 1296 return NULL; 1297 } 1298 1299 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1300 #include <linux/random.h> 1301 1302 static struct vmap_area * 1303 find_vmap_lowest_linear_match(unsigned long size, 1304 unsigned long align, unsigned long vstart) 1305 { 1306 struct vmap_area *va; 1307 1308 list_for_each_entry(va, &free_vmap_area_list, list) { 1309 if (!is_within_this_va(va, size, align, vstart)) 1310 continue; 1311 1312 return va; 1313 } 1314 1315 return NULL; 1316 } 1317 1318 static void 1319 find_vmap_lowest_match_check(unsigned long size, unsigned long align) 1320 { 1321 struct vmap_area *va_1, *va_2; 1322 unsigned long vstart; 1323 unsigned int rnd; 1324 1325 get_random_bytes(&rnd, sizeof(rnd)); 1326 vstart = VMALLOC_START + rnd; 1327 1328 va_1 = find_vmap_lowest_match(size, align, vstart, false); 1329 va_2 = find_vmap_lowest_linear_match(size, align, vstart); 1330 1331 if (va_1 != va_2) 1332 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 1333 va_1, va_2, vstart); 1334 } 1335 #endif 1336 1337 enum fit_type { 1338 NOTHING_FIT = 0, 1339 FL_FIT_TYPE = 1, /* full fit */ 1340 LE_FIT_TYPE = 2, /* left edge fit */ 1341 RE_FIT_TYPE = 3, /* right edge fit */ 1342 NE_FIT_TYPE = 4 /* no edge fit */ 1343 }; 1344 1345 static __always_inline enum fit_type 1346 classify_va_fit_type(struct vmap_area *va, 1347 unsigned long nva_start_addr, unsigned long size) 1348 { 1349 enum fit_type type; 1350 1351 /* Check if it is within VA. */ 1352 if (nva_start_addr < va->va_start || 1353 nva_start_addr + size > va->va_end) 1354 return NOTHING_FIT; 1355 1356 /* Now classify. */ 1357 if (va->va_start == nva_start_addr) { 1358 if (va->va_end == nva_start_addr + size) 1359 type = FL_FIT_TYPE; 1360 else 1361 type = LE_FIT_TYPE; 1362 } else if (va->va_end == nva_start_addr + size) { 1363 type = RE_FIT_TYPE; 1364 } else { 1365 type = NE_FIT_TYPE; 1366 } 1367 1368 return type; 1369 } 1370 1371 static __always_inline int 1372 adjust_va_to_fit_type(struct rb_root *root, struct list_head *head, 1373 struct vmap_area *va, unsigned long nva_start_addr, 1374 unsigned long size) 1375 { 1376 struct vmap_area *lva = NULL; 1377 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size); 1378 1379 if (type == FL_FIT_TYPE) { 1380 /* 1381 * No need to split VA, it fully fits. 1382 * 1383 * | | 1384 * V NVA V 1385 * |---------------| 1386 */ 1387 unlink_va_augment(va, root); 1388 kmem_cache_free(vmap_area_cachep, va); 1389 } else if (type == LE_FIT_TYPE) { 1390 /* 1391 * Split left edge of fit VA. 1392 * 1393 * | | 1394 * V NVA V R 1395 * |-------|-------| 1396 */ 1397 va->va_start += size; 1398 } else if (type == RE_FIT_TYPE) { 1399 /* 1400 * Split right edge of fit VA. 1401 * 1402 * | | 1403 * L V NVA V 1404 * |-------|-------| 1405 */ 1406 va->va_end = nva_start_addr; 1407 } else if (type == NE_FIT_TYPE) { 1408 /* 1409 * Split no edge of fit VA. 1410 * 1411 * | | 1412 * L V NVA V R 1413 * |---|-------|---| 1414 */ 1415 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 1416 if (unlikely(!lva)) { 1417 /* 1418 * For percpu allocator we do not do any pre-allocation 1419 * and leave it as it is. The reason is it most likely 1420 * never ends up with NE_FIT_TYPE splitting. In case of 1421 * percpu allocations offsets and sizes are aligned to 1422 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 1423 * are its main fitting cases. 1424 * 1425 * There are a few exceptions though, as an example it is 1426 * a first allocation (early boot up) when we have "one" 1427 * big free space that has to be split. 1428 * 1429 * Also we can hit this path in case of regular "vmap" 1430 * allocations, if "this" current CPU was not preloaded. 1431 * See the comment in alloc_vmap_area() why. If so, then 1432 * GFP_NOWAIT is used instead to get an extra object for 1433 * split purpose. That is rare and most time does not 1434 * occur. 1435 * 1436 * What happens if an allocation gets failed. Basically, 1437 * an "overflow" path is triggered to purge lazily freed 1438 * areas to free some memory, then, the "retry" path is 1439 * triggered to repeat one more time. See more details 1440 * in alloc_vmap_area() function. 1441 */ 1442 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 1443 if (!lva) 1444 return -1; 1445 } 1446 1447 /* 1448 * Build the remainder. 1449 */ 1450 lva->va_start = va->va_start; 1451 lva->va_end = nva_start_addr; 1452 1453 /* 1454 * Shrink this VA to remaining size. 1455 */ 1456 va->va_start = nva_start_addr + size; 1457 } else { 1458 return -1; 1459 } 1460 1461 if (type != FL_FIT_TYPE) { 1462 augment_tree_propagate_from(va); 1463 1464 if (lva) /* type == NE_FIT_TYPE */ 1465 insert_vmap_area_augment(lva, &va->rb_node, root, head); 1466 } 1467 1468 return 0; 1469 } 1470 1471 /* 1472 * Returns a start address of the newly allocated area, if success. 1473 * Otherwise a vend is returned that indicates failure. 1474 */ 1475 static __always_inline unsigned long 1476 __alloc_vmap_area(struct rb_root *root, struct list_head *head, 1477 unsigned long size, unsigned long align, 1478 unsigned long vstart, unsigned long vend) 1479 { 1480 bool adjust_search_size = true; 1481 unsigned long nva_start_addr; 1482 struct vmap_area *va; 1483 int ret; 1484 1485 /* 1486 * Do not adjust when: 1487 * a) align <= PAGE_SIZE, because it does not make any sense. 1488 * All blocks(their start addresses) are at least PAGE_SIZE 1489 * aligned anyway; 1490 * b) a short range where a requested size corresponds to exactly 1491 * specified [vstart:vend] interval and an alignment > PAGE_SIZE. 1492 * With adjusted search length an allocation would not succeed. 1493 */ 1494 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) 1495 adjust_search_size = false; 1496 1497 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size); 1498 if (unlikely(!va)) 1499 return vend; 1500 1501 if (va->va_start > vstart) 1502 nva_start_addr = ALIGN(va->va_start, align); 1503 else 1504 nva_start_addr = ALIGN(vstart, align); 1505 1506 /* Check the "vend" restriction. */ 1507 if (nva_start_addr + size > vend) 1508 return vend; 1509 1510 /* Update the free vmap_area. */ 1511 ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size); 1512 if (WARN_ON_ONCE(ret)) 1513 return vend; 1514 1515 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1516 find_vmap_lowest_match_check(size, align); 1517 #endif 1518 1519 return nva_start_addr; 1520 } 1521 1522 /* 1523 * Free a region of KVA allocated by alloc_vmap_area 1524 */ 1525 static void free_vmap_area(struct vmap_area *va) 1526 { 1527 /* 1528 * Remove from the busy tree/list. 1529 */ 1530 spin_lock(&vmap_area_lock); 1531 unlink_va(va, &vmap_area_root); 1532 spin_unlock(&vmap_area_lock); 1533 1534 /* 1535 * Insert/Merge it back to the free tree/list. 1536 */ 1537 spin_lock(&free_vmap_area_lock); 1538 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); 1539 spin_unlock(&free_vmap_area_lock); 1540 } 1541 1542 static inline void 1543 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) 1544 { 1545 struct vmap_area *va = NULL; 1546 1547 /* 1548 * Preload this CPU with one extra vmap_area object. It is used 1549 * when fit type of free area is NE_FIT_TYPE. It guarantees that 1550 * a CPU that does an allocation is preloaded. 1551 * 1552 * We do it in non-atomic context, thus it allows us to use more 1553 * permissive allocation masks to be more stable under low memory 1554 * condition and high memory pressure. 1555 */ 1556 if (!this_cpu_read(ne_fit_preload_node)) 1557 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1558 1559 spin_lock(lock); 1560 1561 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va)) 1562 kmem_cache_free(vmap_area_cachep, va); 1563 } 1564 1565 /* 1566 * Allocate a region of KVA of the specified size and alignment, within the 1567 * vstart and vend. 1568 */ 1569 static struct vmap_area *alloc_vmap_area(unsigned long size, 1570 unsigned long align, 1571 unsigned long vstart, unsigned long vend, 1572 int node, gfp_t gfp_mask) 1573 { 1574 struct vmap_area *va; 1575 unsigned long freed; 1576 unsigned long addr; 1577 int purged = 0; 1578 int ret; 1579 1580 BUG_ON(!size); 1581 BUG_ON(offset_in_page(size)); 1582 BUG_ON(!is_power_of_2(align)); 1583 1584 if (unlikely(!vmap_initialized)) 1585 return ERR_PTR(-EBUSY); 1586 1587 might_sleep(); 1588 gfp_mask = gfp_mask & GFP_RECLAIM_MASK; 1589 1590 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1591 if (unlikely(!va)) 1592 return ERR_PTR(-ENOMEM); 1593 1594 /* 1595 * Only scan the relevant parts containing pointers to other objects 1596 * to avoid false negatives. 1597 */ 1598 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); 1599 1600 retry: 1601 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); 1602 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list, 1603 size, align, vstart, vend); 1604 spin_unlock(&free_vmap_area_lock); 1605 1606 /* 1607 * If an allocation fails, the "vend" address is 1608 * returned. Therefore trigger the overflow path. 1609 */ 1610 if (unlikely(addr == vend)) 1611 goto overflow; 1612 1613 va->va_start = addr; 1614 va->va_end = addr + size; 1615 va->vm = NULL; 1616 1617 spin_lock(&vmap_area_lock); 1618 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1619 spin_unlock(&vmap_area_lock); 1620 1621 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1622 BUG_ON(va->va_start < vstart); 1623 BUG_ON(va->va_end > vend); 1624 1625 ret = kasan_populate_vmalloc(addr, size); 1626 if (ret) { 1627 free_vmap_area(va); 1628 return ERR_PTR(ret); 1629 } 1630 1631 return va; 1632 1633 overflow: 1634 if (!purged) { 1635 purge_vmap_area_lazy(); 1636 purged = 1; 1637 goto retry; 1638 } 1639 1640 freed = 0; 1641 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 1642 1643 if (freed > 0) { 1644 purged = 0; 1645 goto retry; 1646 } 1647 1648 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 1649 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 1650 size); 1651 1652 kmem_cache_free(vmap_area_cachep, va); 1653 return ERR_PTR(-EBUSY); 1654 } 1655 1656 int register_vmap_purge_notifier(struct notifier_block *nb) 1657 { 1658 return blocking_notifier_chain_register(&vmap_notify_list, nb); 1659 } 1660 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 1661 1662 int unregister_vmap_purge_notifier(struct notifier_block *nb) 1663 { 1664 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 1665 } 1666 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 1667 1668 /* 1669 * lazy_max_pages is the maximum amount of virtual address space we gather up 1670 * before attempting to purge with a TLB flush. 