1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1993 Linus Torvalds 4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 7 * Numa awareness, Christoph Lameter, SGI, June 2005 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/set_memory.h> 22 #include <linux/debugobjects.h> 23 #include <linux/kallsyms.h> 24 #include <linux/list.h> 25 #include <linux/notifier.h> 26 #include <linux/rbtree.h> 27 #include <linux/xarray.h> 28 #include <linux/io.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/memcontrol.h> 35 #include <linux/llist.h> 36 #include <linux/uio.h> 37 #include <linux/bitops.h> 38 #include <linux/rbtree_augmented.h> 39 #include <linux/overflow.h> 40 #include <linux/pgtable.h> 41 #include <linux/hugetlb.h> 42 #include <linux/sched/mm.h> 43 #include <asm/tlbflush.h> 44 #include <asm/shmparam.h> 45 #include <linux/page_owner.h> 46 47 #define CREATE_TRACE_POINTS 48 #include <trace/events/vmalloc.h> 49 50 #include "internal.h" 51 #include "pgalloc-track.h" 52 53 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 54 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; 55 56 static int __init set_nohugeiomap(char *str) 57 { 58 ioremap_max_page_shift = PAGE_SHIFT; 59 return 0; 60 } 61 early_param("nohugeiomap", set_nohugeiomap); 62 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 63 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; 64 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 65 66 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 67 static bool __ro_after_init vmap_allow_huge = true; 68 69 static int __init set_nohugevmalloc(char *str) 70 { 71 vmap_allow_huge = false; 72 return 0; 73 } 74 early_param("nohugevmalloc", set_nohugevmalloc); 75 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 76 static const bool vmap_allow_huge = false; 77 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 78 79 bool is_vmalloc_addr(const void *x) 80 { 81 unsigned long addr = (unsigned long)kasan_reset_tag(x); 82 83 return addr >= VMALLOC_START && addr < VMALLOC_END; 84 } 85 EXPORT_SYMBOL(is_vmalloc_addr); 86 87 struct vfree_deferred { 88 struct llist_head list; 89 struct work_struct wq; 90 }; 91 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 92 93 /*** Page table manipulation functions ***/ 94 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 95 phys_addr_t phys_addr, pgprot_t prot, 96 unsigned int max_page_shift, pgtbl_mod_mask *mask) 97 { 98 pte_t *pte; 99 u64 pfn; 100 struct page *page; 101 unsigned long size = PAGE_SIZE; 102 103 pfn = phys_addr >> PAGE_SHIFT; 104 pte = pte_alloc_kernel_track(pmd, addr, mask); 105 if (!pte) 106 return -ENOMEM; 107 do { 108 if (unlikely(!pte_none(ptep_get(pte)))) { 109 if (pfn_valid(pfn)) { 110 page = pfn_to_page(pfn); 111 dump_page(page, "remapping already mapped page"); 112 } 113 BUG(); 114 } 115 116 #ifdef CONFIG_HUGETLB_PAGE 117 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); 118 if (size != PAGE_SIZE) { 119 pte_t entry = pfn_pte(pfn, prot); 120 121 entry = arch_make_huge_pte(entry, ilog2(size), 0); 122 set_huge_pte_at(&init_mm, addr, pte, entry, size); 123 pfn += PFN_DOWN(size); 124 continue; 125 } 126 #endif 127 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); 128 pfn++; 129 } while (pte += PFN_DOWN(size), addr += size, addr != end); 130 *mask |= PGTBL_PTE_MODIFIED; 131 return 0; 132 } 133 134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, 135 phys_addr_t phys_addr, pgprot_t prot, 136 unsigned int max_page_shift) 137 { 138 if (max_page_shift < PMD_SHIFT) 139 return 0; 140 141 if (!arch_vmap_pmd_supported(prot)) 142 return 0; 143 144 if ((end - addr) != PMD_SIZE) 145 return 0; 146 147 if (!IS_ALIGNED(addr, PMD_SIZE)) 148 return 0; 149 150 if (!IS_ALIGNED(phys_addr, PMD_SIZE)) 151 return 0; 152 153 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) 154 return 0; 155 156 return pmd_set_huge(pmd, phys_addr, prot); 157 } 158 159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 160 phys_addr_t phys_addr, pgprot_t prot, 161 unsigned int max_page_shift, pgtbl_mod_mask *mask) 162 { 163 pmd_t *pmd; 164 unsigned long next; 165 166 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 167 if (!pmd) 168 return -ENOMEM; 169 do { 170 next = pmd_addr_end(addr, end); 171 172 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, 173 max_page_shift)) { 174 *mask |= PGTBL_PMD_MODIFIED; 175 continue; 176 } 177 178 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) 179 return -ENOMEM; 180 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); 181 return 0; 182 } 183 184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, 185 phys_addr_t phys_addr, pgprot_t prot, 186 unsigned int max_page_shift) 187 { 188 if (max_page_shift < PUD_SHIFT) 189 return 0; 190 191 if (!arch_vmap_pud_supported(prot)) 192 return 0; 193 194 if ((end - addr) != PUD_SIZE) 195 return 0; 196 197 if (!IS_ALIGNED(addr, PUD_SIZE)) 198 return 0; 199 200 if (!IS_ALIGNED(phys_addr, PUD_SIZE)) 201 return 0; 202 203 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) 204 return 0; 205 206 return pud_set_huge(pud, phys_addr, prot); 207 } 208 209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 210 phys_addr_t phys_addr, pgprot_t prot, 211 unsigned int max_page_shift, pgtbl_mod_mask *mask) 212 { 213 pud_t *pud; 214 unsigned long next; 215 216 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 217 if (!pud) 218 return -ENOMEM; 219 do { 220 next = pud_addr_end(addr, end); 221 222 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, 223 max_page_shift)) { 224 *mask |= PGTBL_PUD_MODIFIED; 225 continue; 226 } 227 228 if (vmap_pmd_range(pud, addr, next, phys_addr, prot, 229 max_page_shift, mask)) 230 return -ENOMEM; 231 } while (pud++, phys_addr += (next - addr), addr = next, addr != end); 232 return 0; 233 } 234 235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, 236 phys_addr_t phys_addr, pgprot_t prot, 237 unsigned int max_page_shift) 238 { 239 if (max_page_shift < P4D_SHIFT) 240 return 0; 241 242 if (!arch_vmap_p4d_supported(prot)) 243 return 0; 244 245 if ((end - addr) != P4D_SIZE) 246 return 0; 247 248 if (!IS_ALIGNED(addr, P4D_SIZE)) 249 return 0; 250 251 if (!IS_ALIGNED(phys_addr, P4D_SIZE)) 252 return 0; 253 254 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) 255 return 0; 256 257 return p4d_set_huge(p4d, phys_addr, prot); 258 } 259 260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 261 phys_addr_t phys_addr, pgprot_t prot, 262 unsigned int max_page_shift, pgtbl_mod_mask *mask) 263 { 264 p4d_t *p4d; 265 unsigned long next; 266 267 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 268 if (!p4d) 269 return -ENOMEM; 270 do { 271 next = p4d_addr_end(addr, end); 272 273 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, 274 max_page_shift)) { 275 *mask |= PGTBL_P4D_MODIFIED; 276 continue; 277 } 278 279 if (vmap_pud_range(p4d, addr, next, phys_addr, prot, 280 max_page_shift, mask)) 281 return -ENOMEM; 282 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); 283 return 0; 284 } 285 286 static int vmap_range_noflush(unsigned long addr, unsigned long end, 287 phys_addr_t phys_addr, pgprot_t prot, 288 unsigned int max_page_shift) 289 { 290 pgd_t *pgd; 291 unsigned long start; 292 unsigned long next; 293 int err; 294 pgtbl_mod_mask mask = 0; 295 296 might_sleep(); 297 BUG_ON(addr >= end); 298 299 start = addr; 300 pgd = pgd_offset_k(addr); 301 do { 302 next = pgd_addr_end(addr, end); 303 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, 304 max_page_shift, &mask); 305 if (err) 306 break; 307 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); 308 309 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 310 arch_sync_kernel_mappings(start, end); 311 312 return err; 313 } 314 315 int vmap_page_range(unsigned long addr, unsigned long end, 316 phys_addr_t phys_addr, pgprot_t prot) 317 { 318 int err; 319 320 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), 321 ioremap_max_page_shift); 322 flush_cache_vmap(addr, end); 323 if (!err) 324 err = kmsan_ioremap_page_range(addr, end, phys_addr, prot, 325 ioremap_max_page_shift); 326 return err; 327 } 328 329 int ioremap_page_range(unsigned long addr, unsigned long end, 330 phys_addr_t phys_addr, pgprot_t prot) 331 { 332 struct vm_struct *area; 333 334 area = find_vm_area((void *)addr); 335 if (!area || !(area->flags & VM_IOREMAP)) { 336 WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr); 337 return -EINVAL; 338 } 339 if (addr != (unsigned long)area->addr || 340 (void *)end != area->addr + get_vm_area_size(area)) { 341 WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n", 342 addr, end, (long)area->addr, 343 (long)area->addr + get_vm_area_size(area)); 344 return -ERANGE; 345 } 346 return vmap_page_range(addr, end, phys_addr, prot); 347 } 348 349 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 350 pgtbl_mod_mask *mask) 351 { 352 pte_t *pte; 353 354 pte = pte_offset_kernel(pmd, addr); 355 do { 356 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 357 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 358 } while (pte++, addr += PAGE_SIZE, addr != end); 359 *mask |= PGTBL_PTE_MODIFIED; 360 } 361 362 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 363 pgtbl_mod_mask *mask) 364 { 365 pmd_t *pmd; 366 unsigned long next; 367 int cleared; 368 369 pmd = pmd_offset(pud, addr); 370 do { 371 next = pmd_addr_end(addr, end); 372 373 cleared = pmd_clear_huge(pmd); 374 if (cleared || pmd_bad(*pmd)) 375 *mask |= PGTBL_PMD_MODIFIED; 376 377 if (cleared) 378 continue; 379 if (pmd_none_or_clear_bad(pmd)) 380 continue; 381 vunmap_pte_range(pmd, addr, next, mask); 382 383 cond_resched(); 384 } while (pmd++, addr = next, addr != end); 385 } 386 387 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 388 pgtbl_mod_mask *mask) 389 { 390 pud_t *pud; 391 unsigned long next; 392 int cleared; 393 394 pud = pud_offset(p4d, addr); 395 do { 396 next = pud_addr_end(addr, end); 397 398 cleared = pud_clear_huge(pud); 399 if (cleared || pud_bad(*pud)) 400 *mask |= PGTBL_PUD_MODIFIED; 401 402 if (cleared) 403 continue; 404 if (pud_none_or_clear_bad(pud)) 405 continue; 406 vunmap_pmd_range(pud, addr, next, mask); 407 } while (pud++, addr = next, addr != end); 408 } 409 410 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 411 pgtbl_mod_mask *mask) 412 { 413 p4d_t *p4d; 414 unsigned long next; 415 416 p4d = p4d_offset(pgd, addr); 417 do { 418 next = p4d_addr_end(addr, end); 419 420 p4d_clear_huge(p4d); 421 if (p4d_bad(*p4d)) 422 *mask |= PGTBL_P4D_MODIFIED; 423 424 if (p4d_none_or_clear_bad(p4d)) 425 continue; 426 vunmap_pud_range(p4d, addr, next, mask); 427 } while (p4d++, addr = next, addr != end); 428 } 429 430 /* 431 * vunmap_range_noflush is similar to vunmap_range, but does not 432 * flush caches or TLBs. 433 * 434 * The caller is responsible for calling flush_cache_vmap() before calling 435 * this function, and flush_tlb_kernel_range after it has returned 436 * successfully (and before the addresses are expected to cause a page fault 437 * or be re-mapped for something else, if TLB flushes are being delayed or 438 * coalesced). 439 * 440 * This is an internal function only. Do not use outside mm/. 441 */ 442 void __vunmap_range_noflush(unsigned long start, unsigned long end) 443 { 444 unsigned long next; 445 pgd_t *pgd; 446 unsigned long addr = start; 447 pgtbl_mod_mask mask = 0; 448 449 BUG_ON(addr >= end); 450 pgd = pgd_offset_k(addr); 451 do { 452 next = pgd_addr_end(addr, end); 453 if (pgd_bad(*pgd)) 454 mask |= PGTBL_PGD_MODIFIED; 455 if (pgd_none_or_clear_bad(pgd)) 456 continue; 457 vunmap_p4d_range(pgd, addr, next, &mask); 458 } while (pgd++, addr = next, addr != end); 459 460 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 461 arch_sync_kernel_mappings(start, end); 462 } 463 464 void vunmap_range_noflush(unsigned long start, unsigned long end) 465 { 466 kmsan_vunmap_range_noflush(start, end); 467 __vunmap_range_noflush(start, end); 468 } 469 470 /** 471 * vunmap_range - unmap kernel virtual addresses 472 * @addr: start of the VM area to unmap 473 * @end: end of the VM area to unmap (non-inclusive) 474 * 475 * Clears any present PTEs in the virtual address range, flushes TLBs and 476 * caches. Any subsequent access to the address before it has been re-mapped 477 * is a kernel bug. 478 */ 479 void vunmap_range(unsigned long addr, unsigned long end) 480 { 481 flush_cache_vunmap(addr, end); 482 vunmap_range_noflush(addr, end); 483 flush_tlb_kernel_range(addr, end); 484 } 485 486 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, 487 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 488 pgtbl_mod_mask *mask) 489 { 490 pte_t *pte; 491 492 /* 493 * nr is a running index into the array which helps higher level 494 * callers keep track of where we're up to. 495 */ 496 497 pte = pte_alloc_kernel_track(pmd, addr, mask); 498 if (!pte) 499 return -ENOMEM; 500 do { 501 struct page *page = pages[*nr]; 502 503 if (WARN_ON(!pte_none(ptep_get(pte)))) 504 return -EBUSY; 505 if (WARN_ON(!page)) 506 return -ENOMEM; 507 if (WARN_ON(!pfn_valid(page_to_pfn(page)))) 508 return -EINVAL; 509 510 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 511 (*nr)++; 512 } while (pte++, addr += PAGE_SIZE, addr != end); 513 *mask |= PGTBL_PTE_MODIFIED; 514 return 0; 515 } 516 517 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, 518 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 519 pgtbl_mod_mask *mask) 520 { 521 pmd_t *pmd; 522 unsigned long next; 523 524 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 525 if (!pmd) 526 return -ENOMEM; 527 do { 528 next = pmd_addr_end(addr, end); 529 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) 530 return -ENOMEM; 531 } while (pmd++, addr = next, addr != end); 532 return 0; 533 } 534 535 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, 536 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 537 pgtbl_mod_mask *mask) 538 { 539 pud_t *pud; 540 unsigned long next; 541 542 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 543 if (!pud) 544 return -ENOMEM; 545 do { 546 next = pud_addr_end(addr, end); 547 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) 548 return -ENOMEM; 549 } while (pud++, addr = next, addr != end); 550 return 0; 551 } 552 553 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, 554 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 555 pgtbl_mod_mask *mask) 556 { 557 p4d_t *p4d; 558 unsigned long next; 559 560 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 561 if (!p4d) 562 return -ENOMEM; 563 do { 564 next = p4d_addr_end(addr, end); 565 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) 566 return -ENOMEM; 567 } while (p4d++, addr = next, addr != end); 568 return 0; 569 } 570 571 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, 572 pgprot_t prot, struct page **pages) 573 { 574 unsigned long start = addr; 575 pgd_t *pgd; 576 unsigned long next; 577 int err = 0; 578 int nr = 0; 579 pgtbl_mod_mask mask = 0; 580 581 BUG_ON(addr >= end); 582 pgd = pgd_offset_k(addr); 583 do { 584 next = pgd_addr_end(addr, end); 585 if (pgd_bad(*pgd)) 586 mask |= PGTBL_PGD_MODIFIED; 587 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); 588 if (err) 589 break; 590 } while (pgd++, addr = next, addr != end); 591 592 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 593 arch_sync_kernel_mappings(start, end); 594 595 return err; 596 } 597 598 /* 599 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not 600 * flush caches. 601 * 602 * The caller is responsible for calling flush_cache_vmap() after this 603 * function returns successfully and before the addresses are accessed. 604 * 605 * This is an internal function only. Do not use outside mm/. 606 */ 607 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end, 608 pgprot_t prot, struct page **pages, unsigned int page_shift) 609 { 610 unsigned int i, nr = (end - addr) >> PAGE_SHIFT; 611 612 WARN_ON(page_shift < PAGE_SHIFT); 613 614 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || 615 page_shift == PAGE_SHIFT) 616 return vmap_small_pages_range_noflush(addr, end, prot, pages); 617 618 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { 619 int err; 620 621 err = vmap_range_noflush(addr, addr + (1UL << page_shift), 622 page_to_phys(pages[i]), prot, 623 page_shift); 624 if (err) 625 return err; 626 627 addr += 1UL << page_shift; 628 } 629 630 return 0; 631 } 632 633 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 634 pgprot_t prot, struct page **pages, unsigned int page_shift) 635 { 636 int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages, 637 page_shift); 638 639 if (ret) 640 return ret; 641 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 642 } 643 644 /** 645 * vmap_pages_range - map pages to a kernel virtual address 646 * @addr: start of the VM area to map 647 * @end: end of the VM area to map (non-inclusive) 648 * @prot: page protection flags to use 649 * @pages: pages to map (always PAGE_SIZE pages) 650 * @page_shift: maximum shift that the pages may be mapped with, @pages must 651 * be aligned and contiguous up to at least this shift. 652 * 653 * RETURNS: 654 * 0 on success, -errno on failure. 655 */ 656 int vmap_pages_range(unsigned long addr, unsigned long end, 657 pgprot_t prot, struct page **pages, unsigned int page_shift) 658 { 659 int err; 660 661 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 662 flush_cache_vmap(addr, end); 663 return err; 664 } 665 666 static int check_sparse_vm_area(struct vm_struct *area, unsigned long start, 667 unsigned long end) 668 { 669 might_sleep(); 670 if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS)) 671 return -EINVAL; 672 if (WARN_ON_ONCE(area->flags & VM_NO_GUARD)) 673 return -EINVAL; 674 if (WARN_ON_ONCE(!(area->flags & VM_SPARSE))) 675 return -EINVAL; 676 if ((end - start) >> PAGE_SHIFT > totalram_pages()) 677 return -E2BIG; 678 if (start < (unsigned long)area->addr || 679 (void *)end > area->addr + get_vm_area_size(area)) 680 return -ERANGE; 681 return 0; 682 } 683 684 /** 685 * vm_area_map_pages - map pages inside given sparse vm_area 686 * @area: vm_area 687 * @start: start address inside vm_area 688 * @end: end address inside vm_area 689 * @pages: pages to map (always PAGE_SIZE pages) 690 */ 691 int vm_area_map_pages(struct vm_struct *area, unsigned long start, 692 unsigned long end, struct page **pages) 693 { 694 int err; 695 696 err = check_sparse_vm_area(area, start, end); 697 if (err) 698 return err; 699 700 return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT); 701 } 702 703 /** 704 * vm_area_unmap_pages - unmap pages inside given sparse vm_area 705 * @area: vm_area 706 * @start: start address inside vm_area 707 * @end: end address inside vm_area 708 */ 709 void vm_area_unmap_pages(struct vm_struct *area, unsigned long start, 710 unsigned long end) 711 { 712 if (check_sparse_vm_area(area, start, end)) 713 return; 714 715 vunmap_range(start, end); 716 } 717 718 int is_vmalloc_or_module_addr(const void *x) 719 { 720 /* 721 * ARM, x86-64 and sparc64 put modules in a special place, 722 * and fall back on vmalloc() if that fails. Others 723 * just put it in the vmalloc space. 