xref: /linux/mm/vmalloc.c (revision b233b28eac0cc37d07c2d007ea08c86c778c5af4)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/debugobjects.h>
21 #include <linux/kallsyms.h>
22 #include <linux/list.h>
23 #include <linux/rbtree.h>
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
26 #include <linux/bootmem.h>
27 
28 #include <asm/atomic.h>
29 #include <asm/uaccess.h>
30 #include <asm/tlbflush.h>
31 
32 
33 /*** Page table manipulation functions ***/
34 
35 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
36 {
37 	pte_t *pte;
38 
39 	pte = pte_offset_kernel(pmd, addr);
40 	do {
41 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
42 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
43 	} while (pte++, addr += PAGE_SIZE, addr != end);
44 }
45 
46 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
47 {
48 	pmd_t *pmd;
49 	unsigned long next;
50 
51 	pmd = pmd_offset(pud, addr);
52 	do {
53 		next = pmd_addr_end(addr, end);
54 		if (pmd_none_or_clear_bad(pmd))
55 			continue;
56 		vunmap_pte_range(pmd, addr, next);
57 	} while (pmd++, addr = next, addr != end);
58 }
59 
60 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
61 {
62 	pud_t *pud;
63 	unsigned long next;
64 
65 	pud = pud_offset(pgd, addr);
66 	do {
67 		next = pud_addr_end(addr, end);
68 		if (pud_none_or_clear_bad(pud))
69 			continue;
70 		vunmap_pmd_range(pud, addr, next);
71 	} while (pud++, addr = next, addr != end);
72 }
73 
74 static void vunmap_page_range(unsigned long addr, unsigned long end)
75 {
76 	pgd_t *pgd;
77 	unsigned long next;
78 
79 	BUG_ON(addr >= end);
80 	pgd = pgd_offset_k(addr);
81 	do {
82 		next = pgd_addr_end(addr, end);
83 		if (pgd_none_or_clear_bad(pgd))
84 			continue;
85 		vunmap_pud_range(pgd, addr, next);
86 	} while (pgd++, addr = next, addr != end);
87 }
88 
89 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
90 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
91 {
92 	pte_t *pte;
93 
94 	/*
95 	 * nr is a running index into the array which helps higher level
96 	 * callers keep track of where we're up to.
97 	 */
98 
99 	pte = pte_alloc_kernel(pmd, addr);
100 	if (!pte)
101 		return -ENOMEM;
102 	do {
103 		struct page *page = pages[*nr];
104 
105 		if (WARN_ON(!pte_none(*pte)))
106 			return -EBUSY;
107 		if (WARN_ON(!page))
108 			return -ENOMEM;
109 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
110 		(*nr)++;
111 	} while (pte++, addr += PAGE_SIZE, addr != end);
112 	return 0;
113 }
114 
115 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
116 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
117 {
118 	pmd_t *pmd;
119 	unsigned long next;
120 
121 	pmd = pmd_alloc(&init_mm, pud, addr);
122 	if (!pmd)
123 		return -ENOMEM;
124 	do {
125 		next = pmd_addr_end(addr, end);
126 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
127 			return -ENOMEM;
128 	} while (pmd++, addr = next, addr != end);
129 	return 0;
130 }
131 
132 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
133 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
134 {
135 	pud_t *pud;
136 	unsigned long next;
137 
138 	pud = pud_alloc(&init_mm, pgd, addr);
139 	if (!pud)
140 		return -ENOMEM;
141 	do {
142 		next = pud_addr_end(addr, end);
143 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
144 			return -ENOMEM;
145 	} while (pud++, addr = next, addr != end);
146 	return 0;
147 }
148 
149 /*
150  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
151  * will have pfns corresponding to the "pages" array.
152  *
153  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
154  */
155 static int vmap_page_range(unsigned long start, unsigned long end,
156 				pgprot_t prot, struct page **pages)
157 {
158 	pgd_t *pgd;
159 	unsigned long next;
160 	unsigned long addr = start;
161 	int err = 0;
162 	int nr = 0;
163 
164 	BUG_ON(addr >= end);
165 	pgd = pgd_offset_k(addr);
166 	do {
167 		next = pgd_addr_end(addr, end);
168 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
169 		if (err)
170 			break;
171 	} while (pgd++, addr = next, addr != end);
172 	flush_cache_vmap(start, end);
173 
174 	if (unlikely(err))
175 		return err;
176 	return nr;
177 }
178 
179 static inline int is_vmalloc_or_module_addr(const void *x)
180 {
181 	/*
182 	 * ARM, x86-64 and sparc64 put modules in a special place,
183 	 * and fall back on vmalloc() if that fails. Others
184 	 * just put it in the vmalloc space.
185 	 */
186 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
187 	unsigned long addr = (unsigned long)x;
188 	if (addr >= MODULES_VADDR && addr < MODULES_END)
189 		return 1;
190 #endif
191 	return is_vmalloc_addr(x);
192 }
193 
194 /*
195  * Walk a vmap address to the struct page it maps.
196  */
197 struct page *vmalloc_to_page(const void *vmalloc_addr)
198 {
199 	unsigned long addr = (unsigned long) vmalloc_addr;
200 	struct page *page = NULL;
201 	pgd_t *pgd = pgd_offset_k(addr);
202 
203 	/*
204 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
205 	 * architectures that do not vmalloc module space
206 	 */
207 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
208 
209 	if (!pgd_none(*pgd)) {
210 		pud_t *pud = pud_offset(pgd, addr);
211 		if (!pud_none(*pud)) {
212 			pmd_t *pmd = pmd_offset(pud, addr);
213 			if (!pmd_none(*pmd)) {
214 				pte_t *ptep, pte;
215 
216 				ptep = pte_offset_map(pmd, addr);
217 				pte = *ptep;
218 				if (pte_present(pte))
219 					page = pte_page(pte);
220 				pte_unmap(ptep);
221 			}
222 		}
223 	}
224 	return page;
225 }
226 EXPORT_SYMBOL(vmalloc_to_page);
227 
228 /*
229  * Map a vmalloc()-space virtual address to the physical page frame number.
