1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1993 Linus Torvalds 4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 7 * Numa awareness, Christoph Lameter, SGI, June 2005 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/set_memory.h> 22 #include <linux/debugobjects.h> 23 #include <linux/kallsyms.h> 24 #include <linux/list.h> 25 #include <linux/notifier.h> 26 #include <linux/rbtree.h> 27 #include <linux/xarray.h> 28 #include <linux/io.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/llist.h> 35 #include <linux/bitops.h> 36 #include <linux/rbtree_augmented.h> 37 #include <linux/overflow.h> 38 #include <linux/pgtable.h> 39 #include <linux/uaccess.h> 40 #include <linux/hugetlb.h> 41 #include <asm/tlbflush.h> 42 #include <asm/shmparam.h> 43 44 #include "internal.h" 45 #include "pgalloc-track.h" 46 47 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 48 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; 49 50 static int __init set_nohugeiomap(char *str) 51 { 52 ioremap_max_page_shift = PAGE_SHIFT; 53 return 0; 54 } 55 early_param("nohugeiomap", set_nohugeiomap); 56 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 57 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; 58 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 59 60 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 61 static bool __ro_after_init vmap_allow_huge = true; 62 63 static int __init set_nohugevmalloc(char *str) 64 { 65 vmap_allow_huge = false; 66 return 0; 67 } 68 early_param("nohugevmalloc", set_nohugevmalloc); 69 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 70 static const bool vmap_allow_huge = false; 71 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 72 73 bool is_vmalloc_addr(const void *x) 74 { 75 unsigned long addr = (unsigned long)x; 76 77 return addr >= VMALLOC_START && addr < VMALLOC_END; 78 } 79 EXPORT_SYMBOL(is_vmalloc_addr); 80 81 struct vfree_deferred { 82 struct llist_head list; 83 struct work_struct wq; 84 }; 85 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 86 87 static void __vunmap(const void *, int); 88 89 static void free_work(struct work_struct *w) 90 { 91 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 92 struct llist_node *t, *llnode; 93 94 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 95 __vunmap((void *)llnode, 1); 96 } 97 98 /*** Page table manipulation functions ***/ 99 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 100 phys_addr_t phys_addr, pgprot_t prot, 101 unsigned int max_page_shift, pgtbl_mod_mask *mask) 102 { 103 pte_t *pte; 104 u64 pfn; 105 unsigned long size = PAGE_SIZE; 106 107 pfn = phys_addr >> PAGE_SHIFT; 108 pte = pte_alloc_kernel_track(pmd, addr, mask); 109 if (!pte) 110 return -ENOMEM; 111 do { 112 BUG_ON(!pte_none(*pte)); 113 114 #ifdef CONFIG_HUGETLB_PAGE 115 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); 116 if (size != PAGE_SIZE) { 117 pte_t entry = pfn_pte(pfn, prot); 118 119 entry = pte_mkhuge(entry); 120 entry = arch_make_huge_pte(entry, ilog2(size), 0); 121 set_huge_pte_at(&init_mm, addr, pte, entry); 122 pfn += PFN_DOWN(size); 123 continue; 124 } 125 #endif 126 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); 127 pfn++; 128 } while (pte += PFN_DOWN(size), addr += size, addr != end); 129 *mask |= PGTBL_PTE_MODIFIED; 130 return 0; 131 } 132 133 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, 134 phys_addr_t phys_addr, pgprot_t prot, 135 unsigned int max_page_shift) 136 { 137 if (max_page_shift < PMD_SHIFT) 138 return 0; 139 140 if (!arch_vmap_pmd_supported(prot)) 141 return 0; 142 143 if ((end - addr) != PMD_SIZE) 144 return 0; 145 146 if (!IS_ALIGNED(addr, PMD_SIZE)) 147 return 0; 148 149 if (!IS_ALIGNED(phys_addr, PMD_SIZE)) 150 return 0; 151 152 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) 153 return 0; 154 155 return pmd_set_huge(pmd, phys_addr, prot); 156 } 157 158 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 159 phys_addr_t phys_addr, pgprot_t prot, 160 unsigned int max_page_shift, pgtbl_mod_mask *mask) 161 { 162 pmd_t *pmd; 163 unsigned long next; 164 165 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 166 if (!pmd) 167 return -ENOMEM; 168 do { 169 next = pmd_addr_end(addr, end); 170 171 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, 172 max_page_shift)) { 173 *mask |= PGTBL_PMD_MODIFIED; 174 continue; 175 } 176 177 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) 178 return -ENOMEM; 179 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); 180 return 0; 181 } 182 183 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, 184 phys_addr_t phys_addr, pgprot_t prot, 185 unsigned int max_page_shift) 186 { 187 if (max_page_shift < PUD_SHIFT) 188 return 0; 189 190 if (!arch_vmap_pud_supported(prot)) 191 return 0; 192 193 if ((end - addr) != PUD_SIZE) 194 return 0; 195 196 if (!IS_ALIGNED(addr, PUD_SIZE)) 197 return 0; 198 199 if (!IS_ALIGNED(phys_addr, PUD_SIZE)) 200 return 0; 201 202 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) 203 return 0; 204 205 return pud_set_huge(pud, phys_addr, prot); 206 } 207 208 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 209 phys_addr_t phys_addr, pgprot_t prot, 210 unsigned int max_page_shift, pgtbl_mod_mask *mask) 211 { 212 pud_t *pud; 213 unsigned long next; 214 215 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 216 if (!pud) 217 return -ENOMEM; 218 do { 219 next = pud_addr_end(addr, end); 220 221 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, 222 max_page_shift)) { 223 *mask |= PGTBL_PUD_MODIFIED; 224 continue; 225 } 226 227 if (vmap_pmd_range(pud, addr, next, phys_addr, prot, 228 max_page_shift, mask)) 229 return -ENOMEM; 230 } while (pud++, phys_addr += (next - addr), addr = next, addr != end); 231 return 0; 232 } 233 234 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, 235 phys_addr_t phys_addr, pgprot_t prot, 236 unsigned int max_page_shift) 237 { 238 if (max_page_shift < P4D_SHIFT) 239 return 0; 240 241 if (!arch_vmap_p4d_supported(prot)) 242 return 0; 243 244 if ((end - addr) != P4D_SIZE) 245 return 0; 246 247 if (!IS_ALIGNED(addr, P4D_SIZE)) 248 return 0; 249 250 if (!IS_ALIGNED(phys_addr, P4D_SIZE)) 251 return 0; 252 253 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) 254 return 0; 255 256 return p4d_set_huge(p4d, phys_addr, prot); 257 } 258 259 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 260 phys_addr_t phys_addr, pgprot_t prot, 261 unsigned int max_page_shift, pgtbl_mod_mask *mask) 262 { 263 p4d_t *p4d; 264 unsigned long next; 265 266 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 267 if (!p4d) 268 return -ENOMEM; 269 do { 270 next = p4d_addr_end(addr, end); 271 272 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, 273 max_page_shift)) { 274 *mask |= PGTBL_P4D_MODIFIED; 275 continue; 276 } 277 278 if (vmap_pud_range(p4d, addr, next, phys_addr, prot, 279 max_page_shift, mask)) 280 return -ENOMEM; 281 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); 282 return 0; 283 } 284 285 static int vmap_range_noflush(unsigned long addr, unsigned long end, 286 phys_addr_t phys_addr, pgprot_t prot, 287 unsigned int max_page_shift) 288 { 289 pgd_t *pgd; 290 unsigned long start; 291 unsigned long next; 292 int err; 293 pgtbl_mod_mask mask = 0; 294 295 might_sleep(); 296 BUG_ON(addr >= end); 297 298 start = addr; 299 pgd = pgd_offset_k(addr); 300 do { 301 next = pgd_addr_end(addr, end); 302 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, 303 max_page_shift, &mask); 304 if (err) 305 break; 306 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); 307 308 