1671 * 1672 * There is a tradeoff here: a larger number will cover more kernel page tables 1673 * and take slightly longer to purge, but it will linearly reduce the number of 1674 * global TLB flushes that must be performed. It would seem natural to scale 1675 * this number up linearly with the number of CPUs (because vmapping activity 1676 * could also scale linearly with the number of CPUs), however it is likely 1677 * that in practice, workloads might be constrained in other ways that mean 1678 * vmap activity will not scale linearly with CPUs. Also, I want to be 1679 * conservative and not introduce a big latency on huge systems, so go with 1680 * a less aggressive log scale. It will still be an improvement over the old 1681 * code, and it will be simple to change the scale factor if we find that it 1682 * becomes a problem on bigger systems. 1683 */ 1684 static unsigned long lazy_max_pages(void) 1685 { 1686 unsigned int log; 1687 1688 log = fls(num_online_cpus()); 1689 1690 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 1691 } 1692 1693 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 1694 1695 /* 1696 * Serialize vmap purging. There is no actual critical section protected 1697 * by this lock, but we want to avoid concurrent calls for performance 1698 * reasons and to make the pcpu_get_vm_areas more deterministic. 1699 */ 1700 static DEFINE_MUTEX(vmap_purge_lock); 1701 1702 /* for per-CPU blocks */ 1703 static void purge_fragmented_blocks_allcpus(void); 1704 1705 /* 1706 * Purges all lazily-freed vmap areas. 1707 */ 1708 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 1709 { 1710 unsigned long resched_threshold; 1711 struct list_head local_purge_list; 1712 struct vmap_area *va, *n_va; 1713 1714 lockdep_assert_held(&vmap_purge_lock); 1715 1716 spin_lock(&purge_vmap_area_lock); 1717 purge_vmap_area_root = RB_ROOT; 1718 list_replace_init(&purge_vmap_area_list, &local_purge_list); 1719 spin_unlock(&purge_vmap_area_lock); 1720 1721 if (unlikely(list_empty(&local_purge_list))) 1722 return false; 1723 1724 start = min(start, 1725 list_first_entry(&local_purge_list, 1726 struct vmap_area, list)->va_start); 1727 1728 end = max(end, 1729 list_last_entry(&local_purge_list, 1730 struct vmap_area, list)->va_end); 1731 1732 flush_tlb_kernel_range(start, end); 1733 resched_threshold = lazy_max_pages() << 1; 1734 1735 spin_lock(&free_vmap_area_lock); 1736 list_for_each_entry_safe(va, n_va, &local_purge_list, list) { 1737 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 1738 unsigned long orig_start = va->va_start; 1739 unsigned long orig_end = va->va_end; 1740 1741 /* 1742 * Finally insert or merge lazily-freed area. It is 1743 * detached and there is no need to "unlink" it from 1744 * anything. 1745 */ 1746 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root, 1747 &free_vmap_area_list); 1748 1749 if (!va) 1750 continue; 1751 1752 if (is_vmalloc_or_module_addr((void *)orig_start)) 1753 kasan_release_vmalloc(orig_start, orig_end, 1754 va->va_start, va->va_end); 1755 1756 atomic_long_sub(nr, &vmap_lazy_nr); 1757 1758 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 1759 cond_resched_lock(&free_vmap_area_lock); 1760 } 1761 spin_unlock(&free_vmap_area_lock); 1762 return true; 1763 } 1764 1765 /* 1766 * Kick off a purge of the outstanding lazy areas. 1767 */ 1768 static void purge_vmap_area_lazy(void) 1769 { 1770 mutex_lock(&vmap_purge_lock); 1771 purge_fragmented_blocks_allcpus(); 1772 __purge_vmap_area_lazy(ULONG_MAX, 0); 1773 mutex_unlock(&vmap_purge_lock); 1774 } 1775 1776 static void drain_vmap_area_work(struct work_struct *work) 1777 { 1778 unsigned long nr_lazy; 1779 1780 do { 1781 mutex_lock(&vmap_purge_lock); 1782 __purge_vmap_area_lazy(ULONG_MAX, 0); 1783 mutex_unlock(&vmap_purge_lock); 1784 1785 /* Recheck if further work is required. */ 1786 nr_lazy = atomic_long_read(&vmap_lazy_nr); 1787 } while (nr_lazy > lazy_max_pages()); 1788 } 1789 1790 /* 1791 * Free a vmap area, caller ensuring that the area has been unmapped 1792 * and flush_cache_vunmap had been called for the correct range 1793 * previously. 1794 */ 1795 static void free_vmap_area_noflush(struct vmap_area *va) 1796 { 1797 unsigned long nr_lazy; 1798 1799 spin_lock(&vmap_area_lock); 1800 unlink_va(va, &vmap_area_root); 1801 spin_unlock(&vmap_area_lock); 1802 1803 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 1804 PAGE_SHIFT, &vmap_lazy_nr); 1805 1806 /* 1807 * Merge or place it to the purge tree/list. 1808 */ 1809 spin_lock(&purge_vmap_area_lock); 1810 merge_or_add_vmap_area(va, 1811 &purge_vmap_area_root, &purge_vmap_area_list); 1812 spin_unlock(&purge_vmap_area_lock); 1813 1814 /* After this point, we may free va at any time */ 1815 if (unlikely(nr_lazy > lazy_max_pages())) 1816 schedule_work(&drain_vmap_work); 1817 } 1818 1819 /* 1820 * Free and unmap a vmap area 1821 */ 1822 static void free_unmap_vmap_area(struct vmap_area *va) 1823 { 1824 flush_cache_vunmap(va->va_start, va->va_end); 1825 vunmap_range_noflush(va->va_start, va->va_end); 1826 if (debug_pagealloc_enabled_static()) 1827 flush_tlb_kernel_range(va->va_start, va->va_end); 1828 1829 free_vmap_area_noflush(va); 1830 } 1831 1832 struct vmap_area *find_vmap_area(unsigned long addr) 1833 { 1834 struct vmap_area *va; 1835 1836 spin_lock(&vmap_area_lock); 1837 va = __find_vmap_area(addr, &vmap_area_root); 1838 spin_unlock(&vmap_area_lock); 1839 1840 return va; 1841 } 1842 1843 /*** Per cpu kva allocator ***/ 1844 1845 /* 1846 * vmap space is limited especially on 32 bit architectures. Ensure there is 1847 * room for at least 16 percpu vmap blocks per CPU. 1848 */ 1849 /* 1850 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 1851 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 1852 * instead (we just need a rough idea) 1853 */ 1854 #if BITS_PER_LONG == 32 1855 #define VMALLOC_SPACE (128UL*1024*1024) 1856 #else 1857 #define VMALLOC_SPACE (128UL*1024*1024*1024) 1858 #endif 1859 1860 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 1861 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 1862 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 1863 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 1864 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 1865 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 1866 #define VMAP_BBMAP_BITS \ 1867 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 1868 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 1869 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 1870 1871 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 1872 1873 struct vmap_block_queue { 1874 spinlock_t lock; 1875 struct list_head free; 1876 }; 1877 1878 struct vmap_block { 1879 spinlock_t lock; 1880 struct vmap_area *va; 1881 unsigned long free, dirty; 1882 unsigned long dirty_min, dirty_max; /*< dirty range */ 1883 struct list_head free_list; 1884 struct rcu_head rcu_head; 1885 struct list_head purge; 1886 }; 1887 1888 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 1889 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 1890 1891 /* 1892 * XArray of vmap blocks, indexed by address, to quickly find a vmap block 1893 * in the free path. Could get rid of this if we change the API to return a 1894 * "cookie" from alloc, to be passed to free. But no big deal yet. 1895 */ 1896 static DEFINE_XARRAY(vmap_blocks); 1897 1898 /* 1899 * We should probably have a fallback mechanism to allocate virtual memory 1900 * out of partially filled vmap blocks. However vmap block sizing should be 1901 * fairly reasonable according to the vmalloc size, so it shouldn't be a 1902 * big problem. 1903 */ 1904 1905 static unsigned long addr_to_vb_idx(unsigned long addr) 1906 { 1907 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 1908 addr /= VMAP_BLOCK_SIZE; 1909 return addr; 1910 } 1911 1912 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 1913 { 1914 unsigned long addr; 1915 1916 addr = va_start + (pages_off << PAGE_SHIFT); 1917 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 1918 return (void *)addr; 1919 } 1920 1921 /** 1922 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 1923 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 1924 * @order: how many 2^order pages should be occupied in newly allocated block 1925 * @gfp_mask: flags for the page level allocator 1926 * 1927 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 1928 */ 1929 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 1930 { 1931 struct vmap_block_queue *vbq; 1932 struct vmap_block *vb; 1933 struct vmap_area *va; 1934 unsigned long vb_idx; 1935 int node, err; 1936 void *vaddr; 1937 1938 node = numa_node_id(); 1939 1940 vb = kmalloc_node(sizeof(struct vmap_block), 1941 gfp_mask & GFP_RECLAIM_MASK, node); 1942 if (unlikely(!vb)) 1943 return ERR_PTR(-ENOMEM); 1944 1945 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 1946 VMALLOC_START, VMALLOC_END, 1947 node, gfp_mask); 1948 if (IS_ERR(va)) { 1949 kfree(vb); 1950 return ERR_CAST(va); 1951 } 1952 1953 vaddr = vmap_block_vaddr(va->va_start, 0); 1954 spin_lock_init(&vb->lock); 1955 vb->va = va; 1956 /* At least something should be left free */ 1957 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 1958 vb->free = VMAP_BBMAP_BITS - (1UL << order); 1959 vb->dirty = 0; 1960 vb->dirty_min = VMAP_BBMAP_BITS; 1961 vb->dirty_max = 0; 1962 INIT_LIST_HEAD(&vb->free_list); 1963 1964 vb_idx = addr_to_vb_idx(va->va_start); 1965 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask); 1966 if (err) { 1967 kfree(vb); 1968 free_vmap_area(va); 1969 return ERR_PTR(err); 1970 } 1971 1972 vbq = raw_cpu_ptr(&vmap_block_queue); 1973 spin_lock(&vbq->lock); 1974 list_add_tail_rcu(&vb->free_list, &vbq->free); 1975 spin_unlock(&vbq->lock); 1976 1977 return vaddr; 1978 } 1979 1980 static void free_vmap_block(struct vmap_block *vb) 1981 { 1982 struct vmap_block *tmp; 1983 1984 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start)); 1985 BUG_ON(tmp != vb); 1986 1987 free_vmap_area_noflush(vb->va); 1988 kfree_rcu(vb, rcu_head); 1989 } 1990 1991 static void purge_fragmented_blocks(int cpu) 1992 { 1993 LIST_HEAD(purge); 1994 struct vmap_block *vb; 1995 struct vmap_block *n_vb; 1996 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1997 1998 rcu_read_lock(); 1999 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2000 2001 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 2002 continue; 2003 2004 spin_lock(&vb->lock); 2005 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 2006 vb->free = 0; /* prevent further allocs after releasing lock */ 2007 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 2008 vb->dirty_min = 0; 2009 vb->dirty_max = VMAP_BBMAP_BITS; 2010 spin_lock(&vbq->lock); 2011 list_del_rcu(&vb->free_list); 2012 spin_unlock(&vbq->lock); 2013 spin_unlock(&vb->lock); 2014 list_add_tail(&vb->purge, &purge); 2015 } else 2016 spin_unlock(&vb->lock); 2017 } 2018 rcu_read_unlock(); 2019 2020 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 2021 list_del(&vb->purge); 2022 free_vmap_block(vb); 2023 } 2024 } 2025 2026 static void purge_fragmented_blocks_allcpus(void) 2027 { 2028 int cpu; 2029 2030 for_each_possible_cpu(cpu) 2031 purge_fragmented_blocks(cpu); 2032 } 2033 2034 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 2035 { 2036 struct vmap_block_queue *vbq; 2037 struct vmap_block *vb; 2038 void *vaddr = NULL; 2039 unsigned int order; 2040 2041 BUG_ON(offset_in_page(size)); 2042 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2043 if (WARN_ON(size == 0)) { 2044 /* 2045 * Allocating 0 bytes isn't what caller wants since 2046 * get_order(0) returns funny result. Just warn and terminate 2047 * early. 