xref: /linux/mm/vmalloc.c (revision b45e0c30bc58fb6fcaa42f1d1d813cefb8ab4117)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/vmalloc.c
4  *
5  *  Copyright (C) 1993  Linus Torvalds
6  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
9  *  Numa awareness, Christoph Lameter, SGI, June 2005
10  */
11 
12 #include <linux/vmalloc.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/interrupt.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/set_memory.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/list.h>
26 #include <linux/notifier.h>
27 #include <linux/rbtree.h>
28 #include <linux/radix-tree.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
37 
38 #include <linux/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/shmparam.h>
41 
42 #include "internal.h"
43 
44 struct vfree_deferred {
45 	struct llist_head list;
46 	struct work_struct wq;
47 };
48 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
49 
50 static void __vunmap(const void *, int);
51 
52 static void free_work(struct work_struct *w)
53 {
54 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
55 	struct llist_node *t, *llnode;
56 
57 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
58 		__vunmap((void *)llnode, 1);
59 }
60 
61 /*** Page table manipulation functions ***/
62 
63 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
64 {
65 	pte_t *pte;
66 
67 	pte = pte_offset_kernel(pmd, addr);
68 	do {
69 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
70 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
71 	} while (pte++, addr += PAGE_SIZE, addr != end);
72 }
73 
74 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
75 {
76 	pmd_t *pmd;
77 	unsigned long next;
78 
79 	pmd = pmd_offset(pud, addr);
80 	do {
81 		next = pmd_addr_end(addr, end);
82 		if (pmd_clear_huge(pmd))
83 			continue;
84 		if (pmd_none_or_clear_bad(pmd))
85 			continue;
86 		vunmap_pte_range(pmd, addr, next);
87 	} while (pmd++, addr = next, addr != end);
88 }
89 
90 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
91 {
92 	pud_t *pud;
93 	unsigned long next;
94 
95 	pud = pud_offset(p4d, addr);
96 	do {
97 		next = pud_addr_end(addr, end);
98 		if (pud_clear_huge(pud))
99 			continue;
100 		if (pud_none_or_clear_bad(pud))
101 			continue;
102 		vunmap_pmd_range(pud, addr, next);
103 	} while (pud++, addr = next, addr != end);
104 }
105 
106 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
107 {
108 	p4d_t *p4d;
109 	unsigned long next;
110 
111 	p4d = p4d_offset(pgd, addr);
112 	do {
113 		next = p4d_addr_end(addr, end);
114 		if (p4d_clear_huge(p4d))
115 			continue;
116 		if (p4d_none_or_clear_bad(p4d))
117 			continue;
118 		vunmap_pud_range(p4d, addr, next);
119 	} while (p4d++, addr = next, addr != end);
120 }
121 
122 static void vunmap_page_range(unsigned long addr, unsigned long end)
123 {
124 	pgd_t *pgd;
125 	unsigned long next;
126 
127 	BUG_ON(addr >= end);
128 	pgd = pgd_offset_k(addr);
129 	do {
130 		next = pgd_addr_end(addr, end);
131 		if (pgd_none_or_clear_bad(pgd))
132 			continue;
133 		vunmap_p4d_range(pgd, addr, next);
134 	} while (pgd++, addr = next, addr != end);
135 }
136 
137 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
138 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
139 {
140 	pte_t *pte;
141 
142 	/*
143 	 * nr is a running index into the array which helps higher level
144 	 * callers keep track of where we're up to.
145 	 */
146 
147 	pte = pte_alloc_kernel(pmd, addr);
148 	if (!pte)
149 		return -ENOMEM;
150 	do {
151 		struct page *page = pages[*nr];
152 
153 		if (WARN_ON(!pte_none(*pte)))
154 			return -EBUSY;
155 		if (WARN_ON(!page))
156 			return -ENOMEM;
157 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
158 		(*nr)++;
159 	} while (pte++, addr += PAGE_SIZE, addr != end);
160 	return 0;
161 }
162 
163 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
164 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
165 {
166 	pmd_t *pmd;
167 	unsigned long next;
168 
169 	pmd = pmd_alloc(&init_mm, pud, addr);
170 	if (!pmd)
171 		return -ENOMEM;
172 	do {
173 		next = pmd_addr_end(addr, end);
174 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
175 			return -ENOMEM;
176 	} while (pmd++, addr = next, addr != end);
177 	return 0;
178 }
179 
180 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
181 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
182 {
183 	pud_t *pud;
184 	unsigned long next;
185 
186 	pud = pud_alloc(&init_mm, p4d, addr);
187 	if (!pud)
188 		return -ENOMEM;
189 	do {
190 		next = pud_addr_end(addr, end);
191 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
192 			return -ENOMEM;
193 	} while (pud++, addr = next, addr != end);
194 	return 0;
195 }
196 
197 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
198 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
199 {
200 	p4d_t *p4d;
201 	unsigned long next;
202 
203 	p4d = p4d_alloc(&init_mm, pgd, addr);
204 	if (!p4d)
205 		return -ENOMEM;
206 	do {
207 		next = p4d_addr_end(addr, end);
208 		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
209 			return -ENOMEM;
210 	} while (p4d++, addr = next, addr != end);
211 	return 0;
212 }
213 
214 /*
215  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
216  * will have pfns corresponding to the "pages" array.
217  *
218  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
219  */
220 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
221 				   pgprot_t prot, struct page **pages)
222 {
223 	pgd_t *pgd;
224 	unsigned long next;
225 	unsigned long addr = start;
226 	int err = 0;
227 	int nr = 0;
228 
229 	BUG_ON(addr >= end);
230 	pgd = pgd_offset_k(addr);
231 	do {
232 		next = pgd_addr_end(addr, end);
233 		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
234 		if (err)
235 			return err;
236 	} while (pgd++, addr = next, addr != end);
237 
238 	return nr;
239 }
240 
241 static int vmap_page_range(unsigned long start, unsigned long end,
242 			   pgprot_t prot, struct page **pages)
243 {
244 	int ret;
245 
246 	ret = vmap_page_range_noflush(start, end, prot, pages);
247 	flush_cache_vmap(start, end);
248 	return ret;
249 }
250 
251 int is_vmalloc_or_module_addr(const void *x)
252 {
253 	/*
254 	 * ARM, x86-64 and sparc64 put modules in a special place,
255 	 * and fall back on vmalloc() if that fails. Others
256 	 * just put it in the vmalloc space.
257 	 */
258 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
259 	unsigned long addr = (unsigned long)x;
260 	if (addr >= MODULES_VADDR && addr < MODULES_END)
261 		return 1;
262 #endif
263 	return is_vmalloc_addr(x);
264 }
265 
266 /*
267  * Walk a vmap address to the struct page it maps.
268  */
269 struct page *vmalloc_to_page(const void *vmalloc_addr)
270 {
271 	unsigned long addr = (unsigned long) vmalloc_addr;
272 	struct page *page = NULL;
273 	pgd_t *pgd = pgd_offset_k(addr);
274 	p4d_t *p4d;
275 	pud_t *pud;
276 	pmd_t *pmd;
277 	pte_t *ptep, pte;
278 
279 	/*
280 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
281 	 * architectures that do not vmalloc module space
282 	 */
283 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
284 
285 	if (pgd_none(*pgd))
286 		return NULL;
287 	p4d = p4d_offset(pgd, addr);
288 	if (p4d_none(*p4d))
289 		return NULL;
290 	pud = pud_offset(p4d, addr);
291 
292 	/*
293 	 * Don't dereference bad PUD or PMD (below) entries. This will also
294 	 * identify huge mappings, which we may encounter on architectures
295 	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
296 	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
297 	 * not [unambiguously] associated with a struct page, so there is
298 	 * no correct value to return for them.
299 	 */
300 	WARN_ON_ONCE(pud_bad(*pud));
301 	if (pud_none(*pud) || pud_bad(*pud))
302 		return NULL;
303 	pmd = pmd_offset(pud, addr);
304 	WARN_ON_ONCE(pmd_bad(*pmd));
305 	if (pmd_none(*pmd) || pmd_bad(*pmd))
306 		return NULL;
307 
308 	ptep = pte_offset_map(pmd, addr);
309 	pte = *ptep;
310 	if (pte_present(pte))
311 		page = pte_page(pte);
312 	pte_unmap(ptep);
313 	return page;
314 }
315 EXPORT_SYMBOL(vmalloc_to_page);
316 
317 /*
318  * Map a vmalloc()-space virtual address to the physical page frame number.
319  */
320 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
321 {
322 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
323 }
324 EXPORT_SYMBOL(vmalloc_to_pfn);
325 
326 
327 /*** Global kva allocator ***/
328 
329 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
330 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
331 
332 #define VM_LAZY_FREE	0x02
333 #define VM_VM_AREA	0x04
334 
335 static DEFINE_SPINLOCK(vmap_area_lock);
336 /* Export for kexec only */
337 LIST_HEAD(vmap_area_list);
338 static LLIST_HEAD(vmap_purge_list);
339 static struct rb_root vmap_area_root = RB_ROOT;
340 static bool vmap_initialized __read_mostly;
341 
342 /*
343  * This kmem_cache is used for vmap_area objects. Instead of
344  * allocating from slab we reuse an object from this cache to
345  * make things faster. Especially in "no edge" splitting of
346  * free block.
347  */
348 static struct kmem_cache *vmap_area_cachep;
349 
350 /*
351  * This linked list is used in pair with free_vmap_area_root.
352  * It gives O(1) access to prev/next to perform fast coalescing.
353  */
354 static LIST_HEAD(free_vmap_area_list);
355 
356 /*
357  * This augment red-black tree represents the free vmap space.
358  * All vmap_area objects in this tree are sorted by va->va_start
359  * address. It is used for allocation and merging when a vmap
360  * object is released.
361  *
362  * Each vmap_area node contains a maximum available free block
363  * of its sub-tree, right or left. Therefore it is possible to
364  * find a lowest match of free area.
365  */
366 static struct rb_root free_vmap_area_root = RB_ROOT;
367 
368 /*
369  * Preload a CPU with one object for "no edge" split case. The
370  * aim is to get rid of allocations from the atomic context, thus
371  * to use more permissive allocation masks.
372  */
373 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
374 
375 static __always_inline unsigned long
376 va_size(struct vmap_area *va)
377 {
378 	return (va->va_end - va->va_start);
379 }
380 
381 static __always_inline unsigned long
382 get_subtree_max_size(struct rb_node *node)
383 {
384 	struct vmap_area *va;
385 
386 	va = rb_entry_safe(node, struct vmap_area, rb_node);
387 	return va ? va->subtree_max_size : 0;
388 }
389 
390 /*
391  * Gets called when remove the node and rotate.
392  */
393 static __always_inline unsigned long
394 compute_subtree_max_size(struct vmap_area *va)
395 {
396 	return max3(va_size(va),
397 		get_subtree_max_size(va->rb_node.rb_left),
398 		get_subtree_max_size(va->rb_node.rb_right));
399 }
400 
401 RB_DECLARE_CALLBACKS(static, free_vmap_area_rb_augment_cb,
402 	struct vmap_area, rb_node, unsigned long, subtree_max_size,
403 	compute_subtree_max_size)
404 
405 static void purge_vmap_area_lazy(void);
406 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
407 static unsigned long lazy_max_pages(void);
408 
409 static atomic_long_t nr_vmalloc_pages;
410 
411 unsigned long vmalloc_nr_pages(void)
412 {
413 	return atomic_long_read(&nr_vmalloc_pages);
414 }
415 
416 static struct vmap_area *__find_vmap_area(unsigned long addr)
417 {
418 	struct rb_node *n = vmap_area_root.rb_node;
419 
420 	while (n) {
421 		struct vmap_area *va;
422 
423 		va = rb_entry(n, struct vmap_area, rb_node);
424 		if (addr < va->va_start)
425 			n = n->rb_left;
426 		else if (addr >= va->va_end)
427 			n = n->rb_right;
428 		else
429 			return va;
430 	}
431 
432 	return NULL;
433 }
434 
435 /*
436  * This function returns back addresses of parent node
437  * and its left or right link for further processing.
438  */
439 static __always_inline struct rb_node **
440 find_va_links(struct vmap_area *va,
441 	struct rb_root *root, struct rb_node *from,
442 	struct rb_node **parent)
443 {
444 	struct vmap_area *tmp_va;
445 	struct rb_node **link;
446 
447 	if (root) {
448 		link = &root->rb_node;
449 		if (unlikely(!*link)) {
450 			*parent = NULL;
451 			return link;
452 		}
453 	} else {
454 		link = &from;
455 	}
456 
457 	/*
458 	 * Go to the bottom of the tree. When we hit the last point
459 	 * we end up with parent rb_node and correct direction, i name
460 	 * it link, where the new va->rb_node will be attached to.
461 	 */
462 	do {
463 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
464 
465 		/*
466 		 * During the traversal we also do some sanity check.
467 		 * Trigger the BUG() if there are sides(left/right)
468 		 * or full overlaps.
469 		 */
470 		if (va->va_start < tmp_va->va_end &&
471 				va->va_end <= tmp_va->va_start)
472 			link = &(*link)->rb_left;
473 		else if (va->va_end > tmp_va->va_start &&
474 				va->va_start >= tmp_va->va_end)
475 			link = &(*link)->rb_right;
476 		else
477 			BUG();
478 	} while (*link);
479 
480 	*parent = &tmp_va->rb_node;
481 	return link;
482 }
483 
484 static __always_inline struct list_head *
485 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
486 {
487 	struct list_head *list;
488 
489 	if (unlikely(!parent))
490 		/*
491 		 * The red-black tree where we try to find VA neighbors
492 		 * before merging or inserting is empty, i.e. it means
493 		 * there is no free vmap space. Normally it does not
494 		 * happen but we handle this case anyway.