230  */
231 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
232 {
233 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
234 }
235 EXPORT_SYMBOL(vmalloc_to_pfn);
236 
237 
238 /*** Global kva allocator ***/
239 
240 #define VM_LAZY_FREE	0x01
241 #define VM_LAZY_FREEING	0x02
242 #define VM_VM_AREA	0x04
243 
244 struct vmap_area {
245 	unsigned long va_start;
246 	unsigned long va_end;
247 	unsigned long flags;
248 	struct rb_node rb_node;		/* address sorted rbtree */
249 	struct list_head list;		/* address sorted list */
250 	struct list_head purge_list;	/* "lazy purge" list */
251 	void *private;
252 	struct rcu_head rcu_head;
253 };
254 
255 static DEFINE_SPINLOCK(vmap_area_lock);
256 static struct rb_root vmap_area_root = RB_ROOT;
257 static LIST_HEAD(vmap_area_list);
258 
259 static struct vmap_area *__find_vmap_area(unsigned long addr)
260 {
261 	struct rb_node *n = vmap_area_root.rb_node;
262 
263 	while (n) {
264 		struct vmap_area *va;
265 
266 		va = rb_entry(n, struct vmap_area, rb_node);
267 		if (addr < va->va_start)
268 			n = n->rb_left;
269 		else if (addr > va->va_start)
270 			n = n->rb_right;
271 		else
272 			return va;
273 	}
274 
275 	return NULL;
276 }
277 
278 static void __insert_vmap_area(struct vmap_area *va)
279 {
280 	struct rb_node **p = &vmap_area_root.rb_node;
281 	struct rb_node *parent = NULL;
282 	struct rb_node *tmp;
283 
284 	while (*p) {
285 		struct vmap_area *tmp;
286 
287 		parent = *p;
288 		tmp = rb_entry(parent, struct vmap_area, rb_node);
289 		if (va->va_start < tmp->va_end)
290 			p = &(*p)->rb_left;
291 		else if (va->va_end > tmp->va_start)
292 			p = &(*p)->rb_right;
293 		else
294 			BUG();
295 	}
296 
297 	rb_link_node(&va->rb_node, parent, p);
298 	rb_insert_color(&va->rb_node, &vmap_area_root);
299 
300 	/* address-sort this list so it is usable like the vmlist */
301 	tmp = rb_prev(&va->rb_node);
302 	if (tmp) {
303 		struct vmap_area *prev;
304 		prev = rb_entry(tmp, struct vmap_area, rb_node);
305 		list_add_rcu(&va->list, &prev->list);
306 	} else
307 		list_add_rcu(&va->list, &vmap_area_list);
308 }
309 
310 static void purge_vmap_area_lazy(void);
311 
312 /*
313  * Allocate a region of KVA of the specified size and alignment, within the
314  * vstart and vend.
315  */
316 static struct vmap_area *alloc_vmap_area(unsigned long size,
317 				unsigned long align,
318 				unsigned long vstart, unsigned long vend,
319 				int node, gfp_t gfp_mask)
320 {
321 	struct vmap_area *va;
322 	struct rb_node *n;
323 	unsigned long addr;
324 	int purged = 0;
325 
326 	BUG_ON(size & ~PAGE_MASK);
327 
328 	va = kmalloc_node(sizeof(struct vmap_area),
329 			gfp_mask & GFP_RECLAIM_MASK, node);
330 	if (unlikely(!va))
331 		return ERR_PTR(-ENOMEM);
332 
333 retry:
334 	addr = ALIGN(vstart, align);
335 
336 	spin_lock(&vmap_area_lock);
337 	/* XXX: could have a last_hole cache */
338 	n = vmap_area_root.rb_node;
339 	if (n) {
340 		struct vmap_area *first = NULL;
341 
342 		do {
343 			struct vmap_area *tmp;
344 			tmp = rb_entry(n, struct vmap_area, rb_node);
345 			if (tmp->va_end >= addr) {
346 				if (!first && tmp->va_start < addr + size)
347 					first = tmp;
348 				n = n->rb_left;
349 			} else {
350 				first = tmp;
351 				n = n->rb_right;
352 			}
353 		} while (n);
354 
355 		if (!first)
356 			goto found;
357 
358 		if (first->va_end < addr) {
359 			n = rb_next(&first->rb_node);
360 			if (n)
361 				first = rb_entry(n, struct vmap_area, rb_node);
362 			else
363 				goto found;
364 		}
365 
366 		while (addr + size > first->va_start && addr + size <= vend) {
367 			addr = ALIGN(first->va_end + PAGE_SIZE, align);
368 
369 			n = rb_next(&first->rb_node);
370 			if (n)
371 				first = rb_entry(n, struct vmap_area, rb_node);
372 			else
373 				goto found;
374 		}
375 	}
376 found:
377 	if (addr + size > vend) {
378 		spin_unlock(&vmap_area_lock);
379 		if (!purged) {
380 			purge_vmap_area_lazy();
381 			purged = 1;
382 			goto retry;
383 		}
384 		if (printk_ratelimit())
385 			printk(KERN_WARNING
386 				"vmap allocation for size %lu failed: "
387 				"use vmalloc=<size> to increase size.\n", size);
388 		return ERR_PTR(-EBUSY);
389 	}
390 
391 	BUG_ON(addr & (align-1));
392 
393 	va->va_start = addr;
394 	va->va_end = addr + size;
395 	va->flags = 0;
396 	__insert_vmap_area(va);
397 	spin_unlock(&vmap_area_lock);
398 
399 	return va;
400 }
401 
402 static void rcu_free_va(struct rcu_head *head)
403 {
404 	struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
405 
406 	kfree(va);
407 }
408 
409 static void __free_vmap_area(struct vmap_area *va)
410 {
411 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
412 	rb_erase(&va->rb_node, &vmap_area_root);
413 	RB_CLEAR_NODE(&va->rb_node);
414 	list_del_rcu(&va->list);
415 
416 	call_rcu(&va->rcu_head, rcu_free_va);
417 }
418 
419 /*
420  * Free a region of KVA allocated by alloc_vmap_area
421  */
422 static void free_vmap_area(struct vmap_area *va)
423 {
424 	spin_lock(&vmap_area_lock);
425 	__free_vmap_area(va);
426 	spin_unlock(&vmap_area_lock);
427 }
428 
429 /*
430  * Clear the pagetable entries of a given vmap_area
431  */
432 static void unmap_vmap_area(struct vmap_area *va)
433 {
434 	vunmap_page_range(va->va_start, va->va_end);
435 }
436 
437 static void vmap_debug_free_range(unsigned long start, unsigned long end)
438 {
439 	/*
440 	 * Unmap page tables and force a TLB flush immediately if
441 	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
442 	 * bugs similarly to those in linear kernel virtual address
443 	 * space after a page has been freed.
444 	 *
445 	 * All the lazy freeing logic is still retained, in order to
446 	 * minimise intrusiveness of this debugging feature.
447 	 *
448 	 * This is going to be *slow* (linear kernel virtual address
449 	 * debugging doesn't do a broadcast TLB flush so it is a lot
450 	 * faster).
451 	 */
452 #ifdef CONFIG_DEBUG_PAGEALLOC
453 	vunmap_page_range(start, end);
454 	flush_tlb_kernel_range(start, end);
455 #endif
456 }
457 
458 /*
459  * lazy_max_pages is the maximum amount of virtual address space we gather up
460  * before attempting to purge with a TLB flush.
461  *
462  * There is a tradeoff here: a larger number will cover more kernel page tables
463  * and take slightly longer to purge, but it will linearly reduce the number of
464  * global TLB flushes that must be performed. It would seem natural to scale
465  * this number up linearly with the number of CPUs (because vmapping activity
466  * could also scale linearly with the number of CPUs), however it is likely
467  * that in practice, workloads might be constrained in other ways that mean
468  * vmap activity will not scale linearly with CPUs. Also, I want to be
469  * conservative and not introduce a big latency on huge systems, so go with
470  * a less aggressive log scale. It will still be an improvement over the old
471  * code, and it will be simple to change the scale factor if we find that it
472  * becomes a problem on bigger systems.