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 309 arch_sync_kernel_mappings(start, end); 310 311 return err; 312 } 313 314 int ioremap_page_range(unsigned long addr, unsigned long end, 315 phys_addr_t phys_addr, pgprot_t prot) 316 { 317 int err; 318 319 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), 320 ioremap_max_page_shift); 321 flush_cache_vmap(addr, end); 322 return err; 323 } 324 325 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 326 pgtbl_mod_mask *mask) 327 { 328 pte_t *pte; 329 330 pte = pte_offset_kernel(pmd, addr); 331 do { 332 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 333 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 334 } while (pte++, addr += PAGE_SIZE, addr != end); 335 *mask |= PGTBL_PTE_MODIFIED; 336 } 337 338 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 339 pgtbl_mod_mask *mask) 340 { 341 pmd_t *pmd; 342 unsigned long next; 343 int cleared; 344 345 pmd = pmd_offset(pud, addr); 346 do { 347 next = pmd_addr_end(addr, end); 348 349 cleared = pmd_clear_huge(pmd); 350 if (cleared || pmd_bad(*pmd)) 351 *mask |= PGTBL_PMD_MODIFIED; 352 353 if (cleared) 354 continue; 355 if (pmd_none_or_clear_bad(pmd)) 356 continue; 357 vunmap_pte_range(pmd, addr, next, mask); 358 359 cond_resched(); 360 } while (pmd++, addr = next, addr != end); 361 } 362 363 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 364 pgtbl_mod_mask *mask) 365 { 366 pud_t *pud; 367 unsigned long next; 368 int cleared; 369 370 pud = pud_offset(p4d, addr); 371 do { 372 next = pud_addr_end(addr, end); 373 374 cleared = pud_clear_huge(pud); 375 if (cleared || pud_bad(*pud)) 376 *mask |= PGTBL_PUD_MODIFIED; 377 378 if (cleared) 379 continue; 380 if (pud_none_or_clear_bad(pud)) 381 continue; 382 vunmap_pmd_range(pud, addr, next, mask); 383 } while (pud++, addr = next, addr != end); 384 } 385 386 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 387 pgtbl_mod_mask *mask) 388 { 389 p4d_t *p4d; 390 unsigned long next; 391 int cleared; 392 393 p4d = p4d_offset(pgd, addr); 394 do { 395 next = p4d_addr_end(addr, end); 396 397 cleared = p4d_clear_huge(p4d); 398 if (cleared || p4d_bad(*p4d)) 399 *mask |= PGTBL_P4D_MODIFIED; 400 401 if (cleared) 402 continue; 403 if (p4d_none_or_clear_bad(p4d)) 404 continue; 405 vunmap_pud_range(p4d, addr, next, mask); 406 } while (p4d++, addr = next, addr != end); 407 } 408 409 /* 410 * vunmap_range_noflush is similar to vunmap_range, but does not 411 * flush caches or TLBs. 412 * 413 * The caller is responsible for calling flush_cache_vmap() before calling 414 * this function, and flush_tlb_kernel_range after it has returned 415 * successfully (and before the addresses are expected to cause a page fault 416 * or be re-mapped for something else, if TLB flushes are being delayed or 417 * coalesced). 418 * 419 * This is an internal function only. Do not use outside mm/. 420 */ 421 void vunmap_range_noflush(unsigned long start, unsigned long end) 422 { 423 unsigned long next; 424 pgd_t *pgd; 425 unsigned long addr = start; 426 pgtbl_mod_mask mask = 0; 427 428 BUG_ON(addr >= end); 429 pgd = pgd_offset_k(addr); 430 do { 431 next = pgd_addr_end(addr, end); 432 if (pgd_bad(*pgd)) 433 mask |= PGTBL_PGD_MODIFIED; 434 if (pgd_none_or_clear_bad(pgd)) 435 continue; 436 vunmap_p4d_range(pgd, addr, next, &mask); 437 } while (pgd++, addr = next, addr != end); 438 439 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 440 arch_sync_kernel_mappings(start, end); 441 } 442 443 /** 444 * vunmap_range - unmap kernel virtual addresses 445 * @addr: start of the VM area to unmap 446 * @end: end of the VM area to unmap (non-inclusive) 447 * 448 * Clears any present PTEs in the virtual address range, flushes TLBs and 449 * caches. Any subsequent access to the address before it has been re-mapped 450 * is a kernel bug. 451 */ 452 void vunmap_range(unsigned long addr, unsigned long end) 453 { 454 flush_cache_vunmap(addr, end); 455 vunmap_range_noflush(addr, end); 456 flush_tlb_kernel_range(addr, end); 457 } 458 459 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, 460 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 461 pgtbl_mod_mask *mask) 462 { 463 pte_t *pte; 464 465 /* 466 * nr is a running index into the array which helps higher level 467 * callers keep track of where we're up to. 468 */ 469 470 pte = pte_alloc_kernel_track(pmd, addr, mask); 471 if (!pte) 472 return -ENOMEM; 473 do { 474 struct page *page = pages[*nr]; 475 476 if (WARN_ON(!pte_none(*pte))) 477 return -EBUSY; 478 if (WARN_ON(!page)) 479 return -ENOMEM; 480 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 481 (*nr)++; 482 } while (pte++, addr += PAGE_SIZE, addr != end); 483 *mask |= PGTBL_PTE_MODIFIED; 484 return 0; 485 } 486 487 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, 488 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 489 pgtbl_mod_mask *mask) 490 { 491 pmd_t *pmd; 492 unsigned long next; 493 494 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 495 if (!pmd) 496 return -ENOMEM; 497 do { 498 next = pmd_addr_end(addr, end); 499 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) 500 return -ENOMEM; 501 } while (pmd++, addr = next, addr != end); 502 return 0; 503 } 504 505 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, 506 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 507 pgtbl_mod_mask *mask) 508 { 509 pud_t *pud; 510 unsigned long next; 511 512 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 513 if (!pud) 514 return -ENOMEM; 515 do { 516 next = pud_addr_end(addr, end); 517 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) 518 return -ENOMEM; 519 } while (pud++, addr = next, addr != end); 520 return 0; 521 } 522 523 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, 524 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 525 pgtbl_mod_mask *mask) 526 { 527 p4d_t *p4d; 528 unsigned long next; 529 530 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 531 if (!p4d) 532 return -ENOMEM; 533 do { 534 next = p4d_addr_end(addr, end); 535 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) 536 return -ENOMEM; 537 } while (p4d++, addr = next, addr != end); 538 return 0; 539 } 540 541 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, 542 pgprot_t prot, struct page **pages) 543 { 544 unsigned long start = addr; 545 pgd_t *pgd; 546 unsigned long next; 547 int err = 0; 548 int nr = 0; 549 pgtbl_mod_mask mask = 0; 550 551 BUG_ON(addr >= end); 552 pgd = pgd_offset_k(addr); 553 do { 554 next = pgd_addr_end(addr, end); 555 if (pgd_bad(*pgd)) 556 mask |= PGTBL_PGD_MODIFIED; 557 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); 558 if (err) 559 return err; 560 } while (pgd++, addr = next, addr != end); 561 562 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 563 arch_sync_kernel_mappings(start, end); 564 565 return 0; 566 } 567 568 /* 569 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not 570 * flush caches. 571 * 572 * The caller is responsible for calling flush_cache_vmap() after this 573 * function returns successfully and before the addresses are accessed. 574 * 575 * This is an internal function only. Do not use outside mm/. 