495 		 */
496 		return NULL;
497 
498 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
499 	return (&parent->rb_right == link ? list->next : list);
500 }
501 
502 static __always_inline void
503 link_va(struct vmap_area *va, struct rb_root *root,
504 	struct rb_node *parent, struct rb_node **link, struct list_head *head)
505 {
506 	/*
507 	 * VA is still not in the list, but we can
508 	 * identify its future previous list_head node.
509 	 */
510 	if (likely(parent)) {
511 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
512 		if (&parent->rb_right != link)
513 			head = head->prev;
514 	}
515 
516 	/* Insert to the rb-tree */
517 	rb_link_node(&va->rb_node, parent, link);
518 	if (root == &free_vmap_area_root) {
519 		/*
520 		 * Some explanation here. Just perform simple insertion
521 		 * to the tree. We do not set va->subtree_max_size to
522 		 * its current size before calling rb_insert_augmented().
523 		 * It is because of we populate the tree from the bottom
524 		 * to parent levels when the node _is_ in the tree.
525 		 *
526 		 * Therefore we set subtree_max_size to zero after insertion,
527 		 * to let __augment_tree_propagate_from() puts everything to
528 		 * the correct order later on.
529 		 */
530 		rb_insert_augmented(&va->rb_node,
531 			root, &free_vmap_area_rb_augment_cb);
532 		va->subtree_max_size = 0;
533 	} else {
534 		rb_insert_color(&va->rb_node, root);
535 	}
536 
537 	/* Address-sort this list */
538 	list_add(&va->list, head);
539 }
540 
541 static __always_inline void
542 unlink_va(struct vmap_area *va, struct rb_root *root)
543 {
544 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
545 		return;
546 
547 	if (root == &free_vmap_area_root)
548 		rb_erase_augmented(&va->rb_node,
549 			root, &free_vmap_area_rb_augment_cb);
550 	else
551 		rb_erase(&va->rb_node, root);
552 
553 	list_del(&va->list);
554 	RB_CLEAR_NODE(&va->rb_node);
555 }
556 
557 #if DEBUG_AUGMENT_PROPAGATE_CHECK
558 static void
559 augment_tree_propagate_check(struct rb_node *n)
560 {
561 	struct vmap_area *va;
562 	struct rb_node *node;
563 	unsigned long size;
564 	bool found = false;
565 
566 	if (n == NULL)
567 		return;
568 
569 	va = rb_entry(n, struct vmap_area, rb_node);
570 	size = va->subtree_max_size;
571 	node = n;
572 
573 	while (node) {
574 		va = rb_entry(node, struct vmap_area, rb_node);
575 
576 		if (get_subtree_max_size(node->rb_left) == size) {
577 			node = node->rb_left;
578 		} else {
579 			if (va_size(va) == size) {
580 				found = true;
581 				break;
582 			}
583 
584 			node = node->rb_right;
585 		}
586 	}
587 
588 	if (!found) {
589 		va = rb_entry(n, struct vmap_area, rb_node);
590 		pr_emerg("tree is corrupted: %lu, %lu\n",
591 			va_size(va), va->subtree_max_size);
592 	}
593 
594 	augment_tree_propagate_check(n->rb_left);
595 	augment_tree_propagate_check(n->rb_right);
596 }
597 #endif
598 
599 /*
600  * This function populates subtree_max_size from bottom to upper
601  * levels starting from VA point. The propagation must be done
602  * when VA size is modified by changing its va_start/va_end. Or
603  * in case of newly inserting of VA to the tree.
604  *
605  * It means that __augment_tree_propagate_from() must be called:
606  * - After VA has been inserted to the tree(free path);
607  * - After VA has been shrunk(allocation path);
608  * - After VA has been increased(merging path).
609  *
610  * Please note that, it does not mean that upper parent nodes
611  * and their subtree_max_size are recalculated all the time up
612  * to the root node.
613  *
614  *       4--8
615  *        /\
616  *       /  \
617  *      /    \
618  *    2--2  8--8
619  *
620  * For example if we modify the node 4, shrinking it to 2, then
621  * no any modification is required. If we shrink the node 2 to 1
622  * its subtree_max_size is updated only, and set to 1. If we shrink
623  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
624  * node becomes 4--6.
625  */
626 static __always_inline void
627 augment_tree_propagate_from(struct vmap_area *va)
628 {
629 	struct rb_node *node = &va->rb_node;
630 	unsigned long new_va_sub_max_size;
631 
632 	while (node) {
633 		va = rb_entry(node, struct vmap_area, rb_node);
634 		new_va_sub_max_size = compute_subtree_max_size(va);
635 
636 		/*
637 		 * If the newly calculated maximum available size of the
638 		 * subtree is equal to the current one, then it means that
639 		 * the tree is propagated correctly. So we have to stop at
640 		 * this point to save cycles.
641 		 */
642 		if (va->subtree_max_size == new_va_sub_max_size)
643 			break;
644 
645 		va->subtree_max_size = new_va_sub_max_size;
646 		node = rb_parent(&va->rb_node);
647 	}
648 
649 #if DEBUG_AUGMENT_PROPAGATE_CHECK
650 	augment_tree_propagate_check(free_vmap_area_root.rb_node);
651 #endif
652 }
653 
654 static void
655 insert_vmap_area(struct vmap_area *va,
656 	struct rb_root *root, struct list_head *head)
657 {
658 	struct rb_node **link;
659 	struct rb_node *parent;
660 
661 	link = find_va_links(va, root, NULL, &parent);
662 	link_va(va, root, parent, link, head);
663 }
664 
665 static void
666 insert_vmap_area_augment(struct vmap_area *va,
667 	struct rb_node *from, struct rb_root *root,
668 	struct list_head *head)
669 {
670 	struct rb_node **link;
671 	struct rb_node *parent;
672 
673 	if (from)
674 		link = find_va_links(va, NULL, from, &parent);
675 	else
676 		link = find_va_links(va, root, NULL, &parent);
677 
678 	link_va(va, root, parent, link, head);
679 	augment_tree_propagate_from(va);
680 }
681 
682 /*
683  * Merge de-allocated chunk of VA memory with previous
684  * and next free blocks. If coalesce is not done a new
685  * free area is inserted. If VA has been merged, it is
686  * freed.
687  */
688 static __always_inline void
689 merge_or_add_vmap_area(struct vmap_area *va,
690 	struct rb_root *root, struct list_head *head)
691 {
692 	struct vmap_area *sibling;
693 	struct list_head *next;
694 	struct rb_node **link;
695 	struct rb_node *parent;
696 	bool merged = false;
697 
698 	/*
699 	 * Find a place in the tree where VA potentially will be
700 	 * inserted, unless it is merged with its sibling/siblings.
701 	 */
702 	link = find_va_links(va, root, NULL, &parent);
703 
704 	/*
705 	 * Get next node of VA to check if merging can be done.
706 	 */
707 	next = get_va_next_sibling(parent, link);
708 	if (unlikely(next == NULL))
709 		goto insert;
710 
711 	/*
712 	 * start            end
713 	 * |                |
714 	 * |<------VA------>|<-----Next----->|
715 	 *                  |                |
716 	 *                  start            end
717 	 */
718 	if (next != head) {
719 		sibling = list_entry(next, struct vmap_area, list);
720 		if (sibling->va_start == va->va_end) {
721 			sibling->va_start = va->va_start;
722 
723 			/* Check and update the tree if needed. */
724 			augment_tree_propagate_from(sibling);
725 
726 			/* Free vmap_area object. */
727 			kmem_cache_free(vmap_area_cachep, va);
728 
729 			/* Point to the new merged area. */
730 			va = sibling;
731 			merged = true;
732 		}
733 	}
734 
735 	/*
736 	 * start            end
737 	 * |                |
738 	 * |<-----Prev----->|<------VA------>|
739 	 *                  |                |
740 	 *                  start            end
741 	 */
742 	if (next->prev != head) {
743 		sibling = list_entry(next->prev, struct vmap_area, list);
744 		if (sibling->va_end == va->va_start) {
745 			sibling->va_end = va->va_end;
746 
747 			/* Check and update the tree if needed. */
748 			augment_tree_propagate_from(sibling);
749 
750 			if (merged)
751 				unlink_va(va, root);
752 
753 			/* Free vmap_area object. */
754 			kmem_cache_free(vmap_area_cachep, va);
755 			return;
756 		}
757 	}
758 
759 insert:
760 	if (!merged) {
761 		link_va(va, root, parent, link, head);
762 		augment_tree_propagate_from(va);
763 	}
764 }
765 
766 static __always_inline bool
767 is_within_this_va(struct vmap_area *va, unsigned long size,
768 	unsigned long align, unsigned long vstart)
769 {
770 	unsigned long nva_start_addr;
771 
772 	if (va->va_start > vstart)
773 		nva_start_addr = ALIGN(va->va_start, align);
774 	else
775 		nva_start_addr = ALIGN(vstart, align);
776 
777 	/* Can be overflowed due to big size or alignment. */
778 	if (nva_start_addr + size < nva_start_addr ||
779 			nva_start_addr < vstart)
780 		return false;
781 
782 	return (nva_start_addr + size <= va->va_end);
783 }
784 
785 /*
786  * Find the first free block(lowest start address) in the tree,
787  * that will accomplish the request corresponding to passing
788  * parameters.
789  */
790 static __always_inline struct vmap_area *
791 find_vmap_lowest_match(unsigned long size,
792 	unsigned long align, unsigned long vstart)
793 {
794 	struct vmap_area *va;
795 	struct rb_node *node;
796 	unsigned long length;
797 
798 	/* Start from the root. */
799 	node = free_vmap_area_root.rb_node;
800 
801 	/* Adjust the search size for alignment overhead. */
802 	length = size + align - 1;
803 
804 	while (node) {
805 		va = rb_entry(node, struct vmap_area, rb_node);
806 
807 		if (get_subtree_max_size(node->rb_left) >= length &&
808 				vstart < va->va_start) {
809 			node = node->rb_left;
810 		} else {
811 			if (is_within_this_va(va, size, align, vstart))
812 				return va;
813 
814 			/*
815 			 * Does not make sense to go deeper towards the right
816 			 * sub-tree if it does not have a free block that is
817 			 * equal or bigger to the requested search length.
818 			 */
819 			if (get_subtree_max_size(node->rb_right) >= length) {
820 				node = node->rb_right;
821 				continue;
822 			}
823 
824 			/*
825 			 * OK. We roll back and find the first right sub-tree,
826 			 * that will satisfy the search criteria. It can happen
827 			 * only once due to "vstart" restriction.
828 			 */
829 			while ((node = rb_parent(node))) {
830 				va = rb_entry(node, struct vmap_area, rb_node);
831 				if (is_within_this_va(va, size, align, vstart))
832 					return va;
833 
834 				if (get_subtree_max_size(node->rb_right) >= length &&
835 						vstart <= va->va_start) {
836 					node = node->rb_right;
837 					break;
838 				}
839 			}
840 		}
841 	}
842 
843 	return NULL;
844 }
845 
846 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
847 #include <linux/random.h>
848 
849 static struct vmap_area *
850 find_vmap_lowest_linear_match(unsigned long size,
851 	unsigned long align, unsigned long vstart)
852 {
853 	struct vmap_area *va;
854 
855 	list_for_each_entry(va, &free_vmap_area_list, list) {
856 		if (!is_within_this_va(va, size, align, vstart))
857 			continue;
858 
859 		return va;
860 	}
861 
862 	return NULL;
863 }
864 
865 static void
866 find_vmap_lowest_match_check(unsigned long size)
867 {
868 	struct vmap_area *va_1, *va_2;
869 	unsigned long vstart;
870 	unsigned int rnd;
871 
872 	get_random_bytes(&rnd, sizeof(rnd));
873 	vstart = VMALLOC_START + rnd;
874 
875 	va_1 = find_vmap_lowest_match(size, 1, vstart);
876 	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
877 
878 	if (va_1 != va_2)
879 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
880 			va_1, va_2, vstart);
881 }
882 #endif
883 
884 enum fit_type {
885 	NOTHING_FIT = 0,
886 	FL_FIT_TYPE = 1,	/* full fit */
887 	LE_FIT_TYPE = 2,	/* left edge fit */
888 	RE_FIT_TYPE = 3,	/* right edge fit */
889 	NE_FIT_TYPE = 4		/* no edge fit */
890 };
891 
892 static __always_inline enum fit_type
893 classify_va_fit_type(struct vmap_area *va,
894 	unsigned long nva_start_addr, unsigned long size)
895 {
896 	enum fit_type type;
897 
898 	/* Check if it is within VA. */
899 	if (nva_start_addr < va->va_start ||
900 			nva_start_addr + size > va->va_end)
901 		return NOTHING_FIT;
902 
903 	/* Now classify. */
904 	if (va->va_start == nva_start_addr) {
905 		if (va->va_end == nva_start_addr + size)
906 			type = FL_FIT_TYPE;
907 		else
908 			type = LE_FIT_TYPE;
909 	} else if (va->va_end == nva_start_addr + size) {
910 		type = RE_FIT_TYPE;
911 	} else {
912 		type = NE_FIT_TYPE;
913 	}
914 
915 	return type;
916 }
917 
918 static __always_inline int
919 adjust_va_to_fit_type(struct vmap_area *va,
920 	unsigned long nva_start_addr, unsigned long size,
921 	enum fit_type type)
922 {
923 	struct vmap_area *lva = NULL;
924 
925 	if (type == FL_FIT_TYPE) {
926 		/*
927 		 * No need to split VA, it fully fits.