2048 */ 2049 return NULL; 2050 } 2051 order = get_order(size); 2052 2053 rcu_read_lock(); 2054 vbq = raw_cpu_ptr(&vmap_block_queue); 2055 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2056 unsigned long pages_off; 2057 2058 spin_lock(&vb->lock); 2059 if (vb->free < (1UL << order)) { 2060 spin_unlock(&vb->lock); 2061 continue; 2062 } 2063 2064 pages_off = VMAP_BBMAP_BITS - vb->free; 2065 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 2066 vb->free -= 1UL << order; 2067 if (vb->free == 0) { 2068 spin_lock(&vbq->lock); 2069 list_del_rcu(&vb->free_list); 2070 spin_unlock(&vbq->lock); 2071 } 2072 2073 spin_unlock(&vb->lock); 2074 break; 2075 } 2076 2077 rcu_read_unlock(); 2078 2079 /* Allocate new block if nothing was found */ 2080 if (!vaddr) 2081 vaddr = new_vmap_block(order, gfp_mask); 2082 2083 return vaddr; 2084 } 2085 2086 static void vb_free(unsigned long addr, unsigned long size) 2087 { 2088 unsigned long offset; 2089 unsigned int order; 2090 struct vmap_block *vb; 2091 2092 BUG_ON(offset_in_page(size)); 2093 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2094 2095 flush_cache_vunmap(addr, addr + size); 2096 2097 order = get_order(size); 2098 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; 2099 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr)); 2100 2101 vunmap_range_noflush(addr, addr + size); 2102 2103 if (debug_pagealloc_enabled_static()) 2104 flush_tlb_kernel_range(addr, addr + size); 2105 2106 spin_lock(&vb->lock); 2107 2108 /* Expand dirty range */ 2109 vb->dirty_min = min(vb->dirty_min, offset); 2110 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 2111 2112 vb->dirty += 1UL << order; 2113 if (vb->dirty == VMAP_BBMAP_BITS) { 2114 BUG_ON(vb->free); 2115 spin_unlock(&vb->lock); 2116 free_vmap_block(vb); 2117 } else 2118 spin_unlock(&vb->lock); 2119 } 2120 2121 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 2122 { 2123 int cpu; 2124 2125 if (unlikely(!vmap_initialized)) 2126 return; 2127 2128 might_sleep(); 2129 2130 for_each_possible_cpu(cpu) { 2131 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2132 struct vmap_block *vb; 2133 2134 rcu_read_lock(); 2135 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2136 spin_lock(&vb->lock); 2137 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) { 2138 unsigned long va_start = vb->va->va_start; 2139 unsigned long s, e; 2140 2141 s = va_start + (vb->dirty_min << PAGE_SHIFT); 2142 e = va_start + (vb->dirty_max << PAGE_SHIFT); 2143 2144 start = min(s, start); 2145 end = max(e, end); 2146 2147 flush = 1; 2148 } 2149 spin_unlock(&vb->lock); 2150 } 2151 rcu_read_unlock(); 2152 } 2153 2154 mutex_lock(&vmap_purge_lock); 2155 purge_fragmented_blocks_allcpus(); 2156 if (!__purge_vmap_area_lazy(start, end) && flush) 2157 flush_tlb_kernel_range(start, end); 2158 mutex_unlock(&vmap_purge_lock); 2159 } 2160 2161 /** 2162 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 2163 * 2164 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 2165 * to amortize TLB flushing overheads. What this means is that any page you 2166 * have now, may, in a former life, have been mapped into kernel virtual 2167 * address by the vmap layer and so there might be some CPUs with TLB entries 2168 * still referencing that page (additional to the regular 1:1 kernel mapping). 2169 * 2170 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 2171 * be sure that none of the pages we have control over will have any aliases 2172 * from the vmap layer. 2173 */ 2174 void vm_unmap_aliases(void) 2175 { 2176 unsigned long start = ULONG_MAX, end = 0; 2177 int flush = 0; 2178 2179 _vm_unmap_aliases(start, end, flush); 2180 } 2181 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 2182 2183 /** 2184 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 2185 * @mem: the pointer returned by vm_map_ram 2186 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 2187 */ 2188 void vm_unmap_ram(const void *mem, unsigned int count) 2189 { 2190 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2191 unsigned long addr = (unsigned long)kasan_reset_tag(mem); 2192 struct vmap_area *va; 2193 2194 might_sleep(); 2195 BUG_ON(!addr); 2196 BUG_ON(addr < VMALLOC_START); 2197 BUG_ON(addr > VMALLOC_END); 2198 BUG_ON(!PAGE_ALIGNED(addr)); 2199 2200 kasan_poison_vmalloc(mem, size); 2201 2202 if (likely(count <= VMAP_MAX_ALLOC)) { 2203 debug_check_no_locks_freed(mem, size); 2204 vb_free(addr, size); 2205 return; 2206 } 2207 2208 va = find_vmap_area(addr); 2209 BUG_ON(!va); 2210 debug_check_no_locks_freed((void *)va->va_start, 2211 (va->va_end - va->va_start)); 2212 free_unmap_vmap_area(va); 2213 } 2214 EXPORT_SYMBOL(vm_unmap_ram); 2215 2216 /** 2217 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 2218 * @pages: an array of pointers to the pages to be mapped 2219 * @count: number of pages 2220 * @node: prefer to allocate data structures on this node 2221 * 2222 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 2223 * faster than vmap so it's good. But if you mix long-life and short-life 2224 * objects with vm_map_ram(), it could consume lots of address space through 2225 * fragmentation (especially on a 32bit machine). You could see failures in 2226 * the end. Please use this function for short-lived objects. 2227 * 2228 * Returns: a pointer to the address that has been mapped, or %NULL on failure 2229 */ 2230 void *vm_map_ram(struct page **pages, unsigned int count, int node) 2231 { 2232 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2233 unsigned long addr; 2234 void *mem; 2235 2236 if (likely(count <= VMAP_MAX_ALLOC)) { 2237 mem = vb_alloc(size, GFP_KERNEL); 2238 if (IS_ERR(mem)) 2239 return NULL; 2240 addr = (unsigned long)mem; 2241 } else { 2242 struct vmap_area *va; 2243 va = alloc_vmap_area(size, PAGE_SIZE, 2244 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 2245 if (IS_ERR(va)) 2246 return NULL; 2247 2248 addr = va->va_start; 2249 mem = (void *)addr; 2250 } 2251 2252 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, 2253 pages, PAGE_SHIFT) < 0) { 2254 vm_unmap_ram(mem, count); 2255 return NULL; 2256 } 2257 2258 /* 2259 * Mark the pages as accessible, now that they are mapped. 2260 * With hardware tag-based KASAN, marking is skipped for 2261 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 2262 */ 2263 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); 2264 2265 return mem; 2266 } 2267 EXPORT_SYMBOL(vm_map_ram); 2268 2269 static struct vm_struct *vmlist __initdata; 2270 2271 static inline unsigned int vm_area_page_order(struct vm_struct *vm) 2272 { 2273 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2274 return vm->page_order; 2275 #else 2276 return 0; 2277 #endif 2278 } 2279 2280 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) 2281 { 2282 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2283 vm->page_order = order; 2284 #else 2285 BUG_ON(order != 0); 2286 #endif 2287 } 2288 2289 /** 2290 * vm_area_add_early - add vmap area early during boot 2291 * @vm: vm_struct to add 2292 * 2293 * This function is used to add fixed kernel vm area to vmlist before 2294 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 2295 * should contain proper values and the other fields should be zero. 2296 * 2297 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2298 */ 2299 void __init vm_area_add_early(struct vm_struct *vm) 2300 { 2301 struct vm_struct *tmp, **p; 2302 2303 BUG_ON(vmap_initialized); 2304 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 2305 if (tmp->addr >= vm->addr) { 2306 BUG_ON(tmp->addr < vm->addr + vm->size); 2307 break; 2308 } else 2309 BUG_ON(tmp->addr + tmp->size > vm->addr); 2310 } 2311 vm->next = *p; 2312 *p = vm; 2313 } 2314 2315 /** 2316 * vm_area_register_early - register vmap area early during boot 2317 * @vm: vm_struct to register 2318 * @align: requested alignment 2319 * 2320 * This function is used to register kernel vm area before 2321 * vmalloc_init() is called. @vm->size and @vm->flags should contain 2322 * proper values on entry and other fields should be zero. On return, 2323 * vm->addr contains the allocated address. 2324 * 2325 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2326 */ 2327 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 2328 { 2329 unsigned long addr = ALIGN(VMALLOC_START, align); 2330 struct vm_struct *cur, **p; 2331 2332 BUG_ON(vmap_initialized); 2333 2334 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { 2335 if ((unsigned long)cur->addr - addr >= vm->size) 2336 break; 2337 addr = ALIGN((unsigned long)cur->addr + cur->size, align); 2338 } 2339 2340 BUG_ON(addr > VMALLOC_END - vm->size); 2341 vm->addr = (void *)addr; 2342 vm->next = *p; 2343 *p = vm; 2344 kasan_populate_early_vm_area_shadow(vm->addr, vm->size); 2345 } 2346 2347 static void vmap_init_free_space(void) 2348 { 2349 unsigned long vmap_start = 1; 2350 const unsigned long vmap_end = ULONG_MAX; 2351 struct vmap_area *busy, *free; 2352 2353 /* 2354 * B F B B B F 2355 * -|-----|.....|-----|-----|-----|.....|- 2356 * | The KVA space | 2357 * |<--------------------------------->| 2358 */ 2359 list_for_each_entry(busy, &vmap_area_list, list) { 2360 if (busy->va_start - vmap_start > 0) { 2361 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2362 if (!WARN_ON_ONCE(!free)) { 2363 free->va_start = vmap_start; 2364 free->va_end = busy->va_start; 2365 2366 insert_vmap_area_augment(free, NULL, 2367 &free_vmap_area_root, 2368 &free_vmap_area_list); 2369 } 2370 } 2371 2372 vmap_start = busy->va_end; 2373 } 2374 2375 if (vmap_end - vmap_start > 0) { 2376 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2377 if (!WARN_ON_ONCE(!free)) { 2378 free->va_start = vmap_start; 2379 free->va_end = vmap_end; 2380 2381 insert_vmap_area_augment(free, NULL, 2382 &free_vmap_area_root, 2383 &free_vmap_area_list); 2384 } 2385 } 2386 } 2387 2388 void __init vmalloc_init(void) 2389 { 2390 struct vmap_area *va; 2391 struct vm_struct *tmp; 2392 int i; 2393 2394 /* 2395 * Create the cache for vmap_area objects. 