1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/slab.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/proc_fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/debugobjects.h> 21 #include <linux/kallsyms.h> 22 #include <linux/list.h> 23 #include <linux/rbtree.h> 24 #include <linux/radix-tree.h> 25 #include <linux/rcupdate.h> 26 #include <linux/bootmem.h> 27 28 #include <asm/atomic.h> 29 #include <asm/uaccess.h> 30 #include <asm/tlbflush.h> 31 32 33 /*** Page table manipulation functions ***/ 34 35 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 36 { 37 pte_t *pte; 38 39 pte = pte_offset_kernel(pmd, addr); 40 do { 41 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 42 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 43 } while (pte++, addr += PAGE_SIZE, addr != end); 44 } 45 46 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 47 { 48 pmd_t *pmd; 49 unsigned long next; 50 51 pmd = pmd_offset(pud, addr); 52 do { 53 next = pmd_addr_end(addr, end); 54 if (pmd_none_or_clear_bad(pmd)) 55 continue; 56 vunmap_pte_range(pmd, addr, next); 57 } while (pmd++, addr = next, addr != end); 58 } 59 60 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 61 { 62 pud_t *pud; 63 unsigned long next; 64 65 pud = pud_offset(pgd, addr); 66 do { 67 next = pud_addr_end(addr, end); 68 if (pud_none_or_clear_bad(pud)) 69 continue; 70 vunmap_pmd_range(pud, addr, next); 71 } while (pud++, addr = next, addr != end); 72 } 73 74 static void vunmap_page_range(unsigned long addr, unsigned long end) 75 { 76 pgd_t *pgd; 77 unsigned long next; 78 79 BUG_ON(addr >= end); 80 pgd = pgd_offset_k(addr); 81 do { 82 next = pgd_addr_end(addr, end); 83 if (pgd_none_or_clear_bad(pgd)) 84 continue; 85 vunmap_pud_range(pgd, addr, next); 86 } while (pgd++, addr = next, addr != end); 87 } 88 89 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 90 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 91 { 92 pte_t *pte; 93 94 /* 95 * nr is a running index into the array which helps higher level 96 * callers keep track of where we're up to. 97 */ 98 99 pte = pte_alloc_kernel(pmd, addr); 100 if (!pte) 101 return -ENOMEM; 102 do { 103 struct page *page = pages[*nr]; 104 105 if (WARN_ON(!pte_none(*pte))) 106 return -EBUSY; 107 if (WARN_ON(!page)) 108 return -ENOMEM; 109 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 110 (*nr)++; 111 } while (pte++, addr += PAGE_SIZE, addr != end); 112 return 0; 113 } 114 115 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 116 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 117 { 118 pmd_t *pmd; 119 unsigned long next; 120 121 pmd = pmd_alloc(&init_mm, pud, addr); 122 if (!pmd) 123 return -ENOMEM; 124 do { 125 next = pmd_addr_end(addr, end); 126 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 127 return -ENOMEM; 128 } while (pmd++, addr = next, addr != end); 129 return 0; 130 } 131 132 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 133 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 134 { 135 pud_t *pud; 136 unsigned long next; 137 138 pud = pud_alloc(&init_mm, pgd, addr); 139 if (!pud) 140 return -ENOMEM; 141 do { 142 next = pud_addr_end(addr, end); 143 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 144 return -ENOMEM; 145 } while (pud++, addr = next, addr != end); 146 return 0; 147 } 148 149 /* 150 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 151 * will have pfns corresponding to the "pages" array. 152 * 153 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 154 */ 155 static int vmap_page_range(unsigned long start, unsigned long end, 156 pgprot_t prot, struct page **pages) 157 { 158 pgd_t *pgd; 159 unsigned long next; 160 unsigned long addr = start; 161 int err = 0; 162 int nr = 0; 163 164 BUG_ON(addr >= end); 165 pgd = pgd_offset_k(addr); 166 do { 167 next = pgd_addr_end(addr, end); 168 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 169 if (err) 170 break; 171 } while (pgd++, addr = next, addr != end); 172 flush_cache_vmap(start, end); 173 174 if (unlikely(err)) 175 return err; 176 return nr; 177 } 178 179 static inline int is_vmalloc_or_module_addr(const void *x) 180 { 181 /* 182 * ARM, x86-64 and sparc64 put modules in a special place, 183 * and fall back on vmalloc() if that fails. Others 184 * just put it in the vmalloc space. 185 */ 186 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 187 unsigned long addr = (unsigned long)x; 188 if (addr >= MODULES_VADDR && addr < MODULES_END) 189 return 1; 190 #endif 191 return is_vmalloc_addr(x); 192 } 193 194 /* 195 * Walk a vmap address to the struct page it maps. 196 */ 197 struct page *vmalloc_to_page(const void *vmalloc_addr) 198 { 199 unsigned long addr = (unsigned long) vmalloc_addr; 200 struct page *page = NULL; 201 pgd_t *pgd = pgd_offset_k(addr); 202 203 /* 204 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 205 * architectures that do not vmalloc module space 206 */ 207 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 208 209 if (!pgd_none(*pgd)) { 210 pud_t *pud = pud_offset(pgd, addr); 211 if (!pud_none(*pud)) { 212 pmd_t *pmd = pmd_offset(pud, addr); 213 if (!pmd_none(*pmd)) { 214 pte_t *ptep, pte; 215 216 ptep = pte_offset_map(pmd, addr); 217 pte = *ptep; 218 if (pte_present(pte)) 219 page = pte_page(pte); 220 pte_unmap(ptep); 221 } 222 } 223 } 224 return page; 225 } 226 EXPORT_SYMBOL(vmalloc_to_page); 227 228 /* 229 * Map a vmalloc()-space virtual address to the physical page frame number. 