724 */ 725 #if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR) 726 unsigned long addr = (unsigned long)kasan_reset_tag(x); 727 if (addr >= MODULES_VADDR && addr < MODULES_END) 728 return 1; 729 #endif 730 return is_vmalloc_addr(x); 731 } 732 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr); 733 734 /* 735 * Walk a vmap address to the struct page it maps. Huge vmap mappings will 736 * return the tail page that corresponds to the base page address, which 737 * matches small vmap mappings. 738 */ 739 struct page *vmalloc_to_page(const void *vmalloc_addr) 740 { 741 unsigned long addr = (unsigned long) vmalloc_addr; 742 struct page *page = NULL; 743 pgd_t *pgd = pgd_offset_k(addr); 744 p4d_t *p4d; 745 pud_t *pud; 746 pmd_t *pmd; 747 pte_t *ptep, pte; 748 749 /* 750 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 751 * architectures that do not vmalloc module space 752 */ 753 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 754 755 if (pgd_none(*pgd)) 756 return NULL; 757 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 758 return NULL; /* XXX: no allowance for huge pgd */ 759 if (WARN_ON_ONCE(pgd_bad(*pgd))) 760 return NULL; 761 762 p4d = p4d_offset(pgd, addr); 763 if (p4d_none(*p4d)) 764 return NULL; 765 if (p4d_leaf(*p4d)) 766 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); 767 if (WARN_ON_ONCE(p4d_bad(*p4d))) 768 return NULL; 769 770 pud = pud_offset(p4d, addr); 771 if (pud_none(*pud)) 772 return NULL; 773 if (pud_leaf(*pud)) 774 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 775 if (WARN_ON_ONCE(pud_bad(*pud))) 776 return NULL; 777 778 pmd = pmd_offset(pud, addr); 779 if (pmd_none(*pmd)) 780 return NULL; 781 if (pmd_leaf(*pmd)) 782 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 783 if (WARN_ON_ONCE(pmd_bad(*pmd))) 784 return NULL; 785 786 ptep = pte_offset_kernel(pmd, addr); 787 pte = ptep_get(ptep); 788 if (pte_present(pte)) 789 page = pte_page(pte); 790 791 return page; 792 } 793 EXPORT_SYMBOL(vmalloc_to_page); 794 795 /* 796 * Map a vmalloc()-space virtual address to the physical page frame number. 797 */ 798 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 799 { 800 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 801 } 802 EXPORT_SYMBOL(vmalloc_to_pfn); 803 804 805 /*** Global kva allocator ***/ 806 807 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 808 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 809 810 811 static DEFINE_SPINLOCK(free_vmap_area_lock); 812 static bool vmap_initialized __read_mostly; 813 814 /* 815 * This kmem_cache is used for vmap_area objects. Instead of 816 * allocating from slab we reuse an object from this cache to 817 * make things faster. Especially in "no edge" splitting of 818 * free block. 819 */ 820 static struct kmem_cache *vmap_area_cachep; 821 822 /* 823 * This linked list is used in pair with free_vmap_area_root. 824 * It gives O(1) access to prev/next to perform fast coalescing. 825 */ 826 static LIST_HEAD(free_vmap_area_list); 827 828 /* 829 * This augment red-black tree represents the free vmap space. 830 * All vmap_area objects in this tree are sorted by va->va_start 831 * address. It is used for allocation and merging when a vmap 832 * object is released. 833 * 834 * Each vmap_area node contains a maximum available free block 835 * of its sub-tree, right or left. Therefore it is possible to 836 * find a lowest match of free area. 837 */ 838 static struct rb_root free_vmap_area_root = RB_ROOT; 839 840 /* 841 * Preload a CPU with one object for "no edge" split case. The 842 * aim is to get rid of allocations from the atomic context, thus 843 * to use more permissive allocation masks. 844 */ 845 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 846 847 /* 848 * This structure defines a single, solid model where a list and 849 * rb-tree are part of one entity protected by the lock. Nodes are 850 * sorted in ascending order, thus for O(1) access to left/right 851 * neighbors a list is used as well as for sequential traversal. 852 */ 853 struct rb_list { 854 struct rb_root root; 855 struct list_head head; 856 spinlock_t lock; 857 }; 858 859 /* 860 * A fast size storage contains VAs up to 1M size. A pool consists 861 * of linked between each other ready to go VAs of certain sizes. 862 * An index in the pool-array corresponds to number of pages + 1. 863 */ 864 #define MAX_VA_SIZE_PAGES 256 865 866 struct vmap_pool { 867 struct list_head head; 868 unsigned long len; 869 }; 870 871 /* 872 * An effective vmap-node logic. Users make use of nodes instead 873 * of a global heap. It allows to balance an access and mitigate 874 * contention. 875 */ 876 static struct vmap_node { 877 /* Simple size segregated storage. */ 878 struct vmap_pool pool[MAX_VA_SIZE_PAGES]; 879 spinlock_t pool_lock; 880 bool skip_populate; 881 882 /* Bookkeeping data of this node. */ 883 struct rb_list busy; 884 struct rb_list lazy; 885 886 /* 887 * Ready-to-free areas. 888 */ 889 struct list_head purge_list; 890 struct work_struct purge_work; 891 unsigned long nr_purged; 892 } single; 893 894 /* 895 * Initial setup consists of one single node, i.e. a balancing 896 * is fully disabled. Later on, after vmap is initialized these 897 * parameters are updated based on a system capacity. 898 */ 899 static struct vmap_node *vmap_nodes = &single; 900 static __read_mostly unsigned int nr_vmap_nodes = 1; 901 static __read_mostly unsigned int vmap_zone_size = 1; 902 903 /* A simple iterator over all vmap-nodes. */ 904 #define for_each_vmap_node(vn) \ 905 for ((vn) = &vmap_nodes[0]; \ 906 (vn) < &vmap_nodes[nr_vmap_nodes]; (vn)++) 907 908 static inline unsigned int 909 addr_to_node_id(unsigned long addr) 910 { 911 return (addr / vmap_zone_size) % nr_vmap_nodes; 912 } 913 914 static inline struct vmap_node * 915 addr_to_node(unsigned long addr) 916 { 917 return &vmap_nodes[addr_to_node_id(addr)]; 918 } 919 920 static inline struct vmap_node * 921 id_to_node(unsigned int id) 922 { 923 return &vmap_nodes[id % nr_vmap_nodes]; 924 } 925 926 static inline unsigned int 927 node_to_id(struct vmap_node *node) 928 { 929 /* Pointer arithmetic. */ 930 unsigned int id = node - vmap_nodes; 931 932 if (likely(id < nr_vmap_nodes)) 933 return id; 934 935 WARN_ONCE(1, "An address 0x%p is out-of-bounds.\n", node); 936 return 0; 937 } 938 939 /* 940 * We use the value 0 to represent "no node", that is why 941 * an encoded value will be the node-id incremented by 1. 942 * It is always greater then 0. A valid node_id which can 943 * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id 944 * is not valid 0 is returned. 945 */ 946 static unsigned int 947 encode_vn_id(unsigned int node_id) 948 { 949 /* Can store U8_MAX [0:254] nodes. */ 950 if (node_id < nr_vmap_nodes) 951 return (node_id + 1) << BITS_PER_BYTE; 952 953 /* Warn and no node encoded. */ 954 WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id); 955 return 0; 956 } 957 958 /* 959 * Returns an encoded node-id, the valid range is within 960 * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is 961 * returned if extracted data is wrong. 962 */ 963 static unsigned int 964 decode_vn_id(unsigned int val) 965 { 966 unsigned int node_id = (val >> BITS_PER_BYTE) - 1; 967 968 /* Can store U8_MAX [0:254] nodes. */ 969 if (node_id < nr_vmap_nodes) 970 return node_id; 971 972 /* If it was _not_ zero, warn. */ 973 WARN_ONCE(node_id != UINT_MAX, 974 "Decode wrong node id (%d)\n", node_id); 975 976 return nr_vmap_nodes; 977 } 978 979 static bool 980 is_vn_id_valid(unsigned int node_id) 981 { 982 if (node_id < nr_vmap_nodes) 983 return true; 984 985 return false; 986 } 987 988 static __always_inline unsigned long 989 va_size(struct vmap_area *va) 990 { 991 return (va->va_end - va->va_start); 992 } 993 994 static __always_inline unsigned long 995 get_subtree_max_size(struct rb_node *node) 996 { 997 struct vmap_area *va; 998 999 va = rb_entry_safe(node, struct vmap_area, rb_node); 1000 return va ? va->subtree_max_size : 0; 1001 } 1002 1003 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 1004 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 1005 1006 static void reclaim_and_purge_vmap_areas(void); 1007 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 1008 static void drain_vmap_area_work(struct work_struct *work); 1009 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); 1010 1011 static __cacheline_aligned_in_smp atomic_long_t nr_vmalloc_pages; 1012 static __cacheline_aligned_in_smp atomic_long_t vmap_lazy_nr; 1013 1014 unsigned long vmalloc_nr_pages(void) 1015 { 1016 return atomic_long_read(&nr_vmalloc_pages); 1017 } 1018 1019 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root) 1020 { 1021 struct rb_node *n = root->rb_node; 1022 1023 addr = (unsigned long)kasan_reset_tag((void *)addr); 1024 1025 while (n) { 1026 struct vmap_area *va; 1027 1028 va = rb_entry(n, struct vmap_area, rb_node); 1029 if (addr < va->va_start) 1030 n = n->rb_left; 1031 else if (addr >= va->va_end) 1032 n = n->rb_right; 1033 else 1034 return va; 1035 } 1036 1037 return NULL; 1038 } 1039 1040 /* Look up the first VA which satisfies addr < va_end, NULL if none. */ 1041 static struct vmap_area * 1042 __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root) 1043 { 1044 struct vmap_area *va = NULL; 1045 struct rb_node *n = root->rb_node; 1046 1047 addr = (unsigned long)kasan_reset_tag((void *)addr); 1048 1049 while (n) { 1050 struct vmap_area *tmp; 1051 1052 tmp = rb_entry(n, struct vmap_area, rb_node); 1053 if (tmp->va_end > addr) { 1054 va = tmp; 1055 if (tmp->va_start <= addr) 1056 break; 1057 1058 n = n->rb_left; 1059 } else 1060 n = n->rb_right; 1061 } 1062 1063 return va; 1064 } 1065 1066 /* 1067 * Returns a node where a first VA, that satisfies addr < va_end, resides. 1068 * If success, a node is locked. A user is responsible to unlock it when a 1069 * VA is no longer needed to be accessed. 1070 * 1071 * Returns NULL if nothing found. 1072 */ 1073 static struct vmap_node * 1074 find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va) 1075 { 1076 unsigned long va_start_lowest; 1077 struct vmap_node *vn; 1078 1079 repeat: 1080 va_start_lowest = 0; 1081 1082 for_each_vmap_node(vn) { 1083 spin_lock(&vn->busy.lock); 1084 *va = __find_vmap_area_exceed_addr(addr, &vn->busy.root); 1085 1086 if (*va) 1087 if (!va_start_lowest || (*va)->va_start < va_start_lowest) 1088 va_start_lowest = (*va)->va_start; 1089 spin_unlock(&vn->busy.lock); 1090 } 1091 1092 /* 1093 * Check if found VA exists, it might have gone away. In this case we 1094 * repeat the search because a VA has been removed concurrently and we 1095 * need to proceed to the next one, which is a rare case. 1096 */ 1097 if (va_start_lowest) { 1098 vn = addr_to_node(va_start_lowest); 1099 1100 spin_lock(&vn->busy.lock); 1101 *va = __find_vmap_area(va_start_lowest, &vn->busy.root); 1102 1103 if (*va) 1104 return vn; 1105 1106 spin_unlock(&vn->busy.lock); 1107 goto repeat; 1108 } 1109 1110 return NULL; 1111 } 1112 1113 /* 1114 * This function returns back addresses of parent node 1115 * and its left or right link for further processing. 1116 * 1117 * Otherwise NULL is returned. In that case all further 1118 * steps regarding inserting of conflicting overlap range 1119 * have to be declined and actually considered as a bug. 1120 */ 1121 static __always_inline struct rb_node ** 1122 find_va_links(struct vmap_area *va, 1123 struct rb_root *root, struct rb_node *from, 1124 struct rb_node **parent) 1125 { 1126 struct vmap_area *tmp_va; 1127 struct rb_node **link; 1128 1129 if (root) { 1130 link = &root->rb_node; 1131 if (unlikely(!*link)) { 1132 *parent = NULL; 1133 return link; 1134 } 1135 } else { 1136 link = &from; 1137 } 1138 1139 /* 1140 * Go to the bottom of the tree. When we hit the last point 1141 * we end up with parent rb_node and correct direction, i name 1142 * it link, where the new va->rb_node will be attached to. 1143 */ 1144 do { 1145 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 1146 1147 /* 1148 * During the traversal we also do some sanity check. 1149 * Trigger the BUG() if there are sides(left/right) 1150 * or full overlaps. 1151 */ 1152 if (va->va_end <= tmp_va->va_start) 1153 link = &(*link)->rb_left; 1154 else if (va->va_start >= tmp_va->va_end) 1155 link = &(*link)->rb_right; 1156 else { 1157 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", 1158 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); 1159 1160 return NULL; 1161 } 1162 } while (*link); 1163 1164 *parent = &tmp_va->rb_node; 1165 return link; 1166 } 1167 1168 static __always_inline struct list_head * 1169 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 1170 { 1171 struct list_head *list; 1172 1173 if (unlikely(!parent)) 1174 /* 1175 * The red-black tree where we try to find VA neighbors 1176 * before merging or inserting is empty, i.e. it means 1177 * there is no free vmap space. Normally it does not 1178 * happen but we handle this case anyway. 1179 */ 1180 return NULL; 1181 1182 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 1183 return (&parent->rb_right == link ? list->next : list); 1184 } 1185 1186 static __always_inline void 1187 __link_va(struct vmap_area *va, struct rb_root *root, 1188 struct rb_node *parent, struct rb_node **link, 1189 struct list_head *head, bool augment) 1190 { 1191 /* 1192 * VA is still not in the list, but we can 1193 * identify its future previous list_head node. 1194 */ 1195 if (likely(parent)) { 1196 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 1197 if (&parent->rb_right != link) 1198 head = head->prev; 1199 } 1200 1201 /* Insert to the rb-tree */ 1202 rb_link_node(&va->rb_node, parent, link); 1203 if (augment) { 1204 /* 1205 * Some explanation here. Just perform simple insertion 1206 * to the tree. We do not set va->subtree_max_size to 1207 * its current size before calling rb_insert_augmented(). 1208 * It is because we populate the tree from the bottom 1209 * to parent levels when the node _is_ in the tree. 1210 * 1211 * Therefore we set subtree_max_size to zero after insertion, 1212 * to let __augment_tree_propagate_from() puts everything to 1213 * the correct order later on. 1214 */ 1215 rb_insert_augmented(&va->rb_node, 1216 root, &free_vmap_area_rb_augment_cb); 1217 va->subtree_max_size = 0; 1218 } else { 1219 rb_insert_color(&va->rb_node, root); 1220 } 1221 1222 /* Address-sort this list */ 1223 list_add(&va->list, head); 1224 } 1225 1226 static __always_inline void 1227 link_va(struct vmap_area *va, struct rb_root *root, 1228 struct rb_node *parent, struct rb_node **link, 1229 struct list_head *head) 1230 { 1231 __link_va(va, root, parent, link, head, false); 1232 } 1233 1234 static __always_inline void 1235 link_va_augment(struct vmap_area *va, struct rb_root *root, 1236 struct rb_node *parent, struct rb_node **link, 1237 struct list_head *head) 1238 { 1239 __link_va(va, root, parent, link, head, true); 1240 } 1241 1242 static __always_inline void 1243 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment) 1244 { 1245 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 1246 return; 1247 1248 if (augment) 1249 rb_erase_augmented(&va->rb_node, 1250 root, &free_vmap_area_rb_augment_cb); 1251 else 1252 rb_erase(&va->rb_node, root); 1253 1254 list_del_init(&va->list); 1255 RB_CLEAR_NODE(&va->rb_node); 1256 } 1257 1258 static __always_inline void 1259 unlink_va(struct vmap_area *va, struct rb_root *root) 1260 { 1261 __unlink_va(va, root, false); 1262 } 1263 1264 static __always_inline void 1265 unlink_va_augment(struct vmap_area *va, struct rb_root *root) 1266 { 1267 __unlink_va(va, root, true); 1268 } 1269 1270 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1271 /* 1272 * Gets called when remove the node and rotate. 1273 */ 1274 static __always_inline unsigned long 1275 compute_subtree_max_size(struct vmap_area *va) 1276 { 1277 return max3(va_size(va), 1278 get_subtree_max_size(va->rb_node.rb_left), 1279 get_subtree_max_size(va->rb_node.rb_right)); 1280 } 1281 1282 static void 1283 augment_tree_propagate_check(void) 1284 { 1285 struct vmap_area *va; 1286 unsigned long computed_size; 1287 1288 list_for_each_entry(va, &free_vmap_area_list, list) { 1289 computed_size = compute_subtree_max_size(va); 1290 if (computed_size != va->subtree_max_size) 1291 pr_emerg("tree is corrupted: %lu, %lu\n", 1292 va_size(va), va->subtree_max_size); 1293 } 1294 } 1295 #endif 1296 1297 /* 1298 * This function populates subtree_max_size from bottom to upper 1299 * levels starting from VA point. The propagation must be done 1300 * when VA size is modified by changing its va_start/va_end. Or 1301 * in case of newly inserting of VA to the tree. 1302 * 1303 * It means that __augment_tree_propagate_from() must be called: 1304 * - After VA has been inserted to the tree(free path); 1305 * - After VA has been shrunk(allocation path); 1306 * - After VA has been increased(merging path). 1307 * 1308 * Please note that, it does not mean that upper parent nodes 1309 * and their subtree_max_size are recalculated all the time up 1310 * to the root node. 1311 * 1312 * 4--8 1313 * /\ 1314 * / \ 1315 * / \ 1316 * 2--2 8--8 1317 * 1318 * For example if we modify the node 4, shrinking it to 2, then 1319 * no any modification is required. If we shrink the node 2 to 1 1320 * its subtree_max_size is updated only, and set to 1. If we shrink 1321 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 1322 * node becomes 4--6. 1323 */ 1324 static __always_inline void 1325 augment_tree_propagate_from(struct vmap_area *va) 1326 { 1327 /* 1328 * Populate the tree from bottom towards the root until 1329 * the calculated maximum available size of checked node 1330 * is equal to its current one. 1331 */ 1332 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); 1333 1334 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1335 augment_tree_propagate_check(); 1336 #endif 1337 } 1338 1339 static void 1340 insert_vmap_area(struct vmap_area *va, 1341 struct rb_root *root, struct list_head *head) 1342 { 1343 struct rb_node **link; 1344 struct rb_node *parent; 1345 1346 link = find_va_links(va, root, NULL, &parent); 1347 if (link) 1348 link_va(va, root, parent, link, head); 1349 } 1350 1351 static void 1352 insert_vmap_area_augment(struct vmap_area *va, 1353 struct rb_node *from, struct rb_root *root, 1354 struct list_head *head) 1355 { 1356 struct rb_node **link; 1357 struct rb_node *parent; 1358 1359 if (from) 1360 link = find_va_links(va, NULL, from, &parent); 1361 else 1362 link = find_va_links(va, root, NULL, &parent); 1363 1364 if (link) { 1365 link_va_augment(va, root, parent, link, head); 1366 augment_tree_propagate_from(va); 1367 } 1368 } 1369 1370 /* 1371 * Merge de-allocated chunk of VA memory with previous 1372 * and next free blocks. If coalesce is not done a new 1373 * free area is inserted. If VA has been merged, it is 1374 * freed. 1375 * 1376 * Please note, it can return NULL in case of overlap 1377 * ranges, followed by WARN() report. Despite it is a 1378 * buggy behaviour, a system can be alive and keep 1379 * ongoing. 