576 */ 577 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 578 pgprot_t prot, struct page **pages, unsigned int page_shift) 579 { 580 unsigned int i, nr = (end - addr) >> PAGE_SHIFT; 581 582 WARN_ON(page_shift < PAGE_SHIFT); 583 584 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || 585 page_shift == PAGE_SHIFT) 586 return vmap_small_pages_range_noflush(addr, end, prot, pages); 587 588 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { 589 int err; 590 591 err = vmap_range_noflush(addr, addr + (1UL << page_shift), 592 __pa(page_address(pages[i])), prot, 593 page_shift); 594 if (err) 595 return err; 596 597 addr += 1UL << page_shift; 598 } 599 600 return 0; 601 } 602 603 /** 604 * vmap_pages_range - map pages to a kernel virtual address 605 * @addr: start of the VM area to map 606 * @end: end of the VM area to map (non-inclusive) 607 * @prot: page protection flags to use 608 * @pages: pages to map (always PAGE_SIZE pages) 609 * @page_shift: maximum shift that the pages may be mapped with, @pages must 610 * be aligned and contiguous up to at least this shift. 611 * 612 * RETURNS: 613 * 0 on success, -errno on failure. 614 */ 615 static int vmap_pages_range(unsigned long addr, unsigned long end, 616 pgprot_t prot, struct page **pages, unsigned int page_shift) 617 { 618 int err; 619 620 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 621 flush_cache_vmap(addr, end); 622 return err; 623 } 624 625 int is_vmalloc_or_module_addr(const void *x) 626 { 627 /* 628 * ARM, x86-64 and sparc64 put modules in a special place, 629 * and fall back on vmalloc() if that fails. Others 630 * just put it in the vmalloc space. 631 */ 632 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 633 unsigned long addr = (unsigned long)x; 634 if (addr >= MODULES_VADDR && addr < MODULES_END) 635 return 1; 636 #endif 637 return is_vmalloc_addr(x); 638 } 639 640 /* 641 * Walk a vmap address to the struct page it maps. Huge vmap mappings will 642 * return the tail page that corresponds to the base page address, which 643 * matches small vmap mappings. 644 */ 645 struct page *vmalloc_to_page(const void *vmalloc_addr) 646 { 647 unsigned long addr = (unsigned long) vmalloc_addr; 648 struct page *page = NULL; 649 pgd_t *pgd = pgd_offset_k(addr); 650 p4d_t *p4d; 651 pud_t *pud; 652 pmd_t *pmd; 653 pte_t *ptep, pte; 654 655 /* 656 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 657 * architectures that do not vmalloc module space 658 */ 659 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 660 661 if (pgd_none(*pgd)) 662 return NULL; 663 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 664 return NULL; /* XXX: no allowance for huge pgd */ 665 if (WARN_ON_ONCE(pgd_bad(*pgd))) 666 return NULL; 667 668 p4d = p4d_offset(pgd, addr); 669 if (p4d_none(*p4d)) 670 return NULL; 671 if (p4d_leaf(*p4d)) 672 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); 673 if (WARN_ON_ONCE(p4d_bad(*p4d))) 674 return NULL; 675 676 pud = pud_offset(p4d, addr); 677 if (pud_none(*pud)) 678 return NULL; 679 if (pud_leaf(*pud)) 680 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 681 if (WARN_ON_ONCE(pud_bad(*pud))) 682 return NULL; 683 684 pmd = pmd_offset(pud, addr); 685 if (pmd_none(*pmd)) 686 return NULL; 687 if (pmd_leaf(*pmd)) 688 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 689 if (WARN_ON_ONCE(pmd_bad(*pmd))) 690 return NULL; 691 692 ptep = pte_offset_map(pmd, addr); 693 pte = *ptep; 694 if (pte_present(pte)) 695 page = pte_page(pte); 696 pte_unmap(ptep); 697 698 return page; 699 } 700 EXPORT_SYMBOL(vmalloc_to_page); 701 702 /* 703 * Map a vmalloc()-space virtual address to the physical page frame number. 704 */ 705 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 706 { 707 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 708 } 709 EXPORT_SYMBOL(vmalloc_to_pfn); 710 711 712 /*** Global kva allocator ***/ 713 714 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 715 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 716 717 718 static DEFINE_SPINLOCK(vmap_area_lock); 719 static DEFINE_SPINLOCK(free_vmap_area_lock); 720 /* Export for kexec only */ 721 LIST_HEAD(vmap_area_list); 722 static struct rb_root vmap_area_root = RB_ROOT; 723 static bool vmap_initialized __read_mostly; 724 725 static struct rb_root purge_vmap_area_root = RB_ROOT; 726 static LIST_HEAD(purge_vmap_area_list); 727 static DEFINE_SPINLOCK(purge_vmap_area_lock); 728 729 /* 730 * This kmem_cache is used for vmap_area objects. Instead of 731 * allocating from slab we reuse an object from this cache to 732 * make things faster. Especially in "no edge" splitting of 733 * free block. 734 */ 735 static struct kmem_cache *vmap_area_cachep; 736 737 /* 738 * This linked list is used in pair with free_vmap_area_root. 739 * It gives O(1) access to prev/next to perform fast coalescing. 740 */ 741 static LIST_HEAD(free_vmap_area_list); 742 743 /* 744 * This augment red-black tree represents the free vmap space. 745 * All vmap_area objects in this tree are sorted by va->va_start 746 * address. It is used for allocation and merging when a vmap 747 * object is released. 748 * 749 * Each vmap_area node contains a maximum available free block 750 * of its sub-tree, right or left. Therefore it is possible to 751 * find a lowest match of free area. 752 */ 753 static struct rb_root free_vmap_area_root = RB_ROOT; 754 755 /* 756 * Preload a CPU with one object for "no edge" split case. The 757 * aim is to get rid of allocations from the atomic context, thus 758 * to use more permissive allocation masks. 759 */ 760 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 761 762 static __always_inline unsigned long 763 va_size(struct vmap_area *va) 764 { 765 return (va->va_end - va->va_start); 766 } 767 768 static __always_inline unsigned long 769 get_subtree_max_size(struct rb_node *node) 770 { 771 struct vmap_area *va; 772 773 va = rb_entry_safe(node, struct vmap_area, rb_node); 774 return va ? va->subtree_max_size : 0; 775 } 776 777 /* 778 * Gets called when remove the node and rotate. 779 */ 780 static __always_inline unsigned long 781 compute_subtree_max_size(struct vmap_area *va) 782 { 783 return max3(va_size(va), 784 get_subtree_max_size(va->rb_node.rb_left), 785 get_subtree_max_size(va->rb_node.rb_right)); 786 } 787 788 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 789 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 790 791 static void purge_vmap_area_lazy(void); 792 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 793 static unsigned long lazy_max_pages(void); 794 795 static atomic_long_t nr_vmalloc_pages; 796 797 unsigned long vmalloc_nr_pages(void) 798 { 799 return atomic_long_read(&nr_vmalloc_pages); 800 } 801 802 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr) 803 { 804 struct vmap_area *va = NULL; 805 struct rb_node *n = vmap_area_root.rb_node; 806 807 while (n) { 808 struct vmap_area *tmp; 809 810 tmp = rb_entry(n, struct vmap_area, rb_node); 811 if (tmp->va_end > addr) { 812 va = tmp; 813 if (tmp->va_start <= addr) 814 break; 815 816 n = n->rb_left; 817 } else 818 n = n->rb_right; 819 } 820 821 return va; 822 } 823 824 static struct vmap_area *__find_vmap_area(unsigned long addr) 825 { 826 struct rb_node *n = vmap_area_root.rb_node; 827 828 while (n) { 829 struct vmap_area *va; 830 831 va = rb_entry(n, struct vmap_area, rb_node); 832 if (addr < va->va_start) 833 n = n->rb_left; 834 else if (addr >= va->va_end) 835 n = n->rb_right; 836 else 837 return va; 838 } 839 840 return NULL; 841 } 842 843 /* 844 * This function returns back addresses of parent node 845 * and its left or right link for further processing. 846 * 847 * Otherwise NULL is returned. In that case all further 848 * steps regarding inserting of conflicting overlap range 849 * have to be declined and actually considered as a bug. 850 */ 851 static __always_inline struct rb_node ** 852 find_va_links(struct vmap_area *va, 853 struct rb_root *root, struct rb_node *from, 854 struct rb_node **parent) 855 { 856 struct vmap_area *tmp_va; 857 struct rb_node **link; 858 859 if (root) { 860 link = &root->rb_node; 861 if (unlikely(!