230 */ 231 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 232 { 233 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 234 } 235 EXPORT_SYMBOL(vmalloc_to_pfn); 236 237 238 /*** Global kva allocator ***/ 239 240 #define VM_LAZY_FREE 0x01 241 #define VM_LAZY_FREEING 0x02 242 #define VM_VM_AREA 0x04 243 244 struct vmap_area { 245 unsigned long va_start; 246 unsigned long va_end; 247 unsigned long flags; 248 struct rb_node rb_node; /* address sorted rbtree */ 249 struct list_head list; /* address sorted list */ 250 struct list_head purge_list; /* "lazy purge" list */ 251 void *private; 252 struct rcu_head rcu_head; 253 }; 254 255 static DEFINE_SPINLOCK(vmap_area_lock); 256 static struct rb_root vmap_area_root = RB_ROOT; 257 static LIST_HEAD(vmap_area_list); 258 259 static struct vmap_area *__find_vmap_area(unsigned long addr) 260 { 261 struct rb_node *n = vmap_area_root.rb_node; 262 263 while (n) { 264 struct vmap_area *va; 265 266 va = rb_entry(n, struct vmap_area, rb_node); 267 if (addr < va->va_start) 268 n = n->rb_left; 269 else if (addr > va->va_start) 270 n = n->rb_right; 271 else 272 return va; 273 } 274 275 return NULL; 276 } 277 278 static void __insert_vmap_area(struct vmap_area *va) 279 { 280 struct rb_node **p = &vmap_area_root.rb_node; 281 struct rb_node *parent = NULL; 282 struct rb_node *tmp; 283 284 while (*p) { 285 struct vmap_area *tmp; 286 287 parent = *p; 288 tmp = rb_entry(parent, struct vmap_area, rb_node); 289 if (va->va_start < tmp->va_end) 290 p = &(*p)->rb_left; 291 else if (va->va_end > tmp->va_start) 292 p = &(*p)->rb_right; 293 else 294 BUG(); 295 } 296 297 rb_link_node(&va->rb_node, parent, p); 298 rb_insert_color(&va->rb_node, &vmap_area_root); 299 300 /* address-sort this list so it is usable like the vmlist */ 301 tmp = rb_prev(&va->rb_node); 302 if (tmp) { 303 struct vmap_area *prev; 304 prev = rb_entry(tmp, struct vmap_area, rb_node); 305 list_add_rcu(&va->list, &prev->list); 306 } else 307 list_add_rcu(&va->list, &vmap_area_list); 308 } 309 310 static void purge_vmap_area_lazy(void); 311 312 /* 313 * Allocate a region of KVA of the specified size and alignment, within the 314 * vstart and vend. 315 */ 316 static struct vmap_area *alloc_vmap_area(unsigned long size, 317 unsigned long align, 318 unsigned long vstart, unsigned long vend, 319 int node, gfp_t gfp_mask) 320 { 321 struct vmap_area *va; 322 struct rb_node *n; 323 unsigned long addr; 324 int purged = 0; 325 326 BUG_ON(size & ~PAGE_MASK); 327 328 va = kmalloc_node(sizeof(struct vmap_area), 329 gfp_mask & GFP_RECLAIM_MASK, node); 330 if (unlikely(!va)) 331 return ERR_PTR(-ENOMEM); 332 333 retry: 334 addr = ALIGN(vstart, align); 335 336 spin_lock(&vmap_area_lock); 337 /* XXX: could have a last_hole cache */ 338 n = vmap_area_root.rb_node; 339 if (n) { 340 struct vmap_area *first = NULL; 341 342 do { 343 struct vmap_area *tmp; 344 tmp = rb_entry(n, struct vmap_area, rb_node); 345 if (tmp->va_end >= addr) { 346 if (!first && tmp->va_start < addr + size) 347 first = tmp; 348 n = n->rb_left; 349 } else { 350 first = tmp; 351 n = n->rb_right; 352 } 353 } while (n); 354 355 if (!first) 356 goto found; 357 358 if (first->va_end < addr) { 359 n = rb_next(&first->rb_node); 360 if (n) 361 first = rb_entry(n, struct vmap_area, rb_node); 362 else 363 goto found; 364 } 365 366 while (addr + size > first->va_start && addr + size <= vend) { 367 addr = ALIGN(first->va_end + PAGE_SIZE, align); 368 369 n = rb_next(&first->rb_node); 370 if (n) 371 first = rb_entry(n, struct vmap_area, rb_node); 372 else 373 goto found; 374 } 375 } 376 found: 377 if (addr + size > vend) { 378 spin_unlock(&vmap_area_lock); 379 if (!purged) { 380 purge_vmap_area_lazy(); 381 purged = 1; 382 goto retry; 383 } 384 if (printk_ratelimit()) 385 printk(KERN_WARNING 386 "vmap allocation for size %lu failed: " 387 "use vmalloc=<size> to increase size.\n", size); 388 return ERR_PTR(-EBUSY); 389 } 390 391 BUG_ON(addr & (align-1)); 392 393 va->va_start = addr; 394 va->va_end = addr + size; 395 va->flags = 0; 396 __insert_vmap_area(va); 397 spin_unlock(&vmap_area_lock); 398 399 return va; 400 } 401 402 static void rcu_free_va(struct rcu_head *head) 403 { 404 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head); 405 406 kfree(va); 407 } 408 409 static void __free_vmap_area(struct vmap_area *va) 410 { 411 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 412 rb_erase(&va->rb_node, &vmap_area_root); 413 RB_CLEAR_NODE(&va->rb_node); 414 list_del_rcu(&va->list); 415 416 call_rcu(&va->rcu_head, rcu_free_va); 417 } 418 419 /* 420 * Free a region of KVA allocated by alloc_vmap_area 421 */ 422 static void free_vmap_area(struct vmap_area *va) 423 { 424 spin_lock(&vmap_area_lock); 425 __free_vmap_area(va); 426 spin_unlock(&vmap_area_lock); 427 } 428 429 /* 430 * Clear the pagetable entries of a given vmap_area 431 */ 432 static void unmap_vmap_area(struct vmap_area *va) 433 { 434 vunmap_page_range(va->va_start, va->va_end); 435 } 436 437 static void vmap_debug_free_range(unsigned long start, unsigned long end) 438 { 439 /* 440 * Unmap page tables and force a TLB flush immediately if 441 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free 442 * bugs similarly to those in linear kernel virtual address 443 * space after a page has been freed. 444 * 445 * All the lazy freeing logic is still retained, in order to 446 * minimise intrusiveness of this debugging feature. 447 * 448 * This is going to be *slow* (linear kernel virtual address 449 * debugging doesn't do a broadcast TLB flush so it is a lot 450 * faster). 451 */ 452 #ifdef CONFIG_DEBUG_PAGEALLOC 453 vunmap_page_range(start, end); 454 flush_tlb_kernel_range(start, end); 455 #endif 456 } 457 458 /* 459 * lazy_max_pages is the maximum amount of virtual address space we gather up 460 * before attempting to purge with a TLB flush. 461 * 462 * There is a tradeoff here: a larger number will cover more kernel page tables 463 * and take slightly longer to purge, but it will linearly reduce the number of 464 * global TLB flushes that must be performed. It would seem natural to scale 465 * this number up linearly with the number of CPUs (because vmapping activity 466 * could also scale linearly with the number of CPUs), however it is likely 467 * that in practice, workloads might be constrained in other ways that mean 468 * vmap activity will not scale linearly with CPUs. Also, I want to be 469 * conservative and not introduce a big latency on huge systems, so go with 470 * a less aggressive log scale. It will still be an improvement over the old 471 * code, and it will be simple to change the scale factor if we find that it 472 * becomes a problem on bigger systems. 