xref: /linux/mm/vmalloc.c (revision acc53a0b4c156877773da6e9eea4113dc7e770ae)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/uio.h>
37 #include <linux/bitops.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/overflow.h>
40 #include <linux/pgtable.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 #include <linux/page_owner.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/vmalloc.h>
49 
50 #include "internal.h"
51 #include "pgalloc-track.h"
52 
53 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
54 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
55 
56 static int __init set_nohugeiomap(char *str)
57 {
58 	ioremap_max_page_shift = PAGE_SHIFT;
59 	return 0;
60 }
61 early_param("nohugeiomap", set_nohugeiomap);
62 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
63 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
64 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
65 
66 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
67 static bool __ro_after_init vmap_allow_huge = true;
68 
69 static int __init set_nohugevmalloc(char *str)
70 {
71 	vmap_allow_huge = false;
72 	return 0;
73 }
74 early_param("nohugevmalloc", set_nohugevmalloc);
75 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
76 static const bool vmap_allow_huge = false;
77 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
78 
79 bool is_vmalloc_addr(const void *x)
80 {
81 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
82 
83 	return addr >= VMALLOC_START && addr < VMALLOC_END;
84 }
85 EXPORT_SYMBOL(is_vmalloc_addr);
86 
87 struct vfree_deferred {
88 	struct llist_head list;
89 	struct work_struct wq;
90 };
91 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
92 
93 /*** Page table manipulation functions ***/
94 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
95 			phys_addr_t phys_addr, pgprot_t prot,
96 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
97 {
98 	pte_t *pte;
99 	u64 pfn;
100 	struct page *page;
101 	unsigned long size = PAGE_SIZE;
102 
103 	pfn = phys_addr >> PAGE_SHIFT;
104 	pte = pte_alloc_kernel_track(pmd, addr, mask);
105 	if (!pte)
106 		return -ENOMEM;
107 	do {
108 		if (unlikely(!pte_none(ptep_get(pte)))) {
109 			if (pfn_valid(pfn)) {
110 				page = pfn_to_page(pfn);
111 				dump_page(page, "remapping already mapped page");
112 			}
113 			BUG();
114 		}
115 
116 #ifdef CONFIG_HUGETLB_PAGE
117 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
118 		if (size != PAGE_SIZE) {
119 			pte_t entry = pfn_pte(pfn, prot);
120 
121 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
122 			set_huge_pte_at(&init_mm, addr, pte, entry, size);
123 			pfn += PFN_DOWN(size);
124 			continue;
125 		}
126 #endif
127 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
128 		pfn++;
129 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
130 	*mask |= PGTBL_PTE_MODIFIED;
131 	return 0;
132 }
133 
134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
135 			phys_addr_t phys_addr, pgprot_t prot,
136 			unsigned int max_page_shift)
137 {
138 	if (max_page_shift < PMD_SHIFT)
139 		return 0;
140 
141 	if (!arch_vmap_pmd_supported(prot))
142 		return 0;
143 
144 	if ((end - addr) != PMD_SIZE)
145 		return 0;
146 
147 	if (!IS_ALIGNED(addr, PMD_SIZE))
148 		return 0;
149 
150 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
151 		return 0;
152 
153 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
154 		return 0;
155 
156 	return pmd_set_huge(pmd, phys_addr, prot);
157 }
158 
159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
160 			phys_addr_t phys_addr, pgprot_t prot,
161 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
162 {
163 	pmd_t *pmd;
164 	unsigned long next;
165 
166 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
167 	if (!pmd)
168 		return -ENOMEM;
169 	do {
170 		next = pmd_addr_end(addr, end);
171 
172 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
173 					max_page_shift)) {
174 			*mask |= PGTBL_PMD_MODIFIED;
175 			continue;
176 		}
177 
178 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
179 			return -ENOMEM;
180 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
181 	return 0;
182 }
183 
184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
185 			phys_addr_t phys_addr, pgprot_t prot,
186 			unsigned int max_page_shift)
187 {
188 	if (max_page_shift < PUD_SHIFT)
189 		return 0;
190 
191 	if (!arch_vmap_pud_supported(prot))
192 		return 0;
193 
194 	if ((end - addr) != PUD_SIZE)
195 		return 0;
196 
197 	if (!IS_ALIGNED(addr, PUD_SIZE))
198 		return 0;
199 
200 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
201 		return 0;
202 
203 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
204 		return 0;
205 
206 	return pud_set_huge(pud, phys_addr, prot);
207 }
208 
209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
210 			phys_addr_t phys_addr, pgprot_t prot,
211 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
212 {
213 	pud_t *pud;
214 	unsigned long next;
215 
216 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
217 	if (!pud)
218 		return -ENOMEM;
219 	do {
220 		next = pud_addr_end(addr, end);
221 
222 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
223 					max_page_shift)) {
224 			*mask |= PGTBL_PUD_MODIFIED;
225 			continue;
226 		}
227 
228 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
229 					max_page_shift, mask))
230 			return -ENOMEM;
231 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
232 	return 0;
233 }
234 
235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
236 			phys_addr_t phys_addr, pgprot_t prot,
237 			unsigned int max_page_shift)
238 {
239 	if (max_page_shift < P4D_SHIFT)
240 		return 0;
241 
242 	if (!arch_vmap_p4d_supported(prot))
243 		return 0;
244 
245 	if ((end - addr) != P4D_SIZE)
246 		return 0;
247 
248 	if (!IS_ALIGNED(addr, P4D_SIZE))
249 		return 0;
250 
251 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
252 		return 0;
253 
254 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
255 		return 0;
256 
257 	return p4d_set_huge(p4d, phys_addr, prot);
258 }
259 
260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
261 			phys_addr_t phys_addr, pgprot_t prot,
262 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
263 {
264 	p4d_t *p4d;
265 	unsigned long next;
266 
267 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
268 	if (!p4d)
269 		return -ENOMEM;
270 	do {
271 		next = p4d_addr_end(addr, end);
272 
273 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
274 					max_page_shift)) {
275 			*mask |= PGTBL_P4D_MODIFIED;
276 			continue;
277 		}
278 
279 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
280 					max_page_shift, mask))
281 			return -ENOMEM;
282 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
283 	return 0;
284 }
285 
286 static int vmap_range_noflush(unsigned long addr, unsigned long end,
287 			phys_addr_t phys_addr, pgprot_t prot,
288 			unsigned int max_page_shift)
289 {
290 	pgd_t *pgd;
291 	unsigned long start;
292 	unsigned long next;
293 	int err;
294 	pgtbl_mod_mask mask = 0;
295 
296 	might_sleep();
297 	BUG_ON(addr >= end);
298 
299 	start = addr;
300 	pgd = pgd_offset_k(addr);
301 	do {
302 		next = pgd_addr_end(addr, end);
303 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
304 					max_page_shift, &mask);
305 		if (err)
306 			break;
307 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
308 
309 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
310 		arch_sync_kernel_mappings(start, end);
311 
312 	return err;
313 }
314 
315 int vmap_page_range(unsigned long addr, unsigned long end,
316 		    phys_addr_t phys_addr, pgprot_t prot)
317 {
318 	int err;
319 
320 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
321 				 ioremap_max_page_shift);
322 	flush_cache_vmap(addr, end);
323 	if (!err)
324 		err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
325 					       ioremap_max_page_shift);
326 	return err;
327 }
328 
329 int ioremap_page_range(unsigned long addr, unsigned long end,
330 		phys_addr_t phys_addr, pgprot_t prot)
331 {
332 	struct vm_struct *area;
333 
334 	area = find_vm_area((void *)addr);
335 	if (!area || !(area->flags & VM_IOREMAP)) {
336 		WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr);
337 		return -EINVAL;
338 	}
339 	if (addr != (unsigned long)area->addr ||
340 	    (void *)end != area->addr + get_vm_area_size(area)) {
341 		WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n",
342 			  addr, end, (long)area->addr,
343 			  (long)area->addr + get_vm_area_size(area));
344 		return -ERANGE;
345 	}
346 	return vmap_page_range(addr, end, phys_addr, prot);
347 }
348 
349 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
350 			     pgtbl_mod_mask *mask)
351 {
352 	pte_t *pte;
353 
354 	pte = pte_offset_kernel(pmd, addr);
355 	do {
356 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
357 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
358 	} while (pte++, addr += PAGE_SIZE, addr != end);
359 	*mask |= PGTBL_PTE_MODIFIED;
360 }
361 
362 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
363 			     pgtbl_mod_mask *mask)
364 {
365 	pmd_t *pmd;
366 	unsigned long next;
367 	int cleared;
368 
369 	pmd = pmd_offset(pud, addr);
370 	do {
371 		next = pmd_addr_end(addr, end);
372 
373 		cleared = pmd_clear_huge(pmd);
374 		if (cleared || pmd_bad(*pmd))
375 			*mask |= PGTBL_PMD_MODIFIED;
376 
377 		if (cleared)
378 			continue;
379 		if (pmd_none_or_clear_bad(pmd))
380 			continue;
381 		vunmap_pte_range(pmd, addr, next, mask);
382 
383 		cond_resched();
384 	} while (pmd++, addr = next, addr != end);
385 }
386 
387 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
388 			     pgtbl_mod_mask *mask)
389 {
390 	pud_t *pud;
391 	unsigned long next;
392 	int cleared;
393 
394 	pud = pud_offset(p4d, addr);
395 	do {
396 		next = pud_addr_end(addr, end);
397 
398 		cleared = pud_clear_huge(pud);
399 		if (cleared || pud_bad(*pud))
400 			*mask |= PGTBL_PUD_MODIFIED;
401 
402 		if (cleared)
403 			continue;
404 		if (pud_none_or_clear_bad(pud))
405 			continue;
406 		vunmap_pmd_range(pud, addr, next, mask);
407 	} while (pud++, addr = next, addr != end);
408 }
409 
410 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
411 			     pgtbl_mod_mask *mask)
412 {
413 	p4d_t *p4d;
414 	unsigned long next;
415 
416 	p4d = p4d_offset(pgd, addr);
417 	do {
418 		next = p4d_addr_end(addr, end);
419 
420 		p4d_clear_huge(p4d);
421 		if (p4d_bad(*p4d))
422 			*mask |= PGTBL_P4D_MODIFIED;
423 
424 		if (p4d_none_or_clear_bad(p4d))
425 			continue;
426 		vunmap_pud_range(p4d, addr, next, mask);
427 	} while (p4d++, addr = next, addr != end);
428 }
429 
430 /*
431  * vunmap_range_noflush is similar to vunmap_range, but does not
432  * flush caches or TLBs.
433  *
434  * The caller is responsible for calling flush_cache_vmap() before calling
435  * this function, and flush_tlb_kernel_range after it has returned
436  * successfully (and before the addresses are expected to cause a page fault
437  * or be re-mapped for something else, if TLB flushes are being delayed or
438  * coalesced).
439  *
440  * This is an internal function only. Do not use outside mm/.
441  */
442 void __vunmap_range_noflush(unsigned long start, unsigned long end)
443 {
444 	unsigned long next;
445 	pgd_t *pgd;
446 	unsigned long addr = start;
447 	pgtbl_mod_mask mask = 0;
448 
449 	BUG_ON(addr >= end);
450 	pgd = pgd_offset_k(addr);
451 	do {
452 		next = pgd_addr_end(addr, end);
453 		if (pgd_bad(*pgd))
454 			mask |= PGTBL_PGD_MODIFIED;
455 		if (pgd_none_or_clear_bad(pgd))
456 			continue;
457 		vunmap_p4d_range(pgd, addr, next, &mask);
458 	} while (pgd++, addr = next, addr != end);
459 
460 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
461 		arch_sync_kernel_mappings(start, end);
462 }
463 
464 void vunmap_range_noflush(unsigned long start, unsigned long end)
465 {
466 	kmsan_vunmap_range_noflush(start, end);
467 	__vunmap_range_noflush(start, end);
468 }
469 
470 /**
471  * vunmap_range - unmap kernel virtual addresses
472  * @addr: start of the VM area to unmap
473  * @end: end of the VM area to unmap (non-inclusive)
474  *
475  * Clears any present PTEs in the virtual address range, flushes TLBs and
476  * caches. Any subsequent access to the address before it has been re-mapped
477  * is a kernel bug.
478  */
479 void vunmap_range(unsigned long addr, unsigned long end)
480 {
481 	flush_cache_vunmap(addr, end);
482 	vunmap_range_noflush(addr, end);
483 	flush_tlb_kernel_range(addr, end);
484 }
485 
486 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
487 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
488 		pgtbl_mod_mask *mask)
489 {
490 	pte_t *pte;
491 
492 	/*
493 	 * nr is a running index into the array which helps higher level
494 	 * callers keep track of where we're up to.
495 	 */
496 
497 	pte = pte_alloc_kernel_track(pmd, addr, mask);
498 	if (!pte)
499 		return -ENOMEM;
500 	do {
501 		struct page *page = pages[*nr];
502 
503 		if (WARN_ON(!pte_none(ptep_get(pte))))
504 			return -EBUSY;
505 		if (WARN_ON(!page))
506 			return -ENOMEM;
507 		if (WARN_ON(!pfn_valid(page_to_pfn(page))))
508 			return -EINVAL;
509 
510 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
511 		(*nr)++;
512 	} while (pte++, addr += PAGE_SIZE, addr != end);
513 	*mask |= PGTBL_PTE_MODIFIED;
514 	return 0;
515 }
516 
517 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
518 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
519 		pgtbl_mod_mask *mask)
520 {
521 	pmd_t *pmd;
522 	unsigned long next;
523 
524 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
525 	if (!pmd)
526 		return -ENOMEM;
527 	do {
528 		next = pmd_addr_end(addr, end);
529 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
530 			return -ENOMEM;
531 	} while (pmd++, addr = next, addr != end);
532 	return 0;
533 }
534 
535 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
536 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
537 		pgtbl_mod_mask *mask)
538 {
539 	pud_t *pud;
540 	unsigned long next;
541 
542 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
543 	if (!pud)
544 		return -ENOMEM;
545 	do {
546 		next = pud_addr_end(addr, end);
547 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
548 			return -ENOMEM;
549 	} while (pud++, addr = next, addr != end);
550 	return 0;
551 }
552 
553 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
554 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
555 		pgtbl_mod_mask *mask)
556 {
557 	p4d_t *p4d;
558 	unsigned long next;
559 
560 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
561 	if (!p4d)
562 		return -ENOMEM;
563 	do {
564 		next = p4d_addr_end(addr, end);
565 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
566 			return -ENOMEM;
567 	} while (p4d++, addr = next, addr != end);
568 	return 0;
569 }
570 
571 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
572 		pgprot_t prot, struct page **pages)
573 {
574 	unsigned long start = addr;
575 	pgd_t *pgd;
576 	unsigned long next;
577 	int err = 0;
578 	int nr = 0;
579 	pgtbl_mod_mask mask = 0;
580 
581 	BUG_ON(addr >= end);
582 	pgd = pgd_offset_k(addr);
583 	do {
584 		next = pgd_addr_end(addr, end);
585 		if (pgd_bad(*pgd))
586 			mask |= PGTBL_PGD_MODIFIED;
587 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
588 		if (err)
589 			break;
590 	} while (pgd++, addr = next, addr != end);
591 
592 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
593 		arch_sync_kernel_mappings(start, end);
594 
595 	return err;
596 }
597 
598 /*
599  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
600  * flush caches.
601  *
602  * The caller is responsible for calling flush_cache_vmap() after this
603  * function returns successfully and before the addresses are accessed.
604  *
605  * This is an internal function only. Do not use outside mm/.
606  */
607 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
608 		pgprot_t prot, struct page **pages, unsigned int page_shift)
609 {
610 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
611 
612 	WARN_ON(page_shift < PAGE_SHIFT);
613 
614 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
615 			page_shift == PAGE_SHIFT)
616 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
617 
618 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
619 		int err;
620 
621 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
622 					page_to_phys(pages[i]), prot,
623 					page_shift);
624 		if (err)
625 			return err;
626 
627 		addr += 1UL << page_shift;
628 	}
629 
630 	return 0;
631 }
632 
633 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
634 		pgprot_t prot, struct page **pages, unsigned int page_shift)
635 {
636 	int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
637 						 page_shift);
638 
639 	if (ret)
640 		return ret;
641 	return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
642 }
643 
644 /**
645  * vmap_pages_range - map pages to a kernel virtual address
646  * @addr: start of the VM area to map
647  * @end: end of the VM area to map (non-inclusive)
648  * @prot: page protection flags to use
649  * @pages: pages to map (always PAGE_SIZE pages)
650  * @page_shift: maximum shift that the pages may be mapped with, @pages must
651  * be aligned and contiguous up to at least this shift.
652  *
653  * RETURNS:
654  * 0 on success, -errno on failure.
655  */
656 int vmap_pages_range(unsigned long addr, unsigned long end,
657 		pgprot_t prot, struct page **pages, unsigned int page_shift)
658 {
659 	int err;
660 
661 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
662 	flush_cache_vmap(addr, end);
663 	return err;
664 }
665 
666 static int check_sparse_vm_area(struct vm_struct *area, unsigned long start,
667 				unsigned long end)
668 {
669 	might_sleep();
670 	if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS))
671 		return -EINVAL;
672 	if (WARN_ON_ONCE(area->flags & VM_NO_GUARD))
673 		return -EINVAL;
674 	if (WARN_ON_ONCE(!(area->flags & VM_SPARSE)))
675 		return -EINVAL;
676 	if ((end - start) >> PAGE_SHIFT > totalram_pages())
677 		return -E2BIG;
678 	if (start < (unsigned long)area->addr ||
679 	    (void *)end > area->addr + get_vm_area_size(area))
680 		return -ERANGE;
681 	return 0;
682 }
683 
684 /**
685  * vm_area_map_pages - map pages inside given sparse vm_area
686  * @area: vm_area
687  * @start: start address inside vm_area
688  * @end: end address inside vm_area
689  * @pages: pages to map (always PAGE_SIZE pages)
690  */
691 int vm_area_map_pages(struct vm_struct *area, unsigned long start,
692 		      unsigned long end, struct page **pages)
693 {
694 	int err;
695 
696 	err = check_sparse_vm_area(area, start, end);
697 	if (err)
698 		return err;
699 
700 	return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT);
701 }
702 
703 /**
704  * vm_area_unmap_pages - unmap pages inside given sparse vm_area
705  * @area: vm_area
706  * @start: start address inside vm_area
707  * @end: end address inside vm_area
708  */
709 void vm_area_unmap_pages(struct vm_struct *area, unsigned long start,
710 			 unsigned long end)
711 {
712 	if (check_sparse_vm_area(area, start, end))
713 		return;
714 
715 	vunmap_range(start, end);
716 }
717 
718 int is_vmalloc_or_module_addr(const void *x)
719 {
720 	/*
721 	 * ARM, x86-64 and sparc64 put modules in a special place,
722 	 * and fall back on vmalloc() if that fails. Others
723 	 * just put it in the vmalloc space.
724 	 */
725 #if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR)
726 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
727 	if (addr >= MODULES_VADDR && addr < MODULES_END)
728 		return 1;
729 #endif
730 	return is_vmalloc_addr(x);
731 }
732 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
733 
734 /*
735  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
736  * return the tail page that corresponds to the base page address, which
737  * matches small vmap mappings.
738  */
739 struct page *vmalloc_to_page(const void *vmalloc_addr)
740 {
741 	unsigned long addr = (unsigned long) vmalloc_addr;
742 	struct page *page = NULL;
743 	pgd_t *pgd = pgd_offset_k(addr);
744 	p4d_t *p4d;
745 	pud_t *pud;
746 	pmd_t *pmd;
747 	pte_t *ptep, pte;
748 
749 	/*
750 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
751 	 * architectures that do not vmalloc module space
752 	 */
753 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
754 
755 	if (pgd_none(*pgd))
756 		return NULL;
757 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
758 		return NULL; /* XXX: no allowance for huge pgd */
759 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
760 		return NULL;
761 
762 	p4d = p4d_offset(pgd, addr);
763 	if (p4d_none(*p4d))
764 		return NULL;
765 	if (p4d_leaf(*p4d))
766 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
767 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
768 		return NULL;
769 
770 	pud = pud_offset(p4d, addr);
771 	if (pud_none(*pud))
772 		return NULL;
773 	if (pud_leaf(*pud))
774 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
775 	if (WARN_ON_ONCE(pud_bad(*pud)))
776 		return NULL;
777 
778 	pmd = pmd_offset(pud, addr);
779 	if (pmd_none(*pmd))
780 		return NULL;
781 	if (pmd_leaf(*pmd))
782 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
783 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
784 		return NULL;
785 
786 	ptep = pte_offset_kernel(pmd, addr);
787 	pte = ptep_get(ptep);
788 	if (pte_present(pte))
789 		page = pte_page(pte);
790 
791 	return page;
792 }
793 EXPORT_SYMBOL(vmalloc_to_page);
794 
795 /*
796  * Map a vmalloc()-space virtual address to the physical page frame number.