*link)) { 862 *parent = NULL; 863 return link; 864 } 865 } else { 866 link = &from; 867 } 868 869 /* 870 * Go to the bottom of the tree. When we hit the last point 871 * we end up with parent rb_node and correct direction, i name 872 * it link, where the new va->rb_node will be attached to. 873 */ 874 do { 875 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 876 877 /* 878 * During the traversal we also do some sanity check. 879 * Trigger the BUG() if there are sides(left/right) 880 * or full overlaps. 881 */ 882 if (va->va_start < tmp_va->va_end && 883 va->va_end <= tmp_va->va_start) 884 link = &(*link)->rb_left; 885 else if (va->va_end > tmp_va->va_start && 886 va->va_start >= tmp_va->va_end) 887 link = &(*link)->rb_right; 888 else { 889 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", 890 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); 891 892 return NULL; 893 } 894 } while (*link); 895 896 *parent = &tmp_va->rb_node; 897 return link; 898 } 899 900 static __always_inline struct list_head * 901 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 902 { 903 struct list_head *list; 904 905 if (unlikely(!parent)) 906 /* 907 * The red-black tree where we try to find VA neighbors 908 * before merging or inserting is empty, i.e. it means 909 * there is no free vmap space. Normally it does not 910 * happen but we handle this case anyway. 911 */ 912 return NULL; 913 914 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 915 return (&parent->rb_right == link ? list->next : list); 916 } 917 918 static __always_inline void 919 link_va(struct vmap_area *va, struct rb_root *root, 920 struct rb_node *parent, struct rb_node **link, struct list_head *head) 921 { 922 /* 923 * VA is still not in the list, but we can 924 * identify its future previous list_head node. 925 */ 926 if (likely(parent)) { 927 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 928 if (&parent->rb_right != link) 929 head = head->prev; 930 } 931 932 /* Insert to the rb-tree */ 933 rb_link_node(&va->rb_node, parent, link); 934 if (root == &free_vmap_area_root) { 935 /* 936 * Some explanation here. Just perform simple insertion 937 * to the tree. We do not set va->subtree_max_size to 938 * its current size before calling rb_insert_augmented(). 939 * It is because of we populate the tree from the bottom 940 * to parent levels when the node _is_ in the tree. 941 * 942 * Therefore we set subtree_max_size to zero after insertion, 943 * to let __augment_tree_propagate_from() puts everything to 944 * the correct order later on. 945 */ 946 rb_insert_augmented(&va->rb_node, 947 root, &free_vmap_area_rb_augment_cb); 948 va->subtree_max_size = 0; 949 } else { 950 rb_insert_color(&va->rb_node, root); 951 } 952 953 /* Address-sort this list */ 954 list_add(&va->list, head); 955 } 956 957 static __always_inline void 958 unlink_va(struct vmap_area *va, struct rb_root *root) 959 { 960 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 961 return; 962 963 if (root == &free_vmap_area_root) 964 rb_erase_augmented(&va->rb_node, 965 root, &free_vmap_area_rb_augment_cb); 966 else 967 rb_erase(&va->rb_node, root); 968 969 list_del(&va->list); 970 RB_CLEAR_NODE(&va->rb_node); 971 } 972 973 #if DEBUG_AUGMENT_PROPAGATE_CHECK 974 static void 975 augment_tree_propagate_check(void) 976 { 977 struct vmap_area *va; 978 unsigned long computed_size; 979 980 list_for_each_entry(va, &free_vmap_area_list, list) { 981 computed_size = compute_subtree_max_size(va); 982 if (computed_size != va->subtree_max_size) 983 pr_emerg("tree is corrupted: %lu, %lu\n", 984 va_size(va), va->subtree_max_size); 985 } 986 } 987 #endif 988 989 /* 990 * This function populates subtree_max_size from bottom to upper 991 * levels starting from VA point. The propagation must be done 992 * when VA size is modified by changing its va_start/va_end. Or 993 * in case of newly inserting of VA to the tree. 994 * 995 * It means that __augment_tree_propagate_from() must be called: 996 * - After VA has been inserted to the tree(free path); 997 * - After VA has been shrunk(allocation path); 998 * - After VA has been increased(merging path). 999 * 1000 * Please note that, it does not mean that upper parent nodes 1001 * and their subtree_max_size are recalculated all the time up 1002 * to the root node. 1003 * 1004 * 4--8 1005 * /\ 1006 * / \ 1007 * / \ 1008 * 2--2 8--8 1009 * 1010 * For example if we modify the node 4, shrinking it to 2, then 1011 * no any modification is required. If we shrink the node 2 to 1 1012 * its subtree_max_size is updated only, and set to 1. If we shrink 1013 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 1014 * node becomes 4--6. 1015 */ 1016 static __always_inline void 1017 augment_tree_propagate_from(struct vmap_area *va) 1018 { 1019 /* 1020 * Populate the tree from bottom towards the root until 1021 * the calculated maximum available size of checked node 1022 * is equal to its current one. 1023 */ 1024 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); 1025 1026 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1027 augment_tree_propagate_check(); 1028 #endif 1029 } 1030 1031 static void 1032 insert_vmap_area(struct vmap_area *va, 1033 struct rb_root *root, struct list_head *head) 1034 { 1035 struct rb_node **link; 1036 struct rb_node *parent; 1037 1038 link = find_va_links(va, root, NULL, &parent); 1039 if (link) 1040 link_va(va, root, parent, link, head); 1041 } 1042 1043 static void 1044 insert_vmap_area_augment(struct vmap_area *va, 1045 struct rb_node *from, struct rb_root *root, 1046 struct list_head *head) 1047 { 1048 struct rb_node **link; 1049 struct rb_node *parent; 1050 1051 if (from) 1052 link = find_va_links(va, NULL, from, &parent); 1053 else 1054 link = find_va_links(va, root, NULL, &parent); 1055 1056 if (link) { 1057 link_va(va, root, parent, link, head); 1058 augment_tree_propagate_from(va); 1059 } 1060 } 1061 1062 /* 1063 * Merge de-allocated chunk of VA memory with previous 1064 * and next free blocks. If coalesce is not done a new 1065 * free area is inserted. If VA has been merged, it is 1066 * freed. 1067 * 1068 * Please note, it can return NULL in case of overlap 1069 * ranges, followed by WARN() report. Despite it is a 1070 * buggy behaviour, a system can be alive and keep 1071 * ongoing. 1072 */ 1073 static __always_inline struct vmap_area * 1074 merge_or_add_vmap_area(struct vmap_area *va, 1075 struct rb_root *root, struct list_head *head) 1076 { 1077 struct vmap_area *sibling; 1078 struct list_head *next; 1079 struct rb_node **link; 1080 struct rb_node *parent; 1081 bool merged = false; 1082 1083 /* 1084 * Find a place in the tree where VA potentially will be 1085 * inserted, unless it is merged with its sibling/siblings. 1086 */ 1087 link = find_va_links(va, root, NULL, &parent); 1088 if (!link) 1089 return NULL; 1090 1091 /* 1092 * Get next node of VA to check if merging can be done. 1093 */ 1094 next = get_va_next_sibling(parent, link); 1095 if (unlikely(next == NULL)) 1096 goto insert; 1097 1098 /* 1099 * start end 1100 * | | 1101 * |<------VA------>|<-----Next----->| 1102 * | | 1103 * start end 1104 */ 1105 if (next != head) { 1106 sibling = list_entry(next, struct vmap_area, list); 1107 if (sibling->va_start == va->va_end) { 1108 sibling->va_start = va->va_start; 1109 1110 /* Free vmap_area object. */ 1111 kmem_cache_free(vmap_area_cachep, va); 1112 1113 /* Point to the new merged area. */ 1114 va = sibling; 1115 merged = true; 1116 } 1117 } 1118 1119 /* 1120 * start end 1121 * | | 1122 * |<-----Prev----->|<------VA------>| 1123 * | | 1124 * start end 1125 */ 1126 if (next->prev != head) { 1127 sibling = list_entry(next->prev, struct vmap_area, list); 1128 if (sibling->va_end == va->va_start) { 1129 /* 1130 * If both neighbors are coalesced, it is important 1131 * to unlink the "next" node first, followed by merging 1132 * with "previous" one. Otherwise the tree might not be 1133 * fully populated if a sibling's augmented value is 1134 * "normalized" because of rotation operations. 