473 */ 474 static unsigned long lazy_max_pages(void) 475 { 476 unsigned int log; 477 478 log = fls(num_online_cpus()); 479 480 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 481 } 482 483 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 484 485 /* 486 * Purges all lazily-freed vmap areas. 487 * 488 * If sync is 0 then don't purge if there is already a purge in progress. 489 * If force_flush is 1, then flush kernel TLBs between *start and *end even 490 * if we found no lazy vmap areas to unmap (callers can use this to optimise 491 * their own TLB flushing). 492 * Returns with *start = min(*start, lowest purged address) 493 * *end = max(*end, highest purged address) 494 */ 495 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 496 int sync, int force_flush) 497 { 498 static DEFINE_SPINLOCK(purge_lock); 499 LIST_HEAD(valist); 500 struct vmap_area *va; 501 int nr = 0; 502 503 /* 504 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 505 * should not expect such behaviour. This just simplifies locking for 506 * the case that isn't actually used at the moment anyway. 507 */ 508 if (!sync && !force_flush) { 509 if (!spin_trylock(&purge_lock)) 510 return; 511 } else 512 spin_lock(&purge_lock); 513 514 rcu_read_lock(); 515 list_for_each_entry_rcu(va, &vmap_area_list, list) { 516 if (va->flags & VM_LAZY_FREE) { 517 if (va->va_start < *start) 518 *start = va->va_start; 519 if (va->va_end > *end) 520 *end = va->va_end; 521 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 522 unmap_vmap_area(va); 523 list_add_tail(&va->purge_list, &valist); 524 va->flags |= VM_LAZY_FREEING; 525 va->flags &= ~VM_LAZY_FREE; 526 } 527 } 528 rcu_read_unlock(); 529 530 if (nr) { 531 BUG_ON(nr > atomic_read(&vmap_lazy_nr)); 532 atomic_sub(nr, &vmap_lazy_nr); 533 } 534 535 if (nr || force_flush) 536 flush_tlb_kernel_range(*start, *end); 537 538 if (nr) { 539 spin_lock(&vmap_area_lock); 540 list_for_each_entry(va, &valist, purge_list) 541 __free_vmap_area(va); 542 spin_unlock(&vmap_area_lock); 543 } 544 spin_unlock(&purge_lock); 545 } 546 547 /* 548 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 549 * is already purging. 550 */ 551 static void try_purge_vmap_area_lazy(void) 552 { 553 unsigned long start = ULONG_MAX, end = 0; 554 555 __purge_vmap_area_lazy(&start, &end, 0, 0); 556 } 557 558 /* 559 * Kick off a purge of the outstanding lazy areas. 560 */ 561 static void purge_vmap_area_lazy(void) 562 { 563 unsigned long start = ULONG_MAX, end = 0; 564 565 __purge_vmap_area_lazy(&start, &end, 1, 0); 566 } 567 568 /* 569 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been 570 * called for the correct range previously. 571 */ 572 static void free_unmap_vmap_area_noflush(struct vmap_area *va) 573 { 574 va->flags |= VM_LAZY_FREE; 575 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 576 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 577 try_purge_vmap_area_lazy(); 578 } 579 580 /* 581 * Free and unmap a vmap area 582 */ 583 static void free_unmap_vmap_area(struct vmap_area *va) 584 { 585 flush_cache_vunmap(va->va_start, va->va_end); 586 free_unmap_vmap_area_noflush(va); 587 } 588 589 static struct vmap_area *find_vmap_area(unsigned long addr) 590 { 591 struct vmap_area *va; 592 593 spin_lock(&vmap_area_lock); 594 va = __find_vmap_area(addr); 595 spin_unlock(&vmap_area_lock); 596 597 return va; 598 } 599 600 static void free_unmap_vmap_area_addr(unsigned long addr) 601 { 602 struct vmap_area *va; 603 604 va = find_vmap_area(addr); 605 BUG_ON(!va); 606 free_unmap_vmap_area(va); 607 } 608 609 610 /*** Per cpu kva allocator ***/ 611 612 /* 613 * vmap space is limited especially on 32 bit architectures. Ensure there is 614 * room for at least 16 percpu vmap blocks per CPU. 615 */ 616 /* 617 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 618 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 619 * instead (we just need a rough idea) 620 */ 621 #if BITS_PER_LONG == 32 622 #define VMALLOC_SPACE (128UL*1024*1024) 623 #else 624 #define VMALLOC_SPACE (128UL*1024*1024*1024) 625 #endif 626 627 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 628 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 629 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 630 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 631 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 632 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 633 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 634 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 635 VMALLOC_PAGES / NR_CPUS / 16)) 636 637 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 638 639 static bool vmap_initialized __read_mostly = false; 640 641 struct vmap_block_queue { 642 spinlock_t lock; 643 struct list_head free; 644 struct list_head dirty; 645 unsigned int nr_dirty; 646 }; 647 648 struct vmap_block { 649 spinlock_t lock; 650 struct vmap_area *va; 651 struct vmap_block_queue *vbq; 652 unsigned long free, dirty; 653 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); 654 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); 655 union { 656 struct { 657 struct list_head free_list; 658 struct list_head dirty_list; 659 }; 660 struct rcu_head rcu_head; 661 }; 662 }; 663 664 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 665 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 666 667 /* 668 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 669 * in the free path. Could get rid of this if we change the API to return a 670 * "cookie" from alloc, to be passed to free. But no big deal yet. 671 */ 672 static DEFINE_SPINLOCK(vmap_block_tree_lock); 673 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 674 675 /* 676 * We should probably have a fallback mechanism to allocate virtual memory 677 * out of partially filled vmap blocks. However vmap block sizing should be 678 * fairly reasonable according to the vmalloc size, so it shouldn't be a 679 * big problem. 