473  */
474 static unsigned long lazy_max_pages(void)
475 {
476 	unsigned int log;
477 
478 	log = fls(num_online_cpus());
479 
480 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
481 }
482 
483 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
484 
485 /*
486  * Purges all lazily-freed vmap areas.
487  *
488  * If sync is 0 then don't purge if there is already a purge in progress.
489  * If force_flush is 1, then flush kernel TLBs between *start and *end even
490  * if we found no lazy vmap areas to unmap (callers can use this to optimise
491  * their own TLB flushing).
492  * Returns with *start = min(*start, lowest purged address)
493  *              *end = max(*end, highest purged address)
494  */
495 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
496 					int sync, int force_flush)
497 {
498 	static DEFINE_SPINLOCK(purge_lock);
499 	LIST_HEAD(valist);
500 	struct vmap_area *va;
501 	int nr = 0;
502 
503 	/*
504 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
505 	 * should not expect such behaviour. This just simplifies locking for
506 	 * the case that isn't actually used at the moment anyway.
507 	 */
508 	if (!sync && !force_flush) {
509 		if (!spin_trylock(&purge_lock))
510 			return;
511 	} else
512 		spin_lock(&purge_lock);
513 
514 	rcu_read_lock();
515 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
516 		if (va->flags & VM_LAZY_FREE) {
517 			if (va->va_start < *start)
518 				*start = va->va_start;
519 			if (va->va_end > *end)
520 				*end = va->va_end;
521 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
522 			unmap_vmap_area(va);
523 			list_add_tail(&va->purge_list, &valist);
524 			va->flags |= VM_LAZY_FREEING;
525 			va->flags &= ~VM_LAZY_FREE;
526 		}
527 	}
528 	rcu_read_unlock();
529 
530 	if (nr) {
531 		BUG_ON(nr > atomic_read(&vmap_lazy_nr));
532 		atomic_sub(nr, &vmap_lazy_nr);
533 	}
534 
535 	if (nr || force_flush)
536 		flush_tlb_kernel_range(*start, *end);
537 
538 	if (nr) {
539 		spin_lock(&vmap_area_lock);
540 		list_for_each_entry(va, &valist, purge_list)
541 			__free_vmap_area(va);
542 		spin_unlock(&vmap_area_lock);
543 	}
544 	spin_unlock(&purge_lock);
545 }
546 
547 /*
548  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
549  * is already purging.
550  */
551 static void try_purge_vmap_area_lazy(void)
552 {
553 	unsigned long start = ULONG_MAX, end = 0;
554 
555 	__purge_vmap_area_lazy(&start, &end, 0, 0);
556 }
557 
558 /*
559  * Kick off a purge of the outstanding lazy areas.
560  */
561 static void purge_vmap_area_lazy(void)
562 {
563 	unsigned long start = ULONG_MAX, end = 0;
564 
565 	__purge_vmap_area_lazy(&start, &end, 1, 0);
566 }
567 
568 /*
569  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
570  * called for the correct range previously.
571  */
572 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
573 {
574 	va->flags |= VM_LAZY_FREE;
575 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
576 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
577 		try_purge_vmap_area_lazy();
578 }
579 
580 /*
581  * Free and unmap a vmap area
582  */
583 static void free_unmap_vmap_area(struct vmap_area *va)
584 {
585 	flush_cache_vunmap(va->va_start, va->va_end);
586 	free_unmap_vmap_area_noflush(va);
587 }
588 
589 static struct vmap_area *find_vmap_area(unsigned long addr)
590 {
591 	struct vmap_area *va;
592 
593 	spin_lock(&vmap_area_lock);
594 	va = __find_vmap_area(addr);
595 	spin_unlock(&vmap_area_lock);
596 
597 	return va;
598 }
599 
600 static void free_unmap_vmap_area_addr(unsigned long addr)
601 {
602 	struct vmap_area *va;
603 
604 	va = find_vmap_area(addr);
605 	BUG_ON(!va);
606 	free_unmap_vmap_area(va);
607 }
608 
609 
610 /*** Per cpu kva allocator ***/
611 
612 /*
613  * vmap space is limited especially on 32 bit architectures. Ensure there is
614  * room for at least 16 percpu vmap blocks per CPU.
615  */
616 /*
617  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
618  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
619  * instead (we just need a rough idea)
620  */
621 #if BITS_PER_LONG == 32
622 #define VMALLOC_SPACE		(128UL*1024*1024)
623 #else
624 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
625 #endif
626 
627 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
628 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
629 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
630 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
631 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
632 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
633 #define VMAP_BBMAP_BITS		VMAP_MIN(VMAP_BBMAP_BITS_MAX,		\
634 					VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
635 						VMALLOC_PAGES / NR_CPUS / 16))
636 
637 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
638 
639 static bool vmap_initialized __read_mostly = false;
640 
641 struct vmap_block_queue {
642 	spinlock_t lock;
643 	struct list_head free;
644 	struct list_head dirty;
645 	unsigned int nr_dirty;
646 };
647 
648 struct vmap_block {
649 	spinlock_t lock;
650 	struct vmap_area *va;
651 	struct vmap_block_queue *vbq;
652 	unsigned long free, dirty;
653 	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
654 	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
655 	union {
656 		struct {
657 			struct list_head free_list;
658 			struct list_head dirty_list;
659 		};
660 		struct rcu_head rcu_head;
661 	};
662 };
663 
664 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
665 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
666 
667 /*
668  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
669  * in the free path. Could get rid of this if we change the API to return a
670  * "cookie" from alloc, to be passed to free. But no big deal yet.
671  */
672 static DEFINE_SPINLOCK(vmap_block_tree_lock);
673 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
674 
675 /*
676  * We should probably have a fallback mechanism to allocate virtual memory
677  * out of partially filled vmap blocks. However vmap block sizing should be
678  * fairly reasonable according to the vmalloc size, so it shouldn't be a
679  * big problem.