797  */
798 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
799 {
800 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
801 }
802 EXPORT_SYMBOL(vmalloc_to_pfn);
803 
804 
805 /*** Global kva allocator ***/
806 
807 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
808 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
809 
810 
811 static DEFINE_SPINLOCK(free_vmap_area_lock);
812 static bool vmap_initialized __read_mostly;
813 
814 /*
815  * This kmem_cache is used for vmap_area objects. Instead of
816  * allocating from slab we reuse an object from this cache to
817  * make things faster. Especially in "no edge" splitting of
818  * free block.
819  */
820 static struct kmem_cache *vmap_area_cachep;
821 
822 /*
823  * This linked list is used in pair with free_vmap_area_root.
824  * It gives O(1) access to prev/next to perform fast coalescing.
825  */
826 static LIST_HEAD(free_vmap_area_list);
827 
828 /*
829  * This augment red-black tree represents the free vmap space.
830  * All vmap_area objects in this tree are sorted by va->va_start
831  * address. It is used for allocation and merging when a vmap
832  * object is released.
833  *
834  * Each vmap_area node contains a maximum available free block
835  * of its sub-tree, right or left. Therefore it is possible to
836  * find a lowest match of free area.
837  */
838 static struct rb_root free_vmap_area_root = RB_ROOT;
839 
840 /*
841  * Preload a CPU with one object for "no edge" split case. The
842  * aim is to get rid of allocations from the atomic context, thus
843  * to use more permissive allocation masks.
844  */
845 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
846 
847 /*
848  * This structure defines a single, solid model where a list and
849  * rb-tree are part of one entity protected by the lock. Nodes are
850  * sorted in ascending order, thus for O(1) access to left/right
851  * neighbors a list is used as well as for sequential traversal.
852  */
853 struct rb_list {
854 	struct rb_root root;
855 	struct list_head head;
856 	spinlock_t lock;
857 };
858 
859 /*
860  * A fast size storage contains VAs up to 1M size. A pool consists
861  * of linked between each other ready to go VAs of certain sizes.
862  * An index in the pool-array corresponds to number of pages + 1.
863  */
864 #define MAX_VA_SIZE_PAGES 256
865 
866 struct vmap_pool {
867 	struct list_head head;
868 	unsigned long len;
869 };
870 
871 /*
872  * An effective vmap-node logic. Users make use of nodes instead
873  * of a global heap. It allows to balance an access and mitigate
874  * contention.
875  */
876 static struct vmap_node {
877 	/* Simple size segregated storage. */
878 	struct vmap_pool pool[MAX_VA_SIZE_PAGES];
879 	spinlock_t pool_lock;
880 	bool skip_populate;
881 
882 	/* Bookkeeping data of this node. */
883 	struct rb_list busy;
884 	struct rb_list lazy;
885 
886 	/*
887 	 * Ready-to-free areas.
888 	 */
889 	struct list_head purge_list;
890 	struct work_struct purge_work;
891 	unsigned long nr_purged;
892 } single;
893 
894 /*
895  * Initial setup consists of one single node, i.e. a balancing
896  * is fully disabled. Later on, after vmap is initialized these
897  * parameters are updated based on a system capacity.
898  */
899 static struct vmap_node *vmap_nodes = &single;
900 static __read_mostly unsigned int nr_vmap_nodes = 1;
901 static __read_mostly unsigned int vmap_zone_size = 1;
902 
903 /* A simple iterator over all vmap-nodes. */
904 #define for_each_vmap_node(vn)	\
905 	for ((vn) = &vmap_nodes[0];	\
906 		(vn) < &vmap_nodes[nr_vmap_nodes]; (vn)++)
907 
908 static inline unsigned int
909 addr_to_node_id(unsigned long addr)
910 {
911 	return (addr / vmap_zone_size) % nr_vmap_nodes;
912 }
913 
914 static inline struct vmap_node *
915 addr_to_node(unsigned long addr)
916 {
917 	return &vmap_nodes[addr_to_node_id(addr)];
918 }
919 
920 static inline struct vmap_node *
921 id_to_node(unsigned int id)
922 {
923 	return &vmap_nodes[id % nr_vmap_nodes];
924 }
925 
926 static inline unsigned int
927 node_to_id(struct vmap_node *node)
928 {
929 	/* Pointer arithmetic. */
930 	unsigned int id = node - vmap_nodes;
931 
932 	if (likely(id < nr_vmap_nodes))
933 		return id;
934 
935 	WARN_ONCE(1, "An address 0x%p is out-of-bounds.\n", node);
936 	return 0;
937 }
938 
939 /*
940  * We use the value 0 to represent "no node", that is why
941  * an encoded value will be the node-id incremented by 1.
942  * It is always greater then 0. A valid node_id which can
943  * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id
944  * is not valid 0 is returned.
945  */
946 static unsigned int
947 encode_vn_id(unsigned int node_id)
948 {
949 	/* Can store U8_MAX [0:254] nodes. */
950 	if (node_id < nr_vmap_nodes)
951 		return (node_id + 1) << BITS_PER_BYTE;
952 
953 	/* Warn and no node encoded. */
954 	WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id);
955 	return 0;
956 }
957 
958 /*
959  * Returns an encoded node-id, the valid range is within
960  * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is
961  * returned if extracted data is wrong.
962  */
963 static unsigned int
964 decode_vn_id(unsigned int val)
965 {
966 	unsigned int node_id = (val >> BITS_PER_BYTE) - 1;
967 
968 	/* Can store U8_MAX [0:254] nodes. */
969 	if (node_id < nr_vmap_nodes)
970 		return node_id;
971 
972 	/* If it was _not_ zero, warn. */
973 	WARN_ONCE(node_id != UINT_MAX,
974 		"Decode wrong node id (%d)\n", node_id);
975 
976 	return nr_vmap_nodes;
977 }
978 
979 static bool
980 is_vn_id_valid(unsigned int node_id)
981 {
982 	if (node_id < nr_vmap_nodes)
983 		return true;
984 
985 	return false;
986 }
987 
988 static __always_inline unsigned long
989 va_size(struct vmap_area *va)
990 {
991 	return (va->va_end - va->va_start);
992 }
993 
994 static __always_inline unsigned long
995 get_subtree_max_size(struct rb_node *node)
996 {
997 	struct vmap_area *va;
998 
999 	va = rb_entry_safe(node, struct vmap_area, rb_node);
1000 	return va ? va->subtree_max_size : 0;
1001 }
1002 
1003 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
1004 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
1005 
1006 static void reclaim_and_purge_vmap_areas(void);
1007 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
1008 static void drain_vmap_area_work(struct work_struct *work);
1009 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
1010 
1011 static __cacheline_aligned_in_smp atomic_long_t nr_vmalloc_pages;
1012 static __cacheline_aligned_in_smp atomic_long_t vmap_lazy_nr;
1013 
1014 unsigned long vmalloc_nr_pages(void)
1015 {
1016 	return atomic_long_read(&nr_vmalloc_pages);
1017 }
1018 
1019 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
1020 {
1021 	struct rb_node *n = root->rb_node;
1022 
1023 	addr = (unsigned long)kasan_reset_tag((void *)addr);
1024 
1025 	while (n) {
1026 		struct vmap_area *va;
1027 
1028 		va = rb_entry(n, struct vmap_area, rb_node);
1029 		if (addr < va->va_start)
1030 			n = n->rb_left;
1031 		else if (addr >= va->va_end)
1032 			n = n->rb_right;
1033 		else
1034 			return va;
1035 	}
1036 
1037 	return NULL;
1038 }
1039 
1040 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
1041 static struct vmap_area *
1042 __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root)
1043 {
1044 	struct vmap_area *va = NULL;
1045 	struct rb_node *n = root->rb_node;
1046 
1047 	addr = (unsigned long)kasan_reset_tag((void *)addr);
1048 
1049 	while (n) {
1050 		struct vmap_area *tmp;
1051 
1052 		tmp = rb_entry(n, struct vmap_area, rb_node);
1053 		if (tmp->va_end > addr) {
1054 			va = tmp;
1055 			if (tmp->va_start <= addr)
1056 				break;
1057 
1058 			n = n->rb_left;
1059 		} else
1060 			n = n->rb_right;
1061 	}
1062 
1063 	return va;
1064 }
1065 
1066 /*
1067  * Returns a node where a first VA, that satisfies addr < va_end, resides.
1068  * If success, a node is locked. A user is responsible to unlock it when a
1069  * VA is no longer needed to be accessed.
1070  *
1071  * Returns NULL if nothing found.
1072  */
1073 static struct vmap_node *
1074 find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va)
1075 {
1076 	unsigned long va_start_lowest;
1077 	struct vmap_node *vn;
1078 
1079 repeat:
1080 	va_start_lowest = 0;
1081 
1082 	for_each_vmap_node(vn) {
1083 		spin_lock(&vn->busy.lock);
1084 		*va = __find_vmap_area_exceed_addr(addr, &vn->busy.root);
1085 
1086 		if (*va)
1087 			if (!va_start_lowest || (*va)->va_start < va_start_lowest)
1088 				va_start_lowest = (*va)->va_start;
1089 		spin_unlock(&vn->busy.lock);
1090 	}
1091 
1092 	/*
1093 	 * Check if found VA exists, it might have gone away.  In this case we
1094 	 * repeat the search because a VA has been removed concurrently and we
1095 	 * need to proceed to the next one, which is a rare case.
1096 	 */
1097 	if (va_start_lowest) {
1098 		vn = addr_to_node(va_start_lowest);
1099 
1100 		spin_lock(&vn->busy.lock);
1101 		*va = __find_vmap_area(va_start_lowest, &vn->busy.root);
1102 
1103 		if (*va)
1104 			return vn;
1105 
1106 		spin_unlock(&vn->busy.lock);
1107 		goto repeat;
1108 	}
1109 
1110 	return NULL;
1111 }
1112 
1113 /*
1114  * This function returns back addresses of parent node
1115  * and its left or right link for further processing.
1116  *
1117  * Otherwise NULL is returned. In that case all further
1118  * steps regarding inserting of conflicting overlap range
1119  * have to be declined and actually considered as a bug.
1120  */
1121 static __always_inline struct rb_node **
1122 find_va_links(struct vmap_area *va,
1123 	struct rb_root *root, struct rb_node *from,
1124 	struct rb_node **parent)
1125 {
1126 	struct vmap_area *tmp_va;
1127 	struct rb_node **link;
1128 
1129 	if (root) {
1130 		link = &root->rb_node;
1131 		if (unlikely(!*link)) {
1132 			*parent = NULL;
1133 			return link;
1134 		}
1135 	} else {
1136 		link = &from;
1137 	}
1138 
1139 	/*
1140 	 * Go to the bottom of the tree. When we hit the last point
1141 	 * we end up with parent rb_node and correct direction, i name
1142 	 * it link, where the new va->rb_node will be attached to.
1143 	 */
1144 	do {
1145 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
1146 
1147 		/*
1148 		 * During the traversal we also do some sanity check.
1149 		 * Trigger the BUG() if there are sides(left/right)
1150 		 * or full overlaps.
1151 		 */
1152 		if (va->va_end <= tmp_va->va_start)
1153 			link = &(*link)->rb_left;
1154 		else if (va->va_start >= tmp_va->va_end)
1155 			link = &(*link)->rb_right;
1156 		else {
1157 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
1158 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
1159 
1160 			return NULL;
1161 		}
1162 	} while (*link);
1163 
1164 	*parent = &tmp_va->rb_node;
1165 	return link;
1166 }
1167 
1168 static __always_inline struct list_head *
1169 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
1170 {
1171 	struct list_head *list;
1172 
1173 	if (unlikely(!parent))
1174 		/*
1175 		 * The red-black tree where we try to find VA neighbors
1176 		 * before merging or inserting is empty, i.e. it means
1177 		 * there is no free vmap space. Normally it does not
1178 		 * happen but we handle this case anyway.
1179 		 */
1180 		return NULL;
1181 
1182 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
1183 	return (&parent->rb_right == link ? list->next : list);
1184 }
1185 
1186 static __always_inline void
1187 __link_va(struct vmap_area *va, struct rb_root *root,
1188 	struct rb_node *parent, struct rb_node **link,
1189 	struct list_head *head, bool augment)
1190 {
1191 	/*
1192 	 * VA is still not in the list, but we can
1193 	 * identify its future previous list_head node.
1194 	 */
1195 	if (likely(parent)) {
1196 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
1197 		if (&parent->rb_right != link)
1198 			head = head->prev;
1199 	}
1200 
1201 	/* Insert to the rb-tree */
1202 	rb_link_node(&va->rb_node, parent, link);
1203 	if (augment) {
1204 		/*
1205 		 * Some explanation here. Just perform simple insertion
1206 		 * to the tree. We do not set va->subtree_max_size to
1207 		 * its current size before calling rb_insert_augmented().
1208 		 * It is because we populate the tree from the bottom
1209 		 * to parent levels when the node _is_ in the tree.
1210 		 *
1211 		 * Therefore we set subtree_max_size to zero after insertion,
1212 		 * to let __augment_tree_propagate_from() puts everything to
1213 		 * the correct order later on.
1214 		 */
1215 		rb_insert_augmented(&va->rb_node,
1216 			root, &free_vmap_area_rb_augment_cb);
1217 		va->subtree_max_size = 0;
1218 	} else {
1219 		rb_insert_color(&va->rb_node, root);
1220 	}
1221 
1222 	/* Address-sort this list */
1223 	list_add(&va->list, head);
1224 }
1225 
1226 static __always_inline void
1227 link_va(struct vmap_area *va, struct rb_root *root,
1228 	struct rb_node *parent, struct rb_node **link,
1229 	struct list_head *head)
1230 {
1231 	__link_va(va, root, parent, link, head, false);
1232 }
1233 
1234 static __always_inline void
1235 link_va_augment(struct vmap_area *va, struct rb_root *root,
1236 	struct rb_node *parent, struct rb_node **link,
1237 	struct list_head *head)
1238 {
1239 	__link_va(va, root, parent, link, head, true);
1240 }
1241 
1242 static __always_inline void
1243 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
1244 {
1245 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
1246 		return;
1247 
1248 	if (augment)
1249 		rb_erase_augmented(&va->rb_node,
1250 			root, &free_vmap_area_rb_augment_cb);
1251 	else
1252 		rb_erase(&va->rb_node, root);
1253 
1254 	list_del_init(&va->list);
1255 	RB_CLEAR_NODE(&va->rb_node);
1256 }
1257 
1258 static __always_inline void
1259 unlink_va(struct vmap_area *va, struct rb_root *root)
1260 {
1261 	__unlink_va(va, root, false);
1262 }
1263 
1264 static __always_inline void
1265 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1266 {
1267 	__unlink_va(va, root, true);
1268 }
1269 
1270 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1271 /*
1272  * Gets called when remove the node and rotate.
1273  */
1274 static __always_inline unsigned long
1275 compute_subtree_max_size(struct vmap_area *va)
1276 {
1277 	return max3(va_size(va),
1278 		get_subtree_max_size(va->rb_node.rb_left),
1279 		get_subtree_max_size(va->rb_node.rb_right));
1280 }
1281 
1282 static void
1283 augment_tree_propagate_check(void)
1284 {
1285 	struct vmap_area *va;
1286 	unsigned long computed_size;
1287 
1288 	list_for_each_entry(va, &free_vmap_area_list, list) {
1289 		computed_size = compute_subtree_max_size(va);
1290 		if (computed_size != va->subtree_max_size)
1291 			pr_emerg("tree is corrupted: %lu, %lu\n",
1292 				va_size(va), va->subtree_max_size);
1293 	}
1294 }
1295 #endif
1296 
1297 /*
1298  * This function populates subtree_max_size from bottom to upper
1299  * levels starting from VA point. The propagation must be done
1300  * when VA size is modified by changing its va_start/va_end. Or
1301  * in case of newly inserting of VA to the tree.
1302  *
1303  * It means that __augment_tree_propagate_from() must be called:
1304  * - After VA has been inserted to the tree(free path);
1305  * - After VA has been shrunk(allocation path);
1306  * - After VA has been increased(merging path).
1307  *
1308  * Please note that, it does not mean that upper parent nodes
1309  * and their subtree_max_size are recalculated all the time up
1310  * to the root node.
1311  *
1312  *       4--8
1313  *        /\
1314  *       /  \
1315  *      /    \
1316  *    2--2  8--8
1317  *
1318  * For example if we modify the node 4, shrinking it to 2, then
1319  * no any modification is required. If we shrink the node 2 to 1
1320  * its subtree_max_size is updated only, and set to 1. If we shrink
1321  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1322  * node becomes 4--6.
1323  */
1324 static __always_inline void
1325 augment_tree_propagate_from(struct vmap_area *va)
1326 {
1327 	/*
1328 	 * Populate the tree from bottom towards the root until
1329 	 * the calculated maximum available size of checked node
1330 	 * is equal to its current one.
1331 	 */
1332 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1333 
1334 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1335 	augment_tree_propagate_check();
1336 #endif
1337 }
1338 
1339 static void
1340 insert_vmap_area(struct vmap_area *va,
1341 	struct rb_root *root, struct list_head *head)
1342 {
1343 	struct rb_node **link;
1344 	struct rb_node *parent;
1345 
1346 	link = find_va_links(va, root, NULL, &parent);
1347 	if (link)
1348 		link_va(va, root, parent, link, head);
1349 }
1350 
1351 static void
1352 insert_vmap_area_augment(struct vmap_area *va,
1353 	struct rb_node *from, struct rb_root *root,
1354 	struct list_head *head)
1355 {
1356 	struct rb_node **link;
1357 	struct rb_node *parent;
1358 
1359 	if (from)
1360 		link = find_va_links(va, NULL, from, &parent);
1361 	else
1362 		link = find_va_links(va, root, NULL, &parent);
1363 
1364 	if (link) {
1365 		link_va_augment(va, root, parent, link, head);
1366 		augment_tree_propagate_from(va);
1367 	}
1368 }
1369 
1370 /*
1371  * Merge de-allocated chunk of VA memory with previous
1372  * and next free blocks. If coalesce is not done a new
1373  * free area is inserted. If VA has been merged, it is
1374  * freed.
1375  *
1376  * Please note, it can return NULL in case of overlap
1377  * ranges, followed by WARN() report. Despite it is a
1378  * buggy behaviour, a system can be alive and keep
1379  * ongoing.
1380  */
1381 static __always_inline struct vmap_area *
1382 __merge_or_add_vmap_area(struct vmap_area *va,
1383 	struct rb_root *root, struct list_head *head, bool augment)
1384 {
1385 	struct vmap_area *sibling;
1386 	struct list_head *next;
1387 	struct rb_node **link;
1388 	struct rb_node *parent;
1389 	bool merged = false;
1390 
1391 	/*
1392 	 * Find a place in the tree where VA potentially will be
1393 	 * inserted, unless it is merged with its sibling/siblings.
1394 	 */
1395 	link = find_va_links(va, root, NULL, &parent);
1396 	if (!link)
1397 		return NULL;
1398 
1399 	/*
1400 	 * Get next node of VA to check if merging can be done.
1401 	 */
1402 	next = get_va_next_sibling(parent, link);
1403 	if (unlikely(next == NULL))
1404 		goto insert;
1405 
1406 	/*
1407 	 * start            end
1408 	 * |                |
1409 	 * |<------VA------>|<-----Next----->|
1410 	 *                  |                |
1411 	 *                  start            end
1412 	 */
1413 	if (next != head) {
1414 		sibling = list_entry(next, struct vmap_area, list);
1415 		if (sibling->va_start == va->va_end) {
1416 			sibling->va_start = va->va_start;
1417 
1418 			/* Free vmap_area object. */
1419 			kmem_cache_free(vmap_area_cachep, va);
1420 
1421 			/* Point to the new merged area. */
1422 			va = sibling;
1423 			merged = true;
1424 		}
1425 	}
1426 
1427 	/*
1428 	 * start            end
1429 	 * |                |
1430 	 * |<-----Prev----->|<------VA------>|
1431 	 *                  |                |
1432 	 *                  start            end
1433 	 */
1434 	if (next->prev != head) {
1435 		sibling = list_entry(next->prev, struct vmap_area, list);
1436 		if (sibling->va_end == va->va_start) {
1437 			/*
1438 			 * If both neighbors are coalesced, it is important
1439 			 * to unlink the "next" node first, followed by merging
1440 			 * with "previous" one. Otherwise the tree might not be
1441 			 * fully populated if a sibling's augmented value is
1442 			 * "normalized" because of rotation operations.