680 */ 681 682 static unsigned long addr_to_vb_idx(unsigned long addr) 683 { 684 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 685 addr /= VMAP_BLOCK_SIZE; 686 return addr; 687 } 688 689 static struct vmap_block *new_vmap_block(gfp_t gfp_mask) 690 { 691 struct vmap_block_queue *vbq; 692 struct vmap_block *vb; 693 struct vmap_area *va; 694 unsigned long vb_idx; 695 int node, err; 696 697 node = numa_node_id(); 698 699 vb = kmalloc_node(sizeof(struct vmap_block), 700 gfp_mask & GFP_RECLAIM_MASK, node); 701 if (unlikely(!vb)) 702 return ERR_PTR(-ENOMEM); 703 704 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 705 VMALLOC_START, VMALLOC_END, 706 node, gfp_mask); 707 if (unlikely(IS_ERR(va))) { 708 kfree(vb); 709 return ERR_PTR(PTR_ERR(va)); 710 } 711 712 err = radix_tree_preload(gfp_mask); 713 if (unlikely(err)) { 714 kfree(vb); 715 free_vmap_area(va); 716 return ERR_PTR(err); 717 } 718 719 spin_lock_init(&vb->lock); 720 vb->va = va; 721 vb->free = VMAP_BBMAP_BITS; 722 vb->dirty = 0; 723 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); 724 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); 725 INIT_LIST_HEAD(&vb->free_list); 726 INIT_LIST_HEAD(&vb->dirty_list); 727 728 vb_idx = addr_to_vb_idx(va->va_start); 729 spin_lock(&vmap_block_tree_lock); 730 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 731 spin_unlock(&vmap_block_tree_lock); 732 BUG_ON(err); 733 radix_tree_preload_end(); 734 735 vbq = &get_cpu_var(vmap_block_queue); 736 vb->vbq = vbq; 737 spin_lock(&vbq->lock); 738 list_add(&vb->free_list, &vbq->free); 739 spin_unlock(&vbq->lock); 740 put_cpu_var(vmap_cpu_blocks); 741 742 return vb; 743 } 744 745 static void rcu_free_vb(struct rcu_head *head) 746 { 747 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head); 748 749 kfree(vb); 750 } 751 752 static void free_vmap_block(struct vmap_block *vb) 753 { 754 struct vmap_block *tmp; 755 unsigned long vb_idx; 756 757 spin_lock(&vb->vbq->lock); 758 if (!list_empty(&vb->free_list)) 759 list_del(&vb->free_list); 760 if (!list_empty(&vb->dirty_list)) 761 list_del(&vb->dirty_list); 762 spin_unlock(&vb->vbq->lock); 763 764 vb_idx = addr_to_vb_idx(vb->va->va_start); 765 spin_lock(&vmap_block_tree_lock); 766 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 767 spin_unlock(&vmap_block_tree_lock); 768 BUG_ON(tmp != vb); 769 770 free_unmap_vmap_area_noflush(vb->va); 771 call_rcu(&vb->rcu_head, rcu_free_vb); 772 } 773 774 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 775 { 776 struct vmap_block_queue *vbq; 777 struct vmap_block *vb; 778 unsigned long addr = 0; 779 unsigned int order; 780 781 BUG_ON(size & ~PAGE_MASK); 782 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 783 order = get_order(size); 784 785 again: 786 rcu_read_lock(); 787 vbq = &get_cpu_var(vmap_block_queue); 788 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 789 int i; 790 791 spin_lock(&vb->lock); 792 i = bitmap_find_free_region(vb->alloc_map, 793 VMAP_BBMAP_BITS, order); 794 795 if (i >= 0) { 796 addr = vb->va->va_start + (i << PAGE_SHIFT); 797 BUG_ON(addr_to_vb_idx(addr) != 798 addr_to_vb_idx(vb->va->va_start)); 799 vb->free -= 1UL << order; 800 if (vb->free == 0) { 801 spin_lock(&vbq->lock); 802 list_del_init(&vb->free_list); 803 spin_unlock(&vbq->lock); 804 } 805 spin_unlock(&vb->lock); 806 break; 807 } 808 spin_unlock(&vb->lock); 809 } 810 put_cpu_var(vmap_cpu_blocks); 811 rcu_read_unlock(); 812 813 if (!addr) { 814 vb = new_vmap_block(gfp_mask); 815 if (IS_ERR(vb)) 816 return vb; 817 goto again; 818 } 819 820 return (void *)addr; 821 } 822 823 static void vb_free(const void *addr, unsigned long size) 824 { 825 unsigned long offset; 826 unsigned long vb_idx; 827 unsigned int order; 828 struct vmap_block *vb; 829 830 BUG_ON(size & ~PAGE_MASK); 831 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 832 833 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 834 835 order = get_order(size); 836 837 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 838 839 vb_idx = addr_to_vb_idx((unsigned long)addr); 840 rcu_read_lock(); 841 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 842 rcu_read_unlock(); 843 BUG_ON(!vb); 844 845 spin_lock(&vb->lock); 846 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order); 847 if (!vb->dirty) { 848 spin_lock(&vb->vbq->lock); 849 list_add(&vb->dirty_list, &vb->vbq->dirty); 850 spin_unlock(&vb->vbq->lock); 851 } 852 vb->dirty += 1UL << order; 853 if (vb->dirty == VMAP_BBMAP_BITS) { 854 BUG_ON(vb->free || !list_empty(&vb->free_list)); 855 spin_unlock(&vb->lock); 856 free_vmap_block(vb); 857 } else 858 spin_unlock(&vb->lock); 859 } 860 861 /** 862 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 863 * 864 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 865 * to amortize TLB flushing overheads. What this means is that any page you 866 * have now, may, in a former life, have been mapped into kernel virtual 867 * address by the vmap layer and so there might be some CPUs with TLB entries 868 * still referencing that page (additional to the regular 1:1 kernel mapping). 869 * 870 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 871 * be sure that none of the pages we have control over will have any aliases 872 * from the vmap layer. 