2396 */ 2397 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 2398 2399 for_each_possible_cpu(i) { 2400 struct vmap_block_queue *vbq; 2401 struct vfree_deferred *p; 2402 2403 vbq = &per_cpu(vmap_block_queue, i); 2404 spin_lock_init(&vbq->lock); 2405 INIT_LIST_HEAD(&vbq->free); 2406 p = &per_cpu(vfree_deferred, i); 2407 init_llist_head(&p->list); 2408 INIT_WORK(&p->wq, free_work); 2409 } 2410 2411 /* Import existing vmlist entries. */ 2412 for (tmp = vmlist; tmp; tmp = tmp->next) { 2413 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2414 if (WARN_ON_ONCE(!va)) 2415 continue; 2416 2417 va->va_start = (unsigned long)tmp->addr; 2418 va->va_end = va->va_start + tmp->size; 2419 va->vm = tmp; 2420 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 2421 } 2422 2423 /* 2424 * Now we can initialize a free vmap space. 2425 */ 2426 vmap_init_free_space(); 2427 vmap_initialized = true; 2428 } 2429 2430 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, 2431 struct vmap_area *va, unsigned long flags, const void *caller) 2432 { 2433 vm->flags = flags; 2434 vm->addr = (void *)va->va_start; 2435 vm->size = va->va_end - va->va_start; 2436 vm->caller = caller; 2437 va->vm = vm; 2438 } 2439 2440 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 2441 unsigned long flags, const void *caller) 2442 { 2443 spin_lock(&vmap_area_lock); 2444 setup_vmalloc_vm_locked(vm, va, flags, caller); 2445 spin_unlock(&vmap_area_lock); 2446 } 2447 2448 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 2449 { 2450 /* 2451 * Before removing VM_UNINITIALIZED, 2452 * we should make sure that vm has proper values. 2453 * Pair with smp_rmb() in show_numa_info(). 2454 */ 2455 smp_wmb(); 2456 vm->flags &= ~VM_UNINITIALIZED; 2457 } 2458 2459 static struct vm_struct *__get_vm_area_node(unsigned long size, 2460 unsigned long align, unsigned long shift, unsigned long flags, 2461 unsigned long start, unsigned long end, int node, 2462 gfp_t gfp_mask, const void *caller) 2463 { 2464 struct vmap_area *va; 2465 struct vm_struct *area; 2466 unsigned long requested_size = size; 2467 2468 BUG_ON(in_interrupt()); 2469 size = ALIGN(size, 1ul << shift); 2470 if (unlikely(!size)) 2471 return NULL; 2472 2473 if (flags & VM_IOREMAP) 2474 align = 1ul << clamp_t(int, get_count_order_long(size), 2475 PAGE_SHIFT, IOREMAP_MAX_ORDER); 2476 2477 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 2478 if (unlikely(!area)) 2479 return NULL; 2480 2481 if (!(flags & VM_NO_GUARD)) 2482 size += PAGE_SIZE; 2483 2484 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 2485 if (IS_ERR(va)) { 2486 kfree(area); 2487 return NULL; 2488 } 2489 2490 setup_vmalloc_vm(area, va, flags, caller); 2491 2492 /* 2493 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a 2494 * best-effort approach, as they can be mapped outside of vmalloc code. 2495 * For VM_ALLOC mappings, the pages are marked as accessible after 2496 * getting mapped in __vmalloc_node_range(). 2497 * With hardware tag-based KASAN, marking is skipped for 2498 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 2499 */ 2500 if (!(flags & VM_ALLOC)) 2501 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, 2502 KASAN_VMALLOC_PROT_NORMAL); 2503 2504 return area; 2505 } 2506 2507 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 2508 unsigned long start, unsigned long end, 2509 const void *caller) 2510 { 2511 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, 2512 NUMA_NO_NODE, GFP_KERNEL, caller); 2513 } 2514 2515 /** 2516 * get_vm_area - reserve a contiguous kernel virtual area 2517 * @size: size of the area 2518 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 2519 * 2520 * Search an area of @size in the kernel virtual mapping area, 2521 * and reserved it for out purposes. Returns the area descriptor 2522 * on success or %NULL on failure. 2523 * 2524 * Return: the area descriptor on success or %NULL on failure. 2525 */ 2526 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 2527 { 2528 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2529 VMALLOC_START, VMALLOC_END, 2530 NUMA_NO_NODE, GFP_KERNEL, 2531 __builtin_return_address(0)); 2532 } 2533 2534 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 2535 const void *caller) 2536 { 2537 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2538 VMALLOC_START, VMALLOC_END, 2539 NUMA_NO_NODE, GFP_KERNEL, caller); 2540 } 2541 2542 /** 2543 * find_vm_area - find a continuous kernel virtual area 2544 * @addr: base address 2545 * 2546 * Search for the kernel VM area starting at @addr, and return it. 2547 * It is up to the caller to do all required locking to keep the returned 2548 * pointer valid. 2549 * 2550 * Return: the area descriptor on success or %NULL on failure. 2551 */ 2552 struct vm_struct *find_vm_area(const void *addr) 2553 { 2554 struct vmap_area *va; 2555 2556 va = find_vmap_area((unsigned long)addr); 2557 if (!va) 2558 return NULL; 2559 2560 return va->vm; 2561 } 2562 2563 /** 2564 * remove_vm_area - find and remove a continuous kernel virtual area 2565 * @addr: base address 2566 * 2567 * Search for the kernel VM area starting at @addr, and remove it. 2568 * This function returns the found VM area, but using it is NOT safe 2569 * on SMP machines, except for its size or flags. 2570 * 2571 * Return: the area descriptor on success or %NULL on failure. 2572 */ 2573 struct vm_struct *remove_vm_area(const void *addr) 2574 { 2575 struct vmap_area *va; 2576 2577 might_sleep(); 2578 2579 spin_lock(&vmap_area_lock); 2580 va = __find_vmap_area((unsigned long)addr, &vmap_area_root); 2581 if (va && va->vm) { 2582 struct vm_struct *vm = va->vm; 2583 2584 va->vm = NULL; 2585 spin_unlock(&vmap_area_lock); 2586 2587 kasan_free_module_shadow(vm); 2588 free_unmap_vmap_area(va); 2589 2590 return vm; 2591 } 2592 2593 spin_unlock(&vmap_area_lock); 2594 return NULL; 2595 } 2596 2597 static inline void set_area_direct_map(const struct vm_struct *area, 2598 int (*set_direct_map)(struct page *page)) 2599 { 2600 int i; 2601 2602 /* HUGE_VMALLOC passes small pages to set_direct_map */ 2603 for (i = 0; i < area->nr_pages; i++) 2604 if (page_address(area->pages[i])) 2605 set_direct_map(area->pages[i]); 2606 } 2607 2608 /* Handle removing and resetting vm mappings related to the vm_struct. */ 2609 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) 2610 { 2611 unsigned long start = ULONG_MAX, end = 0; 2612 unsigned int page_order = vm_area_page_order(area); 2613 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; 2614 int flush_dmap = 0; 2615 int i; 2616 2617 remove_vm_area(area->addr); 2618 2619 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ 2620 if (!flush_reset) 2621 return; 2622 2623 /* 2624 * If not deallocating pages, just do the flush of the VM area and 2625 * return. 2626 */ 2627 if (!deallocate_pages) { 2628 vm_unmap_aliases(); 2629 return; 2630 } 2631 2632 /* 2633 * If execution gets here, flush the vm mapping and reset the direct 2634 * map. Find the start and end range of the direct mappings to make sure 2635 * the vm_unmap_aliases() flush includes the direct map. 2636 */ 2637 for (i = 0; i < area->nr_pages; i += 1U << page_order) { 2638 unsigned long addr = (unsigned long)page_address(area->pages[i]); 2639 if (addr) { 2640 unsigned long page_size; 2641 2642 page_size = PAGE_SIZE << page_order; 2643 start = min(addr, start); 2644 end = max(addr + page_size, end); 2645 flush_dmap = 1; 2646 } 2647 } 2648 2649 /* 2650 * Set direct map to something invalid so that it won't be cached if 2651 * there are any accesses after the TLB flush, then flush the TLB and 2652 * reset the direct map permissions to the default. 2653 */ 2654 set_area_direct_map(area, set_direct_map_invalid_noflush); 2655 _vm_unmap_aliases(start, end, flush_dmap); 2656 set_area_direct_map(area, set_direct_map_default_noflush); 2657 } 2658 2659 static void __vunmap(const void *addr, int deallocate_pages) 2660 { 2661 struct vm_struct *area; 2662 2663 if (!addr) 2664 return; 2665 2666 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 2667 addr)) 2668 return; 2669 2670 area = find_vm_area(addr); 2671 if (unlikely(!area)) { 2672 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 2673 addr); 2674 return; 2675 } 2676 2677 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 2678 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 2679 2680 kasan_poison_vmalloc(area->addr, get_vm_area_size(area)); 2681 2682 vm_remove_mappings(area, deallocate_pages); 2683 2684 if (deallocate_pages) { 2685 int i; 2686 2687 for (i = 0; i < area->nr_pages; i++) { 2688 struct page *page = area->pages[i]; 2689 2690 BUG_ON(!page); 2691 mod_memcg_page_state(page, MEMCG_VMALLOC, -1); 2692 /* 2693 * High-order allocs for huge vmallocs are split, so 2694 * can be freed as an array of order-0 allocations 2695 */ 2696 __free_pages(page, 0); 2697 cond_resched(); 2698 } 2699 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); 2700 2701 kvfree(area->pages); 2702 } 2703 2704 kfree(area); 2705 } 2706 2707 static inline void __vfree_deferred(const void *addr) 2708 { 2709 /* 2710 * Use raw_cpu_ptr() because this can be called from preemptible 2711 * context. Preemption is absolutely fine here, because the llist_add() 2712 * implementation is lockless, so it works even if we are adding to 2713 * another cpu's list. schedule_work() should be fine with this too. 2714 */ 2715 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 2716 2717 if (llist_add((struct llist_node *)addr, &p->list)) 2718 schedule_work(&p->wq); 2719 } 2720 2721 /** 2722 * vfree_atomic - release memory allocated by vmalloc() 2723 * @addr: memory base address 2724 * 2725 * This one is just like vfree() but can be called in any atomic context 2726 * except NMIs. 2727 */ 2728 void vfree_atomic(const void *addr) 2729 { 2730 BUG_ON(in_nmi()); 2731 2732 kmemleak_free(addr); 2733 2734 if (!addr) 2735 return; 2736 __vfree_deferred(addr); 2737 } 2738 2739 static void __vfree(const void *addr) 2740 { 2741 if (unlikely(in_interrupt())) 2742 __vfree_deferred(addr); 2743 else 2744 __vunmap(addr, 1); 2745 } 2746 2747 /** 2748 * vfree - Release memory allocated by vmalloc() 2749 * @addr: Memory base address 2750 * 2751 * Free the virtually continuous memory area starting at @addr, as obtained 2752 * from one of the vmalloc() family of APIs. This will usually also free the 2753 * physical memory underlying the virtual allocation, but that memory is 2754 * reference counted, so it will not be freed until the last user goes away. 2755 * 2756 * If @addr is NULL, no operation is performed. 