680  */
681 
682 static unsigned long addr_to_vb_idx(unsigned long addr)
683 {
684 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
685 	addr /= VMAP_BLOCK_SIZE;
686 	return addr;
687 }
688 
689 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
690 {
691 	struct vmap_block_queue *vbq;
692 	struct vmap_block *vb;
693 	struct vmap_area *va;
694 	unsigned long vb_idx;
695 	int node, err;
696 
697 	node = numa_node_id();
698 
699 	vb = kmalloc_node(sizeof(struct vmap_block),
700 			gfp_mask & GFP_RECLAIM_MASK, node);
701 	if (unlikely(!vb))
702 		return ERR_PTR(-ENOMEM);
703 
704 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
705 					VMALLOC_START, VMALLOC_END,
706 					node, gfp_mask);
707 	if (unlikely(IS_ERR(va))) {
708 		kfree(vb);
709 		return ERR_PTR(PTR_ERR(va));
710 	}
711 
712 	err = radix_tree_preload(gfp_mask);
713 	if (unlikely(err)) {
714 		kfree(vb);
715 		free_vmap_area(va);
716 		return ERR_PTR(err);
717 	}
718 
719 	spin_lock_init(&vb->lock);
720 	vb->va = va;
721 	vb->free = VMAP_BBMAP_BITS;
722 	vb->dirty = 0;
723 	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
724 	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
725 	INIT_LIST_HEAD(&vb->free_list);
726 	INIT_LIST_HEAD(&vb->dirty_list);
727 
728 	vb_idx = addr_to_vb_idx(va->va_start);
729 	spin_lock(&vmap_block_tree_lock);
730 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
731 	spin_unlock(&vmap_block_tree_lock);
732 	BUG_ON(err);
733 	radix_tree_preload_end();
734 
735 	vbq = &get_cpu_var(vmap_block_queue);
736 	vb->vbq = vbq;
737 	spin_lock(&vbq->lock);
738 	list_add(&vb->free_list, &vbq->free);
739 	spin_unlock(&vbq->lock);
740 	put_cpu_var(vmap_cpu_blocks);
741 
742 	return vb;
743 }
744 
745 static void rcu_free_vb(struct rcu_head *head)
746 {
747 	struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
748 
749 	kfree(vb);
750 }
751 
752 static void free_vmap_block(struct vmap_block *vb)
753 {
754 	struct vmap_block *tmp;
755 	unsigned long vb_idx;
756 
757 	spin_lock(&vb->vbq->lock);
758 	if (!list_empty(&vb->free_list))
759 		list_del(&vb->free_list);
760 	if (!list_empty(&vb->dirty_list))
761 		list_del(&vb->dirty_list);
762 	spin_unlock(&vb->vbq->lock);
763 
764 	vb_idx = addr_to_vb_idx(vb->va->va_start);
765 	spin_lock(&vmap_block_tree_lock);
766 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
767 	spin_unlock(&vmap_block_tree_lock);
768 	BUG_ON(tmp != vb);
769 
770 	free_unmap_vmap_area_noflush(vb->va);
771 	call_rcu(&vb->rcu_head, rcu_free_vb);
772 }
773 
774 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
775 {
776 	struct vmap_block_queue *vbq;
777 	struct vmap_block *vb;
778 	unsigned long addr = 0;
779 	unsigned int order;
780 
781 	BUG_ON(size & ~PAGE_MASK);
782 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
783 	order = get_order(size);
784 
785 again:
786 	rcu_read_lock();
787 	vbq = &get_cpu_var(vmap_block_queue);
788 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
789 		int i;
790 
791 		spin_lock(&vb->lock);
792 		i = bitmap_find_free_region(vb->alloc_map,
793 						VMAP_BBMAP_BITS, order);
794 
795 		if (i >= 0) {
796 			addr = vb->va->va_start + (i << PAGE_SHIFT);
797 			BUG_ON(addr_to_vb_idx(addr) !=
798 					addr_to_vb_idx(vb->va->va_start));
799 			vb->free -= 1UL << order;
800 			if (vb->free == 0) {
801 				spin_lock(&vbq->lock);
802 				list_del_init(&vb->free_list);
803 				spin_unlock(&vbq->lock);
804 			}
805 			spin_unlock(&vb->lock);
806 			break;
807 		}
808 		spin_unlock(&vb->lock);
809 	}
810 	put_cpu_var(vmap_cpu_blocks);
811 	rcu_read_unlock();
812 
813 	if (!addr) {
814 		vb = new_vmap_block(gfp_mask);
815 		if (IS_ERR(vb))
816 			return vb;
817 		goto again;
818 	}
819 
820 	return (void *)addr;
821 }
822 
823 static void vb_free(const void *addr, unsigned long size)
824 {
825 	unsigned long offset;
826 	unsigned long vb_idx;
827 	unsigned int order;
828 	struct vmap_block *vb;
829 
830 	BUG_ON(size & ~PAGE_MASK);
831 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
832 
833 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
834 
835 	order = get_order(size);
836 
837 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
838 
839 	vb_idx = addr_to_vb_idx((unsigned long)addr);
840 	rcu_read_lock();
841 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
842 	rcu_read_unlock();
843 	BUG_ON(!vb);
844 
845 	spin_lock(&vb->lock);
846 	bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
847 	if (!vb->dirty) {
848 		spin_lock(&vb->vbq->lock);
849 		list_add(&vb->dirty_list, &vb->vbq->dirty);
850 		spin_unlock(&vb->vbq->lock);
851 	}
852 	vb->dirty += 1UL << order;
853 	if (vb->dirty == VMAP_BBMAP_BITS) {
854 		BUG_ON(vb->free || !list_empty(&vb->free_list));
855 		spin_unlock(&vb->lock);
856 		free_vmap_block(vb);
857 	} else
858 		spin_unlock(&vb->lock);
859 }
860 
861 /**
862  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
863  *
864  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
865  * to amortize TLB flushing overheads. What this means is that any page you
866  * have now, may, in a former life, have been mapped into kernel virtual
867  * address by the vmap layer and so there might be some CPUs with TLB entries
868  * still referencing that page (additional to the regular 1:1 kernel mapping).
869  *
870  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
871  * be sure that none of the pages we have control over will have any aliases
872  * from the vmap layer.