873 */ 874 void vm_unmap_aliases(void) 875 { 876 unsigned long start = ULONG_MAX, end = 0; 877 int cpu; 878 int flush = 0; 879 880 if (unlikely(!vmap_initialized)) 881 return; 882 883 for_each_possible_cpu(cpu) { 884 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 885 struct vmap_block *vb; 886 887 rcu_read_lock(); 888 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 889 int i; 890 891 spin_lock(&vb->lock); 892 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); 893 while (i < VMAP_BBMAP_BITS) { 894 unsigned long s, e; 895 int j; 896 j = find_next_zero_bit(vb->dirty_map, 897 VMAP_BBMAP_BITS, i); 898 899 s = vb->va->va_start + (i << PAGE_SHIFT); 900 e = vb->va->va_start + (j << PAGE_SHIFT); 901 vunmap_page_range(s, e); 902 flush = 1; 903 904 if (s < start) 905 start = s; 906 if (e > end) 907 end = e; 908 909 i = j; 910 i = find_next_bit(vb->dirty_map, 911 VMAP_BBMAP_BITS, i); 912 } 913 spin_unlock(&vb->lock); 914 } 915 rcu_read_unlock(); 916 } 917 918 __purge_vmap_area_lazy(&start, &end, 1, flush); 919 } 920 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 921 922 /** 923 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 924 * @mem: the pointer returned by vm_map_ram 925 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 926 */ 927 void vm_unmap_ram(const void *mem, unsigned int count) 928 { 929 unsigned long size = count << PAGE_SHIFT; 930 unsigned long addr = (unsigned long)mem; 931 932 BUG_ON(!addr); 933 BUG_ON(addr < VMALLOC_START); 934 BUG_ON(addr > VMALLOC_END); 935 BUG_ON(addr & (PAGE_SIZE-1)); 936 937 debug_check_no_locks_freed(mem, size); 938 vmap_debug_free_range(addr, addr+size); 939 940 if (likely(count <= VMAP_MAX_ALLOC)) 941 vb_free(mem, size); 942 else 943 free_unmap_vmap_area_addr(addr); 944 } 945 EXPORT_SYMBOL(vm_unmap_ram); 946 947 /** 948 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 949 * @pages: an array of pointers to the pages to be mapped 950 * @count: number of pages 951 * @node: prefer to allocate data structures on this node 952 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 953 * 954 * Returns: a pointer to the address that has been mapped, or %NULL on failure 955 */ 956 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 957 { 958 unsigned long size = count << PAGE_SHIFT; 959 unsigned long addr; 960 void *mem; 961 962 if (likely(count <= VMAP_MAX_ALLOC)) { 963 mem = vb_alloc(size, GFP_KERNEL); 964 if (IS_ERR(mem)) 965 return NULL; 966 addr = (unsigned long)mem; 967 } else { 968 struct vmap_area *va; 969 va = alloc_vmap_area(size, PAGE_SIZE, 970 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 971 if (IS_ERR(va)) 972 return NULL; 973 974 addr = va->va_start; 975 mem = (void *)addr; 976 } 977 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 978 vm_unmap_ram(mem, count); 979 return NULL; 980 } 981 return mem; 982 } 983 EXPORT_SYMBOL(vm_map_ram); 984 985 void __init vmalloc_init(void) 986 { 987 struct vmap_area *va; 988 struct vm_struct *tmp; 989 int i; 990 991 for_each_possible_cpu(i) { 992 struct vmap_block_queue *vbq; 993 994 vbq = &per_cpu(vmap_block_queue, i); 995 spin_lock_init(&vbq->lock); 996 INIT_LIST_HEAD(&vbq->free); 997 INIT_LIST_HEAD(&vbq->dirty); 998 vbq->nr_dirty = 0; 999 } 1000 1001 /* Import existing vmlist entries. */ 1002 for (tmp = vmlist; tmp; tmp = tmp->next) { 1003 va = alloc_bootmem(sizeof(struct vmap_area)); 1004 va->flags = tmp->flags | VM_VM_AREA; 1005 va->va_start = (unsigned long)tmp->addr; 1006 va->va_end = va->va_start + tmp->size; 1007 __insert_vmap_area(va); 1008 } 1009 vmap_initialized = true; 1010 } 1011 1012 void unmap_kernel_range(unsigned long addr, unsigned long size) 1013 { 1014 unsigned long end = addr + size; 1015 vunmap_page_range(addr, end); 1016 flush_tlb_kernel_range(addr, end); 1017 } 1018 1019 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 1020 { 1021 unsigned long addr = (unsigned long)area->addr; 1022 unsigned long end = addr + area->size - PAGE_SIZE; 1023 int err; 1024 1025 err = vmap_page_range(addr, end, prot, *pages); 1026 if (err > 0) { 1027 *pages += err; 1028 err = 0; 1029 } 1030 1031 return err; 1032 } 1033 EXPORT_SYMBOL_GPL(map_vm_area); 1034 1035 /*** Old vmalloc interfaces ***/ 1036 DEFINE_RWLOCK(vmlist_lock); 1037 struct vm_struct *vmlist; 1038 1039 static struct vm_struct *__get_vm_area_node(unsigned long size, 1040 unsigned long flags, unsigned long start, unsigned long end, 1041 int node, gfp_t gfp_mask, void *caller) 1042 { 1043 static struct vmap_area *va; 1044 struct vm_struct *area; 1045 struct vm_struct *tmp, **p; 1046 unsigned long align = 1; 1047 1048 BUG_ON(in_interrupt()); 1049 if (flags & VM_IOREMAP) { 1050 int bit = fls(size); 1051 1052 if (bit > IOREMAP_MAX_ORDER) 1053 bit = IOREMAP_MAX_ORDER; 1054 else if (bit < PAGE_SHIFT) 1055 bit = PAGE_SHIFT; 1056 1057 align = 1ul << bit; 1058 } 1059 1060 size = PAGE_ALIGN(size); 1061 if (unlikely(!size)) 1062 return NULL; 1063 1064 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1065 if (unlikely(!area)) 1066 return NULL; 1067 1068 /* 1069 * We always allocate a guard page. 1070 */ 1071 size += PAGE_SIZE; 1072 1073 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1074 if (IS_ERR(va)) { 1075 kfree(area); 1076 return NULL; 1077 } 1078 1079 area->flags = flags; 1080 area->addr = (void *)va->va_start; 1081 area->size = size; 1082 area->pages = NULL; 1083 area->nr_pages = 0; 1084 area->phys_addr = 0; 1085 area->caller = caller; 1086 va->private = area; 1087 va->flags |= VM_VM_AREA; 1088 1089 write_lock(&vmlist_lock); 1090 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1091 if (tmp->addr >= area->addr) 1092 break; 1093 } 1094 area->next = *p; 1095 *p = area; 1096 write_unlock(&vmlist_lock); 1097 1098 return area; 1099 } 1100 1101 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1102 unsigned long start, unsigned long end) 1103 { 1104 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL, 1105 __builtin_return_address(0)); 1106 } 1107 EXPORT_SYMBOL_GPL(__get_vm_area); 1108 1109 /** 1110 * get_vm_area - reserve a contiguous kernel virtual area 1111 * @size: size of the area 1112 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1113 * 1114 * Search an area of @size in the kernel virtual mapping area, 1115 * and reserved it for out purposes. Returns the area descriptor 1116 * on success or %NULL on failure. 