1380 */ 1381 static __always_inline struct vmap_area * 1382 __merge_or_add_vmap_area(struct vmap_area *va, 1383 struct rb_root *root, struct list_head *head, bool augment) 1384 { 1385 struct vmap_area *sibling; 1386 struct list_head *next; 1387 struct rb_node **link; 1388 struct rb_node *parent; 1389 bool merged = false; 1390 1391 /* 1392 * Find a place in the tree where VA potentially will be 1393 * inserted, unless it is merged with its sibling/siblings. 1394 */ 1395 link = find_va_links(va, root, NULL, &parent); 1396 if (!link) 1397 return NULL; 1398 1399 /* 1400 * Get next node of VA to check if merging can be done. 1401 */ 1402 next = get_va_next_sibling(parent, link); 1403 if (unlikely(next == NULL)) 1404 goto insert; 1405 1406 /* 1407 * start end 1408 * | | 1409 * |<------VA------>|<-----Next----->| 1410 * | | 1411 * start end 1412 */ 1413 if (next != head) { 1414 sibling = list_entry(next, struct vmap_area, list); 1415 if (sibling->va_start == va->va_end) { 1416 sibling->va_start = va->va_start; 1417 1418 /* Free vmap_area object. */ 1419 kmem_cache_free(vmap_area_cachep, va); 1420 1421 /* Point to the new merged area. */ 1422 va = sibling; 1423 merged = true; 1424 } 1425 } 1426 1427 /* 1428 * start end 1429 * | | 1430 * |<-----Prev----->|<------VA------>| 1431 * | | 1432 * start end 1433 */ 1434 if (next->prev != head) { 1435 sibling = list_entry(next->prev, struct vmap_area, list); 1436 if (sibling->va_end == va->va_start) { 1437 /* 1438 * If both neighbors are coalesced, it is important 1439 * to unlink the "next" node first, followed by merging 1440 * with "previous" one. Otherwise the tree might not be 1441 * fully populated if a sibling's augmented value is 1442 * "normalized" because of rotation operations. 1443 */ 1444 if (merged) 1445 __unlink_va(va, root, augment); 1446 1447 sibling->va_end = va->va_end; 1448 1449 /* Free vmap_area object. */ 1450 kmem_cache_free(vmap_area_cachep, va); 1451 1452 /* Point to the new merged area. */ 1453 va = sibling; 1454 merged = true; 1455 } 1456 } 1457 1458 insert: 1459 if (!merged) 1460 __link_va(va, root, parent, link, head, augment); 1461 1462 return va; 1463 } 1464 1465 static __always_inline struct vmap_area * 1466 merge_or_add_vmap_area(struct vmap_area *va, 1467 struct rb_root *root, struct list_head *head) 1468 { 1469 return __merge_or_add_vmap_area(va, root, head, false); 1470 } 1471 1472 static __always_inline struct vmap_area * 1473 merge_or_add_vmap_area_augment(struct vmap_area *va, 1474 struct rb_root *root, struct list_head *head) 1475 { 1476 va = __merge_or_add_vmap_area(va, root, head, true); 1477 if (va) 1478 augment_tree_propagate_from(va); 1479 1480 return va; 1481 } 1482 1483 static __always_inline bool 1484 is_within_this_va(struct vmap_area *va, unsigned long size, 1485 unsigned long align, unsigned long vstart) 1486 { 1487 unsigned long nva_start_addr; 1488 1489 if (va->va_start > vstart) 1490 nva_start_addr = ALIGN(va->va_start, align); 1491 else 1492 nva_start_addr = ALIGN(vstart, align); 1493 1494 /* Can be overflowed due to big size or alignment. */ 1495 if (nva_start_addr + size < nva_start_addr || 1496 nva_start_addr < vstart) 1497 return false; 1498 1499 return (nva_start_addr + size <= va->va_end); 1500 } 1501 1502 /* 1503 * Find the first free block(lowest start address) in the tree, 1504 * that will accomplish the request corresponding to passing 1505 * parameters. Please note, with an alignment bigger than PAGE_SIZE, 1506 * a search length is adjusted to account for worst case alignment 1507 * overhead. 1508 */ 1509 static __always_inline struct vmap_area * 1510 find_vmap_lowest_match(struct rb_root *root, unsigned long size, 1511 unsigned long align, unsigned long vstart, bool adjust_search_size) 1512 { 1513 struct vmap_area *va; 1514 struct rb_node *node; 1515 unsigned long length; 1516 1517 /* Start from the root. */ 1518 node = root->rb_node; 1519 1520 /* Adjust the search size for alignment overhead. */ 1521 length = adjust_search_size ? size + align - 1 : size; 1522 1523 while (node) { 1524 va = rb_entry(node, struct vmap_area, rb_node); 1525 1526 if (get_subtree_max_size(node->rb_left) >= length && 1527 vstart < va->va_start) { 1528 node = node->rb_left; 1529 } else { 1530 if (is_within_this_va(va, size, align, vstart)) 1531 return va; 1532 1533 /* 1534 * Does not make sense to go deeper towards the right 1535 * sub-tree if it does not have a free block that is 1536 * equal or bigger to the requested search length. 1537 */ 1538 if (get_subtree_max_size(node->rb_right) >= length) { 1539 node = node->rb_right; 1540 continue; 1541 } 1542 1543 /* 1544 * OK. We roll back and find the first right sub-tree, 1545 * that will satisfy the search criteria. It can happen 1546 * due to "vstart" restriction or an alignment overhead 1547 * that is bigger then PAGE_SIZE. 1548 */ 1549 while ((node = rb_parent(node))) { 1550 va = rb_entry(node, struct vmap_area, rb_node); 1551 if (is_within_this_va(va, size, align, vstart)) 1552 return va; 1553 1554 if (get_subtree_max_size(node->rb_right) >= length && 1555 vstart <= va->va_start) { 1556 /* 1557 * Shift the vstart forward. Please note, we update it with 1558 * parent's start address adding "1" because we do not want 1559 * to enter same sub-tree after it has already been checked 1560 * and no suitable free block found there. 1561 */ 1562 vstart = va->va_start + 1; 1563 node = node->rb_right; 1564 break; 1565 } 1566 } 1567 } 1568 } 1569 1570 return NULL; 1571 } 1572 1573 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1574 #include <linux/random.h> 1575 1576 static struct vmap_area * 1577 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size, 1578 unsigned long align, unsigned long vstart) 1579 { 1580 struct vmap_area *va; 1581 1582 list_for_each_entry(va, head, list) { 1583 if (!is_within_this_va(va, size, align, vstart)) 1584 continue; 1585 1586 return va; 1587 } 1588 1589 return NULL; 1590 } 1591 1592 static void 1593 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head, 1594 unsigned long size, unsigned long align) 1595 { 1596 struct vmap_area *va_1, *va_2; 1597 unsigned long vstart; 1598 unsigned int rnd; 1599 1600 get_random_bytes(&rnd, sizeof(rnd)); 1601 vstart = VMALLOC_START + rnd; 1602 1603 va_1 = find_vmap_lowest_match(root, size, align, vstart, false); 1604 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart); 1605 1606 if (va_1 != va_2) 1607 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 1608 va_1, va_2, vstart); 1609 } 1610 #endif 1611 1612 enum fit_type { 1613 NOTHING_FIT = 0, 1614 FL_FIT_TYPE = 1, /* full fit */ 1615 LE_FIT_TYPE = 2, /* left edge fit */ 1616 RE_FIT_TYPE = 3, /* right edge fit */ 1617 NE_FIT_TYPE = 4 /* no edge fit */ 1618 }; 1619 1620 static __always_inline enum fit_type 1621 classify_va_fit_type(struct vmap_area *va, 1622 unsigned long nva_start_addr, unsigned long size) 1623 { 1624 enum fit_type type; 1625 1626 /* Check if it is within VA. */ 1627 if (nva_start_addr < va->va_start || 1628 nva_start_addr + size > va->va_end) 1629 return NOTHING_FIT; 1630 1631 /* Now classify. */ 1632 if (va->va_start == nva_start_addr) { 1633 if (va->va_end == nva_start_addr + size) 1634 type = FL_FIT_TYPE; 1635 else 1636 type = LE_FIT_TYPE; 1637 } else if (va->va_end == nva_start_addr + size) { 1638 type = RE_FIT_TYPE; 1639 } else { 1640 type = NE_FIT_TYPE; 1641 } 1642 1643 return type; 1644 } 1645 1646 static __always_inline int 1647 va_clip(struct rb_root *root, struct list_head *head, 1648 struct vmap_area *va, unsigned long nva_start_addr, 1649 unsigned long size) 1650 { 1651 struct vmap_area *lva = NULL; 1652 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size); 1653 1654 if (type == FL_FIT_TYPE) { 1655 /* 1656 * No need to split VA, it fully fits. 1657 * 1658 * | | 1659 * V NVA V 1660 * |---------------| 1661 */ 1662 unlink_va_augment(va, root); 1663 kmem_cache_free(vmap_area_cachep, va); 1664 } else if (type == LE_FIT_TYPE) { 1665 /* 1666 * Split left edge of fit VA. 1667 * 1668 * | | 1669 * V NVA V R 1670 * |-------|-------| 1671 */ 1672 va->va_start += size; 1673 } else if (type == RE_FIT_TYPE) { 1674 /* 1675 * Split right edge of fit VA. 1676 * 1677 * | | 1678 * L V NVA V 1679 * |-------|-------| 1680 */ 1681 va->va_end = nva_start_addr; 1682 } else if (type == NE_FIT_TYPE) { 1683 /* 1684 * Split no edge of fit VA. 1685 * 1686 * | | 1687 * L V NVA V R 1688 * |---|-------|---| 1689 */ 1690 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 1691 if (unlikely(!lva)) { 1692 /* 1693 * For percpu allocator we do not do any pre-allocation 1694 * and leave it as it is. The reason is it most likely 1695 * never ends up with NE_FIT_TYPE splitting. In case of 1696 * percpu allocations offsets and sizes are aligned to 1697 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 1698 * are its main fitting cases. 1699 * 1700 * There are a few exceptions though, as an example it is 1701 * a first allocation (early boot up) when we have "one" 1702 * big free space that has to be split. 1703 * 1704 * Also we can hit this path in case of regular "vmap" 1705 * allocations, if "this" current CPU was not preloaded. 1706 * See the comment in alloc_vmap_area() why. If so, then 1707 * GFP_NOWAIT is used instead to get an extra object for 1708 * split purpose. That is rare and most time does not 1709 * occur. 1710 * 1711 * What happens if an allocation gets failed. Basically, 1712 * an "overflow" path is triggered to purge lazily freed 1713 * areas to free some memory, then, the "retry" path is 1714 * triggered to repeat one more time. See more details 1715 * in alloc_vmap_area() function. 1716 */ 1717 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 1718 if (!lva) 1719 return -ENOMEM; 1720 } 1721 1722 /* 1723 * Build the remainder. 1724 */ 1725 lva->va_start = va->va_start; 1726 lva->va_end = nva_start_addr; 1727 1728 /* 1729 * Shrink this VA to remaining size. 1730 */ 1731 va->va_start = nva_start_addr + size; 1732 } else { 1733 return -EINVAL; 1734 } 1735 1736 if (type != FL_FIT_TYPE) { 1737 augment_tree_propagate_from(va); 1738 1739 if (lva) /* type == NE_FIT_TYPE */ 1740 insert_vmap_area_augment(lva, &va->rb_node, root, head); 1741 } 1742 1743 return 0; 1744 } 1745 1746 static unsigned long 1747 va_alloc(struct vmap_area *va, 1748 struct rb_root *root, struct list_head *head, 1749 unsigned long size, unsigned long align, 1750 unsigned long vstart, unsigned long vend) 1751 { 1752 unsigned long nva_start_addr; 1753 int ret; 1754 1755 if (va->va_start > vstart) 1756 nva_start_addr = ALIGN(va->va_start, align); 1757 else 1758 nva_start_addr = ALIGN(vstart, align); 1759 1760 /* Check the "vend" restriction. */ 1761 if (nva_start_addr + size > vend) 1762 return -ERANGE; 1763 1764 /* Update the free vmap_area. */ 1765 ret = va_clip(root, head, va, nva_start_addr, size); 1766 if (WARN_ON_ONCE(ret)) 1767 return ret; 1768 1769 return nva_start_addr; 1770 } 1771 1772 /* 1773 * Returns a start address of the newly allocated area, if success. 1774 * Otherwise an error value is returned that indicates failure. 1775 */ 1776 static __always_inline unsigned long 1777 __alloc_vmap_area(struct rb_root *root, struct list_head *head, 1778 unsigned long size, unsigned long align, 1779 unsigned long vstart, unsigned long vend) 1780 { 1781 bool adjust_search_size = true; 1782 unsigned long nva_start_addr; 1783 struct vmap_area *va; 1784 1785 /* 1786 * Do not adjust when: 1787 * a) align <= PAGE_SIZE, because it does not make any sense. 1788 * All blocks(their start addresses) are at least PAGE_SIZE 1789 * aligned anyway; 1790 * b) a short range where a requested size corresponds to exactly 1791 * specified [vstart:vend] interval and an alignment > PAGE_SIZE. 1792 * With adjusted search length an allocation would not succeed. 1793 */ 1794 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) 1795 adjust_search_size = false; 1796 1797 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size); 1798 if (unlikely(!va)) 1799 return -ENOENT; 1800 1801 nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend); 1802 1803 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1804 if (!IS_ERR_VALUE(nva_start_addr)) 1805 find_vmap_lowest_match_check(root, head, size, align); 1806 #endif 1807 1808 return nva_start_addr; 1809 } 1810 1811 /* 1812 * Free a region of KVA allocated by alloc_vmap_area 1813 */ 1814 static void free_vmap_area(struct vmap_area *va) 1815 { 1816 struct vmap_node *vn = addr_to_node(va->va_start); 1817 1818 /* 1819 * Remove from the busy tree/list. 1820 */ 1821 spin_lock(&vn->busy.lock); 1822 unlink_va(va, &vn->busy.root); 1823 spin_unlock(&vn->busy.lock); 1824 1825 /* 1826 * Insert/Merge it back to the free tree/list. 1827 */ 1828 spin_lock(&free_vmap_area_lock); 1829 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); 1830 spin_unlock(&free_vmap_area_lock); 1831 } 1832 1833 static inline void 1834 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) 1835 { 1836 struct vmap_area *va = NULL, *tmp; 1837 1838 /* 1839 * Preload this CPU with one extra vmap_area object. It is used 1840 * when fit type of free area is NE_FIT_TYPE. It guarantees that 1841 * a CPU that does an allocation is preloaded. 1842 * 1843 * We do it in non-atomic context, thus it allows us to use more 1844 * permissive allocation masks to be more stable under low memory 1845 * condition and high memory pressure. 1846 */ 1847 if (!this_cpu_read(ne_fit_preload_node)) 1848 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1849 1850 spin_lock(lock); 1851 1852 tmp = NULL; 1853 if (va && !__this_cpu_try_cmpxchg(ne_fit_preload_node, &tmp, va)) 1854 kmem_cache_free(vmap_area_cachep, va); 1855 } 1856 1857 static struct vmap_pool * 1858 size_to_va_pool(struct vmap_node *vn, unsigned long size) 1859 { 1860 unsigned int idx = (size - 1) / PAGE_SIZE; 1861 1862 if (idx < MAX_VA_SIZE_PAGES) 1863 return &vn->pool[idx]; 1864 1865 return NULL; 1866 } 1867 1868 static bool 1869 node_pool_add_va(struct vmap_node *n, struct vmap_area *va) 1870 { 1871 struct vmap_pool *vp; 1872 1873 vp = size_to_va_pool(n, va_size(va)); 1874 if (!vp) 1875 return false; 1876 1877 spin_lock(&n->pool_lock); 1878 list_add(&va->list, &vp->head); 1879 WRITE_ONCE(vp->len, vp->len + 1); 1880 spin_unlock(&n->pool_lock); 1881 1882 return true; 1883 } 1884 1885 static struct vmap_area * 1886 node_pool_del_va(struct vmap_node *vn, unsigned long size, 1887 unsigned long align, unsigned long vstart, 1888 unsigned long vend) 1889 { 1890 struct vmap_area *va = NULL; 1891 struct vmap_pool *vp; 1892 int err = 0; 1893 1894 vp = size_to_va_pool(vn, size); 1895 if (!vp || list_empty(&vp->head)) 1896 return NULL; 1897 1898 spin_lock(&vn->pool_lock); 1899 if (!list_empty(&vp->head)) { 1900 va = list_first_entry(&vp->head, struct vmap_area, list); 1901 1902 if (IS_ALIGNED(va->va_start, align)) { 1903 /* 1904 * Do some sanity check and emit a warning 1905 * if one of below checks detects an error. 1906 */ 1907 err |= (va_size(va) != size); 1908 err |= (va->va_start < vstart); 1909 err |= (va->va_end > vend); 1910 1911 if (!WARN_ON_ONCE(err)) { 1912 list_del_init(&va->list); 1913 WRITE_ONCE(vp->len, vp->len - 1); 1914 } else { 1915 va = NULL; 1916 } 1917 } else { 1918 list_move_tail(&va->list, &vp->head); 1919 va = NULL; 1920 } 1921 } 1922 spin_unlock(&vn->pool_lock); 1923 1924 return va; 1925 } 1926 1927 static struct vmap_area * 1928 node_alloc(unsigned long size, unsigned long align, 1929 unsigned long vstart, unsigned long vend, 1930 unsigned long *addr, unsigned int *vn_id) 1931 { 1932 struct vmap_area *va; 1933 1934 *vn_id = 0; 1935 *addr = -EINVAL; 1936 1937 /* 1938 * Fallback to a global heap if not vmalloc or there 1939 * is only one node. 1940 */ 1941 if (vstart != VMALLOC_START || vend != VMALLOC_END || 1942 nr_vmap_nodes == 1) 1943 return NULL; 1944 1945 *vn_id = raw_smp_processor_id() % nr_vmap_nodes; 1946 va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend); 1947 *vn_id = encode_vn_id(*vn_id); 1948 1949 if (va) 1950 *addr = va->va_start; 1951 1952 return va; 1953 } 1954 1955 static inline void setup_vmalloc_vm(struct vm_struct *vm, 1956 struct vmap_area *va, unsigned long flags, const void *caller) 1957 { 1958 vm->flags = flags; 1959 vm->addr = (void *)va->va_start; 1960 vm->size = vm->requested_size = va_size(va); 1961 vm->caller = caller; 1962 va->vm = vm; 1963 } 1964 1965 /* 1966 * Allocate a region of KVA of the specified size and alignment, within the 1967 * vstart and vend. If vm is passed in, the two will also be bound. 1968 */ 1969 static struct vmap_area *alloc_vmap_area(unsigned long size, 1970 unsigned long align, 1971 unsigned long vstart, unsigned long vend, 1972 int node, gfp_t gfp_mask, 1973 unsigned long va_flags, struct vm_struct *vm) 1974 { 1975 struct vmap_node *vn; 1976 struct vmap_area *va; 1977 unsigned long freed; 1978 unsigned long addr; 1979 unsigned int vn_id; 1980 int purged = 0; 1981 int ret; 1982 1983 if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align))) 1984 return ERR_PTR(-EINVAL); 1985 1986 if (unlikely(!vmap_initialized)) 1987 return ERR_PTR(-EBUSY); 1988 1989 might_sleep(); 1990 1991 /* 1992 * If a VA is obtained from a global heap(if it fails here) 1993 * it is anyway marked with this "vn_id" so it is returned 1994 * to this pool's node later. Such way gives a possibility 1995 * to populate pools based on users demand. 1996 * 1997 * On success a ready to go VA is returned. 1998 */ 1999 va = node_alloc(size, align, vstart, vend, &addr, &vn_id); 2000 if (!va) { 2001 gfp_mask = gfp_mask & GFP_RECLAIM_MASK; 2002 2003 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 2004 if (unlikely(!va)) 2005 return ERR_PTR(-ENOMEM); 2006 2007 /* 2008 * Only scan the relevant parts containing pointers to other objects 2009 * to avoid false negatives. 2010 */ 2011 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); 2012 } 2013 2014 retry: 2015 if (IS_ERR_VALUE(addr)) { 2016 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); 2017 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list, 2018 size, align, vstart, vend); 2019 spin_unlock(&free_vmap_area_lock); 2020 } 2021 2022 trace_alloc_vmap_area(addr, size, align, vstart, vend, IS_ERR_VALUE(addr)); 2023 2024 /* 2025 * If an allocation fails, the error value is 2026 * returned. Therefore trigger the overflow path. 2027 */ 2028 if (IS_ERR_VALUE(addr)) 2029 goto overflow; 2030 2031 va->va_start = addr; 2032 va->va_end = addr + size; 2033 va->vm = NULL; 2034 va->flags = (va_flags | vn_id); 2035 2036 if (vm) { 2037 vm->addr = (void *)va->va_start; 2038 vm->size = va_size(va); 2039 va->vm = vm; 2040 } 2041 2042 vn = addr_to_node(va->va_start); 2043 2044 spin_lock(&vn->busy.lock); 2045 insert_vmap_area(va, &vn->busy.root, &vn->busy.head); 2046 spin_unlock(&vn->busy.lock); 2047 2048 BUG_ON(!IS_ALIGNED(va->va_start, align)); 2049 BUG_ON(va->va_start < vstart); 2050 BUG_ON(va->va_end > vend); 2051 2052 ret = kasan_populate_vmalloc(addr, size); 2053 if (ret) { 2054 free_vmap_area(va); 2055 return ERR_PTR(ret); 2056 } 2057 2058 return va; 2059 2060 overflow: 2061 if (!purged) { 2062 reclaim_and_purge_vmap_areas(); 2063 purged = 1; 2064 goto retry; 2065 } 2066 2067 freed = 0; 2068 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 2069 2070 if (freed > 0) { 2071 purged = 0; 2072 goto retry; 2073 } 2074 2075 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 2076 pr_warn("vmalloc_node_range for size %lu failed: Address range restricted to %#lx - %#lx\n", 2077 size, vstart, vend); 2078 2079 kmem_cache_free(vmap_area_cachep, va); 2080 return ERR_PTR(-EBUSY); 2081 } 2082 2083 int register_vmap_purge_notifier(struct notifier_block *nb) 2084 { 2085 return blocking_notifier_chain_register(&vmap_notify_list, nb); 2086 } 2087 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 2088 2089 int unregister_vmap_purge_notifier(struct notifier_block *nb) 2090 { 2091 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 2092 } 2093 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 2094 2095 /* 2096 * lazy_max_pages is the maximum amount of virtual address space we gather up 2097 * before attempting to purge with a TLB flush. 