873  */
874 void vm_unmap_aliases(void)
875 {
876 	unsigned long start = ULONG_MAX, end = 0;
877 	int cpu;
878 	int flush = 0;
879 
880 	if (unlikely(!vmap_initialized))
881 		return;
882 
883 	for_each_possible_cpu(cpu) {
884 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
885 		struct vmap_block *vb;
886 
887 		rcu_read_lock();
888 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
889 			int i;
890 
891 			spin_lock(&vb->lock);
892 			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
893 			while (i < VMAP_BBMAP_BITS) {
894 				unsigned long s, e;
895 				int j;
896 				j = find_next_zero_bit(vb->dirty_map,
897 					VMAP_BBMAP_BITS, i);
898 
899 				s = vb->va->va_start + (i << PAGE_SHIFT);
900 				e = vb->va->va_start + (j << PAGE_SHIFT);
901 				vunmap_page_range(s, e);
902 				flush = 1;
903 
904 				if (s < start)
905 					start = s;
906 				if (e > end)
907 					end = e;
908 
909 				i = j;
910 				i = find_next_bit(vb->dirty_map,
911 							VMAP_BBMAP_BITS, i);
912 			}
913 			spin_unlock(&vb->lock);
914 		}
915 		rcu_read_unlock();
916 	}
917 
918 	__purge_vmap_area_lazy(&start, &end, 1, flush);
919 }
920 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
921 
922 /**
923  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
924  * @mem: the pointer returned by vm_map_ram
925  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
926  */
927 void vm_unmap_ram(const void *mem, unsigned int count)
928 {
929 	unsigned long size = count << PAGE_SHIFT;
930 	unsigned long addr = (unsigned long)mem;
931 
932 	BUG_ON(!addr);
933 	BUG_ON(addr < VMALLOC_START);
934 	BUG_ON(addr > VMALLOC_END);
935 	BUG_ON(addr & (PAGE_SIZE-1));
936 
937 	debug_check_no_locks_freed(mem, size);
938 	vmap_debug_free_range(addr, addr+size);
939 
940 	if (likely(count <= VMAP_MAX_ALLOC))
941 		vb_free(mem, size);
942 	else
943 		free_unmap_vmap_area_addr(addr);
944 }
945 EXPORT_SYMBOL(vm_unmap_ram);
946 
947 /**
948  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
949  * @pages: an array of pointers to the pages to be mapped
950  * @count: number of pages
951  * @node: prefer to allocate data structures on this node
952  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
953  *
954  * Returns: a pointer to the address that has been mapped, or %NULL on failure
955  */
956 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
957 {
958 	unsigned long size = count << PAGE_SHIFT;
959 	unsigned long addr;
960 	void *mem;
961 
962 	if (likely(count <= VMAP_MAX_ALLOC)) {
963 		mem = vb_alloc(size, GFP_KERNEL);
964 		if (IS_ERR(mem))
965 			return NULL;
966 		addr = (unsigned long)mem;
967 	} else {
968 		struct vmap_area *va;
969 		va = alloc_vmap_area(size, PAGE_SIZE,
970 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
971 		if (IS_ERR(va))
972 			return NULL;
973 
974 		addr = va->va_start;
975 		mem = (void *)addr;
976 	}
977 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
978 		vm_unmap_ram(mem, count);
979 		return NULL;
980 	}
981 	return mem;
982 }
983 EXPORT_SYMBOL(vm_map_ram);
984 
985 void __init vmalloc_init(void)
986 {
987 	struct vmap_area *va;
988 	struct vm_struct *tmp;
989 	int i;
990 
991 	for_each_possible_cpu(i) {
992 		struct vmap_block_queue *vbq;
993 
994 		vbq = &per_cpu(vmap_block_queue, i);
995 		spin_lock_init(&vbq->lock);
996 		INIT_LIST_HEAD(&vbq->free);
997 		INIT_LIST_HEAD(&vbq->dirty);
998 		vbq->nr_dirty = 0;
999 	}
1000 
1001 	/* Import existing vmlist entries. */
1002 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1003 		va = alloc_bootmem(sizeof(struct vmap_area));
1004 		va->flags = tmp->flags | VM_VM_AREA;
1005 		va->va_start = (unsigned long)tmp->addr;
1006 		va->va_end = va->va_start + tmp->size;
1007 		__insert_vmap_area(va);
1008 	}
1009 	vmap_initialized = true;
1010 }
1011 
1012 void unmap_kernel_range(unsigned long addr, unsigned long size)
1013 {
1014 	unsigned long end = addr + size;
1015 	vunmap_page_range(addr, end);
1016 	flush_tlb_kernel_range(addr, end);
1017 }
1018 
1019 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1020 {
1021 	unsigned long addr = (unsigned long)area->addr;
1022 	unsigned long end = addr + area->size - PAGE_SIZE;
1023 	int err;
1024 
1025 	err = vmap_page_range(addr, end, prot, *pages);
1026 	if (err > 0) {
1027 		*pages += err;
1028 		err = 0;
1029 	}
1030 
1031 	return err;
1032 }
1033 EXPORT_SYMBOL_GPL(map_vm_area);
1034 
1035 /*** Old vmalloc interfaces ***/
1036 DEFINE_RWLOCK(vmlist_lock);
1037 struct vm_struct *vmlist;
1038 
1039 static struct vm_struct *__get_vm_area_node(unsigned long size,
1040 		unsigned long flags, unsigned long start, unsigned long end,
1041 		int node, gfp_t gfp_mask, void *caller)
1042 {
1043 	static struct vmap_area *va;
1044 	struct vm_struct *area;
1045 	struct vm_struct *tmp, **p;
1046 	unsigned long align = 1;
1047 
1048 	BUG_ON(in_interrupt());
1049 	if (flags & VM_IOREMAP) {
1050 		int bit = fls(size);
1051 
1052 		if (bit > IOREMAP_MAX_ORDER)
1053 			bit = IOREMAP_MAX_ORDER;
1054 		else if (bit < PAGE_SHIFT)
1055 			bit = PAGE_SHIFT;
1056 
1057 		align = 1ul << bit;
1058 	}
1059 
1060 	size = PAGE_ALIGN(size);
1061 	if (unlikely(!size))
1062 		return NULL;
1063 
1064 	area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1065 	if (unlikely(!area))
1066 		return NULL;
1067 
1068 	/*
1069 	 * We always allocate a guard page.
1070 	 */
1071 	size += PAGE_SIZE;
1072 
1073 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1074 	if (IS_ERR(va)) {
1075 		kfree(area);
1076 		return NULL;
1077 	}
1078 
1079 	area->flags = flags;
1080 	area->addr = (void *)va->va_start;
1081 	area->size = size;
1082 	area->pages = NULL;
1083 	area->nr_pages = 0;
1084 	area->phys_addr = 0;
1085 	area->caller = caller;
1086 	va->private = area;
1087 	va->flags |= VM_VM_AREA;
1088 
1089 	write_lock(&vmlist_lock);
1090 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1091 		if (tmp->addr >= area->addr)
1092 			break;
1093 	}
1094 	area->next = *p;
1095 	*p = area;
1096 	write_unlock(&vmlist_lock);
1097 
1098 	return area;
1099 }
1100 
1101 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1102 				unsigned long start, unsigned long end)
1103 {
1104 	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1105 						__builtin_return_address(0));
1106 }
1107 EXPORT_SYMBOL_GPL(__get_vm_area);
1108 
1109 /**
1110  *	get_vm_area  -  reserve a contiguous kernel virtual area
1111  *	@size:		size of the area
1112  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1113  *
1114  *	Search an area of @size in the kernel virtual mapping area,
1115  *	and reserved it for out purposes.  Returns the area descriptor
1116  *	on success or %NULL on failure.
1117  */
1118 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1119 {
1120 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1121 				-1, GFP_KERNEL, __builtin_return_address(0));
1122 }
1123 
1124 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1125 				void *caller)
1126 {
1127 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1128 						-1, GFP_KERNEL, caller);
1129 }
1130 
1131 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1132 				   int node, gfp_t gfp_mask)
1133 {
1134 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
1135 				  gfp_mask, __builtin_return_address(0));
1136 }
1137 
1138 static struct vm_struct *find_vm_area(const void *addr)
1139 {
1140 	struct vmap_area *va;
1141 
1142 	va = find_vmap_area((unsigned long)addr);
1143 	if (va && va->flags & VM_VM_AREA)
1144 		return va->private;
1145 
1146 	return NULL;
1147 }
1148 
1149 /**
1150  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1151  *	@addr:		base address
1152  *
1153  *	Search for the kernel VM area starting at @addr, and remove it.