1443 			 */
1444 			if (merged)
1445 				__unlink_va(va, root, augment);
1446 
1447 			sibling->va_end = va->va_end;
1448 
1449 			/* Free vmap_area object. */
1450 			kmem_cache_free(vmap_area_cachep, va);
1451 
1452 			/* Point to the new merged area. */
1453 			va = sibling;
1454 			merged = true;
1455 		}
1456 	}
1457 
1458 insert:
1459 	if (!merged)
1460 		__link_va(va, root, parent, link, head, augment);
1461 
1462 	return va;
1463 }
1464 
1465 static __always_inline struct vmap_area *
1466 merge_or_add_vmap_area(struct vmap_area *va,
1467 	struct rb_root *root, struct list_head *head)
1468 {
1469 	return __merge_or_add_vmap_area(va, root, head, false);
1470 }
1471 
1472 static __always_inline struct vmap_area *
1473 merge_or_add_vmap_area_augment(struct vmap_area *va,
1474 	struct rb_root *root, struct list_head *head)
1475 {
1476 	va = __merge_or_add_vmap_area(va, root, head, true);
1477 	if (va)
1478 		augment_tree_propagate_from(va);
1479 
1480 	return va;
1481 }
1482 
1483 static __always_inline bool
1484 is_within_this_va(struct vmap_area *va, unsigned long size,
1485 	unsigned long align, unsigned long vstart)
1486 {
1487 	unsigned long nva_start_addr;
1488 
1489 	if (va->va_start > vstart)
1490 		nva_start_addr = ALIGN(va->va_start, align);
1491 	else
1492 		nva_start_addr = ALIGN(vstart, align);
1493 
1494 	/* Can be overflowed due to big size or alignment. */
1495 	if (nva_start_addr + size < nva_start_addr ||
1496 			nva_start_addr < vstart)
1497 		return false;
1498 
1499 	return (nva_start_addr + size <= va->va_end);
1500 }
1501 
1502 /*
1503  * Find the first free block(lowest start address) in the tree,
1504  * that will accomplish the request corresponding to passing
1505  * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1506  * a search length is adjusted to account for worst case alignment
1507  * overhead.
1508  */
1509 static __always_inline struct vmap_area *
1510 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1511 	unsigned long align, unsigned long vstart, bool adjust_search_size)
1512 {
1513 	struct vmap_area *va;
1514 	struct rb_node *node;
1515 	unsigned long length;
1516 
1517 	/* Start from the root. */
1518 	node = root->rb_node;
1519 
1520 	/* Adjust the search size for alignment overhead. */
1521 	length = adjust_search_size ? size + align - 1 : size;
1522 
1523 	while (node) {
1524 		va = rb_entry(node, struct vmap_area, rb_node);
1525 
1526 		if (get_subtree_max_size(node->rb_left) >= length &&
1527 				vstart < va->va_start) {
1528 			node = node->rb_left;
1529 		} else {
1530 			if (is_within_this_va(va, size, align, vstart))
1531 				return va;
1532 
1533 			/*
1534 			 * Does not make sense to go deeper towards the right
1535 			 * sub-tree if it does not have a free block that is
1536 			 * equal or bigger to the requested search length.
1537 			 */
1538 			if (get_subtree_max_size(node->rb_right) >= length) {
1539 				node = node->rb_right;
1540 				continue;
1541 			}
1542 
1543 			/*
1544 			 * OK. We roll back and find the first right sub-tree,
1545 			 * that will satisfy the search criteria. It can happen
1546 			 * due to "vstart" restriction or an alignment overhead
1547 			 * that is bigger then PAGE_SIZE.
1548 			 */
1549 			while ((node = rb_parent(node))) {
1550 				va = rb_entry(node, struct vmap_area, rb_node);
1551 				if (is_within_this_va(va, size, align, vstart))
1552 					return va;
1553 
1554 				if (get_subtree_max_size(node->rb_right) >= length &&
1555 						vstart <= va->va_start) {
1556 					/*
1557 					 * Shift the vstart forward. Please note, we update it with
1558 					 * parent's start address adding "1" because we do not want
1559 					 * to enter same sub-tree after it has already been checked
1560 					 * and no suitable free block found there.
1561 					 */
1562 					vstart = va->va_start + 1;
1563 					node = node->rb_right;
1564 					break;
1565 				}
1566 			}
1567 		}
1568 	}
1569 
1570 	return NULL;
1571 }
1572 
1573 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1574 #include <linux/random.h>
1575 
1576 static struct vmap_area *
1577 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1578 	unsigned long align, unsigned long vstart)
1579 {
1580 	struct vmap_area *va;
1581 
1582 	list_for_each_entry(va, head, list) {
1583 		if (!is_within_this_va(va, size, align, vstart))
1584 			continue;
1585 
1586 		return va;
1587 	}
1588 
1589 	return NULL;
1590 }
1591 
1592 static void
1593 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1594 			     unsigned long size, unsigned long align)
1595 {
1596 	struct vmap_area *va_1, *va_2;
1597 	unsigned long vstart;
1598 	unsigned int rnd;
1599 
1600 	get_random_bytes(&rnd, sizeof(rnd));
1601 	vstart = VMALLOC_START + rnd;
1602 
1603 	va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1604 	va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1605 
1606 	if (va_1 != va_2)
1607 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1608 			va_1, va_2, vstart);
1609 }
1610 #endif
1611 
1612 enum fit_type {
1613 	NOTHING_FIT = 0,
1614 	FL_FIT_TYPE = 1,	/* full fit */
1615 	LE_FIT_TYPE = 2,	/* left edge fit */
1616 	RE_FIT_TYPE = 3,	/* right edge fit */
1617 	NE_FIT_TYPE = 4		/* no edge fit */
1618 };
1619 
1620 static __always_inline enum fit_type
1621 classify_va_fit_type(struct vmap_area *va,
1622 	unsigned long nva_start_addr, unsigned long size)
1623 {
1624 	enum fit_type type;
1625 
1626 	/* Check if it is within VA. */
1627 	if (nva_start_addr < va->va_start ||
1628 			nva_start_addr + size > va->va_end)
1629 		return NOTHING_FIT;
1630 
1631 	/* Now classify. */
1632 	if (va->va_start == nva_start_addr) {
1633 		if (va->va_end == nva_start_addr + size)
1634 			type = FL_FIT_TYPE;
1635 		else
1636 			type = LE_FIT_TYPE;
1637 	} else if (va->va_end == nva_start_addr + size) {
1638 		type = RE_FIT_TYPE;
1639 	} else {
1640 		type = NE_FIT_TYPE;
1641 	}
1642 
1643 	return type;
1644 }
1645 
1646 static __always_inline int
1647 va_clip(struct rb_root *root, struct list_head *head,
1648 		struct vmap_area *va, unsigned long nva_start_addr,
1649 		unsigned long size)
1650 {
1651 	struct vmap_area *lva = NULL;
1652 	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1653 
1654 	if (type == FL_FIT_TYPE) {
1655 		/*
1656 		 * No need to split VA, it fully fits.
1657 		 *
1658 		 * |               |
1659 		 * V      NVA      V
1660 		 * |---------------|
1661 		 */
1662 		unlink_va_augment(va, root);
1663 		kmem_cache_free(vmap_area_cachep, va);
1664 	} else if (type == LE_FIT_TYPE) {
1665 		/*
1666 		 * Split left edge of fit VA.
1667 		 *
1668 		 * |       |
1669 		 * V  NVA  V   R
1670 		 * |-------|-------|
1671 		 */
1672 		va->va_start += size;
1673 	} else if (type == RE_FIT_TYPE) {
1674 		/*
1675 		 * Split right edge of fit VA.
1676 		 *
1677 		 *         |       |
1678 		 *     L   V  NVA  V
1679 		 * |-------|-------|
1680 		 */
1681 		va->va_end = nva_start_addr;
1682 	} else if (type == NE_FIT_TYPE) {
1683 		/*
1684 		 * Split no edge of fit VA.
1685 		 *
1686 		 *     |       |
1687 		 *   L V  NVA  V R
1688 		 * |---|-------|---|
1689 		 */
1690 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1691 		if (unlikely(!lva)) {
1692 			/*
1693 			 * For percpu allocator we do not do any pre-allocation
1694 			 * and leave it as it is. The reason is it most likely
1695 			 * never ends up with NE_FIT_TYPE splitting. In case of
1696 			 * percpu allocations offsets and sizes are aligned to
1697 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1698 			 * are its main fitting cases.
1699 			 *
1700 			 * There are a few exceptions though, as an example it is
1701 			 * a first allocation (early boot up) when we have "one"
1702 			 * big free space that has to be split.
1703 			 *
1704 			 * Also we can hit this path in case of regular "vmap"
1705 			 * allocations, if "this" current CPU was not preloaded.
1706 			 * See the comment in alloc_vmap_area() why. If so, then
1707 			 * GFP_NOWAIT is used instead to get an extra object for
1708 			 * split purpose. That is rare and most time does not
1709 			 * occur.
1710 			 *
1711 			 * What happens if an allocation gets failed. Basically,
1712 			 * an "overflow" path is triggered to purge lazily freed
1713 			 * areas to free some memory, then, the "retry" path is
1714 			 * triggered to repeat one more time. See more details
1715 			 * in alloc_vmap_area() function.
1716 			 */
1717 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1718 			if (!lva)
1719 				return -ENOMEM;
1720 		}
1721 
1722 		/*
1723 		 * Build the remainder.
1724 		 */
1725 		lva->va_start = va->va_start;
1726 		lva->va_end = nva_start_addr;
1727 
1728 		/*
1729 		 * Shrink this VA to remaining size.
1730 		 */
1731 		va->va_start = nva_start_addr + size;
1732 	} else {
1733 		return -EINVAL;
1734 	}
1735 
1736 	if (type != FL_FIT_TYPE) {
1737 		augment_tree_propagate_from(va);
1738 
1739 		if (lva)	/* type == NE_FIT_TYPE */
1740 			insert_vmap_area_augment(lva, &va->rb_node, root, head);
1741 	}
1742 
1743 	return 0;
1744 }
1745 
1746 static unsigned long
1747 va_alloc(struct vmap_area *va,
1748 		struct rb_root *root, struct list_head *head,
1749 		unsigned long size, unsigned long align,
1750 		unsigned long vstart, unsigned long vend)
1751 {
1752 	unsigned long nva_start_addr;
1753 	int ret;
1754 
1755 	if (va->va_start > vstart)
1756 		nva_start_addr = ALIGN(va->va_start, align);
1757 	else
1758 		nva_start_addr = ALIGN(vstart, align);
1759 
1760 	/* Check the "vend" restriction. */
1761 	if (nva_start_addr + size > vend)
1762 		return -ERANGE;
1763 
1764 	/* Update the free vmap_area. */
1765 	ret = va_clip(root, head, va, nva_start_addr, size);
1766 	if (WARN_ON_ONCE(ret))
1767 		return ret;
1768 
1769 	return nva_start_addr;
1770 }
1771 
1772 /*
1773  * Returns a start address of the newly allocated area, if success.
1774  * Otherwise an error value is returned that indicates failure.
1775  */
1776 static __always_inline unsigned long
1777 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1778 	unsigned long size, unsigned long align,
1779 	unsigned long vstart, unsigned long vend)
1780 {
1781 	bool adjust_search_size = true;
1782 	unsigned long nva_start_addr;
1783 	struct vmap_area *va;
1784 
1785 	/*
1786 	 * Do not adjust when:
1787 	 *   a) align <= PAGE_SIZE, because it does not make any sense.
1788 	 *      All blocks(their start addresses) are at least PAGE_SIZE
1789 	 *      aligned anyway;
1790 	 *   b) a short range where a requested size corresponds to exactly
1791 	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1792 	 *      With adjusted search length an allocation would not succeed.
1793 	 */
1794 	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1795 		adjust_search_size = false;
1796 
1797 	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1798 	if (unlikely(!va))
1799 		return -ENOENT;
1800 
1801 	nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend);
1802 
1803 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1804 	if (!IS_ERR_VALUE(nva_start_addr))
1805 		find_vmap_lowest_match_check(root, head, size, align);
1806 #endif
1807 
1808 	return nva_start_addr;
1809 }
1810 
1811 /*
1812  * Free a region of KVA allocated by alloc_vmap_area
1813  */
1814 static void free_vmap_area(struct vmap_area *va)
1815 {
1816 	struct vmap_node *vn = addr_to_node(va->va_start);
1817 
1818 	/*
1819 	 * Remove from the busy tree/list.
1820 	 */
1821 	spin_lock(&vn->busy.lock);
1822 	unlink_va(va, &vn->busy.root);
1823 	spin_unlock(&vn->busy.lock);
1824 
1825 	/*
1826 	 * Insert/Merge it back to the free tree/list.
1827 	 */
1828 	spin_lock(&free_vmap_area_lock);
1829 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1830 	spin_unlock(&free_vmap_area_lock);
1831 }
1832 
1833 static inline void
1834 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1835 {
1836 	struct vmap_area *va = NULL, *tmp;
1837 
1838 	/*
1839 	 * Preload this CPU with one extra vmap_area object. It is used
1840 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1841 	 * a CPU that does an allocation is preloaded.
1842 	 *
1843 	 * We do it in non-atomic context, thus it allows us to use more
1844 	 * permissive allocation masks to be more stable under low memory
1845 	 * condition and high memory pressure.
1846 	 */
1847 	if (!this_cpu_read(ne_fit_preload_node))
1848 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1849 
1850 	spin_lock(lock);
1851 
1852 	tmp = NULL;
1853 	if (va && !__this_cpu_try_cmpxchg(ne_fit_preload_node, &tmp, va))
1854 		kmem_cache_free(vmap_area_cachep, va);
1855 }
1856 
1857 static struct vmap_pool *
1858 size_to_va_pool(struct vmap_node *vn, unsigned long size)
1859 {
1860 	unsigned int idx = (size - 1) / PAGE_SIZE;
1861 
1862 	if (idx < MAX_VA_SIZE_PAGES)
1863 		return &vn->pool[idx];
1864 
1865 	return NULL;
1866 }
1867 
1868 static bool
1869 node_pool_add_va(struct vmap_node *n, struct vmap_area *va)
1870 {
1871 	struct vmap_pool *vp;
1872 
1873 	vp = size_to_va_pool(n, va_size(va));
1874 	if (!vp)
1875 		return false;
1876 
1877 	spin_lock(&n->pool_lock);
1878 	list_add(&va->list, &vp->head);
1879 	WRITE_ONCE(vp->len, vp->len + 1);
1880 	spin_unlock(&n->pool_lock);
1881 
1882 	return true;
1883 }
1884 
1885 static struct vmap_area *
1886 node_pool_del_va(struct vmap_node *vn, unsigned long size,
1887 		unsigned long align, unsigned long vstart,
1888 		unsigned long vend)
1889 {
1890 	struct vmap_area *va = NULL;
1891 	struct vmap_pool *vp;
1892 	int err = 0;
1893 
1894 	vp = size_to_va_pool(vn, size);
1895 	if (!vp || list_empty(&vp->head))
1896 		return NULL;
1897 
1898 	spin_lock(&vn->pool_lock);
1899 	if (!list_empty(&vp->head)) {
1900 		va = list_first_entry(&vp->head, struct vmap_area, list);
1901 
1902 		if (IS_ALIGNED(va->va_start, align)) {
1903 			/*
1904 			 * Do some sanity check and emit a warning
1905 			 * if one of below checks detects an error.
1906 			 */
1907 			err |= (va_size(va) != size);
1908 			err |= (va->va_start < vstart);
1909 			err |= (va->va_end > vend);
1910 
1911 			if (!WARN_ON_ONCE(err)) {
1912 				list_del_init(&va->list);
1913 				WRITE_ONCE(vp->len, vp->len - 1);
1914 			} else {
1915 				va = NULL;
1916 			}
1917 		} else {
1918 			list_move_tail(&va->list, &vp->head);
1919 			va = NULL;
1920 		}
1921 	}
1922 	spin_unlock(&vn->pool_lock);
1923 
1924 	return va;
1925 }
1926 
1927 static struct vmap_area *
1928 node_alloc(unsigned long size, unsigned long align,
1929 		unsigned long vstart, unsigned long vend,
1930 		unsigned long *addr, unsigned int *vn_id)
1931 {
1932 	struct vmap_area *va;
1933 
1934 	*vn_id = 0;
1935 	*addr = -EINVAL;
1936 
1937 	/*
1938 	 * Fallback to a global heap if not vmalloc or there
1939 	 * is only one node.
1940 	 */
1941 	if (vstart != VMALLOC_START || vend != VMALLOC_END ||
1942 			nr_vmap_nodes == 1)
1943 		return NULL;
1944 
1945 	*vn_id = raw_smp_processor_id() % nr_vmap_nodes;
1946 	va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend);
1947 	*vn_id = encode_vn_id(*vn_id);
1948 
1949 	if (va)
1950 		*addr = va->va_start;
1951 
1952 	return va;
1953 }
1954 
1955 static inline void setup_vmalloc_vm(struct vm_struct *vm,
1956 	struct vmap_area *va, unsigned long flags, const void *caller)
1957 {
1958 	vm->flags = flags;
1959 	vm->addr = (void *)va->va_start;
1960 	vm->size = vm->requested_size = va_size(va);
1961 	vm->caller = caller;
1962 	va->vm = vm;
1963 }
1964 
1965 /*
1966  * Allocate a region of KVA of the specified size and alignment, within the
1967  * vstart and vend. If vm is passed in, the two will also be bound.
1968  */
1969 static struct vmap_area *alloc_vmap_area(unsigned long size,
1970 				unsigned long align,
1971 				unsigned long vstart, unsigned long vend,
1972 				int node, gfp_t gfp_mask,
1973 				unsigned long va_flags, struct vm_struct *vm)
1974 {
1975 	struct vmap_node *vn;
1976 	struct vmap_area *va;
1977 	unsigned long freed;
1978 	unsigned long addr;
1979 	unsigned int vn_id;
1980 	int purged = 0;
1981 	int ret;
1982 
1983 	if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1984 		return ERR_PTR(-EINVAL);
1985 
1986 	if (unlikely(!vmap_initialized))
1987 		return ERR_PTR(-EBUSY);
1988 
1989 	might_sleep();
1990 
1991 	/*
1992 	 * If a VA is obtained from a global heap(if it fails here)
1993 	 * it is anyway marked with this "vn_id" so it is returned
1994 	 * to this pool's node later. Such way gives a possibility
1995 	 * to populate pools based on users demand.
1996 	 *
1997 	 * On success a ready to go VA is returned.
1998 	 */
1999 	va = node_alloc(size, align, vstart, vend, &addr, &vn_id);
2000 	if (!va) {
2001 		gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
2002 
2003 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
2004 		if (unlikely(!va))
2005 			return ERR_PTR(-ENOMEM);
2006 
2007 		/*
2008 		 * Only scan the relevant parts containing pointers to other objects
2009 		 * to avoid false negatives.
2010 		 */
2011 		kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
2012 	}
2013 
2014 retry:
2015 	if (IS_ERR_VALUE(addr)) {
2016 		preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
2017 		addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
2018 			size, align, vstart, vend);
2019 		spin_unlock(&free_vmap_area_lock);
2020 	}
2021 
2022 	trace_alloc_vmap_area(addr, size, align, vstart, vend, IS_ERR_VALUE(addr));
2023 
2024 	/*
2025 	 * If an allocation fails, the error value is
2026 	 * returned. Therefore trigger the overflow path.
2027 	 */
2028 	if (IS_ERR_VALUE(addr))
2029 		goto overflow;
2030 
2031 	va->va_start = addr;
2032 	va->va_end = addr + size;
2033 	va->vm = NULL;
2034 	va->flags = (va_flags | vn_id);
2035 
2036 	if (vm) {
2037 		vm->addr = (void *)va->va_start;
2038 		vm->size = va_size(va);
2039 		va->vm = vm;
2040 	}
2041 
2042 	vn = addr_to_node(va->va_start);
2043 
2044 	spin_lock(&vn->busy.lock);
2045 	insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
2046 	spin_unlock(&vn->busy.lock);
2047 
2048 	BUG_ON(!IS_ALIGNED(va->va_start, align));
2049 	BUG_ON(va->va_start < vstart);
2050 	BUG_ON(va->va_end > vend);
2051 
2052 	ret = kasan_populate_vmalloc(addr, size);
2053 	if (ret) {
2054 		free_vmap_area(va);
2055 		return ERR_PTR(ret);
2056 	}
2057 
2058 	return va;
2059 
2060 overflow:
2061 	if (!purged) {
2062 		reclaim_and_purge_vmap_areas();
2063 		purged = 1;
2064 		goto retry;
2065 	}
2066 
2067 	freed = 0;
2068 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
2069 
2070 	if (freed > 0) {
2071 		purged = 0;
2072 		goto retry;
2073 	}
2074 
2075 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
2076 		pr_warn("vmalloc_node_range for size %lu failed: Address range restricted to %#lx - %#lx\n",
2077 				size, vstart, vend);
2078 
2079 	kmem_cache_free(vmap_area_cachep, va);
2080 	return ERR_PTR(-EBUSY);
2081 }
2082 
2083 int register_vmap_purge_notifier(struct notifier_block *nb)
2084 {
2085 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
2086 }
2087 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
2088 
2089 int unregister_vmap_purge_notifier(struct notifier_block *nb)
2090 {
2091 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
2092 }
2093 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
2094 
2095 /*
2096  * lazy_max_pages is the maximum amount of virtual address space we gather up
2097  * before attempting to purge with a TLB flush.
