1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1993 Linus Torvalds 4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 7 * Numa awareness, Christoph Lameter, SGI, June 2005 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/set_memory.h> 22 #include <linux/debugobjects.h> 23 #include <linux/kallsyms.h> 24 #include <linux/list.h> 25 #include <linux/notifier.h> 26 #include <linux/rbtree.h> 27 #include <linux/xarray.h> 28 #include <linux/io.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/memcontrol.h> 35 #include <linux/llist.h> 36 #include <linux/bitops.h> 37 #include <linux/rbtree_augmented.h> 38 #include <linux/overflow.h> 39 #include <linux/pgtable.h> 40 #include <linux/uaccess.h> 41 #include <linux/hugetlb.h> 42 #include <linux/sched/mm.h> 43 #include <asm/tlbflush.h> 44 #include <asm/shmparam.h> 45 46 #include "internal.h" 47 #include "pgalloc-track.h" 48 49 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 50 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; 51 52 static int __init set_nohugeiomap(char *str) 53 { 54 ioremap_max_page_shift = PAGE_SHIFT; 55 return 0; 56 } 57 early_param("nohugeiomap", set_nohugeiomap); 58 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 59 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; 60 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 61 62 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 63 static bool __ro_after_init vmap_allow_huge = true; 64 65 static int __init set_nohugevmalloc(char *str) 66 { 67 vmap_allow_huge = false; 68 return 0; 69 } 70 early_param("nohugevmalloc", set_nohugevmalloc); 71 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 72 static const bool vmap_allow_huge = false; 73 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 74 75 bool is_vmalloc_addr(const void *x) 76 { 77 unsigned long addr = (unsigned long)kasan_reset_tag(x); 78 79 return addr >= VMALLOC_START && addr < VMALLOC_END; 80 } 81 EXPORT_SYMBOL(is_vmalloc_addr); 82 83 struct vfree_deferred { 84 struct llist_head list; 85 struct work_struct wq; 86 }; 87 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 88 89 static void __vunmap(const void *, int); 90 91 static void free_work(struct work_struct *w) 92 { 93 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 94 struct llist_node *t, *llnode; 95 96 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 97 __vunmap((void *)llnode, 1); 98 } 99 100 /*** Page table manipulation functions ***/ 101 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 102 phys_addr_t phys_addr, pgprot_t prot, 103 unsigned int max_page_shift, pgtbl_mod_mask *mask) 104 { 105 pte_t *pte; 106 u64 pfn; 107 unsigned long size = PAGE_SIZE; 108 109 pfn = phys_addr >> PAGE_SHIFT; 110 pte = pte_alloc_kernel_track(pmd, addr, mask); 111 if (!pte) 112 return -ENOMEM; 113 do { 114 BUG_ON(!pte_none(*pte)); 115 116 #ifdef CONFIG_HUGETLB_PAGE 117 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); 118 if (size != PAGE_SIZE) { 119 pte_t entry = pfn_pte(pfn, prot); 120 121 entry = arch_make_huge_pte(entry, ilog2(size), 0); 122 set_huge_pte_at(&init_mm, addr, pte, entry); 123 pfn += PFN_DOWN(size); 124 continue; 125 } 126 #endif 127 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); 128 pfn++; 129 } while (pte += PFN_DOWN(size), addr += size, addr != end); 130 *mask |= PGTBL_PTE_MODIFIED; 131 return 0; 132 } 133 134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, 135 phys_addr_t phys_addr, pgprot_t prot, 136 unsigned int max_page_shift) 137 { 138 if (max_page_shift < PMD_SHIFT) 139 return 0; 140 141 if (!arch_vmap_pmd_supported(prot)) 142 return 0; 143 144 if ((end - addr) != PMD_SIZE) 145 return 0; 146 147 if (!IS_ALIGNED(addr, PMD_SIZE)) 148 return 0; 149 150 if (!IS_ALIGNED(phys_addr, PMD_SIZE)) 151 return 0; 152 153 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) 154 return 0; 155 156 return pmd_set_huge(pmd, phys_addr, prot); 157 } 158 159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 160 phys_addr_t phys_addr, pgprot_t prot, 161 unsigned int max_page_shift, pgtbl_mod_mask *mask) 162 { 163 pmd_t *pmd; 164 unsigned long next; 165 166 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 167 if (!pmd) 168 return -ENOMEM; 169 do { 170 next = pmd_addr_end(addr, end); 171 172 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, 173 max_page_shift)) { 174 *mask |= PGTBL_PMD_MODIFIED; 175 continue; 176 } 177 178 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) 179 return -ENOMEM; 180 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); 181 return 0; 182 } 183 184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, 185 phys_addr_t phys_addr, pgprot_t prot, 186 unsigned int max_page_shift) 187 { 188 if (max_page_shift < PUD_SHIFT) 189 return 0; 190 191 if (!arch_vmap_pud_supported(prot)) 192 return 0; 193 194 if ((end - addr) != PUD_SIZE) 195 return 0; 196 197 if (!IS_ALIGNED(addr, PUD_SIZE)) 198 return 0; 199 200 if (!IS_ALIGNED(phys_addr, PUD_SIZE)) 201 return 0; 202 203 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) 204 return 0; 205 206 return pud_set_huge(pud, phys_addr, prot); 207 } 208 209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 210 phys_addr_t phys_addr, pgprot_t prot, 211 unsigned int max_page_shift, pgtbl_mod_mask *mask) 212 { 213 pud_t *pud; 214 unsigned long next; 215 216 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 217 if (!pud) 218 return -ENOMEM; 219 do { 220 next = pud_addr_end(addr, end); 221 222 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, 223 max_page_shift)) { 224 *mask |= PGTBL_PUD_MODIFIED; 225 continue; 226 } 227 228 if (vmap_pmd_range(pud, addr, next, phys_addr, prot, 229 max_page_shift, mask)) 230 return -ENOMEM; 231 } while (pud++, phys_addr += (next - addr), addr = next, addr != end); 232 return 0; 233 } 234 235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, 236 phys_addr_t phys_addr, pgprot_t prot, 237 unsigned int max_page_shift) 238 { 239 if (max_page_shift < P4D_SHIFT) 240 return 0; 241 242 if (!arch_vmap_p4d_supported(prot)) 243 return 0; 244 245 if ((end - addr) != P4D_SIZE) 246 return 0; 247 248 if (!IS_ALIGNED(addr, P4D_SIZE)) 249 return 0; 250 251 if (!IS_ALIGNED(phys_addr, P4D_SIZE)) 252 return 0; 253 254 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) 255 return 0; 256 257 return p4d_set_huge(p4d, phys_addr, prot); 258 } 259 260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 261 phys_addr_t phys_addr, pgprot_t prot, 262 unsigned int max_page_shift, pgtbl_mod_mask *mask) 263 { 264 p4d_t *p4d; 265 unsigned long next; 266 267 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 268 if (!p4d) 269 return -ENOMEM; 270 do { 271 next = p4d_addr_end(addr, end); 272 273 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, 274 max_page_shift)) { 275 *mask |= PGTBL_P4D_MODIFIED; 276 continue; 277 } 278 279 if (vmap_pud_range(p4d, addr, next, phys_addr, prot, 280 max_page_shift, mask)) 281 return -ENOMEM; 282 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); 283 return 0; 284 } 285 286 static int vmap_range_noflush(unsigned long addr, unsigned long end, 287 phys_addr_t phys_addr, pgprot_t prot, 288 unsigned int max_page_shift) 289 { 290 pgd_t *pgd; 291 unsigned long start; 292 unsigned long next; 293 int err; 294 pgtbl_mod_mask mask = 0; 295 296 might_sleep(); 297 BUG_ON(addr >= end); 298 299 start = addr; 300 pgd = pgd_offset_k(addr); 301 do { 302 next = pgd_addr_end(addr, end); 303 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, 304 max_page_shift, &mask); 305 if (err) 306 break; 307 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); 308 309 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 310 arch_sync_kernel_mappings(start, end); 311 312 return err; 313 } 314 315 int ioremap_page_range(unsigned long addr, unsigned long end, 316 phys_addr_t phys_addr, pgprot_t prot) 317 { 318 int err; 319 320 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), 321 ioremap_max_page_shift); 322 flush_cache_vmap(addr, end); 323 return err; 324 } 325 326 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 327 pgtbl_mod_mask *mask) 328 { 329 pte_t *pte; 330 331 pte = pte_offset_kernel(pmd, addr); 332 do { 333 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 334 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 335 } while (pte++, addr += PAGE_SIZE, addr != end); 336 *mask |= PGTBL_PTE_MODIFIED; 337 } 338 339 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 340 pgtbl_mod_mask *mask) 341 { 342 pmd_t *pmd; 343 unsigned long next; 344 int cleared; 345 346 pmd = pmd_offset(pud, addr); 347 do { 348 next = pmd_addr_end(addr, end); 349 350 cleared = pmd_clear_huge(pmd); 351 if (cleared || pmd_bad(*pmd)) 352 *mask |= PGTBL_PMD_MODIFIED; 353 354 if (cleared) 355 continue; 356 if (pmd_none_or_clear_bad(pmd)) 357 continue; 358 vunmap_pte_range(pmd, addr, next, mask); 359 360 cond_resched(); 361 } while (pmd++, addr = next, addr != end); 362 } 363 364 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 365 pgtbl_mod_mask *mask) 366 { 367 pud_t *pud; 368 unsigned long next; 369 int cleared; 370 371 pud = pud_offset(p4d, addr); 372 do { 373 next = pud_addr_end(addr, end); 374 375 cleared = pud_clear_huge(pud); 376 if (cleared || pud_bad(*pud)) 377 *mask |= PGTBL_PUD_MODIFIED; 378 379 if (cleared) 380 continue; 381 if (pud_none_or_clear_bad(pud)) 382 continue; 383 vunmap_pmd_range(pud, addr, next, mask); 384 } while (pud++, addr = next, addr != end); 385 } 386 387 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 388 pgtbl_mod_mask *mask) 389 { 390 p4d_t *p4d; 391 unsigned long next; 392 int cleared; 393 394 p4d = p4d_offset(pgd, addr); 395 do { 396 next = p4d_addr_end(addr, end); 397 398 cleared = p4d_clear_huge(p4d); 399 if (cleared || p4d_bad(*p4d)) 400 *mask |= PGTBL_P4D_MODIFIED; 401 402 if (cleared) 403 continue; 404 if (p4d_none_or_clear_bad(p4d)) 405 continue; 406 vunmap_pud_range(p4d, addr, next, mask); 407 } while (p4d++, addr = next, addr != end); 408 } 409 410 /* 411 * vunmap_range_noflush is similar to vunmap_range, but does not 412 * flush caches or TLBs. 413 * 414 * The caller is responsible for calling flush_cache_vmap() before calling 415 * this function, and flush_tlb_kernel_range after it has returned 416 * successfully (and before the addresses are expected to cause a page fault 417 * or be re-mapped for something else, if TLB flushes are being delayed or 418 * coalesced). 419 * 420 * This is an internal function only. Do not use outside mm/. 421 */ 422 void vunmap_range_noflush(unsigned long start, unsigned long end) 423 { 424 unsigned long next; 425 pgd_t *pgd; 426 unsigned long addr = start; 427 pgtbl_mod_mask mask = 0; 428 429 BUG_ON(addr >= end); 430 pgd = pgd_offset_k(addr); 431 do { 432 next = pgd_addr_end(addr, end); 433 if (pgd_bad(*pgd)) 434 mask |= PGTBL_PGD_MODIFIED; 435 if (pgd_none_or_clear_bad(pgd)) 436 continue; 437 vunmap_p4d_range(pgd, addr, next, &mask); 438 } while (pgd++, addr = next, addr != end); 439 440 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 441 arch_sync_kernel_mappings(start, end); 442 } 443 444 /** 445 * vunmap_range - unmap kernel virtual addresses 446 * @addr: start of the VM area to unmap 447 * @end: end of the VM area to unmap (non-inclusive) 448 * 449 * Clears any present PTEs in the virtual address range, flushes TLBs and 450 * caches. Any subsequent access to the address before it has been re-mapped 451 * is a kernel bug. 452 */ 453 void vunmap_range(unsigned long addr, unsigned long end) 454 { 455 flush_cache_vunmap(addr, end); 456 vunmap_range_noflush(addr, end); 457 flush_tlb_kernel_range(addr, end); 458 } 459 460 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, 461 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 462 pgtbl_mod_mask *mask) 463 { 464 pte_t *pte; 465 466 /* 467 * nr is a running index into the array which helps higher level 468 * callers keep track of where we're up to. 469 */ 470 471 pte = pte_alloc_kernel_track(pmd, addr, mask); 472 if (!pte) 473 return -ENOMEM; 474 do { 475 struct page *page = pages[*nr]; 476 477 if (WARN_ON(!pte_none(*pte))) 478 return -EBUSY; 479 if (WARN_ON(!page)) 480 return -ENOMEM; 481 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 482 (*nr)++; 483 } while (pte++, addr += PAGE_SIZE, addr != end); 484 *mask |= PGTBL_PTE_MODIFIED; 485 return 0; 486 } 487 488 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, 489 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 490 pgtbl_mod_mask *mask) 491 { 492 pmd_t *pmd; 493 unsigned long next; 494 495 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 496 if (!pmd) 497 return -ENOMEM; 498 do { 499 next = pmd_addr_end(addr, end); 500 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) 501 return -ENOMEM; 502 } while (pmd++, addr = next, addr != end); 503 return 0; 504 } 505 506 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, 507 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 508 pgtbl_mod_mask *mask) 509 { 510 pud_t *pud; 511 unsigned long next; 512 513 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 514 if (!pud) 515 return -ENOMEM; 516 do { 517 next = pud_addr_end(addr, end); 518 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) 519 return -ENOMEM; 520 } while (pud++, addr = next, addr != end); 521 return 0; 522 } 523 524 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, 525 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 526 pgtbl_mod_mask *mask) 527 { 528 p4d_t *p4d; 529 unsigned long next; 530 531 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 532 if (!p4d) 533 return -ENOMEM; 534 do { 535 next = p4d_addr_end(addr, end); 536 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) 537 return -ENOMEM; 538 } while (p4d++, addr = next, addr != end); 539 return 0; 540 } 541 542 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, 543 pgprot_t prot, struct page **pages) 544 { 545 unsigned long start = addr; 546 pgd_t *pgd; 547 unsigned long next; 548 int err = 0; 549 int nr = 0; 550 pgtbl_mod_mask mask = 0; 551 552 BUG_ON(addr >= end); 553 pgd = pgd_offset_k(addr); 554 do { 555 next = pgd_addr_end(addr, end); 556 if (pgd_bad(*pgd)) 557 mask |= PGTBL_PGD_MODIFIED; 558 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); 559 if (err) 560 return err; 561 } while (pgd++, addr = next, addr != end); 562 563 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 564 arch_sync_kernel_mappings(start, end); 565 566 return 0; 567 } 568 569 /* 570 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not 571 * flush caches. 572 * 573 * The caller is responsible for calling flush_cache_vmap() after this 574 * function returns successfully and before the addresses are accessed. 575 * 576 * This is an internal function only. Do not use outside mm/. 