1154  *	This function returns the found VM area, but using it is NOT safe
1155  *	on SMP machines, except for its size or flags.
1156  */
1157 struct vm_struct *remove_vm_area(const void *addr)
1158 {
1159 	struct vmap_area *va;
1160 
1161 	va = find_vmap_area((unsigned long)addr);
1162 	if (va && va->flags & VM_VM_AREA) {
1163 		struct vm_struct *vm = va->private;
1164 		struct vm_struct *tmp, **p;
1165 
1166 		vmap_debug_free_range(va->va_start, va->va_end);
1167 		free_unmap_vmap_area(va);
1168 		vm->size -= PAGE_SIZE;
1169 
1170 		write_lock(&vmlist_lock);
1171 		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1172 			;
1173 		*p = tmp->next;
1174 		write_unlock(&vmlist_lock);
1175 
1176 		return vm;
1177 	}
1178 	return NULL;
1179 }
1180 
1181 static void __vunmap(const void *addr, int deallocate_pages)
1182 {
1183 	struct vm_struct *area;
1184 
1185 	if (!addr)
1186 		return;
1187 
1188 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1189 		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1190 		return;
1191 	}
1192 
1193 	area = remove_vm_area(addr);
1194 	if (unlikely(!area)) {
1195 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1196 				addr);
1197 		return;
1198 	}
1199 
1200 	debug_check_no_locks_freed(addr, area->size);
1201 	debug_check_no_obj_freed(addr, area->size);
1202 
1203 	if (deallocate_pages) {
1204 		int i;
1205 
1206 		for (i = 0; i < area->nr_pages; i++) {
1207 			struct page *page = area->pages[i];
1208 
1209 			BUG_ON(!page);
1210 			__free_page(page);
1211 		}
1212 
1213 		if (area->flags & VM_VPAGES)
1214 			vfree(area->pages);
1215 		else
1216 			kfree(area->pages);
1217 	}
1218 
1219 	kfree(area);
1220 	return;
1221 }
1222 
1223 /**
1224  *	vfree  -  release memory allocated by vmalloc()
1225  *	@addr:		memory base address
1226  *
1227  *	Free the virtually continuous memory area starting at @addr, as
1228  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1229  *	NULL, no operation is performed.
1230  *
1231  *	Must not be called in interrupt context.
1232  */
1233 void vfree(const void *addr)
1234 {
1235 	BUG_ON(in_interrupt());
1236 	__vunmap(addr, 1);
1237 }
1238 EXPORT_SYMBOL(vfree);
1239 
1240 /**
1241  *	vunmap  -  release virtual mapping obtained by vmap()
1242  *	@addr:		memory base address
1243  *
1244  *	Free the virtually contiguous memory area starting at @addr,
1245  *	which was created from the page array passed to vmap().
1246  *
1247  *	Must not be called in interrupt context.
1248  */
1249 void vunmap(const void *addr)
1250 {
1251 	BUG_ON(in_interrupt());
1252 	__vunmap(addr, 0);
1253 }
1254 EXPORT_SYMBOL(vunmap);
1255 
1256 /**
1257  *	vmap  -  map an array of pages into virtually contiguous space
1258  *	@pages:		array of page pointers
1259  *	@count:		number of pages to map
1260  *	@flags:		vm_area->flags
1261  *	@prot:		page protection for the mapping
1262  *
1263  *	Maps @count pages from @pages into contiguous kernel virtual
1264  *	space.
1265  */
1266 void *vmap(struct page **pages, unsigned int count,
1267 		unsigned long flags, pgprot_t prot)
1268 {
1269 	struct vm_struct *area;
1270 
1271 	if (count > num_physpages)
1272 		return NULL;
1273 
1274 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1275 					__builtin_return_address(0));
1276 	if (!area)
1277 		return NULL;
1278 
1279 	if (map_vm_area(area, prot, &pages)) {
1280 		vunmap(area->addr);
1281 		return NULL;
1282 	}
1283 
1284 	return area->addr;
1285 }
1286 EXPORT_SYMBOL(vmap);
1287 
1288 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1289 			    int node, void *caller);
1290 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1291 				 pgprot_t prot, int node, void *caller)
1292 {
1293 	struct page **pages;
1294 	unsigned int nr_pages, array_size, i;
1295 
1296 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1297 	array_size = (nr_pages * sizeof(struct page *));
1298 
1299 	area->nr_pages = nr_pages;
1300 	/* Please note that the recursion is strictly bounded. */
1301 	if (array_size > PAGE_SIZE) {
1302 		pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
1303 				PAGE_KERNEL, node, caller);
1304 		area->flags |= VM_VPAGES;
1305 	} else {
1306 		pages = kmalloc_node(array_size,
1307 				(gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
1308 				node);
1309 	}
1310 	area->pages = pages;
1311 	area->caller = caller;
1312 	if (!area->pages) {
1313 		remove_vm_area(area->addr);
1314 		kfree(area);
1315 		return NULL;
1316 	}
1317 
1318 	for (i = 0; i < area->nr_pages; i++) {
1319 		struct page *page;
1320 
1321 		if (node < 0)
1322 			page = alloc_page(gfp_mask);
1323 		else
1324 			page = alloc_pages_node(node, gfp_mask, 0);
1325 
1326 		if (unlikely(!page)) {
1327 			/* Successfully allocated i pages, free them in __vunmap() */
1328 			area->nr_pages = i;
1329 			goto fail;
1330 		}
1331 		area->pages[i] = page;
1332 	}
1333 
1334 	if (map_vm_area(area, prot, &pages))
1335 		goto fail;
1336 	return area->addr;
1337 
1338 fail:
1339 	vfree(area->addr);
1340 	return NULL;
1341 }
1342 
1343 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1344 {
1345 	return __vmalloc_area_node(area, gfp_mask, prot, -1,
1346 					__builtin_return_address(0));
1347 }
1348 
1349 /**
1350  *	__vmalloc_node  -  allocate virtually contiguous memory
1351  *	@size:		allocation size
1352  *	@gfp_mask:	flags for the page level allocator
1353  *	@prot:		protection mask for the allocated pages
1354  *	@node:		node to use for allocation or -1
1355  *	@caller:	caller's return address
1356  *
1357  *	Allocate enough pages to cover @size from the page level
1358  *	allocator with @gfp_mask flags.  Map them into contiguous
1359  *	kernel virtual space, using a pagetable protection of @prot.