928 		 *
929 		 * |               |
930 		 * V      NVA      V
931 		 * |---------------|
932 		 */
933 		unlink_va(va, &free_vmap_area_root);
934 		kmem_cache_free(vmap_area_cachep, va);
935 	} else if (type == LE_FIT_TYPE) {
936 		/*
937 		 * Split left edge of fit VA.
938 		 *
939 		 * |       |
940 		 * V  NVA  V   R
941 		 * |-------|-------|
942 		 */
943 		va->va_start += size;
944 	} else if (type == RE_FIT_TYPE) {
945 		/*
946 		 * Split right edge of fit VA.
947 		 *
948 		 *         |       |
949 		 *     L   V  NVA  V
950 		 * |-------|-------|
951 		 */
952 		va->va_end = nva_start_addr;
953 	} else if (type == NE_FIT_TYPE) {
954 		/*
955 		 * Split no edge of fit VA.
956 		 *
957 		 *     |       |
958 		 *   L V  NVA  V R
959 		 * |---|-------|---|
960 		 */
961 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
962 		if (unlikely(!lva)) {
963 			/*
964 			 * For percpu allocator we do not do any pre-allocation
965 			 * and leave it as it is. The reason is it most likely
966 			 * never ends up with NE_FIT_TYPE splitting. In case of
967 			 * percpu allocations offsets and sizes are aligned to
968 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
969 			 * are its main fitting cases.
970 			 *
971 			 * There are a few exceptions though, as an example it is
972 			 * a first allocation (early boot up) when we have "one"
973 			 * big free space that has to be split.
974 			 */
975 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
976 			if (!lva)
977 				return -1;
978 		}
979 
980 		/*
981 		 * Build the remainder.
982 		 */
983 		lva->va_start = va->va_start;
984 		lva->va_end = nva_start_addr;
985 
986 		/*
987 		 * Shrink this VA to remaining size.
988 		 */
989 		va->va_start = nva_start_addr + size;
990 	} else {
991 		return -1;
992 	}
993 
994 	if (type != FL_FIT_TYPE) {
995 		augment_tree_propagate_from(va);
996 
997 		if (lva)	/* type == NE_FIT_TYPE */
998 			insert_vmap_area_augment(lva, &va->rb_node,
999 				&free_vmap_area_root, &free_vmap_area_list);
1000 	}
1001 
1002 	return 0;
1003 }
1004 
1005 /*
1006  * Returns a start address of the newly allocated area, if success.
1007  * Otherwise a vend is returned that indicates failure.
1008  */
1009 static __always_inline unsigned long
1010 __alloc_vmap_area(unsigned long size, unsigned long align,
1011 	unsigned long vstart, unsigned long vend)
1012 {
1013 	unsigned long nva_start_addr;
1014 	struct vmap_area *va;
1015 	enum fit_type type;
1016 	int ret;
1017 
1018 	va = find_vmap_lowest_match(size, align, vstart);
1019 	if (unlikely(!va))
1020 		return vend;
1021 
1022 	if (va->va_start > vstart)
1023 		nva_start_addr = ALIGN(va->va_start, align);
1024 	else
1025 		nva_start_addr = ALIGN(vstart, align);
1026 
1027 	/* Check the "vend" restriction. */
1028 	if (nva_start_addr + size > vend)
1029 		return vend;
1030 
1031 	/* Classify what we have found. */
1032 	type = classify_va_fit_type(va, nva_start_addr, size);
1033 	if (WARN_ON_ONCE(type == NOTHING_FIT))
1034 		return vend;
1035 
1036 	/* Update the free vmap_area. */
1037 	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1038 	if (ret)
1039 		return vend;
1040 
1041 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1042 	find_vmap_lowest_match_check(size);
1043 #endif
1044 
1045 	return nva_start_addr;
1046 }
1047 
1048 /*
1049  * Allocate a region of KVA of the specified size and alignment, within the
1050  * vstart and vend.
1051  */
1052 static struct vmap_area *alloc_vmap_area(unsigned long size,
1053 				unsigned long align,
1054 				unsigned long vstart, unsigned long vend,
1055 				int node, gfp_t gfp_mask)
1056 {
1057 	struct vmap_area *va, *pva;
1058 	unsigned long addr;
1059 	int purged = 0;
1060 
1061 	BUG_ON(!size);
1062 	BUG_ON(offset_in_page(size));
1063 	BUG_ON(!is_power_of_2(align));
1064 
1065 	if (unlikely(!vmap_initialized))
1066 		return ERR_PTR(-EBUSY);
1067 
1068 	might_sleep();
1069 
1070 	va = kmem_cache_alloc_node(vmap_area_cachep,
1071 			gfp_mask & GFP_RECLAIM_MASK, node);
1072 	if (unlikely(!va))
1073 		return ERR_PTR(-ENOMEM);
1074 
1075 	/*
1076 	 * Only scan the relevant parts containing pointers to other objects
1077 	 * to avoid false negatives.
1078 	 */
1079 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
1080 
1081 retry:
1082 	/*
1083 	 * Preload this CPU with one extra vmap_area object to ensure
1084 	 * that we have it available when fit type of free area is
1085 	 * NE_FIT_TYPE.
1086 	 *
1087 	 * The preload is done in non-atomic context, thus it allows us
1088 	 * to use more permissive allocation masks to be more stable under
1089 	 * low memory condition and high memory pressure.
1090 	 *
1091 	 * Even if it fails we do not really care about that. Just proceed
1092 	 * as it is. "overflow" path will refill the cache we allocate from.
1093 	 */
1094 	preempt_disable();
1095 	if (!__this_cpu_read(ne_fit_preload_node)) {
1096 		preempt_enable();
1097 		pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node);
1098 		preempt_disable();
1099 
1100 		if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) {
1101 			if (pva)
1102 				kmem_cache_free(vmap_area_cachep, pva);
1103 		}
1104 	}
1105 
1106 	spin_lock(&vmap_area_lock);
1107 	preempt_enable();
1108 
1109 	/*
1110 	 * If an allocation fails, the "vend" address is
1111 	 * returned. Therefore trigger the overflow path.
1112 	 */
1113 	addr = __alloc_vmap_area(size, align, vstart, vend);
1114 	if (unlikely(addr == vend))
1115 		goto overflow;
1116 
1117 	va->va_start = addr;
1118 	va->va_end = addr + size;
1119 	va->flags = 0;
1120 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1121 
1122 	spin_unlock(&vmap_area_lock);
1123 
1124 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1125 	BUG_ON(va->va_start < vstart);
1126 	BUG_ON(va->va_end > vend);
1127 
1128 	return va;
1129 
1130 overflow:
1131 	spin_unlock(&vmap_area_lock);
1132 	if (!purged) {
1133 		purge_vmap_area_lazy();
1134 		purged = 1;
1135 		goto retry;
1136 	}
1137 
1138 	if (gfpflags_allow_blocking(gfp_mask)) {
1139 		unsigned long freed = 0;
1140 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1141 		if (freed > 0) {
1142 			purged = 0;
1143 			goto retry;
1144 		}
1145 	}
1146 
1147 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1148 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1149 			size);
1150 
1151 	kmem_cache_free(vmap_area_cachep, va);
1152 	return ERR_PTR(-EBUSY);
1153 }
1154 
1155 int register_vmap_purge_notifier(struct notifier_block *nb)
1156 {
1157 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1158 }
1159 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1160 
1161 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1162 {
1163 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1164 }
1165 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1166 
1167 static void __free_vmap_area(struct vmap_area *va)
1168 {
1169 	/*
1170 	 * Remove from the busy tree/list.
1171 	 */
1172 	unlink_va(va, &vmap_area_root);
1173 
1174 	/*
1175 	 * Merge VA with its neighbors, otherwise just add it.
1176 	 */
1177 	merge_or_add_vmap_area(va,
1178 		&free_vmap_area_root, &free_vmap_area_list);
1179 }
1180 
1181 /*
1182  * Free a region of KVA allocated by alloc_vmap_area
1183  */
1184 static void free_vmap_area(struct vmap_area *va)
1185 {
1186 	spin_lock(&vmap_area_lock);
1187 	__free_vmap_area(va);
1188 	spin_unlock(&vmap_area_lock);
1189 }
1190 
1191 /*
1192  * Clear the pagetable entries of a given vmap_area
1193  */
1194 static void unmap_vmap_area(struct vmap_area *va)
1195 {
1196 	vunmap_page_range(va->va_start, va->va_end);
1197 }
1198 
1199 /*
1200  * lazy_max_pages is the maximum amount of virtual address space we gather up
1201  * before attempting to purge with a TLB flush.
1202  *
1203  * There is a tradeoff here: a larger number will cover more kernel page tables
1204  * and take slightly longer to purge, but it will linearly reduce the number of
1205  * global TLB flushes that must be performed. It would seem natural to scale
1206  * this number up linearly with the number of CPUs (because vmapping activity
1207  * could also scale linearly with the number of CPUs), however it is likely
1208  * that in practice, workloads might be constrained in other ways that mean
1209  * vmap activity will not scale linearly with CPUs. Also, I want to be
1210  * conservative and not introduce a big latency on huge systems, so go with
1211  * a less aggressive log scale. It will still be an improvement over the old
1212  * code, and it will be simple to change the scale factor if we find that it
1213  * becomes a problem on bigger systems.
1214  */
1215 static unsigned long lazy_max_pages(void)
1216 {
1217 	unsigned int log;
1218 
1219 	log = fls(num_online_cpus());
1220 
1221 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1222 }
1223 
1224 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1225 
1226 /*
1227  * Serialize vmap purging.  There is no actual criticial section protected
1228  * by this look, but we want to avoid concurrent calls for performance
1229  * reasons and to make the pcpu_get_vm_areas more deterministic.
1230  */
1231 static DEFINE_MUTEX(vmap_purge_lock);
1232 
1233 /* for per-CPU blocks */
1234 static void purge_fragmented_blocks_allcpus(void);
1235 
1236 /*
1237  * called before a call to iounmap() if the caller wants vm_area_struct's
1238  * immediately freed.
1239  */
1240 void set_iounmap_nonlazy(void)
1241 {
1242 	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1243 }
1244 
1245 /*
1246  * Purges all lazily-freed vmap areas.
1247  */
1248 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1249 {
1250 	unsigned long resched_threshold;
1251 	struct llist_node *valist;
1252 	struct vmap_area *va;
1253 	struct vmap_area *n_va;
1254 
1255 	lockdep_assert_held(&vmap_purge_lock);
1256 
1257 	valist = llist_del_all(&vmap_purge_list);
1258 	if (unlikely(valist == NULL))
1259 		return false;
1260 
1261 	/*
1262 	 * First make sure the mappings are removed from all page-tables
1263 	 * before they are freed.
1264 	 */
1265 	vmalloc_sync_all();
1266 
1267 	/*
1268 	 * TODO: to calculate a flush range without looping.
1269 	 * The list can be up to lazy_max_pages() elements.
1270 	 */
1271 	llist_for_each_entry(va, valist, purge_list) {
1272 		if (va->va_start < start)
1273 			start = va->va_start;
1274 		if (va->va_end > end)
1275 			end = va->va_end;
1276 	}
1277 
1278 	flush_tlb_kernel_range(start, end);
1279 	resched_threshold = lazy_max_pages() << 1;
1280 
1281 	spin_lock(&vmap_area_lock);
1282 	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1283 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1284 
1285 		__free_vmap_area(va);
1286 		atomic_long_sub(nr, &vmap_lazy_nr);
1287 
1288 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1289 			cond_resched_lock(&vmap_area_lock);
1290 	}
1291 	spin_unlock(&vmap_area_lock);
1292 	return true;
1293 }
1294 
1295 /*
1296  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1297  * is already purging.
1298  */
1299 static void try_purge_vmap_area_lazy(void)
1300 {
1301 	if (mutex_trylock(&vmap_purge_lock)) {
1302 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1303 		mutex_unlock(&vmap_purge_lock);
1304 	}
1305 }
1306 
1307 /*
1308  * Kick off a purge of the outstanding lazy areas.
1309  */
1310 static void purge_vmap_area_lazy(void)
1311 {
1312 	mutex_lock(&vmap_purge_lock);
1313 	purge_fragmented_blocks_allcpus();
1314 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1315 	mutex_unlock(&vmap_purge_lock);
1316 }
1317 
1318 /*
1319  * Free a vmap area, caller ensuring that the area has been unmapped
1320  * and flush_cache_vunmap had been called for the correct range
1321  * previously.
1322  */
1323 static void free_vmap_area_noflush(struct vmap_area *va)
1324 {
1325 	unsigned long nr_lazy;
1326 
1327 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1328 				PAGE_SHIFT, &vmap_lazy_nr);
1329 
1330 	/* After this point, we may free va at any time */
1331 	llist_add(&va->purge_list, &vmap_purge_list);
1332 
1333 	if (unlikely(nr_lazy > lazy_max_pages()))
1334 		try_purge_vmap_area_lazy();
1335 }
1336 
1337 /*
1338  * Free and unmap a vmap area
1339  */
1340 static void free_unmap_vmap_area(struct vmap_area *va)
1341 {
1342 	flush_cache_vunmap(va->va_start, va->va_end);
1343 	unmap_vmap_area(va);
1344 	if (debug_pagealloc_enabled())
1345 		flush_tlb_kernel_range(va->va_start, va->va_end);
1346 
1347 	free_vmap_area_noflush(va);
1348 }
1349 
1350 static struct vmap_area *find_vmap_area(unsigned long addr)
1351 {
1352 	struct vmap_area *va;
1353 
1354 	spin_lock(&vmap_area_lock);
1355 	va = __find_vmap_area(addr);
1356 	spin_unlock(&vmap_area_lock);
1357 
1358 	return va;
1359 }
1360 
1361 /*** Per cpu kva allocator ***/
1362 
1363 /*
1364  * vmap space is limited especially on 32 bit architectures. Ensure there is
1365  * room for at least 16 percpu vmap blocks per CPU.