577 */ 578 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 579 pgprot_t prot, struct page **pages, unsigned int page_shift) 580 { 581 unsigned int i, nr = (end - addr) >> PAGE_SHIFT; 582 583 WARN_ON(page_shift < PAGE_SHIFT); 584 585 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || 586 page_shift == PAGE_SHIFT) 587 return vmap_small_pages_range_noflush(addr, end, prot, pages); 588 589 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { 590 int err; 591 592 err = vmap_range_noflush(addr, addr + (1UL << page_shift), 593 __pa(page_address(pages[i])), prot, 594 page_shift); 595 if (err) 596 return err; 597 598 addr += 1UL << page_shift; 599 } 600 601 return 0; 602 } 603 604 /** 605 * vmap_pages_range - map pages to a kernel virtual address 606 * @addr: start of the VM area to map 607 * @end: end of the VM area to map (non-inclusive) 608 * @prot: page protection flags to use 609 * @pages: pages to map (always PAGE_SIZE pages) 610 * @page_shift: maximum shift that the pages may be mapped with, @pages must 611 * be aligned and contiguous up to at least this shift. 612 * 613 * RETURNS: 614 * 0 on success, -errno on failure. 615 */ 616 static int vmap_pages_range(unsigned long addr, unsigned long end, 617 pgprot_t prot, struct page **pages, unsigned int page_shift) 618 { 619 int err; 620 621 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 622 flush_cache_vmap(addr, end); 623 return err; 624 } 625 626 int is_vmalloc_or_module_addr(const void *x) 627 { 628 /* 629 * ARM, x86-64 and sparc64 put modules in a special place, 630 * and fall back on vmalloc() if that fails. Others 631 * just put it in the vmalloc space. 632 */ 633 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 634 unsigned long addr = (unsigned long)kasan_reset_tag(x); 635 if (addr >= MODULES_VADDR && addr < MODULES_END) 636 return 1; 637 #endif 638 return is_vmalloc_addr(x); 639 } 640 641 /* 642 * Walk a vmap address to the struct page it maps. Huge vmap mappings will 643 * return the tail page that corresponds to the base page address, which 644 * matches small vmap mappings. 645 */ 646 struct page *vmalloc_to_page(const void *vmalloc_addr) 647 { 648 unsigned long addr = (unsigned long) vmalloc_addr; 649 struct page *page = NULL; 650 pgd_t *pgd = pgd_offset_k(addr); 651 p4d_t *p4d; 652 pud_t *pud; 653 pmd_t *pmd; 654 pte_t *ptep, pte; 655 656 /* 657 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 658 * architectures that do not vmalloc module space 659 */ 660 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 661 662 if (pgd_none(*pgd)) 663 return NULL; 664 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 665 return NULL; /* XXX: no allowance for huge pgd */ 666 if (WARN_ON_ONCE(pgd_bad(*pgd))) 667 return NULL; 668 669 p4d = p4d_offset(pgd, addr); 670 if (p4d_none(*p4d)) 671 return NULL; 672 if (p4d_leaf(*p4d)) 673 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); 674 if (WARN_ON_ONCE(p4d_bad(*p4d))) 675 return NULL; 676 677 pud = pud_offset(p4d, addr); 678 if (pud_none(*pud)) 679 return NULL; 680 if (pud_leaf(*pud)) 681 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 682 if (WARN_ON_ONCE(pud_bad(*pud))) 683 return NULL; 684 685 pmd = pmd_offset(pud, addr); 686 if (pmd_none(*pmd)) 687 return NULL; 688 if (pmd_leaf(*pmd)) 689 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 690 if (WARN_ON_ONCE(pmd_bad(*pmd))) 691 return NULL; 692 693 ptep = pte_offset_map(pmd, addr); 694 pte = *ptep; 695 if (pte_present(pte)) 696 page = pte_page(pte); 697 pte_unmap(ptep); 698 699 return page; 700 } 701 EXPORT_SYMBOL(vmalloc_to_page); 702 703 /* 704 * Map a vmalloc()-space virtual address to the physical page frame number. 705 */ 706 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 707 { 708 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 709 } 710 EXPORT_SYMBOL(vmalloc_to_pfn); 711 712 713 /*** Global kva allocator ***/ 714 715 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 716 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 717 718 719 static DEFINE_SPINLOCK(vmap_area_lock); 720 static DEFINE_SPINLOCK(free_vmap_area_lock); 721 /* Export for kexec only */ 722 LIST_HEAD(vmap_area_list); 723 static struct rb_root vmap_area_root = RB_ROOT; 724 static bool vmap_initialized __read_mostly; 725 726 static struct rb_root purge_vmap_area_root = RB_ROOT; 727 static LIST_HEAD(purge_vmap_area_list); 728 static DEFINE_SPINLOCK(purge_vmap_area_lock); 729 730 /* 731 * This kmem_cache is used for vmap_area objects. Instead of 732 * allocating from slab we reuse an object from this cache to 733 * make things faster. Especially in "no edge" splitting of 734 * free block. 735 */ 736 static struct kmem_cache *vmap_area_cachep; 737 738 /* 739 * This linked list is used in pair with free_vmap_area_root. 740 * It gives O(1) access to prev/next to perform fast coalescing. 741 */ 742 static LIST_HEAD(free_vmap_area_list); 743 744 /* 745 * This augment red-black tree represents the free vmap space. 746 * All vmap_area objects in this tree are sorted by va->va_start 747 * address. It is used for allocation and merging when a vmap 748 * object is released. 749 * 750 * Each vmap_area node contains a maximum available free block 751 * of its sub-tree, right or left. Therefore it is possible to 752 * find a lowest match of free area. 753 */ 754 static struct rb_root free_vmap_area_root = RB_ROOT; 755 756 /* 757 * Preload a CPU with one object for "no edge" split case. The 758 * aim is to get rid of allocations from the atomic context, thus 759 * to use more permissive allocation masks. 760 */ 761 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 762 763 static __always_inline unsigned long 764 va_size(struct vmap_area *va) 765 { 766 return (va->va_end - va->va_start); 767 } 768 769 static __always_inline unsigned long 770 get_subtree_max_size(struct rb_node *node) 771 { 772 struct vmap_area *va; 773 774 va = rb_entry_safe(node, struct vmap_area, rb_node); 775 return va ? va->subtree_max_size : 0; 776 } 777 778 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 779 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 780 781 static void purge_vmap_area_lazy(void); 782 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 783 static void drain_vmap_area_work(struct work_struct *work); 784 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); 785 786 static atomic_long_t nr_vmalloc_pages; 787 788 unsigned long vmalloc_nr_pages(void) 789 { 790 return atomic_long_read(&nr_vmalloc_pages); 791 } 792 793 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr) 794 { 795 struct vmap_area *va = NULL; 796 struct rb_node *n = vmap_area_root.rb_node; 797 798 addr = (unsigned long)kasan_reset_tag((void *)addr); 799 800 while (n) { 801 struct vmap_area *tmp; 802 803 tmp = rb_entry(n, struct vmap_area, rb_node); 804 if (tmp->va_end > addr) { 805 va = tmp; 806 if (tmp->va_start <= addr) 807 break; 808 809 n = n->rb_left; 810 } else 811 n = n->rb_right; 812 } 813 814 return va; 815 } 816 817 static struct vmap_area *__find_vmap_area(unsigned long addr) 818 { 819 struct rb_node *n = vmap_area_root.rb_node; 820 821 addr = (unsigned long)kasan_reset_tag((void *)addr); 822 823 while (n) { 824 struct vmap_area *va; 825 826 va = rb_entry(n, struct vmap_area, rb_node); 827 if (addr < va->va_start) 828 n = n->rb_left; 829 else if (addr >= va->va_end) 830 n = n->rb_right; 831 else 832 return va; 833 } 834 835 return NULL; 836 } 837 838 /* 839 * This function returns back addresses of parent node 840 * and its left or right link for further processing. 841 * 842 * Otherwise NULL is returned. In that case all further 843 * steps regarding inserting of conflicting overlap range 844 * have to be declined and actually considered as a bug. 845 */ 846 static __always_inline struct rb_node ** 847 find_va_links(struct vmap_area *va, 848 struct rb_root *root, struct rb_node *from, 849 struct rb_node **parent) 850 { 851 struct vmap_area *tmp_va; 852 struct rb_node **link; 853 854 if (root) { 855 link = &root->rb_node; 856 if (unlikely(!*link)) { 857 *parent = NULL; 858 return link; 859 } 860 } else { 861 link = &from; 862 } 863 864 /* 865 * Go to the bottom of the tree. When we hit the last point 866 * we end up with parent rb_node and correct direction, i name 867 * it link, where the new va->rb_node will be attached to. 868 */ 869 do { 870 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 871 872 /* 873 * During the traversal we also do some sanity check. 874 * Trigger the BUG() if there are sides(left/right) 875 * or full overlaps. 876 */ 877 if (va->va_start < tmp_va->va_end && 878 va->va_end <= tmp_va->va_start) 879 link = &(*link)->rb_left; 880 else if (va->va_end > tmp_va->va_start && 881 va->va_start >= tmp_va->va_end) 882 link = &(*link)->rb_right; 883 else { 884 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", 885 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); 886 887 return NULL; 888 } 889 } while (*link); 890 891 *parent = &tmp_va->rb_node; 892 return link; 893 } 894 895 static __always_inline struct list_head * 896 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 897 { 898 struct list_head *list; 899 900 if (unlikely(!parent)) 901 /* 902 * The red-black tree where we try to find VA neighbors 903 * before merging or inserting is empty, i.e. it means 904 * there is no free vmap space. Normally it does not 905 * happen but we handle this case anyway. 906 */ 907 return NULL; 908 909 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 910 return (&parent->rb_right == link ? list->next : list); 911 } 912 913 static __always_inline void 914 link_va(struct vmap_area *va, struct rb_root *root, 915 struct rb_node *parent, struct rb_node **link, struct list_head *head) 916 { 917 /* 918 * VA is still not in the list, but we can 919 * identify its future previous list_head node. 920 */ 921 if (likely(parent)) { 922 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 923 if (&parent->rb_right != link) 924 head = head->prev; 925 } 926 927 /* Insert to the rb-tree */ 928 rb_link_node(&va->rb_node, parent, link); 929 if (root == &free_vmap_area_root) { 930 /* 931 * Some explanation here. Just perform simple insertion 932 * to the tree. We do not set va->subtree_max_size to 933 * its current size before calling rb_insert_augmented(). 934 * It is because of we populate the tree from the bottom 935 * to parent levels when the node _is_ in the tree. 936 * 937 * Therefore we set subtree_max_size to zero after insertion, 938 * to let __augment_tree_propagate_from() puts everything to 939 * the correct order later on. 940 */ 941 rb_insert_augmented(&va->rb_node, 942 root, &free_vmap_area_rb_augment_cb); 943 va->subtree_max_size = 0; 944 } else { 945 rb_insert_color(&va->rb_node, root); 946 } 947 948 /* Address-sort this list */ 949 list_add(&va->list, head); 950 } 951 952 static __always_inline void 953 unlink_va(struct vmap_area *va, struct rb_root *root) 954 { 955 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 956 return; 957 958 if (root == &free_vmap_area_root) 959 rb_erase_augmented(&va->rb_node, 960 root, &free_vmap_area_rb_augment_cb); 961 else 962 rb_erase(&va->rb_node, root); 963 964 list_del(&va->list); 965 RB_CLEAR_NODE(&va->rb_node); 966 } 967 968 #if DEBUG_AUGMENT_PROPAGATE_CHECK 969 /* 970 * Gets called when remove the node and rotate. 971 */ 972 static __always_inline unsigned long 973 compute_subtree_max_size(struct vmap_area *va) 974 { 975 return max3(va_size(va), 976 get_subtree_max_size(va->rb_node.rb_left), 977 get_subtree_max_size(va->rb_node.rb_right)); 978 } 979 980 static void 981 augment_tree_propagate_check(void) 982 { 983 struct vmap_area *va; 984 unsigned long computed_size; 985 986 list_for_each_entry(va, &free_vmap_area_list, list) { 987 computed_size = compute_subtree_max_size(va); 988 if (computed_size != va->subtree_max_size) 989 pr_emerg("tree is corrupted: %lu, %lu\n", 990 va_size(va), va->subtree_max_size); 991 } 992 } 993 #endif 994 995 /* 996 * This function populates subtree_max_size from bottom to upper 997 * levels starting from VA point. The propagation must be done 998 * when VA size is modified by changing its va_start/va_end. Or 999 * in case of newly inserting of VA to the tree. 1000 * 1001 * It means that __augment_tree_propagate_from() must be called: 1002 * - After VA has been inserted to the tree(free path); 1003 * - After VA has been shrunk(allocation path); 1004 * - After VA has been increased(merging path). 1005 * 1006 * Please note that, it does not mean that upper parent nodes 1007 * and their subtree_max_size are recalculated all the time up 1008 * to the root node. 1009 * 1010 * 4--8 1011 * /\ 1012 * / \ 1013 * / \ 1014 * 2--2 8--8 1015 * 1016 * For example if we modify the node 4, shrinking it to 2, then 1017 * no any modification is required. If we shrink the node 2 to 1 1018 * its subtree_max_size is updated only, and set to 1. If we shrink 1019 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 1020 * node becomes 4--6. 1021 */ 1022 static __always_inline void 1023 augment_tree_propagate_from(struct vmap_area *va) 1024 { 1025 /* 1026 * Populate the tree from bottom towards the root until 1027 * the calculated maximum available size of checked node 1028 * is equal to its current one. 1029 */ 1030 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); 1031 1032 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1033 augment_tree_propagate_check(); 1034 #endif 1035 } 1036 1037 static void 1038 insert_vmap_area(struct vmap_area *va, 1039 struct rb_root *root, struct list_head *head) 1040 { 1041 struct rb_node **link; 1042 struct rb_node *parent; 1043 1044 link = find_va_links(va, root, NULL, &parent); 1045 if (link) 1046 link_va(va, root, parent, link, head); 1047 } 1048 1049 static void 1050 insert_vmap_area_augment(struct vmap_area *va, 1051 struct rb_node *from, struct rb_root *root, 1052 struct list_head *head) 1053 { 1054 struct rb_node **link; 1055 struct rb_node *parent; 1056 1057 if (from) 1058 link = find_va_links(va, NULL, from, &parent); 1059 else 1060 link = find_va_links(va, root, NULL, &parent); 1061 1062 if (link) { 1063 link_va(va, root, parent, link, head); 1064 augment_tree_propagate_from(va); 1065 } 1066 } 1067 1068 /* 1069 * Merge de-allocated chunk of VA memory with previous 1070 * and next free blocks. If coalesce is not done a new 1071 * free area is inserted. If VA has been merged, it is 1072 * freed. 1073 * 1074 * Please note, it can return NULL in case of overlap 1075 * ranges, followed by WARN() report. Despite it is a 1076 * buggy behaviour, a system can be alive and keep 1077 * ongoing. 1078 */ 1079 static __always_inline struct vmap_area * 1080 merge_or_add_vmap_area(struct vmap_area *va, 1081 struct rb_root *root, struct list_head *head) 1082 { 1083 struct vmap_area *sibling; 1084 struct list_head *next; 1085 struct rb_node **link; 1086 struct rb_node *parent; 1087 bool merged = false; 1088 1089 /* 1090 * Find a place in the tree where VA potentially will be 1091 * inserted, unless it is merged with its sibling/siblings. 