2098  *
2099  * There is a tradeoff here: a larger number will cover more kernel page tables
2100  * and take slightly longer to purge, but it will linearly reduce the number of
2101  * global TLB flushes that must be performed. It would seem natural to scale
2102  * this number up linearly with the number of CPUs (because vmapping activity
2103  * could also scale linearly with the number of CPUs), however it is likely
2104  * that in practice, workloads might be constrained in other ways that mean
2105  * vmap activity will not scale linearly with CPUs. Also, I want to be
2106  * conservative and not introduce a big latency on huge systems, so go with
2107  * a less aggressive log scale. It will still be an improvement over the old
2108  * code, and it will be simple to change the scale factor if we find that it
2109  * becomes a problem on bigger systems.
2110  */
2111 static unsigned long lazy_max_pages(void)
2112 {
2113 	unsigned int log;
2114 
2115 	log = fls(num_online_cpus());
2116 
2117 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
2118 }
2119 
2120 /*
2121  * Serialize vmap purging.  There is no actual critical section protected
2122  * by this lock, but we want to avoid concurrent calls for performance
2123  * reasons and to make the pcpu_get_vm_areas more deterministic.
2124  */
2125 static DEFINE_MUTEX(vmap_purge_lock);
2126 
2127 /* for per-CPU blocks */
2128 static void purge_fragmented_blocks_allcpus(void);
2129 
2130 static void
2131 reclaim_list_global(struct list_head *head)
2132 {
2133 	struct vmap_area *va, *n;
2134 
2135 	if (list_empty(head))
2136 		return;
2137 
2138 	spin_lock(&free_vmap_area_lock);
2139 	list_for_each_entry_safe(va, n, head, list)
2140 		merge_or_add_vmap_area_augment(va,
2141 			&free_vmap_area_root, &free_vmap_area_list);
2142 	spin_unlock(&free_vmap_area_lock);
2143 }
2144 
2145 static void
2146 decay_va_pool_node(struct vmap_node *vn, bool full_decay)
2147 {
2148 	LIST_HEAD(decay_list);
2149 	struct rb_root decay_root = RB_ROOT;
2150 	struct vmap_area *va, *nva;
2151 	unsigned long n_decay, pool_len;
2152 	int i;
2153 
2154 	for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
2155 		LIST_HEAD(tmp_list);
2156 
2157 		if (list_empty(&vn->pool[i].head))
2158 			continue;
2159 
2160 		/* Detach the pool, so no-one can access it. */
2161 		spin_lock(&vn->pool_lock);
2162 		list_replace_init(&vn->pool[i].head, &tmp_list);
2163 		spin_unlock(&vn->pool_lock);
2164 
2165 		pool_len = n_decay = vn->pool[i].len;
2166 		WRITE_ONCE(vn->pool[i].len, 0);
2167 
2168 		/* Decay a pool by ~25% out of left objects. */
2169 		if (!full_decay)
2170 			n_decay >>= 2;
2171 		pool_len -= n_decay;
2172 
2173 		list_for_each_entry_safe(va, nva, &tmp_list, list) {
2174 			if (!n_decay--)
2175 				break;
2176 
2177 			list_del_init(&va->list);
2178 			merge_or_add_vmap_area(va, &decay_root, &decay_list);
2179 		}
2180 
2181 		/*
2182 		 * Attach the pool back if it has been partly decayed.
2183 		 * Please note, it is supposed that nobody(other contexts)
2184 		 * can populate the pool therefore a simple list replace
2185 		 * operation takes place here.
2186 		 */
2187 		if (!list_empty(&tmp_list)) {
2188 			spin_lock(&vn->pool_lock);
2189 			list_replace_init(&tmp_list, &vn->pool[i].head);
2190 			WRITE_ONCE(vn->pool[i].len, pool_len);
2191 			spin_unlock(&vn->pool_lock);
2192 		}
2193 	}
2194 
2195 	reclaim_list_global(&decay_list);
2196 }
2197 
2198 static void
2199 kasan_release_vmalloc_node(struct vmap_node *vn)
2200 {
2201 	struct vmap_area *va;
2202 	unsigned long start, end;
2203 
2204 	start = list_first_entry(&vn->purge_list, struct vmap_area, list)->va_start;
2205 	end = list_last_entry(&vn->purge_list, struct vmap_area, list)->va_end;
2206 
2207 	list_for_each_entry(va, &vn->purge_list, list) {
2208 		if (is_vmalloc_or_module_addr((void *) va->va_start))
2209 			kasan_release_vmalloc(va->va_start, va->va_end,
2210 				va->va_start, va->va_end,
2211 				KASAN_VMALLOC_PAGE_RANGE);
2212 	}
2213 
2214 	kasan_release_vmalloc(start, end, start, end, KASAN_VMALLOC_TLB_FLUSH);
2215 }
2216 
2217 static void purge_vmap_node(struct work_struct *work)
2218 {
2219 	struct vmap_node *vn = container_of(work,
2220 		struct vmap_node, purge_work);
2221 	unsigned long nr_purged_pages = 0;
2222 	struct vmap_area *va, *n_va;
2223 	LIST_HEAD(local_list);
2224 
2225 	if (IS_ENABLED(CONFIG_KASAN_VMALLOC))
2226 		kasan_release_vmalloc_node(vn);
2227 
2228 	vn->nr_purged = 0;
2229 
2230 	list_for_each_entry_safe(va, n_va, &vn->purge_list, list) {
2231 		unsigned long nr = va_size(va) >> PAGE_SHIFT;
2232 		unsigned int vn_id = decode_vn_id(va->flags);
2233 
2234 		list_del_init(&va->list);
2235 
2236 		nr_purged_pages += nr;
2237 		vn->nr_purged++;
2238 
2239 		if (is_vn_id_valid(vn_id) && !vn->skip_populate)
2240 			if (node_pool_add_va(vn, va))
2241 				continue;
2242 
2243 		/* Go back to global. */
2244 		list_add(&va->list, &local_list);
2245 	}
2246 
2247 	atomic_long_sub(nr_purged_pages, &vmap_lazy_nr);
2248 
2249 	reclaim_list_global(&local_list);
2250 }
2251 
2252 /*
2253  * Purges all lazily-freed vmap areas.
2254  */
2255 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end,
2256 		bool full_pool_decay)
2257 {
2258 	unsigned long nr_purged_areas = 0;
2259 	unsigned int nr_purge_helpers;
2260 	static cpumask_t purge_nodes;
2261 	unsigned int nr_purge_nodes;
2262 	struct vmap_node *vn;
2263 	int i;
2264 
2265 	lockdep_assert_held(&vmap_purge_lock);
2266 
2267 	/*
2268 	 * Use cpumask to mark which node has to be processed.
2269 	 */
2270 	purge_nodes = CPU_MASK_NONE;
2271 
2272 	for_each_vmap_node(vn) {
2273 		INIT_LIST_HEAD(&vn->purge_list);
2274 		vn->skip_populate = full_pool_decay;
2275 		decay_va_pool_node(vn, full_pool_decay);
2276 
2277 		if (RB_EMPTY_ROOT(&vn->lazy.root))
2278 			continue;
2279 
2280 		spin_lock(&vn->lazy.lock);
2281 		WRITE_ONCE(vn->lazy.root.rb_node, NULL);
2282 		list_replace_init(&vn->lazy.head, &vn->purge_list);
2283 		spin_unlock(&vn->lazy.lock);
2284 
2285 		start = min(start, list_first_entry(&vn->purge_list,
2286 			struct vmap_area, list)->va_start);
2287 
2288 		end = max(end, list_last_entry(&vn->purge_list,
2289 			struct vmap_area, list)->va_end);
2290 
2291 		cpumask_set_cpu(node_to_id(vn), &purge_nodes);
2292 	}
2293 
2294 	nr_purge_nodes = cpumask_weight(&purge_nodes);
2295 	if (nr_purge_nodes > 0) {
2296 		flush_tlb_kernel_range(start, end);
2297 
2298 		/* One extra worker is per a lazy_max_pages() full set minus one. */
2299 		nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages();
2300 		nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1;
2301 
2302 		for_each_cpu(i, &purge_nodes) {
2303 			vn = &vmap_nodes[i];
2304 
2305 			if (nr_purge_helpers > 0) {
2306 				INIT_WORK(&vn->purge_work, purge_vmap_node);
2307 
2308 				if (cpumask_test_cpu(i, cpu_online_mask))
2309 					schedule_work_on(i, &vn->purge_work);
2310 				else
2311 					schedule_work(&vn->purge_work);
2312 
2313 				nr_purge_helpers--;
2314 			} else {
2315 				vn->purge_work.func = NULL;
2316 				purge_vmap_node(&vn->purge_work);
2317 				nr_purged_areas += vn->nr_purged;
2318 			}
2319 		}
2320 
2321 		for_each_cpu(i, &purge_nodes) {
2322 			vn = &vmap_nodes[i];
2323 
2324 			if (vn->purge_work.func) {
2325 				flush_work(&vn->purge_work);
2326 				nr_purged_areas += vn->nr_purged;
2327 			}
2328 		}
2329 	}
2330 
2331 	trace_purge_vmap_area_lazy(start, end, nr_purged_areas);
2332 	return nr_purged_areas > 0;
2333 }
2334 
2335 /*
2336  * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
2337  */
2338 static void reclaim_and_purge_vmap_areas(void)
2339 
2340 {
2341 	mutex_lock(&vmap_purge_lock);
2342 	purge_fragmented_blocks_allcpus();
2343 	__purge_vmap_area_lazy(ULONG_MAX, 0, true);
2344 	mutex_unlock(&vmap_purge_lock);
2345 }
2346 
2347 static void drain_vmap_area_work(struct work_struct *work)
2348 {
2349 	mutex_lock(&vmap_purge_lock);
2350 	__purge_vmap_area_lazy(ULONG_MAX, 0, false);
2351 	mutex_unlock(&vmap_purge_lock);
2352 }
2353 
2354 /*
2355  * Free a vmap area, caller ensuring that the area has been unmapped,
2356  * unlinked and flush_cache_vunmap had been called for the correct
2357  * range previously.
2358  */
2359 static void free_vmap_area_noflush(struct vmap_area *va)
2360 {
2361 	unsigned long nr_lazy_max = lazy_max_pages();
2362 	unsigned long va_start = va->va_start;
2363 	unsigned int vn_id = decode_vn_id(va->flags);
2364 	struct vmap_node *vn;
2365 	unsigned long nr_lazy;
2366 
2367 	if (WARN_ON_ONCE(!list_empty(&va->list)))
2368 		return;
2369 
2370 	nr_lazy = atomic_long_add_return_relaxed(va_size(va) >> PAGE_SHIFT,
2371 					 &vmap_lazy_nr);
2372 
2373 	/*
2374 	 * If it was request by a certain node we would like to
2375 	 * return it to that node, i.e. its pool for later reuse.
2376 	 */
2377 	vn = is_vn_id_valid(vn_id) ?
2378 		id_to_node(vn_id):addr_to_node(va->va_start);
2379 
2380 	spin_lock(&vn->lazy.lock);
2381 	insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head);
2382 	spin_unlock(&vn->lazy.lock);
2383 
2384 	trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
2385 
2386 	/* After this point, we may free va at any time */
2387 	if (unlikely(nr_lazy > nr_lazy_max))
2388 		schedule_work(&drain_vmap_work);
2389 }
2390 
2391 /*
2392  * Free and unmap a vmap area
2393  */
2394 static void free_unmap_vmap_area(struct vmap_area *va)
2395 {
2396 	flush_cache_vunmap(va->va_start, va->va_end);
2397 	vunmap_range_noflush(va->va_start, va->va_end);
2398 	if (debug_pagealloc_enabled_static())
2399 		flush_tlb_kernel_range(va->va_start, va->va_end);
2400 
2401 	free_vmap_area_noflush(va);
2402 }
2403 
2404 struct vmap_area *find_vmap_area(unsigned long addr)
2405 {
2406 	struct vmap_node *vn;
2407 	struct vmap_area *va;
2408 	int i, j;
2409 
2410 	if (unlikely(!vmap_initialized))
2411 		return NULL;
2412 
2413 	/*
2414 	 * An addr_to_node_id(addr) converts an address to a node index
2415 	 * where a VA is located. If VA spans several zones and passed
2416 	 * addr is not the same as va->va_start, what is not common, we
2417 	 * may need to scan extra nodes. See an example:
2418 	 *
2419 	 *      <----va---->
2420 	 * -|-----|-----|-----|-----|-
2421 	 *     1     2     0     1
2422 	 *
2423 	 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed
2424 	 * addr is within 2 or 0 nodes we should do extra work.
2425 	 */
2426 	i = j = addr_to_node_id(addr);
2427 	do {
2428 		vn = &vmap_nodes[i];
2429 
2430 		spin_lock(&vn->busy.lock);
2431 		va = __find_vmap_area(addr, &vn->busy.root);
2432 		spin_unlock(&vn->busy.lock);
2433 
2434 		if (va)
2435 			return va;
2436 	} while ((i = (i + nr_vmap_nodes - 1) % nr_vmap_nodes) != j);
2437 
2438 	return NULL;
2439 }
2440 
2441 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
2442 {
2443 	struct vmap_node *vn;
2444 	struct vmap_area *va;
2445 	int i, j;
2446 
2447 	/*
2448 	 * Check the comment in the find_vmap_area() about the loop.
2449 	 */
2450 	i = j = addr_to_node_id(addr);
2451 	do {
2452 		vn = &vmap_nodes[i];
2453 
2454 		spin_lock(&vn->busy.lock);
2455 		va = __find_vmap_area(addr, &vn->busy.root);
2456 		if (va)
2457 			unlink_va(va, &vn->busy.root);
2458 		spin_unlock(&vn->busy.lock);
2459 
2460 		if (va)
2461 			return va;
2462 	} while ((i = (i + nr_vmap_nodes - 1) % nr_vmap_nodes) != j);
2463 
2464 	return NULL;
2465 }
2466 
2467 /*** Per cpu kva allocator ***/
2468 
2469 /*
2470  * vmap space is limited especially on 32 bit architectures. Ensure there is
2471  * room for at least 16 percpu vmap blocks per CPU.
2472  */
2473 /*
2474  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
2475  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
2476  * instead (we just need a rough idea)
2477  */
2478 #if BITS_PER_LONG == 32
2479 #define VMALLOC_SPACE		(128UL*1024*1024)
2480 #else
2481 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
2482 #endif
2483 
2484 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
2485 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
2486 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
2487 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
2488 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
2489 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
2490 #define VMAP_BBMAP_BITS		\
2491 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
2492 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
2493 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
2494 
2495 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
2496 
2497 /*
2498  * Purge threshold to prevent overeager purging of fragmented blocks for
2499  * regular operations: Purge if vb->free is less than 1/4 of the capacity.
2500  */
2501 #define VMAP_PURGE_THRESHOLD	(VMAP_BBMAP_BITS / 4)
2502 
2503 #define VMAP_RAM		0x1 /* indicates vm_map_ram area*/
2504 #define VMAP_BLOCK		0x2 /* mark out the vmap_block sub-type*/
2505 #define VMAP_FLAGS_MASK		0x3
2506 
2507 struct vmap_block_queue {
2508 	spinlock_t lock;
2509 	struct list_head free;
2510 
2511 	/*
2512 	 * An xarray requires an extra memory dynamically to
2513 	 * be allocated. If it is an issue, we can use rb-tree
2514 	 * instead.
2515 	 */
2516 	struct xarray vmap_blocks;
2517 };
2518 
2519 struct vmap_block {
2520 	spinlock_t lock;
2521 	struct vmap_area *va;
2522 	unsigned long free, dirty;
2523 	DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
2524 	unsigned long dirty_min, dirty_max; /*< dirty range */
2525 	struct list_head free_list;
2526 	struct rcu_head rcu_head;
2527 	struct list_head purge;
2528 	unsigned int cpu;
2529 };
2530 
2531 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
2532 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
2533 
2534 /*
2535  * In order to fast access to any "vmap_block" associated with a
2536  * specific address, we use a hash.
2537  *
2538  * A per-cpu vmap_block_queue is used in both ways, to serialize
2539  * an access to free block chains among CPUs(alloc path) and it
2540  * also acts as a vmap_block hash(alloc/free paths). It means we
2541  * overload it, since we already have the per-cpu array which is
2542  * used as a hash table. When used as a hash a 'cpu' passed to
2543  * per_cpu() is not actually a CPU but rather a hash index.
2544  *
2545  * A hash function is addr_to_vb_xa() which hashes any address
2546  * to a specific index(in a hash) it belongs to. This then uses a
2547  * per_cpu() macro to access an array with generated index.
2548  *
2549  * An example:
2550  *
2551  *  CPU_1  CPU_2  CPU_0
2552  *    |      |      |
2553  *    V      V      V
2554  * 0     10     20     30     40     50     60
2555  * |------|------|------|------|------|------|...<vmap address space>
2556  *   CPU0   CPU1   CPU2   CPU0   CPU1   CPU2
2557  *
2558  * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
2559  *   it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
2560  *
2561  * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
2562  *   it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
2563  *
2564  * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
2565  *   it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
2566  *
2567  * This technique almost always avoids lock contention on insert/remove,
2568  * however xarray spinlocks protect against any contention that remains.
2569  */
2570 static struct xarray *
2571 addr_to_vb_xa(unsigned long addr)
2572 {
2573 	int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids;
2574 
2575 	/*
2576 	 * Please note, nr_cpu_ids points on a highest set
2577 	 * possible bit, i.e. we never invoke cpumask_next()
2578 	 * if an index points on it which is nr_cpu_ids - 1.
2579 	 */
2580 	if (!cpu_possible(index))
2581 		index = cpumask_next(index, cpu_possible_mask);
2582 
2583 	return &per_cpu(vmap_block_queue, index).vmap_blocks;
2584 }
2585 
2586 /*
2587  * We should probably have a fallback mechanism to allocate virtual memory
2588  * out of partially filled vmap blocks. However vmap block sizing should be
2589  * fairly reasonable according to the vmalloc size, so it shouldn't be a
2590  * big problem.
2591  */
2592 
2593 static unsigned long addr_to_vb_idx(unsigned long addr)
2594 {
2595 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2596 	addr /= VMAP_BLOCK_SIZE;
2597 	return addr;
2598 }
2599 
2600 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2601 {
2602 	unsigned long addr;
2603 
2604 	addr = va_start + (pages_off << PAGE_SHIFT);
2605 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2606 	return (void *)addr;
2607 }
2608 
2609 /**
2610  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2611  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
2612  * @order:    how many 2^order pages should be occupied in newly allocated block
2613  * @gfp_mask: flags for the page level allocator
2614  *
2615  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2616  */
2617 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2618 {
2619 	struct vmap_block_queue *vbq;
2620 	struct vmap_block *vb;
2621 	struct vmap_area *va;
2622 	struct xarray *xa;
2623 	unsigned long vb_idx;
2624 	int node, err;
2625 	void *vaddr;
2626 
2627 	node = numa_node_id();
2628 
2629 	vb = kmalloc_node(sizeof(struct vmap_block),
2630 			gfp_mask & GFP_RECLAIM_MASK, node);
2631 	if (unlikely(!vb))
2632 		return ERR_PTR(-ENOMEM);
2633 
2634 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2635 					VMALLOC_START, VMALLOC_END,
2636 					node, gfp_mask,
2637 					VMAP_RAM|VMAP_BLOCK, NULL);
2638 	if (IS_ERR(va)) {
2639 		kfree(vb);
2640 		return ERR_CAST(va);
2641 	}
2642 
2643 	vaddr = vmap_block_vaddr(va->va_start, 0);
2644 	spin_lock_init(&vb->lock);
2645 	vb->va = va;
2646 	/* At least something should be left free */
2647 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2648 	bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2649 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
2650 	vb->dirty = 0;
2651 	vb->dirty_min = VMAP_BBMAP_BITS;
2652 	vb->dirty_max = 0;
2653 	bitmap_set(vb->used_map, 0, (1UL << order));
2654 	INIT_LIST_HEAD(&vb->free_list);
2655 	vb->cpu = raw_smp_processor_id();
2656 
2657 	xa = addr_to_vb_xa(va->va_start);
2658 	vb_idx = addr_to_vb_idx(va->va_start);
2659 	err = xa_insert(xa, vb_idx, vb, gfp_mask);
2660 	if (err) {
2661 		kfree(vb);
2662 		free_vmap_area(va);
2663 		return ERR_PTR(err);
2664 	}
2665 	/*
2666 	 * list_add_tail_rcu could happened in another core
2667 	 * rather than vb->cpu due to task migration, which
2668 	 * is safe as list_add_tail_rcu will ensure the list's
2669 	 * integrity together with list_for_each_rcu from read
2670 	 * side.