1117 */ 1118 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1119 { 1120 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, 1121 -1, GFP_KERNEL, __builtin_return_address(0)); 1122 } 1123 1124 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1125 void *caller) 1126 { 1127 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, 1128 -1, GFP_KERNEL, caller); 1129 } 1130 1131 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, 1132 int node, gfp_t gfp_mask) 1133 { 1134 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node, 1135 gfp_mask, __builtin_return_address(0)); 1136 } 1137 1138 static struct vm_struct *find_vm_area(const void *addr) 1139 { 1140 struct vmap_area *va; 1141 1142 va = find_vmap_area((unsigned long)addr); 1143 if (va && va->flags & VM_VM_AREA) 1144 return va->private; 1145 1146 return NULL; 1147 } 1148 1149 /** 1150 * remove_vm_area - find and remove a continuous kernel virtual area 1151 * @addr: base address 1152 * 1153 * Search for the kernel VM area starting at @addr, and remove it. 1154 * This function returns the found VM area, but using it is NOT safe 1155 * on SMP machines, except for its size or flags. 1156 */ 1157 struct vm_struct *remove_vm_area(const void *addr) 1158 { 1159 struct vmap_area *va; 1160 1161 va = find_vmap_area((unsigned long)addr); 1162 if (va && va->flags & VM_VM_AREA) { 1163 struct vm_struct *vm = va->private; 1164 struct vm_struct *tmp, **p; 1165 1166 vmap_debug_free_range(va->va_start, va->va_end); 1167 free_unmap_vmap_area(va); 1168 vm->size -= PAGE_SIZE; 1169 1170 write_lock(&vmlist_lock); 1171 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) 1172 ; 1173 *p = tmp->next; 1174 write_unlock(&vmlist_lock); 1175 1176 return vm; 1177 } 1178 return NULL; 1179 } 1180 1181 static void __vunmap(const void *addr, int deallocate_pages) 1182 { 1183 struct vm_struct *area; 1184 1185 if (!addr) 1186 return; 1187 1188 if ((PAGE_SIZE-1) & (unsigned long)addr) { 1189 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 1190 return; 1191 } 1192 1193 area = remove_vm_area(addr); 1194 if (unlikely(!area)) { 1195 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1196 addr); 1197 return; 1198 } 1199 1200 debug_check_no_locks_freed(addr, area->size); 1201 debug_check_no_obj_freed(addr, area->size); 1202 1203 if (deallocate_pages) { 1204 int i; 1205 1206 for (i = 0; i < area->nr_pages; i++) { 1207 struct page *page = area->pages[i]; 1208 1209 BUG_ON(!page); 1210 __free_page(page); 1211 } 1212 1213 if (area->flags & VM_VPAGES) 1214 vfree(area->pages); 1215 else 1216 kfree(area->pages); 1217 } 1218 1219 kfree(area); 1220 return; 1221 } 1222 1223 /** 1224 * vfree - release memory allocated by vmalloc() 1225 * @addr: memory base address 1226 * 1227 * Free the virtually continuous memory area starting at @addr, as 1228 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1229 * NULL, no operation is performed. 1230 * 1231 * Must not be called in interrupt context. 1232 */ 1233 void vfree(const void *addr) 1234 { 1235 BUG_ON(in_interrupt()); 1236 __vunmap(addr, 1); 1237 } 1238 EXPORT_SYMBOL(vfree); 1239 1240 /** 1241 * vunmap - release virtual mapping obtained by vmap() 1242 * @addr: memory base address 1243 * 1244 * Free the virtually contiguous memory area starting at @addr, 1245 * which was created from the page array passed to vmap(). 1246 * 1247 * Must not be called in interrupt context. 1248 */ 1249 void vunmap(const void *addr) 1250 { 1251 BUG_ON(in_interrupt()); 1252 __vunmap(addr, 0); 1253 } 1254 EXPORT_SYMBOL(vunmap); 1255 1256 /** 1257 * vmap - map an array of pages into virtually contiguous space 1258 * @pages: array of page pointers 1259 * @count: number of pages to map 1260 * @flags: vm_area->flags 1261 * @prot: page protection for the mapping 1262 * 1263 * Maps @count pages from @pages into contiguous kernel virtual 1264 * space. 1265 */ 1266 void *vmap(struct page **pages, unsigned int count, 1267 unsigned long flags, pgprot_t prot) 1268 { 1269 struct vm_struct *area; 1270 1271 if (count > num_physpages) 1272 return NULL; 1273 1274 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1275 __builtin_return_address(0)); 1276 if (!area) 1277 return NULL; 1278 1279 if (map_vm_area(area, prot, &pages)) { 1280 vunmap(area->addr); 1281 return NULL; 1282 } 1283 1284 return area->addr; 1285 } 1286 EXPORT_SYMBOL(vmap); 1287 1288 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 1289 int node, void *caller); 1290 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1291 pgprot_t prot, int node, void *caller) 1292 { 1293 struct page **pages; 1294 unsigned int nr_pages, array_size, i; 1295 1296 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 1297 array_size = (nr_pages * sizeof(struct page *)); 1298 1299 area->nr_pages = nr_pages; 1300 /* Please note that the recursion is strictly bounded. */ 1301 if (array_size > PAGE_SIZE) { 1302 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO, 1303 PAGE_KERNEL, node, caller); 1304 area->flags |= VM_VPAGES; 1305 } else { 1306 pages = kmalloc_node(array_size, 1307 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO, 1308 node); 1309 } 1310 area->pages = pages; 1311 area->caller = caller; 1312 if (!area->pages) { 1313 remove_vm_area(area->addr); 1314 kfree(area); 1315 return NULL; 1316 } 1317 1318 for (i = 0; i < area->nr_pages; i++) { 1319 struct page *page; 1320 1321 if (node < 0) 1322 page = alloc_page(gfp_mask); 1323 else 1324 page = alloc_pages_node(node, gfp_mask, 0); 1325 1326 if (unlikely(!page)) { 1327 /* Successfully allocated i pages, free them in __vunmap() */ 1328 area->nr_pages = i; 1329 goto fail; 1330 } 1331 area->pages[i] = page; 1332 } 1333 1334 if (map_vm_area(area, prot, &pages)) 1335 goto fail; 1336 return area->addr; 1337 1338 fail: 1339 vfree(area->addr); 1340 return NULL; 1341 } 1342 1343 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) 1344 { 1345 return __vmalloc_area_node(area, gfp_mask, prot, -1, 1346 __builtin_return_address(0)); 1347 } 1348 1349 /** 1350 * __vmalloc_node - allocate virtually contiguous memory 1351 * @size: allocation size 1352 * @gfp_mask: flags for the page level allocator 1353 * @prot: protection mask for the allocated pages 1354 * @node: node to use for allocation or -1 1355 * @caller: caller's return address 1356 * 1357 * Allocate enough pages to cover @size from the page level 1358 * allocator with @gfp_mask flags. Map them into contiguous 1359 * kernel virtual space, using a pagetable protection of @prot. 1360 */ 1361 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 1362 int node, void *caller) 1363 { 1364 struct vm_struct *area; 1365 1366 size = PAGE_ALIGN(size); 1367 if (!size || (size >> PAGE_SHIFT) > num_physpages) 1368 return NULL; 1369 1370 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END, 1371 node, gfp_mask, caller); 1372 1373 if (!area) 1374 return NULL; 1375 1376 return __vmalloc_area_node(area, gfp_mask, prot, node, caller); 1377 } 1378 1379 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1380 { 1381 return __vmalloc_node(size, gfp_mask, prot, -1, 1382 __builtin_return_address(0)); 1383 } 1384 EXPORT_SYMBOL(__vmalloc); 1385 1386 /** 1387 * vmalloc - allocate virtually contiguous memory 1388 * @size: allocation size 1389 * Allocate enough pages to cover @size from the page level 1390 * allocator and map them into contiguous kernel virtual space. 