1092 */ 1093 link = find_va_links(va, root, NULL, &parent); 1094 if (!link) 1095 return NULL; 1096 1097 /* 1098 * Get next node of VA to check if merging can be done. 1099 */ 1100 next = get_va_next_sibling(parent, link); 1101 if (unlikely(next == NULL)) 1102 goto insert; 1103 1104 /* 1105 * start end 1106 * | | 1107 * |<------VA------>|<-----Next----->| 1108 * | | 1109 * start end 1110 */ 1111 if (next != head) { 1112 sibling = list_entry(next, struct vmap_area, list); 1113 if (sibling->va_start == va->va_end) { 1114 sibling->va_start = va->va_start; 1115 1116 /* Free vmap_area object. */ 1117 kmem_cache_free(vmap_area_cachep, va); 1118 1119 /* Point to the new merged area. */ 1120 va = sibling; 1121 merged = true; 1122 } 1123 } 1124 1125 /* 1126 * start end 1127 * | | 1128 * |<-----Prev----->|<------VA------>| 1129 * | | 1130 * start end 1131 */ 1132 if (next->prev != head) { 1133 sibling = list_entry(next->prev, struct vmap_area, list); 1134 if (sibling->va_end == va->va_start) { 1135 /* 1136 * If both neighbors are coalesced, it is important 1137 * to unlink the "next" node first, followed by merging 1138 * with "previous" one. Otherwise the tree might not be 1139 * fully populated if a sibling's augmented value is 1140 * "normalized" because of rotation operations. 1141 */ 1142 if (merged) 1143 unlink_va(va, root); 1144 1145 sibling->va_end = va->va_end; 1146 1147 /* Free vmap_area object. */ 1148 kmem_cache_free(vmap_area_cachep, va); 1149 1150 /* Point to the new merged area. */ 1151 va = sibling; 1152 merged = true; 1153 } 1154 } 1155 1156 insert: 1157 if (!merged) 1158 link_va(va, root, parent, link, head); 1159 1160 return va; 1161 } 1162 1163 static __always_inline struct vmap_area * 1164 merge_or_add_vmap_area_augment(struct vmap_area *va, 1165 struct rb_root *root, struct list_head *head) 1166 { 1167 va = merge_or_add_vmap_area(va, root, head); 1168 if (va) 1169 augment_tree_propagate_from(va); 1170 1171 return va; 1172 } 1173 1174 static __always_inline bool 1175 is_within_this_va(struct vmap_area *va, unsigned long size, 1176 unsigned long align, unsigned long vstart) 1177 { 1178 unsigned long nva_start_addr; 1179 1180 if (va->va_start > vstart) 1181 nva_start_addr = ALIGN(va->va_start, align); 1182 else 1183 nva_start_addr = ALIGN(vstart, align); 1184 1185 /* Can be overflowed due to big size or alignment. */ 1186 if (nva_start_addr + size < nva_start_addr || 1187 nva_start_addr < vstart) 1188 return false; 1189 1190 return (nva_start_addr + size <= va->va_end); 1191 } 1192 1193 /* 1194 * Find the first free block(lowest start address) in the tree, 1195 * that will accomplish the request corresponding to passing 1196 * parameters. Please note, with an alignment bigger than PAGE_SIZE, 1197 * a search length is adjusted to account for worst case alignment 1198 * overhead. 1199 */ 1200 static __always_inline struct vmap_area * 1201 find_vmap_lowest_match(unsigned long size, unsigned long align, 1202 unsigned long vstart, bool adjust_search_size) 1203 { 1204 struct vmap_area *va; 1205 struct rb_node *node; 1206 unsigned long length; 1207 1208 /* Start from the root. */ 1209 node = free_vmap_area_root.rb_node; 1210 1211 /* Adjust the search size for alignment overhead. */ 1212 length = adjust_search_size ? size + align - 1 : size; 1213 1214 while (node) { 1215 va = rb_entry(node, struct vmap_area, rb_node); 1216 1217 if (get_subtree_max_size(node->rb_left) >= length && 1218 vstart < va->va_start) { 1219 node = node->rb_left; 1220 } else { 1221 if (is_within_this_va(va, size, align, vstart)) 1222 return va; 1223 1224 /* 1225 * Does not make sense to go deeper towards the right 1226 * sub-tree if it does not have a free block that is 1227 * equal or bigger to the requested search length. 1228 */ 1229 if (get_subtree_max_size(node->rb_right) >= length) { 1230 node = node->rb_right; 1231 continue; 1232 } 1233 1234 /* 1235 * OK. We roll back and find the first right sub-tree, 1236 * that will satisfy the search criteria. It can happen 1237 * due to "vstart" restriction or an alignment overhead 1238 * that is bigger then PAGE_SIZE. 1239 */ 1240 while ((node = rb_parent(node))) { 1241 va = rb_entry(node, struct vmap_area, rb_node); 1242 if (is_within_this_va(va, size, align, vstart)) 1243 return va; 1244 1245 if (get_subtree_max_size(node->rb_right) >= length && 1246 vstart <= va->va_start) { 1247 /* 1248 * Shift the vstart forward. Please note, we update it with 1249 * parent's start address adding "1" because we do not want 1250 * to enter same sub-tree after it has already been checked 1251 * and no suitable free block found there. 1252 */ 1253 vstart = va->va_start + 1; 1254 node = node->rb_right; 1255 break; 1256 } 1257 } 1258 } 1259 } 1260 1261 return NULL; 1262 } 1263 1264 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1265 #include <linux/random.h> 1266 1267 static struct vmap_area * 1268 find_vmap_lowest_linear_match(unsigned long size, 1269 unsigned long align, unsigned long vstart) 1270 { 1271 struct vmap_area *va; 1272 1273 list_for_each_entry(va, &free_vmap_area_list, list) { 1274 if (!is_within_this_va(va, size, align, vstart)) 1275 continue; 1276 1277 return va; 1278 } 1279 1280 return NULL; 1281 } 1282 1283 static void 1284 find_vmap_lowest_match_check(unsigned long size, unsigned long align) 1285 { 1286 struct vmap_area *va_1, *va_2; 1287 unsigned long vstart; 1288 unsigned int rnd; 1289 1290 get_random_bytes(&rnd, sizeof(rnd)); 1291 vstart = VMALLOC_START + rnd; 1292 1293 va_1 = find_vmap_lowest_match(size, align, vstart, false); 1294 va_2 = find_vmap_lowest_linear_match(size, align, vstart); 1295 1296 if (va_1 != va_2) 1297 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 1298 va_1, va_2, vstart); 1299 } 1300 #endif 1301 1302 enum fit_type { 1303 NOTHING_FIT = 0, 1304 FL_FIT_TYPE = 1, /* full fit */ 1305 LE_FIT_TYPE = 2, /* left edge fit */ 1306 RE_FIT_TYPE = 3, /* right edge fit */ 1307 NE_FIT_TYPE = 4 /* no edge fit */ 1308 }; 1309 1310 static __always_inline enum fit_type 1311 classify_va_fit_type(struct vmap_area *va, 1312 unsigned long nva_start_addr, unsigned long size) 1313 { 1314 enum fit_type type; 1315 1316 /* Check if it is within VA. */ 1317 if (nva_start_addr < va->va_start || 1318 nva_start_addr + size > va->va_end) 1319 return NOTHING_FIT; 1320 1321 /* Now classify. */ 1322 if (va->va_start == nva_start_addr) { 1323 if (va->va_end == nva_start_addr + size) 1324 type = FL_FIT_TYPE; 1325 else 1326 type = LE_FIT_TYPE; 1327 } else if (va->va_end == nva_start_addr + size) { 1328 type = RE_FIT_TYPE; 1329 } else { 1330 type = NE_FIT_TYPE; 1331 } 1332 1333 return type; 1334 } 1335 1336 static __always_inline int 1337 adjust_va_to_fit_type(struct vmap_area *va, 1338 unsigned long nva_start_addr, unsigned long size, 1339 enum fit_type type) 1340 { 1341 struct vmap_area *lva = NULL; 1342 1343 if (type == FL_FIT_TYPE) { 1344 /* 1345 * No need to split VA, it fully fits. 1346 * 1347 * | | 1348 * V NVA V 1349 * |---------------| 1350 */ 1351 unlink_va(va, &free_vmap_area_root); 1352 kmem_cache_free(vmap_area_cachep, va); 1353 } else if (type == LE_FIT_TYPE) { 1354 /* 1355 * Split left edge of fit VA. 1356 * 1357 * | | 1358 * V NVA V R 1359 * |-------|-------| 1360 */ 1361 va->va_start += size; 1362 } else if (type == RE_FIT_TYPE) { 1363 /* 1364 * Split right edge of fit VA. 1365 * 1366 * | | 1367 * L V NVA V 1368 * |-------|-------| 1369 */ 1370 va->va_end = nva_start_addr; 1371 } else if (type == NE_FIT_TYPE) { 1372 /* 1373 * Split no edge of fit VA. 1374 * 1375 * | | 1376 * L V NVA V R 1377 * |---|-------|---| 1378 */ 1379 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 1380 if (unlikely(!lva)) { 1381 /* 1382 * For percpu allocator we do not do any pre-allocation 1383 * and leave it as it is. The reason is it most likely 1384 * never ends up with NE_FIT_TYPE splitting. In case of 1385 * percpu allocations offsets and sizes are aligned to 1386 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 1387 * are its main fitting cases. 1388 * 1389 * There are a few exceptions though, as an example it is 1390 * a first allocation (early boot up) when we have "one" 1391 * big free space that has to be split. 1392 * 1393 * Also we can hit this path in case of regular "vmap" 1394 * allocations, if "this" current CPU was not preloaded. 1395 * See the comment in alloc_vmap_area() why. If so, then 1396 * GFP_NOWAIT is used instead to get an extra object for 1397 * split purpose. That is rare and most time does not 1398 * occur. 1399 * 1400 * What happens if an allocation gets failed. Basically, 1401 * an "overflow" path is triggered to purge lazily freed 1402 * areas to free some memory, then, the "retry" path is 1403 * triggered to repeat one more time. See more details 1404 * in alloc_vmap_area() function. 1405 */ 1406 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 1407 if (!lva) 1408 return -1; 1409 } 1410 1411 /* 1412 * Build the remainder. 1413 */ 1414 lva->va_start = va->va_start; 1415 lva->va_end = nva_start_addr; 1416 1417 /* 1418 * Shrink this VA to remaining size. 1419 */ 1420 va->va_start = nva_start_addr + size; 1421 } else { 1422 return -1; 1423 } 1424 1425 if (type != FL_FIT_TYPE) { 1426 augment_tree_propagate_from(va); 1427 1428 if (lva) /* type == NE_FIT_TYPE */ 1429 insert_vmap_area_augment(lva, &va->rb_node, 1430 &free_vmap_area_root, &free_vmap_area_list); 1431 } 1432 1433 return 0; 1434 } 1435 1436 /* 1437 * Returns a start address of the newly allocated area, if success. 1438 * Otherwise a vend is returned that indicates failure. 1439 */ 1440 static __always_inline unsigned long 1441 __alloc_vmap_area(unsigned long size, unsigned long align, 1442 unsigned long vstart, unsigned long vend) 1443 { 1444 bool adjust_search_size = true; 1445 unsigned long nva_start_addr; 1446 struct vmap_area *va; 1447 enum fit_type type; 1448 int ret; 1449 1450 /* 1451 * Do not adjust when: 1452 * a) align <= PAGE_SIZE, because it does not make any sense. 1453 * All blocks(their start addresses) are at least PAGE_SIZE 1454 * aligned anyway; 1455 * b) a short range where a requested size corresponds to exactly 1456 * specified [vstart:vend] interval and an alignment > PAGE_SIZE. 1457 * With adjusted search length an allocation would not succeed. 1458 */ 1459 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) 1460 adjust_search_size = false; 1461 1462 va = find_vmap_lowest_match(size, align, vstart, adjust_search_size); 1463 if (unlikely(!va)) 1464 return vend; 1465 1466 if (va->va_start > vstart) 1467 nva_start_addr = ALIGN(va->va_start, align); 1468 else 1469 nva_start_addr = ALIGN(vstart, align); 1470 1471 /* Check the "vend" restriction. */ 1472 if (nva_start_addr + size > vend) 1473 return vend; 1474 1475 /* Classify what we have found. */ 1476 type = classify_va_fit_type(va, nva_start_addr, size); 1477 if (WARN_ON_ONCE(type == NOTHING_FIT)) 1478 return vend; 1479 1480 /* Update the free vmap_area. */ 1481 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type); 1482 if (ret) 1483 return vend; 1484 1485 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1486 find_vmap_lowest_match_check(size, align); 1487 #endif 1488 1489 return nva_start_addr; 1490 } 1491 1492 /* 1493 * Free a region of KVA allocated by alloc_vmap_area 1494 */ 1495 static void free_vmap_area(struct vmap_area *va) 1496 { 1497 /* 1498 * Remove from the busy tree/list. 1499 */ 1500 spin_lock(&vmap_area_lock); 1501 unlink_va(va, &vmap_area_root); 1502 spin_unlock(&vmap_area_lock); 1503 1504 /* 1505 * Insert/Merge it back to the free tree/list. 1506 */ 1507 spin_lock(&free_vmap_area_lock); 1508 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); 1509 spin_unlock(&free_vmap_area_lock); 1510 } 1511 1512 static inline void 1513 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) 1514 { 1515 struct vmap_area *va = NULL; 1516 1517 /* 1518 * Preload this CPU with one extra vmap_area object. It is used 1519 * when fit type of free area is NE_FIT_TYPE. It guarantees that 1520 * a CPU that does an allocation is preloaded. 1521 * 1522 * We do it in non-atomic context, thus it allows us to use more 1523 * permissive allocation masks to be more stable under low memory 1524 * condition and high memory pressure. 1525 */ 1526 if (!this_cpu_read(ne_fit_preload_node)) 1527 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1528 1529 spin_lock(lock); 1530 1531 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va)) 1532 kmem_cache_free(vmap_area_cachep, va); 1533 } 1534 1535 /* 1536 * Allocate a region of KVA of the specified size and alignment, within the 1537 * vstart and vend. 1538 */ 1539 static struct vmap_area *alloc_vmap_area(unsigned long size, 1540 unsigned long align, 1541 unsigned long vstart, unsigned long vend, 1542 int node, gfp_t gfp_mask) 1543 { 1544 struct vmap_area *va; 1545 unsigned long freed; 1546 unsigned long addr; 1547 int purged = 0; 1548 int ret; 1549 1550 BUG_ON(!size); 1551 BUG_ON(offset_in_page(size)); 1552 BUG_ON(!is_power_of_2(align)); 1553 1554 if (unlikely(!vmap_initialized)) 1555 return ERR_PTR(-EBUSY); 1556 1557 might_sleep(); 1558 gfp_mask = gfp_mask & GFP_RECLAIM_MASK; 1559 1560 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1561 if (unlikely(!va)) 1562 return ERR_PTR(-ENOMEM); 1563 1564 /* 1565 * Only scan the relevant parts containing pointers to other objects 1566 * to avoid false negatives. 1567 */ 1568 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); 1569 1570 retry: 1571 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); 1572 addr = __alloc_vmap_area(size, align, vstart, vend); 1573 spin_unlock(&free_vmap_area_lock); 1574 1575 /* 1576 * If an allocation fails, the "vend" address is 1577 * returned. Therefore trigger the overflow path. 1578 */ 1579 if (unlikely(addr == vend)) 1580 goto overflow; 1581 1582 va->va_start = addr; 1583 va->va_end = addr + size; 1584 va->vm = NULL; 1585 1586 spin_lock(&vmap_area_lock); 1587 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1588 spin_unlock(&vmap_area_lock); 1589 1590 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1591 BUG_ON(va->va_start < vstart); 1592 BUG_ON(va->va_end > vend); 1593 1594 ret = kasan_populate_vmalloc(addr, size); 1595 if (ret) { 1596 free_vmap_area(va); 1597 return ERR_PTR(ret); 1598 } 1599 1600 return va; 1601 1602 overflow: 1603 if (!purged) { 1604 purge_vmap_area_lazy(); 1605 purged = 1; 1606 goto retry; 1607 } 1608 1609 freed = 0; 1610 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 1611 1612 if (freed > 0) { 1613 purged = 0; 1614 goto retry; 1615 } 1616 1617 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 1618 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 1619 size); 1620 1621 kmem_cache_free(vmap_area_cachep, va); 1622 return ERR_PTR(-EBUSY); 1623 } 1624 1625 int register_vmap_purge_notifier(struct notifier_block *nb) 1626 { 1627 return blocking_notifier_chain_register(&vmap_notify_list, nb); 1628 } 1629 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 1630 1631 int unregister_vmap_purge_notifier(struct notifier_block *nb) 1632 { 1633 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 1634 } 1635 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 1636 1637 /* 1638 * lazy_max_pages is the maximum amount of virtual address space we gather up 1639 * before attempting to purge with a TLB flush. 