2671 	 */
2672 	vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu);
2673 	spin_lock(&vbq->lock);
2674 	list_add_tail_rcu(&vb->free_list, &vbq->free);
2675 	spin_unlock(&vbq->lock);
2676 
2677 	return vaddr;
2678 }
2679 
2680 static void free_vmap_block(struct vmap_block *vb)
2681 {
2682 	struct vmap_node *vn;
2683 	struct vmap_block *tmp;
2684 	struct xarray *xa;
2685 
2686 	xa = addr_to_vb_xa(vb->va->va_start);
2687 	tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2688 	BUG_ON(tmp != vb);
2689 
2690 	vn = addr_to_node(vb->va->va_start);
2691 	spin_lock(&vn->busy.lock);
2692 	unlink_va(vb->va, &vn->busy.root);
2693 	spin_unlock(&vn->busy.lock);
2694 
2695 	free_vmap_area_noflush(vb->va);
2696 	kfree_rcu(vb, rcu_head);
2697 }
2698 
2699 static bool purge_fragmented_block(struct vmap_block *vb,
2700 		struct list_head *purge_list, bool force_purge)
2701 {
2702 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu);
2703 
2704 	if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2705 	    vb->dirty == VMAP_BBMAP_BITS)
2706 		return false;
2707 
2708 	/* Don't overeagerly purge usable blocks unless requested */
2709 	if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2710 		return false;
2711 
2712 	/* prevent further allocs after releasing lock */
2713 	WRITE_ONCE(vb->free, 0);
2714 	/* prevent purging it again */
2715 	WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2716 	vb->dirty_min = 0;
2717 	vb->dirty_max = VMAP_BBMAP_BITS;
2718 	spin_lock(&vbq->lock);
2719 	list_del_rcu(&vb->free_list);
2720 	spin_unlock(&vbq->lock);
2721 	list_add_tail(&vb->purge, purge_list);
2722 	return true;
2723 }
2724 
2725 static void free_purged_blocks(struct list_head *purge_list)
2726 {
2727 	struct vmap_block *vb, *n_vb;
2728 
2729 	list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2730 		list_del(&vb->purge);
2731 		free_vmap_block(vb);
2732 	}
2733 }
2734 
2735 static void purge_fragmented_blocks(int cpu)
2736 {
2737 	LIST_HEAD(purge);
2738 	struct vmap_block *vb;
2739 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2740 
2741 	rcu_read_lock();
2742 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2743 		unsigned long free = READ_ONCE(vb->free);
2744 		unsigned long dirty = READ_ONCE(vb->dirty);
2745 
2746 		if (free + dirty != VMAP_BBMAP_BITS ||
2747 		    dirty == VMAP_BBMAP_BITS)
2748 			continue;
2749 
2750 		spin_lock(&vb->lock);
2751 		purge_fragmented_block(vb, &purge, true);
2752 		spin_unlock(&vb->lock);
2753 	}
2754 	rcu_read_unlock();
2755 	free_purged_blocks(&purge);
2756 }
2757 
2758 static void purge_fragmented_blocks_allcpus(void)
2759 {
2760 	int cpu;
2761 
2762 	for_each_possible_cpu(cpu)
2763 		purge_fragmented_blocks(cpu);
2764 }
2765 
2766 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2767 {
2768 	struct vmap_block_queue *vbq;
2769 	struct vmap_block *vb;
2770 	void *vaddr = NULL;
2771 	unsigned int order;
2772 
2773 	BUG_ON(offset_in_page(size));
2774 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2775 	if (WARN_ON(size == 0)) {
2776 		/*
2777 		 * Allocating 0 bytes isn't what caller wants since
2778 		 * get_order(0) returns funny result. Just warn and terminate
2779 		 * early.
2780 		 */
2781 		return ERR_PTR(-EINVAL);
2782 	}
2783 	order = get_order(size);
2784 
2785 	rcu_read_lock();
2786 	vbq = raw_cpu_ptr(&vmap_block_queue);
2787 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2788 		unsigned long pages_off;
2789 
2790 		if (READ_ONCE(vb->free) < (1UL << order))
2791 			continue;
2792 
2793 		spin_lock(&vb->lock);
2794 		if (vb->free < (1UL << order)) {
2795 			spin_unlock(&vb->lock);
2796 			continue;
2797 		}
2798 
2799 		pages_off = VMAP_BBMAP_BITS - vb->free;
2800 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2801 		WRITE_ONCE(vb->free, vb->free - (1UL << order));
2802 		bitmap_set(vb->used_map, pages_off, (1UL << order));
2803 		if (vb->free == 0) {
2804 			spin_lock(&vbq->lock);
2805 			list_del_rcu(&vb->free_list);
2806 			spin_unlock(&vbq->lock);
2807 		}
2808 
2809 		spin_unlock(&vb->lock);
2810 		break;
2811 	}
2812 
2813 	rcu_read_unlock();
2814 
2815 	/* Allocate new block if nothing was found */
2816 	if (!vaddr)
2817 		vaddr = new_vmap_block(order, gfp_mask);
2818 
2819 	return vaddr;
2820 }
2821 
2822 static void vb_free(unsigned long addr, unsigned long size)
2823 {
2824 	unsigned long offset;
2825 	unsigned int order;
2826 	struct vmap_block *vb;
2827 	struct xarray *xa;
2828 
2829 	BUG_ON(offset_in_page(size));
2830 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2831 
2832 	flush_cache_vunmap(addr, addr + size);
2833 
2834 	order = get_order(size);
2835 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2836 
2837 	xa = addr_to_vb_xa(addr);
2838 	vb = xa_load(xa, addr_to_vb_idx(addr));
2839 
2840 	spin_lock(&vb->lock);
2841 	bitmap_clear(vb->used_map, offset, (1UL << order));
2842 	spin_unlock(&vb->lock);
2843 
2844 	vunmap_range_noflush(addr, addr + size);
2845 
2846 	if (debug_pagealloc_enabled_static())
2847 		flush_tlb_kernel_range(addr, addr + size);
2848 
2849 	spin_lock(&vb->lock);
2850 
2851 	/* Expand the not yet TLB flushed dirty range */
2852 	vb->dirty_min = min(vb->dirty_min, offset);
2853 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2854 
2855 	WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2856 	if (vb->dirty == VMAP_BBMAP_BITS) {
2857 		BUG_ON(vb->free);
2858 		spin_unlock(&vb->lock);
2859 		free_vmap_block(vb);
2860 	} else
2861 		spin_unlock(&vb->lock);
2862 }
2863 
2864 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2865 {
2866 	LIST_HEAD(purge_list);
2867 	int cpu;
2868 
2869 	if (unlikely(!vmap_initialized))
2870 		return;
2871 
2872 	mutex_lock(&vmap_purge_lock);
2873 
2874 	for_each_possible_cpu(cpu) {
2875 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2876 		struct vmap_block *vb;
2877 		unsigned long idx;
2878 
2879 		rcu_read_lock();
2880 		xa_for_each(&vbq->vmap_blocks, idx, vb) {
2881 			spin_lock(&vb->lock);
2882 
2883 			/*
2884 			 * Try to purge a fragmented block first. If it's
2885 			 * not purgeable, check whether there is dirty
2886 			 * space to be flushed.
2887 			 */
2888 			if (!purge_fragmented_block(vb, &purge_list, false) &&
2889 			    vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2890 				unsigned long va_start = vb->va->va_start;
2891 				unsigned long s, e;
2892 
2893 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2894 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2895 
2896 				start = min(s, start);
2897 				end   = max(e, end);
2898 
2899 				/* Prevent that this is flushed again */
2900 				vb->dirty_min = VMAP_BBMAP_BITS;
2901 				vb->dirty_max = 0;
2902 
2903 				flush = 1;
2904 			}
2905 			spin_unlock(&vb->lock);
2906 		}
2907 		rcu_read_unlock();
2908 	}
2909 	free_purged_blocks(&purge_list);
2910 
2911 	if (!__purge_vmap_area_lazy(start, end, false) && flush)
2912 		flush_tlb_kernel_range(start, end);
2913 	mutex_unlock(&vmap_purge_lock);
2914 }
2915 
2916 /**
2917  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2918  *
2919  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2920  * to amortize TLB flushing overheads. What this means is that any page you
2921  * have now, may, in a former life, have been mapped into kernel virtual
2922  * address by the vmap layer and so there might be some CPUs with TLB entries
2923  * still referencing that page (additional to the regular 1:1 kernel mapping).
2924  *
2925  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2926  * be sure that none of the pages we have control over will have any aliases
2927  * from the vmap layer.
2928  */
2929 void vm_unmap_aliases(void)
2930 {
2931 	_vm_unmap_aliases(ULONG_MAX, 0, 0);
2932 }
2933 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2934 
2935 /**
2936  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2937  * @mem: the pointer returned by vm_map_ram
2938  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2939  */
2940 void vm_unmap_ram(const void *mem, unsigned int count)
2941 {
2942 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2943 	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2944 	struct vmap_area *va;
2945 
2946 	might_sleep();
2947 	BUG_ON(!addr);
2948 	BUG_ON(addr < VMALLOC_START);
2949 	BUG_ON(addr > VMALLOC_END);
2950 	BUG_ON(!PAGE_ALIGNED(addr));
2951 
2952 	kasan_poison_vmalloc(mem, size);
2953 
2954 	if (likely(count <= VMAP_MAX_ALLOC)) {
2955 		debug_check_no_locks_freed(mem, size);
2956 		vb_free(addr, size);
2957 		return;
2958 	}
2959 
2960 	va = find_unlink_vmap_area(addr);
2961 	if (WARN_ON_ONCE(!va))
2962 		return;
2963 
2964 	debug_check_no_locks_freed((void *)va->va_start, va_size(va));
2965 	free_unmap_vmap_area(va);
2966 }
2967 EXPORT_SYMBOL(vm_unmap_ram);
2968 
2969 /**
2970  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2971  * @pages: an array of pointers to the pages to be mapped
2972  * @count: number of pages
2973  * @node: prefer to allocate data structures on this node
2974  *
2975  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2976  * faster than vmap so it's good.  But if you mix long-life and short-life
2977  * objects with vm_map_ram(), it could consume lots of address space through
2978  * fragmentation (especially on a 32bit machine).  You could see failures in
2979  * the end.  Please use this function for short-lived objects.
2980  *
2981  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2982  */
2983 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2984 {
2985 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2986 	unsigned long addr;
2987 	void *mem;
2988 
2989 	if (likely(count <= VMAP_MAX_ALLOC)) {
2990 		mem = vb_alloc(size, GFP_KERNEL);
2991 		if (IS_ERR(mem))
2992 			return NULL;
2993 		addr = (unsigned long)mem;
2994 	} else {
2995 		struct vmap_area *va;
2996 		va = alloc_vmap_area(size, PAGE_SIZE,
2997 				VMALLOC_START, VMALLOC_END,
2998 				node, GFP_KERNEL, VMAP_RAM,
2999 				NULL);
3000 		if (IS_ERR(va))
3001 			return NULL;
3002 
3003 		addr = va->va_start;
3004 		mem = (void *)addr;
3005 	}
3006 
3007 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
3008 				pages, PAGE_SHIFT) < 0) {
3009 		vm_unmap_ram(mem, count);
3010 		return NULL;
3011 	}
3012 
3013 	/*
3014 	 * Mark the pages as accessible, now that they are mapped.
3015 	 * With hardware tag-based KASAN, marking is skipped for
3016 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3017 	 */
3018 	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
3019 
3020 	return mem;
3021 }
3022 EXPORT_SYMBOL(vm_map_ram);
3023 
3024 static struct vm_struct *vmlist __initdata;
3025 
3026 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
3027 {
3028 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3029 	return vm->page_order;
3030 #else
3031 	return 0;
3032 #endif
3033 }
3034 
3035 unsigned int get_vm_area_page_order(struct vm_struct *vm)
3036 {
3037 	return vm_area_page_order(vm);
3038 }
3039 
3040 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
3041 {
3042 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3043 	vm->page_order = order;
3044 #else
3045 	BUG_ON(order != 0);
3046 #endif
3047 }
3048 
3049 /**
3050  * vm_area_add_early - add vmap area early during boot
3051  * @vm: vm_struct to add
3052  *
3053  * This function is used to add fixed kernel vm area to vmlist before
3054  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
3055  * should contain proper values and the other fields should be zero.
3056  *
3057  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3058  */
3059 void __init vm_area_add_early(struct vm_struct *vm)
3060 {
3061 	struct vm_struct *tmp, **p;
3062 
3063 	BUG_ON(vmap_initialized);
3064 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
3065 		if (tmp->addr >= vm->addr) {
3066 			BUG_ON(tmp->addr < vm->addr + vm->size);
3067 			break;
3068 		} else
3069 			BUG_ON(tmp->addr + tmp->size > vm->addr);
3070 	}
3071 	vm->next = *p;
3072 	*p = vm;
3073 }
3074 
3075 /**
3076  * vm_area_register_early - register vmap area early during boot
3077  * @vm: vm_struct to register
3078  * @align: requested alignment
3079  *
3080  * This function is used to register kernel vm area before
3081  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
3082  * proper values on entry and other fields should be zero.  On return,
3083  * vm->addr contains the allocated address.
3084  *
3085  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3086  */
3087 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
3088 {
3089 	unsigned long addr = ALIGN(VMALLOC_START, align);
3090 	struct vm_struct *cur, **p;
3091 
3092 	BUG_ON(vmap_initialized);
3093 
3094 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
3095 		if ((unsigned long)cur->addr - addr >= vm->size)
3096 			break;
3097 		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
3098 	}
3099 
3100 	BUG_ON(addr > VMALLOC_END - vm->size);
3101 	vm->addr = (void *)addr;
3102 	vm->next = *p;
3103 	*p = vm;
3104 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
3105 }
3106 
3107 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
3108 {
3109 	/*
3110 	 * Before removing VM_UNINITIALIZED,
3111 	 * we should make sure that vm has proper values.
3112 	 * Pair with smp_rmb() in vread_iter() and vmalloc_info_show().
3113 	 */
3114 	smp_wmb();
3115 	vm->flags &= ~VM_UNINITIALIZED;
3116 }
3117 
3118 struct vm_struct *__get_vm_area_node(unsigned long size,
3119 		unsigned long align, unsigned long shift, unsigned long flags,
3120 		unsigned long start, unsigned long end, int node,
3121 		gfp_t gfp_mask, const void *caller)
3122 {
3123 	struct vmap_area *va;
3124 	struct vm_struct *area;
3125 	unsigned long requested_size = size;
3126 
3127 	BUG_ON(in_interrupt());
3128 	size = ALIGN(size, 1ul << shift);
3129 	if (unlikely(!size))
3130 		return NULL;
3131 
3132 	if (flags & VM_IOREMAP)
3133 		align = 1ul << clamp_t(int, get_count_order_long(size),
3134 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
3135 
3136 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
3137 	if (unlikely(!area))
3138 		return NULL;
3139 
3140 	if (!(flags & VM_NO_GUARD))
3141 		size += PAGE_SIZE;
3142 
3143 	area->flags = flags;
3144 	area->caller = caller;
3145 	area->requested_size = requested_size;
3146 
3147 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area);
3148 	if (IS_ERR(va)) {
3149 		kfree(area);
3150 		return NULL;
3151 	}
3152 
3153 	/*
3154 	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
3155 	 * best-effort approach, as they can be mapped outside of vmalloc code.
3156 	 * For VM_ALLOC mappings, the pages are marked as accessible after
3157 	 * getting mapped in __vmalloc_node_range().
3158 	 * With hardware tag-based KASAN, marking is skipped for
3159 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3160 	 */
3161 	if (!(flags & VM_ALLOC))
3162 		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
3163 						    KASAN_VMALLOC_PROT_NORMAL);
3164 
3165 	return area;
3166 }
3167 
3168 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
3169 				       unsigned long start, unsigned long end,
3170 				       const void *caller)
3171 {
3172 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
3173 				  NUMA_NO_NODE, GFP_KERNEL, caller);
3174 }
3175 
3176 /**
3177  * get_vm_area - reserve a contiguous kernel virtual area
3178  * @size:	 size of the area
3179  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
3180  *
3181  * Search an area of @size in the kernel virtual mapping area,
3182  * and reserved it for out purposes.  Returns the area descriptor
3183  * on success or %NULL on failure.
3184  *
3185  * Return: the area descriptor on success or %NULL on failure.
3186  */
3187 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
3188 {
3189 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3190 				  VMALLOC_START, VMALLOC_END,
3191 				  NUMA_NO_NODE, GFP_KERNEL,
3192 				  __builtin_return_address(0));
3193 }
3194 
3195 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
3196 				const void *caller)
3197 {
3198 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3199 				  VMALLOC_START, VMALLOC_END,
3200 				  NUMA_NO_NODE, GFP_KERNEL, caller);
3201 }
3202 
3203 /**
3204  * find_vm_area - find a continuous kernel virtual area
3205  * @addr:	  base address
3206  *
3207  * Search for the kernel VM area starting at @addr, and return it.
3208  * It is up to the caller to do all required locking to keep the returned
3209  * pointer valid.
3210  *
3211  * Return: the area descriptor on success or %NULL on failure.
3212  */
3213 struct vm_struct *find_vm_area(const void *addr)
3214 {
3215 	struct vmap_area *va;
3216 
3217 	va = find_vmap_area((unsigned long)addr);
3218 	if (!va)
3219 		return NULL;
3220 
3221 	return va->vm;
3222 }
3223 
3224 /**
3225  * remove_vm_area - find and remove a continuous kernel virtual area
3226  * @addr:	    base address
3227  *
3228  * Search for the kernel VM area starting at @addr, and remove it.
3229  * This function returns the found VM area, but using it is NOT safe
3230  * on SMP machines, except for its size or flags.
3231  *
3232  * Return: the area descriptor on success or %NULL on failure.
3233  */
3234 struct vm_struct *remove_vm_area(const void *addr)
3235 {
3236 	struct vmap_area *va;
3237 	struct vm_struct *vm;
3238 
3239 	might_sleep();
3240 
3241 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
3242 			addr))
3243 		return NULL;
3244 
3245 	va = find_unlink_vmap_area((unsigned long)addr);
3246 	if (!va || !va->vm)
3247 		return NULL;
3248 	vm = va->vm;
3249 
3250 	debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
3251 	debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
3252 	kasan_free_module_shadow(vm);
3253 	kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
3254 
3255 	free_unmap_vmap_area(va);
3256 	return vm;
3257 }
3258 
3259 static inline void set_area_direct_map(const struct vm_struct *area,
3260 				       int (*set_direct_map)(struct page *page))
3261 {
3262 	int i;
3263 
3264 	/* HUGE_VMALLOC passes small pages to set_direct_map */
3265 	for (i = 0; i < area->nr_pages; i++)
3266 		if (page_address(area->pages[i]))
3267 			set_direct_map(area->pages[i]);
3268 }
3269 
3270 /*
3271  * Flush the vm mapping and reset the direct map.
3272  */
3273 static void vm_reset_perms(struct vm_struct *area)
3274 {
3275 	unsigned long start = ULONG_MAX, end = 0;
3276 	unsigned int page_order = vm_area_page_order(area);
3277 	int flush_dmap = 0;
3278 	int i;
3279 
3280 	/*
3281 	 * Find the start and end range of the direct mappings to make sure that
3282 	 * the vm_unmap_aliases() flush includes the direct map.
3283 	 */
3284 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
3285 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
3286 
3287 		if (addr) {
3288 			unsigned long page_size;
3289 
3290 			page_size = PAGE_SIZE << page_order;
3291 			start = min(addr, start);
3292 			end = max(addr + page_size, end);
3293 			flush_dmap = 1;
3294 		}
3295 	}
3296 
3297 	/*
3298 	 * Set direct map to something invalid so that it won't be cached if
3299 	 * there are any accesses after the TLB flush, then flush the TLB and
3300 	 * reset the direct map permissions to the default.
3301 	 */
3302 	set_area_direct_map(area, set_direct_map_invalid_noflush);
3303 	_vm_unmap_aliases(start, end, flush_dmap);
3304 	set_area_direct_map(area, set_direct_map_default_noflush);
3305 }
3306 
3307 static void delayed_vfree_work(struct work_struct *w)
3308 {
3309 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
3310 	struct llist_node *t, *llnode;
3311 
3312 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
3313 		vfree(llnode);
3314 }
3315 
3316 /**
3317  * vfree_atomic - release memory allocated by vmalloc()
3318  * @addr:	  memory base address
3319  *
3320  * This one is just like vfree() but can be called in any atomic context
3321  * except NMIs.
3322  */
3323 void vfree_atomic(const void *addr)
3324 {
3325 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
3326 
3327 	BUG_ON(in_nmi());
3328 	kmemleak_free(addr);
3329 
3330 	/*
3331 	 * Use raw_cpu_ptr() because this can be called from preemptible
3332 	 * context. Preemption is absolutely fine here, because the llist_add()
3333 	 * implementation is lockless, so it works even if we are adding to
3334 	 * another cpu's list. schedule_work() should be fine with this too.
3335 	 */
3336 	if (addr && llist_add((struct llist_node *)addr, &p->list))
3337 		schedule_work(&p->wq);
3338 }
3339 
3340 /**
3341  * vfree - Release memory allocated by vmalloc()
3342  * @addr:  Memory base address
3343  *
3344  * Free the virtually continuous memory area starting at @addr, as obtained
3345  * from one of the vmalloc() family of APIs.  This will usually also free the
3346  * physical memory underlying the virtual allocation, but that memory is
3347  * reference counted, so it will not be freed until the last user goes away.
3348  *
3349  * If @addr is NULL, no operation is performed.