2098 * 2099 * There is a tradeoff here: a larger number will cover more kernel page tables 2100 * and take slightly longer to purge, but it will linearly reduce the number of 2101 * global TLB flushes that must be performed. It would seem natural to scale 2102 * this number up linearly with the number of CPUs (because vmapping activity 2103 * could also scale linearly with the number of CPUs), however it is likely 2104 * that in practice, workloads might be constrained in other ways that mean 2105 * vmap activity will not scale linearly with CPUs. Also, I want to be 2106 * conservative and not introduce a big latency on huge systems, so go with 2107 * a less aggressive log scale. It will still be an improvement over the old 2108 * code, and it will be simple to change the scale factor if we find that it 2109 * becomes a problem on bigger systems. 2110 */ 2111 static unsigned long lazy_max_pages(void) 2112 { 2113 unsigned int log; 2114 2115 log = fls(num_online_cpus()); 2116 2117 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 2118 } 2119 2120 /* 2121 * Serialize vmap purging. There is no actual critical section protected 2122 * by this lock, but we want to avoid concurrent calls for performance 2123 * reasons and to make the pcpu_get_vm_areas more deterministic. 2124 */ 2125 static DEFINE_MUTEX(vmap_purge_lock); 2126 2127 /* for per-CPU blocks */ 2128 static void purge_fragmented_blocks_allcpus(void); 2129 2130 static void 2131 reclaim_list_global(struct list_head *head) 2132 { 2133 struct vmap_area *va, *n; 2134 2135 if (list_empty(head)) 2136 return; 2137 2138 spin_lock(&free_vmap_area_lock); 2139 list_for_each_entry_safe(va, n, head, list) 2140 merge_or_add_vmap_area_augment(va, 2141 &free_vmap_area_root, &free_vmap_area_list); 2142 spin_unlock(&free_vmap_area_lock); 2143 } 2144 2145 static void 2146 decay_va_pool_node(struct vmap_node *vn, bool full_decay) 2147 { 2148 LIST_HEAD(decay_list); 2149 struct rb_root decay_root = RB_ROOT; 2150 struct vmap_area *va, *nva; 2151 unsigned long n_decay, pool_len; 2152 int i; 2153 2154 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { 2155 LIST_HEAD(tmp_list); 2156 2157 if (list_empty(&vn->pool[i].head)) 2158 continue; 2159 2160 /* Detach the pool, so no-one can access it. */ 2161 spin_lock(&vn->pool_lock); 2162 list_replace_init(&vn->pool[i].head, &tmp_list); 2163 spin_unlock(&vn->pool_lock); 2164 2165 pool_len = n_decay = vn->pool[i].len; 2166 WRITE_ONCE(vn->pool[i].len, 0); 2167 2168 /* Decay a pool by ~25% out of left objects. */ 2169 if (!full_decay) 2170 n_decay >>= 2; 2171 pool_len -= n_decay; 2172 2173 list_for_each_entry_safe(va, nva, &tmp_list, list) { 2174 if (!n_decay--) 2175 break; 2176 2177 list_del_init(&va->list); 2178 merge_or_add_vmap_area(va, &decay_root, &decay_list); 2179 } 2180 2181 /* 2182 * Attach the pool back if it has been partly decayed. 2183 * Please note, it is supposed that nobody(other contexts) 2184 * can populate the pool therefore a simple list replace 2185 * operation takes place here. 2186 */ 2187 if (!list_empty(&tmp_list)) { 2188 spin_lock(&vn->pool_lock); 2189 list_replace_init(&tmp_list, &vn->pool[i].head); 2190 WRITE_ONCE(vn->pool[i].len, pool_len); 2191 spin_unlock(&vn->pool_lock); 2192 } 2193 } 2194 2195 reclaim_list_global(&decay_list); 2196 } 2197 2198 static void 2199 kasan_release_vmalloc_node(struct vmap_node *vn) 2200 { 2201 struct vmap_area *va; 2202 unsigned long start, end; 2203 2204 start = list_first_entry(&vn->purge_list, struct vmap_area, list)->va_start; 2205 end = list_last_entry(&vn->purge_list, struct vmap_area, list)->va_end; 2206 2207 list_for_each_entry(va, &vn->purge_list, list) { 2208 if (is_vmalloc_or_module_addr((void *) va->va_start)) 2209 kasan_release_vmalloc(va->va_start, va->va_end, 2210 va->va_start, va->va_end, 2211 KASAN_VMALLOC_PAGE_RANGE); 2212 } 2213 2214 kasan_release_vmalloc(start, end, start, end, KASAN_VMALLOC_TLB_FLUSH); 2215 } 2216 2217 static void purge_vmap_node(struct work_struct *work) 2218 { 2219 struct vmap_node *vn = container_of(work, 2220 struct vmap_node, purge_work); 2221 unsigned long nr_purged_pages = 0; 2222 struct vmap_area *va, *n_va; 2223 LIST_HEAD(local_list); 2224 2225 if (IS_ENABLED(CONFIG_KASAN_VMALLOC)) 2226 kasan_release_vmalloc_node(vn); 2227 2228 vn->nr_purged = 0; 2229 2230 list_for_each_entry_safe(va, n_va, &vn->purge_list, list) { 2231 unsigned long nr = va_size(va) >> PAGE_SHIFT; 2232 unsigned int vn_id = decode_vn_id(va->flags); 2233 2234 list_del_init(&va->list); 2235 2236 nr_purged_pages += nr; 2237 vn->nr_purged++; 2238 2239 if (is_vn_id_valid(vn_id) && !vn->skip_populate) 2240 if (node_pool_add_va(vn, va)) 2241 continue; 2242 2243 /* Go back to global. */ 2244 list_add(&va->list, &local_list); 2245 } 2246 2247 atomic_long_sub(nr_purged_pages, &vmap_lazy_nr); 2248 2249 reclaim_list_global(&local_list); 2250 } 2251 2252 /* 2253 * Purges all lazily-freed vmap areas. 2254 */ 2255 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end, 2256 bool full_pool_decay) 2257 { 2258 unsigned long nr_purged_areas = 0; 2259 unsigned int nr_purge_helpers; 2260 static cpumask_t purge_nodes; 2261 unsigned int nr_purge_nodes; 2262 struct vmap_node *vn; 2263 int i; 2264 2265 lockdep_assert_held(&vmap_purge_lock); 2266 2267 /* 2268 * Use cpumask to mark which node has to be processed. 2269 */ 2270 purge_nodes = CPU_MASK_NONE; 2271 2272 for_each_vmap_node(vn) { 2273 INIT_LIST_HEAD(&vn->purge_list); 2274 vn->skip_populate = full_pool_decay; 2275 decay_va_pool_node(vn, full_pool_decay); 2276 2277 if (RB_EMPTY_ROOT(&vn->lazy.root)) 2278 continue; 2279 2280 spin_lock(&vn->lazy.lock); 2281 WRITE_ONCE(vn->lazy.root.rb_node, NULL); 2282 list_replace_init(&vn->lazy.head, &vn->purge_list); 2283 spin_unlock(&vn->lazy.lock); 2284 2285 start = min(start, list_first_entry(&vn->purge_list, 2286 struct vmap_area, list)->va_start); 2287 2288 end = max(end, list_last_entry(&vn->purge_list, 2289 struct vmap_area, list)->va_end); 2290 2291 cpumask_set_cpu(node_to_id(vn), &purge_nodes); 2292 } 2293 2294 nr_purge_nodes = cpumask_weight(&purge_nodes); 2295 if (nr_purge_nodes > 0) { 2296 flush_tlb_kernel_range(start, end); 2297 2298 /* One extra worker is per a lazy_max_pages() full set minus one. */ 2299 nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages(); 2300 nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1; 2301 2302 for_each_cpu(i, &purge_nodes) { 2303 vn = &vmap_nodes[i]; 2304 2305 if (nr_purge_helpers > 0) { 2306 INIT_WORK(&vn->purge_work, purge_vmap_node); 2307 2308 if (cpumask_test_cpu(i, cpu_online_mask)) 2309 schedule_work_on(i, &vn->purge_work); 2310 else 2311 schedule_work(&vn->purge_work); 2312 2313 nr_purge_helpers--; 2314 } else { 2315 vn->purge_work.func = NULL; 2316 purge_vmap_node(&vn->purge_work); 2317 nr_purged_areas += vn->nr_purged; 2318 } 2319 } 2320 2321 for_each_cpu(i, &purge_nodes) { 2322 vn = &vmap_nodes[i]; 2323 2324 if (vn->purge_work.func) { 2325 flush_work(&vn->purge_work); 2326 nr_purged_areas += vn->nr_purged; 2327 } 2328 } 2329 } 2330 2331 trace_purge_vmap_area_lazy(start, end, nr_purged_areas); 2332 return nr_purged_areas > 0; 2333 } 2334 2335 /* 2336 * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list. 2337 */ 2338 static void reclaim_and_purge_vmap_areas(void) 2339 2340 { 2341 mutex_lock(&vmap_purge_lock); 2342 purge_fragmented_blocks_allcpus(); 2343 __purge_vmap_area_lazy(ULONG_MAX, 0, true); 2344 mutex_unlock(&vmap_purge_lock); 2345 } 2346 2347 static void drain_vmap_area_work(struct work_struct *work) 2348 { 2349 mutex_lock(&vmap_purge_lock); 2350 __purge_vmap_area_lazy(ULONG_MAX, 0, false); 2351 mutex_unlock(&vmap_purge_lock); 2352 } 2353 2354 /* 2355 * Free a vmap area, caller ensuring that the area has been unmapped, 2356 * unlinked and flush_cache_vunmap had been called for the correct 2357 * range previously. 2358 */ 2359 static void free_vmap_area_noflush(struct vmap_area *va) 2360 { 2361 unsigned long nr_lazy_max = lazy_max_pages(); 2362 unsigned long va_start = va->va_start; 2363 unsigned int vn_id = decode_vn_id(va->flags); 2364 struct vmap_node *vn; 2365 unsigned long nr_lazy; 2366 2367 if (WARN_ON_ONCE(!list_empty(&va->list))) 2368 return; 2369 2370 nr_lazy = atomic_long_add_return_relaxed(va_size(va) >> PAGE_SHIFT, 2371 &vmap_lazy_nr); 2372 2373 /* 2374 * If it was request by a certain node we would like to 2375 * return it to that node, i.e. its pool for later reuse. 2376 */ 2377 vn = is_vn_id_valid(vn_id) ? 2378 id_to_node(vn_id):addr_to_node(va->va_start); 2379 2380 spin_lock(&vn->lazy.lock); 2381 insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head); 2382 spin_unlock(&vn->lazy.lock); 2383 2384 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max); 2385 2386 /* After this point, we may free va at any time */ 2387 if (unlikely(nr_lazy > nr_lazy_max)) 2388 schedule_work(&drain_vmap_work); 2389 } 2390 2391 /* 2392 * Free and unmap a vmap area 2393 */ 2394 static void free_unmap_vmap_area(struct vmap_area *va) 2395 { 2396 flush_cache_vunmap(va->va_start, va->va_end); 2397 vunmap_range_noflush(va->va_start, va->va_end); 2398 if (debug_pagealloc_enabled_static()) 2399 flush_tlb_kernel_range(va->va_start, va->va_end); 2400 2401 free_vmap_area_noflush(va); 2402 } 2403 2404 struct vmap_area *find_vmap_area(unsigned long addr) 2405 { 2406 struct vmap_node *vn; 2407 struct vmap_area *va; 2408 int i, j; 2409 2410 if (unlikely(!vmap_initialized)) 2411 return NULL; 2412 2413 /* 2414 * An addr_to_node_id(addr) converts an address to a node index 2415 * where a VA is located. If VA spans several zones and passed 2416 * addr is not the same as va->va_start, what is not common, we 2417 * may need to scan extra nodes. See an example: 2418 * 2419 * <----va----> 2420 * -|-----|-----|-----|-----|- 2421 * 1 2 0 1 2422 * 2423 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed 2424 * addr is within 2 or 0 nodes we should do extra work. 2425 */ 2426 i = j = addr_to_node_id(addr); 2427 do { 2428 vn = &vmap_nodes[i]; 2429 2430 spin_lock(&vn->busy.lock); 2431 va = __find_vmap_area(addr, &vn->busy.root); 2432 spin_unlock(&vn->busy.lock); 2433 2434 if (va) 2435 return va; 2436 } while ((i = (i + nr_vmap_nodes - 1) % nr_vmap_nodes) != j); 2437 2438 return NULL; 2439 } 2440 2441 static struct vmap_area *find_unlink_vmap_area(unsigned long addr) 2442 { 2443 struct vmap_node *vn; 2444 struct vmap_area *va; 2445 int i, j; 2446 2447 /* 2448 * Check the comment in the find_vmap_area() about the loop. 2449 */ 2450 i = j = addr_to_node_id(addr); 2451 do { 2452 vn = &vmap_nodes[i]; 2453 2454 spin_lock(&vn->busy.lock); 2455 va = __find_vmap_area(addr, &vn->busy.root); 2456 if (va) 2457 unlink_va(va, &vn->busy.root); 2458 spin_unlock(&vn->busy.lock); 2459 2460 if (va) 2461 return va; 2462 } while ((i = (i + nr_vmap_nodes - 1) % nr_vmap_nodes) != j); 2463 2464 return NULL; 2465 } 2466 2467 /*** Per cpu kva allocator ***/ 2468 2469 /* 2470 * vmap space is limited especially on 32 bit architectures. Ensure there is 2471 * room for at least 16 percpu vmap blocks per CPU. 2472 */ 2473 /* 2474 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 2475 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 2476 * instead (we just need a rough idea) 2477 */ 2478 #if BITS_PER_LONG == 32 2479 #define VMALLOC_SPACE (128UL*1024*1024) 2480 #else 2481 #define VMALLOC_SPACE (128UL*1024*1024*1024) 2482 #endif 2483 2484 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 2485 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 2486 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 2487 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 2488 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 2489 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 2490 #define VMAP_BBMAP_BITS \ 2491 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 2492 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 2493 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 2494 2495 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 2496 2497 /* 2498 * Purge threshold to prevent overeager purging of fragmented blocks for 2499 * regular operations: Purge if vb->free is less than 1/4 of the capacity. 2500 */ 2501 #define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4) 2502 2503 #define VMAP_RAM 0x1 /* indicates vm_map_ram area*/ 2504 #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/ 2505 #define VMAP_FLAGS_MASK 0x3 2506 2507 struct vmap_block_queue { 2508 spinlock_t lock; 2509 struct list_head free; 2510 2511 /* 2512 * An xarray requires an extra memory dynamically to 2513 * be allocated. If it is an issue, we can use rb-tree 2514 * instead. 2515 */ 2516 struct xarray vmap_blocks; 2517 }; 2518 2519 struct vmap_block { 2520 spinlock_t lock; 2521 struct vmap_area *va; 2522 unsigned long free, dirty; 2523 DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS); 2524 unsigned long dirty_min, dirty_max; /*< dirty range */ 2525 struct list_head free_list; 2526 struct rcu_head rcu_head; 2527 struct list_head purge; 2528 unsigned int cpu; 2529 }; 2530 2531 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 2532 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 2533 2534 /* 2535 * In order to fast access to any "vmap_block" associated with a 2536 * specific address, we use a hash. 2537 * 2538 * A per-cpu vmap_block_queue is used in both ways, to serialize 2539 * an access to free block chains among CPUs(alloc path) and it 2540 * also acts as a vmap_block hash(alloc/free paths). It means we 2541 * overload it, since we already have the per-cpu array which is 2542 * used as a hash table. When used as a hash a 'cpu' passed to 2543 * per_cpu() is not actually a CPU but rather a hash index. 2544 * 2545 * A hash function is addr_to_vb_xa() which hashes any address 2546 * to a specific index(in a hash) it belongs to. This then uses a 2547 * per_cpu() macro to access an array with generated index. 2548 * 2549 * An example: 2550 * 2551 * CPU_1 CPU_2 CPU_0 2552 * | | | 2553 * V V V 2554 * 0 10 20 30 40 50 60 2555 * |------|------|------|------|------|------|...<vmap address space> 2556 * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2 2557 * 2558 * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus 2559 * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock; 2560 * 2561 * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus 2562 * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock; 2563 * 2564 * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus 2565 * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock. 2566 * 2567 * This technique almost always avoids lock contention on insert/remove, 2568 * however xarray spinlocks protect against any contention that remains. 2569 */ 2570 static struct xarray * 2571 addr_to_vb_xa(unsigned long addr) 2572 { 2573 int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids; 2574 2575 /* 2576 * Please note, nr_cpu_ids points on a highest set 2577 * possible bit, i.e. we never invoke cpumask_next() 2578 * if an index points on it which is nr_cpu_ids - 1. 2579 */ 2580 if (!cpu_possible(index)) 2581 index = cpumask_next(index, cpu_possible_mask); 2582 2583 return &per_cpu(vmap_block_queue, index).vmap_blocks; 2584 } 2585 2586 /* 2587 * We should probably have a fallback mechanism to allocate virtual memory 2588 * out of partially filled vmap blocks. However vmap block sizing should be 2589 * fairly reasonable according to the vmalloc size, so it shouldn't be a 2590 * big problem. 