1360  */
1361 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1362 						int node, void *caller)
1363 {
1364 	struct vm_struct *area;
1365 
1366 	size = PAGE_ALIGN(size);
1367 	if (!size || (size >> PAGE_SHIFT) > num_physpages)
1368 		return NULL;
1369 
1370 	area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1371 						node, gfp_mask, caller);
1372 
1373 	if (!area)
1374 		return NULL;
1375 
1376 	return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1377 }
1378 
1379 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1380 {
1381 	return __vmalloc_node(size, gfp_mask, prot, -1,
1382 				__builtin_return_address(0));
1383 }
1384 EXPORT_SYMBOL(__vmalloc);
1385 
1386 /**
1387  *	vmalloc  -  allocate virtually contiguous memory
1388  *	@size:		allocation size
1389  *	Allocate enough pages to cover @size from the page level
1390  *	allocator and map them into contiguous kernel virtual space.
1391  *
1392  *	For tight control over page level allocator and protection flags
1393  *	use __vmalloc() instead.
1394  */
1395 void *vmalloc(unsigned long size)
1396 {
1397 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1398 					-1, __builtin_return_address(0));
1399 }
1400 EXPORT_SYMBOL(vmalloc);
1401 
1402 /**
1403  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1404  * @size: allocation size
1405  *
1406  * The resulting memory area is zeroed so it can be mapped to userspace
1407  * without leaking data.
1408  */
1409 void *vmalloc_user(unsigned long size)
1410 {
1411 	struct vm_struct *area;
1412 	void *ret;
1413 
1414 	ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1415 			     PAGE_KERNEL, -1, __builtin_return_address(0));
1416 	if (ret) {
1417 		area = find_vm_area(ret);
1418 		area->flags |= VM_USERMAP;
1419 	}
1420 	return ret;
1421 }
1422 EXPORT_SYMBOL(vmalloc_user);
1423 
1424 /**
1425  *	vmalloc_node  -  allocate memory on a specific node
1426  *	@size:		allocation size
1427  *	@node:		numa node
1428  *
1429  *	Allocate enough pages to cover @size from the page level
1430  *	allocator and map them into contiguous kernel virtual space.
1431  *
1432  *	For tight control over page level allocator and protection flags
1433  *	use __vmalloc() instead.
1434  */
1435 void *vmalloc_node(unsigned long size, int node)
1436 {
1437 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1438 					node, __builtin_return_address(0));
1439 }
1440 EXPORT_SYMBOL(vmalloc_node);
1441 
1442 #ifndef PAGE_KERNEL_EXEC
1443 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1444 #endif
1445 
1446 /**
1447  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1448  *	@size:		allocation size
1449  *
1450  *	Kernel-internal function to allocate enough pages to cover @size
1451  *	the page level allocator and map them into contiguous and
1452  *	executable kernel virtual space.
1453  *
1454  *	For tight control over page level allocator and protection flags
1455  *	use __vmalloc() instead.
1456  */
1457 
1458 void *vmalloc_exec(unsigned long size)
1459 {
1460 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1461 			      -1, __builtin_return_address(0));
1462 }
1463 
1464 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1465 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1466 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1467 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1468 #else
1469 #define GFP_VMALLOC32 GFP_KERNEL
1470 #endif
1471 
1472 /**
1473  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1474  *	@size:		allocation size
1475  *
1476  *	Allocate enough 32bit PA addressable pages to cover @size from the
1477  *	page level allocator and map them into contiguous kernel virtual space.
1478  */
1479 void *vmalloc_32(unsigned long size)
1480 {
1481 	return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
1482 			      -1, __builtin_return_address(0));
1483 }
1484 EXPORT_SYMBOL(vmalloc_32);
1485 
1486 /**
1487  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1488  *	@size:		allocation size
1489  *
1490  * The resulting memory area is 32bit addressable and zeroed so it can be
1491  * mapped to userspace without leaking data.
1492  */
1493 void *vmalloc_32_user(unsigned long size)
1494 {
1495 	struct vm_struct *area;
1496 	void *ret;
1497 
1498 	ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1499 			     -1, __builtin_return_address(0));
1500 	if (ret) {
1501 		area = find_vm_area(ret);
1502 		area->flags |= VM_USERMAP;
1503 	}
1504 	return ret;
1505 }
1506 EXPORT_SYMBOL(vmalloc_32_user);
1507 
1508 long vread(char *buf, char *addr, unsigned long count)
1509 {
1510 	struct vm_struct *tmp;
1511 	char *vaddr, *buf_start = buf;
1512 	unsigned long n;
1513 
1514 	/* Don't allow overflow */
1515 	if ((unsigned long) addr + count < count)
1516 		count = -(unsigned long) addr;
1517 
1518 	read_lock(&vmlist_lock);
1519 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1520 		vaddr = (char *) tmp->addr;
1521 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1522 			continue;
1523 		while (addr < vaddr) {
1524 			if (count == 0)
1525 				goto finished;
1526 			*buf = '\0';
1527 			buf++;
1528 			addr++;
1529 			count--;
1530 		}
1531 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1532 		do {
1533 			if (count == 0)
1534 				goto finished;
1535 			*buf = *addr;
1536 			buf++;
1537 			addr++;
1538 			count--;
1539 		} while (--n > 0);
1540 	}
1541 finished:
1542 	read_unlock(&vmlist_lock);
1543 	return buf - buf_start;
1544 }
1545 
1546 long vwrite(char *buf, char *addr, unsigned long count)
1547 {
1548 	struct vm_struct *tmp;
1549 	char *vaddr, *buf_start = buf;
1550 	unsigned long n;
1551 
1552 	/* Don't allow overflow */
1553 	if ((unsigned long) addr + count < count)
1554 		count = -(unsigned long) addr;
1555 
1556 	read_lock(&vmlist_lock);
1557 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1558 		vaddr = (char *) tmp->addr;
1559 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1560 			continue;
1561 		while (addr < vaddr) {
1562 			if (count == 0)
1563 				goto finished;
1564 			buf++;
1565 			addr++;
1566 			count--;
1567 		}
1568 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1569 		do {
1570 			if (count == 0)
1571 				goto finished;
1572 			*addr = *buf;
1573 			buf++;
1574 			addr++;
1575 			count--;
1576 		} while (--n > 0);
1577 	}
1578 finished:
1579 	read_unlock(&vmlist_lock);
1580 	return buf - buf_start;
1581 }
1582 
1583 /**
1584  *	remap_vmalloc_range  -  map vmalloc pages to userspace
1585  *	@vma:		vma to cover (map full range of vma)
1586  *	@addr:		vmalloc memory
1587  *	@pgoff:		number of pages into addr before first page to map
1588  *
1589  *	Returns:	0 for success, -Exxx on failure
1590  *
1591  *	This function checks that addr is a valid vmalloc'ed area, and
1592  *	that it is big enough to cover the vma. Will return failure if
1593  *	that criteria isn't met.