3350  *
3351  * Context:
3352  * May sleep if called *not* from interrupt context.
3353  * Must not be called in NMI context (strictly speaking, it could be
3354  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
3355  * conventions for vfree() arch-dependent would be a really bad idea).
3356  */
3357 void vfree(const void *addr)
3358 {
3359 	struct vm_struct *vm;
3360 	int i;
3361 
3362 	if (unlikely(in_interrupt())) {
3363 		vfree_atomic(addr);
3364 		return;
3365 	}
3366 
3367 	BUG_ON(in_nmi());
3368 	kmemleak_free(addr);
3369 	might_sleep();
3370 
3371 	if (!addr)
3372 		return;
3373 
3374 	vm = remove_vm_area(addr);
3375 	if (unlikely(!vm)) {
3376 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
3377 				addr);
3378 		return;
3379 	}
3380 
3381 	if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
3382 		vm_reset_perms(vm);
3383 	/* All pages of vm should be charged to same memcg, so use first one. */
3384 	if (vm->nr_pages && !(vm->flags & VM_MAP_PUT_PAGES))
3385 		mod_memcg_page_state(vm->pages[0], MEMCG_VMALLOC, -vm->nr_pages);
3386 	for (i = 0; i < vm->nr_pages; i++) {
3387 		struct page *page = vm->pages[i];
3388 
3389 		BUG_ON(!page);
3390 		/*
3391 		 * High-order allocs for huge vmallocs are split, so
3392 		 * can be freed as an array of order-0 allocations
3393 		 */
3394 		__free_page(page);
3395 		cond_resched();
3396 	}
3397 	if (!(vm->flags & VM_MAP_PUT_PAGES))
3398 		atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
3399 	kvfree(vm->pages);
3400 	kfree(vm);
3401 }
3402 EXPORT_SYMBOL(vfree);
3403 
3404 /**
3405  * vunmap - release virtual mapping obtained by vmap()
3406  * @addr:   memory base address
3407  *
3408  * Free the virtually contiguous memory area starting at @addr,
3409  * which was created from the page array passed to vmap().
3410  *
3411  * Must not be called in interrupt context.
3412  */
3413 void vunmap(const void *addr)
3414 {
3415 	struct vm_struct *vm;
3416 
3417 	BUG_ON(in_interrupt());
3418 	might_sleep();
3419 
3420 	if (!addr)
3421 		return;
3422 	vm = remove_vm_area(addr);
3423 	if (unlikely(!vm)) {
3424 		WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
3425 				addr);
3426 		return;
3427 	}
3428 	kfree(vm);
3429 }
3430 EXPORT_SYMBOL(vunmap);
3431 
3432 /**
3433  * vmap - map an array of pages into virtually contiguous space
3434  * @pages: array of page pointers
3435  * @count: number of pages to map
3436  * @flags: vm_area->flags
3437  * @prot: page protection for the mapping
3438  *
3439  * Maps @count pages from @pages into contiguous kernel virtual space.
3440  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
3441  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
3442  * are transferred from the caller to vmap(), and will be freed / dropped when
3443  * vfree() is called on the return value.
3444  *
3445  * Return: the address of the area or %NULL on failure
3446  */
3447 void *vmap(struct page **pages, unsigned int count,
3448 	   unsigned long flags, pgprot_t prot)
3449 {
3450 	struct vm_struct *area;
3451 	unsigned long addr;
3452 	unsigned long size;		/* In bytes */
3453 
3454 	might_sleep();
3455 
3456 	if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
3457 		return NULL;
3458 
3459 	/*
3460 	 * Your top guard is someone else's bottom guard. Not having a top
3461 	 * guard compromises someone else's mappings too.
3462 	 */
3463 	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
3464 		flags &= ~VM_NO_GUARD;
3465 
3466 	if (count > totalram_pages())
3467 		return NULL;
3468 
3469 	size = (unsigned long)count << PAGE_SHIFT;
3470 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
3471 	if (!area)
3472 		return NULL;
3473 
3474 	addr = (unsigned long)area->addr;
3475 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
3476 				pages, PAGE_SHIFT) < 0) {
3477 		vunmap(area->addr);
3478 		return NULL;
3479 	}
3480 
3481 	if (flags & VM_MAP_PUT_PAGES) {
3482 		area->pages = pages;
3483 		area->nr_pages = count;
3484 	}
3485 	return area->addr;
3486 }
3487 EXPORT_SYMBOL(vmap);
3488 
3489 #ifdef CONFIG_VMAP_PFN
3490 struct vmap_pfn_data {
3491 	unsigned long	*pfns;
3492 	pgprot_t	prot;
3493 	unsigned int	idx;
3494 };
3495 
3496 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
3497 {
3498 	struct vmap_pfn_data *data = private;
3499 	unsigned long pfn = data->pfns[data->idx];
3500 	pte_t ptent;
3501 
3502 	if (WARN_ON_ONCE(pfn_valid(pfn)))
3503 		return -EINVAL;
3504 
3505 	ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
3506 	set_pte_at(&init_mm, addr, pte, ptent);
3507 
3508 	data->idx++;
3509 	return 0;
3510 }
3511 
3512 /**
3513  * vmap_pfn - map an array of PFNs into virtually contiguous space
3514  * @pfns: array of PFNs
3515  * @count: number of pages to map
3516  * @prot: page protection for the mapping
3517  *
3518  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
3519  * the start address of the mapping.
3520  */
3521 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
3522 {
3523 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
3524 	struct vm_struct *area;
3525 
3526 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
3527 			__builtin_return_address(0));
3528 	if (!area)
3529 		return NULL;
3530 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3531 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
3532 		free_vm_area(area);
3533 		return NULL;
3534 	}
3535 
3536 	flush_cache_vmap((unsigned long)area->addr,
3537 			 (unsigned long)area->addr + count * PAGE_SIZE);
3538 
3539 	return area->addr;
3540 }
3541 EXPORT_SYMBOL_GPL(vmap_pfn);
3542 #endif /* CONFIG_VMAP_PFN */
3543 
3544 static inline unsigned int
3545 vm_area_alloc_pages(gfp_t gfp, int nid,
3546 		unsigned int order, unsigned int nr_pages, struct page **pages)
3547 {
3548 	unsigned int nr_allocated = 0;
3549 	struct page *page;
3550 	int i;
3551 
3552 	/*
3553 	 * For order-0 pages we make use of bulk allocator, if
3554 	 * the page array is partly or not at all populated due
3555 	 * to fails, fallback to a single page allocator that is
3556 	 * more permissive.
3557 	 */
3558 	if (!order) {
3559 		while (nr_allocated < nr_pages) {
3560 			unsigned int nr, nr_pages_request;
3561 
3562 			/*
3563 			 * A maximum allowed request is hard-coded and is 100
3564 			 * pages per call. That is done in order to prevent a
3565 			 * long preemption off scenario in the bulk-allocator
3566 			 * so the range is [1:100].
3567 			 */
3568 			nr_pages_request = min(100U, nr_pages - nr_allocated);
3569 
3570 			/* memory allocation should consider mempolicy, we can't
3571 			 * wrongly use nearest node when nid == NUMA_NO_NODE,
3572 			 * otherwise memory may be allocated in only one node,
3573 			 * but mempolicy wants to alloc memory by interleaving.
3574 			 */
3575 			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3576 				nr = alloc_pages_bulk_mempolicy_noprof(gfp,
3577 							nr_pages_request,
3578 							pages + nr_allocated);
3579 			else
3580 				nr = alloc_pages_bulk_node_noprof(gfp, nid,
3581 							nr_pages_request,
3582 							pages + nr_allocated);
3583 
3584 			nr_allocated += nr;
3585 			cond_resched();
3586 
3587 			/*
3588 			 * If zero or pages were obtained partly,
3589 			 * fallback to a single page allocator.
3590 			 */
3591 			if (nr != nr_pages_request)
3592 				break;
3593 		}
3594 	}
3595 
3596 	/* High-order pages or fallback path if "bulk" fails. */
3597 	while (nr_allocated < nr_pages) {
3598 		if (!(gfp & __GFP_NOFAIL) && fatal_signal_pending(current))
3599 			break;
3600 
3601 		if (nid == NUMA_NO_NODE)
3602 			page = alloc_pages_noprof(gfp, order);
3603 		else
3604 			page = alloc_pages_node_noprof(nid, gfp, order);
3605 
3606 		if (unlikely(!page))
3607 			break;
3608 
3609 		/*
3610 		 * High-order allocations must be able to be treated as
3611 		 * independent small pages by callers (as they can with
3612 		 * small-page vmallocs). Some drivers do their own refcounting
3613 		 * on vmalloc_to_page() pages, some use page->mapping,
3614 		 * page->lru, etc.
3615 		 */
3616 		if (order)
3617 			split_page(page, order);
3618 
3619 		/*
3620 		 * Careful, we allocate and map page-order pages, but
3621 		 * tracking is done per PAGE_SIZE page so as to keep the
3622 		 * vm_struct APIs independent of the physical/mapped size.
3623 		 */
3624 		for (i = 0; i < (1U << order); i++)
3625 			pages[nr_allocated + i] = page + i;
3626 
3627 		cond_resched();
3628 		nr_allocated += 1U << order;
3629 	}
3630 
3631 	return nr_allocated;
3632 }
3633 
3634 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3635 				 pgprot_t prot, unsigned int page_shift,
3636 				 int node)
3637 {
3638 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3639 	bool nofail = gfp_mask & __GFP_NOFAIL;
3640 	unsigned long addr = (unsigned long)area->addr;
3641 	unsigned long size = get_vm_area_size(area);
3642 	unsigned long array_size;
3643 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
3644 	unsigned int page_order;
3645 	unsigned int flags;
3646 	int ret;
3647 
3648 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3649 
3650 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3651 		gfp_mask |= __GFP_HIGHMEM;
3652 
3653 	/* Please note that the recursion is strictly bounded. */
3654 	if (array_size > PAGE_SIZE) {
3655 		area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node,
3656 					area->caller);
3657 	} else {
3658 		area->pages = kmalloc_node_noprof(array_size, nested_gfp, node);
3659 	}
3660 
3661 	if (!area->pages) {
3662 		warn_alloc(gfp_mask, NULL,
3663 			"vmalloc error: size %lu, failed to allocated page array size %lu",
3664 			nr_small_pages * PAGE_SIZE, array_size);
3665 		free_vm_area(area);
3666 		return NULL;
3667 	}
3668 
3669 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3670 	page_order = vm_area_page_order(area);
3671 
3672 	/*
3673 	 * High-order nofail allocations are really expensive and
3674 	 * potentially dangerous (pre-mature OOM, disruptive reclaim
3675 	 * and compaction etc.
3676 	 *
3677 	 * Please note, the __vmalloc_node_range_noprof() falls-back
3678 	 * to order-0 pages if high-order attempt is unsuccessful.
3679 	 */
3680 	area->nr_pages = vm_area_alloc_pages((page_order ?
3681 		gfp_mask & ~__GFP_NOFAIL : gfp_mask) | __GFP_NOWARN,
3682 		node, page_order, nr_small_pages, area->pages);
3683 
3684 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3685 	/* All pages of vm should be charged to same memcg, so use first one. */
3686 	if (gfp_mask & __GFP_ACCOUNT && area->nr_pages)
3687 		mod_memcg_page_state(area->pages[0], MEMCG_VMALLOC,
3688 				     area->nr_pages);
3689 
3690 	/*
3691 	 * If not enough pages were obtained to accomplish an
3692 	 * allocation request, free them via vfree() if any.
3693 	 */
3694 	if (area->nr_pages != nr_small_pages) {
3695 		/*
3696 		 * vm_area_alloc_pages() can fail due to insufficient memory but
3697 		 * also:-
3698 		 *
3699 		 * - a pending fatal signal
3700 		 * - insufficient huge page-order pages
3701 		 *
3702 		 * Since we always retry allocations at order-0 in the huge page
3703 		 * case a warning for either is spurious.
3704 		 */
3705 		if (!fatal_signal_pending(current) && page_order == 0)
3706 			warn_alloc(gfp_mask, NULL,
3707 				"vmalloc error: size %lu, failed to allocate pages",
3708 				area->nr_pages * PAGE_SIZE);
3709 		goto fail;
3710 	}
3711 
3712 	/*
3713 	 * page tables allocations ignore external gfp mask, enforce it
3714 	 * by the scope API
3715 	 */
3716 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3717 		flags = memalloc_nofs_save();
3718 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3719 		flags = memalloc_noio_save();
3720 
3721 	do {
3722 		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3723 			page_shift);
3724 		if (nofail && (ret < 0))
3725 			schedule_timeout_uninterruptible(1);
3726 	} while (nofail && (ret < 0));
3727 
3728 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3729 		memalloc_nofs_restore(flags);
3730 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3731 		memalloc_noio_restore(flags);
3732 
3733 	if (ret < 0) {
3734 		warn_alloc(gfp_mask, NULL,
3735 			"vmalloc error: size %lu, failed to map pages",
3736 			area->nr_pages * PAGE_SIZE);
3737 		goto fail;
3738 	}
3739 
3740 	return area->addr;
3741 
3742 fail:
3743 	vfree(area->addr);
3744 	return NULL;
3745 }
3746 
3747 /**
3748  * __vmalloc_node_range - allocate virtually contiguous memory
3749  * @size:		  allocation size
3750  * @align:		  desired alignment
3751  * @start:		  vm area range start
3752  * @end:		  vm area range end
3753  * @gfp_mask:		  flags for the page level allocator
3754  * @prot:		  protection mask for the allocated pages
3755  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3756  * @node:		  node to use for allocation or NUMA_NO_NODE
3757  * @caller:		  caller's return address
3758  *
3759  * Allocate enough pages to cover @size from the page level
3760  * allocator with @gfp_mask flags. Please note that the full set of gfp
3761  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3762  * supported.
3763  * Zone modifiers are not supported. From the reclaim modifiers
3764  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3765  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3766  * __GFP_RETRY_MAYFAIL are not supported).
3767  *
3768  * __GFP_NOWARN can be used to suppress failures messages.
3769  *
3770  * Map them into contiguous kernel virtual space, using a pagetable
3771  * protection of @prot.
3772  *
3773  * Return: the address of the area or %NULL on failure
3774  */
3775 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
3776 			unsigned long start, unsigned long end, gfp_t gfp_mask,
3777 			pgprot_t prot, unsigned long vm_flags, int node,
3778 			const void *caller)
3779 {
3780 	struct vm_struct *area;
3781 	void *ret;
3782 	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3783 	unsigned long original_align = align;
3784 	unsigned int shift = PAGE_SHIFT;
3785 
3786 	if (WARN_ON_ONCE(!size))
3787 		return NULL;
3788 
3789 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3790 		warn_alloc(gfp_mask, NULL,
3791 			"vmalloc error: size %lu, exceeds total pages",
3792 			size);
3793 		return NULL;
3794 	}
3795 
3796 	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3797 		/*
3798 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3799 		 * others like modules don't yet expect huge pages in
3800 		 * their allocations due to apply_to_page_range not
3801 		 * supporting them.
3802 		 */
3803 
3804 		if (arch_vmap_pmd_supported(prot) && size >= PMD_SIZE)
3805 			shift = PMD_SHIFT;
3806 		else
3807 			shift = arch_vmap_pte_supported_shift(size);
3808 
3809 		align = max(original_align, 1UL << shift);
3810 	}
3811 
3812 again:
3813 	area = __get_vm_area_node(size, align, shift, VM_ALLOC |
3814 				  VM_UNINITIALIZED | vm_flags, start, end, node,
3815 				  gfp_mask, caller);
3816 	if (!area) {
3817 		bool nofail = gfp_mask & __GFP_NOFAIL;
3818 		warn_alloc(gfp_mask, NULL,
3819 			"vmalloc error: size %lu, vm_struct allocation failed%s",
3820 			size, (nofail) ? ". Retrying." : "");
3821 		if (nofail) {
3822 			schedule_timeout_uninterruptible(1);
3823 			goto again;
3824 		}
3825 		goto fail;
3826 	}
3827 
3828 	/*
3829 	 * Prepare arguments for __vmalloc_area_node() and
3830 	 * kasan_unpoison_vmalloc().
3831 	 */
3832 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3833 		if (kasan_hw_tags_enabled()) {
3834 			/*
3835 			 * Modify protection bits to allow tagging.
3836 			 * This must be done before mapping.
3837 			 */
3838 			prot = arch_vmap_pgprot_tagged(prot);
3839 
3840 			/*
3841 			 * Skip page_alloc poisoning and zeroing for physical
3842 			 * pages backing VM_ALLOC mapping. Memory is instead
3843 			 * poisoned and zeroed by kasan_unpoison_vmalloc().
3844 			 */
3845 			gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
3846 		}
3847 
3848 		/* Take note that the mapping is PAGE_KERNEL. */
3849 		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3850 	}
3851 
3852 	/* Allocate physical pages and map them into vmalloc space. */
3853 	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3854 	if (!ret)
3855 		goto fail;
3856 
3857 	/*
3858 	 * Mark the pages as accessible, now that they are mapped.
3859 	 * The condition for setting KASAN_VMALLOC_INIT should complement the
3860 	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3861 	 * to make sure that memory is initialized under the same conditions.
3862 	 * Tag-based KASAN modes only assign tags to normal non-executable
3863 	 * allocations, see __kasan_unpoison_vmalloc().
3864 	 */
3865 	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3866 	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3867 	    (gfp_mask & __GFP_SKIP_ZERO))
3868 		kasan_flags |= KASAN_VMALLOC_INIT;
3869 	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3870 	area->addr = kasan_unpoison_vmalloc(area->addr, size, kasan_flags);
3871 
3872 	/*
3873 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3874 	 * flag. It means that vm_struct is not fully initialized.
3875 	 * Now, it is fully initialized, so remove this flag here.
3876 	 */
3877 	clear_vm_uninitialized_flag(area);
3878 
3879 	if (!(vm_flags & VM_DEFER_KMEMLEAK))
3880 		kmemleak_vmalloc(area, PAGE_ALIGN(size), gfp_mask);
3881 
3882 	return area->addr;
3883 
3884 fail:
3885 	if (shift > PAGE_SHIFT) {
3886 		shift = PAGE_SHIFT;
3887 		align = original_align;
3888 		goto again;
3889 	}
3890 
3891 	return NULL;
3892 }
3893 
3894 /**
3895  * __vmalloc_node - allocate virtually contiguous memory
3896  * @size:	    allocation size
3897  * @align:	    desired alignment
3898  * @gfp_mask:	    flags for the page level allocator
3899  * @node:	    node to use for allocation or NUMA_NO_NODE
3900  * @caller:	    caller's return address
3901  *
3902  * Allocate enough pages to cover @size from the page level allocator with
3903  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3904  *
3905  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3906  * and __GFP_NOFAIL are not supported
3907  *
3908  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3909  * with mm people.
3910  *
3911  * Return: pointer to the allocated memory or %NULL on error
3912  */
3913 void *__vmalloc_node_noprof(unsigned long size, unsigned long align,
3914 			    gfp_t gfp_mask, int node, const void *caller)
3915 {
3916 	return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END,
3917 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3918 }
3919 /*
3920  * This is only for performance analysis of vmalloc and stress purpose.
3921  * It is required by vmalloc test module, therefore do not use it other
3922  * than that.
3923  */
3924 #ifdef CONFIG_TEST_VMALLOC_MODULE
3925 EXPORT_SYMBOL_GPL(__vmalloc_node_noprof);
3926 #endif
3927 
3928 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
3929 {
3930 	return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE,
3931 				__builtin_return_address(0));
3932 }
3933 EXPORT_SYMBOL(__vmalloc_noprof);
3934 
3935 /**
3936  * vmalloc - allocate virtually contiguous memory
3937  * @size:    allocation size
3938  *
3939  * Allocate enough pages to cover @size from the page level
3940  * allocator and map them into contiguous kernel virtual space.
3941  *
3942  * For tight control over page level allocator and protection flags
3943  * use __vmalloc() instead.
3944  *
3945  * Return: pointer to the allocated memory or %NULL on error
3946  */
3947 void *vmalloc_noprof(unsigned long size)
3948 {
3949 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3950 				__builtin_return_address(0));
3951 }
3952 EXPORT_SYMBOL(vmalloc_noprof);
3953 
3954 /**
3955  * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3956  * @size:      allocation size
3957  * @gfp_mask:  flags for the page level allocator
3958  *
3959  * Allocate enough pages to cover @size from the page level
3960  * allocator and map them into contiguous kernel virtual space.
3961  * If @size is greater than or equal to PMD_SIZE, allow using
3962  * huge pages for the memory
3963  *
3964  * Return: pointer to the allocated memory or %NULL on error
3965  */
3966 void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask)
3967 {
3968 	return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
3969 				    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3970 				    NUMA_NO_NODE, __builtin_return_address(0));
3971 }
3972 EXPORT_SYMBOL_GPL(vmalloc_huge_noprof);
3973 
3974 /**
3975  * vzalloc - allocate virtually contiguous memory with zero fill
3976  * @size:    allocation size
3977  *
3978  * Allocate enough pages to cover @size from the page level
3979  * allocator and map them into contiguous kernel virtual space.