2591 */ 2592 2593 static unsigned long addr_to_vb_idx(unsigned long addr) 2594 { 2595 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 2596 addr /= VMAP_BLOCK_SIZE; 2597 return addr; 2598 } 2599 2600 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 2601 { 2602 unsigned long addr; 2603 2604 addr = va_start + (pages_off << PAGE_SHIFT); 2605 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 2606 return (void *)addr; 2607 } 2608 2609 /** 2610 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 2611 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 2612 * @order: how many 2^order pages should be occupied in newly allocated block 2613 * @gfp_mask: flags for the page level allocator 2614 * 2615 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 2616 */ 2617 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 2618 { 2619 struct vmap_block_queue *vbq; 2620 struct vmap_block *vb; 2621 struct vmap_area *va; 2622 struct xarray *xa; 2623 unsigned long vb_idx; 2624 int node, err; 2625 void *vaddr; 2626 2627 node = numa_node_id(); 2628 2629 vb = kmalloc_node(sizeof(struct vmap_block), 2630 gfp_mask & GFP_RECLAIM_MASK, node); 2631 if (unlikely(!vb)) 2632 return ERR_PTR(-ENOMEM); 2633 2634 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 2635 VMALLOC_START, VMALLOC_END, 2636 node, gfp_mask, 2637 VMAP_RAM|VMAP_BLOCK, NULL); 2638 if (IS_ERR(va)) { 2639 kfree(vb); 2640 return ERR_CAST(va); 2641 } 2642 2643 vaddr = vmap_block_vaddr(va->va_start, 0); 2644 spin_lock_init(&vb->lock); 2645 vb->va = va; 2646 /* At least something should be left free */ 2647 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 2648 bitmap_zero(vb->used_map, VMAP_BBMAP_BITS); 2649 vb->free = VMAP_BBMAP_BITS - (1UL << order); 2650 vb->dirty = 0; 2651 vb->dirty_min = VMAP_BBMAP_BITS; 2652 vb->dirty_max = 0; 2653 bitmap_set(vb->used_map, 0, (1UL << order)); 2654 INIT_LIST_HEAD(&vb->free_list); 2655 vb->cpu = raw_smp_processor_id(); 2656 2657 xa = addr_to_vb_xa(va->va_start); 2658 vb_idx = addr_to_vb_idx(va->va_start); 2659 err = xa_insert(xa, vb_idx, vb, gfp_mask); 2660 if (err) { 2661 kfree(vb); 2662 free_vmap_area(va); 2663 return ERR_PTR(err); 2664 } 2665 /* 2666 * list_add_tail_rcu could happened in another core 2667 * rather than vb->cpu due to task migration, which 2668 * is safe as list_add_tail_rcu will ensure the list's 2669 * integrity together with list_for_each_rcu from read 2670 * side. 2671 */ 2672 vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu); 2673 spin_lock(&vbq->lock); 2674 list_add_tail_rcu(&vb->free_list, &vbq->free); 2675 spin_unlock(&vbq->lock); 2676 2677 return vaddr; 2678 } 2679 2680 static void free_vmap_block(struct vmap_block *vb) 2681 { 2682 struct vmap_node *vn; 2683 struct vmap_block *tmp; 2684 struct xarray *xa; 2685 2686 xa = addr_to_vb_xa(vb->va->va_start); 2687 tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start)); 2688 BUG_ON(tmp != vb); 2689 2690 vn = addr_to_node(vb->va->va_start); 2691 spin_lock(&vn->busy.lock); 2692 unlink_va(vb->va, &vn->busy.root); 2693 spin_unlock(&vn->busy.lock); 2694 2695 free_vmap_area_noflush(vb->va); 2696 kfree_rcu(vb, rcu_head); 2697 } 2698 2699 static bool purge_fragmented_block(struct vmap_block *vb, 2700 struct list_head *purge_list, bool force_purge) 2701 { 2702 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu); 2703 2704 if (vb->free + vb->dirty != VMAP_BBMAP_BITS || 2705 vb->dirty == VMAP_BBMAP_BITS) 2706 return false; 2707 2708 /* Don't overeagerly purge usable blocks unless requested */ 2709 if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD)) 2710 return false; 2711 2712 /* prevent further allocs after releasing lock */ 2713 WRITE_ONCE(vb->free, 0); 2714 /* prevent purging it again */ 2715 WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS); 2716 vb->dirty_min = 0; 2717 vb->dirty_max = VMAP_BBMAP_BITS; 2718 spin_lock(&vbq->lock); 2719 list_del_rcu(&vb->free_list); 2720 spin_unlock(&vbq->lock); 2721 list_add_tail(&vb->purge, purge_list); 2722 return true; 2723 } 2724 2725 static void free_purged_blocks(struct list_head *purge_list) 2726 { 2727 struct vmap_block *vb, *n_vb; 2728 2729 list_for_each_entry_safe(vb, n_vb, purge_list, purge) { 2730 list_del(&vb->purge); 2731 free_vmap_block(vb); 2732 } 2733 } 2734 2735 static void purge_fragmented_blocks(int cpu) 2736 { 2737 LIST_HEAD(purge); 2738 struct vmap_block *vb; 2739 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2740 2741 rcu_read_lock(); 2742 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2743 unsigned long free = READ_ONCE(vb->free); 2744 unsigned long dirty = READ_ONCE(vb->dirty); 2745 2746 if (free + dirty != VMAP_BBMAP_BITS || 2747 dirty == VMAP_BBMAP_BITS) 2748 continue; 2749 2750 spin_lock(&vb->lock); 2751 purge_fragmented_block(vb, &purge, true); 2752 spin_unlock(&vb->lock); 2753 } 2754 rcu_read_unlock(); 2755 free_purged_blocks(&purge); 2756 } 2757 2758 static void purge_fragmented_blocks_allcpus(void) 2759 { 2760 int cpu; 2761 2762 for_each_possible_cpu(cpu) 2763 purge_fragmented_blocks(cpu); 2764 } 2765 2766 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 2767 { 2768 struct vmap_block_queue *vbq; 2769 struct vmap_block *vb; 2770 void *vaddr = NULL; 2771 unsigned int order; 2772 2773 BUG_ON(offset_in_page(size)); 2774 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2775 if (WARN_ON(size == 0)) { 2776 /* 2777 * Allocating 0 bytes isn't what caller wants since 2778 * get_order(0) returns funny result. Just warn and terminate 2779 * early. 2780 */ 2781 return ERR_PTR(-EINVAL); 2782 } 2783 order = get_order(size); 2784 2785 rcu_read_lock(); 2786 vbq = raw_cpu_ptr(&vmap_block_queue); 2787 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2788 unsigned long pages_off; 2789 2790 if (READ_ONCE(vb->free) < (1UL << order)) 2791 continue; 2792 2793 spin_lock(&vb->lock); 2794 if (vb->free < (1UL << order)) { 2795 spin_unlock(&vb->lock); 2796 continue; 2797 } 2798 2799 pages_off = VMAP_BBMAP_BITS - vb->free; 2800 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 2801 WRITE_ONCE(vb->free, vb->free - (1UL << order)); 2802 bitmap_set(vb->used_map, pages_off, (1UL << order)); 2803 if (vb->free == 0) { 2804 spin_lock(&vbq->lock); 2805 list_del_rcu(&vb->free_list); 2806 spin_unlock(&vbq->lock); 2807 } 2808 2809 spin_unlock(&vb->lock); 2810 break; 2811 } 2812 2813 rcu_read_unlock(); 2814 2815 /* Allocate new block if nothing was found */ 2816 if (!vaddr) 2817 vaddr = new_vmap_block(order, gfp_mask); 2818 2819 return vaddr; 2820 } 2821 2822 static void vb_free(unsigned long addr, unsigned long size) 2823 { 2824 unsigned long offset; 2825 unsigned int order; 2826 struct vmap_block *vb; 2827 struct xarray *xa; 2828 2829 BUG_ON(offset_in_page(size)); 2830 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2831 2832 flush_cache_vunmap(addr, addr + size); 2833 2834 order = get_order(size); 2835 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; 2836 2837 xa = addr_to_vb_xa(addr); 2838 vb = xa_load(xa, addr_to_vb_idx(addr)); 2839 2840 spin_lock(&vb->lock); 2841 bitmap_clear(vb->used_map, offset, (1UL << order)); 2842 spin_unlock(&vb->lock); 2843 2844 vunmap_range_noflush(addr, addr + size); 2845 2846 if (debug_pagealloc_enabled_static()) 2847 flush_tlb_kernel_range(addr, addr + size); 2848 2849 spin_lock(&vb->lock); 2850 2851 /* Expand the not yet TLB flushed dirty range */ 2852 vb->dirty_min = min(vb->dirty_min, offset); 2853 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 2854 2855 WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order)); 2856 if (vb->dirty == VMAP_BBMAP_BITS) { 2857 BUG_ON(vb->free); 2858 spin_unlock(&vb->lock); 2859 free_vmap_block(vb); 2860 } else 2861 spin_unlock(&vb->lock); 2862 } 2863 2864 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 2865 { 2866 LIST_HEAD(purge_list); 2867 int cpu; 2868 2869 if (unlikely(!vmap_initialized)) 2870 return; 2871 2872 mutex_lock(&vmap_purge_lock); 2873 2874 for_each_possible_cpu(cpu) { 2875 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2876 struct vmap_block *vb; 2877 unsigned long idx; 2878 2879 rcu_read_lock(); 2880 xa_for_each(&vbq->vmap_blocks, idx, vb) { 2881 spin_lock(&vb->lock); 2882 2883 /* 2884 * Try to purge a fragmented block first. If it's 2885 * not purgeable, check whether there is dirty 2886 * space to be flushed. 2887 */ 2888 if (!purge_fragmented_block(vb, &purge_list, false) && 2889 vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) { 2890 unsigned long va_start = vb->va->va_start; 2891 unsigned long s, e; 2892 2893 s = va_start + (vb->dirty_min << PAGE_SHIFT); 2894 e = va_start + (vb->dirty_max << PAGE_SHIFT); 2895 2896 start = min(s, start); 2897 end = max(e, end); 2898 2899 /* Prevent that this is flushed again */ 2900 vb->dirty_min = VMAP_BBMAP_BITS; 2901 vb->dirty_max = 0; 2902 2903 flush = 1; 2904 } 2905 spin_unlock(&vb->lock); 2906 } 2907 rcu_read_unlock(); 2908 } 2909 free_purged_blocks(&purge_list); 2910 2911 if (!__purge_vmap_area_lazy(start, end, false) && flush) 2912 flush_tlb_kernel_range(start, end); 2913 mutex_unlock(&vmap_purge_lock); 2914 } 2915 2916 /** 2917 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 2918 * 2919 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 2920 * to amortize TLB flushing overheads. What this means is that any page you 2921 * have now, may, in a former life, have been mapped into kernel virtual 2922 * address by the vmap layer and so there might be some CPUs with TLB entries 2923 * still referencing that page (additional to the regular 1:1 kernel mapping). 2924 * 2925 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 2926 * be sure that none of the pages we have control over will have any aliases 2927 * from the vmap layer. 2928 */ 2929 void vm_unmap_aliases(void) 2930 { 2931 _vm_unmap_aliases(ULONG_MAX, 0, 0); 2932 } 2933 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 2934 2935 /** 2936 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 2937 * @mem: the pointer returned by vm_map_ram 2938 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 2939 */ 2940 void vm_unmap_ram(const void *mem, unsigned int count) 2941 { 2942 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2943 unsigned long addr = (unsigned long)kasan_reset_tag(mem); 2944 struct vmap_area *va; 2945 2946 might_sleep(); 2947 BUG_ON(!addr); 2948 BUG_ON(addr < VMALLOC_START); 2949 BUG_ON(addr > VMALLOC_END); 2950 BUG_ON(!PAGE_ALIGNED(addr)); 2951 2952 kasan_poison_vmalloc(mem, size); 2953 2954 if (likely(count <= VMAP_MAX_ALLOC)) { 2955 debug_check_no_locks_freed(mem, size); 2956 vb_free(addr, size); 2957 return; 2958 } 2959 2960 va = find_unlink_vmap_area(addr); 2961 if (WARN_ON_ONCE(!va)) 2962 return; 2963 2964 debug_check_no_locks_freed((void *)va->va_start, va_size(va)); 2965 free_unmap_vmap_area(va); 2966 } 2967 EXPORT_SYMBOL(vm_unmap_ram); 2968 2969 /** 2970 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 2971 * @pages: an array of pointers to the pages to be mapped 2972 * @count: number of pages 2973 * @node: prefer to allocate data structures on this node 2974 * 2975 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 2976 * faster than vmap so it's good. But if you mix long-life and short-life 2977 * objects with vm_map_ram(), it could consume lots of address space through 2978 * fragmentation (especially on a 32bit machine). You could see failures in 2979 * the end. Please use this function for short-lived objects. 2980 * 2981 * Returns: a pointer to the address that has been mapped, or %NULL on failure 2982 */ 2983 void *vm_map_ram(struct page **pages, unsigned int count, int node) 2984 { 2985 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2986 unsigned long addr; 2987 void *mem; 2988 2989 if (likely(count <= VMAP_MAX_ALLOC)) { 2990 mem = vb_alloc(size, GFP_KERNEL); 2991 if (IS_ERR(mem)) 2992 return NULL; 2993 addr = (unsigned long)mem; 2994 } else { 2995 struct vmap_area *va; 2996 va = alloc_vmap_area(size, PAGE_SIZE, 2997 VMALLOC_START, VMALLOC_END, 2998 node, GFP_KERNEL, VMAP_RAM, 2999 NULL); 3000 if (IS_ERR(va)) 3001 return NULL; 3002 3003 addr = va->va_start; 3004 mem = (void *)addr; 3005 } 3006 3007 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, 3008 pages, PAGE_SHIFT) < 0) { 3009 vm_unmap_ram(mem, count); 3010 return NULL; 3011 } 3012 3013 /* 3014 * Mark the pages as accessible, now that they are mapped. 3015 * With hardware tag-based KASAN, marking is skipped for 3016 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 3017 */ 3018 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); 3019 3020 return mem; 3021 } 3022 EXPORT_SYMBOL(vm_map_ram); 3023 3024 static struct vm_struct *vmlist __initdata; 3025 3026 static inline unsigned int vm_area_page_order(struct vm_struct *vm) 3027 { 3028 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 3029 return vm->page_order; 3030 #else 3031 return 0; 3032 #endif 3033 } 3034 3035 unsigned int get_vm_area_page_order(struct vm_struct *vm) 3036 { 3037 return vm_area_page_order(vm); 3038 } 3039 3040 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) 3041 { 3042 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 3043 vm->page_order = order; 3044 #else 3045 BUG_ON(order != 0); 3046 #endif 3047 } 3048 3049 /** 3050 * vm_area_add_early - add vmap area early during boot 3051 * @vm: vm_struct to add 3052 * 3053 * This function is used to add fixed kernel vm area to vmlist before 3054 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 3055 * should contain proper values and the other fields should be zero. 3056 * 3057 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 3058 */ 3059 void __init vm_area_add_early(struct vm_struct *vm) 3060 { 3061 struct vm_struct *tmp, **p; 3062 3063 BUG_ON(vmap_initialized); 3064 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 3065 if (tmp->addr >= vm->addr) { 3066 BUG_ON(tmp->addr < vm->addr + vm->size); 3067 break; 3068 } else 3069 BUG_ON(tmp->addr + tmp->size > vm->addr); 3070 } 3071 vm->next = *p; 3072 *p = vm; 3073 } 3074 3075 /** 3076 * vm_area_register_early - register vmap area early during boot 3077 * @vm: vm_struct to register 3078 * @align: requested alignment 3079 * 3080 * This function is used to register kernel vm area before 3081 * vmalloc_init() is called. @vm->size and @vm->flags should contain 3082 * proper values on entry and other fields should be zero. On return, 3083 * vm->addr contains the allocated address. 3084 * 3085 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 3086 */ 3087 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 3088 { 3089 unsigned long addr = ALIGN(VMALLOC_START, align); 3090 struct vm_struct *cur, **p; 3091 3092 BUG_ON(vmap_initialized); 3093 3094 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { 3095 if ((unsigned long)cur->addr - addr >= vm->size) 3096 break; 3097 addr = ALIGN((unsigned long)cur->addr + cur->size, align); 3098 } 3099 3100 BUG_ON(addr > VMALLOC_END - vm->size); 3101 vm->addr = (void *)addr; 3102 vm->next = *p; 3103 *p = vm; 3104 kasan_populate_early_vm_area_shadow(vm->addr, vm->size); 3105 } 3106 3107 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 3108 { 3109 /* 3110 * Before removing VM_UNINITIALIZED, 3111 * we should make sure that vm has proper values. 3112 * Pair with smp_rmb() in vread_iter() and vmalloc_info_show(). 3113 */ 3114 smp_wmb(); 3115 vm->flags &= ~VM_UNINITIALIZED; 3116 } 3117 3118 struct vm_struct *__get_vm_area_node(unsigned long size, 3119 unsigned long align, unsigned long shift, unsigned long flags, 3120 unsigned long start, unsigned long end, int node, 3121 gfp_t gfp_mask, const void *caller) 3122 { 3123 struct vmap_area *va; 3124 struct vm_struct *area; 3125 unsigned long requested_size = size; 3126 3127 BUG_ON(in_interrupt()); 3128 size = ALIGN(size, 1ul << shift); 3129 if (unlikely(!size)) 3130 return NULL; 3131 3132 if (flags & VM_IOREMAP) 3133 align = 1ul << clamp_t(int, get_count_order_long(size), 3134 PAGE_SHIFT, IOREMAP_MAX_ORDER); 3135 3136 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 3137 if (unlikely(!area)) 3138 return NULL; 3139 3140 if (!(flags & VM_NO_GUARD)) 3141 size += PAGE_SIZE; 3142 3143 area->flags = flags; 3144 area->caller = caller; 3145 area->requested_size = requested_size; 3146 3147 va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area); 3148 if (IS_ERR(va)) { 3149 kfree(area); 3150 return NULL; 3151 } 3152 3153 /* 3154 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a 3155 * best-effort approach, as they can be mapped outside of vmalloc code. 3156 * For VM_ALLOC mappings, the pages are marked as accessible after 3157 * getting mapped in __vmalloc_node_range(). 3158 * With hardware tag-based KASAN, marking is skipped for 3159 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 3160 */ 3161 if (!(flags & VM_ALLOC)) 3162 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, 3163 KASAN_VMALLOC_PROT_NORMAL); 3164 3165 return area; 3166 } 3167 3168 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 3169 unsigned long start, unsigned long end, 3170 const void *caller) 3171 { 3172 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, 3173 NUMA_NO_NODE, GFP_KERNEL, caller); 3174 } 3175 3176 /** 3177 * get_vm_area - reserve a contiguous kernel virtual area 3178 * @size: size of the area 3179 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 3180 * 3181 * Search an area of @size in the kernel virtual mapping area, 3182 * and reserved it for out purposes. Returns the area descriptor 3183 * on success or %NULL on failure. 3184 * 3185 * Return: the area descriptor on success or %NULL on failure. 3186 */ 3187 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 3188 { 3189 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 3190 VMALLOC_START, VMALLOC_END, 3191 NUMA_NO_NODE, GFP_KERNEL, 3192 __builtin_return_address(0)); 3193 } 3194 3195 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 3196 const void *caller) 3197 { 3198 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 3199 VMALLOC_START, VMALLOC_END, 3200 NUMA_NO_NODE, GFP_KERNEL, caller); 3201 } 3202 3203 /** 3204 * find_vm_area - find a continuous kernel virtual area 3205 * @addr: base address 3206 * 3207 * Search for the kernel VM area starting at @addr, and return it. 3208 * It is up to the caller to do all required locking to keep the returned 3209 * pointer valid. 3210 * 3211 * Return: the area descriptor on success or %NULL on failure. 3212 */ 3213 struct vm_struct *find_vm_area(const void *addr) 3214 { 3215 struct vmap_area *va; 3216 3217 va = find_vmap_area((unsigned long)addr); 3218 if (!va) 3219 return NULL; 3220 3221 return va->vm; 3222 } 3223 3224 /** 3225 * remove_vm_area - find and remove a continuous kernel virtual area 3226 * @addr: base address 3227 * 3228 * Search for the kernel VM area starting at @addr, and remove it. 3229 * This function returns the found VM area, but using it is NOT safe 3230 * on SMP machines, except for its size or flags. 3231 * 3232 * Return: the area descriptor on success or %NULL on failure. 3233 */ 3234 struct vm_struct *remove_vm_area(const void *addr) 3235 { 3236 struct vmap_area *va; 3237 struct vm_struct *vm; 3238 3239 might_sleep(); 3240 3241 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 3242 addr)) 3243 return NULL; 3244 3245 va = find_unlink_vmap_area((unsigned long)addr); 3246 if (!va || !va->vm) 3247 return NULL; 3248 vm = va->vm; 3249 3250 debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm)); 3251 debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm)); 3252 kasan_free_module_shadow(vm); 3253 kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm)); 3254 3255 free_unmap_vmap_area(va); 3256 return vm; 3257 } 3258 3259 static inline void set_area_direct_map(const struct vm_struct *area, 3260 int (*set_direct_map)(struct page *page)) 3261 { 3262 int i; 3263 3264 /* HUGE_VMALLOC passes small pages to set_direct_map */ 3265 for (i = 0; i < area->nr_pages; i++) 3266 if (page_address(area->pages[i])) 3267 set_direct_map(area->pages[i]); 3268 } 3269 3270 /* 3271 * Flush the vm mapping and reset the direct map. 3272 */ 3273 static void vm_reset_perms(struct vm_struct *area) 3274 { 3275 unsigned long start = ULONG_MAX, end = 0; 3276 unsigned int page_order = vm_area_page_order(area); 3277 int flush_dmap = 0; 3278 int i; 3279 3280 /* 3281 * Find the start and end range of the direct mappings to make sure that 3282 * the vm_unmap_aliases() flush includes the direct map. 3283 */ 3284 for (i = 0; i < area->nr_pages; i += 1U << page_order) { 3285 unsigned long addr = (unsigned long)page_address(area->pages[i]); 3286 3287 if (addr) { 3288 unsigned long page_size; 3289 3290 page_size = PAGE_SIZE << page_order; 3291 start = min(addr, start); 3292 end = max(addr + page_size, end); 3293 flush_dmap = 1; 3294 } 3295 } 3296 3297 /* 3298 * Set direct map to something invalid so that it won't be cached if 3299 * there are any accesses after the TLB flush, then flush the TLB and 3300 * reset the direct map permissions to the default. 