1594  *
1595  *	Similar to remap_pfn_range() (see mm/memory.c)
1596  */
1597 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1598 						unsigned long pgoff)
1599 {
1600 	struct vm_struct *area;
1601 	unsigned long uaddr = vma->vm_start;
1602 	unsigned long usize = vma->vm_end - vma->vm_start;
1603 
1604 	if ((PAGE_SIZE-1) & (unsigned long)addr)
1605 		return -EINVAL;
1606 
1607 	area = find_vm_area(addr);
1608 	if (!area)
1609 		return -EINVAL;
1610 
1611 	if (!(area->flags & VM_USERMAP))
1612 		return -EINVAL;
1613 
1614 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1615 		return -EINVAL;
1616 
1617 	addr += pgoff << PAGE_SHIFT;
1618 	do {
1619 		struct page *page = vmalloc_to_page(addr);
1620 		int ret;
1621 
1622 		ret = vm_insert_page(vma, uaddr, page);
1623 		if (ret)
1624 			return ret;
1625 
1626 		uaddr += PAGE_SIZE;
1627 		addr += PAGE_SIZE;
1628 		usize -= PAGE_SIZE;
1629 	} while (usize > 0);
1630 
1631 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
1632 	vma->vm_flags |= VM_RESERVED;
1633 
1634 	return 0;
1635 }
1636 EXPORT_SYMBOL(remap_vmalloc_range);
1637 
1638 /*
1639  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1640  * have one.
1641  */
1642 void  __attribute__((weak)) vmalloc_sync_all(void)
1643 {
1644 }
1645 
1646 
1647 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
1648 {
1649 	/* apply_to_page_range() does all the hard work. */
1650 	return 0;
1651 }
1652 
1653 /**
1654  *	alloc_vm_area - allocate a range of kernel address space
1655  *	@size:		size of the area
1656  *
1657  *	Returns:	NULL on failure, vm_struct on success
1658  *
1659  *	This function reserves a range of kernel address space, and
1660  *	allocates pagetables to map that range.  No actual mappings
1661  *	are created.  If the kernel address space is not shared
1662  *	between processes, it syncs the pagetable across all
1663  *	processes.
1664  */
1665 struct vm_struct *alloc_vm_area(size_t size)
1666 {
1667 	struct vm_struct *area;
1668 
1669 	area = get_vm_area_caller(size, VM_IOREMAP,
1670 				__builtin_return_address(0));
1671 	if (area == NULL)
1672 		return NULL;
1673 
1674 	/*
1675 	 * This ensures that page tables are constructed for this region
1676 	 * of kernel virtual address space and mapped into init_mm.
1677 	 */
1678 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1679 				area->size, f, NULL)) {
1680 		free_vm_area(area);
1681 		return NULL;
1682 	}
1683 
1684 	/* Make sure the pagetables are constructed in process kernel
1685 	   mappings */
1686 	vmalloc_sync_all();
1687 
1688 	return area;
1689 }
1690 EXPORT_SYMBOL_GPL(alloc_vm_area);
1691 
1692 void free_vm_area(struct vm_struct *area)
1693 {
1694 	struct vm_struct *ret;
1695 	ret = remove_vm_area(area->addr);
1696 	BUG_ON(ret != area);
1697 	kfree(area);
1698 }
1699 EXPORT_SYMBOL_GPL(free_vm_area);
1700 
1701 
1702 #ifdef CONFIG_PROC_FS
1703 static void *s_start(struct seq_file *m, loff_t *pos)
1704 {
1705 	loff_t n = *pos;
1706 	struct vm_struct *v;
1707 
1708 	read_lock(&vmlist_lock);
1709 	v = vmlist;
1710 	while (n > 0 && v) {
1711 		n--;
1712 		v = v->next;
1713 	}
1714 	if (!n)
1715 		return v;
1716 
1717 	return NULL;
1718 
1719 }
1720 
1721 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1722 {
1723 	struct vm_struct *v = p;
1724 
1725 	++*pos;
1726 	return v->next;
1727 }
1728 
1729 static void s_stop(struct seq_file *m, void *p)
1730 {
1731 	read_unlock(&vmlist_lock);
1732 }
1733 
1734 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1735 {
1736 	if (NUMA_BUILD) {
1737 		unsigned int nr, *counters = m->private;
1738 
1739 		if (!counters)
1740 			return;
1741 
1742 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1743 
1744 		for (nr = 0; nr < v->nr_pages; nr++)
1745 			counters[page_to_nid(v->pages[nr])]++;
1746 
1747 		for_each_node_state(nr, N_HIGH_MEMORY)
1748 			if (counters[nr])
1749 				seq_printf(m, " N%u=%u", nr, counters[nr]);
1750 	}
1751 }
1752 
1753 static int s_show(struct seq_file *m, void *p)
1754 {
1755 	struct vm_struct *v = p;
1756 
1757 	seq_printf(m, "0x%p-0x%p %7ld",
1758 		v->addr, v->addr + v->size, v->size);
1759 
1760 	if (v->caller) {
1761 		char buff[KSYM_SYMBOL_LEN];
1762 
1763 		seq_putc(m, ' ');
1764 		sprint_symbol(buff, (unsigned long)v->caller);
1765 		seq_puts(m, buff);
1766 	}
1767 
1768 	if (v->nr_pages)
1769 		seq_printf(m, " pages=%d", v->nr_pages);
1770 
1771 	if (v->phys_addr)
1772 		seq_printf(m, " phys=%lx", v->phys_addr);
1773 
1774 	if (v->flags & VM_IOREMAP)
1775 		seq_printf(m, " ioremap");
1776 
1777 	if (v->flags & VM_ALLOC)
1778 		seq_printf(m, " vmalloc");
1779 
1780 	if (v->flags & VM_MAP)
1781 		seq_printf(m, " vmap");
1782 
1783 	if (v->flags & VM_USERMAP)
1784 		seq_printf(m, " user");
1785 
1786 	if (v->flags & VM_VPAGES)
1787 		seq_printf(m, " vpages");
1788 
1789 	show_numa_info(m, v);
1790 	seq_putc(m, '\n');
1791 	return 0;
1792 }
1793 
1794 static const struct seq_operations vmalloc_op = {
1795 	.start = s_start,
1796 	.next = s_next,
1797 	.stop = s_stop,
1798 	.show = s_show,
1799 };
1800 
1801 static int vmalloc_open(struct inode *inode, struct file *file)
1802 {
1803 	unsigned int *ptr = NULL;
1804 	int ret;
1805 
1806 	if (NUMA_BUILD)
1807 		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
1808 	ret = seq_open(file, &vmalloc_op);
1809 	if (!ret) {
1810 		struct seq_file *m = file->private_data;
1811 		m->private = ptr;
1812 	} else
1813 		kfree(ptr);
1814 	return ret;
1815 }
1816 
1817 static const struct file_operations proc_vmalloc_operations = {
1818 	.open		= vmalloc_open,
1819 	.read		= seq_read,
1820 	.llseek		= seq_lseek,
1821 	.release	= seq_release_private,
1822 };
1823 
1824 static int __init proc_vmalloc_init(void)
1825 {
1826 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
1827 	return 0;
1828 }
1829 module_init(proc_vmalloc_init);
1830 #endif
1831 
1832