3980  * The memory allocated is set to zero.
3981  *
3982  * For tight control over page level allocator and protection flags
3983  * use __vmalloc() instead.
3984  *
3985  * Return: pointer to the allocated memory or %NULL on error
3986  */
3987 void *vzalloc_noprof(unsigned long size)
3988 {
3989 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3990 				__builtin_return_address(0));
3991 }
3992 EXPORT_SYMBOL(vzalloc_noprof);
3993 
3994 /**
3995  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3996  * @size: allocation size
3997  *
3998  * The resulting memory area is zeroed so it can be mapped to userspace
3999  * without leaking data.
4000  *
4001  * Return: pointer to the allocated memory or %NULL on error
4002  */
4003 void *vmalloc_user_noprof(unsigned long size)
4004 {
4005 	return __vmalloc_node_range_noprof(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
4006 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
4007 				    VM_USERMAP, NUMA_NO_NODE,
4008 				    __builtin_return_address(0));
4009 }
4010 EXPORT_SYMBOL(vmalloc_user_noprof);
4011 
4012 /**
4013  * vmalloc_node - allocate memory on a specific node
4014  * @size:	  allocation size
4015  * @node:	  numa node
4016  *
4017  * Allocate enough pages to cover @size from the page level
4018  * allocator and map them into contiguous kernel virtual space.
4019  *
4020  * For tight control over page level allocator and protection flags
4021  * use __vmalloc() instead.
4022  *
4023  * Return: pointer to the allocated memory or %NULL on error
4024  */
4025 void *vmalloc_node_noprof(unsigned long size, int node)
4026 {
4027 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node,
4028 			__builtin_return_address(0));
4029 }
4030 EXPORT_SYMBOL(vmalloc_node_noprof);
4031 
4032 /**
4033  * vzalloc_node - allocate memory on a specific node with zero fill
4034  * @size:	allocation size
4035  * @node:	numa node
4036  *
4037  * Allocate enough pages to cover @size from the page level
4038  * allocator and map them into contiguous kernel virtual space.
4039  * The memory allocated is set to zero.
4040  *
4041  * Return: pointer to the allocated memory or %NULL on error
4042  */
4043 void *vzalloc_node_noprof(unsigned long size, int node)
4044 {
4045 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node,
4046 				__builtin_return_address(0));
4047 }
4048 EXPORT_SYMBOL(vzalloc_node_noprof);
4049 
4050 /**
4051  * vrealloc - reallocate virtually contiguous memory; contents remain unchanged
4052  * @p: object to reallocate memory for
4053  * @size: the size to reallocate
4054  * @flags: the flags for the page level allocator
4055  *
4056  * If @p is %NULL, vrealloc() behaves exactly like vmalloc(). If @size is 0 and
4057  * @p is not a %NULL pointer, the object pointed to is freed.
4058  *
4059  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4060  * initial memory allocation, every subsequent call to this API for the same
4061  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4062  * __GFP_ZERO is not fully honored by this API.
4063  *
4064  * In any case, the contents of the object pointed to are preserved up to the
4065  * lesser of the new and old sizes.
4066  *
4067  * This function must not be called concurrently with itself or vfree() for the
4068  * same memory allocation.
4069  *
4070  * Return: pointer to the allocated memory; %NULL if @size is zero or in case of
4071  *         failure
4072  */
4073 void *vrealloc_noprof(const void *p, size_t size, gfp_t flags)
4074 {
4075 	struct vm_struct *vm = NULL;
4076 	size_t alloced_size = 0;
4077 	size_t old_size = 0;
4078 	void *n;
4079 
4080 	if (!size) {
4081 		vfree(p);
4082 		return NULL;
4083 	}
4084 
4085 	if (p) {
4086 		vm = find_vm_area(p);
4087 		if (unlikely(!vm)) {
4088 			WARN(1, "Trying to vrealloc() nonexistent vm area (%p)\n", p);
4089 			return NULL;
4090 		}
4091 
4092 		alloced_size = get_vm_area_size(vm);
4093 		old_size = vm->requested_size;
4094 		if (WARN(alloced_size < old_size,
4095 			 "vrealloc() has mismatched area vs requested sizes (%p)\n", p))
4096 			return NULL;
4097 	}
4098 
4099 	/*
4100 	 * TODO: Shrink the vm_area, i.e. unmap and free unused pages. What
4101 	 * would be a good heuristic for when to shrink the vm_area?
4102 	 */
4103 	if (size <= old_size) {
4104 		/* Zero out "freed" memory. */
4105 		if (want_init_on_free())
4106 			memset((void *)p + size, 0, old_size - size);
4107 		vm->requested_size = size;
4108 		kasan_poison_vmalloc(p + size, old_size - size);
4109 		return (void *)p;
4110 	}
4111 
4112 	/*
4113 	 * We already have the bytes available in the allocation; use them.
4114 	 */
4115 	if (size <= alloced_size) {
4116 		kasan_unpoison_vmalloc(p + old_size, size - old_size,
4117 				       KASAN_VMALLOC_PROT_NORMAL);
4118 		/* Zero out "alloced" memory. */
4119 		if (want_init_on_alloc(flags))
4120 			memset((void *)p + old_size, 0, size - old_size);
4121 		vm->requested_size = size;
4122 	}
4123 
4124 	/* TODO: Grow the vm_area, i.e. allocate and map additional pages. */
4125 	n = __vmalloc_noprof(size, flags);
4126 	if (!n)
4127 		return NULL;
4128 
4129 	if (p) {
4130 		memcpy(n, p, old_size);
4131 		vfree(p);
4132 	}
4133 
4134 	return n;
4135 }
4136 
4137 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
4138 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4139 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
4140 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
4141 #else
4142 /*
4143  * 64b systems should always have either DMA or DMA32 zones. For others
4144  * GFP_DMA32 should do the right thing and use the normal zone.
4145  */
4146 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4147 #endif
4148 
4149 /**
4150  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
4151  * @size:	allocation size
4152  *
4153  * Allocate enough 32bit PA addressable pages to cover @size from the
4154  * page level allocator and map them into contiguous kernel virtual space.
4155  *
4156  * Return: pointer to the allocated memory or %NULL on error
4157  */
4158 void *vmalloc_32_noprof(unsigned long size)
4159 {
4160 	return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
4161 			__builtin_return_address(0));
4162 }
4163 EXPORT_SYMBOL(vmalloc_32_noprof);
4164 
4165 /**
4166  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
4167  * @size:	     allocation size
4168  *
4169  * The resulting memory area is 32bit addressable and zeroed so it can be
4170  * mapped to userspace without leaking data.
4171  *
4172  * Return: pointer to the allocated memory or %NULL on error
4173  */
4174 void *vmalloc_32_user_noprof(unsigned long size)
4175 {
4176 	return __vmalloc_node_range_noprof(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
4177 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
4178 				    VM_USERMAP, NUMA_NO_NODE,
4179 				    __builtin_return_address(0));
4180 }
4181 EXPORT_SYMBOL(vmalloc_32_user_noprof);
4182 
4183 /*
4184  * Atomically zero bytes in the iterator.
4185  *
4186  * Returns the number of zeroed bytes.
4187  */
4188 static size_t zero_iter(struct iov_iter *iter, size_t count)
4189 {
4190 	size_t remains = count;
4191 
4192 	while (remains > 0) {
4193 		size_t num, copied;
4194 
4195 		num = min_t(size_t, remains, PAGE_SIZE);
4196 		copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
4197 		remains -= copied;
4198 
4199 		if (copied < num)
4200 			break;
4201 	}
4202 
4203 	return count - remains;
4204 }
4205 
4206 /*
4207  * small helper routine, copy contents to iter from addr.
4208  * If the page is not present, fill zero.
4209  *
4210  * Returns the number of copied bytes.
4211  */
4212 static size_t aligned_vread_iter(struct iov_iter *iter,
4213 				 const char *addr, size_t count)
4214 {
4215 	size_t remains = count;
4216 	struct page *page;
4217 
4218 	while (remains > 0) {
4219 		unsigned long offset, length;
4220 		size_t copied = 0;
4221 
4222 		offset = offset_in_page(addr);
4223 		length = PAGE_SIZE - offset;
4224 		if (length > remains)
4225 			length = remains;
4226 		page = vmalloc_to_page(addr);
4227 		/*
4228 		 * To do safe access to this _mapped_ area, we need lock. But
4229 		 * adding lock here means that we need to add overhead of
4230 		 * vmalloc()/vfree() calls for this _debug_ interface, rarely
4231 		 * used. Instead of that, we'll use an local mapping via
4232 		 * copy_page_to_iter_nofault() and accept a small overhead in
4233 		 * this access function.
4234 		 */
4235 		if (page)
4236 			copied = copy_page_to_iter_nofault(page, offset,
4237 							   length, iter);
4238 		else
4239 			copied = zero_iter(iter, length);
4240 
4241 		addr += copied;
4242 		remains -= copied;
4243 
4244 		if (copied != length)
4245 			break;
4246 	}
4247 
4248 	return count - remains;
4249 }
4250 
4251 /*
4252  * Read from a vm_map_ram region of memory.
4253  *
4254  * Returns the number of copied bytes.
4255  */
4256 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
4257 				  size_t count, unsigned long flags)
4258 {
4259 	char *start;
4260 	struct vmap_block *vb;
4261 	struct xarray *xa;
4262 	unsigned long offset;
4263 	unsigned int rs, re;
4264 	size_t remains, n;
4265 
4266 	/*
4267 	 * If it's area created by vm_map_ram() interface directly, but
4268 	 * not further subdividing and delegating management to vmap_block,
4269 	 * handle it here.
4270 	 */
4271 	if (!(flags & VMAP_BLOCK))
4272 		return aligned_vread_iter(iter, addr, count);
4273 
4274 	remains = count;
4275 
4276 	/*
4277 	 * Area is split into regions and tracked with vmap_block, read out
4278 	 * each region and zero fill the hole between regions.
4279 	 */
4280 	xa = addr_to_vb_xa((unsigned long) addr);
4281 	vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
4282 	if (!vb)
4283 		goto finished_zero;
4284 
4285 	spin_lock(&vb->lock);
4286 	if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
4287 		spin_unlock(&vb->lock);
4288 		goto finished_zero;
4289 	}
4290 
4291 	for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
4292 		size_t copied;
4293 
4294 		if (remains == 0)
4295 			goto finished;
4296 
4297 		start = vmap_block_vaddr(vb->va->va_start, rs);
4298 
4299 		if (addr < start) {
4300 			size_t to_zero = min_t(size_t, start - addr, remains);
4301 			size_t zeroed = zero_iter(iter, to_zero);
4302 
4303 			addr += zeroed;
4304 			remains -= zeroed;
4305 
4306 			if (remains == 0 || zeroed != to_zero)
4307 				goto finished;
4308 		}
4309 
4310 		/*it could start reading from the middle of used region*/
4311 		offset = offset_in_page(addr);
4312 		n = ((re - rs + 1) << PAGE_SHIFT) - offset;
4313 		if (n > remains)
4314 			n = remains;
4315 
4316 		copied = aligned_vread_iter(iter, start + offset, n);
4317 
4318 		addr += copied;
4319 		remains -= copied;
4320 
4321 		if (copied != n)
4322 			goto finished;
4323 	}
4324 
4325 	spin_unlock(&vb->lock);
4326 
4327 finished_zero:
4328 	/* zero-fill the left dirty or free regions */
4329 	return count - remains + zero_iter(iter, remains);
4330 finished:
4331 	/* We couldn't copy/zero everything */
4332 	spin_unlock(&vb->lock);
4333 	return count - remains;
4334 }
4335 
4336 /**
4337  * vread_iter() - read vmalloc area in a safe way to an iterator.
4338  * @iter:         the iterator to which data should be written.
4339  * @addr:         vm address.
4340  * @count:        number of bytes to be read.
4341  *
4342  * This function checks that addr is a valid vmalloc'ed area, and
4343  * copy data from that area to a given buffer. If the given memory range
4344  * of [addr...addr+count) includes some valid address, data is copied to
4345  * proper area of @buf. If there are memory holes, they'll be zero-filled.
4346  * IOREMAP area is treated as memory hole and no copy is done.
4347  *
4348  * If [addr...addr+count) doesn't includes any intersects with alive
4349  * vm_struct area, returns 0. @buf should be kernel's buffer.
4350  *
4351  * Note: In usual ops, vread() is never necessary because the caller
4352  * should know vmalloc() area is valid and can use memcpy().
4353  * This is for routines which have to access vmalloc area without
4354  * any information, as /proc/kcore.
4355  *
4356  * Return: number of bytes for which addr and buf should be increased
4357  * (same number as @count) or %0 if [addr...addr+count) doesn't
4358  * include any intersection with valid vmalloc area
4359  */
4360 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
4361 {
4362 	struct vmap_node *vn;
4363 	struct vmap_area *va;
4364 	struct vm_struct *vm;
4365 	char *vaddr;
4366 	size_t n, size, flags, remains;
4367 	unsigned long next;
4368 
4369 	addr = kasan_reset_tag(addr);
4370 
4371 	/* Don't allow overflow */
4372 	if ((unsigned long) addr + count < count)
4373 		count = -(unsigned long) addr;
4374 
4375 	remains = count;
4376 
4377 	vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va);
4378 	if (!vn)
4379 		goto finished_zero;
4380 
4381 	/* no intersects with alive vmap_area */
4382 	if ((unsigned long)addr + remains <= va->va_start)
4383 		goto finished_zero;
4384 
4385 	do {
4386 		size_t copied;
4387 
4388 		if (remains == 0)
4389 			goto finished;
4390 
4391 		vm = va->vm;
4392 		flags = va->flags & VMAP_FLAGS_MASK;
4393 		/*
4394 		 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
4395 		 * be set together with VMAP_RAM.
4396 		 */
4397 		WARN_ON(flags == VMAP_BLOCK);
4398 
4399 		if (!vm && !flags)
4400 			goto next_va;
4401 
4402 		if (vm && (vm->flags & VM_UNINITIALIZED))
4403 			goto next_va;
4404 
4405 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4406 		smp_rmb();
4407 
4408 		vaddr = (char *) va->va_start;
4409 		size = vm ? get_vm_area_size(vm) : va_size(va);
4410 
4411 		if (addr >= vaddr + size)
4412 			goto next_va;
4413 
4414 		if (addr < vaddr) {
4415 			size_t to_zero = min_t(size_t, vaddr - addr, remains);
4416 			size_t zeroed = zero_iter(iter, to_zero);
4417 
4418 			addr += zeroed;
4419 			remains -= zeroed;
4420 
4421 			if (remains == 0 || zeroed != to_zero)
4422 				goto finished;
4423 		}
4424 
4425 		n = vaddr + size - addr;
4426 		if (n > remains)
4427 			n = remains;
4428 
4429 		if (flags & VMAP_RAM)
4430 			copied = vmap_ram_vread_iter(iter, addr, n, flags);
4431 		else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE))))
4432 			copied = aligned_vread_iter(iter, addr, n);
4433 		else /* IOREMAP | SPARSE area is treated as memory hole */
4434 			copied = zero_iter(iter, n);
4435 
4436 		addr += copied;
4437 		remains -= copied;
4438 
4439 		if (copied != n)
4440 			goto finished;
4441 
4442 	next_va:
4443 		next = va->va_end;
4444 		spin_unlock(&vn->busy.lock);
4445 	} while ((vn = find_vmap_area_exceed_addr_lock(next, &va)));
4446 
4447 finished_zero:
4448 	if (vn)
4449 		spin_unlock(&vn->busy.lock);
4450 
4451 	/* zero-fill memory holes */
4452 	return count - remains + zero_iter(iter, remains);
4453 finished:
4454 	/* Nothing remains, or We couldn't copy/zero everything. */
4455 	if (vn)
4456 		spin_unlock(&vn->busy.lock);
4457 
4458 	return count - remains;
4459 }
4460 
4461 /**
4462  * remap_vmalloc_range_partial - map vmalloc pages to userspace
4463  * @vma:		vma to cover
4464  * @uaddr:		target user address to start at
4465  * @kaddr:		virtual address of vmalloc kernel memory
4466  * @pgoff:		offset from @kaddr to start at
4467  * @size:		size of map area
4468  *
4469  * Returns:	0 for success, -Exxx on failure
4470  *
4471  * This function checks that @kaddr is a valid vmalloc'ed area,
4472  * and that it is big enough to cover the range starting at
4473  * @uaddr in @vma. Will return failure if that criteria isn't
4474  * met.
4475  *
4476  * Similar to remap_pfn_range() (see mm/memory.c)
4477  */
4478 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
4479 				void *kaddr, unsigned long pgoff,
4480 				unsigned long size)
4481 {
4482 	struct vm_struct *area;
4483 	unsigned long off;
4484 	unsigned long end_index;
4485 
4486 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
4487 		return -EINVAL;
4488 
4489 	size = PAGE_ALIGN(size);
4490 
4491 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
4492 		return -EINVAL;
4493 
4494 	area = find_vm_area(kaddr);
4495 	if (!area)
4496 		return -EINVAL;
4497 
4498 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
4499 		return -EINVAL;
4500 
4501 	if (check_add_overflow(size, off, &end_index) ||
4502 	    end_index > get_vm_area_size(area))
4503 		return -EINVAL;
4504 	kaddr += off;
4505 
4506 	do {
4507 		struct page *page = vmalloc_to_page(kaddr);
4508 		int ret;
4509 
4510 		ret = vm_insert_page(vma, uaddr, page);
4511 		if (ret)
4512 			return ret;
4513 
4514 		uaddr += PAGE_SIZE;
4515 		kaddr += PAGE_SIZE;
4516 		size -= PAGE_SIZE;
4517 	} while (size > 0);
4518 
4519 	vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
4520 
4521 	return 0;
4522 }
4523 
4524 /**
4525  * remap_vmalloc_range - map vmalloc pages to userspace
4526  * @vma:		vma to cover (map full range of vma)
4527  * @addr:		vmalloc memory
4528  * @pgoff:		number of pages into addr before first page to map
4529  *
4530  * Returns:	0 for success, -Exxx on failure
4531  *
4532  * This function checks that addr is a valid vmalloc'ed area, and
4533  * that it is big enough to cover the vma. Will return failure if
4534  * that criteria isn't met.
4535  *
4536  * Similar to remap_pfn_range() (see mm/memory.c)
4537  */
4538 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
4539 						unsigned long pgoff)
4540 {
4541 	return remap_vmalloc_range_partial(vma, vma->vm_start,
4542 					   addr, pgoff,
4543 					   vma->vm_end - vma->vm_start);
4544 }
4545 EXPORT_SYMBOL(remap_vmalloc_range);
4546 
4547 void free_vm_area(struct vm_struct *area)
4548 {
4549 	struct vm_struct *ret;
4550 	ret = remove_vm_area(area->addr);
4551 	BUG_ON(ret != area);
4552 	kfree(area);
4553 }
4554 EXPORT_SYMBOL_GPL(free_vm_area);
4555 
4556 #ifdef CONFIG_SMP
4557 static struct vmap_area *node_to_va(struct rb_node *n)
4558 {
4559 	return rb_entry_safe(n, struct vmap_area, rb_node);
4560 }
4561 
4562 /**
4563  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
4564  * @addr: target address
4565  *
4566  * Returns: vmap_area if it is found. If there is no such area
4567  *   the first highest(reverse order) vmap_area is returned
4568  *   i.e. va->va_start < addr && va->va_end < addr or NULL
4569  *   if there are no any areas before @addr.
4570  */
4571 static struct vmap_area *
4572 pvm_find_va_enclose_addr(unsigned long addr)
4573 {
4574 	struct vmap_area *va, *tmp;
4575 	struct rb_node *n;
4576 
4577 	n = free_vmap_area_root.rb_node;
4578 	va = NULL;
4579 
4580 	while (n) {
4581 		tmp = rb_entry(n, struct vmap_area, rb_node);
4582 		if (tmp->va_start <= addr) {
4583 			va = tmp;
4584 			if (tmp->va_end >= addr)
4585 				break;
4586 
4587 			n = n->rb_right;
4588 		} else {
4589 			n = n->rb_left;
4590 		}
4591 	}
4592 
4593 	return va;
4594 }
4595 
4596 /**
4597  * pvm_determine_end_from_reverse - find the highest aligned address
4598  * of free block below VMALLOC_END
4599  * @va:
4600  *   in - the VA we start the search(reverse order);
4601  *   out - the VA with the highest aligned end address.
4602  * @align: alignment for required highest address
4603  *
4604  * Returns: determined end address within vmap_area
4605  */
4606 static unsigned long
4607 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
4608 {
4609 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4610 	unsigned long addr;
4611 
4612 	if (likely(*va)) {
4613 		list_for_each_entry_from_reverse((*va),
4614 				&free_vmap_area_list, list) {
4615 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
4616 			if ((*va)->va_start < addr)
4617 				return addr;
4618 		}
4619 	}
4620 
4621 	return 0;
4622 }
4623 
4624 /**
4625  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4626  * @offsets: array containing offset of each area
4627  * @sizes: array containing size of each area
4628  * @nr_vms: the number of areas to allocate
4629  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4630  *
4631  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4632  *	    vm_structs on success, %NULL on failure
4633  *
4634  * Percpu allocator wants to use congruent vm areas so that it can
4635  * maintain the offsets among percpu areas.  This function allocates
4636  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
4637  * be scattered pretty far, distance between two areas easily going up
4638  * to gigabytes.  To avoid interacting with regular vmallocs, these
4639  * areas are allocated from top.