1391 * 1392 * For tight control over page level allocator and protection flags 1393 * use __vmalloc() instead. 1394 */ 1395 void *vmalloc(unsigned long size) 1396 { 1397 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1398 -1, __builtin_return_address(0)); 1399 } 1400 EXPORT_SYMBOL(vmalloc); 1401 1402 /** 1403 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1404 * @size: allocation size 1405 * 1406 * The resulting memory area is zeroed so it can be mapped to userspace 1407 * without leaking data. 1408 */ 1409 void *vmalloc_user(unsigned long size) 1410 { 1411 struct vm_struct *area; 1412 void *ret; 1413 1414 ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1415 PAGE_KERNEL, -1, __builtin_return_address(0)); 1416 if (ret) { 1417 area = find_vm_area(ret); 1418 area->flags |= VM_USERMAP; 1419 } 1420 return ret; 1421 } 1422 EXPORT_SYMBOL(vmalloc_user); 1423 1424 /** 1425 * vmalloc_node - allocate memory on a specific node 1426 * @size: allocation size 1427 * @node: numa node 1428 * 1429 * Allocate enough pages to cover @size from the page level 1430 * allocator and map them into contiguous kernel virtual space. 1431 * 1432 * For tight control over page level allocator and protection flags 1433 * use __vmalloc() instead. 1434 */ 1435 void *vmalloc_node(unsigned long size, int node) 1436 { 1437 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1438 node, __builtin_return_address(0)); 1439 } 1440 EXPORT_SYMBOL(vmalloc_node); 1441 1442 #ifndef PAGE_KERNEL_EXEC 1443 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1444 #endif 1445 1446 /** 1447 * vmalloc_exec - allocate virtually contiguous, executable memory 1448 * @size: allocation size 1449 * 1450 * Kernel-internal function to allocate enough pages to cover @size 1451 * the page level allocator and map them into contiguous and 1452 * executable kernel virtual space. 1453 * 1454 * For tight control over page level allocator and protection flags 1455 * use __vmalloc() instead. 1456 */ 1457 1458 void *vmalloc_exec(unsigned long size) 1459 { 1460 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1461 -1, __builtin_return_address(0)); 1462 } 1463 1464 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1465 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1466 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1467 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1468 #else 1469 #define GFP_VMALLOC32 GFP_KERNEL 1470 #endif 1471 1472 /** 1473 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1474 * @size: allocation size 1475 * 1476 * Allocate enough 32bit PA addressable pages to cover @size from the 1477 * page level allocator and map them into contiguous kernel virtual space. 1478 */ 1479 void *vmalloc_32(unsigned long size) 1480 { 1481 return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL, 1482 -1, __builtin_return_address(0)); 1483 } 1484 EXPORT_SYMBOL(vmalloc_32); 1485 1486 /** 1487 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1488 * @size: allocation size 1489 * 1490 * The resulting memory area is 32bit addressable and zeroed so it can be 1491 * mapped to userspace without leaking data. 1492 */ 1493 void *vmalloc_32_user(unsigned long size) 1494 { 1495 struct vm_struct *area; 1496 void *ret; 1497 1498 ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1499 -1, __builtin_return_address(0)); 1500 if (ret) { 1501 area = find_vm_area(ret); 1502 area->flags |= VM_USERMAP; 1503 } 1504 return ret; 1505 } 1506 EXPORT_SYMBOL(vmalloc_32_user); 1507 1508 long vread(char *buf, char *addr, unsigned long count) 1509 { 1510 struct vm_struct *tmp; 1511 char *vaddr, *buf_start = buf; 1512 unsigned long n; 1513 1514 /* Don't allow overflow */ 1515 if ((unsigned long) addr + count < count) 1516 count = -(unsigned long) addr; 1517 1518 read_lock(&vmlist_lock); 1519 for (tmp = vmlist; tmp; tmp = tmp->next) { 1520 vaddr = (char *) tmp->addr; 1521 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1522 continue; 1523 while (addr < vaddr) { 1524 if (count == 0) 1525 goto finished; 1526 *buf = '\0'; 1527 buf++; 1528 addr++; 1529 count--; 1530 } 1531 n = vaddr + tmp->size - PAGE_SIZE - addr; 1532 do { 1533 if (count == 0) 1534 goto finished; 1535 *buf = *addr; 1536 buf++; 1537 addr++; 1538 count--; 1539 } while (--n > 0); 1540 } 1541 finished: 1542 read_unlock(&vmlist_lock); 1543 return buf - buf_start; 1544 } 1545 1546 long vwrite(char *buf, char *addr, unsigned long count) 1547 { 1548 struct vm_struct *tmp; 1549 char *vaddr, *buf_start = buf; 1550 unsigned long n; 1551 1552 /* Don't allow overflow */ 1553 if ((unsigned long) addr + count < count) 1554 count = -(unsigned long) addr; 1555 1556 read_lock(&vmlist_lock); 1557 for (tmp = vmlist; tmp; tmp = tmp->next) { 1558 vaddr = (char *) tmp->addr; 1559 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1560 continue; 1561 while (addr < vaddr) { 1562 if (count == 0) 1563 goto finished; 1564 buf++; 1565 addr++; 1566 count--; 1567 } 1568 n = vaddr + tmp->size - PAGE_SIZE - addr; 1569 do { 1570 if (count == 0) 1571 goto finished; 1572 *addr = *buf; 1573 buf++; 1574 addr++; 1575 count--; 1576 } while (--n > 0); 1577 } 1578 finished: 1579 read_unlock(&vmlist_lock); 1580 return buf - buf_start; 1581 } 1582 1583 /** 1584 * remap_vmalloc_range - map vmalloc pages to userspace 1585 * @vma: vma to cover (map full range of vma) 1586 * @addr: vmalloc memory 1587 * @pgoff: number of pages into addr before first page to map 1588 * 1589 * Returns: 0 for success, -Exxx on failure 1590 * 1591 * This function checks that addr is a valid vmalloc'ed area, and 1592 * that it is big enough to cover the vma. Will return failure if 1593 * that criteria isn't met. 1594 * 1595 * Similar to remap_pfn_range() (see mm/memory.c) 1596 */ 1597 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1598 unsigned long pgoff) 1599 { 1600 struct vm_struct *area; 1601 unsigned long uaddr = vma->vm_start; 1602 unsigned long usize = vma->vm_end - vma->vm_start; 1603 1604 if ((PAGE_SIZE-1) & (unsigned long)addr) 1605 return -EINVAL; 1606 1607 area = find_vm_area(addr); 1608 if (!area) 1609 return -EINVAL; 1610 1611 if (!