1640 * 1641 * There is a tradeoff here: a larger number will cover more kernel page tables 1642 * and take slightly longer to purge, but it will linearly reduce the number of 1643 * global TLB flushes that must be performed. It would seem natural to scale 1644 * this number up linearly with the number of CPUs (because vmapping activity 1645 * could also scale linearly with the number of CPUs), however it is likely 1646 * that in practice, workloads might be constrained in other ways that mean 1647 * vmap activity will not scale linearly with CPUs. Also, I want to be 1648 * conservative and not introduce a big latency on huge systems, so go with 1649 * a less aggressive log scale. It will still be an improvement over the old 1650 * code, and it will be simple to change the scale factor if we find that it 1651 * becomes a problem on bigger systems. 1652 */ 1653 static unsigned long lazy_max_pages(void) 1654 { 1655 unsigned int log; 1656 1657 log = fls(num_online_cpus()); 1658 1659 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 1660 } 1661 1662 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 1663 1664 /* 1665 * Serialize vmap purging. There is no actual critical section protected 1666 * by this look, but we want to avoid concurrent calls for performance 1667 * reasons and to make the pcpu_get_vm_areas more deterministic. 1668 */ 1669 static DEFINE_MUTEX(vmap_purge_lock); 1670 1671 /* for per-CPU blocks */ 1672 static void purge_fragmented_blocks_allcpus(void); 1673 1674 #ifdef CONFIG_X86_64 1675 /* 1676 * called before a call to iounmap() if the caller wants vm_area_struct's 1677 * immediately freed. 1678 */ 1679 void set_iounmap_nonlazy(void) 1680 { 1681 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1); 1682 } 1683 #endif /* CONFIG_X86_64 */ 1684 1685 /* 1686 * Purges all lazily-freed vmap areas. 1687 */ 1688 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 1689 { 1690 unsigned long resched_threshold; 1691 struct list_head local_pure_list; 1692 struct vmap_area *va, *n_va; 1693 1694 lockdep_assert_held(&vmap_purge_lock); 1695 1696 spin_lock(&purge_vmap_area_lock); 1697 purge_vmap_area_root = RB_ROOT; 1698 list_replace_init(&purge_vmap_area_list, &local_pure_list); 1699 spin_unlock(&purge_vmap_area_lock); 1700 1701 if (unlikely(list_empty(&local_pure_list))) 1702 return false; 1703 1704 start = min(start, 1705 list_first_entry(&local_pure_list, 1706 struct vmap_area, list)->va_start); 1707 1708 end = max(end, 1709 list_last_entry(&local_pure_list, 1710 struct vmap_area, list)->va_end); 1711 1712 flush_tlb_kernel_range(start, end); 1713 resched_threshold = lazy_max_pages() << 1; 1714 1715 spin_lock(&free_vmap_area_lock); 1716 list_for_each_entry_safe(va, n_va, &local_pure_list, list) { 1717 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 1718 unsigned long orig_start = va->va_start; 1719 unsigned long orig_end = va->va_end; 1720 1721 /* 1722 * Finally insert or merge lazily-freed area. It is 1723 * detached and there is no need to "unlink" it from 1724 * anything. 1725 */ 1726 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root, 1727 &free_vmap_area_list); 1728 1729 if (!va) 1730 continue; 1731 1732 if (is_vmalloc_or_module_addr((void *)orig_start)) 1733 kasan_release_vmalloc(orig_start, orig_end, 1734 va->va_start, va->va_end); 1735 1736 atomic_long_sub(nr, &vmap_lazy_nr); 1737 1738 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 1739 cond_resched_lock(&free_vmap_area_lock); 1740 } 1741 spin_unlock(&free_vmap_area_lock); 1742 return true; 1743 } 1744 1745 /* 1746 * Kick off a purge of the outstanding lazy areas. 1747 */ 1748 static void purge_vmap_area_lazy(void) 1749 { 1750 mutex_lock(&vmap_purge_lock); 1751 purge_fragmented_blocks_allcpus(); 1752 __purge_vmap_area_lazy(ULONG_MAX, 0); 1753 mutex_unlock(&vmap_purge_lock); 1754 } 1755 1756 static void drain_vmap_area_work(struct work_struct *work) 1757 { 1758 unsigned long nr_lazy; 1759 1760 do { 1761 mutex_lock(&vmap_purge_lock); 1762 __purge_vmap_area_lazy(ULONG_MAX, 0); 1763 mutex_unlock(&vmap_purge_lock); 1764 1765 /* Recheck if further work is required. */ 1766 nr_lazy = atomic_long_read(&vmap_lazy_nr); 1767 } while (nr_lazy > lazy_max_pages()); 1768 } 1769 1770 /* 1771 * Free a vmap area, caller ensuring that the area has been unmapped 1772 * and flush_cache_vunmap had been called for the correct range 1773 * previously. 1774 */ 1775 static void free_vmap_area_noflush(struct vmap_area *va) 1776 { 1777 unsigned long nr_lazy; 1778 1779 spin_lock(&vmap_area_lock); 1780 unlink_va(va, &vmap_area_root); 1781 spin_unlock(&vmap_area_lock); 1782 1783 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 1784 PAGE_SHIFT, &vmap_lazy_nr); 1785 1786 /* 1787 * Merge or place it to the purge tree/list. 1788 */ 1789 spin_lock(&purge_vmap_area_lock); 1790 merge_or_add_vmap_area(va, 1791 &purge_vmap_area_root, &purge_vmap_area_list); 1792 spin_unlock(&purge_vmap_area_lock); 1793 1794 /* After this point, we may free va at any time */ 1795 if (unlikely(nr_lazy > lazy_max_pages())) 1796 schedule_work(&drain_vmap_work); 1797 } 1798 1799 /* 1800 * Free and unmap a vmap area 1801 */ 1802 static void free_unmap_vmap_area(struct vmap_area *va) 1803 { 1804 flush_cache_vunmap(va->va_start, va->va_end); 1805 vunmap_range_noflush(va->va_start, va->va_end); 1806 if (debug_pagealloc_enabled_static()) 1807 flush_tlb_kernel_range(va->va_start, va->va_end); 1808 1809 free_vmap_area_noflush(va); 1810 } 1811 1812 static struct vmap_area *find_vmap_area(unsigned long addr) 1813 { 1814 struct vmap_area *va; 1815 1816 spin_lock(&vmap_area_lock); 1817 va = __find_vmap_area(addr); 1818 spin_unlock(&vmap_area_lock); 1819 1820 return va; 1821 } 1822 1823 /*** Per cpu kva allocator ***/ 1824 1825 /* 1826 * vmap space is limited especially on 32 bit architectures. Ensure there is 1827 * room for at least 16 percpu vmap blocks per CPU. 1828 */ 1829 /* 1830 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 1831 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 1832 * instead (we just need a rough idea) 1833 */ 1834 #if BITS_PER_LONG == 32 1835 #define VMALLOC_SPACE (128UL*1024*1024) 1836 #else 1837 #define VMALLOC_SPACE (128UL*1024*1024*1024) 1838 #endif 1839 1840 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 1841 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 1842 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 1843 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 1844 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 1845 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 1846 #define VMAP_BBMAP_BITS \ 1847 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 1848 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 1849 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 1850 1851 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 1852 1853 struct vmap_block_queue { 1854 spinlock_t lock; 1855 struct list_head free; 1856 }; 1857 1858 struct vmap_block { 1859 spinlock_t lock; 1860 struct vmap_area *va; 1861 unsigned long free, dirty; 1862 unsigned long dirty_min, dirty_max; /*< dirty range */ 1863 struct list_head free_list; 1864 struct rcu_head rcu_head; 1865 struct list_head purge; 1866 }; 1867 1868 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 1869 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 1870 1871 /* 1872 * XArray of vmap blocks, indexed by address, to quickly find a vmap block 1873 * in the free path. Could get rid of this if we change the API to return a 1874 * "cookie" from alloc, to be passed to free. But no big deal yet. 1875 */ 1876 static DEFINE_XARRAY(vmap_blocks); 1877 1878 /* 1879 * We should probably have a fallback mechanism to allocate virtual memory 1880 * out of partially filled vmap blocks. However vmap block sizing should be 1881 * fairly reasonable according to the vmalloc size, so it shouldn't be a 1882 * big problem. 1883 */ 1884 1885 static unsigned long addr_to_vb_idx(unsigned long addr) 1886 { 1887 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 1888 addr /= VMAP_BLOCK_SIZE; 1889 return addr; 1890 } 1891 1892 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 1893 { 1894 unsigned long addr; 1895 1896 addr = va_start + (pages_off << PAGE_SHIFT); 1897 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 1898 return (void *)addr; 1899 } 1900 1901 /** 1902 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 1903 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 1904 * @order: how many 2^order pages should be occupied in newly allocated block 1905 * @gfp_mask: flags for the page level allocator 1906 * 1907 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 1908 */ 1909 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 1910 { 1911 struct vmap_block_queue *vbq; 1912 struct vmap_block *vb; 1913 struct vmap_area *va; 1914 unsigned long vb_idx; 1915 int node, err; 1916 void *vaddr; 1917 1918 node = numa_node_id(); 1919 1920 vb = kmalloc_node(sizeof(struct vmap_block), 1921 gfp_mask & GFP_RECLAIM_MASK, node); 1922 if (unlikely(!vb)) 1923 return ERR_PTR(-ENOMEM); 1924 1925 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 1926 VMALLOC_START, VMALLOC_END, 1927 node, gfp_mask); 1928 if (IS_ERR(va)) { 1929 kfree(vb); 1930 return ERR_CAST(va); 1931 } 1932 1933 vaddr = vmap_block_vaddr(va->va_start, 0); 1934 spin_lock_init(&vb->lock); 1935 vb->va = va; 1936 /* At least something should be left free */ 1937 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 1938 vb->free = VMAP_BBMAP_BITS - (1UL << order); 1939 vb->dirty = 0; 1940 vb->dirty_min = VMAP_BBMAP_BITS; 1941 vb->dirty_max = 0; 1942 INIT_LIST_HEAD(&vb->free_list); 1943 1944 vb_idx = addr_to_vb_idx(va->va_start); 1945 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask); 1946 if (err) { 1947 kfree(vb); 1948 free_vmap_area(va); 1949 return ERR_PTR(err); 1950 } 1951 1952 vbq = &get_cpu_var(vmap_block_queue); 1953 spin_lock(&vbq->lock); 1954 list_add_tail_rcu(&vb->free_list, &vbq->free); 1955 spin_unlock(&vbq->lock); 1956 put_cpu_var(vmap_block_queue); 1957 1958 return vaddr; 1959 } 1960 1961 static void free_vmap_block(struct vmap_block *vb) 1962 { 1963 struct vmap_block *tmp; 1964 1965 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start)); 1966 BUG_ON(tmp != vb); 1967 1968 free_vmap_area_noflush(vb->va); 1969 kfree_rcu(vb, rcu_head); 1970 } 1971 1972 static void purge_fragmented_blocks(int cpu) 1973 { 1974 LIST_HEAD(purge); 1975 struct vmap_block *vb; 1976 struct vmap_block *n_vb; 1977 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1978 1979 rcu_read_lock(); 1980 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1981 1982 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 1983 continue; 1984 1985 spin_lock(&vb->lock); 1986 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 1987 vb->free = 0; /* prevent further allocs after releasing lock */ 1988 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 1989 vb->dirty_min = 0; 1990 vb->dirty_max = VMAP_BBMAP_BITS; 1991 spin_lock(&vbq->lock); 1992 list_del_rcu(&vb->free_list); 1993 spin_unlock(&vbq->lock); 1994 spin_unlock(&vb->lock); 1995 list_add_tail(&vb->purge, &purge); 1996 } else 1997 spin_unlock(&vb->lock); 1998 } 1999 rcu_read_unlock(); 2000 2001 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 2002 list_del(&vb->purge); 2003 free_vmap_block(vb); 2004 } 2005 } 2006 2007 static void purge_fragmented_blocks_allcpus(void) 2008 { 2009 int cpu; 2010 2011 for_each_possible_cpu(cpu) 2012 purge_fragmented_blocks(cpu); 2013 } 2014 2015 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 2016 { 2017 struct vmap_block_queue *vbq; 2018 struct vmap_block *vb; 2019 void *vaddr = NULL; 2020 unsigned int order; 2021 2022 BUG_ON(offset_in_page(size)); 2023 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2024 if (WARN_ON(size == 0)) { 2025 /* 2026 * Allocating 0 bytes isn't what caller wants since 2027 * get_order(0) returns funny result. Just warn and terminate 2028 * early. 2029 */ 2030 return NULL; 2031 } 2032 order = get_order(size); 2033 2034 rcu_read_lock(); 2035 vbq = &get_cpu_var(vmap_block_queue); 2036 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2037 unsigned long pages_off; 2038 2039 spin_lock(&vb->lock); 2040 if (vb->free < (1UL << order)) { 2041 spin_unlock(&vb->lock); 2042 continue; 2043 } 2044 2045 pages_off = VMAP_BBMAP_BITS - vb->free; 2046 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 2047 vb->free -= 1UL << order; 2048 if (vb->free == 0) { 2049 spin_lock(&vbq->lock); 2050 list_del_rcu(&vb->free_list); 2051 spin_unlock(&vbq->lock); 2052 } 2053 2054 spin_unlock(&vb->lock); 2055 break; 2056 } 2057 2058 put_cpu_var(vmap_block_queue); 2059 rcu_read_unlock(); 2060 2061 /* Allocate new block if nothing was found */ 2062 if (!vaddr) 2063 vaddr = new_vmap_block(order, gfp_mask); 2064 2065 return vaddr; 2066 } 2067 2068 static void vb_free(unsigned long addr, unsigned long size) 2069 { 2070 unsigned long offset; 2071 unsigned int order; 2072 struct vmap_block *vb; 2073 2074 BUG_ON(offset_in_page(size)); 2075 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2076 2077 flush_cache_vunmap(addr, addr + size); 2078 2079 order = get_order(size); 2080 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; 2081 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr)); 2082 2083 vunmap_range_noflush(addr, addr + size); 2084 2085 if (debug_pagealloc_enabled_static()) 2086 flush_tlb_kernel_range(addr, addr + size); 2087 2088 spin_lock(&vb->lock); 2089 2090 /* Expand dirty range */ 2091 vb->dirty_min = min(vb->dirty_min, offset); 2092 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 2093 2094 vb->dirty += 1UL << order; 2095 if (vb->dirty == VMAP_BBMAP_BITS) { 2096 BUG_ON(vb->free); 2097 spin_unlock(&vb->lock); 2098 free_vmap_block(vb); 2099 } else 2100 spin_unlock(&vb->lock); 2101 } 2102 2103 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 2104 { 2105 int cpu; 2106 2107 if (unlikely(!vmap_initialized)) 2108 return; 2109 2110 might_sleep(); 2111 2112 for_each_possible_cpu(cpu) { 2113 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2114 struct vmap_block *vb; 2115 2116 rcu_read_lock(); 2117 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2118 spin_lock(&vb->lock); 2119 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) { 2120 unsigned long va_start = vb->va->va_start; 2121 unsigned long s, e; 2122 2123 s = va_start + (vb->dirty_min << PAGE_SHIFT); 2124 e = va_start + (vb->dirty_max << PAGE_SHIFT); 2125 2126 start = min(s, start); 2127 end = max(e, end); 2128 2129 flush = 1; 2130 } 2131 spin_unlock(&vb->lock); 2132 } 2133 rcu_read_unlock(); 2134 } 2135 2136 mutex_lock(&vmap_purge_lock); 2137 purge_fragmented_blocks_allcpus(); 2138 if (!