1366  */
1367 /*
1368  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1369  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1370  * instead (we just need a rough idea)
1371  */
1372 #if BITS_PER_LONG == 32
1373 #define VMALLOC_SPACE		(128UL*1024*1024)
1374 #else
1375 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1376 #endif
1377 
1378 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1379 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1380 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1381 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1382 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1383 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1384 #define VMAP_BBMAP_BITS		\
1385 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1386 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1387 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1388 
1389 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1390 
1391 struct vmap_block_queue {
1392 	spinlock_t lock;
1393 	struct list_head free;
1394 };
1395 
1396 struct vmap_block {
1397 	spinlock_t lock;
1398 	struct vmap_area *va;
1399 	unsigned long free, dirty;
1400 	unsigned long dirty_min, dirty_max; /*< dirty range */
1401 	struct list_head free_list;
1402 	struct rcu_head rcu_head;
1403 	struct list_head purge;
1404 };
1405 
1406 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1407 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1408 
1409 /*
1410  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1411  * in the free path. Could get rid of this if we change the API to return a
1412  * "cookie" from alloc, to be passed to free. But no big deal yet.
1413  */
1414 static DEFINE_SPINLOCK(vmap_block_tree_lock);
1415 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1416 
1417 /*
1418  * We should probably have a fallback mechanism to allocate virtual memory
1419  * out of partially filled vmap blocks. However vmap block sizing should be
1420  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1421  * big problem.
1422  */
1423 
1424 static unsigned long addr_to_vb_idx(unsigned long addr)
1425 {
1426 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1427 	addr /= VMAP_BLOCK_SIZE;
1428 	return addr;
1429 }
1430 
1431 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1432 {
1433 	unsigned long addr;
1434 
1435 	addr = va_start + (pages_off << PAGE_SHIFT);
1436 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1437 	return (void *)addr;
1438 }
1439 
1440 /**
1441  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1442  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1443  * @order:    how many 2^order pages should be occupied in newly allocated block
1444  * @gfp_mask: flags for the page level allocator
1445  *
1446  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1447  */
1448 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1449 {
1450 	struct vmap_block_queue *vbq;
1451 	struct vmap_block *vb;
1452 	struct vmap_area *va;
1453 	unsigned long vb_idx;
1454 	int node, err;
1455 	void *vaddr;
1456 
1457 	node = numa_node_id();
1458 
1459 	vb = kmalloc_node(sizeof(struct vmap_block),
1460 			gfp_mask & GFP_RECLAIM_MASK, node);
1461 	if (unlikely(!vb))
1462 		return ERR_PTR(-ENOMEM);
1463 
1464 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1465 					VMALLOC_START, VMALLOC_END,
1466 					node, gfp_mask);
1467 	if (IS_ERR(va)) {
1468 		kfree(vb);
1469 		return ERR_CAST(va);
1470 	}
1471 
1472 	err = radix_tree_preload(gfp_mask);
1473 	if (unlikely(err)) {
1474 		kfree(vb);
1475 		free_vmap_area(va);
1476 		return ERR_PTR(err);
1477 	}
1478 
1479 	vaddr = vmap_block_vaddr(va->va_start, 0);
1480 	spin_lock_init(&vb->lock);
1481 	vb->va = va;
1482 	/* At least something should be left free */
1483 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1484 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1485 	vb->dirty = 0;
1486 	vb->dirty_min = VMAP_BBMAP_BITS;
1487 	vb->dirty_max = 0;
1488 	INIT_LIST_HEAD(&vb->free_list);
1489 
1490 	vb_idx = addr_to_vb_idx(va->va_start);
1491 	spin_lock(&vmap_block_tree_lock);
1492 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1493 	spin_unlock(&vmap_block_tree_lock);
1494 	BUG_ON(err);
1495 	radix_tree_preload_end();
1496 
1497 	vbq = &get_cpu_var(vmap_block_queue);
1498 	spin_lock(&vbq->lock);
1499 	list_add_tail_rcu(&vb->free_list, &vbq->free);
1500 	spin_unlock(&vbq->lock);
1501 	put_cpu_var(vmap_block_queue);
1502 
1503 	return vaddr;
1504 }
1505 
1506 static void free_vmap_block(struct vmap_block *vb)
1507 {
1508 	struct vmap_block *tmp;
1509 	unsigned long vb_idx;
1510 
1511 	vb_idx = addr_to_vb_idx(vb->va->va_start);
1512 	spin_lock(&vmap_block_tree_lock);
1513 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1514 	spin_unlock(&vmap_block_tree_lock);
1515 	BUG_ON(tmp != vb);
1516 
1517 	free_vmap_area_noflush(vb->va);
1518 	kfree_rcu(vb, rcu_head);
1519 }
1520 
1521 static void purge_fragmented_blocks(int cpu)
1522 {
1523 	LIST_HEAD(purge);
1524 	struct vmap_block *vb;
1525 	struct vmap_block *n_vb;
1526 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1527 
1528 	rcu_read_lock();
1529 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1530 
1531 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1532 			continue;
1533 
1534 		spin_lock(&vb->lock);
1535 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1536 			vb->free = 0; /* prevent further allocs after releasing lock */
1537 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1538 			vb->dirty_min = 0;
1539 			vb->dirty_max = VMAP_BBMAP_BITS;
1540 			spin_lock(&vbq->lock);
1541 			list_del_rcu(&vb->free_list);
1542 			spin_unlock(&vbq->lock);
1543 			spin_unlock(&vb->lock);
1544 			list_add_tail(&vb->purge, &purge);
1545 		} else
1546 			spin_unlock(&vb->lock);
1547 	}
1548 	rcu_read_unlock();
1549 
1550 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1551 		list_del(&vb->purge);
1552 		free_vmap_block(vb);
1553 	}
1554 }
1555 
1556 static void purge_fragmented_blocks_allcpus(void)
1557 {
1558 	int cpu;
1559 
1560 	for_each_possible_cpu(cpu)
1561 		purge_fragmented_blocks(cpu);
1562 }
1563 
1564 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1565 {
1566 	struct vmap_block_queue *vbq;
1567 	struct vmap_block *vb;
1568 	void *vaddr = NULL;
1569 	unsigned int order;
1570 
1571 	BUG_ON(offset_in_page(size));
1572 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1573 	if (WARN_ON(size == 0)) {
1574 		/*
1575 		 * Allocating 0 bytes isn't what caller wants since
1576 		 * get_order(0) returns funny result. Just warn and terminate
1577 		 * early.
1578 		 */
1579 		return NULL;
1580 	}
1581 	order = get_order(size);
1582 
1583 	rcu_read_lock();
1584 	vbq = &get_cpu_var(vmap_block_queue);
1585 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1586 		unsigned long pages_off;
1587 
1588 		spin_lock(&vb->lock);
1589 		if (vb->free < (1UL << order)) {
1590 			spin_unlock(&vb->lock);
1591 			continue;
1592 		}
1593 
1594 		pages_off = VMAP_BBMAP_BITS - vb->free;
1595 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1596 		vb->free -= 1UL << order;
1597 		if (vb->free == 0) {
1598 			spin_lock(&vbq->lock);
1599 			list_del_rcu(&vb->free_list);
1600 			spin_unlock(&vbq->lock);
1601 		}
1602 
1603 		spin_unlock(&vb->lock);
1604 		break;
1605 	}
1606 
1607 	put_cpu_var(vmap_block_queue);
1608 	rcu_read_unlock();
1609 
1610 	/* Allocate new block if nothing was found */
1611 	if (!vaddr)
1612 		vaddr = new_vmap_block(order, gfp_mask);
1613 
1614 	return vaddr;
1615 }
1616 
1617 static void vb_free(const void *addr, unsigned long size)
1618 {
1619 	unsigned long offset;
1620 	unsigned long vb_idx;
1621 	unsigned int order;
1622 	struct vmap_block *vb;
1623 
1624 	BUG_ON(offset_in_page(size));
1625 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1626 
1627 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1628 
1629 	order = get_order(size);
1630 
1631 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1632 	offset >>= PAGE_SHIFT;
1633 
1634 	vb_idx = addr_to_vb_idx((unsigned long)addr);
1635 	rcu_read_lock();
1636 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1637 	rcu_read_unlock();
1638 	BUG_ON(!vb);
1639 
1640 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1641 
1642 	if (debug_pagealloc_enabled())
1643 		flush_tlb_kernel_range((unsigned long)addr,
1644 					(unsigned long)addr + size);
1645 
1646 	spin_lock(&vb->lock);
1647 
1648 	/* Expand dirty range */
1649 	vb->dirty_min = min(vb->dirty_min, offset);
1650 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1651 
1652 	vb->dirty += 1UL << order;
1653 	if (vb->dirty == VMAP_BBMAP_BITS) {
1654 		BUG_ON(vb->free);
1655 		spin_unlock(&vb->lock);
1656 		free_vmap_block(vb);
1657 	} else
1658 		spin_unlock(&vb->lock);
1659 }
1660 
1661 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1662 {
1663 	int cpu;
1664 
1665 	if (unlikely(!vmap_initialized))
1666 		return;
1667 
1668 	might_sleep();
1669 
1670 	for_each_possible_cpu(cpu) {
1671 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1672 		struct vmap_block *vb;
1673 
1674 		rcu_read_lock();
1675 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1676 			spin_lock(&vb->lock);
1677 			if (vb->dirty) {
1678 				unsigned long va_start = vb->va->va_start;
1679 				unsigned long s, e;
1680 
1681 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1682 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1683 
1684 				start = min(s, start);
1685 				end   = max(e, end);
1686 
1687 				flush = 1;
1688 			}
1689 			spin_unlock(&vb->lock);
1690 		}
1691 		rcu_read_unlock();
1692 	}
1693 
1694 	mutex_lock(&vmap_purge_lock);
1695 	purge_fragmented_blocks_allcpus();
1696 	if (!__purge_vmap_area_lazy(start, end) && flush)
1697 		flush_tlb_kernel_range(start, end);
1698 	mutex_unlock(&vmap_purge_lock);
1699 }
1700 
1701 /**
1702  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1703  *
1704  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1705  * to amortize TLB flushing overheads. What this means is that any page you
1706  * have now, may, in a former life, have been mapped into kernel virtual
1707  * address by the vmap layer and so there might be some CPUs with TLB entries
1708  * still referencing that page (additional to the regular 1:1 kernel mapping).
1709  *
1710  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1711  * be sure that none of the pages we have control over will have any aliases
1712  * from the vmap layer.
1713  */
1714 void vm_unmap_aliases(void)
1715 {
1716 	unsigned long start = ULONG_MAX, end = 0;
1717 	int flush = 0;
1718 
1719 	_vm_unmap_aliases(start, end, flush);
1720 }
1721 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1722 
1723 /**
1724  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1725  * @mem: the pointer returned by vm_map_ram
1726  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1727  */
1728 void vm_unmap_ram(const void *mem, unsigned int count)
1729 {
1730 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1731 	unsigned long addr = (unsigned long)mem;
1732 	struct vmap_area *va;
1733 
1734 	might_sleep();
1735 	BUG_ON(!addr);
1736 	BUG_ON(addr < VMALLOC_START);
1737 	BUG_ON(addr > VMALLOC_END);
1738 	BUG_ON(!PAGE_ALIGNED(addr));
1739 
1740 	if (likely(count <= VMAP_MAX_ALLOC)) {
1741 		debug_check_no_locks_freed(mem, size);
1742 		vb_free(mem, size);
1743 		return;
1744 	}
1745 
1746 	va = find_vmap_area(addr);
1747 	BUG_ON(!va);
1748 	debug_check_no_locks_freed((void *)va->va_start,
1749 				    (va->va_end - va->va_start));
1750 	free_unmap_vmap_area(va);
1751 }
1752 EXPORT_SYMBOL(vm_unmap_ram);
1753 
1754 /**
1755  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1756  * @pages: an array of pointers to the pages to be mapped
1757  * @count: number of pages
1758  * @node: prefer to allocate data structures on this node
1759  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1760  *
1761  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1762  * faster than vmap so it's good.  But if you mix long-life and short-life
1763  * objects with vm_map_ram(), it could consume lots of address space through
1764  * fragmentation (especially on a 32bit machine).  You could see failures in
1765  * the end.  Please use this function for short-lived objects.
1766  *
1767  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1768  */
1769 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1770 {
1771 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1772 	unsigned long addr;
1773 	void *mem;
1774 
1775 	if (likely(count <= VMAP_MAX_ALLOC)) {
1776 		mem = vb_alloc(size, GFP_KERNEL);
1777 		if (IS_ERR(mem))
1778 			return NULL;
1779 		addr = (unsigned long)mem;
1780 	} else {
1781 		struct vmap_area *va;
1782 		va = alloc_vmap_area(size, PAGE_SIZE,
1783 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1784 		if (IS_ERR(va))
1785 			return NULL;
1786 
1787 		addr = va->va_start;
1788 		mem = (void *)addr;
1789 	}
1790 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1791 		vm_unmap_ram(mem, count);
1792 		return NULL;
1793 	}
1794 	return mem;
1795 }
1796 EXPORT_SYMBOL(vm_map_ram);
1797 
1798 static struct vm_struct *vmlist __initdata;
1799 
1800 /**
1801  * vm_area_add_early - add vmap area early during boot
1802  * @vm: vm_struct to add
1803  *
1804  * This function is used to add fixed kernel vm area to vmlist before
1805  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1806  * should contain proper values and the other fields should be zero.