1135 */ 1136 if (merged) 1137 unlink_va(va, root); 1138 1139 sibling->va_end = va->va_end; 1140 1141 /* Free vmap_area object. */ 1142 kmem_cache_free(vmap_area_cachep, va); 1143 1144 /* Point to the new merged area. */ 1145 va = sibling; 1146 merged = true; 1147 } 1148 } 1149 1150 insert: 1151 if (!merged) 1152 link_va(va, root, parent, link, head); 1153 1154 return va; 1155 } 1156 1157 static __always_inline struct vmap_area * 1158 merge_or_add_vmap_area_augment(struct vmap_area *va, 1159 struct rb_root *root, struct list_head *head) 1160 { 1161 va = merge_or_add_vmap_area(va, root, head); 1162 if (va) 1163 augment_tree_propagate_from(va); 1164 1165 return va; 1166 } 1167 1168 static __always_inline bool 1169 is_within_this_va(struct vmap_area *va, unsigned long size, 1170 unsigned long align, unsigned long vstart) 1171 { 1172 unsigned long nva_start_addr; 1173 1174 if (va->va_start > vstart) 1175 nva_start_addr = ALIGN(va->va_start, align); 1176 else 1177 nva_start_addr = ALIGN(vstart, align); 1178 1179 /* Can be overflowed due to big size or alignment. */ 1180 if (nva_start_addr + size < nva_start_addr || 1181 nva_start_addr < vstart) 1182 return false; 1183 1184 return (nva_start_addr + size <= va->va_end); 1185 } 1186 1187 /* 1188 * Find the first free block(lowest start address) in the tree, 1189 * that will accomplish the request corresponding to passing 1190 * parameters. 1191 */ 1192 static __always_inline struct vmap_area * 1193 find_vmap_lowest_match(unsigned long size, 1194 unsigned long align, unsigned long vstart) 1195 { 1196 struct vmap_area *va; 1197 struct rb_node *node; 1198 1199 /* Start from the root. */ 1200 node = free_vmap_area_root.rb_node; 1201 1202 while (node) { 1203 va = rb_entry(node, struct vmap_area, rb_node); 1204 1205 if (get_subtree_max_size(node->rb_left) >= size && 1206 vstart < va->va_start) { 1207 node = node->rb_left; 1208 } else { 1209 if (is_within_this_va(va, size, align, vstart)) 1210 return va; 1211 1212 /* 1213 * Does not make sense to go deeper towards the right 1214 * sub-tree if it does not have a free block that is 1215 * equal or bigger to the requested search size. 1216 */ 1217 if (get_subtree_max_size(node->rb_right) >= size) { 1218 node = node->rb_right; 1219 continue; 1220 } 1221 1222 /* 1223 * OK. We roll back and find the first right sub-tree, 1224 * that will satisfy the search criteria. It can happen 1225 * due to "vstart" restriction or an alignment overhead 1226 * that is bigger then PAGE_SIZE. 1227 */ 1228 while ((node = rb_parent(node))) { 1229 va = rb_entry(node, struct vmap_area, rb_node); 1230 if (is_within_this_va(va, size, align, vstart)) 1231 return va; 1232 1233 if (get_subtree_max_size(node->rb_right) >= size && 1234 vstart <= va->va_start) { 1235 /* 1236 * Shift the vstart forward. Please note, we update it with 1237 * parent's start address adding "1" because we do not want 1238 * to enter same sub-tree after it has already been checked 1239 * and no suitable free block found there. 1240 */ 1241 vstart = va->va_start + 1; 1242 node = node->rb_right; 1243 break; 1244 } 1245 } 1246 } 1247 } 1248 1249 return NULL; 1250 } 1251 1252 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1253 #include <linux/random.h> 1254 1255 static struct vmap_area * 1256 find_vmap_lowest_linear_match(unsigned long size, 1257 unsigned long align, unsigned long vstart) 1258 { 1259 struct vmap_area *va; 1260 1261 list_for_each_entry(va, &free_vmap_area_list, list) { 1262 if (!is_within_this_va(va, size, align, vstart)) 1263 continue; 1264 1265 return va; 1266 } 1267 1268 return NULL; 1269 } 1270 1271 static void 1272 find_vmap_lowest_match_check(unsigned long size, unsigned long align) 1273 { 1274 struct vmap_area *va_1, *va_2; 1275 unsigned long vstart; 1276 unsigned int rnd; 1277 1278 get_random_bytes(&rnd, sizeof(rnd)); 1279 vstart = VMALLOC_START + rnd; 1280 1281 va_1 = find_vmap_lowest_match(size, align, vstart); 1282 va_2 = find_vmap_lowest_linear_match(size, align, vstart); 1283 1284 if (va_1 != va_2) 1285 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 1286 va_1, va_2, vstart); 1287 } 1288 #endif 1289 1290 enum fit_type { 1291 NOTHING_FIT = 0, 1292 FL_FIT_TYPE = 1, /* full fit */ 1293 LE_FIT_TYPE = 2, /* left edge fit */ 1294 RE_FIT_TYPE = 3, /* right edge fit */ 1295 NE_FIT_TYPE = 4 /* no edge fit */ 1296 }; 1297 1298 static __always_inline enum fit_type 1299 classify_va_fit_type(struct vmap_area *va, 1300 unsigned long nva_start_addr, unsigned long size) 1301 { 1302 enum fit_type type; 1303 1304 /* Check if it is within VA. */ 1305 if (nva_start_addr < va->va_start || 1306 nva_start_addr + size > va->va_end) 1307 return NOTHING_FIT; 1308 1309 /* Now classify. */ 1310 if (va->va_start == nva_start_addr) { 1311 if (va->va_end == nva_start_addr + size) 1312 type = FL_FIT_TYPE; 1313 else 1314 type = LE_FIT_TYPE; 1315 } else if (va->va_end == nva_start_addr + size) { 1316 type = RE_FIT_TYPE; 1317 } else { 1318 type = NE_FIT_TYPE; 1319 } 1320 1321 return type; 1322 } 1323 1324 static __always_inline int 1325 adjust_va_to_fit_type(struct vmap_area *va, 1326 unsigned long nva_start_addr, unsigned long size, 1327 enum fit_type type) 1328 { 1329 struct vmap_area *lva = NULL; 1330 1331 if (type == FL_FIT_TYPE) { 1332 /* 1333 * No need to split VA, it fully fits. 1334 * 1335 * | | 1336 * V NVA V 1337 * |---------------| 1338 */ 1339 unlink_va(va, &free_vmap_area_root); 1340 kmem_cache_free(vmap_area_cachep, va); 1341 } else if (type == LE_FIT_TYPE) { 1342 /* 1343 * Split left edge of fit VA. 1344 * 1345 * | | 1346 * V NVA V R 1347 * |-------|-------| 1348 */ 1349 va->va_start += size; 1350 } else if (type == RE_FIT_TYPE) { 1351 /* 1352 * Split right edge of fit VA. 1353 * 1354 * | | 1355 * L V NVA V 1356 * |-------|-------| 1357 */ 1358 va->va_end = nva_start_addr; 1359 } else if (type == NE_FIT_TYPE) { 1360 /* 1361 * Split no edge of fit VA. 1362 * 1363 * | | 1364 * L V NVA V R 1365 * |---|-------|---| 1366 */ 1367 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 1368 if (unlikely(!lva)) { 1369 /* 1370 * For percpu allocator we do not do any pre-allocation 1371 * and leave it as it is. The reason is it most likely 1372 * never ends up with NE_FIT_TYPE splitting. In case of 1373 * percpu allocations offsets and sizes are aligned to 1374 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 1375 * are its main fitting cases. 1376 * 1377 * There are a few exceptions though, as an example it is 1378 * a first allocation (early boot up) when we have "one" 1379 * big free space that has to be split. 1380 * 1381 * Also we can hit this path in case of regular "vmap" 1382 * allocations, if "this" current CPU was not preloaded. 1383 * See the comment in alloc_vmap_area() why. If so, then 1384 * GFP_NOWAIT is used instead to get an extra object for 1385 * split purpose. That is rare and most time does not 1386 * occur. 1387 * 1388 * What happens if an allocation gets failed. Basically, 1389 * an "overflow" path is triggered to purge lazily freed 1390 * areas to free some memory, then, the "retry" path is 1391 * triggered to repeat one more time. See more details 1392 * in alloc_vmap_area() function. 