__purge_vmap_area_lazy(start, end) && flush) 2139 flush_tlb_kernel_range(start, end); 2140 mutex_unlock(&vmap_purge_lock); 2141 } 2142 2143 /** 2144 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 2145 * 2146 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 2147 * to amortize TLB flushing overheads. What this means is that any page you 2148 * have now, may, in a former life, have been mapped into kernel virtual 2149 * address by the vmap layer and so there might be some CPUs with TLB entries 2150 * still referencing that page (additional to the regular 1:1 kernel mapping). 2151 * 2152 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 2153 * be sure that none of the pages we have control over will have any aliases 2154 * from the vmap layer. 2155 */ 2156 void vm_unmap_aliases(void) 2157 { 2158 unsigned long start = ULONG_MAX, end = 0; 2159 int flush = 0; 2160 2161 _vm_unmap_aliases(start, end, flush); 2162 } 2163 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 2164 2165 /** 2166 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 2167 * @mem: the pointer returned by vm_map_ram 2168 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 2169 */ 2170 void vm_unmap_ram(const void *mem, unsigned int count) 2171 { 2172 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2173 unsigned long addr = (unsigned long)kasan_reset_tag(mem); 2174 struct vmap_area *va; 2175 2176 might_sleep(); 2177 BUG_ON(!addr); 2178 BUG_ON(addr < VMALLOC_START); 2179 BUG_ON(addr > VMALLOC_END); 2180 BUG_ON(!PAGE_ALIGNED(addr)); 2181 2182 kasan_poison_vmalloc(mem, size); 2183 2184 if (likely(count <= VMAP_MAX_ALLOC)) { 2185 debug_check_no_locks_freed(mem, size); 2186 vb_free(addr, size); 2187 return; 2188 } 2189 2190 va = find_vmap_area(addr); 2191 BUG_ON(!va); 2192 debug_check_no_locks_freed((void *)va->va_start, 2193 (va->va_end - va->va_start)); 2194 free_unmap_vmap_area(va); 2195 } 2196 EXPORT_SYMBOL(vm_unmap_ram); 2197 2198 /** 2199 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 2200 * @pages: an array of pointers to the pages to be mapped 2201 * @count: number of pages 2202 * @node: prefer to allocate data structures on this node 2203 * 2204 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 2205 * faster than vmap so it's good. But if you mix long-life and short-life 2206 * objects with vm_map_ram(), it could consume lots of address space through 2207 * fragmentation (especially on a 32bit machine). You could see failures in 2208 * the end. Please use this function for short-lived objects. 2209 * 2210 * Returns: a pointer to the address that has been mapped, or %NULL on failure 2211 */ 2212 void *vm_map_ram(struct page **pages, unsigned int count, int node) 2213 { 2214 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2215 unsigned long addr; 2216 void *mem; 2217 2218 if (likely(count <= VMAP_MAX_ALLOC)) { 2219 mem = vb_alloc(size, GFP_KERNEL); 2220 if (IS_ERR(mem)) 2221 return NULL; 2222 addr = (unsigned long)mem; 2223 } else { 2224 struct vmap_area *va; 2225 va = alloc_vmap_area(size, PAGE_SIZE, 2226 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 2227 if (IS_ERR(va)) 2228 return NULL; 2229 2230 addr = va->va_start; 2231 mem = (void *)addr; 2232 } 2233 2234 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, 2235 pages, PAGE_SHIFT) < 0) { 2236 vm_unmap_ram(mem, count); 2237 return NULL; 2238 } 2239 2240 /* 2241 * Mark the pages as accessible, now that they are mapped. 2242 * With hardware tag-based KASAN, marking is skipped for 2243 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 2244 */ 2245 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); 2246 2247 return mem; 2248 } 2249 EXPORT_SYMBOL(vm_map_ram); 2250 2251 static struct vm_struct *vmlist __initdata; 2252 2253 static inline unsigned int vm_area_page_order(struct vm_struct *vm) 2254 { 2255 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2256 return vm->page_order; 2257 #else 2258 return 0; 2259 #endif 2260 } 2261 2262 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) 2263 { 2264 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2265 vm->page_order = order; 2266 #else 2267 BUG_ON(order != 0); 2268 #endif 2269 } 2270 2271 /** 2272 * vm_area_add_early - add vmap area early during boot 2273 * @vm: vm_struct to add 2274 * 2275 * This function is used to add fixed kernel vm area to vmlist before 2276 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 2277 * should contain proper values and the other fields should be zero. 2278 * 2279 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2280 */ 2281 void __init vm_area_add_early(struct vm_struct *vm) 2282 { 2283 struct vm_struct *tmp, **p; 2284 2285 BUG_ON(vmap_initialized); 2286 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 2287 if (tmp->addr >= vm->addr) { 2288 BUG_ON(tmp->addr < vm->addr + vm->size); 2289 break; 2290 } else 2291 BUG_ON(tmp->addr + tmp->size > vm->addr); 2292 } 2293 vm->next = *p; 2294 *p = vm; 2295 } 2296 2297 /** 2298 * vm_area_register_early - register vmap area early during boot 2299 * @vm: vm_struct to register 2300 * @align: requested alignment 2301 * 2302 * This function is used to register kernel vm area before 2303 * vmalloc_init() is called. @vm->size and @vm->flags should contain 2304 * proper values on entry and other fields should be zero. On return, 2305 * vm->addr contains the allocated address. 2306 * 2307 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2308 */ 2309 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 2310 { 2311 unsigned long addr = ALIGN(VMALLOC_START, align); 2312 struct vm_struct *cur, **p; 2313 2314 BUG_ON(vmap_initialized); 2315 2316 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { 2317 if ((unsigned long)cur->addr - addr >= vm->size) 2318 break; 2319 addr = ALIGN((unsigned long)cur->addr + cur->size, align); 2320 } 2321 2322 BUG_ON(addr > VMALLOC_END - vm->size); 2323 vm->addr = (void *)addr; 2324 vm->next = *p; 2325 *p = vm; 2326 kasan_populate_early_vm_area_shadow(vm->addr, vm->size); 2327 } 2328 2329 static void vmap_init_free_space(void) 2330 { 2331 unsigned long vmap_start = 1; 2332 const unsigned long vmap_end = ULONG_MAX; 2333 struct vmap_area *busy, *free; 2334 2335 /* 2336 * B F B B B F 2337 * -|-----|.....|-----|-----|-----|.....|- 2338 * | The KVA space | 2339 * |<--------------------------------->| 2340 */ 2341 list_for_each_entry(busy, &vmap_area_list, list) { 2342 if (busy->va_start - vmap_start > 0) { 2343 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2344 if (!WARN_ON_ONCE(!free)) { 2345 free->va_start = vmap_start; 2346 free->va_end = busy->va_start; 2347 2348 insert_vmap_area_augment(free, NULL, 2349 &free_vmap_area_root, 2350 &free_vmap_area_list); 2351 } 2352 } 2353 2354 vmap_start = busy->va_end; 2355 } 2356 2357 if (vmap_end - vmap_start > 0) { 2358 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2359 if (!WARN_ON_ONCE(!free)) { 2360 free->va_start = vmap_start; 2361 free->va_end = vmap_end; 2362 2363 insert_vmap_area_augment(free, NULL, 2364 &free_vmap_area_root, 2365 &free_vmap_area_list); 2366 } 2367 } 2368 } 2369 2370 void __init vmalloc_init(void) 2371 { 2372 struct vmap_area *va; 2373 struct vm_struct *tmp; 2374 int i; 2375 2376 /* 2377 * Create the cache for vmap_area objects. 2378 */ 2379 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 2380 2381 for_each_possible_cpu(i) { 2382 struct vmap_block_queue *vbq; 2383 struct vfree_deferred *p; 2384 2385 vbq = &per_cpu(vmap_block_queue, i); 2386 spin_lock_init(&vbq->lock); 2387 INIT_LIST_HEAD(&vbq->free); 2388 p = &per_cpu(vfree_deferred, i); 2389 init_llist_head(&p->list); 2390 INIT_WORK(&p->wq, free_work); 2391 } 2392 2393 /* Import existing vmlist entries. */ 2394 for (tmp = vmlist; tmp; tmp = tmp->next) { 2395 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2396 if (WARN_ON_ONCE(!va)) 2397 continue; 2398 2399 va->va_start = (unsigned long)tmp->addr; 2400 va->va_end = va->va_start + tmp->size; 2401 va->vm = tmp; 2402 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 2403 } 2404 2405 /* 2406 * Now we can initialize a free vmap space. 2407 */ 2408 vmap_init_free_space(); 2409 vmap_initialized = true; 2410 } 2411 2412 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, 2413 struct vmap_area *va, unsigned long flags, const void *caller) 2414 { 2415 vm->flags = flags; 2416 vm->addr = (void *)va->va_start; 2417 vm->size = va->va_end - va->va_start; 2418 vm->caller = caller; 2419 va->vm = vm; 2420 } 2421 2422 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 2423 unsigned long flags, const void *caller) 2424 { 2425 spin_lock(&vmap_area_lock); 2426 setup_vmalloc_vm_locked(vm, va, flags, caller); 2427 spin_unlock(&vmap_area_lock); 2428 } 2429 2430 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 2431 { 2432 /* 2433 * Before removing VM_UNINITIALIZED, 2434 * we should make sure that vm has proper values. 2435 * Pair with smp_rmb() in show_numa_info(). 2436 */ 2437 smp_wmb(); 2438 vm->flags &= ~VM_UNINITIALIZED; 2439 } 2440 2441 static struct vm_struct *__get_vm_area_node(unsigned long size, 2442 unsigned long align, unsigned long shift, unsigned long flags, 2443 unsigned long start, unsigned long end, int node, 2444 gfp_t gfp_mask, const void *caller) 2445 { 2446 struct vmap_area *va; 2447 struct vm_struct *area; 2448 unsigned long requested_size = size; 2449 2450 BUG_ON(in_interrupt()); 2451 size = ALIGN(size, 1ul << shift); 2452 if (unlikely(!size)) 2453 return NULL; 2454 2455 if (flags & VM_IOREMAP) 2456 align = 1ul << clamp_t(int, get_count_order_long(size), 2457 PAGE_SHIFT, IOREMAP_MAX_ORDER); 2458 2459 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 2460 if (unlikely(!area)) 2461 return NULL; 2462 2463 if (!(flags & VM_NO_GUARD)) 2464 size += PAGE_SIZE; 2465 2466 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 2467 if (IS_ERR(va)) { 2468 kfree(area); 2469 return NULL; 2470 } 2471 2472 setup_vmalloc_vm(area, va, flags, caller); 2473 2474 /* 2475 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a 2476 * best-effort approach, as they can be mapped outside of vmalloc code. 2477 * For VM_ALLOC mappings, the pages are marked as accessible after 2478 * getting mapped in __vmalloc_node_range(). 2479 * With hardware tag-based KASAN, marking is skipped for 2480 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 2481 */ 2482 if (!(flags & VM_ALLOC)) 2483 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, 2484 KASAN_VMALLOC_PROT_NORMAL); 2485 2486 return area; 2487 } 2488 2489 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 2490 unsigned long start, unsigned long end, 2491 const void *caller) 2492 { 2493 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, 2494 NUMA_NO_NODE, GFP_KERNEL, caller); 2495 } 2496 2497 /** 2498 * get_vm_area - reserve a contiguous kernel virtual area 2499 * @size: size of the area 2500 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 2501 * 2502 * Search an area of @size in the kernel virtual mapping area, 2503 * and reserved it for out purposes. Returns the area descriptor 2504 * on success or %NULL on failure. 2505 * 2506 * Return: the area descriptor on success or %NULL on failure. 2507 */ 2508 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 2509 { 2510 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2511 VMALLOC_START, VMALLOC_END, 2512 NUMA_NO_NODE, GFP_KERNEL, 2513 __builtin_return_address(0)); 2514 } 2515 2516 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 2517 const void *caller) 2518 { 2519 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2520 VMALLOC_START, VMALLOC_END, 2521 NUMA_NO_NODE, GFP_KERNEL, caller); 2522 } 2523 2524 /** 2525 * find_vm_area - find a continuous kernel virtual area 2526 * @addr: base address 2527 * 2528 * Search for the kernel VM area starting at @addr, and return it. 2529 * It is up to the caller to do all required locking to keep the returned 2530 * pointer valid. 2531 * 2532 * Return: the area descriptor on success or %NULL on failure. 2533 */ 2534 struct vm_struct *find_vm_area(const void *addr) 2535 { 2536 struct vmap_area *va; 2537 2538 va = find_vmap_area((unsigned long)addr); 2539 if (!va) 2540 return NULL; 2541 2542 return va->vm; 2543 } 2544 2545 /** 2546 * remove_vm_area - find and remove a continuous kernel virtual area 2547 * @addr: base address 2548 * 2549 * Search for the kernel VM area starting at @addr, and remove it. 2550 * This function returns the found VM area, but using it is NOT safe 2551 * on SMP machines, except for its size or flags. 2552 * 2553 * Return: the area descriptor on success or %NULL on failure. 2554 */ 2555 struct vm_struct *remove_vm_area(const void *addr) 2556 { 2557 struct vmap_area *va; 2558 2559 might_sleep(); 2560 2561 spin_lock(&vmap_area_lock); 2562 va = __find_vmap_area((unsigned long)addr); 2563 if (va && va->vm) { 2564 struct vm_struct *vm = va->vm; 2565 2566 va->vm = NULL; 2567 spin_unlock(&vmap_area_lock); 2568 2569 kasan_free_module_shadow(vm); 2570 free_unmap_vmap_area(va); 2571 2572 return vm; 2573 } 2574 2575 spin_unlock(&vmap_area_lock); 2576 return NULL; 2577 } 2578 2579 static inline void set_area_direct_map(const struct vm_struct *area, 2580 int (*set_direct_map)(struct page *page)) 2581 { 2582 int i; 2583 2584 /* HUGE_VMALLOC passes small pages to set_direct_map */ 2585 for (i = 0; i < area->nr_pages; i++) 2586 if (page_address(area->pages[i])) 2587 set_direct_map(area->pages[i]); 2588 } 2589 2590 /* Handle removing and resetting vm mappings related to the vm_struct. */ 2591 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) 2592 { 2593 unsigned long start = ULONG_MAX, end = 0; 2594 unsigned int page_order = vm_area_page_order(area); 2595 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; 2596 int flush_dmap = 0; 2597 int i; 2598 2599 remove_vm_area(area->addr); 2600 2601 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ 2602 if (!flush_reset) 2603 return; 2604 2605 /* 2606 * If not deallocating pages, just do the flush of the VM area and 2607 * return. 2608 */ 2609 if (!deallocate_pages) { 2610 vm_unmap_aliases(); 2611 return; 2612 } 2613 2614 /* 2615 * If execution gets here, flush the vm mapping and reset the direct 2616 * map. Find the start and end range of the direct mappings to make sure 2617 * the vm_unmap_aliases() flush includes the direct map. 2618 */ 2619 for (i = 0; i < area->nr_pages; i += 1U << page_order) { 2620 unsigned long addr = (unsigned long)page_address(area->pages[i]); 2621 if (addr) { 2622 unsigned long page_size; 2623 2624 page_size = PAGE_SIZE << page_order; 2625 start = min(addr, start); 2626 end = max(addr + page_size, end); 2627 flush_dmap = 1; 2628 } 2629 } 2630 2631 /* 2632 * Set direct map to something invalid so that it won't be cached if 2633 * there are any accesses after the TLB flush, then flush the TLB and 2634 * reset the direct map permissions to the default. 