2757 * 2758 * Context: 2759 * May sleep if called *not* from interrupt context. 2760 * Must not be called in NMI context (strictly speaking, it could be 2761 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 2762 * conventions for vfree() arch-dependent would be a really bad idea). 2763 */ 2764 void vfree(const void *addr) 2765 { 2766 BUG_ON(in_nmi()); 2767 2768 kmemleak_free(addr); 2769 2770 might_sleep_if(!in_interrupt()); 2771 2772 if (!addr) 2773 return; 2774 2775 __vfree(addr); 2776 } 2777 EXPORT_SYMBOL(vfree); 2778 2779 /** 2780 * vunmap - release virtual mapping obtained by vmap() 2781 * @addr: memory base address 2782 * 2783 * Free the virtually contiguous memory area starting at @addr, 2784 * which was created from the page array passed to vmap(). 2785 * 2786 * Must not be called in interrupt context. 2787 */ 2788 void vunmap(const void *addr) 2789 { 2790 BUG_ON(in_interrupt()); 2791 might_sleep(); 2792 if (addr) 2793 __vunmap(addr, 0); 2794 } 2795 EXPORT_SYMBOL(vunmap); 2796 2797 /** 2798 * vmap - map an array of pages into virtually contiguous space 2799 * @pages: array of page pointers 2800 * @count: number of pages to map 2801 * @flags: vm_area->flags 2802 * @prot: page protection for the mapping 2803 * 2804 * Maps @count pages from @pages into contiguous kernel virtual space. 2805 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself 2806 * (which must be kmalloc or vmalloc memory) and one reference per pages in it 2807 * are transferred from the caller to vmap(), and will be freed / dropped when 2808 * vfree() is called on the return value. 2809 * 2810 * Return: the address of the area or %NULL on failure 2811 */ 2812 void *vmap(struct page **pages, unsigned int count, 2813 unsigned long flags, pgprot_t prot) 2814 { 2815 struct vm_struct *area; 2816 unsigned long addr; 2817 unsigned long size; /* In bytes */ 2818 2819 might_sleep(); 2820 2821 /* 2822 * Your top guard is someone else's bottom guard. Not having a top 2823 * guard compromises someone else's mappings too. 2824 */ 2825 if (WARN_ON_ONCE(flags & VM_NO_GUARD)) 2826 flags &= ~VM_NO_GUARD; 2827 2828 if (count > totalram_pages()) 2829 return NULL; 2830 2831 size = (unsigned long)count << PAGE_SHIFT; 2832 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 2833 if (!area) 2834 return NULL; 2835 2836 addr = (unsigned long)area->addr; 2837 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), 2838 pages, PAGE_SHIFT) < 0) { 2839 vunmap(area->addr); 2840 return NULL; 2841 } 2842 2843 if (flags & VM_MAP_PUT_PAGES) { 2844 area->pages = pages; 2845 area->nr_pages = count; 2846 } 2847 return area->addr; 2848 } 2849 EXPORT_SYMBOL(vmap); 2850 2851 #ifdef CONFIG_VMAP_PFN 2852 struct vmap_pfn_data { 2853 unsigned long *pfns; 2854 pgprot_t prot; 2855 unsigned int idx; 2856 }; 2857 2858 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) 2859 { 2860 struct vmap_pfn_data *data = private; 2861 2862 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx]))) 2863 return -EINVAL; 2864 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot)); 2865 return 0; 2866 } 2867 2868 /** 2869 * vmap_pfn - map an array of PFNs into virtually contiguous space 2870 * @pfns: array of PFNs 2871 * @count: number of pages to map 2872 * @prot: page protection for the mapping 2873 * 2874 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns 2875 * the start address of the mapping. 2876 */ 2877 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) 2878 { 2879 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; 2880 struct vm_struct *area; 2881 2882 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, 2883 __builtin_return_address(0)); 2884 if (!area) 2885 return NULL; 2886 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2887 count * PAGE_SIZE, vmap_pfn_apply, &data)) { 2888 free_vm_area(area); 2889 return NULL; 2890 } 2891 return area->addr; 2892 } 2893 EXPORT_SYMBOL_GPL(vmap_pfn); 2894 #endif /* CONFIG_VMAP_PFN */ 2895 2896 static inline unsigned int 2897 vm_area_alloc_pages(gfp_t gfp, int nid, 2898 unsigned int order, unsigned int nr_pages, struct page **pages) 2899 { 2900 unsigned int nr_allocated = 0; 2901 struct page *page; 2902 int i; 2903 2904 /* 2905 * For order-0 pages we make use of bulk allocator, if 2906 * the page array is partly or not at all populated due 2907 * to fails, fallback to a single page allocator that is 2908 * more permissive. 2909 */ 2910 if (!order) { 2911 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL; 2912 2913 while (nr_allocated < nr_pages) { 2914 unsigned int nr, nr_pages_request; 2915 2916 /* 2917 * A maximum allowed request is hard-coded and is 100 2918 * pages per call. That is done in order to prevent a 2919 * long preemption off scenario in the bulk-allocator 2920 * so the range is [1:100]. 2921 */ 2922 nr_pages_request = min(100U, nr_pages - nr_allocated); 2923 2924 /* memory allocation should consider mempolicy, we can't 2925 * wrongly use nearest node when nid == NUMA_NO_NODE, 2926 * otherwise memory may be allocated in only one node, 2927 * but mempolicy wants to alloc memory by interleaving. 2928 */ 2929 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) 2930 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp, 2931 nr_pages_request, 2932 pages + nr_allocated); 2933 2934 else 2935 nr = alloc_pages_bulk_array_node(bulk_gfp, nid, 2936 nr_pages_request, 2937 pages + nr_allocated); 2938 2939 nr_allocated += nr; 2940 cond_resched(); 2941 2942 /* 2943 * If zero or pages were obtained partly, 2944 * fallback to a single page allocator. 2945 */ 2946 if (nr != nr_pages_request) 2947 break; 2948 } 2949 } 2950 2951 /* High-order pages or fallback path if "bulk" fails. */ 2952 2953 while (nr_allocated < nr_pages) { 2954 if (fatal_signal_pending(current)) 2955 break; 2956 2957 if (nid == NUMA_NO_NODE) 2958 page = alloc_pages(gfp, order); 2959 else 2960 page = alloc_pages_node(nid, gfp, order); 2961 if (unlikely(!page)) 2962 break; 2963 /* 2964 * Higher order allocations must be able to be treated as 2965 * indepdenent small pages by callers (as they can with 2966 * small-page vmallocs). Some drivers do their own refcounting 2967 * on vmalloc_to_page() pages, some use page->mapping, 2968 * page->lru, etc. 2969 */ 2970 if (order) 2971 split_page(page, order); 2972 2973 /* 2974 * Careful, we allocate and map page-order pages, but 2975 * tracking is done per PAGE_SIZE page so as to keep the 2976 * vm_struct APIs independent of the physical/mapped size. 2977 */ 2978 for (i = 0; i < (1U << order); i++) 2979 pages[nr_allocated + i] = page + i; 2980 2981 cond_resched(); 2982 nr_allocated += 1U << order; 2983 } 2984 2985 return nr_allocated; 2986 } 2987 2988 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 2989 pgprot_t prot, unsigned int page_shift, 2990 int node) 2991 { 2992 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 2993 bool nofail = gfp_mask & __GFP_NOFAIL; 2994 unsigned long addr = (unsigned long)area->addr; 2995 unsigned long size = get_vm_area_size(area); 2996 unsigned long array_size; 2997 unsigned int nr_small_pages = size >> PAGE_SHIFT; 2998 unsigned int page_order; 2999 unsigned int flags; 3000 int ret; 3001 3002 array_size = (unsigned long)nr_small_pages * sizeof(struct page *); 3003 gfp_mask |= __GFP_NOWARN; 3004 if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) 3005 gfp_mask |= __GFP_HIGHMEM; 3006 3007 /* Please note that the recursion is strictly bounded. */ 3008 if (array_size > PAGE_SIZE) { 3009 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node, 3010 area->caller); 3011 } else { 3012 area->pages = kmalloc_node(array_size, nested_gfp, node); 3013 } 3014 3015 if (!area->pages) { 3016 warn_alloc(gfp_mask, NULL, 3017 "vmalloc error: size %lu, failed to allocated page array size %lu", 3018 nr_small_pages * PAGE_SIZE, array_size); 3019 free_vm_area(area); 3020 return NULL; 3021 } 3022 3023 set_vm_area_page_order(area, page_shift - PAGE_SHIFT); 3024 page_order = vm_area_page_order(area); 3025 3026 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN, 3027 node, page_order, nr_small_pages, area->pages); 3028 3029 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 3030 if (gfp_mask & __GFP_ACCOUNT) { 3031 int i; 3032 3033 for (i = 0; i < area->nr_pages; i++) 3034 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1); 3035 } 3036 3037 /* 3038 * If not enough pages were obtained to accomplish an 3039 * allocation request, free them via __vfree() if any. 3040 */ 3041 if (area->nr_pages != nr_small_pages) { 3042 warn_alloc(gfp_mask, NULL, 3043 "vmalloc error: size %lu, page order %u, failed to allocate pages", 3044 area->nr_pages * PAGE_SIZE, page_order); 3045 goto fail; 3046 } 3047 3048 /* 3049 * page tables allocations ignore external gfp mask, enforce it 3050 * by the scope API 3051 */ 3052 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3053 flags = memalloc_nofs_save(); 3054 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3055 flags = memalloc_noio_save(); 3056 3057 do { 3058 ret = vmap_pages_range(addr, addr + size, prot, area->pages, 3059 page_shift); 3060 if (nofail && (ret < 0)) 3061 schedule_timeout_uninterruptible(1); 3062 } while (nofail && (ret < 0)); 3063 3064 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3065 memalloc_nofs_restore(flags); 3066 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3067 memalloc_noio_restore(flags); 3068 3069 if (ret < 0) { 3070 warn_alloc(gfp_mask, NULL, 3071 "vmalloc error: size %lu, failed to map pages", 3072 area->nr_pages * PAGE_SIZE); 3073 goto fail; 3074 } 3075 3076 return area->addr; 3077 3078 fail: 3079 __vfree(area->addr); 3080 return NULL; 3081 } 3082 3083 /** 3084 * __vmalloc_node_range - allocate virtually contiguous memory 3085 * @size: allocation size 3086 * @align: desired alignment 3087 * @start: vm area range start 3088 * @end: vm area range end 3089 * @gfp_mask: flags for the page level allocator 3090 * @prot: protection mask for the allocated pages 3091 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 3092 * @node: node to use for allocation or NUMA_NO_NODE 3093 * @caller: caller's return address 3094 * 3095 * Allocate enough pages to cover @size from the page level 3096 * allocator with @gfp_mask flags. Please note that the full set of gfp 3097 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all 3098 * supported. 3099 * Zone modifiers are not supported. From the reclaim modifiers 3100 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) 3101 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and 3102 * __GFP_RETRY_MAYFAIL are not supported). 3103 * 3104 * __GFP_NOWARN can be used to suppress failures messages. 