1393 */ 1394 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 1395 if (!lva) 1396 return -1; 1397 } 1398 1399 /* 1400 * Build the remainder. 1401 */ 1402 lva->va_start = va->va_start; 1403 lva->va_end = nva_start_addr; 1404 1405 /* 1406 * Shrink this VA to remaining size. 1407 */ 1408 va->va_start = nva_start_addr + size; 1409 } else { 1410 return -1; 1411 } 1412 1413 if (type != FL_FIT_TYPE) { 1414 augment_tree_propagate_from(va); 1415 1416 if (lva) /* type == NE_FIT_TYPE */ 1417 insert_vmap_area_augment(lva, &va->rb_node, 1418 &free_vmap_area_root, &free_vmap_area_list); 1419 } 1420 1421 return 0; 1422 } 1423 1424 /* 1425 * Returns a start address of the newly allocated area, if success. 1426 * Otherwise a vend is returned that indicates failure. 1427 */ 1428 static __always_inline unsigned long 1429 __alloc_vmap_area(unsigned long size, unsigned long align, 1430 unsigned long vstart, unsigned long vend) 1431 { 1432 unsigned long nva_start_addr; 1433 struct vmap_area *va; 1434 enum fit_type type; 1435 int ret; 1436 1437 va = find_vmap_lowest_match(size, align, vstart); 1438 if (unlikely(!va)) 1439 return vend; 1440 1441 if (va->va_start > vstart) 1442 nva_start_addr = ALIGN(va->va_start, align); 1443 else 1444 nva_start_addr = ALIGN(vstart, align); 1445 1446 /* Check the "vend" restriction. */ 1447 if (nva_start_addr + size > vend) 1448 return vend; 1449 1450 /* Classify what we have found. */ 1451 type = classify_va_fit_type(va, nva_start_addr, size); 1452 if (WARN_ON_ONCE(type == NOTHING_FIT)) 1453 return vend; 1454 1455 /* Update the free vmap_area. */ 1456 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type); 1457 if (ret) 1458 return vend; 1459 1460 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1461 find_vmap_lowest_match_check(size, align); 1462 #endif 1463 1464 return nva_start_addr; 1465 } 1466 1467 /* 1468 * Free a region of KVA allocated by alloc_vmap_area 1469 */ 1470 static void free_vmap_area(struct vmap_area *va) 1471 { 1472 /* 1473 * Remove from the busy tree/list. 1474 */ 1475 spin_lock(&vmap_area_lock); 1476 unlink_va(va, &vmap_area_root); 1477 spin_unlock(&vmap_area_lock); 1478 1479 /* 1480 * Insert/Merge it back to the free tree/list. 1481 */ 1482 spin_lock(&free_vmap_area_lock); 1483 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); 1484 spin_unlock(&free_vmap_area_lock); 1485 } 1486 1487 static inline void 1488 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) 1489 { 1490 struct vmap_area *va = NULL; 1491 1492 /* 1493 * Preload this CPU with one extra vmap_area object. It is used 1494 * when fit type of free area is NE_FIT_TYPE. It guarantees that 1495 * a CPU that does an allocation is preloaded. 1496 * 1497 * We do it in non-atomic context, thus it allows us to use more 1498 * permissive allocation masks to be more stable under low memory 1499 * condition and high memory pressure. 1500 */ 1501 if (!this_cpu_read(ne_fit_preload_node)) 1502 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1503 1504 spin_lock(lock); 1505 1506 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va)) 1507 kmem_cache_free(vmap_area_cachep, va); 1508 } 1509 1510 /* 1511 * Allocate a region of KVA of the specified size and alignment, within the 1512 * vstart and vend. 1513 */ 1514 static struct vmap_area *alloc_vmap_area(unsigned long size, 1515 unsigned long align, 1516 unsigned long vstart, unsigned long vend, 1517 int node, gfp_t gfp_mask) 1518 { 1519 struct vmap_area *va; 1520 unsigned long freed; 1521 unsigned long addr; 1522 int purged = 0; 1523 int ret; 1524 1525 BUG_ON(!size); 1526 BUG_ON(offset_in_page(size)); 1527 BUG_ON(!is_power_of_2(align)); 1528 1529 if (unlikely(!vmap_initialized)) 1530 return ERR_PTR(-EBUSY); 1531 1532 might_sleep(); 1533 gfp_mask = gfp_mask & GFP_RECLAIM_MASK; 1534 1535 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1536 if (unlikely(!va)) 1537 return ERR_PTR(-ENOMEM); 1538 1539 /* 1540 * Only scan the relevant parts containing pointers to other objects 1541 * to avoid false negatives. 1542 */ 1543 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); 1544 1545 retry: 1546 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); 1547 addr = __alloc_vmap_area(size, align, vstart, vend); 1548 spin_unlock(&free_vmap_area_lock); 1549 1550 /* 1551 * If an allocation fails, the "vend" address is 1552 * returned. Therefore trigger the overflow path. 1553 */ 1554 if (unlikely(addr == vend)) 1555 goto overflow; 1556 1557 va->va_start = addr; 1558 va->va_end = addr + size; 1559 va->vm = NULL; 1560 1561 spin_lock(&vmap_area_lock); 1562 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1563 spin_unlock(&vmap_area_lock); 1564 1565 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1566 BUG_ON(va->va_start < vstart); 1567 BUG_ON(va->va_end > vend); 1568 1569 ret = kasan_populate_vmalloc(addr, size); 1570 if (ret) { 1571 free_vmap_area(va); 1572 return ERR_PTR(ret); 1573 } 1574 1575 return va; 1576 1577 overflow: 1578 if (!purged) { 1579 purge_vmap_area_lazy(); 1580 purged = 1; 1581 goto retry; 1582 } 1583 1584 freed = 0; 1585 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 1586 1587 if (freed > 0) { 1588 purged = 0; 1589 goto retry; 1590 } 1591 1592 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 1593 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 1594 size); 1595 1596 kmem_cache_free(vmap_area_cachep, va); 1597 return ERR_PTR(-EBUSY); 1598 } 1599 1600 int register_vmap_purge_notifier(struct notifier_block *nb) 1601 { 1602 return blocking_notifier_chain_register(&vmap_notify_list, nb); 1603 } 1604 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 1605 1606 int unregister_vmap_purge_notifier(struct notifier_block *nb) 1607 { 1608 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 1609 } 1610 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 1611 1612 /* 1613 * lazy_max_pages is the maximum amount of virtual address space we gather up 1614 * before attempting to purge with a TLB flush. 1615 * 1616 * There is a tradeoff here: a larger number will cover more kernel page tables 1617 * and take slightly longer to purge, but it will linearly reduce the number of 1618 * global TLB flushes that must be performed. It would seem natural to scale 1619 * this number up linearly with the number of CPUs (because vmapping activity 1620 * could also scale linearly with the number of CPUs), however it is likely 1621 * that in practice, workloads might be constrained in other ways that mean 1622 * vmap activity will not scale linearly with CPUs. Also, I want to be 1623 * conservative and not introduce a big latency on huge systems, so go with 1624 * a less aggressive log scale. It will still be an improvement over the old 1625 * code, and it will be simple to change the scale factor if we find that it 1626 * becomes a problem on bigger systems. 1627 */ 1628 static unsigned long lazy_max_pages(void) 1629 { 1630 unsigned int log; 1631 1632 log = fls(num_online_cpus()); 1633 1634 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 1635 } 1636 1637 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 1638 1639 /* 1640 * Serialize vmap purging. There is no actual critical section protected 1641 * by this look, but we want to avoid concurrent calls for performance 1642 * reasons and to make the pcpu_get_vm_areas more deterministic. 1643 */ 1644 static DEFINE_MUTEX(vmap_purge_lock); 1645 1646 /* for per-CPU blocks */ 1647 static void purge_fragmented_blocks_allcpus(void); 1648 1649 #ifdef CONFIG_X86_64 1650 /* 1651 * called before a call to iounmap() if the caller wants vm_area_struct's 1652 * immediately freed. 