2635 */ 2636 set_area_direct_map(area, set_direct_map_invalid_noflush); 2637 _vm_unmap_aliases(start, end, flush_dmap); 2638 set_area_direct_map(area, set_direct_map_default_noflush); 2639 } 2640 2641 static void __vunmap(const void *addr, int deallocate_pages) 2642 { 2643 struct vm_struct *area; 2644 2645 if (!addr) 2646 return; 2647 2648 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 2649 addr)) 2650 return; 2651 2652 area = find_vm_area(addr); 2653 if (unlikely(!area)) { 2654 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 2655 addr); 2656 return; 2657 } 2658 2659 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 2660 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 2661 2662 kasan_poison_vmalloc(area->addr, get_vm_area_size(area)); 2663 2664 vm_remove_mappings(area, deallocate_pages); 2665 2666 if (deallocate_pages) { 2667 unsigned int page_order = vm_area_page_order(area); 2668 int i, step = 1U << page_order; 2669 2670 for (i = 0; i < area->nr_pages; i += step) { 2671 struct page *page = area->pages[i]; 2672 2673 BUG_ON(!page); 2674 mod_memcg_page_state(page, MEMCG_VMALLOC, -step); 2675 __free_pages(page, page_order); 2676 cond_resched(); 2677 } 2678 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); 2679 2680 kvfree(area->pages); 2681 } 2682 2683 kfree(area); 2684 } 2685 2686 static inline void __vfree_deferred(const void *addr) 2687 { 2688 /* 2689 * Use raw_cpu_ptr() because this can be called from preemptible 2690 * context. Preemption is absolutely fine here, because the llist_add() 2691 * implementation is lockless, so it works even if we are adding to 2692 * another cpu's list. schedule_work() should be fine with this too. 2693 */ 2694 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 2695 2696 if (llist_add((struct llist_node *)addr, &p->list)) 2697 schedule_work(&p->wq); 2698 } 2699 2700 /** 2701 * vfree_atomic - release memory allocated by vmalloc() 2702 * @addr: memory base address 2703 * 2704 * This one is just like vfree() but can be called in any atomic context 2705 * except NMIs. 2706 */ 2707 void vfree_atomic(const void *addr) 2708 { 2709 BUG_ON(in_nmi()); 2710 2711 kmemleak_free(addr); 2712 2713 if (!addr) 2714 return; 2715 __vfree_deferred(addr); 2716 } 2717 2718 static void __vfree(const void *addr) 2719 { 2720 if (unlikely(in_interrupt())) 2721 __vfree_deferred(addr); 2722 else 2723 __vunmap(addr, 1); 2724 } 2725 2726 /** 2727 * vfree - Release memory allocated by vmalloc() 2728 * @addr: Memory base address 2729 * 2730 * Free the virtually continuous memory area starting at @addr, as obtained 2731 * from one of the vmalloc() family of APIs. This will usually also free the 2732 * physical memory underlying the virtual allocation, but that memory is 2733 * reference counted, so it will not be freed until the last user goes away. 2734 * 2735 * If @addr is NULL, no operation is performed. 2736 * 2737 * Context: 2738 * May sleep if called *not* from interrupt context. 2739 * Must not be called in NMI context (strictly speaking, it could be 2740 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 2741 * conventions for vfree() arch-dependent would be a really bad idea). 2742 */ 2743 void vfree(const void *addr) 2744 { 2745 BUG_ON(in_nmi()); 2746 2747 kmemleak_free(addr); 2748 2749 might_sleep_if(!in_interrupt()); 2750 2751 if (!addr) 2752 return; 2753 2754 __vfree(addr); 2755 } 2756 EXPORT_SYMBOL(vfree); 2757 2758 /** 2759 * vunmap - release virtual mapping obtained by vmap() 2760 * @addr: memory base address 2761 * 2762 * Free the virtually contiguous memory area starting at @addr, 2763 * which was created from the page array passed to vmap(). 2764 * 2765 * Must not be called in interrupt context. 2766 */ 2767 void vunmap(const void *addr) 2768 { 2769 BUG_ON(in_interrupt()); 2770 might_sleep(); 2771 if (addr) 2772 __vunmap(addr, 0); 2773 } 2774 EXPORT_SYMBOL(vunmap); 2775 2776 /** 2777 * vmap - map an array of pages into virtually contiguous space 2778 * @pages: array of page pointers 2779 * @count: number of pages to map 2780 * @flags: vm_area->flags 2781 * @prot: page protection for the mapping 2782 * 2783 * Maps @count pages from @pages into contiguous kernel virtual space. 2784 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself 2785 * (which must be kmalloc or vmalloc memory) and one reference per pages in it 2786 * are transferred from the caller to vmap(), and will be freed / dropped when 2787 * vfree() is called on the return value. 2788 * 2789 * Return: the address of the area or %NULL on failure 2790 */ 2791 void *vmap(struct page **pages, unsigned int count, 2792 unsigned long flags, pgprot_t prot) 2793 { 2794 struct vm_struct *area; 2795 unsigned long addr; 2796 unsigned long size; /* In bytes */ 2797 2798 might_sleep(); 2799 2800 /* 2801 * Your top guard is someone else's bottom guard. Not having a top 2802 * guard compromises someone else's mappings too. 2803 */ 2804 if (WARN_ON_ONCE(flags & VM_NO_GUARD)) 2805 flags &= ~VM_NO_GUARD; 2806 2807 if (count > totalram_pages()) 2808 return NULL; 2809 2810 size = (unsigned long)count << PAGE_SHIFT; 2811 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 2812 if (!area) 2813 return NULL; 2814 2815 addr = (unsigned long)area->addr; 2816 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), 2817 pages, PAGE_SHIFT) < 0) { 2818 vunmap(area->addr); 2819 return NULL; 2820 } 2821 2822 if (flags & VM_MAP_PUT_PAGES) { 2823 area->pages = pages; 2824 area->nr_pages = count; 2825 } 2826 return area->addr; 2827 } 2828 EXPORT_SYMBOL(vmap); 2829 2830 #ifdef CONFIG_VMAP_PFN 2831 struct vmap_pfn_data { 2832 unsigned long *pfns; 2833 pgprot_t prot; 2834 unsigned int idx; 2835 }; 2836 2837 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) 2838 { 2839 struct vmap_pfn_data *data = private; 2840 2841 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx]))) 2842 return -EINVAL; 2843 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot)); 2844 return 0; 2845 } 2846 2847 /** 2848 * vmap_pfn - map an array of PFNs into virtually contiguous space 2849 * @pfns: array of PFNs 2850 * @count: number of pages to map 2851 * @prot: page protection for the mapping 2852 * 2853 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns 2854 * the start address of the mapping. 2855 */ 2856 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) 2857 { 2858 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; 2859 struct vm_struct *area; 2860 2861 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, 2862 __builtin_return_address(0)); 2863 if (!area) 2864 return NULL; 2865 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2866 count * PAGE_SIZE, vmap_pfn_apply, &data)) { 2867 free_vm_area(area); 2868 return NULL; 2869 } 2870 return area->addr; 2871 } 2872 EXPORT_SYMBOL_GPL(vmap_pfn); 2873 #endif /* CONFIG_VMAP_PFN */ 2874 2875 static inline unsigned int 2876 vm_area_alloc_pages(gfp_t gfp, int nid, 2877 unsigned int order, unsigned int nr_pages, struct page **pages) 2878 { 2879 unsigned int nr_allocated = 0; 2880 struct page *page; 2881 int i; 2882 2883 /* 2884 * For order-0 pages we make use of bulk allocator, if 2885 * the page array is partly or not at all populated due 2886 * to fails, fallback to a single page allocator that is 2887 * more permissive. 2888 */ 2889 if (!order) { 2890 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL; 2891 2892 while (nr_allocated < nr_pages) { 2893 unsigned int nr, nr_pages_request; 2894 2895 /* 2896 * A maximum allowed request is hard-coded and is 100 2897 * pages per call. That is done in order to prevent a 2898 * long preemption off scenario in the bulk-allocator 2899 * so the range is [1:100]. 2900 */ 2901 nr_pages_request = min(100U, nr_pages - nr_allocated); 2902 2903 /* memory allocation should consider mempolicy, we can't 2904 * wrongly use nearest node when nid == NUMA_NO_NODE, 2905 * otherwise memory may be allocated in only one node, 2906 * but mempolcy want to alloc memory by interleaving. 2907 */ 2908 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) 2909 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp, 2910 nr_pages_request, 2911 pages + nr_allocated); 2912 2913 else 2914 nr = alloc_pages_bulk_array_node(bulk_gfp, nid, 2915 nr_pages_request, 2916 pages + nr_allocated); 2917 2918 nr_allocated += nr; 2919 cond_resched(); 2920 2921 /* 2922 * If zero or pages were obtained partly, 2923 * fallback to a single page allocator. 2924 */ 2925 if (nr != nr_pages_request) 2926 break; 2927 } 2928 } else 2929 /* 2930 * Compound pages required for remap_vmalloc_page if 2931 * high-order pages. 2932 */ 2933 gfp |= __GFP_COMP; 2934 2935 /* High-order pages or fallback path if "bulk" fails. */ 2936 2937 while (nr_allocated < nr_pages) { 2938 if (fatal_signal_pending(current)) 2939 break; 2940 2941 if (nid == NUMA_NO_NODE) 2942 page = alloc_pages(gfp, order); 2943 else 2944 page = alloc_pages_node(nid, gfp, order); 2945 if (unlikely(!page)) 2946 break; 2947 2948 /* 2949 * Careful, we allocate and map page-order pages, but 2950 * tracking is done per PAGE_SIZE page so as to keep the 2951 * vm_struct APIs independent of the physical/mapped size. 2952 */ 2953 for (i = 0; i < (1U << order); i++) 2954 pages[nr_allocated + i] = page + i; 2955 2956 cond_resched(); 2957 nr_allocated += 1U << order; 2958 } 2959 2960 return nr_allocated; 2961 } 2962 2963 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 2964 pgprot_t prot, unsigned int page_shift, 2965 int node) 2966 { 2967 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 2968 bool nofail = gfp_mask & __GFP_NOFAIL; 2969 unsigned long addr = (unsigned long)area->addr; 2970 unsigned long size = get_vm_area_size(area); 2971 unsigned long array_size; 2972 unsigned int nr_small_pages = size >> PAGE_SHIFT; 2973 unsigned int page_order; 2974 unsigned int flags; 2975 int ret; 2976 2977 array_size = (unsigned long)nr_small_pages * sizeof(struct page *); 2978 gfp_mask |= __GFP_NOWARN; 2979 if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) 2980 gfp_mask |= __GFP_HIGHMEM; 2981 2982 /* Please note that the recursion is strictly bounded. */ 2983 if (array_size > PAGE_SIZE) { 2984 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node, 2985 area->caller); 2986 } else { 2987 area->pages = kmalloc_node(array_size, nested_gfp, node); 2988 } 2989 2990 if (!area->pages) { 2991 warn_alloc(gfp_mask, NULL, 2992 "vmalloc error: size %lu, failed to allocated page array size %lu", 2993 nr_small_pages * PAGE_SIZE, array_size); 2994 free_vm_area(area); 2995 return NULL; 2996 } 2997 2998 set_vm_area_page_order(area, page_shift - PAGE_SHIFT); 2999 page_order = vm_area_page_order(area); 3000 3001 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN, 3002 node, page_order, nr_small_pages, area->pages); 3003 3004 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 3005 if (gfp_mask & __GFP_ACCOUNT) { 3006 int i, step = 1U << page_order; 3007 3008 for (i = 0; i < area->nr_pages; i += step) 3009 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 3010 step); 3011 } 3012 3013 /* 3014 * If not enough pages were obtained to accomplish an 3015 * allocation request, free them via __vfree() if any. 3016 */ 3017 if (area->nr_pages != nr_small_pages) { 3018 warn_alloc(gfp_mask, NULL, 3019 "vmalloc error: size %lu, page order %u, failed to allocate pages", 3020 area->nr_pages * PAGE_SIZE, page_order); 3021 goto fail; 3022 } 3023 3024 /* 3025 * page tables allocations ignore external gfp mask, enforce it 3026 * by the scope API 3027 */ 3028 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3029 flags = memalloc_nofs_save(); 3030 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3031 flags = memalloc_noio_save(); 3032 3033 do { 3034 ret = vmap_pages_range(addr, addr + size, prot, area->pages, 3035 page_shift); 3036 if (nofail && (ret < 0)) 3037 schedule_timeout_uninterruptible(1); 3038 } while (nofail && (ret < 0)); 3039 3040 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3041 memalloc_nofs_restore(flags); 3042 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3043 memalloc_noio_restore(flags); 3044 3045 if (ret < 0) { 3046 warn_alloc(gfp_mask, NULL, 3047 "vmalloc error: size %lu, failed to map pages", 3048 area->nr_pages * PAGE_SIZE); 3049 goto fail; 3050 } 3051 3052 return area->addr; 3053 3054 fail: 3055 __vfree(area->addr); 3056 return NULL; 3057 } 3058 3059 /** 3060 * __vmalloc_node_range - allocate virtually contiguous memory 3061 * @size: allocation size 3062 * @align: desired alignment 3063 * @start: vm area range start 3064 * @end: vm area range end 3065 * @gfp_mask: flags for the page level allocator 3066 * @prot: protection mask for the allocated pages 3067 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 3068 * @node: node to use for allocation or NUMA_NO_NODE 3069 * @caller: caller's return address 3070 * 3071 * Allocate enough pages to cover @size from the page level 3072 * allocator with @gfp_mask flags. Please note that the full set of gfp 3073 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all 3074 * supported. 3075 * Zone modifiers are not supported. From the reclaim modifiers 3076 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) 3077 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and 3078 * __GFP_RETRY_MAYFAIL are not supported). 3079 * 3080 * __GFP_NOWARN can be used to suppress failures messages. 3081 * 3082 * Map them into contiguous kernel virtual space, using a pagetable 3083 * protection of @prot. 3084 * 3085 * Return: the address of the area or %NULL on failure 3086 */ 3087 void *__vmalloc_node_range(unsigned long size, unsigned long align, 3088 unsigned long start, unsigned long end, gfp_t gfp_mask, 3089 pgprot_t prot, unsigned long vm_flags, int node, 3090 const void *caller) 3091 { 3092 struct vm_struct *area; 3093 void *ret; 3094 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; 3095 unsigned long real_size = size; 3096 unsigned long real_align = align; 3097 unsigned int shift = PAGE_SHIFT; 3098 3099 if (WARN_ON_ONCE(!size)) 3100 return NULL; 3101 3102 if ((size >> PAGE_SHIFT) > totalram_pages()) { 3103 warn_alloc(gfp_mask, NULL, 3104 "vmalloc error: size %lu, exceeds total pages", 3105 real_size); 3106 return NULL; 3107 } 3108 3109 if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP)) { 3110 unsigned long size_per_node; 3111 3112 /* 3113 * Try huge pages. Only try for PAGE_KERNEL allocations, 3114 * others like modules don't yet expect huge pages in 3115 * their allocations due to apply_to_page_range not 3116 * supporting them. 3117 */ 3118 3119 size_per_node = size; 3120 if (node == NUMA_NO_NODE) 3121 size_per_node /= num_online_nodes(); 3122 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE) 3123 shift = PMD_SHIFT; 3124 else 3125 shift = arch_vmap_pte_supported_shift(size_per_node); 3126 3127 align = max(real_align, 1UL << shift); 3128 size = ALIGN(real_size, 1UL << shift); 3129 } 3130 3131 again: 3132 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC | 3133 VM_UNINITIALIZED | vm_flags, start, end, node, 3134 gfp_mask, caller); 3135 if (!area) { 3136 bool nofail = gfp_mask & __GFP_NOFAIL; 3137 warn_alloc(gfp_mask, NULL, 3138 "vmalloc error: size %lu, vm_struct allocation failed%s", 3139 real_size, (nofail) ? ". Retrying." : ""); 3140 if (nofail) { 3141 schedule_timeout_uninterruptible(1); 3142 goto again; 3143 } 3144 goto fail; 3145 } 3146 3147 /* 3148 * Prepare arguments for __vmalloc_area_node() and 3149 * kasan_unpoison_vmalloc(). 