3105 * 3106 * Map them into contiguous kernel virtual space, using a pagetable 3107 * protection of @prot. 3108 * 3109 * Return: the address of the area or %NULL on failure 3110 */ 3111 void *__vmalloc_node_range(unsigned long size, unsigned long align, 3112 unsigned long start, unsigned long end, gfp_t gfp_mask, 3113 pgprot_t prot, unsigned long vm_flags, int node, 3114 const void *caller) 3115 { 3116 struct vm_struct *area; 3117 void *ret; 3118 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; 3119 unsigned long real_size = size; 3120 unsigned long real_align = align; 3121 unsigned int shift = PAGE_SHIFT; 3122 3123 if (WARN_ON_ONCE(!size)) 3124 return NULL; 3125 3126 if ((size >> PAGE_SHIFT) > totalram_pages()) { 3127 warn_alloc(gfp_mask, NULL, 3128 "vmalloc error: size %lu, exceeds total pages", 3129 real_size); 3130 return NULL; 3131 } 3132 3133 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { 3134 unsigned long size_per_node; 3135 3136 /* 3137 * Try huge pages. Only try for PAGE_KERNEL allocations, 3138 * others like modules don't yet expect huge pages in 3139 * their allocations due to apply_to_page_range not 3140 * supporting them. 3141 */ 3142 3143 size_per_node = size; 3144 if (node == NUMA_NO_NODE) 3145 size_per_node /= num_online_nodes(); 3146 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE) 3147 shift = PMD_SHIFT; 3148 else 3149 shift = arch_vmap_pte_supported_shift(size_per_node); 3150 3151 align = max(real_align, 1UL << shift); 3152 size = ALIGN(real_size, 1UL << shift); 3153 } 3154 3155 again: 3156 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC | 3157 VM_UNINITIALIZED | vm_flags, start, end, node, 3158 gfp_mask, caller); 3159 if (!area) { 3160 bool nofail = gfp_mask & __GFP_NOFAIL; 3161 warn_alloc(gfp_mask, NULL, 3162 "vmalloc error: size %lu, vm_struct allocation failed%s", 3163 real_size, (nofail) ? ". Retrying." : ""); 3164 if (nofail) { 3165 schedule_timeout_uninterruptible(1); 3166 goto again; 3167 } 3168 goto fail; 3169 } 3170 3171 /* 3172 * Prepare arguments for __vmalloc_area_node() and 3173 * kasan_unpoison_vmalloc(). 3174 */ 3175 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { 3176 if (kasan_hw_tags_enabled()) { 3177 /* 3178 * Modify protection bits to allow tagging. 3179 * This must be done before mapping. 3180 */ 3181 prot = arch_vmap_pgprot_tagged(prot); 3182 3183 /* 3184 * Skip page_alloc poisoning and zeroing for physical 3185 * pages backing VM_ALLOC mapping. Memory is instead 3186 * poisoned and zeroed by kasan_unpoison_vmalloc(). 3187 */ 3188 gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO; 3189 } 3190 3191 /* Take note that the mapping is PAGE_KERNEL. */ 3192 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; 3193 } 3194 3195 /* Allocate physical pages and map them into vmalloc space. */ 3196 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); 3197 if (!ret) 3198 goto fail; 3199 3200 /* 3201 * Mark the pages as accessible, now that they are mapped. 3202 * The condition for setting KASAN_VMALLOC_INIT should complement the 3203 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check 3204 * to make sure that memory is initialized under the same conditions. 3205 * Tag-based KASAN modes only assign tags to normal non-executable 3206 * allocations, see __kasan_unpoison_vmalloc(). 3207 */ 3208 kasan_flags |= KASAN_VMALLOC_VM_ALLOC; 3209 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) && 3210 (gfp_mask & __GFP_SKIP_ZERO)) 3211 kasan_flags |= KASAN_VMALLOC_INIT; 3212 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ 3213 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags); 3214 3215 /* 3216 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 3217 * flag. It means that vm_struct is not fully initialized. 3218 * Now, it is fully initialized, so remove this flag here. 3219 */ 3220 clear_vm_uninitialized_flag(area); 3221 3222 size = PAGE_ALIGN(size); 3223 if (!(vm_flags & VM_DEFER_KMEMLEAK)) 3224 kmemleak_vmalloc(area, size, gfp_mask); 3225 3226 return area->addr; 3227 3228 fail: 3229 if (shift > PAGE_SHIFT) { 3230 shift = PAGE_SHIFT; 3231 align = real_align; 3232 size = real_size; 3233 goto again; 3234 } 3235 3236 return NULL; 3237 } 3238 3239 /** 3240 * __vmalloc_node - allocate virtually contiguous memory 3241 * @size: allocation size 3242 * @align: desired alignment 3243 * @gfp_mask: flags for the page level allocator 3244 * @node: node to use for allocation or NUMA_NO_NODE 3245 * @caller: caller's return address 3246 * 3247 * Allocate enough pages to cover @size from the page level allocator with 3248 * @gfp_mask flags. Map them into contiguous kernel virtual space. 3249 * 3250 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 3251 * and __GFP_NOFAIL are not supported 3252 * 3253 * Any use of gfp flags outside of GFP_KERNEL should be consulted 3254 * with mm people. 3255 * 3256 * Return: pointer to the allocated memory or %NULL on error 3257 */ 3258 void *__vmalloc_node(unsigned long size, unsigned long align, 3259 gfp_t gfp_mask, int node, const void *caller) 3260 { 3261 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 3262 gfp_mask, PAGE_KERNEL, 0, node, caller); 3263 } 3264 /* 3265 * This is only for performance analysis of vmalloc and stress purpose. 3266 * It is required by vmalloc test module, therefore do not use it other 3267 * than that. 3268 */ 3269 #ifdef CONFIG_TEST_VMALLOC_MODULE 3270 EXPORT_SYMBOL_GPL(__vmalloc_node); 3271 #endif 3272 3273 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 3274 { 3275 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE, 3276 __builtin_return_address(0)); 3277 } 3278 EXPORT_SYMBOL(__vmalloc); 3279 3280 /** 3281 * vmalloc - allocate virtually contiguous memory 3282 * @size: allocation size 3283 * 3284 * Allocate enough pages to cover @size from the page level 3285 * allocator and map them into contiguous kernel virtual space. 3286 * 3287 * For tight control over page level allocator and protection flags 3288 * use __vmalloc() instead. 3289 * 3290 * Return: pointer to the allocated memory or %NULL on error 3291 */ 3292 void *vmalloc(unsigned long size) 3293 { 3294 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE, 3295 __builtin_return_address(0)); 3296 } 3297 EXPORT_SYMBOL(vmalloc); 3298 3299 /** 3300 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages 3301 * @size: allocation size 3302 * @gfp_mask: flags for the page level allocator 3303 * 3304 * Allocate enough pages to cover @size from the page level 3305 * allocator and map them into contiguous kernel virtual space. 3306 * If @size is greater than or equal to PMD_SIZE, allow using 3307 * huge pages for the memory 3308 * 3309 * Return: pointer to the allocated memory or %NULL on error 3310 */ 3311 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) 3312 { 3313 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 3314 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 3315 NUMA_NO_NODE, __builtin_return_address(0)); 3316 } 3317 EXPORT_SYMBOL_GPL(vmalloc_huge); 3318 3319 /** 3320 * vzalloc - allocate virtually contiguous memory with zero fill 3321 * @size: allocation size 3322 * 3323 * Allocate enough pages to cover @size from the page level 3324 * allocator and map them into contiguous kernel virtual space. 3325 * The memory allocated is set to zero. 3326 * 3327 * For tight control over page level allocator and protection flags 3328 * use __vmalloc() instead. 3329 * 3330 * Return: pointer to the allocated memory or %NULL on error 3331 */ 3332 void *vzalloc(unsigned long size) 3333 { 3334 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 3335 __builtin_return_address(0)); 3336 } 3337 EXPORT_SYMBOL(vzalloc); 3338 3339 /** 3340 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 3341 * @size: allocation size 3342 * 3343 * The resulting memory area is zeroed so it can be mapped to userspace 3344 * without leaking data. 3345 * 3346 * Return: pointer to the allocated memory or %NULL on error 3347 */ 3348 void *vmalloc_user(unsigned long size) 3349 { 3350 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3351 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 3352 VM_USERMAP, NUMA_NO_NODE, 3353 __builtin_return_address(0)); 3354 } 3355 EXPORT_SYMBOL(vmalloc_user); 3356 3357 /** 3358 * vmalloc_node - allocate memory on a specific node 3359 * @size: allocation size 3360 * @node: numa node 3361 * 3362 * Allocate enough pages to cover @size from the page level 3363 * allocator and map them into contiguous kernel virtual space. 3364 * 3365 * For tight control over page level allocator and protection flags 3366 * use __vmalloc() instead. 3367 * 3368 * Return: pointer to the allocated memory or %NULL on error 3369 */ 3370 void *vmalloc_node(unsigned long size, int node) 3371 { 3372 return __vmalloc_node(size, 1, GFP_KERNEL, node, 3373 __builtin_return_address(0)); 3374 } 3375 EXPORT_SYMBOL(vmalloc_node); 3376 3377 /** 3378 * vzalloc_node - allocate memory on a specific node with zero fill 3379 * @size: allocation size 3380 * @node: numa node 3381 * 3382 * Allocate enough pages to cover @size from the page level 3383 * allocator and map them into contiguous kernel virtual space. 3384 * The memory allocated is set to zero. 3385 * 3386 * Return: pointer to the allocated memory or %NULL on error 3387 */ 3388 void *vzalloc_node(unsigned long size, int node) 3389 { 3390 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node, 3391 __builtin_return_address(0)); 3392 } 3393 EXPORT_SYMBOL(vzalloc_node); 3394 3395 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 3396 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3397 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 3398 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 3399 #else 3400 /* 3401 * 64b systems should always have either DMA or DMA32 zones. For others 3402 * GFP_DMA32 should do the right thing and use the normal zone. 3403 */ 3404 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3405 #endif 3406 3407 /** 3408 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 3409 * @size: allocation size 3410 * 3411 * Allocate enough 32bit PA addressable pages to cover @size from the 3412 * page level allocator and map them into contiguous kernel virtual space. 