1653 */ 1654 void set_iounmap_nonlazy(void) 1655 { 1656 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1); 1657 } 1658 #endif /* CONFIG_X86_64 */ 1659 1660 /* 1661 * Purges all lazily-freed vmap areas. 1662 */ 1663 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 1664 { 1665 unsigned long resched_threshold; 1666 struct list_head local_pure_list; 1667 struct vmap_area *va, *n_va; 1668 1669 lockdep_assert_held(&vmap_purge_lock); 1670 1671 spin_lock(&purge_vmap_area_lock); 1672 purge_vmap_area_root = RB_ROOT; 1673 list_replace_init(&purge_vmap_area_list, &local_pure_list); 1674 spin_unlock(&purge_vmap_area_lock); 1675 1676 if (unlikely(list_empty(&local_pure_list))) 1677 return false; 1678 1679 start = min(start, 1680 list_first_entry(&local_pure_list, 1681 struct vmap_area, list)->va_start); 1682 1683 end = max(end, 1684 list_last_entry(&local_pure_list, 1685 struct vmap_area, list)->va_end); 1686 1687 flush_tlb_kernel_range(start, end); 1688 resched_threshold = lazy_max_pages() << 1; 1689 1690 spin_lock(&free_vmap_area_lock); 1691 list_for_each_entry_safe(va, n_va, &local_pure_list, list) { 1692 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 1693 unsigned long orig_start = va->va_start; 1694 unsigned long orig_end = va->va_end; 1695 1696 /* 1697 * Finally insert or merge lazily-freed area. It is 1698 * detached and there is no need to "unlink" it from 1699 * anything. 1700 */ 1701 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root, 1702 &free_vmap_area_list); 1703 1704 if (!va) 1705 continue; 1706 1707 if (is_vmalloc_or_module_addr((void *)orig_start)) 1708 kasan_release_vmalloc(orig_start, orig_end, 1709 va->va_start, va->va_end); 1710 1711 atomic_long_sub(nr, &vmap_lazy_nr); 1712 1713 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 1714 cond_resched_lock(&free_vmap_area_lock); 1715 } 1716 spin_unlock(&free_vmap_area_lock); 1717 return true; 1718 } 1719 1720 /* 1721 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 1722 * is already purging. 1723 */ 1724 static void try_purge_vmap_area_lazy(void) 1725 { 1726 if (mutex_trylock(&vmap_purge_lock)) { 1727 __purge_vmap_area_lazy(ULONG_MAX, 0); 1728 mutex_unlock(&vmap_purge_lock); 1729 } 1730 } 1731 1732 /* 1733 * Kick off a purge of the outstanding lazy areas. 1734 */ 1735 static void purge_vmap_area_lazy(void) 1736 { 1737 mutex_lock(&vmap_purge_lock); 1738 purge_fragmented_blocks_allcpus(); 1739 __purge_vmap_area_lazy(ULONG_MAX, 0); 1740 mutex_unlock(&vmap_purge_lock); 1741 } 1742 1743 /* 1744 * Free a vmap area, caller ensuring that the area has been unmapped 1745 * and flush_cache_vunmap had been called for the correct range 1746 * previously. 1747 */ 1748 static void free_vmap_area_noflush(struct vmap_area *va) 1749 { 1750 unsigned long nr_lazy; 1751 1752 spin_lock(&vmap_area_lock); 1753 unlink_va(va, &vmap_area_root); 1754 spin_unlock(&vmap_area_lock); 1755 1756 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 1757 PAGE_SHIFT, &vmap_lazy_nr); 1758 1759 /* 1760 * Merge or place it to the purge tree/list. 1761 */ 1762 spin_lock(&purge_vmap_area_lock); 1763 merge_or_add_vmap_area(va, 1764 &purge_vmap_area_root, &purge_vmap_area_list); 1765 spin_unlock(&purge_vmap_area_lock); 1766 1767 /* After this point, we may free va at any time */ 1768 if (unlikely(nr_lazy > lazy_max_pages())) 1769 try_purge_vmap_area_lazy(); 1770 } 1771 1772 /* 1773 * Free and unmap a vmap area 1774 */ 1775 static void free_unmap_vmap_area(struct vmap_area *va) 1776 { 1777 flush_cache_vunmap(va->va_start, va->va_end); 1778 vunmap_range_noflush(va->va_start, va->va_end); 1779 if (debug_pagealloc_enabled_static()) 1780 flush_tlb_kernel_range(va->va_start, va->va_end); 1781 1782 free_vmap_area_noflush(va); 1783 } 1784 1785 static struct vmap_area *find_vmap_area(unsigned long addr) 1786 { 1787 struct vmap_area *va; 1788 1789 spin_lock(&vmap_area_lock); 1790 va = __find_vmap_area(addr); 1791 spin_unlock(&vmap_area_lock); 1792 1793 return va; 1794 } 1795 1796 /*** Per cpu kva allocator ***/ 1797 1798 /* 1799 * vmap space is limited especially on 32 bit architectures. Ensure there is 1800 * room for at least 16 percpu vmap blocks per CPU. 1801 */ 1802 /* 1803 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 1804 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 1805 * instead (we just need a rough idea) 1806 */ 1807 #if BITS_PER_LONG == 32 1808 #define VMALLOC_SPACE (128UL*1024*1024) 1809 #else 1810 #define VMALLOC_SPACE (128UL*1024*1024*1024) 1811 #endif 1812 1813 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 1814 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 1815 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 1816 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 1817 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 1818 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 1819 #define VMAP_BBMAP_BITS \ 1820 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 1821 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 1822 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 1823 1824 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 1825 1826 struct vmap_block_queue { 1827 spinlock_t lock; 1828 struct list_head free; 1829 }; 1830 1831 struct vmap_block { 1832 spinlock_t lock; 1833 struct vmap_area *va; 1834 unsigned long free, dirty; 1835 unsigned long dirty_min, dirty_max; /*< dirty range */ 1836 struct list_head free_list; 1837 struct rcu_head rcu_head; 1838 struct list_head purge; 1839 }; 1840 1841 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 1842 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 1843 1844 /* 1845 * XArray of vmap blocks, indexed by address, to quickly find a vmap block 1846 * in the free path. Could get rid of this if we change the API to return a 1847 * "cookie" from alloc, to be passed to free. But no big deal yet. 1848 */ 1849 static DEFINE_XARRAY(vmap_blocks); 1850 1851 /* 1852 * We should probably have a fallback mechanism to allocate virtual memory 1853 * out of partially filled vmap blocks. However vmap block sizing should be 1854 * fairly reasonable according to the vmalloc size, so it shouldn't be a 1855 * big problem. 1856 */ 1857 1858 static unsigned long addr_to_vb_idx(unsigned long addr) 1859 { 1860 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 1861 addr /= VMAP_BLOCK_SIZE; 1862 return addr; 1863 } 1864 1865 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 1866 { 1867 unsigned long addr; 1868 1869 addr = va_start + (pages_off << PAGE_SHIFT); 1870 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 1871 return (void *)addr; 1872 } 1873 1874 /** 1875 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 1876 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 1877 * @order: how many 2^order pages should be occupied in newly allocated block 1878 * @gfp_mask: flags for the page level allocator 1879 * 1880 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 1881 */ 1882 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 1883 { 1884 struct vmap_block_queue *vbq; 1885 struct vmap_block *vb; 1886 struct vmap_area *va; 1887 unsigned long vb_idx; 1888 int node, err; 1889 void *vaddr; 1890 1891 node = numa_node_id(); 1892 1893 vb = kmalloc_node(sizeof(struct vmap_block), 1894 gfp_mask & GFP_RECLAIM_MASK, node); 1895 if (unlikely(!vb)) 1896 return ERR_PTR(-ENOMEM); 1897 1898 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 1899 VMALLOC_START, VMALLOC_END, 1900 node, gfp_mask); 1901 if (IS_ERR(va)) { 