3150 */ 3151 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { 3152 if (kasan_hw_tags_enabled()) { 3153 /* 3154 * Modify protection bits to allow tagging. 3155 * This must be done before mapping. 3156 */ 3157 prot = arch_vmap_pgprot_tagged(prot); 3158 3159 /* 3160 * Skip page_alloc poisoning and zeroing for physical 3161 * pages backing VM_ALLOC mapping. Memory is instead 3162 * poisoned and zeroed by kasan_unpoison_vmalloc(). 3163 */ 3164 gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO; 3165 } 3166 3167 /* Take note that the mapping is PAGE_KERNEL. */ 3168 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; 3169 } 3170 3171 /* Allocate physical pages and map them into vmalloc space. */ 3172 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); 3173 if (!ret) 3174 goto fail; 3175 3176 /* 3177 * Mark the pages as accessible, now that they are mapped. 3178 * The init condition should match the one in post_alloc_hook() 3179 * (except for the should_skip_init() check) to make sure that memory 3180 * is initialized under the same conditions regardless of the enabled 3181 * KASAN mode. 3182 * Tag-based KASAN modes only assign tags to normal non-executable 3183 * allocations, see __kasan_unpoison_vmalloc(). 3184 */ 3185 kasan_flags |= KASAN_VMALLOC_VM_ALLOC; 3186 if (!want_init_on_free() && want_init_on_alloc(gfp_mask)) 3187 kasan_flags |= KASAN_VMALLOC_INIT; 3188 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ 3189 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags); 3190 3191 /* 3192 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 3193 * flag. It means that vm_struct is not fully initialized. 3194 * Now, it is fully initialized, so remove this flag here. 3195 */ 3196 clear_vm_uninitialized_flag(area); 3197 3198 size = PAGE_ALIGN(size); 3199 if (!(vm_flags & VM_DEFER_KMEMLEAK)) 3200 kmemleak_vmalloc(area, size, gfp_mask); 3201 3202 return area->addr; 3203 3204 fail: 3205 if (shift > PAGE_SHIFT) { 3206 shift = PAGE_SHIFT; 3207 align = real_align; 3208 size = real_size; 3209 goto again; 3210 } 3211 3212 return NULL; 3213 } 3214 3215 /** 3216 * __vmalloc_node - allocate virtually contiguous memory 3217 * @size: allocation size 3218 * @align: desired alignment 3219 * @gfp_mask: flags for the page level allocator 3220 * @node: node to use for allocation or NUMA_NO_NODE 3221 * @caller: caller's return address 3222 * 3223 * Allocate enough pages to cover @size from the page level allocator with 3224 * @gfp_mask flags. Map them into contiguous kernel virtual space. 3225 * 3226 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 3227 * and __GFP_NOFAIL are not supported 3228 * 3229 * Any use of gfp flags outside of GFP_KERNEL should be consulted 3230 * with mm people. 3231 * 3232 * Return: pointer to the allocated memory or %NULL on error 3233 */ 3234 void *__vmalloc_node(unsigned long size, unsigned long align, 3235 gfp_t gfp_mask, int node, const void *caller) 3236 { 3237 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 3238 gfp_mask, PAGE_KERNEL, 0, node, caller); 3239 } 3240 /* 3241 * This is only for performance analysis of vmalloc and stress purpose. 3242 * It is required by vmalloc test module, therefore do not use it other 3243 * than that. 3244 */ 3245 #ifdef CONFIG_TEST_VMALLOC_MODULE 3246 EXPORT_SYMBOL_GPL(__vmalloc_node); 3247 #endif 3248 3249 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 3250 { 3251 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE, 3252 __builtin_return_address(0)); 3253 } 3254 EXPORT_SYMBOL(__vmalloc); 3255 3256 /** 3257 * vmalloc - allocate virtually contiguous memory 3258 * @size: allocation size 3259 * 3260 * Allocate enough pages to cover @size from the page level 3261 * allocator and map them into contiguous kernel virtual space. 3262 * 3263 * For tight control over page level allocator and protection flags 3264 * use __vmalloc() instead. 3265 * 3266 * Return: pointer to the allocated memory or %NULL on error 3267 */ 3268 void *vmalloc(unsigned long size) 3269 { 3270 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE, 3271 __builtin_return_address(0)); 3272 } 3273 EXPORT_SYMBOL(vmalloc); 3274 3275 /** 3276 * vmalloc_no_huge - allocate virtually contiguous memory using small pages 3277 * @size: allocation size 3278 * 3279 * Allocate enough non-huge pages to cover @size from the page level 3280 * allocator and map them into contiguous kernel virtual space. 3281 * 3282 * Return: pointer to the allocated memory or %NULL on error 3283 */ 3284 void *vmalloc_no_huge(unsigned long size) 3285 { 3286 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 3287 GFP_KERNEL, PAGE_KERNEL, VM_NO_HUGE_VMAP, 3288 NUMA_NO_NODE, __builtin_return_address(0)); 3289 } 3290 EXPORT_SYMBOL(vmalloc_no_huge); 3291 3292 /** 3293 * vzalloc - allocate virtually contiguous memory with zero fill 3294 * @size: allocation size 3295 * 3296 * Allocate enough pages to cover @size from the page level 3297 * allocator and map them into contiguous kernel virtual space. 3298 * The memory allocated is set to zero. 3299 * 3300 * For tight control over page level allocator and protection flags 3301 * use __vmalloc() instead. 3302 * 3303 * Return: pointer to the allocated memory or %NULL on error 3304 */ 3305 void *vzalloc(unsigned long size) 3306 { 3307 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 3308 __builtin_return_address(0)); 3309 } 3310 EXPORT_SYMBOL(vzalloc); 3311 3312 /** 3313 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 3314 * @size: allocation size 3315 * 3316 * The resulting memory area is zeroed so it can be mapped to userspace 3317 * without leaking data. 3318 * 3319 * Return: pointer to the allocated memory or %NULL on error 3320 */ 3321 void *vmalloc_user(unsigned long size) 3322 { 3323 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3324 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 3325 VM_USERMAP, NUMA_NO_NODE, 3326 __builtin_return_address(0)); 3327 } 3328 EXPORT_SYMBOL(vmalloc_user); 3329 3330 /** 3331 * vmalloc_node - allocate memory on a specific node 3332 * @size: allocation size 3333 * @node: numa node 3334 * 3335 * Allocate enough pages to cover @size from the page level 3336 * allocator and map them into contiguous kernel virtual space. 3337 * 3338 * For tight control over page level allocator and protection flags 3339 * use __vmalloc() instead. 3340 * 3341 * Return: pointer to the allocated memory or %NULL on error 3342 */ 3343 void *vmalloc_node(unsigned long size, int node) 3344 { 3345 return __vmalloc_node(size, 1, GFP_KERNEL, node, 3346 __builtin_return_address(0)); 3347 } 3348 EXPORT_SYMBOL(vmalloc_node); 3349 3350 /** 3351 * vzalloc_node - allocate memory on a specific node with zero fill 3352 * @size: allocation size 3353 * @node: numa node 3354 * 3355 * Allocate enough pages to cover @size from the page level 3356 * allocator and map them into contiguous kernel virtual space. 3357 * The memory allocated is set to zero. 3358 * 3359 * Return: pointer to the allocated memory or %NULL on error 3360 */ 3361 void *vzalloc_node(unsigned long size, int node) 3362 { 3363 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node, 3364 __builtin_return_address(0)); 3365 } 3366 EXPORT_SYMBOL(vzalloc_node); 3367 3368 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 3369 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3370 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 3371 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 3372 #else 3373 /* 3374 * 64b systems should always have either DMA or DMA32 zones. For others 3375 * GFP_DMA32 should do the right thing and use the normal zone. 3376 */ 3377 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3378 #endif 3379 3380 /** 3381 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 3382 * @size: allocation size 3383 * 3384 * Allocate enough 32bit PA addressable pages to cover @size from the 3385 * page level allocator and map them into contiguous kernel virtual space. 3386 * 3387 * Return: pointer to the allocated memory or %NULL on error 3388 */ 3389 void *vmalloc_32(unsigned long size) 3390 { 3391 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, 3392 __builtin_return_address(0)); 3393 } 3394 EXPORT_SYMBOL(vmalloc_32); 3395 3396 /** 3397 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 3398 * @size: allocation size 3399 * 3400 * The resulting memory area is 32bit addressable and zeroed so it can be 3401 * mapped to userspace without leaking data. 3402 * 3403 * Return: pointer to the allocated memory or %NULL on error 3404 */ 3405 void *vmalloc_32_user(unsigned long size) 3406 { 3407 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3408 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 3409 VM_USERMAP, NUMA_NO_NODE, 3410 __builtin_return_address(0)); 3411 } 3412 EXPORT_SYMBOL(vmalloc_32_user); 3413 3414 /* 3415 * small helper routine , copy contents to buf from addr. 3416 * If the page is not present, fill zero. 3417 */ 3418 3419 static int aligned_vread(char *buf, char *addr, unsigned long count) 3420 { 3421 struct page *p; 3422 int copied = 0; 3423 3424 while (count) { 3425 unsigned long offset, length; 3426 3427 offset = offset_in_page(addr); 3428 length = PAGE_SIZE - offset; 3429 if (length > count) 3430 length = count; 3431 p = vmalloc_to_page(addr); 3432 /* 3433 * To do safe access to this _mapped_ area, we need 3434 * lock. But adding lock here means that we need to add 3435 * overhead of vmalloc()/vfree() calls for this _debug_ 3436 * interface, rarely used. Instead of that, we'll use 3437 * kmap() and get small overhead in this access function. 3438 */ 3439 if (p) { 3440 /* We can expect USER0 is not used -- see vread() */ 3441 void *map = kmap_atomic(p); 3442 memcpy(buf, map + offset, length); 3443 kunmap_atomic(map); 3444 } else 3445 memset(buf, 0, length); 3446 3447 addr += length; 3448 buf += length; 3449 copied += length; 3450 count -= length; 3451 } 3452 return copied; 3453 } 3454 3455 /** 3456 * vread() - read vmalloc area in a safe way. 3457 * @buf: buffer for reading data 3458 * @addr: vm address. 3459 * @count: number of bytes to be read. 3460 * 3461 * This function checks that addr is a valid vmalloc'ed area, and 3462 * copy data from that area to a given buffer. If the given memory range 3463 * of [addr...addr+count) includes some valid address, data is copied to 3464 * proper area of @buf. If there are memory holes, they'll be zero-filled. 3465 * IOREMAP area is treated as memory hole and no copy is done. 3466 * 3467 * If [addr...addr+count) doesn't includes any intersects with alive 3468 * vm_struct area, returns 0. @buf should be kernel's buffer. 3469 * 3470 * Note: In usual ops, vread() is never necessary because the caller 3471 * should know vmalloc() area is valid and can use memcpy(). 3472 * This is for routines which have to access vmalloc area without 3473 * any information, as /proc/kcore. 3474 * 3475 * Return: number of bytes for which addr and buf should be increased 3476 * (same number as @count) or %0 if [addr...addr+count) doesn't 3477 * include any intersection with valid vmalloc area 3478 */ 3479 long vread(char *buf, char *addr, unsigned long count) 3480 { 3481 struct vmap_area *va; 3482 struct vm_struct *vm; 3483 char *vaddr, *buf_start = buf; 3484 unsigned long buflen = count; 3485 unsigned long n; 3486 3487 addr = kasan_reset_tag(addr); 3488 3489 /* Don't allow overflow */ 3490 if ((unsigned long) addr + count < count) 3491 count = -(unsigned long) addr; 3492 3493 spin_lock(&vmap_area_lock); 3494 va = find_vmap_area_exceed_addr((unsigned long)addr); 3495 if (!va) 3496 goto finished; 3497 3498 /* no intersects with alive vmap_area */ 3499 if ((unsigned long)addr + count <= va->va_start) 3500 goto finished; 3501 3502 list_for_each_entry_from(va, &vmap_area_list, list) { 3503 if (!count) 3504 break; 3505 3506 if (!va->vm) 3507 continue; 3508 3509 vm = va->vm; 3510 vaddr = (char *) vm->addr; 3511 if (addr >= vaddr + get_vm_area_size(vm)) 3512 continue; 3513 while (addr < vaddr) { 3514 if (count == 0) 3515 goto finished; 3516 *buf = '\0'; 3517 buf++; 3518 addr++; 3519 count--; 3520 } 3521 n = vaddr + get_vm_area_size(vm) - addr; 3522 if (n > count) 3523 n = count; 3524 if (!(vm->flags & VM_IOREMAP)) 3525 aligned_vread(buf, addr, n); 3526 else /* IOREMAP area is treated as memory hole */ 3527 memset(buf, 0, n); 3528 buf += n; 3529 addr += n; 3530 count -= n; 3531 } 3532 finished: 3533 spin_unlock(&vmap_area_lock); 3534 3535 if (buf == buf_start) 3536 return 0; 3537 /* zero-fill memory holes */ 3538 if (buf != buf_start + buflen) 3539 memset(buf, 0, buflen - (buf - buf_start)); 3540 3541 return buflen; 3542 } 3543 3544 /** 3545 * remap_vmalloc_range_partial - map vmalloc pages to userspace 3546 * @vma: vma to cover 3547 * @uaddr: target user address to start at 3548 * @kaddr: virtual address of vmalloc kernel memory 3549 * @pgoff: offset from @kaddr to start at 3550 * @size: size of map area 3551 * 3552 * Returns: 0 for success, -Exxx on failure 3553 * 3554 * This function checks that @kaddr is a valid vmalloc'ed area, 3555 * and that it is big enough to cover the range starting at 3556 * @uaddr in @vma. Will return failure if that criteria isn't 3557 * met. 3558 * 3559 * Similar to remap_pfn_range() (see mm/memory.c) 3560 */ 3561 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 3562 void *kaddr, unsigned long pgoff, 3563 unsigned long size) 3564 { 3565 struct vm_struct *area; 3566 unsigned long off; 3567 unsigned long end_index; 3568 3569 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) 3570 return -EINVAL; 3571 3572 size = PAGE_ALIGN(size); 3573 3574 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 3575 return -EINVAL; 3576 3577 area = find_vm_area(kaddr); 3578 if (!area) 3579 return -EINVAL; 3580 3581 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 3582 return -EINVAL; 3583 3584 if (check_add_overflow(size, off, &end_index) || 3585 end_index > get_vm_area_size(area)) 3586 return -EINVAL; 3587 kaddr += off; 3588 3589 do { 3590 struct page *page = vmalloc_to_page(kaddr); 3591 int ret; 3592 3593 ret = vm_insert_page(vma, uaddr, page); 3594 if (ret) 3595 return ret; 3596 3597 uaddr += PAGE_SIZE; 3598 kaddr += PAGE_SIZE; 3599 size -= PAGE_SIZE; 3600 } while (size > 0); 3601 3602 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 3603 3604 return 0; 3605 } 3606 3607 /** 3608 * remap_vmalloc_range - map vmalloc pages to userspace 3609 * @vma: vma to cover (map full range of vma) 3610 * @addr: vmalloc memory 3611 * @pgoff: number of pages into addr before first page to map 3612 * 3613 * Returns: 0 for success, -Exxx on failure 3614 * 3615 * This function checks that addr is a valid vmalloc'ed area, and 3616 * that it is big enough to cover the vma. Will return failure if 3617 * that criteria isn't met. 3618 * 3619 * Similar to remap_pfn_range() (see mm/memory.c) 3620 */ 3621 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 3622 unsigned long pgoff) 3623 { 3624 return remap_vmalloc_range_partial(vma, vma->vm_start, 3625 addr, pgoff, 3626 vma->vm_end - vma->vm_start); 3627 } 3628 EXPORT_SYMBOL(remap_vmalloc_range); 3629 3630 void free_vm_area(struct vm_struct *area) 3631 { 3632 struct vm_struct *ret; 3633 ret = remove_vm_area(area->addr); 3634 BUG_ON(ret != area); 3635 kfree(area); 3636 } 3637 EXPORT_SYMBOL_GPL(free_vm_area); 3638 3639 #ifdef CONFIG_SMP 3640 static struct vmap_area *node_to_va(struct rb_node *n) 3641 { 3642 return rb_entry_safe(n, struct vmap_area, rb_node); 3643 } 3644 3645 /** 3646 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 3647 * @addr: target address 3648 * 3649 * Returns: vmap_area if it is found. If there is no such area 3650 * the first highest(reverse order) vmap_area is returned 3651 * i.e. va->va_start < addr && va->va_end < addr or NULL 3652 * if there are no any areas before @addr. 3653 */ 3654 static struct vmap_area * 3655 pvm_find_va_enclose_addr(unsigned long addr) 3656 { 3657 struct vmap_area *va, *tmp; 3658 struct rb_node *n; 3659 3660 n = free_vmap_area_root.rb_node; 3661 va = NULL; 3662 3663 while (n) { 3664 tmp = rb_entry(n, struct vmap_area, rb_node); 3665 if (tmp->va_start <= addr) { 3666 va = tmp; 3667 if (tmp->va_end >= addr) 3668 break; 3669 3670 n = n->rb_right; 3671 } else { 3672 n = n->rb_left; 3673 } 3674 } 3675 3676 return va; 3677 } 3678 3679 /** 3680 * pvm_determine_end_from_reverse - find the highest aligned address 3681 * of free block below VMALLOC_END 3682 * @va: 3683 * in - the VA we start the search(reverse order); 3684 * out - the VA with the highest aligned end address. 