3413 * 3414 * Return: pointer to the allocated memory or %NULL on error 3415 */ 3416 void *vmalloc_32(unsigned long size) 3417 { 3418 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, 3419 __builtin_return_address(0)); 3420 } 3421 EXPORT_SYMBOL(vmalloc_32); 3422 3423 /** 3424 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 3425 * @size: allocation size 3426 * 3427 * The resulting memory area is 32bit addressable and zeroed so it can be 3428 * mapped to userspace without leaking data. 3429 * 3430 * Return: pointer to the allocated memory or %NULL on error 3431 */ 3432 void *vmalloc_32_user(unsigned long size) 3433 { 3434 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3435 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 3436 VM_USERMAP, NUMA_NO_NODE, 3437 __builtin_return_address(0)); 3438 } 3439 EXPORT_SYMBOL(vmalloc_32_user); 3440 3441 /* 3442 * small helper routine , copy contents to buf from addr. 3443 * If the page is not present, fill zero. 3444 */ 3445 3446 static int aligned_vread(char *buf, char *addr, unsigned long count) 3447 { 3448 struct page *p; 3449 int copied = 0; 3450 3451 while (count) { 3452 unsigned long offset, length; 3453 3454 offset = offset_in_page(addr); 3455 length = PAGE_SIZE - offset; 3456 if (length > count) 3457 length = count; 3458 p = vmalloc_to_page(addr); 3459 /* 3460 * To do safe access to this _mapped_ area, we need 3461 * lock. But adding lock here means that we need to add 3462 * overhead of vmalloc()/vfree() calls for this _debug_ 3463 * interface, rarely used. Instead of that, we'll use 3464 * kmap() and get small overhead in this access function. 3465 */ 3466 if (p) { 3467 /* We can expect USER0 is not used -- see vread() */ 3468 void *map = kmap_atomic(p); 3469 memcpy(buf, map + offset, length); 3470 kunmap_atomic(map); 3471 } else 3472 memset(buf, 0, length); 3473 3474 addr += length; 3475 buf += length; 3476 copied += length; 3477 count -= length; 3478 } 3479 return copied; 3480 } 3481 3482 /** 3483 * vread() - read vmalloc area in a safe way. 3484 * @buf: buffer for reading data 3485 * @addr: vm address. 3486 * @count: number of bytes to be read. 3487 * 3488 * This function checks that addr is a valid vmalloc'ed area, and 3489 * copy data from that area to a given buffer. If the given memory range 3490 * of [addr...addr+count) includes some valid address, data is copied to 3491 * proper area of @buf. If there are memory holes, they'll be zero-filled. 3492 * IOREMAP area is treated as memory hole and no copy is done. 3493 * 3494 * If [addr...addr+count) doesn't includes any intersects with alive 3495 * vm_struct area, returns 0. @buf should be kernel's buffer. 3496 * 3497 * Note: In usual ops, vread() is never necessary because the caller 3498 * should know vmalloc() area is valid and can use memcpy(). 3499 * This is for routines which have to access vmalloc area without 3500 * any information, as /proc/kcore. 3501 * 3502 * Return: number of bytes for which addr and buf should be increased 3503 * (same number as @count) or %0 if [addr...addr+count) doesn't 3504 * include any intersection with valid vmalloc area 3505 */ 3506 long vread(char *buf, char *addr, unsigned long count) 3507 { 3508 struct vmap_area *va; 3509 struct vm_struct *vm; 3510 char *vaddr, *buf_start = buf; 3511 unsigned long buflen = count; 3512 unsigned long n; 3513 3514 addr = kasan_reset_tag(addr); 3515 3516 /* Don't allow overflow */ 3517 if ((unsigned long) addr + count < count) 3518 count = -(unsigned long) addr; 3519 3520 spin_lock(&vmap_area_lock); 3521 va = find_vmap_area_exceed_addr((unsigned long)addr); 3522 if (!va) 3523 goto finished; 3524 3525 /* no intersects with alive vmap_area */ 3526 if ((unsigned long)addr + count <= va->va_start) 3527 goto finished; 3528 3529 list_for_each_entry_from(va, &vmap_area_list, list) { 3530 if (!count) 3531 break; 3532 3533 if (!va->vm) 3534 continue; 3535 3536 vm = va->vm; 3537 vaddr = (char *) vm->addr; 3538 if (addr >= vaddr + get_vm_area_size(vm)) 3539 continue; 3540 while (addr < vaddr) { 3541 if (count == 0) 3542 goto finished; 3543 *buf = '\0'; 3544 buf++; 3545 addr++; 3546 count--; 3547 } 3548 n = vaddr + get_vm_area_size(vm) - addr; 3549 if (n > count) 3550 n = count; 3551 if (!(vm->flags & VM_IOREMAP)) 3552 aligned_vread(buf, addr, n); 3553 else /* IOREMAP area is treated as memory hole */ 3554 memset(buf, 0, n); 3555 buf += n; 3556 addr += n; 3557 count -= n; 3558 } 3559 finished: 3560 spin_unlock(&vmap_area_lock); 3561 3562 if (buf == buf_start) 3563 return 0; 3564 /* zero-fill memory holes */ 3565 if (buf != buf_start + buflen) 3566 memset(buf, 0, buflen - (buf - buf_start)); 3567 3568 return buflen; 3569 } 3570 3571 /** 3572 * remap_vmalloc_range_partial - map vmalloc pages to userspace 3573 * @vma: vma to cover 3574 * @uaddr: target user address to start at 3575 * @kaddr: virtual address of vmalloc kernel memory 3576 * @pgoff: offset from @kaddr to start at 3577 * @size: size of map area 3578 * 3579 * Returns: 0 for success, -Exxx on failure 3580 * 3581 * This function checks that @kaddr is a valid vmalloc'ed area, 3582 * and that it is big enough to cover the range starting at 3583 * @uaddr in @vma. Will return failure if that criteria isn't 3584 * met. 3585 * 3586 * Similar to remap_pfn_range() (see mm/memory.c) 3587 */ 3588 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 3589 void *kaddr, unsigned long pgoff, 3590 unsigned long size) 3591 { 3592 struct vm_struct *area; 3593 unsigned long off; 3594 unsigned long end_index; 3595 3596 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) 3597 return -EINVAL; 3598 3599 size = PAGE_ALIGN(size); 3600 3601 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 3602 return -EINVAL; 3603 3604 area = find_vm_area(kaddr); 3605 if (!area) 3606 return -EINVAL; 3607 3608 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 3609 return -EINVAL; 3610 3611 if (check_add_overflow(size, off, &end_index) || 3612 end_index > get_vm_area_size(area)) 3613 return -EINVAL; 3614 kaddr += off; 3615 3616 do { 3617 struct page *page = vmalloc_to_page(kaddr); 3618 int ret; 3619 3620 ret = vm_insert_page(vma, uaddr, page); 3621 if (ret) 3622 return ret; 3623 3624 uaddr += PAGE_SIZE; 3625 kaddr += PAGE_SIZE; 3626 size -= PAGE_SIZE; 3627 } while (size > 0); 3628 3629 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 3630 3631 return 0; 3632 } 3633 3634 /** 3635 * remap_vmalloc_range - map vmalloc pages to userspace 3636 * @vma: vma to cover (map full range of vma) 3637 * @addr: vmalloc memory 3638 * @pgoff: number of pages into addr before first page to map 3639 * 3640 * Returns: 0 for success, -Exxx on failure 3641 * 3642 * This function checks that addr is a valid vmalloc'ed area, and 3643 * that it is big enough to cover the vma. Will return failure if 3644 * that criteria isn't met. 3645 * 3646 * Similar to remap_pfn_range() (see mm/memory.c) 3647 */ 3648 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 3649 unsigned long pgoff) 3650 { 3651 return remap_vmalloc_range_partial(vma, vma->vm_start, 3652 addr, pgoff, 3653 vma->vm_end - vma->vm_start); 3654 } 3655 EXPORT_SYMBOL(remap_vmalloc_range); 3656 3657 void free_vm_area(struct vm_struct *area) 3658 { 3659 struct vm_struct *ret; 3660 ret = remove_vm_area(area->addr); 3661 BUG_ON(ret != area); 3662 kfree(area); 3663 } 3664 EXPORT_SYMBOL_GPL(free_vm_area); 3665 3666 #ifdef CONFIG_SMP 3667 static struct vmap_area *node_to_va(struct rb_node *n) 3668 { 3669 return rb_entry_safe(n, struct vmap_area, rb_node); 3670 } 3671 3672 /** 3673 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 3674 * @addr: target address 3675 * 3676 * Returns: vmap_area if it is found. If there is no such area 3677 * the first highest(reverse order) vmap_area is returned 3678 * i.e. va->va_start < addr && va->va_end < addr or NULL 3679 * if there are no any areas before @addr. 3680 */ 3681 static struct vmap_area * 3682 pvm_find_va_enclose_addr(unsigned long addr) 3683 { 3684 struct vmap_area *va, *tmp; 3685 struct rb_node *n; 3686 3687 n = free_vmap_area_root.rb_node; 3688 va = NULL; 3689 3690 while (n) { 3691 tmp = rb_entry(n, struct vmap_area, rb_node); 3692 if (tmp->va_start <= addr) { 3693 va = tmp; 3694 if (tmp->va_end >= addr) 3695 break; 3696 3697 n = n->rb_right; 3698 } else { 3699 n = n->rb_left; 3700 } 3701 } 3702 3703 return va; 3704 } 3705 3706 /** 3707 * pvm_determine_end_from_reverse - find the highest aligned address 3708 * of free block below VMALLOC_END 3709 * @va: 3710 * in - the VA we start the search(reverse order); 3711 * out - the VA with the highest aligned end address. 3712 * @align: alignment for required highest address 3713 * 3714 * Returns: determined end address within vmap_area 3715 */ 3716 static unsigned long 3717 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 3718 { 3719 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3720 unsigned long addr; 3721 3722 if (likely(*va)) { 3723 list_for_each_entry_from_reverse((*va), 3724 &free_vmap_area_list, list) { 3725 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 3726 if ((*va)->va_start < addr) 3727 return addr; 3728 } 3729 } 3730 3731 return 0; 3732 } 3733 3734 /** 3735 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 3736 * @offsets: array containing offset of each area 3737 * @sizes: array containing size of each area 3738 * @nr_vms: the number of areas to allocate 3739 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 3740 * 3741 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 3742 * vm_structs on success, %NULL on failure 3743 * 3744 * Percpu allocator wants to use congruent vm areas so that it can 3745 * maintain the offsets among percpu areas. This function allocates 3746 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 3747 * be scattered pretty far, distance between two areas easily going up 3748 * to gigabytes. To avoid interacting with regular vmallocs, these 3749 * areas are allocated from top. 3750 * 3751 * Despite its complicated look, this allocator is rather simple. It 3752 * does everything top-down and scans free blocks from the end looking 3753 * for matching base. While scanning, if any of the areas do not fit the 3754 * base address is pulled down to fit the area. Scanning is repeated till 3755 * all the areas fit and then all necessary data structures are inserted 3756 * and the result is returned. 