(area->flags & VM_USERMAP)) 1612 return -EINVAL; 1613 1614 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 1615 return -EINVAL; 1616 1617 addr += pgoff << PAGE_SHIFT; 1618 do { 1619 struct page *page = vmalloc_to_page(addr); 1620 int ret; 1621 1622 ret = vm_insert_page(vma, uaddr, page); 1623 if (ret) 1624 return ret; 1625 1626 uaddr += PAGE_SIZE; 1627 addr += PAGE_SIZE; 1628 usize -= PAGE_SIZE; 1629 } while (usize > 0); 1630 1631 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 1632 vma->vm_flags |= VM_RESERVED; 1633 1634 return 0; 1635 } 1636 EXPORT_SYMBOL(remap_vmalloc_range); 1637 1638 /* 1639 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 1640 * have one. 1641 */ 1642 void __attribute__((weak)) vmalloc_sync_all(void) 1643 { 1644 } 1645 1646 1647 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 1648 { 1649 /* apply_to_page_range() does all the hard work. */ 1650 return 0; 1651 } 1652 1653 /** 1654 * alloc_vm_area - allocate a range of kernel address space 1655 * @size: size of the area 1656 * 1657 * Returns: NULL on failure, vm_struct on success 1658 * 1659 * This function reserves a range of kernel address space, and 1660 * allocates pagetables to map that range. No actual mappings 1661 * are created. If the kernel address space is not shared 1662 * between processes, it syncs the pagetable across all 1663 * processes. 1664 */ 1665 struct vm_struct *alloc_vm_area(size_t size) 1666 { 1667 struct vm_struct *area; 1668 1669 area = get_vm_area_caller(size, VM_IOREMAP, 1670 __builtin_return_address(0)); 1671 if (area == NULL) 1672 return NULL; 1673 1674 /* 1675 * This ensures that page tables are constructed for this region 1676 * of kernel virtual address space and mapped into init_mm. 1677 */ 1678 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 1679 area->size, f, NULL)) { 1680 free_vm_area(area); 1681 return NULL; 1682 } 1683 1684 /* Make sure the pagetables are constructed in process kernel 1685 mappings */ 1686 vmalloc_sync_all(); 1687 1688 return area; 1689 } 1690 EXPORT_SYMBOL_GPL(alloc_vm_area); 1691 1692 void free_vm_area(struct vm_struct *area) 1693 { 1694 struct vm_struct *ret; 1695 ret = remove_vm_area(area->addr); 1696 BUG_ON(ret != area); 1697 kfree(area); 1698 } 1699 EXPORT_SYMBOL_GPL(free_vm_area); 1700 1701 1702 #ifdef CONFIG_PROC_FS 1703 static void *s_start(struct seq_file *m, loff_t *pos) 1704 { 1705 loff_t n = *pos; 1706 struct vm_struct *v; 1707 1708 read_lock(&vmlist_lock); 1709 v = vmlist; 1710 while (n > 0 && v) { 1711 n--; 1712 v = v->next; 1713 } 1714 if (!n) 1715 return v; 1716 1717 return NULL; 1718 1719 } 1720 1721 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 1722 { 1723 struct vm_struct *v = p; 1724 1725 ++*pos; 1726 return v->next; 1727 } 1728 1729 static void s_stop(struct seq_file *m, void *p) 1730 { 1731 read_unlock(&vmlist_lock); 1732 } 1733 1734 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 1735 { 1736 if (NUMA_BUILD) { 1737 unsigned int nr, *counters = m->private; 1738 1739 if (!counters) 1740 return; 1741 1742 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 1743 1744 for (nr = 0; nr < v->nr_pages; nr++) 1745 counters[page_to_nid(v->pages[nr])]++; 1746 1747 for_each_node_state(nr, N_HIGH_MEMORY) 1748 if (counters[nr]) 1749 seq_printf(m, " N%u=%u", nr, counters[nr]); 1750 } 1751 } 1752 1753 static int s_show(struct seq_file *m, void *p) 1754 { 1755 struct vm_struct *v = p; 1756 1757 seq_printf(m, "0x%p-0x%p %7ld", 1758 v->addr, v->addr + v->size, v->size); 1759 1760 if (v->caller) { 1761 char buff[KSYM_SYMBOL_LEN]; 1762 1763 seq_putc(m, ' '); 1764 sprint_symbol(buff, (unsigned long)v->caller); 1765 seq_puts(m, buff); 1766 } 1767 1768 if (v->nr_pages) 1769 seq_printf(m, " pages=%d", v->nr_pages); 1770 1771 if (v->phys_addr) 1772 seq_printf(m, " phys=%lx", v->phys_addr); 1773 1774 if (v->flags & VM_IOREMAP) 1775 seq_printf(m, " ioremap"); 1776 1777 if (v->flags & VM_ALLOC) 1778 seq_printf(m, " vmalloc"); 1779 1780 if (v->flags & VM_MAP) 1781 seq_printf(m, " vmap"); 1782 1783 if (v->flags & VM_USERMAP) 1784 seq_printf(m, " user"); 1785 1786 if (v->flags & VM_VPAGES) 1787 seq_printf(m, " vpages"); 1788 1789 show_numa_info(m, v); 1790 seq_putc(m, '\n'); 1791 return 0; 1792 } 1793 1794 static const struct seq_operations vmalloc_op = { 1795 .start = s_start, 1796 .next = s_next, 1797 .stop = s_stop, 1798 .show = s_show, 1799 }; 1800 1801 static int vmalloc_open(struct inode *inode, struct file *file) 1802 { 1803 unsigned int *ptr = NULL; 1804 int ret; 1805 1806 if (NUMA_BUILD) 1807 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 1808 ret = seq_open(file, &vmalloc_op); 1809 if (!ret) { 1810 struct seq_file *m = file->private_data; 1811 m->private = ptr; 1812 } else 1813 kfree(ptr); 1814 return ret; 1815 } 1816 1817 static const struct file_operations proc_vmalloc_operations = { 1818 .open = vmalloc_open, 1819 .read = seq_read, 1820 .llseek = seq_lseek, 1821 .release = seq_release_private, 1822 }; 1823 1824 static int __init proc_vmalloc_init(void) 1825 { 1826 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 1827 return 0; 1828 } 1829 module_init(proc_vmalloc_init); 1830 #endif 1831 1832