3301 */ 3302 set_area_direct_map(area, set_direct_map_invalid_noflush); 3303 _vm_unmap_aliases(start, end, flush_dmap); 3304 set_area_direct_map(area, set_direct_map_default_noflush); 3305 } 3306 3307 static void delayed_vfree_work(struct work_struct *w) 3308 { 3309 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 3310 struct llist_node *t, *llnode; 3311 3312 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 3313 vfree(llnode); 3314 } 3315 3316 /** 3317 * vfree_atomic - release memory allocated by vmalloc() 3318 * @addr: memory base address 3319 * 3320 * This one is just like vfree() but can be called in any atomic context 3321 * except NMIs. 3322 */ 3323 void vfree_atomic(const void *addr) 3324 { 3325 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 3326 3327 BUG_ON(in_nmi()); 3328 kmemleak_free(addr); 3329 3330 /* 3331 * Use raw_cpu_ptr() because this can be called from preemptible 3332 * context. Preemption is absolutely fine here, because the llist_add() 3333 * implementation is lockless, so it works even if we are adding to 3334 * another cpu's list. schedule_work() should be fine with this too. 3335 */ 3336 if (addr && llist_add((struct llist_node *)addr, &p->list)) 3337 schedule_work(&p->wq); 3338 } 3339 3340 /** 3341 * vfree - Release memory allocated by vmalloc() 3342 * @addr: Memory base address 3343 * 3344 * Free the virtually continuous memory area starting at @addr, as obtained 3345 * from one of the vmalloc() family of APIs. This will usually also free the 3346 * physical memory underlying the virtual allocation, but that memory is 3347 * reference counted, so it will not be freed until the last user goes away. 3348 * 3349 * If @addr is NULL, no operation is performed. 3350 * 3351 * Context: 3352 * May sleep if called *not* from interrupt context. 3353 * Must not be called in NMI context (strictly speaking, it could be 3354 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 3355 * conventions for vfree() arch-dependent would be a really bad idea). 3356 */ 3357 void vfree(const void *addr) 3358 { 3359 struct vm_struct *vm; 3360 int i; 3361 3362 if (unlikely(in_interrupt())) { 3363 vfree_atomic(addr); 3364 return; 3365 } 3366 3367 BUG_ON(in_nmi()); 3368 kmemleak_free(addr); 3369 might_sleep(); 3370 3371 if (!addr) 3372 return; 3373 3374 vm = remove_vm_area(addr); 3375 if (unlikely(!vm)) { 3376 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 3377 addr); 3378 return; 3379 } 3380 3381 if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS)) 3382 vm_reset_perms(vm); 3383 /* All pages of vm should be charged to same memcg, so use first one. */ 3384 if (vm->nr_pages && !(vm->flags & VM_MAP_PUT_PAGES)) 3385 mod_memcg_page_state(vm->pages[0], MEMCG_VMALLOC, -vm->nr_pages); 3386 for (i = 0; i < vm->nr_pages; i++) { 3387 struct page *page = vm->pages[i]; 3388 3389 BUG_ON(!page); 3390 /* 3391 * High-order allocs for huge vmallocs are split, so 3392 * can be freed as an array of order-0 allocations 3393 */ 3394 __free_page(page); 3395 cond_resched(); 3396 } 3397 if (!(vm->flags & VM_MAP_PUT_PAGES)) 3398 atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages); 3399 kvfree(vm->pages); 3400 kfree(vm); 3401 } 3402 EXPORT_SYMBOL(vfree); 3403 3404 /** 3405 * vunmap - release virtual mapping obtained by vmap() 3406 * @addr: memory base address 3407 * 3408 * Free the virtually contiguous memory area starting at @addr, 3409 * which was created from the page array passed to vmap(). 3410 * 3411 * Must not be called in interrupt context. 3412 */ 3413 void vunmap(const void *addr) 3414 { 3415 struct vm_struct *vm; 3416 3417 BUG_ON(in_interrupt()); 3418 might_sleep(); 3419 3420 if (!addr) 3421 return; 3422 vm = remove_vm_area(addr); 3423 if (unlikely(!vm)) { 3424 WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n", 3425 addr); 3426 return; 3427 } 3428 kfree(vm); 3429 } 3430 EXPORT_SYMBOL(vunmap); 3431 3432 /** 3433 * vmap - map an array of pages into virtually contiguous space 3434 * @pages: array of page pointers 3435 * @count: number of pages to map 3436 * @flags: vm_area->flags 3437 * @prot: page protection for the mapping 3438 * 3439 * Maps @count pages from @pages into contiguous kernel virtual space. 3440 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself 3441 * (which must be kmalloc or vmalloc memory) and one reference per pages in it 3442 * are transferred from the caller to vmap(), and will be freed / dropped when 3443 * vfree() is called on the return value. 3444 * 3445 * Return: the address of the area or %NULL on failure 3446 */ 3447 void *vmap(struct page **pages, unsigned int count, 3448 unsigned long flags, pgprot_t prot) 3449 { 3450 struct vm_struct *area; 3451 unsigned long addr; 3452 unsigned long size; /* In bytes */ 3453 3454 might_sleep(); 3455 3456 if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS)) 3457 return NULL; 3458 3459 /* 3460 * Your top guard is someone else's bottom guard. Not having a top 3461 * guard compromises someone else's mappings too. 3462 */ 3463 if (WARN_ON_ONCE(flags & VM_NO_GUARD)) 3464 flags &= ~VM_NO_GUARD; 3465 3466 if (count > totalram_pages()) 3467 return NULL; 3468 3469 size = (unsigned long)count << PAGE_SHIFT; 3470 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 3471 if (!area) 3472 return NULL; 3473 3474 addr = (unsigned long)area->addr; 3475 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), 3476 pages, PAGE_SHIFT) < 0) { 3477 vunmap(area->addr); 3478 return NULL; 3479 } 3480 3481 if (flags & VM_MAP_PUT_PAGES) { 3482 area->pages = pages; 3483 area->nr_pages = count; 3484 } 3485 return area->addr; 3486 } 3487 EXPORT_SYMBOL(vmap); 3488 3489 #ifdef CONFIG_VMAP_PFN 3490 struct vmap_pfn_data { 3491 unsigned long *pfns; 3492 pgprot_t prot; 3493 unsigned int idx; 3494 }; 3495 3496 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) 3497 { 3498 struct vmap_pfn_data *data = private; 3499 unsigned long pfn = data->pfns[data->idx]; 3500 pte_t ptent; 3501 3502 if (WARN_ON_ONCE(pfn_valid(pfn))) 3503 return -EINVAL; 3504 3505 ptent = pte_mkspecial(pfn_pte(pfn, data->prot)); 3506 set_pte_at(&init_mm, addr, pte, ptent); 3507 3508 data->idx++; 3509 return 0; 3510 } 3511 3512 /** 3513 * vmap_pfn - map an array of PFNs into virtually contiguous space 3514 * @pfns: array of PFNs 3515 * @count: number of pages to map 3516 * @prot: page protection for the mapping 3517 * 3518 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns 3519 * the start address of the mapping. 3520 */ 3521 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) 3522 { 3523 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; 3524 struct vm_struct *area; 3525 3526 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, 3527 __builtin_return_address(0)); 3528 if (!area) 3529 return NULL; 3530 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 3531 count * PAGE_SIZE, vmap_pfn_apply, &data)) { 3532 free_vm_area(area); 3533 return NULL; 3534 } 3535 3536 flush_cache_vmap((unsigned long)area->addr, 3537 (unsigned long)area->addr + count * PAGE_SIZE); 3538 3539 return area->addr; 3540 } 3541 EXPORT_SYMBOL_GPL(vmap_pfn); 3542 #endif /* CONFIG_VMAP_PFN */ 3543 3544 static inline unsigned int 3545 vm_area_alloc_pages(gfp_t gfp, int nid, 3546 unsigned int order, unsigned int nr_pages, struct page **pages) 3547 { 3548 unsigned int nr_allocated = 0; 3549 struct page *page; 3550 int i; 3551 3552 /* 3553 * For order-0 pages we make use of bulk allocator, if 3554 * the page array is partly or not at all populated due 3555 * to fails, fallback to a single page allocator that is 3556 * more permissive. 3557 */ 3558 if (!order) { 3559 while (nr_allocated < nr_pages) { 3560 unsigned int nr, nr_pages_request; 3561 3562 /* 3563 * A maximum allowed request is hard-coded and is 100 3564 * pages per call. That is done in order to prevent a 3565 * long preemption off scenario in the bulk-allocator 3566 * so the range is [1:100]. 3567 */ 3568 nr_pages_request = min(100U, nr_pages - nr_allocated); 3569 3570 /* memory allocation should consider mempolicy, we can't 3571 * wrongly use nearest node when nid == NUMA_NO_NODE, 3572 * otherwise memory may be allocated in only one node, 3573 * but mempolicy wants to alloc memory by interleaving. 3574 */ 3575 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) 3576 nr = alloc_pages_bulk_mempolicy_noprof(gfp, 3577 nr_pages_request, 3578 pages + nr_allocated); 3579 else 3580 nr = alloc_pages_bulk_node_noprof(gfp, nid, 3581 nr_pages_request, 3582 pages + nr_allocated); 3583 3584 nr_allocated += nr; 3585 cond_resched(); 3586 3587 /* 3588 * If zero or pages were obtained partly, 3589 * fallback to a single page allocator. 3590 */ 3591 if (nr != nr_pages_request) 3592 break; 3593 } 3594 } 3595 3596 /* High-order pages or fallback path if "bulk" fails. */ 3597 while (nr_allocated < nr_pages) { 3598 if (!(gfp & __GFP_NOFAIL) && fatal_signal_pending(current)) 3599 break; 3600 3601 if (nid == NUMA_NO_NODE) 3602 page = alloc_pages_noprof(gfp, order); 3603 else 3604 page = alloc_pages_node_noprof(nid, gfp, order); 3605 3606 if (unlikely(!page)) 3607 break; 3608 3609 /* 3610 * High-order allocations must be able to be treated as 3611 * independent small pages by callers (as they can with 3612 * small-page vmallocs). Some drivers do their own refcounting 3613 * on vmalloc_to_page() pages, some use page->mapping, 3614 * page->lru, etc. 3615 */ 3616 if (order) 3617 split_page(page, order); 3618 3619 /* 3620 * Careful, we allocate and map page-order pages, but 3621 * tracking is done per PAGE_SIZE page so as to keep the 3622 * vm_struct APIs independent of the physical/mapped size. 3623 */ 3624 for (i = 0; i < (1U << order); i++) 3625 pages[nr_allocated + i] = page + i; 3626 3627 cond_resched(); 3628 nr_allocated += 1U << order; 3629 } 3630 3631 return nr_allocated; 3632 } 3633 3634 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 3635 pgprot_t prot, unsigned int page_shift, 3636 int node) 3637 { 3638 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 3639 bool nofail = gfp_mask & __GFP_NOFAIL; 3640 unsigned long addr = (unsigned long)area->addr; 3641 unsigned long size = get_vm_area_size(area); 3642 unsigned long array_size; 3643 unsigned int nr_small_pages = size >> PAGE_SHIFT; 3644 unsigned int page_order; 3645 unsigned int flags; 3646 int ret; 3647 3648 array_size = (unsigned long)nr_small_pages * sizeof(struct page *); 3649 3650 if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) 3651 gfp_mask |= __GFP_HIGHMEM; 3652 3653 /* Please note that the recursion is strictly bounded. */ 3654 if (array_size > PAGE_SIZE) { 3655 area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node, 3656 area->caller); 3657 } else { 3658 area->pages = kmalloc_node_noprof(array_size, nested_gfp, node); 3659 } 3660 3661 if (!area->pages) { 3662 warn_alloc(gfp_mask, NULL, 3663 "vmalloc error: size %lu, failed to allocated page array size %lu", 3664 nr_small_pages * PAGE_SIZE, array_size); 3665 free_vm_area(area); 3666 return NULL; 3667 } 3668 3669 set_vm_area_page_order(area, page_shift - PAGE_SHIFT); 3670 page_order = vm_area_page_order(area); 3671 3672 /* 3673 * High-order nofail allocations are really expensive and 3674 * potentially dangerous (pre-mature OOM, disruptive reclaim 3675 * and compaction etc. 3676 * 3677 * Please note, the __vmalloc_node_range_noprof() falls-back 3678 * to order-0 pages if high-order attempt is unsuccessful. 3679 */ 3680 area->nr_pages = vm_area_alloc_pages((page_order ? 3681 gfp_mask & ~__GFP_NOFAIL : gfp_mask) | __GFP_NOWARN, 3682 node, page_order, nr_small_pages, area->pages); 3683 3684 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 3685 /* All pages of vm should be charged to same memcg, so use first one. */ 3686 if (gfp_mask & __GFP_ACCOUNT && area->nr_pages) 3687 mod_memcg_page_state(area->pages[0], MEMCG_VMALLOC, 3688 area->nr_pages); 3689 3690 /* 3691 * If not enough pages were obtained to accomplish an 3692 * allocation request, free them via vfree() if any. 3693 */ 3694 if (area->nr_pages != nr_small_pages) { 3695 /* 3696 * vm_area_alloc_pages() can fail due to insufficient memory but 3697 * also:- 3698 * 3699 * - a pending fatal signal 3700 * - insufficient huge page-order pages 3701 * 3702 * Since we always retry allocations at order-0 in the huge page 3703 * case a warning for either is spurious. 3704 */ 3705 if (!fatal_signal_pending(current) && page_order == 0) 3706 warn_alloc(gfp_mask, NULL, 3707 "vmalloc error: size %lu, failed to allocate pages", 3708 area->nr_pages * PAGE_SIZE); 3709 goto fail; 3710 } 3711 3712 /* 3713 * page tables allocations ignore external gfp mask, enforce it 3714 * by the scope API 3715 */ 3716 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3717 flags = memalloc_nofs_save(); 3718 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3719 flags = memalloc_noio_save(); 3720 3721 do { 3722 ret = vmap_pages_range(addr, addr + size, prot, area->pages, 3723 page_shift); 3724 if (nofail && (ret < 0)) 3725 schedule_timeout_uninterruptible(1); 3726 } while (nofail && (ret < 0)); 3727 3728 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3729 memalloc_nofs_restore(flags); 3730 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3731 memalloc_noio_restore(flags); 3732 3733 if (ret < 0) { 3734 warn_alloc(gfp_mask, NULL, 3735 "vmalloc error: size %lu, failed to map pages", 3736 area->nr_pages * PAGE_SIZE); 3737 goto fail; 3738 } 3739 3740 return area->addr; 3741 3742 fail: 3743 vfree(area->addr); 3744 return NULL; 3745 } 3746 3747 /** 3748 * __vmalloc_node_range - allocate virtually contiguous memory 3749 * @size: allocation size 3750 * @align: desired alignment 3751 * @start: vm area range start 3752 * @end: vm area range end 3753 * @gfp_mask: flags for the page level allocator 3754 * @prot: protection mask for the allocated pages 3755 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 3756 * @node: node to use for allocation or NUMA_NO_NODE 3757 * @caller: caller's return address 3758 * 3759 * Allocate enough pages to cover @size from the page level 3760 * allocator with @gfp_mask flags. Please note that the full set of gfp 3761 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all 3762 * supported. 3763 * Zone modifiers are not supported. From the reclaim modifiers 3764 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) 3765 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and 3766 * __GFP_RETRY_MAYFAIL are not supported). 3767 * 3768 * __GFP_NOWARN can be used to suppress failures messages. 3769 * 3770 * Map them into contiguous kernel virtual space, using a pagetable 3771 * protection of @prot. 3772 * 3773 * Return: the address of the area or %NULL on failure 3774 */ 3775 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align, 3776 unsigned long start, unsigned long end, gfp_t gfp_mask, 3777 pgprot_t prot, unsigned long vm_flags, int node, 3778 const void *caller) 3779 { 3780 struct vm_struct *area; 3781 void *ret; 3782 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; 3783 unsigned long original_align = align; 3784 unsigned int shift = PAGE_SHIFT; 3785 3786 if (WARN_ON_ONCE(!size)) 3787 return NULL; 3788 3789 if ((size >> PAGE_SHIFT) > totalram_pages()) { 3790 warn_alloc(gfp_mask, NULL, 3791 "vmalloc error: size %lu, exceeds total pages", 3792 size); 3793 return NULL; 3794 } 3795 3796 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { 3797 /* 3798 * Try huge pages. Only try for PAGE_KERNEL allocations, 3799 * others like modules don't yet expect huge pages in 3800 * their allocations due to apply_to_page_range not 3801 * supporting them. 3802 */ 3803 3804 if (arch_vmap_pmd_supported(prot) && size >= PMD_SIZE) 3805 shift = PMD_SHIFT; 3806 else 3807 shift = arch_vmap_pte_supported_shift(size); 3808 3809 align = max(original_align, 1UL << shift); 3810 } 3811 3812 again: 3813 area = __get_vm_area_node(size, align, shift, VM_ALLOC | 3814 VM_UNINITIALIZED | vm_flags, start, end, node, 3815 gfp_mask, caller); 3816 if (!area) { 3817 bool nofail = gfp_mask & __GFP_NOFAIL; 3818 warn_alloc(gfp_mask, NULL, 3819 "vmalloc error: size %lu, vm_struct allocation failed%s", 3820 size, (nofail) ? ". Retrying." : ""); 3821 if (nofail) { 3822 schedule_timeout_uninterruptible(1); 3823 goto again; 3824 } 3825 goto fail; 3826 } 3827 3828 /* 3829 * Prepare arguments for __vmalloc_area_node() and 3830 * kasan_unpoison_vmalloc(). 3831 */ 3832 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { 3833 if (kasan_hw_tags_enabled()) { 3834 /* 3835 * Modify protection bits to allow tagging. 3836 * This must be done before mapping. 3837 */ 3838 prot = arch_vmap_pgprot_tagged(prot); 3839 3840 /* 3841 * Skip page_alloc poisoning and zeroing for physical 3842 * pages backing VM_ALLOC mapping. Memory is instead 3843 * poisoned and zeroed by kasan_unpoison_vmalloc(). 3844 */ 3845 gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO; 3846 } 3847 3848 /* Take note that the mapping is PAGE_KERNEL. */ 3849 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; 3850 } 3851 3852 /* Allocate physical pages and map them into vmalloc space. */ 3853 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); 3854 if (!ret) 3855 goto fail; 3856 3857 /* 3858 * Mark the pages as accessible, now that they are mapped. 3859 * The condition for setting KASAN_VMALLOC_INIT should complement the 3860 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check 3861 * to make sure that memory is initialized under the same conditions. 3862 * Tag-based KASAN modes only assign tags to normal non-executable 3863 * allocations, see __kasan_unpoison_vmalloc(). 3864 */ 3865 kasan_flags |= KASAN_VMALLOC_VM_ALLOC; 3866 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) && 3867 (gfp_mask & __GFP_SKIP_ZERO)) 3868 kasan_flags |= KASAN_VMALLOC_INIT; 3869 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ 3870 area->addr = kasan_unpoison_vmalloc(area->addr, size, kasan_flags); 3871 3872 /* 3873 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 3874 * flag. It means that vm_struct is not fully initialized. 3875 * Now, it is fully initialized, so remove this flag here. 3876 */ 3877 clear_vm_uninitialized_flag(area); 3878 3879 if (!(vm_flags & VM_DEFER_KMEMLEAK)) 3880 kmemleak_vmalloc(area, PAGE_ALIGN(size), gfp_mask); 3881 3882 return area->addr; 3883 3884 fail: 3885 if (shift > PAGE_SHIFT) { 3886 shift = PAGE_SHIFT; 3887 align = original_align; 3888 goto again; 3889 } 3890 3891 return NULL; 3892 } 3893 3894 /** 3895 * __vmalloc_node - allocate virtually contiguous memory 3896 * @size: allocation size 3897 * @align: desired alignment 3898 * @gfp_mask: flags for the page level allocator 3899 * @node: node to use for allocation or NUMA_NO_NODE 3900 * @caller: caller's return address 3901 * 3902 * Allocate enough pages to cover @size from the page level allocator with 3903 * @gfp_mask flags. Map them into contiguous kernel virtual space. 3904 * 3905 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 3906 * and __GFP_NOFAIL are not supported 3907 * 3908 * Any use of gfp flags outside of GFP_KERNEL should be consulted 3909 * with mm people. 3910 * 3911 * Return: pointer to the allocated memory or %NULL on error 3912 */ 3913 void *__vmalloc_node_noprof(unsigned long size, unsigned long align, 3914 gfp_t gfp_mask, int node, const void *caller) 3915 { 3916 return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END, 3917 gfp_mask, PAGE_KERNEL, 0, node, caller); 3918 } 3919 /* 3920 * This is only for performance analysis of vmalloc and stress purpose. 3921 * It is required by vmalloc test module, therefore do not use it other 3922 * than that. 3923 */ 3924 #ifdef CONFIG_TEST_VMALLOC_MODULE 3925 EXPORT_SYMBOL_GPL(__vmalloc_node_noprof); 3926 #endif 3927 3928 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask) 3929 { 3930 return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE, 3931 __builtin_return_address(0)); 3932 } 3933 EXPORT_SYMBOL(__vmalloc_noprof); 3934 3935 /** 3936 * vmalloc - allocate virtually contiguous memory 3937 * @size: allocation size 3938 * 3939 * Allocate enough pages to cover @size from the page level 3940 * allocator and map them into contiguous kernel virtual space. 