3757 */ 3758 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 3759 const size_t *sizes, int nr_vms, 3760 size_t align) 3761 { 3762 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 3763 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3764 struct vmap_area **vas, *va; 3765 struct vm_struct **vms; 3766 int area, area2, last_area, term_area; 3767 unsigned long base, start, size, end, last_end, orig_start, orig_end; 3768 bool purged = false; 3769 3770 /* verify parameters and allocate data structures */ 3771 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 3772 for (last_area = 0, area = 0; area < nr_vms; area++) { 3773 start = offsets[area]; 3774 end = start + sizes[area]; 3775 3776 /* is everything aligned properly? */ 3777 BUG_ON(!IS_ALIGNED(offsets[area], align)); 3778 BUG_ON(!IS_ALIGNED(sizes[area], align)); 3779 3780 /* detect the area with the highest address */ 3781 if (start > offsets[last_area]) 3782 last_area = area; 3783 3784 for (area2 = area + 1; area2 < nr_vms; area2++) { 3785 unsigned long start2 = offsets[area2]; 3786 unsigned long end2 = start2 + sizes[area2]; 3787 3788 BUG_ON(start2 < end && start < end2); 3789 } 3790 } 3791 last_end = offsets[last_area] + sizes[last_area]; 3792 3793 if (vmalloc_end - vmalloc_start < last_end) { 3794 WARN_ON(true); 3795 return NULL; 3796 } 3797 3798 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 3799 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 3800 if (!vas || !vms) 3801 goto err_free2; 3802 3803 for (area = 0; area < nr_vms; area++) { 3804 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 3805 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 3806 if (!vas[area] || !vms[area]) 3807 goto err_free; 3808 } 3809 retry: 3810 spin_lock(&free_vmap_area_lock); 3811 3812 /* start scanning - we scan from the top, begin with the last area */ 3813 area = term_area = last_area; 3814 start = offsets[area]; 3815 end = start + sizes[area]; 3816 3817 va = pvm_find_va_enclose_addr(vmalloc_end); 3818 base = pvm_determine_end_from_reverse(&va, align) - end; 3819 3820 while (true) { 3821 /* 3822 * base might have underflowed, add last_end before 3823 * comparing. 3824 */ 3825 if (base + last_end < vmalloc_start + last_end) 3826 goto overflow; 3827 3828 /* 3829 * Fitting base has not been found. 3830 */ 3831 if (va == NULL) 3832 goto overflow; 3833 3834 /* 3835 * If required width exceeds current VA block, move 3836 * base downwards and then recheck. 3837 */ 3838 if (base + end > va->va_end) { 3839 base = pvm_determine_end_from_reverse(&va, align) - end; 3840 term_area = area; 3841 continue; 3842 } 3843 3844 /* 3845 * If this VA does not fit, move base downwards and recheck. 3846 */ 3847 if (base + start < va->va_start) { 3848 va = node_to_va(rb_prev(&va->rb_node)); 3849 base = pvm_determine_end_from_reverse(&va, align) - end; 3850 term_area = area; 3851 continue; 3852 } 3853 3854 /* 3855 * This area fits, move on to the previous one. If 3856 * the previous one is the terminal one, we're done. 3857 */ 3858 area = (area + nr_vms - 1) % nr_vms; 3859 if (area == term_area) 3860 break; 3861 3862 start = offsets[area]; 3863 end = start + sizes[area]; 3864 va = pvm_find_va_enclose_addr(base + end); 3865 } 3866 3867 /* we've found a fitting base, insert all va's */ 3868 for (area = 0; area < nr_vms; area++) { 3869 int ret; 3870 3871 start = base + offsets[area]; 3872 size = sizes[area]; 3873 3874 va = pvm_find_va_enclose_addr(start); 3875 if (WARN_ON_ONCE(va == NULL)) 3876 /* It is a BUG(), but trigger recovery instead. */ 3877 goto recovery; 3878 3879 ret = adjust_va_to_fit_type(&free_vmap_area_root, 3880 &free_vmap_area_list, 3881 va, start, size); 3882 if (WARN_ON_ONCE(unlikely(ret))) 3883 /* It is a BUG(), but trigger recovery instead. */ 3884 goto recovery; 3885 3886 /* Allocated area. */ 3887 va = vas[area]; 3888 va->va_start = start; 3889 va->va_end = start + size; 3890 } 3891 3892 spin_unlock(&free_vmap_area_lock); 3893 3894 /* populate the kasan shadow space */ 3895 for (area = 0; area < nr_vms; area++) { 3896 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) 3897 goto err_free_shadow; 3898 } 3899 3900 /* insert all vm's */ 3901 spin_lock(&vmap_area_lock); 3902 for (area = 0; area < nr_vms; area++) { 3903 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list); 3904 3905 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, 3906 pcpu_get_vm_areas); 3907 } 3908 spin_unlock(&vmap_area_lock); 3909 3910 /* 3911 * Mark allocated areas as accessible. Do it now as a best-effort 3912 * approach, as they can be mapped outside of vmalloc code. 3913 * With hardware tag-based KASAN, marking is skipped for 3914 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 3915 */ 3916 for (area = 0; area < nr_vms; area++) 3917 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, 3918 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); 3919 3920 kfree(vas); 3921 return vms; 3922 3923 recovery: 3924 /* 3925 * Remove previously allocated areas. There is no 3926 * need in removing these areas from the busy tree, 3927 * because they are inserted only on the final step 3928 * and when pcpu_get_vm_areas() is success. 3929 */ 3930 while (area--) { 3931 orig_start = vas[area]->va_start; 3932 orig_end = vas[area]->va_end; 3933 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 3934 &free_vmap_area_list); 3935 if (va) 3936 kasan_release_vmalloc(orig_start, orig_end, 3937 va->va_start, va->va_end); 3938 vas[area] = NULL; 3939 } 3940 3941 overflow: 3942 spin_unlock(&free_vmap_area_lock); 3943 if (!purged) { 3944 purge_vmap_area_lazy(); 3945 purged = true; 3946 3947 /* Before "retry", check if we recover. */ 3948 for (area = 0; area < nr_vms; area++) { 3949 if (vas[area]) 3950 continue; 3951 3952 vas[area] = kmem_cache_zalloc( 3953 vmap_area_cachep, GFP_KERNEL); 3954 if (!vas[area]) 3955 goto err_free; 3956 } 3957 3958 goto retry; 3959 } 3960 3961 err_free: 3962 for (area = 0; area < nr_vms; area++) { 3963 if (vas[area]) 3964 kmem_cache_free(vmap_area_cachep, vas[area]); 3965 3966 kfree(vms[area]); 3967 } 3968 err_free2: 3969 kfree(vas); 3970 kfree(vms); 3971 return NULL; 3972 3973 err_free_shadow: 3974 spin_lock(&free_vmap_area_lock); 3975 /* 3976 * We release all the vmalloc shadows, even the ones for regions that 3977 * hadn't been successfully added. This relies on kasan_release_vmalloc 3978 * being able to tolerate this case. 3979 */ 3980 for (area = 0; area < nr_vms; area++) { 3981 orig_start = vas[area]->va_start; 3982 orig_end = vas[area]->va_end; 3983 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 3984 &free_vmap_area_list); 3985 if (va) 3986 kasan_release_vmalloc(orig_start, orig_end, 3987 va->va_start, va->va_end); 3988 vas[area] = NULL; 3989 kfree(vms[area]); 3990 } 3991 spin_unlock(&free_vmap_area_lock); 3992 kfree(vas); 3993 kfree(vms); 3994 return NULL; 3995 } 3996 3997 /** 3998 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 3999 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 4000 * @nr_vms: the number of allocated areas 4001 * 4002 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 4003 */ 4004 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 4005 { 4006 int i; 4007 4008 for (i = 0; i < nr_vms; i++) 4009 free_vm_area(vms[i]); 4010 kfree(vms); 4011 } 4012 #endif /* CONFIG_SMP */ 4013 4014 #ifdef CONFIG_PRINTK 4015 bool vmalloc_dump_obj(void *object) 4016 { 4017 struct vm_struct *vm; 4018 void *objp = (void *)PAGE_ALIGN((unsigned long)object); 4019 4020 vm = find_vm_area(objp); 4021 if (!vm) 4022 return false; 4023 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", 4024 vm->nr_pages, (unsigned long)vm->addr, vm->caller); 4025 return true; 4026 } 4027 #endif 4028 4029 #ifdef CONFIG_PROC_FS 4030 static void *s_start(struct seq_file *m, loff_t *pos) 4031 __acquires(&vmap_purge_lock) 4032 __acquires(&vmap_area_lock) 4033 { 4034 mutex_lock(&vmap_purge_lock); 4035 spin_lock(&vmap_area_lock); 4036 4037 return seq_list_start(&vmap_area_list, *pos); 4038 } 4039 4040 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4041 { 4042 return seq_list_next(p, &vmap_area_list, pos); 4043 } 4044 4045 static void s_stop(struct seq_file *m, void *p) 4046 __releases(&vmap_area_lock) 4047 __releases(&vmap_purge_lock) 4048 { 4049 spin_unlock(&vmap_area_lock); 4050 mutex_unlock(&vmap_purge_lock); 4051 } 4052 4053 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 4054 { 4055 if (IS_ENABLED(CONFIG_NUMA)) { 4056 unsigned int nr, *counters = m->private; 4057 unsigned int step = 1U << vm_area_page_order(v); 4058 4059 if (!counters) 4060 return; 4061 4062 if (v->flags & VM_UNINITIALIZED) 4063 return; 4064 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 4065 smp_rmb(); 4066 4067 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 4068 4069 for (nr = 0; nr < v->nr_pages; nr += step) 4070 counters[page_to_nid(v->pages[nr])] += step; 4071 for_each_node_state(nr, N_HIGH_MEMORY) 4072 if (counters[nr]) 4073 seq_printf(m, " N%u=%u", nr, counters[nr]); 4074 } 4075 } 4076 4077 static void show_purge_info(struct seq_file *m) 4078 { 4079 struct vmap_area *va; 4080 4081 spin_lock(&purge_vmap_area_lock); 4082 list_for_each_entry(va, &purge_vmap_area_list, list) { 4083 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 4084 (void *)va->va_start, (void *)va->va_end, 4085 va->va_end - va->va_start); 4086 } 4087 spin_unlock(&purge_vmap_area_lock); 4088 } 4089 4090 static int s_show(struct seq_file *m, void *p) 4091 { 4092 struct vmap_area *va; 4093 struct vm_struct *v; 4094 4095 va = list_entry(p, struct vmap_area, list); 4096 4097 /* 4098 * s_show can encounter race with remove_vm_area, !vm on behalf 4099 * of vmap area is being tear down or vm_map_ram allocation. 4100 */ 4101 if (!va->vm) { 4102 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 4103 (void *)va->va_start, (void *)va->va_end, 4104 va->va_end - va->va_start); 4105 4106 goto final; 4107 } 4108 4109 v = va->vm; 4110 4111 seq_printf(m, "0x%pK-0x%pK %7ld", 4112 v->addr, v->addr + v->size, v->size); 4113 4114 if (v->caller) 4115 seq_printf(m, " %pS", v->caller); 4116 4117 if (v->nr_pages) 4118 seq_printf(m, " pages=%d", v->nr_pages); 4119 4120 if (v->phys_addr) 4121 seq_printf(m, " phys=%pa", &v->phys_addr); 4122 4123 if (v->flags & VM_IOREMAP) 4124 seq_puts(m, " ioremap"); 4125 4126 if (v->flags & VM_ALLOC) 4127 seq_puts(m, " vmalloc"); 4128 4129 if (v->flags & VM_MAP) 4130 seq_puts(m, " vmap"); 4131 4132 if (v->flags & VM_USERMAP) 4133 seq_puts(m, " user"); 4134 4135 if (v->flags & VM_DMA_COHERENT) 4136 seq_puts(m, " dma-coherent"); 4137 4138 if (is_vmalloc_addr(v->pages)) 4139 seq_puts(m, " vpages"); 4140 4141 show_numa_info(m, v); 4142 seq_putc(m, '\n'); 4143 4144 /* 4145 * As a final step, dump "unpurged" areas. 4146 */ 4147 final: 4148 if (list_is_last(&va->list, &vmap_area_list)) 4149 show_purge_info(m); 4150 4151 return 0; 4152 } 4153 4154 static const struct seq_operations vmalloc_op = { 4155 .start = s_start, 4156 .next = s_next, 4157 .stop = s_stop, 4158 .show = s_show, 4159 }; 4160 4161 static int __init proc_vmalloc_init(void) 4162 { 4163 if (IS_ENABLED(CONFIG_NUMA)) 4164 proc_create_seq_private("vmallocinfo", 0400, NULL, 4165 &vmalloc_op, 4166 nr_node_ids * sizeof(unsigned int), NULL); 4167 else 4168 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 4169 return 0; 4170 } 4171 module_init(proc_vmalloc_init); 4172 4173 #endif 4174