1807  *
1808  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1809  */
1810 void __init vm_area_add_early(struct vm_struct *vm)
1811 {
1812 	struct vm_struct *tmp, **p;
1813 
1814 	BUG_ON(vmap_initialized);
1815 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1816 		if (tmp->addr >= vm->addr) {
1817 			BUG_ON(tmp->addr < vm->addr + vm->size);
1818 			break;
1819 		} else
1820 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1821 	}
1822 	vm->next = *p;
1823 	*p = vm;
1824 }
1825 
1826 /**
1827  * vm_area_register_early - register vmap area early during boot
1828  * @vm: vm_struct to register
1829  * @align: requested alignment
1830  *
1831  * This function is used to register kernel vm area before
1832  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1833  * proper values on entry and other fields should be zero.  On return,
1834  * vm->addr contains the allocated address.
1835  *
1836  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1837  */
1838 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1839 {
1840 	static size_t vm_init_off __initdata;
1841 	unsigned long addr;
1842 
1843 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1844 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1845 
1846 	vm->addr = (void *)addr;
1847 
1848 	vm_area_add_early(vm);
1849 }
1850 
1851 static void vmap_init_free_space(void)
1852 {
1853 	unsigned long vmap_start = 1;
1854 	const unsigned long vmap_end = ULONG_MAX;
1855 	struct vmap_area *busy, *free;
1856 
1857 	/*
1858 	 *     B     F     B     B     B     F
1859 	 * -|-----|.....|-----|-----|-----|.....|-
1860 	 *  |           The KVA space           |
1861 	 *  |<--------------------------------->|
1862 	 */
1863 	list_for_each_entry(busy, &vmap_area_list, list) {
1864 		if (busy->va_start - vmap_start > 0) {
1865 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1866 			if (!WARN_ON_ONCE(!free)) {
1867 				free->va_start = vmap_start;
1868 				free->va_end = busy->va_start;
1869 
1870 				insert_vmap_area_augment(free, NULL,
1871 					&free_vmap_area_root,
1872 						&free_vmap_area_list);
1873 			}
1874 		}
1875 
1876 		vmap_start = busy->va_end;
1877 	}
1878 
1879 	if (vmap_end - vmap_start > 0) {
1880 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1881 		if (!WARN_ON_ONCE(!free)) {
1882 			free->va_start = vmap_start;
1883 			free->va_end = vmap_end;
1884 
1885 			insert_vmap_area_augment(free, NULL,
1886 				&free_vmap_area_root,
1887 					&free_vmap_area_list);
1888 		}
1889 	}
1890 }
1891 
1892 void __init vmalloc_init(void)
1893 {
1894 	struct vmap_area *va;
1895 	struct vm_struct *tmp;
1896 	int i;
1897 
1898 	/*
1899 	 * Create the cache for vmap_area objects.
1900 	 */
1901 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1902 
1903 	for_each_possible_cpu(i) {
1904 		struct vmap_block_queue *vbq;
1905 		struct vfree_deferred *p;
1906 
1907 		vbq = &per_cpu(vmap_block_queue, i);
1908 		spin_lock_init(&vbq->lock);
1909 		INIT_LIST_HEAD(&vbq->free);
1910 		p = &per_cpu(vfree_deferred, i);
1911 		init_llist_head(&p->list);
1912 		INIT_WORK(&p->wq, free_work);
1913 	}
1914 
1915 	/* Import existing vmlist entries. */
1916 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1917 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1918 		if (WARN_ON_ONCE(!va))
1919 			continue;
1920 
1921 		va->flags = VM_VM_AREA;
1922 		va->va_start = (unsigned long)tmp->addr;
1923 		va->va_end = va->va_start + tmp->size;
1924 		va->vm = tmp;
1925 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1926 	}
1927 
1928 	/*
1929 	 * Now we can initialize a free vmap space.
1930 	 */
1931 	vmap_init_free_space();
1932 	vmap_initialized = true;
1933 }
1934 
1935 /**
1936  * map_kernel_range_noflush - map kernel VM area with the specified pages
1937  * @addr: start of the VM area to map
1938  * @size: size of the VM area to map
1939  * @prot: page protection flags to use
1940  * @pages: pages to map
1941  *
1942  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1943  * specify should have been allocated using get_vm_area() and its
1944  * friends.
1945  *
1946  * NOTE:
1947  * This function does NOT do any cache flushing.  The caller is
1948  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1949  * before calling this function.
1950  *
1951  * RETURNS:
1952  * The number of pages mapped on success, -errno on failure.
1953  */
1954 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1955 			     pgprot_t prot, struct page **pages)
1956 {
1957 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1958 }
1959 
1960 /**
1961  * unmap_kernel_range_noflush - unmap kernel VM area
1962  * @addr: start of the VM area to unmap
1963  * @size: size of the VM area to unmap
1964  *
1965  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1966  * specify should have been allocated using get_vm_area() and its
1967  * friends.
1968  *
1969  * NOTE:
1970  * This function does NOT do any cache flushing.  The caller is
1971  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1972  * before calling this function and flush_tlb_kernel_range() after.
1973  */
1974 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1975 {
1976 	vunmap_page_range(addr, addr + size);
1977 }
1978 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1979 
1980 /**
1981  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1982  * @addr: start of the VM area to unmap
1983  * @size: size of the VM area to unmap
1984  *
1985  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1986  * the unmapping and tlb after.
1987  */
1988 void unmap_kernel_range(unsigned long addr, unsigned long size)
1989 {
1990 	unsigned long end = addr + size;
1991 
1992 	flush_cache_vunmap(addr, end);
1993 	vunmap_page_range(addr, end);
1994 	flush_tlb_kernel_range(addr, end);
1995 }
1996 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1997 
1998 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1999 {
2000 	unsigned long addr = (unsigned long)area->addr;
2001 	unsigned long end = addr + get_vm_area_size(area);
2002 	int err;
2003 
2004 	err = vmap_page_range(addr, end, prot, pages);
2005 
2006 	return err > 0 ? 0 : err;
2007 }
2008 EXPORT_SYMBOL_GPL(map_vm_area);
2009 
2010 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2011 			      unsigned long flags, const void *caller)
2012 {
2013 	spin_lock(&vmap_area_lock);
2014 	vm->flags = flags;
2015 	vm->addr = (void *)va->va_start;
2016 	vm->size = va->va_end - va->va_start;
2017 	vm->caller = caller;
2018 	va->vm = vm;
2019 	va->flags |= VM_VM_AREA;
2020 	spin_unlock(&vmap_area_lock);
2021 }
2022 
2023 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2024 {
2025 	/*
2026 	 * Before removing VM_UNINITIALIZED,
2027 	 * we should make sure that vm has proper values.
2028 	 * Pair with smp_rmb() in show_numa_info().
2029 	 */
2030 	smp_wmb();
2031 	vm->flags &= ~VM_UNINITIALIZED;
2032 }
2033 
2034 static struct vm_struct *__get_vm_area_node(unsigned long size,
2035 		unsigned long align, unsigned long flags, unsigned long start,
2036 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2037 {
2038 	struct vmap_area *va;
2039 	struct vm_struct *area;
2040 
2041 	BUG_ON(in_interrupt());
2042 	size = PAGE_ALIGN(size);
2043 	if (unlikely(!size))
2044 		return NULL;
2045 
2046 	if (flags & VM_IOREMAP)
2047 		align = 1ul << clamp_t(int, get_count_order_long(size),
2048 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2049 
2050 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2051 	if (unlikely(!area))
2052 		return NULL;
2053 
2054 	if (!(flags & VM_NO_GUARD))
2055 		size += PAGE_SIZE;
2056 
2057 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2058 	if (IS_ERR(va)) {
2059 		kfree(area);
2060 		return NULL;
2061 	}
2062 
2063 	setup_vmalloc_vm(area, va, flags, caller);
2064 
2065 	return area;
2066 }
2067 
2068 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2069 				unsigned long start, unsigned long end)
2070 {
2071 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2072 				  GFP_KERNEL, __builtin_return_address(0));
2073 }
2074 EXPORT_SYMBOL_GPL(__get_vm_area);
2075 
2076 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2077 				       unsigned long start, unsigned long end,
2078 				       const void *caller)
2079 {
2080 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2081 				  GFP_KERNEL, caller);
2082 }
2083 
2084 /**
2085  * get_vm_area - reserve a contiguous kernel virtual area
2086  * @size:	 size of the area
2087  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2088  *
2089  * Search an area of @size in the kernel virtual mapping area,
2090  * and reserved it for out purposes.  Returns the area descriptor
2091  * on success or %NULL on failure.
2092  *
2093  * Return: the area descriptor on success or %NULL on failure.
2094  */
2095 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2096 {
2097 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2098 				  NUMA_NO_NODE, GFP_KERNEL,
2099 				  __builtin_return_address(0));
2100 }
2101 
2102 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2103 				const void *caller)
2104 {
2105 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2106 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2107 }
2108 
2109 /**
2110  * find_vm_area - find a continuous kernel virtual area
2111  * @addr:	  base address
2112  *
2113  * Search for the kernel VM area starting at @addr, and return it.
2114  * It is up to the caller to do all required locking to keep the returned
2115  * pointer valid.
2116  *
2117  * Return: pointer to the found area or %NULL on faulure
2118  */
2119 struct vm_struct *find_vm_area(const void *addr)
2120 {
2121 	struct vmap_area *va;
2122 
2123 	va = find_vmap_area((unsigned long)addr);
2124 	if (va && va->flags & VM_VM_AREA)
2125 		return va->vm;
2126 
2127 	return NULL;
2128 }
2129 
2130 /**
2131  * remove_vm_area - find and remove a continuous kernel virtual area
2132  * @addr:	    base address
2133  *
2134  * Search for the kernel VM area starting at @addr, and remove it.
2135  * This function returns the found VM area, but using it is NOT safe
2136  * on SMP machines, except for its size or flags.
2137  *
2138  * Return: pointer to the found area or %NULL on faulure
2139  */
2140 struct vm_struct *remove_vm_area(const void *addr)
2141 {
2142 	struct vmap_area *va;
2143 
2144 	might_sleep();
2145 
2146 	va = find_vmap_area((unsigned long)addr);
2147 	if (va && va->flags & VM_VM_AREA) {
2148 		struct vm_struct *vm = va->vm;
2149 
2150 		spin_lock(&vmap_area_lock);
2151 		va->vm = NULL;
2152 		va->flags &= ~VM_VM_AREA;
2153 		va->flags |= VM_LAZY_FREE;
2154 		spin_unlock(&vmap_area_lock);
2155 
2156 		kasan_free_shadow(vm);
2157 		free_unmap_vmap_area(va);
2158 
2159 		return vm;
2160 	}
2161 	return NULL;
2162 }
2163 
2164 static inline void set_area_direct_map(const struct vm_struct *area,
2165 				       int (*set_direct_map)(struct page *page))
2166 {
2167 	int i;
2168 
2169 	for (i = 0; i < area->nr_pages; i++)
2170 		if (page_address(area->pages[i]))
2171 			set_direct_map(area->pages[i]);
2172 }
2173 
2174 /* Handle removing and resetting vm mappings related to the vm_struct. */
2175 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2176 {
2177 	unsigned long start = ULONG_MAX, end = 0;
2178 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2179 	int flush_dmap = 0;
2180 	int i;
2181 
2182 	remove_vm_area(area->addr);
2183 
2184 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2185 	if (!flush_reset)
2186 		return;
2187 
2188 	/*
2189 	 * If not deallocating pages, just do the flush of the VM area and
2190 	 * return.
2191 	 */
2192 	if (!deallocate_pages) {
2193 		vm_unmap_aliases();
2194 		return;
2195 	}
2196 
2197 	/*
2198 	 * If execution gets here, flush the vm mapping and reset the direct
2199 	 * map. Find the start and end range of the direct mappings to make sure
2200 	 * the vm_unmap_aliases() flush includes the direct map.
2201 	 */
2202 	for (i = 0; i < area->nr_pages; i++) {
2203 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2204 		if (addr) {
2205 			start = min(addr, start);
2206 			end = max(addr + PAGE_SIZE, end);
2207 			flush_dmap = 1;
2208 		}
2209 	}
2210 
2211 	/*
2212 	 * Set direct map to something invalid so that it won't be cached if
2213 	 * there are any accesses after the TLB flush, then flush the TLB and
2214 	 * reset the direct map permissions to the default.