3941 * 3942 * For tight control over page level allocator and protection flags 3943 * use __vmalloc() instead. 3944 * 3945 * Return: pointer to the allocated memory or %NULL on error 3946 */ 3947 void *vmalloc_noprof(unsigned long size) 3948 { 3949 return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE, 3950 __builtin_return_address(0)); 3951 } 3952 EXPORT_SYMBOL(vmalloc_noprof); 3953 3954 /** 3955 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages 3956 * @size: allocation size 3957 * @gfp_mask: flags for the page level allocator 3958 * 3959 * Allocate enough pages to cover @size from the page level 3960 * allocator and map them into contiguous kernel virtual space. 3961 * If @size is greater than or equal to PMD_SIZE, allow using 3962 * huge pages for the memory 3963 * 3964 * Return: pointer to the allocated memory or %NULL on error 3965 */ 3966 void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask) 3967 { 3968 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END, 3969 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 3970 NUMA_NO_NODE, __builtin_return_address(0)); 3971 } 3972 EXPORT_SYMBOL_GPL(vmalloc_huge_noprof); 3973 3974 /** 3975 * vzalloc - allocate virtually contiguous memory with zero fill 3976 * @size: allocation size 3977 * 3978 * Allocate enough pages to cover @size from the page level 3979 * allocator and map them into contiguous kernel virtual space. 3980 * The memory allocated is set to zero. 3981 * 3982 * For tight control over page level allocator and protection flags 3983 * use __vmalloc() instead. 3984 * 3985 * Return: pointer to the allocated memory or %NULL on error 3986 */ 3987 void *vzalloc_noprof(unsigned long size) 3988 { 3989 return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 3990 __builtin_return_address(0)); 3991 } 3992 EXPORT_SYMBOL(vzalloc_noprof); 3993 3994 /** 3995 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 3996 * @size: allocation size 3997 * 3998 * The resulting memory area is zeroed so it can be mapped to userspace 3999 * without leaking data. 4000 * 4001 * Return: pointer to the allocated memory or %NULL on error 4002 */ 4003 void *vmalloc_user_noprof(unsigned long size) 4004 { 4005 return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END, 4006 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 4007 VM_USERMAP, NUMA_NO_NODE, 4008 __builtin_return_address(0)); 4009 } 4010 EXPORT_SYMBOL(vmalloc_user_noprof); 4011 4012 /** 4013 * vmalloc_node - allocate memory on a specific node 4014 * @size: allocation size 4015 * @node: numa node 4016 * 4017 * Allocate enough pages to cover @size from the page level 4018 * allocator and map them into contiguous kernel virtual space. 4019 * 4020 * For tight control over page level allocator and protection flags 4021 * use __vmalloc() instead. 4022 * 4023 * Return: pointer to the allocated memory or %NULL on error 4024 */ 4025 void *vmalloc_node_noprof(unsigned long size, int node) 4026 { 4027 return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node, 4028 __builtin_return_address(0)); 4029 } 4030 EXPORT_SYMBOL(vmalloc_node_noprof); 4031 4032 /** 4033 * vzalloc_node - allocate memory on a specific node with zero fill 4034 * @size: allocation size 4035 * @node: numa node 4036 * 4037 * Allocate enough pages to cover @size from the page level 4038 * allocator and map them into contiguous kernel virtual space. 4039 * The memory allocated is set to zero. 4040 * 4041 * Return: pointer to the allocated memory or %NULL on error 4042 */ 4043 void *vzalloc_node_noprof(unsigned long size, int node) 4044 { 4045 return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node, 4046 __builtin_return_address(0)); 4047 } 4048 EXPORT_SYMBOL(vzalloc_node_noprof); 4049 4050 /** 4051 * vrealloc - reallocate virtually contiguous memory; contents remain unchanged 4052 * @p: object to reallocate memory for 4053 * @size: the size to reallocate 4054 * @flags: the flags for the page level allocator 4055 * 4056 * If @p is %NULL, vrealloc() behaves exactly like vmalloc(). If @size is 0 and 4057 * @p is not a %NULL pointer, the object pointed to is freed. 4058 * 4059 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 4060 * initial memory allocation, every subsequent call to this API for the same 4061 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 4062 * __GFP_ZERO is not fully honored by this API. 4063 * 4064 * In any case, the contents of the object pointed to are preserved up to the 4065 * lesser of the new and old sizes. 4066 * 4067 * This function must not be called concurrently with itself or vfree() for the 4068 * same memory allocation. 4069 * 4070 * Return: pointer to the allocated memory; %NULL if @size is zero or in case of 4071 * failure 4072 */ 4073 void *vrealloc_noprof(const void *p, size_t size, gfp_t flags) 4074 { 4075 struct vm_struct *vm = NULL; 4076 size_t alloced_size = 0; 4077 size_t old_size = 0; 4078 void *n; 4079 4080 if (!size) { 4081 vfree(p); 4082 return NULL; 4083 } 4084 4085 if (p) { 4086 vm = find_vm_area(p); 4087 if (unlikely(!vm)) { 4088 WARN(1, "Trying to vrealloc() nonexistent vm area (%p)\n", p); 4089 return NULL; 4090 } 4091 4092 alloced_size = get_vm_area_size(vm); 4093 old_size = vm->requested_size; 4094 if (WARN(alloced_size < old_size, 4095 "vrealloc() has mismatched area vs requested sizes (%p)\n", p)) 4096 return NULL; 4097 } 4098 4099 /* 4100 * TODO: Shrink the vm_area, i.e. unmap and free unused pages. What 4101 * would be a good heuristic for when to shrink the vm_area? 4102 */ 4103 if (size <= old_size) { 4104 /* Zero out "freed" memory. */ 4105 if (want_init_on_free()) 4106 memset((void *)p + size, 0, old_size - size); 4107 vm->requested_size = size; 4108 kasan_poison_vmalloc(p + size, old_size - size); 4109 return (void *)p; 4110 } 4111 4112 /* 4113 * We already have the bytes available in the allocation; use them. 4114 */ 4115 if (size <= alloced_size) { 4116 kasan_unpoison_vmalloc(p + old_size, size - old_size, 4117 KASAN_VMALLOC_PROT_NORMAL); 4118 /* Zero out "alloced" memory. */ 4119 if (want_init_on_alloc(flags)) 4120 memset((void *)p + old_size, 0, size - old_size); 4121 vm->requested_size = size; 4122 } 4123 4124 /* TODO: Grow the vm_area, i.e. allocate and map additional pages. */ 4125 n = __vmalloc_noprof(size, flags); 4126 if (!n) 4127 return NULL; 4128 4129 if (p) { 4130 memcpy(n, p, old_size); 4131 vfree(p); 4132 } 4133 4134 return n; 4135 } 4136 4137 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 4138 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 4139 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 4140 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 4141 #else 4142 /* 4143 * 64b systems should always have either DMA or DMA32 zones. For others 4144 * GFP_DMA32 should do the right thing and use the normal zone. 4145 */ 4146 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 4147 #endif 4148 4149 /** 4150 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 4151 * @size: allocation size 4152 * 4153 * Allocate enough 32bit PA addressable pages to cover @size from the 4154 * page level allocator and map them into contiguous kernel virtual space. 4155 * 4156 * Return: pointer to the allocated memory or %NULL on error 4157 */ 4158 void *vmalloc_32_noprof(unsigned long size) 4159 { 4160 return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, 4161 __builtin_return_address(0)); 4162 } 4163 EXPORT_SYMBOL(vmalloc_32_noprof); 4164 4165 /** 4166 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 4167 * @size: allocation size 4168 * 4169 * The resulting memory area is 32bit addressable and zeroed so it can be 4170 * mapped to userspace without leaking data. 4171 * 4172 * Return: pointer to the allocated memory or %NULL on error 4173 */ 4174 void *vmalloc_32_user_noprof(unsigned long size) 4175 { 4176 return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END, 4177 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 4178 VM_USERMAP, NUMA_NO_NODE, 4179 __builtin_return_address(0)); 4180 } 4181 EXPORT_SYMBOL(vmalloc_32_user_noprof); 4182 4183 /* 4184 * Atomically zero bytes in the iterator. 4185 * 4186 * Returns the number of zeroed bytes. 4187 */ 4188 static size_t zero_iter(struct iov_iter *iter, size_t count) 4189 { 4190 size_t remains = count; 4191 4192 while (remains > 0) { 4193 size_t num, copied; 4194 4195 num = min_t(size_t, remains, PAGE_SIZE); 4196 copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter); 4197 remains -= copied; 4198 4199 if (copied < num) 4200 break; 4201 } 4202 4203 return count - remains; 4204 } 4205 4206 /* 4207 * small helper routine, copy contents to iter from addr. 4208 * If the page is not present, fill zero. 4209 * 4210 * Returns the number of copied bytes. 4211 */ 4212 static size_t aligned_vread_iter(struct iov_iter *iter, 4213 const char *addr, size_t count) 4214 { 4215 size_t remains = count; 4216 struct page *page; 4217 4218 while (remains > 0) { 4219 unsigned long offset, length; 4220 size_t copied = 0; 4221 4222 offset = offset_in_page(addr); 4223 length = PAGE_SIZE - offset; 4224 if (length > remains) 4225 length = remains; 4226 page = vmalloc_to_page(addr); 4227 /* 4228 * To do safe access to this _mapped_ area, we need lock. But 4229 * adding lock here means that we need to add overhead of 4230 * vmalloc()/vfree() calls for this _debug_ interface, rarely 4231 * used. Instead of that, we'll use an local mapping via 4232 * copy_page_to_iter_nofault() and accept a small overhead in 4233 * this access function. 4234 */ 4235 if (page) 4236 copied = copy_page_to_iter_nofault(page, offset, 4237 length, iter); 4238 else 4239 copied = zero_iter(iter, length); 4240 4241 addr += copied; 4242 remains -= copied; 4243 4244 if (copied != length) 4245 break; 4246 } 4247 4248 return count - remains; 4249 } 4250 4251 /* 4252 * Read from a vm_map_ram region of memory. 4253 * 4254 * Returns the number of copied bytes. 4255 */ 4256 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr, 4257 size_t count, unsigned long flags) 4258 { 4259 char *start; 4260 struct vmap_block *vb; 4261 struct xarray *xa; 4262 unsigned long offset; 4263 unsigned int rs, re; 4264 size_t remains, n; 4265 4266 /* 4267 * If it's area created by vm_map_ram() interface directly, but 4268 * not further subdividing and delegating management to vmap_block, 4269 * handle it here. 4270 */ 4271 if (!(flags & VMAP_BLOCK)) 4272 return aligned_vread_iter(iter, addr, count); 4273 4274 remains = count; 4275 4276 /* 4277 * Area is split into regions and tracked with vmap_block, read out 4278 * each region and zero fill the hole between regions. 4279 */ 4280 xa = addr_to_vb_xa((unsigned long) addr); 4281 vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr)); 4282 if (!vb) 4283 goto finished_zero; 4284 4285 spin_lock(&vb->lock); 4286 if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) { 4287 spin_unlock(&vb->lock); 4288 goto finished_zero; 4289 } 4290 4291 for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) { 4292 size_t copied; 4293 4294 if (remains == 0) 4295 goto finished; 4296 4297 start = vmap_block_vaddr(vb->va->va_start, rs); 4298 4299 if (addr < start) { 4300 size_t to_zero = min_t(size_t, start - addr, remains); 4301 size_t zeroed = zero_iter(iter, to_zero); 4302 4303 addr += zeroed; 4304 remains -= zeroed; 4305 4306 if (remains == 0 || zeroed != to_zero) 4307 goto finished; 4308 } 4309 4310 /*it could start reading from the middle of used region*/ 4311 offset = offset_in_page(addr); 4312 n = ((re - rs + 1) << PAGE_SHIFT) - offset; 4313 if (n > remains) 4314 n = remains; 4315 4316 copied = aligned_vread_iter(iter, start + offset, n); 4317 4318 addr += copied; 4319 remains -= copied; 4320 4321 if (copied != n) 4322 goto finished; 4323 } 4324 4325 spin_unlock(&vb->lock); 4326 4327 finished_zero: 4328 /* zero-fill the left dirty or free regions */ 4329 return count - remains + zero_iter(iter, remains); 4330 finished: 4331 /* We couldn't copy/zero everything */ 4332 spin_unlock(&vb->lock); 4333 return count - remains; 4334 } 4335 4336 /** 4337 * vread_iter() - read vmalloc area in a safe way to an iterator. 4338 * @iter: the iterator to which data should be written. 4339 * @addr: vm address. 4340 * @count: number of bytes to be read. 4341 * 4342 * This function checks that addr is a valid vmalloc'ed area, and 4343 * copy data from that area to a given buffer. If the given memory range 4344 * of [addr...addr+count) includes some valid address, data is copied to 4345 * proper area of @buf. If there are memory holes, they'll be zero-filled. 4346 * IOREMAP area is treated as memory hole and no copy is done. 4347 * 4348 * If [addr...addr+count) doesn't includes any intersects with alive 4349 * vm_struct area, returns 0. @buf should be kernel's buffer. 4350 * 4351 * Note: In usual ops, vread() is never necessary because the caller 4352 * should know vmalloc() area is valid and can use memcpy(). 4353 * This is for routines which have to access vmalloc area without 4354 * any information, as /proc/kcore. 4355 * 4356 * Return: number of bytes for which addr and buf should be increased 4357 * (same number as @count) or %0 if [addr...addr+count) doesn't 4358 * include any intersection with valid vmalloc area 4359 */ 4360 long vread_iter(struct iov_iter *iter, const char *addr, size_t count) 4361 { 4362 struct vmap_node *vn; 4363 struct vmap_area *va; 4364 struct vm_struct *vm; 4365 char *vaddr; 4366 size_t n, size, flags, remains; 4367 unsigned long next; 4368 4369 addr = kasan_reset_tag(addr); 4370 4371 /* Don't allow overflow */ 4372 if ((unsigned long) addr + count < count) 4373 count = -(unsigned long) addr; 4374 4375 remains = count; 4376 4377 vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va); 4378 if (!vn) 4379 goto finished_zero; 4380 4381 /* no intersects with alive vmap_area */ 4382 if ((unsigned long)addr + remains <= va->va_start) 4383 goto finished_zero; 4384 4385 do { 4386 size_t copied; 4387 4388 if (remains == 0) 4389 goto finished; 4390 4391 vm = va->vm; 4392 flags = va->flags & VMAP_FLAGS_MASK; 4393 /* 4394 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need 4395 * be set together with VMAP_RAM. 4396 */ 4397 WARN_ON(flags == VMAP_BLOCK); 4398 4399 if (!vm && !flags) 4400 goto next_va; 4401 4402 if (vm && (vm->flags & VM_UNINITIALIZED)) 4403 goto next_va; 4404 4405 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 4406 smp_rmb(); 4407 4408 vaddr = (char *) va->va_start; 4409 size = vm ? get_vm_area_size(vm) : va_size(va); 4410 4411 if (addr >= vaddr + size) 4412 goto next_va; 4413 4414 if (addr < vaddr) { 4415 size_t to_zero = min_t(size_t, vaddr - addr, remains); 4416 size_t zeroed = zero_iter(iter, to_zero); 4417 4418 addr += zeroed; 4419 remains -= zeroed; 4420 4421 if (remains == 0 || zeroed != to_zero) 4422 goto finished; 4423 } 4424 4425 n = vaddr + size - addr; 4426 if (n > remains) 4427 n = remains; 4428 4429 if (flags & VMAP_RAM) 4430 copied = vmap_ram_vread_iter(iter, addr, n, flags); 4431 else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE)))) 4432 copied = aligned_vread_iter(iter, addr, n); 4433 else /* IOREMAP | SPARSE area is treated as memory hole */ 4434 copied = zero_iter(iter, n); 4435 4436 addr += copied; 4437 remains -= copied; 4438 4439 if (copied != n) 4440 goto finished; 4441 4442 next_va: 4443 next = va->va_end; 4444 spin_unlock(&vn->busy.lock); 4445 } while ((vn = find_vmap_area_exceed_addr_lock(next, &va))); 4446 4447 finished_zero: 4448 if (vn) 4449 spin_unlock(&vn->busy.lock); 4450 4451 /* zero-fill memory holes */ 4452 return count - remains + zero_iter(iter, remains); 4453 finished: 4454 /* Nothing remains, or We couldn't copy/zero everything. */ 4455 if (vn) 4456 spin_unlock(&vn->busy.lock); 4457 4458 return count - remains; 4459 } 4460 4461 /** 4462 * remap_vmalloc_range_partial - map vmalloc pages to userspace 4463 * @vma: vma to cover 4464 * @uaddr: target user address to start at 4465 * @kaddr: virtual address of vmalloc kernel memory 4466 * @pgoff: offset from @kaddr to start at 4467 * @size: size of map area 4468 * 4469 * Returns: 0 for success, -Exxx on failure 4470 * 4471 * This function checks that @kaddr is a valid vmalloc'ed area, 4472 * and that it is big enough to cover the range starting at 4473 * @uaddr in @vma. Will return failure if that criteria isn't 4474 * met. 4475 * 4476 * Similar to remap_pfn_range() (see mm/memory.c) 4477 */ 4478 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 4479 void *kaddr, unsigned long pgoff, 4480 unsigned long size) 4481 { 4482 struct vm_struct *area; 4483 unsigned long off; 4484 unsigned long end_index; 4485 4486 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) 4487 return -EINVAL; 4488 4489 size = PAGE_ALIGN(size); 4490 4491 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 4492 return -EINVAL; 4493 4494 area = find_vm_area(kaddr); 4495 if (!area) 4496 return -EINVAL; 4497 4498 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 4499 return -EINVAL; 4500 4501 if (check_add_overflow(size, off, &end_index) || 4502 end_index > get_vm_area_size(area)) 4503 return -EINVAL; 4504 kaddr += off; 4505 4506 do { 4507 struct page *page = vmalloc_to_page(kaddr); 4508 int ret; 4509 4510 ret = vm_insert_page(vma, uaddr, page); 4511 if (ret) 4512 return ret; 4513 4514 uaddr += PAGE_SIZE; 4515 kaddr += PAGE_SIZE; 4516 size -= PAGE_SIZE; 4517 } while (size > 0); 4518 4519 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP); 4520 4521 return 0; 4522 } 4523 4524 /** 4525 * remap_vmalloc_range - map vmalloc pages to userspace 4526 * @vma: vma to cover (map full range of vma) 4527 * @addr: vmalloc memory 4528 * @pgoff: number of pages into addr before first page to map 4529 * 4530 * Returns: 0 for success, -Exxx on failure 4531 * 4532 * This function checks that addr is a valid vmalloc'ed area, and 4533 * that it is big enough to cover the vma. Will return failure if 4534 * that criteria isn't met. 4535 * 4536 * Similar to remap_pfn_range() (see mm/memory.c) 4537 */ 4538 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 4539 unsigned long pgoff) 4540 { 4541 return remap_vmalloc_range_partial(vma, vma->vm_start, 4542 addr, pgoff, 4543 vma->vm_end - vma->vm_start); 4544 } 4545 EXPORT_SYMBOL(remap_vmalloc_range); 4546 4547 void free_vm_area(struct vm_struct *area) 4548 { 4549 struct vm_struct *ret; 4550 ret = remove_vm_area(area->addr); 4551 BUG_ON(ret != area); 4552 kfree(area); 4553 } 4554 EXPORT_SYMBOL_GPL(free_vm_area); 4555 4556 #ifdef CONFIG_SMP 4557 static struct vmap_area *node_to_va(struct rb_node *n) 4558 { 4559 return rb_entry_safe(n, struct vmap_area, rb_node); 4560 } 4561 4562 /** 4563 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 4564 * @addr: target address 4565 * 4566 * Returns: vmap_area if it is found. If there is no such area 4567 * the first highest(reverse order) vmap_area is returned 4568 * i.e. va->va_start < addr && va->va_end < addr or NULL 4569 * if there are no any areas before @addr. 4570 */ 4571 static struct vmap_area * 4572 pvm_find_va_enclose_addr(unsigned long addr) 4573 { 4574 struct vmap_area *va, *tmp; 4575 struct rb_node *n; 4576 4577 n = free_vmap_area_root.rb_node; 4578 va = NULL; 4579 4580 while (n) { 4581 tmp = rb_entry(n, struct vmap_area, rb_node); 4582 if (tmp->va_start <= addr) { 4583 va = tmp; 4584 if (tmp->va_end >= addr) 4585 break; 4586 4587 n = n->rb_right; 4588 } else { 4589 n = n->rb_left; 4590 } 4591 } 4592 4593 return va; 4594 } 4595 4596 /** 4597 * pvm_determine_end_from_reverse - find the highest aligned address 4598 * of free block below VMALLOC_END 4599 * @va: 4600 * in - the VA we start the search(reverse order); 4601 * out - the VA with the highest aligned end address. 