3685 * @align: alignment for required highest address 3686 * 3687 * Returns: determined end address within vmap_area 3688 */ 3689 static unsigned long 3690 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 3691 { 3692 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3693 unsigned long addr; 3694 3695 if (likely(*va)) { 3696 list_for_each_entry_from_reverse((*va), 3697 &free_vmap_area_list, list) { 3698 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 3699 if ((*va)->va_start < addr) 3700 return addr; 3701 } 3702 } 3703 3704 return 0; 3705 } 3706 3707 /** 3708 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 3709 * @offsets: array containing offset of each area 3710 * @sizes: array containing size of each area 3711 * @nr_vms: the number of areas to allocate 3712 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 3713 * 3714 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 3715 * vm_structs on success, %NULL on failure 3716 * 3717 * Percpu allocator wants to use congruent vm areas so that it can 3718 * maintain the offsets among percpu areas. This function allocates 3719 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 3720 * be scattered pretty far, distance between two areas easily going up 3721 * to gigabytes. To avoid interacting with regular vmallocs, these 3722 * areas are allocated from top. 3723 * 3724 * Despite its complicated look, this allocator is rather simple. It 3725 * does everything top-down and scans free blocks from the end looking 3726 * for matching base. While scanning, if any of the areas do not fit the 3727 * base address is pulled down to fit the area. Scanning is repeated till 3728 * all the areas fit and then all necessary data structures are inserted 3729 * and the result is returned. 3730 */ 3731 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 3732 const size_t *sizes, int nr_vms, 3733 size_t align) 3734 { 3735 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 3736 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3737 struct vmap_area **vas, *va; 3738 struct vm_struct **vms; 3739 int area, area2, last_area, term_area; 3740 unsigned long base, start, size, end, last_end, orig_start, orig_end; 3741 bool purged = false; 3742 enum fit_type type; 3743 3744 /* verify parameters and allocate data structures */ 3745 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 3746 for (last_area = 0, area = 0; area < nr_vms; area++) { 3747 start = offsets[area]; 3748 end = start + sizes[area]; 3749 3750 /* is everything aligned properly? */ 3751 BUG_ON(!IS_ALIGNED(offsets[area], align)); 3752 BUG_ON(!IS_ALIGNED(sizes[area], align)); 3753 3754 /* detect the area with the highest address */ 3755 if (start > offsets[last_area]) 3756 last_area = area; 3757 3758 for (area2 = area + 1; area2 < nr_vms; area2++) { 3759 unsigned long start2 = offsets[area2]; 3760 unsigned long end2 = start2 + sizes[area2]; 3761 3762 BUG_ON(start2 < end && start < end2); 3763 } 3764 } 3765 last_end = offsets[last_area] + sizes[last_area]; 3766 3767 if (vmalloc_end - vmalloc_start < last_end) { 3768 WARN_ON(true); 3769 return NULL; 3770 } 3771 3772 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 3773 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 3774 if (!vas || !vms) 3775 goto err_free2; 3776 3777 for (area = 0; area < nr_vms; area++) { 3778 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 3779 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 3780 if (!vas[area] || !vms[area]) 3781 goto err_free; 3782 } 3783 retry: 3784 spin_lock(&free_vmap_area_lock); 3785 3786 /* start scanning - we scan from the top, begin with the last area */ 3787 area = term_area = last_area; 3788 start = offsets[area]; 3789 end = start + sizes[area]; 3790 3791 va = pvm_find_va_enclose_addr(vmalloc_end); 3792 base = pvm_determine_end_from_reverse(&va, align) - end; 3793 3794 while (true) { 3795 /* 3796 * base might have underflowed, add last_end before 3797 * comparing. 3798 */ 3799 if (base + last_end < vmalloc_start + last_end) 3800 goto overflow; 3801 3802 /* 3803 * Fitting base has not been found. 3804 */ 3805 if (va == NULL) 3806 goto overflow; 3807 3808 /* 3809 * If required width exceeds current VA block, move 3810 * base downwards and then recheck. 3811 */ 3812 if (base + end > va->va_end) { 3813 base = pvm_determine_end_from_reverse(&va, align) - end; 3814 term_area = area; 3815 continue; 3816 } 3817 3818 /* 3819 * If this VA does not fit, move base downwards and recheck. 3820 */ 3821 if (base + start < va->va_start) { 3822 va = node_to_va(rb_prev(&va->rb_node)); 3823 base = pvm_determine_end_from_reverse(&va, align) - end; 3824 term_area = area; 3825 continue; 3826 } 3827 3828 /* 3829 * This area fits, move on to the previous one. If 3830 * the previous one is the terminal one, we're done. 3831 */ 3832 area = (area + nr_vms - 1) % nr_vms; 3833 if (area == term_area) 3834 break; 3835 3836 start = offsets[area]; 3837 end = start + sizes[area]; 3838 va = pvm_find_va_enclose_addr(base + end); 3839 } 3840 3841 /* we've found a fitting base, insert all va's */ 3842 for (area = 0; area < nr_vms; area++) { 3843 int ret; 3844 3845 start = base + offsets[area]; 3846 size = sizes[area]; 3847 3848 va = pvm_find_va_enclose_addr(start); 3849 if (WARN_ON_ONCE(va == NULL)) 3850 /* It is a BUG(), but trigger recovery instead. */ 3851 goto recovery; 3852 3853 type = classify_va_fit_type(va, start, size); 3854 if (WARN_ON_ONCE(type == NOTHING_FIT)) 3855 /* It is a BUG(), but trigger recovery instead. */ 3856 goto recovery; 3857 3858 ret = adjust_va_to_fit_type(va, start, size, type); 3859 if (unlikely(ret)) 3860 goto recovery; 3861 3862 /* Allocated area. */ 3863 va = vas[area]; 3864 va->va_start = start; 3865 va->va_end = start + size; 3866 } 3867 3868 spin_unlock(&free_vmap_area_lock); 3869 3870 /* populate the kasan shadow space */ 3871 for (area = 0; area < nr_vms; area++) { 3872 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) 3873 goto err_free_shadow; 3874 } 3875 3876 /* insert all vm's */ 3877 spin_lock(&vmap_area_lock); 3878 for (area = 0; area < nr_vms; area++) { 3879 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list); 3880 3881 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, 3882 pcpu_get_vm_areas); 3883 } 3884 spin_unlock(&vmap_area_lock); 3885 3886 /* 3887 * Mark allocated areas as accessible. Do it now as a best-effort 3888 * approach, as they can be mapped outside of vmalloc code. 3889 * With hardware tag-based KASAN, marking is skipped for 3890 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 3891 */ 3892 for (area = 0; area < nr_vms; area++) 3893 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, 3894 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); 3895 3896 kfree(vas); 3897 return vms; 3898 3899 recovery: 3900 /* 3901 * Remove previously allocated areas. There is no 3902 * need in removing these areas from the busy tree, 3903 * because they are inserted only on the final step 3904 * and when pcpu_get_vm_areas() is success. 3905 */ 3906 while (area--) { 3907 orig_start = vas[area]->va_start; 3908 orig_end = vas[area]->va_end; 3909 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 3910 &free_vmap_area_list); 3911 if (va) 3912 kasan_release_vmalloc(orig_start, orig_end, 3913 va->va_start, va->va_end); 3914 vas[area] = NULL; 3915 } 3916 3917 overflow: 3918 spin_unlock(&free_vmap_area_lock); 3919 if (!purged) { 3920 purge_vmap_area_lazy(); 3921 purged = true; 3922 3923 /* Before "retry", check if we recover. */ 3924 for (area = 0; area < nr_vms; area++) { 3925 if (vas[area]) 3926 continue; 3927 3928 vas[area] = kmem_cache_zalloc( 3929 vmap_area_cachep, GFP_KERNEL); 3930 if (!vas[area]) 3931 goto err_free; 3932 } 3933 3934 goto retry; 3935 } 3936 3937 err_free: 3938 for (area = 0; area < nr_vms; area++) { 3939 if (vas[area]) 3940 kmem_cache_free(vmap_area_cachep, vas[area]); 3941 3942 kfree(vms[area]); 3943 } 3944 err_free2: 3945 kfree(vas); 3946 kfree(vms); 3947 return NULL; 3948 3949 err_free_shadow: 3950 spin_lock(&free_vmap_area_lock); 3951 /* 3952 * We release all the vmalloc shadows, even the ones for regions that 3953 * hadn't been successfully added. This relies on kasan_release_vmalloc 3954 * being able to tolerate this case. 3955 */ 3956 for (area = 0; area < nr_vms; area++) { 3957 orig_start = vas[area]->va_start; 3958 orig_end = vas[area]->va_end; 3959 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 3960 &free_vmap_area_list); 3961 if (va) 3962 kasan_release_vmalloc(orig_start, orig_end, 3963 va->va_start, va->va_end); 3964 vas[area] = NULL; 3965 kfree(vms[area]); 3966 } 3967 spin_unlock(&free_vmap_area_lock); 3968 kfree(vas); 3969 kfree(vms); 3970 return NULL; 3971 } 3972 3973 /** 3974 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 3975 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 3976 * @nr_vms: the number of allocated areas 3977 * 3978 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 3979 */ 3980 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 3981 { 3982 int i; 3983 3984 for (i = 0; i < nr_vms; i++) 3985 free_vm_area(vms[i]); 3986 kfree(vms); 3987 } 3988 #endif /* CONFIG_SMP */ 3989 3990 #ifdef CONFIG_PRINTK 3991 bool vmalloc_dump_obj(void *object) 3992 { 3993 struct vm_struct *vm; 3994 void *objp = (void *)PAGE_ALIGN((unsigned long)object); 3995 3996 vm = find_vm_area(objp); 3997 if (!vm) 3998 return false; 3999 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", 4000 vm->nr_pages, (unsigned long)vm->addr, vm->caller); 4001 return true; 4002 } 4003 #endif 4004 4005 #ifdef CONFIG_PROC_FS 4006 static void *s_start(struct seq_file *m, loff_t *pos) 4007 __acquires(&vmap_purge_lock) 4008 __acquires(&vmap_area_lock) 4009 { 4010 mutex_lock(&vmap_purge_lock); 4011 spin_lock(&vmap_area_lock); 4012 4013 return seq_list_start(&vmap_area_list, *pos); 4014 } 4015 4016 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4017 { 4018 return seq_list_next(p, &vmap_area_list, pos); 4019 } 4020 4021 static void s_stop(struct seq_file *m, void *p) 4022 __releases(&vmap_area_lock) 4023 __releases(&vmap_purge_lock) 4024 { 4025 spin_unlock(&vmap_area_lock); 4026 mutex_unlock(&vmap_purge_lock); 4027 } 4028 4029 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 4030 { 4031 if (IS_ENABLED(CONFIG_NUMA)) { 4032 unsigned int nr, *counters = m->private; 4033 unsigned int step = 1U << vm_area_page_order(v); 4034 4035 if (!counters) 4036 return; 4037 4038 if (v->flags & VM_UNINITIALIZED) 4039 return; 4040 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 4041 smp_rmb(); 4042 4043 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 4044 4045 for (nr = 0; nr < v->nr_pages; nr += step) 4046 counters[page_to_nid(v->pages[nr])] += step; 4047 for_each_node_state(nr, N_HIGH_MEMORY) 4048 if (counters[nr]) 4049 seq_printf(m, " N%u=%u", nr, counters[nr]); 4050 } 4051 } 4052 4053 static void show_purge_info(struct seq_file *m) 4054 { 4055 struct vmap_area *va; 4056 4057 spin_lock(&purge_vmap_area_lock); 4058 list_for_each_entry(va, &purge_vmap_area_list, list) { 4059 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 4060 (void *)va->va_start, (void *)va->va_end, 4061 va->va_end - va->va_start); 4062 } 4063 spin_unlock(&purge_vmap_area_lock); 4064 } 4065 4066 static int s_show(struct seq_file *m, void *p) 4067 { 4068 struct vmap_area *va; 4069 struct vm_struct *v; 4070 4071 va = list_entry(p, struct vmap_area, list); 4072 4073 /* 4074 * s_show can encounter race with remove_vm_area, !vm on behalf 4075 * of vmap area is being tear down or vm_map_ram allocation. 4076 */ 4077 if (!va->vm) { 4078 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 4079 (void *)va->va_start, (void *)va->va_end, 4080 va->va_end - va->va_start); 4081 4082 goto final; 4083 } 4084 4085 v = va->vm; 4086 4087 seq_printf(m, "0x%pK-0x%pK %7ld", 4088 v->addr, v->addr + v->size, v->size); 4089 4090 if (v->caller) 4091 seq_printf(m, " %pS", v->caller); 4092 4093 if (v->nr_pages) 4094 seq_printf(m, " pages=%d", v->nr_pages); 4095 4096 if (v->phys_addr) 4097 seq_printf(m, " phys=%pa", &v->phys_addr); 4098 4099 if (v->flags & VM_IOREMAP) 4100 seq_puts(m, " ioremap"); 4101 4102 if (v->flags & VM_ALLOC) 4103 seq_puts(m, " vmalloc"); 4104 4105 if (v->flags & VM_MAP) 4106 seq_puts(m, " vmap"); 4107 4108 if (v->flags & VM_USERMAP) 4109 seq_puts(m, " user"); 4110 4111 if (v->flags & VM_DMA_COHERENT) 4112 seq_puts(m, " dma-coherent"); 4113 4114 if (is_vmalloc_addr(v->pages)) 4115 seq_puts(m, " vpages"); 4116 4117 show_numa_info(m, v); 4118 seq_putc(m, '\n'); 4119 4120 /* 4121 * As a final step, dump "unpurged" areas. 4122 */ 4123 final: 4124 if (list_is_last(&va->list, &vmap_area_list)) 4125 show_purge_info(m); 4126 4127 return 0; 4128 } 4129 4130 static const struct seq_operations vmalloc_op = { 4131 .start = s_start, 4132 .next = s_next, 4133 .stop = s_stop, 4134 .show = s_show, 4135 }; 4136 4137 static int __init proc_vmalloc_init(void) 4138 { 4139 if (IS_ENABLED(CONFIG_NUMA)) 4140 proc_create_seq_private("vmallocinfo", 0400, NULL, 4141 &vmalloc_op, 4142 nr_node_ids * sizeof(unsigned int), NULL); 4143 else 4144 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 4145 return 0; 4146 } 4147 module_init(proc_vmalloc_init); 4148 4149 #endif 4150