2215 	 */
2216 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2217 	_vm_unmap_aliases(start, end, flush_dmap);
2218 	set_area_direct_map(area, set_direct_map_default_noflush);
2219 }
2220 
2221 static void __vunmap(const void *addr, int deallocate_pages)
2222 {
2223 	struct vm_struct *area;
2224 
2225 	if (!addr)
2226 		return;
2227 
2228 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2229 			addr))
2230 		return;
2231 
2232 	area = find_vm_area(addr);
2233 	if (unlikely(!area)) {
2234 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2235 				addr);
2236 		return;
2237 	}
2238 
2239 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2240 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2241 
2242 	vm_remove_mappings(area, deallocate_pages);
2243 
2244 	if (deallocate_pages) {
2245 		int i;
2246 
2247 		for (i = 0; i < area->nr_pages; i++) {
2248 			struct page *page = area->pages[i];
2249 
2250 			BUG_ON(!page);
2251 			__free_pages(page, 0);
2252 		}
2253 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2254 
2255 		kvfree(area->pages);
2256 	}
2257 
2258 	kfree(area);
2259 	return;
2260 }
2261 
2262 static inline void __vfree_deferred(const void *addr)
2263 {
2264 	/*
2265 	 * Use raw_cpu_ptr() because this can be called from preemptible
2266 	 * context. Preemption is absolutely fine here, because the llist_add()
2267 	 * implementation is lockless, so it works even if we are adding to
2268 	 * nother cpu's list.  schedule_work() should be fine with this too.
2269 	 */
2270 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2271 
2272 	if (llist_add((struct llist_node *)addr, &p->list))
2273 		schedule_work(&p->wq);
2274 }
2275 
2276 /**
2277  * vfree_atomic - release memory allocated by vmalloc()
2278  * @addr:	  memory base address
2279  *
2280  * This one is just like vfree() but can be called in any atomic context
2281  * except NMIs.
2282  */
2283 void vfree_atomic(const void *addr)
2284 {
2285 	BUG_ON(in_nmi());
2286 
2287 	kmemleak_free(addr);
2288 
2289 	if (!addr)
2290 		return;
2291 	__vfree_deferred(addr);
2292 }
2293 
2294 static void __vfree(const void *addr)
2295 {
2296 	if (unlikely(in_interrupt()))
2297 		__vfree_deferred(addr);
2298 	else
2299 		__vunmap(addr, 1);
2300 }
2301 
2302 /**
2303  * vfree - release memory allocated by vmalloc()
2304  * @addr:  memory base address
2305  *
2306  * Free the virtually continuous memory area starting at @addr, as
2307  * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2308  * NULL, no operation is performed.
2309  *
2310  * Must not be called in NMI context (strictly speaking, only if we don't
2311  * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2312  * conventions for vfree() arch-depenedent would be a really bad idea)
2313  *
2314  * May sleep if called *not* from interrupt context.
2315  *
2316  * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2317  */
2318 void vfree(const void *addr)
2319 {
2320 	BUG_ON(in_nmi());
2321 
2322 	kmemleak_free(addr);
2323 
2324 	might_sleep_if(!in_interrupt());
2325 
2326 	if (!addr)
2327 		return;
2328 
2329 	__vfree(addr);
2330 }
2331 EXPORT_SYMBOL(vfree);
2332 
2333 /**
2334  * vunmap - release virtual mapping obtained by vmap()
2335  * @addr:   memory base address
2336  *
2337  * Free the virtually contiguous memory area starting at @addr,
2338  * which was created from the page array passed to vmap().
2339  *
2340  * Must not be called in interrupt context.
2341  */
2342 void vunmap(const void *addr)
2343 {
2344 	BUG_ON(in_interrupt());
2345 	might_sleep();
2346 	if (addr)
2347 		__vunmap(addr, 0);
2348 }
2349 EXPORT_SYMBOL(vunmap);
2350 
2351 /**
2352  * vmap - map an array of pages into virtually contiguous space
2353  * @pages: array of page pointers
2354  * @count: number of pages to map
2355  * @flags: vm_area->flags
2356  * @prot: page protection for the mapping
2357  *
2358  * Maps @count pages from @pages into contiguous kernel virtual
2359  * space.
2360  *
2361  * Return: the address of the area or %NULL on failure
2362  */
2363 void *vmap(struct page **pages, unsigned int count,
2364 	   unsigned long flags, pgprot_t prot)
2365 {
2366 	struct vm_struct *area;
2367 	unsigned long size;		/* In bytes */
2368 
2369 	might_sleep();
2370 
2371 	if (count > totalram_pages())
2372 		return NULL;
2373 
2374 	size = (unsigned long)count << PAGE_SHIFT;
2375 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2376 	if (!area)
2377 		return NULL;
2378 
2379 	if (map_vm_area(area, prot, pages)) {
2380 		vunmap(area->addr);
2381 		return NULL;
2382 	}
2383 
2384 	return area->addr;
2385 }
2386 EXPORT_SYMBOL(vmap);
2387 
2388 static void *__vmalloc_node(unsigned long size, unsigned long align,
2389 			    gfp_t gfp_mask, pgprot_t prot,
2390 			    int node, const void *caller);
2391 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2392 				 pgprot_t prot, int node)
2393 {
2394 	struct page **pages;
2395 	unsigned int nr_pages, array_size, i;
2396 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2397 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2398 	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2399 					0 :
2400 					__GFP_HIGHMEM;
2401 
2402 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2403 	array_size = (nr_pages * sizeof(struct page *));
2404 
2405 	area->nr_pages = nr_pages;
2406 	/* Please note that the recursion is strictly bounded. */
2407 	if (array_size > PAGE_SIZE) {
2408 		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2409 				PAGE_KERNEL, node, area->caller);
2410 	} else {
2411 		pages = kmalloc_node(array_size, nested_gfp, node);
2412 	}
2413 	area->pages = pages;
2414 	if (!area->pages) {
2415 		remove_vm_area(area->addr);
2416 		kfree(area);
2417 		return NULL;
2418 	}
2419 
2420 	for (i = 0; i < area->nr_pages; i++) {
2421 		struct page *page;
2422 
2423 		if (node == NUMA_NO_NODE)
2424 			page = alloc_page(alloc_mask|highmem_mask);
2425 		else
2426 			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2427 
2428 		if (unlikely(!page)) {
2429 			/* Successfully allocated i pages, free them in __vunmap() */
2430 			area->nr_pages = i;
2431 			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2432 			goto fail;
2433 		}
2434 		area->pages[i] = page;
2435 		if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
2436 			cond_resched();
2437 	}
2438 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2439 
2440 	if (map_vm_area(area, prot, pages))
2441 		goto fail;
2442 	return area->addr;
2443 
2444 fail:
2445 	warn_alloc(gfp_mask, NULL,
2446 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2447 			  (area->nr_pages*PAGE_SIZE), area->size);
2448 	__vfree(area->addr);
2449 	return NULL;
2450 }
2451 
2452 /**
2453  * __vmalloc_node_range - allocate virtually contiguous memory
2454  * @size:		  allocation size
2455  * @align:		  desired alignment
2456  * @start:		  vm area range start
2457  * @end:		  vm area range end
2458  * @gfp_mask:		  flags for the page level allocator
2459  * @prot:		  protection mask for the allocated pages
2460  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
2461  * @node:		  node to use for allocation or NUMA_NO_NODE
2462  * @caller:		  caller's return address
2463  *
2464  * Allocate enough pages to cover @size from the page level
2465  * allocator with @gfp_mask flags.  Map them into contiguous
2466  * kernel virtual space, using a pagetable protection of @prot.
2467  *
2468  * Return: the address of the area or %NULL on failure
2469  */
2470 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2471 			unsigned long start, unsigned long end, gfp_t gfp_mask,
2472 			pgprot_t prot, unsigned long vm_flags, int node,
2473 			const void *caller)
2474 {
2475 	struct vm_struct *area;
2476 	void *addr;
2477 	unsigned long real_size = size;
2478 
2479 	size = PAGE_ALIGN(size);
2480 	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2481 		goto fail;
2482 
2483 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2484 				vm_flags, start, end, node, gfp_mask, caller);
2485 	if (!area)
2486 		goto fail;
2487 
2488 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2489 	if (!addr)
2490 		return NULL;
2491 
2492 	/*
2493 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2494 	 * flag. It means that vm_struct is not fully initialized.
2495 	 * Now, it is fully initialized, so remove this flag here.
2496 	 */
2497 	clear_vm_uninitialized_flag(area);
2498 
2499 	kmemleak_vmalloc(area, size, gfp_mask);
2500 
2501 	return addr;
2502 
2503 fail:
2504 	warn_alloc(gfp_mask, NULL,
2505 			  "vmalloc: allocation failure: %lu bytes", real_size);
2506 	return NULL;
2507 }
2508 
2509 /*
2510  * This is only for performance analysis of vmalloc and stress purpose.
2511  * It is required by vmalloc test module, therefore do not use it other
2512  * than that.
2513  */
2514 #ifdef CONFIG_TEST_VMALLOC_MODULE
2515 EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2516 #endif
2517 
2518 /**
2519  * __vmalloc_node - allocate virtually contiguous memory
2520  * @size:	    allocation size
2521  * @align:	    desired alignment
2522  * @gfp_mask:	    flags for the page level allocator
2523  * @prot:	    protection mask for the allocated pages
2524  * @node:	    node to use for allocation or NUMA_NO_NODE
2525  * @caller:	    caller's return address
2526  *
2527  * Allocate enough pages to cover @size from the page level
2528  * allocator with @gfp_mask flags.  Map them into contiguous
2529  * kernel virtual space, using a pagetable protection of @prot.
2530  *
2531  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2532  * and __GFP_NOFAIL are not supported
2533  *
2534  * Any use of gfp flags outside of GFP_KERNEL should be consulted
2535  * with mm people.
2536  *
2537  * Return: pointer to the allocated memory or %NULL on error
2538  */
2539 static void *__vmalloc_node(unsigned long size, unsigned long align,
2540 			    gfp_t gfp_mask, pgprot_t prot,
2541 			    int node, const void *caller)
2542 {
2543 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2544 				gfp_mask, prot, 0, node, caller);
2545 }
2546 
2547 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2548 {
2549 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2550 				__builtin_return_address(0));
2551 }
2552 EXPORT_SYMBOL(__vmalloc);
2553 
2554 static inline void *__vmalloc_node_flags(unsigned long size,
2555 					int node, gfp_t flags)
2556 {
2557 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2558 					node, __builtin_return_address(0));
2559 }
2560 
2561 
2562 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2563 				  void *caller)
2564 {
2565 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2566 }
2567 
2568 /**
2569  * vmalloc - allocate virtually contiguous memory
2570  * @size:    allocation size
2571  *
2572  * Allocate enough pages to cover @size from the page level
2573  * allocator and map them into contiguous kernel virtual space.
2574  *
2575  * For tight control over page level allocator and protection flags
2576  * use __vmalloc() instead.
2577  *
2578  * Return: pointer to the allocated memory or %NULL on error
2579  */
2580 void *vmalloc(unsigned long size)
2581 {
2582 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2583 				    GFP_KERNEL);
2584 }
2585 EXPORT_SYMBOL(vmalloc);
2586 
2587 /**
2588  * vzalloc - allocate virtually contiguous memory with zero fill
2589  * @size:    allocation size
2590  *
2591  * Allocate enough pages to cover @size from the page level
2592  * allocator and map them into contiguous kernel virtual space.
2593  * The memory allocated is set to zero.
2594  *
2595  * For tight control over page level allocator and protection flags
2596  * use __vmalloc() instead.
2597  *
2598  * Return: pointer to the allocated memory or %NULL on error
2599  */
2600 void *vzalloc(unsigned long size)
2601 {
2602 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2603 				GFP_KERNEL | __GFP_ZERO);
2604 }
2605 EXPORT_SYMBOL(vzalloc);
2606 
2607 /**
2608  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2609  * @size: allocation size
2610  *
2611  * The resulting memory area is zeroed so it can be mapped to userspace
2612  * without leaking data.
2613  *
2614  * Return: pointer to the allocated memory or %NULL on error
2615  */
2616 void *vmalloc_user(unsigned long size)
2617 {
2618 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2619 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2620 				    VM_USERMAP, NUMA_NO_NODE,
2621 				    __builtin_return_address(0));
2622 }
2623 EXPORT_SYMBOL(vmalloc_user);
2624 
2625 /**
2626  * vmalloc_node - allocate memory on a specific node
2627  * @size:	  allocation size
2628  * @node:	  numa node
2629  *
2630  * Allocate enough pages to cover @size from the page level
2631  * allocator and map them into contiguous kernel virtual space.
2632  *
2633  * For tight control over page level allocator and protection flags
2634  * use __vmalloc() instead.
2635  *
2636  * Return: pointer to the allocated memory or %NULL on error
2637  */
2638 void *vmalloc_node(unsigned long size, int node)
2639 {
2640 	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2641 					node, __builtin_return_address(0));
2642 }
2643 EXPORT_SYMBOL(vmalloc_node);
2644 
2645 /**
2646  * vzalloc_node - allocate memory on a specific node with zero fill
2647  * @size:	allocation size
2648  * @node:	numa node
2649  *
2650  * Allocate enough pages to cover @size from the page level
2651  * allocator and map them into contiguous kernel virtual space.
2652  * The memory allocated is set to zero.
2653  *
2654  * For tight control over page level allocator and protection flags
2655  * use __vmalloc_node() instead.
2656  *
2657  * Return: pointer to the allocated memory or %NULL on error
2658  */
2659 void *vzalloc_node(unsigned long size, int node)
2660 {
2661 	return __vmalloc_node_flags(size, node,
2662 			 GFP_KERNEL | __GFP_ZERO);
2663 }
2664 EXPORT_SYMBOL(vzalloc_node);
2665 
2666 /**
2667  * vmalloc_exec - allocate virtually contiguous, executable memory
2668  * @size:	  allocation size
2669  *
2670  * Kernel-internal function to allocate enough pages to cover @size
2671  * the page level allocator and map them into contiguous and
2672  * executable kernel virtual space.
2673  *
2674  * For tight control over page level allocator and protection flags
2675  * use __vmalloc() instead.