4602 * @align: alignment for required highest address 4603 * 4604 * Returns: determined end address within vmap_area 4605 */ 4606 static unsigned long 4607 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 4608 { 4609 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 4610 unsigned long addr; 4611 4612 if (likely(*va)) { 4613 list_for_each_entry_from_reverse((*va), 4614 &free_vmap_area_list, list) { 4615 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 4616 if ((*va)->va_start < addr) 4617 return addr; 4618 } 4619 } 4620 4621 return 0; 4622 } 4623 4624 /** 4625 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 4626 * @offsets: array containing offset of each area 4627 * @sizes: array containing size of each area 4628 * @nr_vms: the number of areas to allocate 4629 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 4630 * 4631 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 4632 * vm_structs on success, %NULL on failure 4633 * 4634 * Percpu allocator wants to use congruent vm areas so that it can 4635 * maintain the offsets among percpu areas. This function allocates 4636 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 4637 * be scattered pretty far, distance between two areas easily going up 4638 * to gigabytes. To avoid interacting with regular vmallocs, these 4639 * areas are allocated from top. 4640 * 4641 * Despite its complicated look, this allocator is rather simple. It 4642 * does everything top-down and scans free blocks from the end looking 4643 * for matching base. While scanning, if any of the areas do not fit the 4644 * base address is pulled down to fit the area. Scanning is repeated till 4645 * all the areas fit and then all necessary data structures are inserted 4646 * and the result is returned. 4647 */ 4648 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 4649 const size_t *sizes, int nr_vms, 4650 size_t align) 4651 { 4652 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 4653 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 4654 struct vmap_area **vas, *va; 4655 struct vm_struct **vms; 4656 int area, area2, last_area, term_area; 4657 unsigned long base, start, size, end, last_end, orig_start, orig_end; 4658 bool purged = false; 4659 4660 /* verify parameters and allocate data structures */ 4661 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 4662 for (last_area = 0, area = 0; area < nr_vms; area++) { 4663 start = offsets[area]; 4664 end = start + sizes[area]; 4665 4666 /* is everything aligned properly? */ 4667 BUG_ON(!IS_ALIGNED(offsets[area], align)); 4668 BUG_ON(!IS_ALIGNED(sizes[area], align)); 4669 4670 /* detect the area with the highest address */ 4671 if (start > offsets[last_area]) 4672 last_area = area; 4673 4674 for (area2 = area + 1; area2 < nr_vms; area2++) { 4675 unsigned long start2 = offsets[area2]; 4676 unsigned long end2 = start2 + sizes[area2]; 4677 4678 BUG_ON(start2 < end && start < end2); 4679 } 4680 } 4681 last_end = offsets[last_area] + sizes[last_area]; 4682 4683 if (vmalloc_end - vmalloc_start < last_end) { 4684 WARN_ON(true); 4685 return NULL; 4686 } 4687 4688 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 4689 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 4690 if (!vas || !vms) 4691 goto err_free2; 4692 4693 for (area = 0; area < nr_vms; area++) { 4694 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 4695 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 4696 if (!vas[area] || !vms[area]) 4697 goto err_free; 4698 } 4699 retry: 4700 spin_lock(&free_vmap_area_lock); 4701 4702 /* start scanning - we scan from the top, begin with the last area */ 4703 area = term_area = last_area; 4704 start = offsets[area]; 4705 end = start + sizes[area]; 4706 4707 va = pvm_find_va_enclose_addr(vmalloc_end); 4708 base = pvm_determine_end_from_reverse(&va, align) - end; 4709 4710 while (true) { 4711 /* 4712 * base might have underflowed, add last_end before 4713 * comparing. 4714 */ 4715 if (base + last_end < vmalloc_start + last_end) 4716 goto overflow; 4717 4718 /* 4719 * Fitting base has not been found. 4720 */ 4721 if (va == NULL) 4722 goto overflow; 4723 4724 /* 4725 * If required width exceeds current VA block, move 4726 * base downwards and then recheck. 4727 */ 4728 if (base + end > va->va_end) { 4729 base = pvm_determine_end_from_reverse(&va, align) - end; 4730 term_area = area; 4731 continue; 4732 } 4733 4734 /* 4735 * If this VA does not fit, move base downwards and recheck. 4736 */ 4737 if (base + start < va->va_start) { 4738 va = node_to_va(rb_prev(&va->rb_node)); 4739 base = pvm_determine_end_from_reverse(&va, align) - end; 4740 term_area = area; 4741 continue; 4742 } 4743 4744 /* 4745 * This area fits, move on to the previous one. If 4746 * the previous one is the terminal one, we're done. 4747 */ 4748 area = (area + nr_vms - 1) % nr_vms; 4749 if (area == term_area) 4750 break; 4751 4752 start = offsets[area]; 4753 end = start + sizes[area]; 4754 va = pvm_find_va_enclose_addr(base + end); 4755 } 4756 4757 /* we've found a fitting base, insert all va's */ 4758 for (area = 0; area < nr_vms; area++) { 4759 int ret; 4760 4761 start = base + offsets[area]; 4762 size = sizes[area]; 4763 4764 va = pvm_find_va_enclose_addr(start); 4765 if (WARN_ON_ONCE(va == NULL)) 4766 /* It is a BUG(), but trigger recovery instead. */ 4767 goto recovery; 4768 4769 ret = va_clip(&free_vmap_area_root, 4770 &free_vmap_area_list, va, start, size); 4771 if (WARN_ON_ONCE(unlikely(ret))) 4772 /* It is a BUG(), but trigger recovery instead. */ 4773 goto recovery; 4774 4775 /* Allocated area. */ 4776 va = vas[area]; 4777 va->va_start = start; 4778 va->va_end = start + size; 4779 } 4780 4781 spin_unlock(&free_vmap_area_lock); 4782 4783 /* populate the kasan shadow space */ 4784 for (area = 0; area < nr_vms; area++) { 4785 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) 4786 goto err_free_shadow; 4787 } 4788 4789 /* insert all vm's */ 4790 for (area = 0; area < nr_vms; area++) { 4791 struct vmap_node *vn = addr_to_node(vas[area]->va_start); 4792 4793 spin_lock(&vn->busy.lock); 4794 insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head); 4795 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 4796 pcpu_get_vm_areas); 4797 spin_unlock(&vn->busy.lock); 4798 } 4799 4800 /* 4801 * Mark allocated areas as accessible. Do it now as a best-effort 4802 * approach, as they can be mapped outside of vmalloc code. 4803 * With hardware tag-based KASAN, marking is skipped for 4804 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 4805 */ 4806 for (area = 0; area < nr_vms; area++) 4807 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, 4808 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); 4809 4810 kfree(vas); 4811 return vms; 4812 4813 recovery: 4814 /* 4815 * Remove previously allocated areas. There is no 4816 * need in removing these areas from the busy tree, 4817 * because they are inserted only on the final step 4818 * and when pcpu_get_vm_areas() is success. 4819 */ 4820 while (area--) { 4821 orig_start = vas[area]->va_start; 4822 orig_end = vas[area]->va_end; 4823 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 4824 &free_vmap_area_list); 4825 if (va) 4826 kasan_release_vmalloc(orig_start, orig_end, 4827 va->va_start, va->va_end, 4828 KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH); 4829 vas[area] = NULL; 4830 } 4831 4832 overflow: 4833 spin_unlock(&free_vmap_area_lock); 4834 if (!purged) { 4835 reclaim_and_purge_vmap_areas(); 4836 purged = true; 4837 4838 /* Before "retry", check if we recover. */ 4839 for (area = 0; area < nr_vms; area++) { 4840 if (vas[area]) 4841 continue; 4842 4843 vas[area] = kmem_cache_zalloc( 4844 vmap_area_cachep, GFP_KERNEL); 4845 if (!vas[area]) 4846 goto err_free; 4847 } 4848 4849 goto retry; 4850 } 4851 4852 err_free: 4853 for (area = 0; area < nr_vms; area++) { 4854 if (vas[area]) 4855 kmem_cache_free(vmap_area_cachep, vas[area]); 4856 4857 kfree(vms[area]); 4858 } 4859 err_free2: 4860 kfree(vas); 4861 kfree(vms); 4862 return NULL; 4863 4864 err_free_shadow: 4865 spin_lock(&free_vmap_area_lock); 4866 /* 4867 * We release all the vmalloc shadows, even the ones for regions that 4868 * hadn't been successfully added. This relies on kasan_release_vmalloc 4869 * being able to tolerate this case. 4870 */ 4871 for (area = 0; area < nr_vms; area++) { 4872 orig_start = vas[area]->va_start; 4873 orig_end = vas[area]->va_end; 4874 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 4875 &free_vmap_area_list); 4876 if (va) 4877 kasan_release_vmalloc(orig_start, orig_end, 4878 va->va_start, va->va_end, 4879 KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH); 4880 vas[area] = NULL; 4881 kfree(vms[area]); 4882 } 4883 spin_unlock(&free_vmap_area_lock); 4884 kfree(vas); 4885 kfree(vms); 4886 return NULL; 4887 } 4888 4889 /** 4890 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 4891 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 4892 * @nr_vms: the number of allocated areas 4893 * 4894 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 4895 */ 4896 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 4897 { 4898 int i; 4899 4900 for (i = 0; i < nr_vms; i++) 4901 free_vm_area(vms[i]); 4902 kfree(vms); 4903 } 4904 #endif /* CONFIG_SMP */ 4905 4906 #ifdef CONFIG_PRINTK 4907 bool vmalloc_dump_obj(void *object) 4908 { 4909 const void *caller; 4910 struct vm_struct *vm; 4911 struct vmap_area *va; 4912 struct vmap_node *vn; 4913 unsigned long addr; 4914 unsigned int nr_pages; 4915 4916 addr = PAGE_ALIGN((unsigned long) object); 4917 vn = addr_to_node(addr); 4918 4919 if (!spin_trylock(&vn->busy.lock)) 4920 return false; 4921 4922 va = __find_vmap_area(addr, &vn->busy.root); 4923 if (!va || !va->vm) { 4924 spin_unlock(&vn->busy.lock); 4925 return false; 4926 } 4927 4928 vm = va->vm; 4929 addr = (unsigned long) vm->addr; 4930 caller = vm->caller; 4931 nr_pages = vm->nr_pages; 4932 spin_unlock(&vn->busy.lock); 4933 4934 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", 4935 nr_pages, addr, caller); 4936 4937 return true; 4938 } 4939 #endif 4940 4941 #ifdef CONFIG_PROC_FS 4942 4943 /* 4944 * Print number of pages allocated on each memory node. 4945 * 4946 * This function can only be called if CONFIG_NUMA is enabled 4947 * and VM_UNINITIALIZED bit in v->flags is disabled. 4948 */ 4949 static void show_numa_info(struct seq_file *m, struct vm_struct *v, 4950 unsigned int *counters) 4951 { 4952 unsigned int nr; 4953 unsigned int step = 1U << vm_area_page_order(v); 4954 4955 if (!counters) 4956 return; 4957 4958 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 4959 4960 for (nr = 0; nr < v->nr_pages; nr += step) 4961 counters[page_to_nid(v->pages[nr])] += step; 4962 for_each_node_state(nr, N_HIGH_MEMORY) 4963 if (counters[nr]) 4964 seq_printf(m, " N%u=%u", nr, counters[nr]); 4965 } 4966 4967 static void show_purge_info(struct seq_file *m) 4968 { 4969 struct vmap_node *vn; 4970 struct vmap_area *va; 4971 4972 for_each_vmap_node(vn) { 4973 spin_lock(&vn->lazy.lock); 4974 list_for_each_entry(va, &vn->lazy.head, list) { 4975 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 4976 (void *)va->va_start, (void *)va->va_end, 4977 va_size(va)); 4978 } 4979 spin_unlock(&vn->lazy.lock); 4980 } 4981 } 4982 4983 static int vmalloc_info_show(struct seq_file *m, void *p) 4984 { 4985 struct vmap_node *vn; 4986 struct vmap_area *va; 4987 struct vm_struct *v; 4988 unsigned int *counters; 4989 4990 if (IS_ENABLED(CONFIG_NUMA)) 4991 counters = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 4992 4993 for_each_vmap_node(vn) { 4994 spin_lock(&vn->busy.lock); 4995 list_for_each_entry(va, &vn->busy.head, list) { 4996 if (!va->vm) { 4997 if (va->flags & VMAP_RAM) 4998 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 4999 (void *)va->va_start, (void *)va->va_end, 5000 va_size(va)); 5001 5002 continue; 5003 } 5004 5005 v = va->vm; 5006 if (v->flags & VM_UNINITIALIZED) 5007 continue; 5008 5009 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 5010 smp_rmb(); 5011 5012 seq_printf(m, "0x%pK-0x%pK %7ld", 5013 v->addr, v->addr + v->size, v->size); 5014 5015 if (v->caller) 5016 seq_printf(m, " %pS", v->caller); 5017 5018 if (v->nr_pages) 5019 seq_printf(m, " pages=%d", v->nr_pages); 5020 5021 if (v->phys_addr) 5022 seq_printf(m, " phys=%pa", &v->phys_addr); 5023 5024 if (v->flags & VM_IOREMAP) 5025 seq_puts(m, " ioremap"); 5026 5027 if (v->flags & VM_SPARSE) 5028 seq_puts(m, " sparse"); 5029 5030 if (v->flags & VM_ALLOC) 5031 seq_puts(m, " vmalloc"); 5032 5033 if (v->flags & VM_MAP) 5034 seq_puts(m, " vmap"); 5035 5036 if (v->flags & VM_USERMAP) 5037 seq_puts(m, " user"); 5038 5039 if (v->flags & VM_DMA_COHERENT) 5040 seq_puts(m, " dma-coherent"); 5041 5042 if (is_vmalloc_addr(v->pages)) 5043 seq_puts(m, " vpages"); 5044 5045 if (IS_ENABLED(CONFIG_NUMA)) 5046 show_numa_info(m, v, counters); 5047 5048 seq_putc(m, '\n'); 5049 } 5050 spin_unlock(&vn->busy.lock); 5051 } 5052 5053 /* 5054 * As a final step, dump "unpurged" areas. 5055 */ 5056 show_purge_info(m); 5057 if (IS_ENABLED(CONFIG_NUMA)) 5058 kfree(counters); 5059 return 0; 5060 } 5061 5062 static int __init proc_vmalloc_init(void) 5063 { 5064 proc_create_single("vmallocinfo", 0400, NULL, vmalloc_info_show); 5065 return 0; 5066 } 5067 module_init(proc_vmalloc_init); 5068 5069 #endif 5070 5071 static void __init vmap_init_free_space(void) 5072 { 5073 unsigned long vmap_start = 1; 5074 const unsigned long vmap_end = ULONG_MAX; 5075 struct vmap_area *free; 5076 struct vm_struct *busy; 5077 5078 /* 5079 * B F B B B F 5080 * -|-----|.....|-----|-----|-----|.....|- 5081 * | The KVA space | 5082 * |<--------------------------------->| 5083 */ 5084 for (busy = vmlist; busy; busy = busy->next) { 5085 if ((unsigned long) busy->addr - vmap_start > 0) { 5086 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 5087 if (!WARN_ON_ONCE(!free)) { 5088 free->va_start = vmap_start; 5089 free->va_end = (unsigned long) busy->addr; 5090 5091 insert_vmap_area_augment(free, NULL, 5092 &free_vmap_area_root, 5093 &free_vmap_area_list); 5094 } 5095 } 5096 5097 vmap_start = (unsigned long) busy->addr + busy->size; 5098 } 5099 5100 if (vmap_end - vmap_start > 0) { 5101 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 5102 if (!WARN_ON_ONCE(!free)) { 5103 free->va_start = vmap_start; 5104 free->va_end = vmap_end; 5105 5106 insert_vmap_area_augment(free, NULL, 5107 &free_vmap_area_root, 5108 &free_vmap_area_list); 5109 } 5110 } 5111 } 5112 5113 static void vmap_init_nodes(void) 5114 { 5115 struct vmap_node *vn; 5116 int i; 5117 5118 #if BITS_PER_LONG == 64 5119 /* 5120 * A high threshold of max nodes is fixed and bound to 128, 5121 * thus a scale factor is 1 for systems where number of cores 5122 * are less or equal to specified threshold. 5123 * 5124 * As for NUMA-aware notes. For bigger systems, for example 5125 * NUMA with multi-sockets, where we can end-up with thousands 5126 * of cores in total, a "sub-numa-clustering" should be added. 5127 * 5128 * In this case a NUMA domain is considered as a single entity 5129 * with dedicated sub-nodes in it which describe one group or 5130 * set of cores. Therefore a per-domain purging is supposed to 5131 * be added as well as a per-domain balancing. 5132 */ 5133 int n = clamp_t(unsigned int, num_possible_cpus(), 1, 128); 5134 5135 if (n > 1) { 5136 vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN); 5137 if (vn) { 5138 /* Node partition is 16 pages. */ 5139 vmap_zone_size = (1 << 4) * PAGE_SIZE; 5140 nr_vmap_nodes = n; 5141 vmap_nodes = vn; 5142 } else { 5143 pr_err("Failed to allocate an array. Disable a node layer\n"); 5144 } 5145 } 5146 #endif 5147 5148 for_each_vmap_node(vn) { 5149 vn->busy.root = RB_ROOT; 5150 INIT_LIST_HEAD(&vn->busy.head); 5151 spin_lock_init(&vn->busy.lock); 5152 5153 vn->lazy.root = RB_ROOT; 5154 INIT_LIST_HEAD(&vn->lazy.head); 5155 spin_lock_init(&vn->lazy.lock); 5156 5157 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { 5158 INIT_LIST_HEAD(&vn->pool[i].head); 5159 WRITE_ONCE(vn->pool[i].len, 0); 5160 } 5161 5162 spin_lock_init(&vn->pool_lock); 5163 } 5164 } 5165 5166 static unsigned long 5167 vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 5168 { 5169 unsigned long count = 0; 5170 struct vmap_node *vn; 5171 int i; 5172 5173 for_each_vmap_node(vn) { 5174 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) 5175 count += READ_ONCE(vn->pool[i].len); 5176 } 5177 5178 return count ? count : SHRINK_EMPTY; 5179 } 5180 5181 static unsigned long 5182 vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 5183 { 5184 struct vmap_node *vn; 5185 5186 for_each_vmap_node(vn) 5187 decay_va_pool_node(vn, true); 5188 5189 return SHRINK_STOP; 5190 } 5191 5192 void __init vmalloc_init(void) 5193 { 5194 struct shrinker *vmap_node_shrinker; 5195 struct vmap_area *va; 5196 struct vmap_node *vn; 5197 struct vm_struct *tmp; 5198 int i; 5199 5200 /* 5201 * Create the cache for vmap_area objects. 5202 */ 5203 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 5204 5205 for_each_possible_cpu(i) { 5206 struct vmap_block_queue *vbq; 5207 struct vfree_deferred *p; 5208 5209 vbq = &per_cpu(vmap_block_queue, i); 5210 spin_lock_init(&vbq->lock); 5211 INIT_LIST_HEAD(&vbq->free); 5212 p = &per_cpu(vfree_deferred, i); 5213 init_llist_head(&p->list); 5214 INIT_WORK(&p->wq, delayed_vfree_work); 5215 xa_init(&vbq->vmap_blocks); 5216 } 5217 5218 /* 5219 * Setup nodes before importing vmlist. 5220 */ 5221 vmap_init_nodes(); 5222 5223 /* Import existing vmlist entries. */ 5224 for (tmp = vmlist; tmp; tmp = tmp->next) { 5225 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 5226 if (WARN_ON_ONCE(!va)) 5227 continue; 5228 5229 va->va_start = (unsigned long)tmp->addr; 5230 va->va_end = va->va_start + tmp->size; 5231 va->vm = tmp; 5232 5233 vn = addr_to_node(va->va_start); 5234 insert_vmap_area(va, &vn->busy.root, &vn->busy.head); 5235 } 5236 5237 /* 5238 * Now we can initialize a free vmap space. 5239 */ 5240 vmap_init_free_space(); 5241 vmap_initialized = true; 5242 5243 vmap_node_shrinker = shrinker_alloc(0, "vmap-node"); 5244 if (!vmap_node_shrinker) { 5245 pr_err("Failed to allocate vmap-node shrinker!\n"); 5246 return; 5247 } 5248 5249 vmap_node_shrinker->count_objects = vmap_node_shrink_count; 5250 vmap_node_shrinker->scan_objects = vmap_node_shrink_scan; 5251 shrinker_register(vmap_node_shrinker); 5252 } 5253