4640  *
4641  * Despite its complicated look, this allocator is rather simple. It
4642  * does everything top-down and scans free blocks from the end looking
4643  * for matching base. While scanning, if any of the areas do not fit the
4644  * base address is pulled down to fit the area. Scanning is repeated till
4645  * all the areas fit and then all necessary data structures are inserted
4646  * and the result is returned.
4647  */
4648 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4649 				     const size_t *sizes, int nr_vms,
4650 				     size_t align)
4651 {
4652 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4653 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4654 	struct vmap_area **vas, *va;
4655 	struct vm_struct **vms;
4656 	int area, area2, last_area, term_area;
4657 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
4658 	bool purged = false;
4659 
4660 	/* verify parameters and allocate data structures */
4661 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4662 	for (last_area = 0, area = 0; area < nr_vms; area++) {
4663 		start = offsets[area];
4664 		end = start + sizes[area];
4665 
4666 		/* is everything aligned properly? */
4667 		BUG_ON(!IS_ALIGNED(offsets[area], align));
4668 		BUG_ON(!IS_ALIGNED(sizes[area], align));
4669 
4670 		/* detect the area with the highest address */
4671 		if (start > offsets[last_area])
4672 			last_area = area;
4673 
4674 		for (area2 = area + 1; area2 < nr_vms; area2++) {
4675 			unsigned long start2 = offsets[area2];
4676 			unsigned long end2 = start2 + sizes[area2];
4677 
4678 			BUG_ON(start2 < end && start < end2);
4679 		}
4680 	}
4681 	last_end = offsets[last_area] + sizes[last_area];
4682 
4683 	if (vmalloc_end - vmalloc_start < last_end) {
4684 		WARN_ON(true);
4685 		return NULL;
4686 	}
4687 
4688 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4689 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4690 	if (!vas || !vms)
4691 		goto err_free2;
4692 
4693 	for (area = 0; area < nr_vms; area++) {
4694 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4695 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4696 		if (!vas[area] || !vms[area])
4697 			goto err_free;
4698 	}
4699 retry:
4700 	spin_lock(&free_vmap_area_lock);
4701 
4702 	/* start scanning - we scan from the top, begin with the last area */
4703 	area = term_area = last_area;
4704 	start = offsets[area];
4705 	end = start + sizes[area];
4706 
4707 	va = pvm_find_va_enclose_addr(vmalloc_end);
4708 	base = pvm_determine_end_from_reverse(&va, align) - end;
4709 
4710 	while (true) {
4711 		/*
4712 		 * base might have underflowed, add last_end before
4713 		 * comparing.
4714 		 */
4715 		if (base + last_end < vmalloc_start + last_end)
4716 			goto overflow;
4717 
4718 		/*
4719 		 * Fitting base has not been found.
4720 		 */
4721 		if (va == NULL)
4722 			goto overflow;
4723 
4724 		/*
4725 		 * If required width exceeds current VA block, move
4726 		 * base downwards and then recheck.
4727 		 */
4728 		if (base + end > va->va_end) {
4729 			base = pvm_determine_end_from_reverse(&va, align) - end;
4730 			term_area = area;
4731 			continue;
4732 		}
4733 
4734 		/*
4735 		 * If this VA does not fit, move base downwards and recheck.
4736 		 */
4737 		if (base + start < va->va_start) {
4738 			va = node_to_va(rb_prev(&va->rb_node));
4739 			base = pvm_determine_end_from_reverse(&va, align) - end;
4740 			term_area = area;
4741 			continue;
4742 		}
4743 
4744 		/*
4745 		 * This area fits, move on to the previous one.  If
4746 		 * the previous one is the terminal one, we're done.
4747 		 */
4748 		area = (area + nr_vms - 1) % nr_vms;
4749 		if (area == term_area)
4750 			break;
4751 
4752 		start = offsets[area];
4753 		end = start + sizes[area];
4754 		va = pvm_find_va_enclose_addr(base + end);
4755 	}
4756 
4757 	/* we've found a fitting base, insert all va's */
4758 	for (area = 0; area < nr_vms; area++) {
4759 		int ret;
4760 
4761 		start = base + offsets[area];
4762 		size = sizes[area];
4763 
4764 		va = pvm_find_va_enclose_addr(start);
4765 		if (WARN_ON_ONCE(va == NULL))
4766 			/* It is a BUG(), but trigger recovery instead. */
4767 			goto recovery;
4768 
4769 		ret = va_clip(&free_vmap_area_root,
4770 			&free_vmap_area_list, va, start, size);
4771 		if (WARN_ON_ONCE(unlikely(ret)))
4772 			/* It is a BUG(), but trigger recovery instead. */
4773 			goto recovery;
4774 
4775 		/* Allocated area. */
4776 		va = vas[area];
4777 		va->va_start = start;
4778 		va->va_end = start + size;
4779 	}
4780 
4781 	spin_unlock(&free_vmap_area_lock);
4782 
4783 	/* populate the kasan shadow space */
4784 	for (area = 0; area < nr_vms; area++) {
4785 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4786 			goto err_free_shadow;
4787 	}
4788 
4789 	/* insert all vm's */
4790 	for (area = 0; area < nr_vms; area++) {
4791 		struct vmap_node *vn = addr_to_node(vas[area]->va_start);
4792 
4793 		spin_lock(&vn->busy.lock);
4794 		insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head);
4795 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
4796 				 pcpu_get_vm_areas);
4797 		spin_unlock(&vn->busy.lock);
4798 	}
4799 
4800 	/*
4801 	 * Mark allocated areas as accessible. Do it now as a best-effort
4802 	 * approach, as they can be mapped outside of vmalloc code.
4803 	 * With hardware tag-based KASAN, marking is skipped for
4804 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4805 	 */
4806 	for (area = 0; area < nr_vms; area++)
4807 		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4808 				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4809 
4810 	kfree(vas);
4811 	return vms;
4812 
4813 recovery:
4814 	/*
4815 	 * Remove previously allocated areas. There is no
4816 	 * need in removing these areas from the busy tree,
4817 	 * because they are inserted only on the final step
4818 	 * and when pcpu_get_vm_areas() is success.
4819 	 */
4820 	while (area--) {
4821 		orig_start = vas[area]->va_start;
4822 		orig_end = vas[area]->va_end;
4823 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4824 				&free_vmap_area_list);
4825 		if (va)
4826 			kasan_release_vmalloc(orig_start, orig_end,
4827 				va->va_start, va->va_end,
4828 				KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH);
4829 		vas[area] = NULL;
4830 	}
4831 
4832 overflow:
4833 	spin_unlock(&free_vmap_area_lock);
4834 	if (!purged) {
4835 		reclaim_and_purge_vmap_areas();
4836 		purged = true;
4837 
4838 		/* Before "retry", check if we recover. */
4839 		for (area = 0; area < nr_vms; area++) {
4840 			if (vas[area])
4841 				continue;
4842 
4843 			vas[area] = kmem_cache_zalloc(
4844 				vmap_area_cachep, GFP_KERNEL);
4845 			if (!vas[area])
4846 				goto err_free;
4847 		}
4848 
4849 		goto retry;
4850 	}
4851 
4852 err_free:
4853 	for (area = 0; area < nr_vms; area++) {
4854 		if (vas[area])
4855 			kmem_cache_free(vmap_area_cachep, vas[area]);
4856 
4857 		kfree(vms[area]);
4858 	}
4859 err_free2:
4860 	kfree(vas);
4861 	kfree(vms);
4862 	return NULL;
4863 
4864 err_free_shadow:
4865 	spin_lock(&free_vmap_area_lock);
4866 	/*
4867 	 * We release all the vmalloc shadows, even the ones for regions that
4868 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
4869 	 * being able to tolerate this case.
4870 	 */
4871 	for (area = 0; area < nr_vms; area++) {
4872 		orig_start = vas[area]->va_start;
4873 		orig_end = vas[area]->va_end;
4874 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4875 				&free_vmap_area_list);
4876 		if (va)
4877 			kasan_release_vmalloc(orig_start, orig_end,
4878 				va->va_start, va->va_end,
4879 				KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH);
4880 		vas[area] = NULL;
4881 		kfree(vms[area]);
4882 	}
4883 	spin_unlock(&free_vmap_area_lock);
4884 	kfree(vas);
4885 	kfree(vms);
4886 	return NULL;
4887 }
4888 
4889 /**
4890  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4891  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4892  * @nr_vms: the number of allocated areas
4893  *
4894  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4895  */
4896 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4897 {
4898 	int i;
4899 
4900 	for (i = 0; i < nr_vms; i++)
4901 		free_vm_area(vms[i]);
4902 	kfree(vms);
4903 }
4904 #endif	/* CONFIG_SMP */
4905 
4906 #ifdef CONFIG_PRINTK
4907 bool vmalloc_dump_obj(void *object)
4908 {
4909 	const void *caller;
4910 	struct vm_struct *vm;
4911 	struct vmap_area *va;
4912 	struct vmap_node *vn;
4913 	unsigned long addr;
4914 	unsigned int nr_pages;
4915 
4916 	addr = PAGE_ALIGN((unsigned long) object);
4917 	vn = addr_to_node(addr);
4918 
4919 	if (!spin_trylock(&vn->busy.lock))
4920 		return false;
4921 
4922 	va = __find_vmap_area(addr, &vn->busy.root);
4923 	if (!va || !va->vm) {
4924 		spin_unlock(&vn->busy.lock);
4925 		return false;
4926 	}
4927 
4928 	vm = va->vm;
4929 	addr = (unsigned long) vm->addr;
4930 	caller = vm->caller;
4931 	nr_pages = vm->nr_pages;
4932 	spin_unlock(&vn->busy.lock);
4933 
4934 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4935 		nr_pages, addr, caller);
4936 
4937 	return true;
4938 }
4939 #endif
4940 
4941 #ifdef CONFIG_PROC_FS
4942 
4943 /*
4944  * Print number of pages allocated on each memory node.
4945  *
4946  * This function can only be called if CONFIG_NUMA is enabled
4947  * and VM_UNINITIALIZED bit in v->flags is disabled.
4948  */
4949 static void show_numa_info(struct seq_file *m, struct vm_struct *v,
4950 				 unsigned int *counters)
4951 {
4952 	unsigned int nr;
4953 	unsigned int step = 1U << vm_area_page_order(v);
4954 
4955 	if (!counters)
4956 		return;
4957 
4958 	memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4959 
4960 	for (nr = 0; nr < v->nr_pages; nr += step)
4961 		counters[page_to_nid(v->pages[nr])] += step;
4962 	for_each_node_state(nr, N_HIGH_MEMORY)
4963 		if (counters[nr])
4964 			seq_printf(m, " N%u=%u", nr, counters[nr]);
4965 }
4966 
4967 static void show_purge_info(struct seq_file *m)
4968 {
4969 	struct vmap_node *vn;
4970 	struct vmap_area *va;
4971 
4972 	for_each_vmap_node(vn) {
4973 		spin_lock(&vn->lazy.lock);
4974 		list_for_each_entry(va, &vn->lazy.head, list) {
4975 			seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4976 				(void *)va->va_start, (void *)va->va_end,
4977 				va_size(va));
4978 		}
4979 		spin_unlock(&vn->lazy.lock);
4980 	}
4981 }
4982 
4983 static int vmalloc_info_show(struct seq_file *m, void *p)
4984 {
4985 	struct vmap_node *vn;
4986 	struct vmap_area *va;
4987 	struct vm_struct *v;
4988 	unsigned int *counters;
4989 
4990 	if (IS_ENABLED(CONFIG_NUMA))
4991 		counters = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
4992 
4993 	for_each_vmap_node(vn) {
4994 		spin_lock(&vn->busy.lock);
4995 		list_for_each_entry(va, &vn->busy.head, list) {
4996 			if (!va->vm) {
4997 				if (va->flags & VMAP_RAM)
4998 					seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4999 						(void *)va->va_start, (void *)va->va_end,
5000 						va_size(va));
5001 
5002 				continue;
5003 			}
5004 
5005 			v = va->vm;
5006 			if (v->flags & VM_UNINITIALIZED)
5007 				continue;
5008 
5009 			/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
5010 			smp_rmb();
5011 
5012 			seq_printf(m, "0x%pK-0x%pK %7ld",
5013 				v->addr, v->addr + v->size, v->size);
5014 
5015 			if (v->caller)
5016 				seq_printf(m, " %pS", v->caller);
5017 
5018 			if (v->nr_pages)
5019 				seq_printf(m, " pages=%d", v->nr_pages);
5020 
5021 			if (v->phys_addr)
5022 				seq_printf(m, " phys=%pa", &v->phys_addr);
5023 
5024 			if (v->flags & VM_IOREMAP)
5025 				seq_puts(m, " ioremap");
5026 
5027 			if (v->flags & VM_SPARSE)
5028 				seq_puts(m, " sparse");
5029 
5030 			if (v->flags & VM_ALLOC)
5031 				seq_puts(m, " vmalloc");
5032 
5033 			if (v->flags & VM_MAP)
5034 				seq_puts(m, " vmap");
5035 
5036 			if (v->flags & VM_USERMAP)
5037 				seq_puts(m, " user");
5038 
5039 			if (v->flags & VM_DMA_COHERENT)
5040 				seq_puts(m, " dma-coherent");
5041 
5042 			if (is_vmalloc_addr(v->pages))
5043 				seq_puts(m, " vpages");
5044 
5045 			if (IS_ENABLED(CONFIG_NUMA))
5046 				show_numa_info(m, v, counters);
5047 
5048 			seq_putc(m, '\n');
5049 		}
5050 		spin_unlock(&vn->busy.lock);
5051 	}
5052 
5053 	/*
5054 	 * As a final step, dump "unpurged" areas.
5055 	 */
5056 	show_purge_info(m);
5057 	if (IS_ENABLED(CONFIG_NUMA))
5058 		kfree(counters);
5059 	return 0;
5060 }
5061 
5062 static int __init proc_vmalloc_init(void)
5063 {
5064 	proc_create_single("vmallocinfo", 0400, NULL, vmalloc_info_show);
5065 	return 0;
5066 }
5067 module_init(proc_vmalloc_init);
5068 
5069 #endif
5070 
5071 static void __init vmap_init_free_space(void)
5072 {
5073 	unsigned long vmap_start = 1;
5074 	const unsigned long vmap_end = ULONG_MAX;
5075 	struct vmap_area *free;
5076 	struct vm_struct *busy;
5077 
5078 	/*
5079 	 *     B     F     B     B     B     F
5080 	 * -|-----|.....|-----|-----|-----|.....|-
5081 	 *  |           The KVA space           |
5082 	 *  |<--------------------------------->|
5083 	 */
5084 	for (busy = vmlist; busy; busy = busy->next) {
5085 		if ((unsigned long) busy->addr - vmap_start > 0) {
5086 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5087 			if (!WARN_ON_ONCE(!free)) {
5088 				free->va_start = vmap_start;
5089 				free->va_end = (unsigned long) busy->addr;
5090 
5091 				insert_vmap_area_augment(free, NULL,
5092 					&free_vmap_area_root,
5093 						&free_vmap_area_list);
5094 			}
5095 		}
5096 
5097 		vmap_start = (unsigned long) busy->addr + busy->size;
5098 	}
5099 
5100 	if (vmap_end - vmap_start > 0) {
5101 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5102 		if (!WARN_ON_ONCE(!free)) {
5103 			free->va_start = vmap_start;
5104 			free->va_end = vmap_end;
5105 
5106 			insert_vmap_area_augment(free, NULL,
5107 				&free_vmap_area_root,
5108 					&free_vmap_area_list);
5109 		}
5110 	}
5111 }
5112 
5113 static void vmap_init_nodes(void)
5114 {
5115 	struct vmap_node *vn;
5116 	int i;
5117 
5118 #if BITS_PER_LONG == 64
5119 	/*
5120 	 * A high threshold of max nodes is fixed and bound to 128,
5121 	 * thus a scale factor is 1 for systems where number of cores
5122 	 * are less or equal to specified threshold.
5123 	 *
5124 	 * As for NUMA-aware notes. For bigger systems, for example
5125 	 * NUMA with multi-sockets, where we can end-up with thousands
5126 	 * of cores in total, a "sub-numa-clustering" should be added.
5127 	 *
5128 	 * In this case a NUMA domain is considered as a single entity
5129 	 * with dedicated sub-nodes in it which describe one group or
5130 	 * set of cores. Therefore a per-domain purging is supposed to
5131 	 * be added as well as a per-domain balancing.
5132 	 */
5133 	int n = clamp_t(unsigned int, num_possible_cpus(), 1, 128);
5134 
5135 	if (n > 1) {
5136 		vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN);
5137 		if (vn) {
5138 			/* Node partition is 16 pages. */
5139 			vmap_zone_size = (1 << 4) * PAGE_SIZE;
5140 			nr_vmap_nodes = n;
5141 			vmap_nodes = vn;
5142 		} else {
5143 			pr_err("Failed to allocate an array. Disable a node layer\n");
5144 		}
5145 	}
5146 #endif
5147 
5148 	for_each_vmap_node(vn) {
5149 		vn->busy.root = RB_ROOT;
5150 		INIT_LIST_HEAD(&vn->busy.head);
5151 		spin_lock_init(&vn->busy.lock);
5152 
5153 		vn->lazy.root = RB_ROOT;
5154 		INIT_LIST_HEAD(&vn->lazy.head);
5155 		spin_lock_init(&vn->lazy.lock);
5156 
5157 		for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
5158 			INIT_LIST_HEAD(&vn->pool[i].head);
5159 			WRITE_ONCE(vn->pool[i].len, 0);
5160 		}
5161 
5162 		spin_lock_init(&vn->pool_lock);
5163 	}
5164 }
5165 
5166 static unsigned long
5167 vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5168 {
5169 	unsigned long count = 0;
5170 	struct vmap_node *vn;
5171 	int i;
5172 
5173 	for_each_vmap_node(vn) {
5174 		for (i = 0; i < MAX_VA_SIZE_PAGES; i++)
5175 			count += READ_ONCE(vn->pool[i].len);
5176 	}
5177 
5178 	return count ? count : SHRINK_EMPTY;
5179 }
5180 
5181 static unsigned long
5182 vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5183 {
5184 	struct vmap_node *vn;
5185 
5186 	for_each_vmap_node(vn)
5187 		decay_va_pool_node(vn, true);
5188 
5189 	return SHRINK_STOP;
5190 }
5191 
5192 void __init vmalloc_init(void)
5193 {
5194 	struct shrinker *vmap_node_shrinker;
5195 	struct vmap_area *va;
5196 	struct vmap_node *vn;
5197 	struct vm_struct *tmp;
5198 	int i;
5199 
5200 	/*
5201 	 * Create the cache for vmap_area objects.
5202 	 */
5203 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
5204 
5205 	for_each_possible_cpu(i) {
5206 		struct vmap_block_queue *vbq;
5207 		struct vfree_deferred *p;
5208 
5209 		vbq = &per_cpu(vmap_block_queue, i);
5210 		spin_lock_init(&vbq->lock);
5211 		INIT_LIST_HEAD(&vbq->free);
5212 		p = &per_cpu(vfree_deferred, i);
5213 		init_llist_head(&p->list);
5214 		INIT_WORK(&p->wq, delayed_vfree_work);
5215 		xa_init(&vbq->vmap_blocks);
5216 	}
5217 
5218 	/*
5219 	 * Setup nodes before importing vmlist.
5220 	 */
5221 	vmap_init_nodes();
5222 
5223 	/* Import existing vmlist entries. */
5224 	for (tmp = vmlist; tmp; tmp = tmp->next) {
5225 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5226 		if (WARN_ON_ONCE(!va))
5227 			continue;
5228 
5229 		va->va_start = (unsigned long)tmp->addr;
5230 		va->va_end = va->va_start + tmp->size;
5231 		va->vm = tmp;
5232 
5233 		vn = addr_to_node(va->va_start);
5234 		insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
5235 	}
5236 
5237 	/*
5238 	 * Now we can initialize a free vmap space.
5239 	 */
5240 	vmap_init_free_space();
5241 	vmap_initialized = true;
5242 
5243 	vmap_node_shrinker = shrinker_alloc(0, "vmap-node");
5244 	if (!vmap_node_shrinker) {
5245 		pr_err("Failed to allocate vmap-node shrinker!\n");
5246 		return;
5247 	}
5248 
5249 	vmap_node_shrinker->count_objects = vmap_node_shrink_count;
5250 	vmap_node_shrinker->scan_objects = vmap_node_shrink_scan;
5251 	shrinker_register(vmap_node_shrinker);
5252 }
5253