2676  *
2677  * Return: pointer to the allocated memory or %NULL on error
2678  */
2679 void *vmalloc_exec(unsigned long size)
2680 {
2681 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2682 			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2683 			NUMA_NO_NODE, __builtin_return_address(0));
2684 }
2685 
2686 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2687 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2688 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2689 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2690 #else
2691 /*
2692  * 64b systems should always have either DMA or DMA32 zones. For others
2693  * GFP_DMA32 should do the right thing and use the normal zone.
2694  */
2695 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2696 #endif
2697 
2698 /**
2699  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2700  * @size:	allocation size
2701  *
2702  * Allocate enough 32bit PA addressable pages to cover @size from the
2703  * page level allocator and map them into contiguous kernel virtual space.
2704  *
2705  * Return: pointer to the allocated memory or %NULL on error
2706  */
2707 void *vmalloc_32(unsigned long size)
2708 {
2709 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2710 			      NUMA_NO_NODE, __builtin_return_address(0));
2711 }
2712 EXPORT_SYMBOL(vmalloc_32);
2713 
2714 /**
2715  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2716  * @size:	     allocation size
2717  *
2718  * The resulting memory area is 32bit addressable and zeroed so it can be
2719  * mapped to userspace without leaking data.
2720  *
2721  * Return: pointer to the allocated memory or %NULL on error
2722  */
2723 void *vmalloc_32_user(unsigned long size)
2724 {
2725 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2726 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2727 				    VM_USERMAP, NUMA_NO_NODE,
2728 				    __builtin_return_address(0));
2729 }
2730 EXPORT_SYMBOL(vmalloc_32_user);
2731 
2732 /*
2733  * small helper routine , copy contents to buf from addr.
2734  * If the page is not present, fill zero.
2735  */
2736 
2737 static int aligned_vread(char *buf, char *addr, unsigned long count)
2738 {
2739 	struct page *p;
2740 	int copied = 0;
2741 
2742 	while (count) {
2743 		unsigned long offset, length;
2744 
2745 		offset = offset_in_page(addr);
2746 		length = PAGE_SIZE - offset;
2747 		if (length > count)
2748 			length = count;
2749 		p = vmalloc_to_page(addr);
2750 		/*
2751 		 * To do safe access to this _mapped_ area, we need
2752 		 * lock. But adding lock here means that we need to add
2753 		 * overhead of vmalloc()/vfree() calles for this _debug_
2754 		 * interface, rarely used. Instead of that, we'll use
2755 		 * kmap() and get small overhead in this access function.
2756 		 */
2757 		if (p) {
2758 			/*
2759 			 * we can expect USER0 is not used (see vread/vwrite's
2760 			 * function description)
2761 			 */
2762 			void *map = kmap_atomic(p);
2763 			memcpy(buf, map + offset, length);
2764 			kunmap_atomic(map);
2765 		} else
2766 			memset(buf, 0, length);
2767 
2768 		addr += length;
2769 		buf += length;
2770 		copied += length;
2771 		count -= length;
2772 	}
2773 	return copied;
2774 }
2775 
2776 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2777 {
2778 	struct page *p;
2779 	int copied = 0;
2780 
2781 	while (count) {
2782 		unsigned long offset, length;
2783 
2784 		offset = offset_in_page(addr);
2785 		length = PAGE_SIZE - offset;
2786 		if (length > count)
2787 			length = count;
2788 		p = vmalloc_to_page(addr);
2789 		/*
2790 		 * To do safe access to this _mapped_ area, we need
2791 		 * lock. But adding lock here means that we need to add
2792 		 * overhead of vmalloc()/vfree() calles for this _debug_
2793 		 * interface, rarely used. Instead of that, we'll use
2794 		 * kmap() and get small overhead in this access function.
2795 		 */
2796 		if (p) {
2797 			/*
2798 			 * we can expect USER0 is not used (see vread/vwrite's
2799 			 * function description)
2800 			 */
2801 			void *map = kmap_atomic(p);
2802 			memcpy(map + offset, buf, length);
2803 			kunmap_atomic(map);
2804 		}
2805 		addr += length;
2806 		buf += length;
2807 		copied += length;
2808 		count -= length;
2809 	}
2810 	return copied;
2811 }
2812 
2813 /**
2814  * vread() - read vmalloc area in a safe way.
2815  * @buf:     buffer for reading data
2816  * @addr:    vm address.
2817  * @count:   number of bytes to be read.
2818  *
2819  * This function checks that addr is a valid vmalloc'ed area, and
2820  * copy data from that area to a given buffer. If the given memory range
2821  * of [addr...addr+count) includes some valid address, data is copied to
2822  * proper area of @buf. If there are memory holes, they'll be zero-filled.
2823  * IOREMAP area is treated as memory hole and no copy is done.
2824  *
2825  * If [addr...addr+count) doesn't includes any intersects with alive
2826  * vm_struct area, returns 0. @buf should be kernel's buffer.
2827  *
2828  * Note: In usual ops, vread() is never necessary because the caller
2829  * should know vmalloc() area is valid and can use memcpy().
2830  * This is for routines which have to access vmalloc area without
2831  * any information, as /dev/kmem.
2832  *
2833  * Return: number of bytes for which addr and buf should be increased
2834  * (same number as @count) or %0 if [addr...addr+count) doesn't
2835  * include any intersection with valid vmalloc area
2836  */
2837 long vread(char *buf, char *addr, unsigned long count)
2838 {
2839 	struct vmap_area *va;
2840 	struct vm_struct *vm;
2841 	char *vaddr, *buf_start = buf;
2842 	unsigned long buflen = count;
2843 	unsigned long n;
2844 
2845 	/* Don't allow overflow */
2846 	if ((unsigned long) addr + count < count)
2847 		count = -(unsigned long) addr;
2848 
2849 	spin_lock(&vmap_area_lock);
2850 	list_for_each_entry(va, &vmap_area_list, list) {
2851 		if (!count)
2852 			break;
2853 
2854 		if (!(va->flags & VM_VM_AREA))
2855 			continue;
2856 
2857 		vm = va->vm;
2858 		vaddr = (char *) vm->addr;
2859 		if (addr >= vaddr + get_vm_area_size(vm))
2860 			continue;
2861 		while (addr < vaddr) {
2862 			if (count == 0)
2863 				goto finished;
2864 			*buf = '\0';
2865 			buf++;
2866 			addr++;
2867 			count--;
2868 		}
2869 		n = vaddr + get_vm_area_size(vm) - addr;
2870 		if (n > count)
2871 			n = count;
2872 		if (!(vm->flags & VM_IOREMAP))
2873 			aligned_vread(buf, addr, n);
2874 		else /* IOREMAP area is treated as memory hole */
2875 			memset(buf, 0, n);
2876 		buf += n;
2877 		addr += n;
2878 		count -= n;
2879 	}
2880 finished:
2881 	spin_unlock(&vmap_area_lock);
2882 
2883 	if (buf == buf_start)
2884 		return 0;
2885 	/* zero-fill memory holes */
2886 	if (buf != buf_start + buflen)
2887 		memset(buf, 0, buflen - (buf - buf_start));
2888 
2889 	return buflen;
2890 }
2891 
2892 /**
2893  * vwrite() - write vmalloc area in a safe way.
2894  * @buf:      buffer for source data
2895  * @addr:     vm address.
2896  * @count:    number of bytes to be read.
2897  *
2898  * This function checks that addr is a valid vmalloc'ed area, and
2899  * copy data from a buffer to the given addr. If specified range of
2900  * [addr...addr+count) includes some valid address, data is copied from
2901  * proper area of @buf. If there are memory holes, no copy to hole.
2902  * IOREMAP area is treated as memory hole and no copy is done.
2903  *
2904  * If [addr...addr+count) doesn't includes any intersects with alive
2905  * vm_struct area, returns 0. @buf should be kernel's buffer.
2906  *
2907  * Note: In usual ops, vwrite() is never necessary because the caller
2908  * should know vmalloc() area is valid and can use memcpy().
2909  * This is for routines which have to access vmalloc area without
2910  * any information, as /dev/kmem.
2911  *
2912  * Return: number of bytes for which addr and buf should be
2913  * increased (same number as @count) or %0 if [addr...addr+count)
2914  * doesn't include any intersection with valid vmalloc area
2915  */
2916 long vwrite(char *buf, char *addr, unsigned long count)
2917 {
2918 	struct vmap_area *va;
2919 	struct vm_struct *vm;
2920 	char *vaddr;
2921 	unsigned long n, buflen;
2922 	int copied = 0;
2923 
2924 	/* Don't allow overflow */
2925 	if ((unsigned long) addr + count < count)
2926 		count = -(unsigned long) addr;
2927 	buflen = count;
2928 
2929 	spin_lock(&vmap_area_lock);
2930 	list_for_each_entry(va, &vmap_area_list, list) {
2931 		if (!count)
2932 			break;
2933 
2934 		if (!(va->flags & VM_VM_AREA))
2935 			continue;
2936 
2937 		vm = va->vm;
2938 		vaddr = (char *) vm->addr;
2939 		if (addr >= vaddr + get_vm_area_size(vm))
2940 			continue;
2941 		while (addr < vaddr) {
2942 			if (count == 0)
2943 				goto finished;
2944 			buf++;
2945 			addr++;
2946 			count--;
2947 		}
2948 		n = vaddr + get_vm_area_size(vm) - addr;
2949 		if (n > count)
2950 			n = count;
2951 		if (!(vm->flags & VM_IOREMAP)) {
2952 			aligned_vwrite(buf, addr, n);
2953 			copied++;
2954 		}
2955 		buf += n;
2956 		addr += n;
2957 		count -= n;
2958 	}
2959 finished:
2960 	spin_unlock(&vmap_area_lock);
2961 	if (!copied)
2962 		return 0;
2963 	return buflen;
2964 }
2965 
2966 /**
2967  * remap_vmalloc_range_partial - map vmalloc pages to userspace
2968  * @vma:		vma to cover
2969  * @uaddr:		target user address to start at
2970  * @kaddr:		virtual address of vmalloc kernel memory
2971  * @size:		size of map area
2972  *
2973  * Returns:	0 for success, -Exxx on failure
2974  *
2975  * This function checks that @kaddr is a valid vmalloc'ed area,
2976  * and that it is big enough to cover the range starting at
2977  * @uaddr in @vma. Will return failure if that criteria isn't
2978  * met.
2979  *
2980  * Similar to remap_pfn_range() (see mm/memory.c)
2981  */
2982 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2983 				void *kaddr, unsigned long size)
2984 {
2985 	struct vm_struct *area;
2986 
2987 	size = PAGE_ALIGN(size);
2988 
2989 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2990 		return -EINVAL;
2991 
2992 	area = find_vm_area(kaddr);
2993 	if (!area)
2994 		return -EINVAL;
2995 
2996 	if (!(area->flags & VM_USERMAP))
2997 		return -EINVAL;
2998 
2999 	if (kaddr + size > area->addr + get_vm_area_size(area))
3000 		return -EINVAL;
3001 
3002 	do {
3003 		struct page *page = vmalloc_to_page(kaddr);
3004 		int ret;
3005 
3006 		ret = vm_insert_page(vma, uaddr, page);
3007 		if (ret)
3008 			return ret;
3009 
3010 		uaddr += PAGE_SIZE;
3011 		kaddr += PAGE_SIZE;
3012 		size -= PAGE_SIZE;
3013 	} while (size > 0);
3014 
3015 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3016 
3017 	return 0;
3018 }
3019 EXPORT_SYMBOL(remap_vmalloc_range_partial);
3020 
3021 /**
3022  * remap_vmalloc_range - map vmalloc pages to userspace
3023  * @vma:		vma to cover (map full range of vma)
3024  * @addr:		vmalloc memory
3025  * @pgoff:		number of pages into addr before first page to map
3026  *
3027  * Returns:	0 for success, -Exxx on failure
3028  *
3029  * This function checks that addr is a valid vmalloc'ed area, and
3030  * that it is big enough to cover the vma. Will return failure if
3031  * that criteria isn't met.
3032  *
3033  * Similar to remap_pfn_range() (see mm/memory.c)
3034  */
3035 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3036 						unsigned long pgoff)
3037 {
3038 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3039 					   addr + (pgoff << PAGE_SHIFT),
3040 					   vma->vm_end - vma->vm_start);
3041 }
3042 EXPORT_SYMBOL(remap_vmalloc_range);
3043 
3044 /*
3045  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3046  * have one.
3047  *
3048  * The purpose of this function is to make sure the vmalloc area
3049  * mappings are identical in all page-tables in the system.
3050  */
3051 void __weak vmalloc_sync_all(void)
3052 {
3053 }
3054 
3055 
3056 static int f(pte_t *pte, unsigned long addr, void *data)
3057 {
3058 	pte_t ***p = data;
3059 
3060 	if (p) {
3061 		*(*p) = pte;
3062 		(*p)++;
3063 	}
3064 	return 0;
3065 }
3066 
3067 /**
3068  * alloc_vm_area - allocate a range of kernel address space
3069  * @size:	   size of the area
3070  * @ptes:	   returns the PTEs for the address space
3071  *
3072  * Returns:	NULL on failure, vm_struct on success
3073  *
3074  * This function reserves a range of kernel address space, and
3075  * allocates pagetables to map that range.  No actual mappings
3076  * are created.
3077  *
3078  * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3079  * allocated for the VM area are returned.
3080  */
3081 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3082 {
3083 	struct vm_struct *area;
3084 
3085 	area = get_vm_area_caller(size, VM_IOREMAP,
3086 				__builtin_return_address(0));
3087 	if (area == NULL)
3088 		return NULL;
3089 
3090 	/*
3091 	 * This ensures that page tables are constructed for this region
3092 	 * of kernel virtual address space and mapped into init_mm.
3093 	 */
3094 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3095 				size, f, ptes ? &ptes : NULL)) {
3096 		free_vm_area(area);
3097 		return NULL;
3098 	}
3099 
3100 	return area;
3101 }
3102 EXPORT_SYMBOL_GPL(alloc_vm_area);
3103 
3104 void free_vm_area(struct vm_struct *area)
3105 {
3106 	struct vm_struct *ret;
3107 	ret = remove_vm_area(area->addr);
3108 	BUG_ON(ret != area);
3109 	kfree(area);
3110 }
3111 EXPORT_SYMBOL_GPL(free_vm_area);
3112 
3113 #ifdef CONFIG_SMP
3114 static struct vmap_area *node_to_va(struct rb_node *n)
3115 {
3116 	return rb_entry_safe(n, struct vmap_area, rb_node);
3117 }
3118 
3119 /**
3120  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3121  * @addr: target address
3122  *
3123  * Returns: vmap_area if it is found. If there is no such area
3124  *   the first highest(reverse order) vmap_area is returned
3125  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3126  *   if there are no any areas before @addr.
3127  */
3128 static struct vmap_area *
3129 pvm_find_va_enclose_addr(unsigned long addr)
3130 {
3131 	struct vmap_area *va, *tmp;
3132 	struct rb_node *n;
3133 
3134 	n = free_vmap_area_root.rb_node;
3135 	va = NULL;
3136 
3137 	while (n) {
3138 		tmp = rb_entry(n, struct vmap_area, rb_node);
3139 		if (tmp->va_start <= addr) {
3140 			va = tmp;
3141 			if (tmp->va_end >= addr)
3142 				break;
3143 
3144 			n = n->rb_right;
3145 		} else {
3146 			n = n->rb_left;
3147 		}
3148 	}
3149 
3150 	return va;
3151 }
3152 
3153 /**
3154  * pvm_determine_end_from_reverse - find the highest aligned address
3155  * of free block below VMALLOC_END
3156  * @va:
3157  *   in - the VA we start the search(reverse order);
3158  *   out - the VA with the highest aligned end address.
3159  *
3160  * Returns: determined end address within vmap_area
3161  */
3162 static unsigned long
3163 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3164 {
3165 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3166 	unsigned long addr;
3167 
3168 	if (likely(*va)) {
3169 		list_for_each_entry_from_reverse((*va),
3170 				&free_vmap_area_list, list) {
3171 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3172 			if ((*va)->va_start < addr)
3173 				return addr;
3174 		}
3175 	}
3176 
3177 	return 0;
3178 }
3179 
3180 /**
3181  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3182  * @offsets: array containing offset of each area
3183  * @sizes: array containing size of each area
3184  * @nr_vms: the number of areas to allocate
3185  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3186  *
3187  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3188  *	    vm_structs on success, %NULL on failure
3189  *
3190  * Percpu allocator wants to use congruent vm areas so that it can
3191  * maintain the offsets among percpu areas.  This function allocates
3192  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3193  * be scattered pretty far, distance between two areas easily going up
3194  * to gigabytes.  To avoid interacting with regular vmallocs, these
3195  * areas are allocated from top.
3196  *
3197  * Despite its complicated look, this allocator is rather simple. It
3198  * does everything top-down and scans free blocks from the end looking
3199  * for matching base. While scanning, if any of the areas do not fit the
3200  * base address is pulled down to fit the area. Scanning is repeated till
3201  * all the areas fit and then all necessary data structures are inserted
3202  * and the result is returned.
3203  */
3204 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3205 				     const size_t *sizes, int nr_vms,
3206 				     size_t align)
3207 {
3208 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3209 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3210 	struct vmap_area **vas, *va;
3211 	struct vm_struct **vms;
3212 	int area, area2, last_area, term_area;
3213 	unsigned long base, start, size, end, last_end;
3214 	bool purged = false;
3215 	enum fit_type type;
3216 
3217 	/* verify parameters and allocate data structures */
3218 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3219 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3220 		start = offsets[area];
3221 		end = start + sizes[area];
3222 
3223 		/* is everything aligned properly? */
3224 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3225 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3226 
3227 		/* detect the area with the highest address */
3228 		if (start > offsets[last_area])
3229 			last_area = area;
3230 
3231 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3232 			unsigned long start2 = offsets[area2];
3233 			unsigned long end2 = start2 + sizes[area2];
3234 
3235 			BUG_ON(start2 < end && start < end2);
3236 		}
3237 	}
3238 	last_end = offsets[last_area] + sizes[last_area];
3239 
3240 	if (vmalloc_end - vmalloc_start < last_end) {
3241 		WARN_ON(true);
3242 		return NULL;
3243 	}
3244 
3245 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3246 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3247 	if (!vas || !vms)
3248 		goto err_free2;
3249 
3250 	for (area = 0; area < nr_vms; area++) {
3251 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3252 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3253 		if (!vas[area] || !vms[area])
3254 			goto err_free;
3255 	}
3256 retry:
3257 	spin_lock(&vmap_area_lock);
3258 
3259 	/* start scanning - we scan from the top, begin with the last area */
3260 	area = term_area = last_area;
3261 	start = offsets[area];
3262 	end = start + sizes[area];
3263 
3264 	va = pvm_find_va_enclose_addr(vmalloc_end);
3265 	base = pvm_determine_end_from_reverse(&va, align) - end;
3266 
3267 	while (true) {
3268 		/*
3269 		 * base might have underflowed, add last_end before
3270 		 * comparing.
3271 		 */
3272 		if (base + last_end < vmalloc_start + last_end)
3273 			goto overflow;
3274 
3275 		/*
3276 		 * Fitting base has not been found.
3277 		 */
3278 		if (va == NULL)
3279 			goto overflow;
3280 
3281 		/*
3282 		 * If required width exeeds current VA block, move
3283 		 * base downwards and then recheck.
3284 		 */
3285 		if (base + end > va->va_end) {
3286 			base = pvm_determine_end_from_reverse(&va, align) - end;
3287 			term_area = area;
3288 			continue;
3289 		}
3290 
3291 		/*
3292 		 * If this VA does not fit, move base downwards and recheck.
3293 		 */
3294 		if (base + start < va->va_start) {
3295 			va = node_to_va(rb_prev(&va->rb_node));
3296 			base = pvm_determine_end_from_reverse(&va, align) - end;
3297 			term_area = area;
3298 			continue;
3299 		}
3300 
3301 		/*
3302 		 * This area fits, move on to the previous one.  If
3303 		 * the previous one is the terminal one, we're done.
3304 		 */
3305 		area = (area + nr_vms - 1) % nr_vms;
3306 		if (area == term_area)
3307 			break;
3308 
3309 		start = offsets[area];
3310 		end = start + sizes[area];
3311 		va = pvm_find_va_enclose_addr(base + end);
3312 	}
3313 
3314 	/* we've found a fitting base, insert all va's */
3315 	for (area = 0; area < nr_vms; area++) {
3316 		int ret;
3317 
3318 		start = base + offsets[area];
3319 		size = sizes[area];
3320 
3321 		va = pvm_find_va_enclose_addr(start);
3322 		if (WARN_ON_ONCE(va == NULL))
3323 			/* It is a BUG(), but trigger recovery instead. */
3324 			goto recovery;
3325 
3326 		type = classify_va_fit_type(va, start, size);
3327 		if (WARN_ON_ONCE(type == NOTHING_FIT))
3328 			/* It is a BUG(), but trigger recovery instead. */
3329 			goto recovery;
3330 
3331 		ret = adjust_va_to_fit_type(va, start, size, type);
3332 		if (unlikely(ret))
3333 			goto recovery;
3334 
3335 		/* Allocated area. */
3336 		va = vas[area];
3337 		va->va_start = start;
3338 		va->va_end = start + size;
3339 
3340 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
3341 	}
3342 
3343 	spin_unlock(&vmap_area_lock);
3344 
3345 	/* insert all vm's */
3346 	for (area = 0; area < nr_vms; area++)
3347 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
3348 				 pcpu_get_vm_areas);
3349 
3350 	kfree(vas);
3351 	return vms;
3352 
3353 recovery:
3354 	/* Remove previously inserted areas. */
3355 	while (area--) {
3356 		__free_vmap_area(vas[area]);
3357 		vas[area] = NULL;
3358 	}
3359 
3360 overflow:
3361 	spin_unlock(&vmap_area_lock);
3362 	if (!purged) {
3363 		purge_vmap_area_lazy();
3364 		purged = true;
3365 
3366 		/* Before "retry", check if we recover. */
3367 		for (area = 0; area < nr_vms; area++) {
3368 			if (vas[area])
3369 				continue;
3370 
3371 			vas[area] = kmem_cache_zalloc(
3372 				vmap_area_cachep, GFP_KERNEL);
3373 			if (!vas[area])
3374 				goto err_free;
3375 		}
3376 
3377 		goto retry;
3378 	}
3379 
3380 err_free:
3381 	for (area = 0; area < nr_vms; area++) {
3382 		if (vas[area])
3383 			kmem_cache_free(vmap_area_cachep, vas[area]);
3384 
3385 		kfree(vms[area]);
3386 	}
3387 err_free2:
3388 	kfree(vas);
3389 	kfree(vms);
3390 	return NULL;
3391 }
3392 
3393 /**
3394  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3395  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3396  * @nr_vms: the number of allocated areas
3397  *
3398  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3399  */
3400 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3401 {
3402 	int i;
3403 
3404 	for (i = 0; i < nr_vms; i++)
3405 		free_vm_area(vms[i]);
3406 	kfree(vms);
3407 }
3408 #endif	/* CONFIG_SMP */
3409 
3410 #ifdef CONFIG_PROC_FS
3411 static void *s_start(struct seq_file *m, loff_t *pos)
3412 	__acquires(&vmap_area_lock)
3413 {
3414 	spin_lock(&vmap_area_lock);
3415 	return seq_list_start(&vmap_area_list, *pos);
3416 }
3417 
3418 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3419 {
3420 	return seq_list_next(p, &vmap_area_list, pos);
3421 }
3422 
3423 static void s_stop(struct seq_file *m, void *p)
3424 	__releases(&vmap_area_lock)
3425 {
3426 	spin_unlock(&vmap_area_lock);
3427 }
3428 
3429 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3430 {
3431 	if (IS_ENABLED(CONFIG_NUMA)) {
3432 		unsigned int nr, *counters = m->private;
3433 
3434 		if (!counters)
3435 			return;
3436 
3437 		if (v->flags & VM_UNINITIALIZED)
3438 			return;
3439 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3440 		smp_rmb();
3441 
3442 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3443 
3444 		for (nr = 0; nr < v->nr_pages; nr++)
3445 			counters[page_to_nid(v->pages[nr])]++;
3446 
3447 		for_each_node_state(nr, N_HIGH_MEMORY)
3448 			if (counters[nr])
3449 				seq_printf(m, " N%u=%u", nr, counters[nr]);
3450 	}
3451 }
3452 
3453 static int s_show(struct seq_file *m, void *p)
3454 {
3455 	struct vmap_area *va;
3456 	struct vm_struct *v;
3457 
3458 	va = list_entry(p, struct vmap_area, list);
3459 
3460 	/*
3461 	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
3462 	 * behalf of vmap area is being tear down or vm_map_ram allocation.
3463 	 */
3464 	if (!(va->flags & VM_VM_AREA)) {
3465 		seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
3466 			(void *)va->va_start, (void *)va->va_end,
3467 			va->va_end - va->va_start,
3468 			va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
3469 
3470 		return 0;
3471 	}
3472 
3473 	v = va->vm;
3474 
3475 	seq_printf(m, "0x%pK-0x%pK %7ld",
3476 		v->addr, v->addr + v->size, v->size);
3477 
3478 	if (v->caller)
3479 		seq_printf(m, " %pS", v->caller);
3480 
3481 	if (v->nr_pages)
3482 		seq_printf(m, " pages=%d", v->nr_pages);
3483 
3484 	if (v->phys_addr)
3485 		seq_printf(m, " phys=%pa", &v->phys_addr);
3486 
3487 	if (v->flags & VM_IOREMAP)
3488 		seq_puts(m, " ioremap");
3489 
3490 	if (v->flags & VM_ALLOC)
3491 		seq_puts(m, " vmalloc");
3492 
3493 	if (v->flags & VM_MAP)
3494 		seq_puts(m, " vmap");
3495 
3496 	if (v->flags & VM_USERMAP)
3497 		seq_puts(m, " user");
3498 
3499 	if (is_vmalloc_addr(v->pages))
3500 		seq_puts(m, " vpages");
3501 
3502 	show_numa_info(m, v);
3503 	seq_putc(m, '\n');
3504 	return 0;
3505 }
3506 
3507 static const struct seq_operations vmalloc_op = {
3508 	.start = s_start,
3509 	.next = s_next,
3510 	.stop = s_stop,
3511 	.show = s_show,
3512 };
3513 
3514 static int __init proc_vmalloc_init(void)
3515 {
3516 	if (IS_ENABLED(CONFIG_NUMA))
3517 		proc_create_seq_private("vmallocinfo", 0400, NULL,
3518 				&vmalloc_op,
3519 				nr_node_ids * sizeof(unsigned int), NULL);
3520 	else
3521 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3522 	return 0;
3523 }
3524 module_init(proc_vmalloc_init);
3525 
3526 #endif
3527