1902 kfree(vb); 1903 return ERR_CAST(va); 1904 } 1905 1906 vaddr = vmap_block_vaddr(va->va_start, 0); 1907 spin_lock_init(&vb->lock); 1908 vb->va = va; 1909 /* At least something should be left free */ 1910 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 1911 vb->free = VMAP_BBMAP_BITS - (1UL << order); 1912 vb->dirty = 0; 1913 vb->dirty_min = VMAP_BBMAP_BITS; 1914 vb->dirty_max = 0; 1915 INIT_LIST_HEAD(&vb->free_list); 1916 1917 vb_idx = addr_to_vb_idx(va->va_start); 1918 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask); 1919 if (err) { 1920 kfree(vb); 1921 free_vmap_area(va); 1922 return ERR_PTR(err); 1923 } 1924 1925 vbq = &get_cpu_var(vmap_block_queue); 1926 spin_lock(&vbq->lock); 1927 list_add_tail_rcu(&vb->free_list, &vbq->free); 1928 spin_unlock(&vbq->lock); 1929 put_cpu_var(vmap_block_queue); 1930 1931 return vaddr; 1932 } 1933 1934 static void free_vmap_block(struct vmap_block *vb) 1935 { 1936 struct vmap_block *tmp; 1937 1938 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start)); 1939 BUG_ON(tmp != vb); 1940 1941 free_vmap_area_noflush(vb->va); 1942 kfree_rcu(vb, rcu_head); 1943 } 1944 1945 static void purge_fragmented_blocks(int cpu) 1946 { 1947 LIST_HEAD(purge); 1948 struct vmap_block *vb; 1949 struct vmap_block *n_vb; 1950 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1951 1952 rcu_read_lock(); 1953 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1954 1955 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 1956 continue; 1957 1958 spin_lock(&vb->lock); 1959 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 1960 vb->free = 0; /* prevent further allocs after releasing lock */ 1961 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 1962 vb->dirty_min = 0; 1963 vb->dirty_max = VMAP_BBMAP_BITS; 1964 spin_lock(&vbq->lock); 1965 list_del_rcu(&vb->free_list); 1966 spin_unlock(&vbq->lock); 1967 spin_unlock(&vb->lock); 1968 list_add_tail(&vb->purge, &purge); 1969 } else 1970 spin_unlock(&vb->lock); 1971 } 1972 rcu_read_unlock(); 1973 1974 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 1975 list_del(&vb->purge); 1976 free_vmap_block(vb); 1977 } 1978 } 1979 1980 static void purge_fragmented_blocks_allcpus(void) 1981 { 1982 int cpu; 1983 1984 for_each_possible_cpu(cpu) 1985 purge_fragmented_blocks(cpu); 1986 } 1987 1988 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 1989 { 1990 struct vmap_block_queue *vbq; 1991 struct vmap_block *vb; 1992 void *vaddr = NULL; 1993 unsigned int order; 1994 1995 BUG_ON(offset_in_page(size)); 1996 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1997 if (WARN_ON(size == 0)) { 1998 /* 1999 * Allocating 0 bytes isn't what caller wants since 2000 * get_order(0) returns funny result. Just warn and terminate 2001 * early. 2002 */ 2003 return NULL; 2004 } 2005 order = get_order(size); 2006 2007 rcu_read_lock(); 2008 vbq = &get_cpu_var(vmap_block_queue); 2009 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2010 unsigned long pages_off; 2011 2012 spin_lock(&vb->lock); 2013 if (vb->free < (1UL << order)) { 2014 spin_unlock(&vb->lock); 2015 continue; 2016 } 2017 2018 pages_off = VMAP_BBMAP_BITS - vb->free; 2019 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 2020 vb->free -= 1UL << order; 2021 if (vb->free == 0) { 2022 spin_lock(&vbq->lock); 2023 list_del_rcu(&vb->free_list); 2024 spin_unlock(&vbq->lock); 2025 } 2026 2027 spin_unlock(&vb->lock); 2028 break; 2029 } 2030 2031 put_cpu_var(vmap_block_queue); 2032 rcu_read_unlock(); 2033 2034 /* Allocate new block if nothing was found */ 2035 if (!vaddr) 2036 vaddr = new_vmap_block(order, gfp_mask); 2037 2038 return vaddr; 2039 } 2040 2041 static void vb_free(unsigned long addr, unsigned long size) 2042 { 2043 unsigned long offset; 2044 unsigned int order; 2045 struct vmap_block *vb; 2046 2047 BUG_ON(offset_in_page(size)); 2048 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2049 2050 flush_cache_vunmap(addr, addr + size); 2051 2052 order = get_order(size); 2053 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; 2054 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr)); 2055 2056 vunmap_range_noflush(addr, addr + size); 2057 2058 if (debug_pagealloc_enabled_static()) 2059 flush_tlb_kernel_range(addr, addr + size); 2060 2061 spin_lock(&vb->lock); 2062 2063 /* Expand dirty range */ 2064 vb->dirty_min = min(vb->dirty_min, offset); 2065 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 2066 2067 vb->dirty += 1UL << order; 2068 if (vb->dirty == VMAP_BBMAP_BITS) { 2069 BUG_ON(vb->free); 2070 spin_unlock(&vb->lock); 2071 free_vmap_block(vb); 2072 } else 2073 spin_unlock(&vb->lock); 2074 } 2075 2076 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 2077 { 2078 int cpu; 2079 2080 if (unlikely(!vmap_initialized)) 2081 return; 2082 2083 might_sleep(); 2084 2085 for_each_possible_cpu(cpu) { 2086 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2087 struct vmap_block *vb; 2088 2089 rcu_read_lock(); 2090 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2091 spin_lock(&vb->lock); 2092 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) { 2093 unsigned long va_start = vb->va->va_start; 2094 unsigned long s, e; 2095 2096 s = va_start + (vb->dirty_min << PAGE_SHIFT); 2097 e = va_start + (vb->dirty_max << PAGE_SHIFT); 2098 2099 start = min(s, start); 2100 end = max(e, end); 2101 2102 flush = 1; 2103 } 2104 spin_unlock(&vb->lock); 2105 } 2106 rcu_read_unlock(); 2107 } 2108 2109 mutex_lock(&vmap_purge_lock); 2110 purge_fragmented_blocks_allcpus(); 2111 if (!__purge_vmap_area_lazy(start, end) && flush) 2112 flush_tlb_kernel_range(start, end); 2113 mutex_unlock(&vmap_purge_lock); 2114 } 2115 2116 /** 2117 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 2118 * 2119 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 2120 * to amortize TLB flushing overheads. What this means is that any page you 2121 * have now, may, in a former life, have been mapped into kernel virtual 2122 * address by the vmap layer and so there might be some CPUs with TLB entries 2123 * still referencing that page (additional to the regular 1:1 kernel mapping). 2124 * 2125 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 2126 * be sure that none of the pages we have control over will have any aliases 2127 * from the vmap layer. 2128 */ 2129 void vm_unmap_aliases(void) 2130 { 2131 unsigned long start = ULONG_MAX, end = 0; 2132 int flush = 0; 2133 2134 _vm_unmap_aliases(start, end, flush); 2135 } 2136 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 2137 2138 /** 2139 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 2140 * @mem: the pointer returned by vm_map_ram 2141 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 2142 */ 2143 void vm_unmap_ram(const void *mem, unsigned int count) 2144 { 2145 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2146 unsigned long addr = (unsigned long)mem; 2147 struct vmap_area *va; 2148 2149 might_sleep(); 2150 BUG_ON(!addr); 2151 BUG_ON(addr < VMALLOC_START); 2152 BUG_ON(addr > VMALLOC_END); 2153 BUG_ON(!PAGE_ALIGNED(addr)); 2154 2155 kasan_poison_vmalloc(mem, size); 2156 2157 if (likely(count <= VMAP_MAX_ALLOC)) { 2158 debug_check_no_locks_freed(mem, size); 2159 vb_free(addr, size); 2160 return; 2161 } 2162 2163 va = find_vmap_area(addr); 2164 BUG_ON(!va); 2165 debug_check_no_locks_freed((void *)va->va_start, 2166 (va->va_end - va->va_start)); 2167 free_unmap_vmap_area(va); 2168 } 2169 EXPORT_SYMBOL(vm_unmap_ram); 2170 2171 /** 2172 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 2173 * @pages: an array of pointers to the pages to be mapped 2174 * @count: number of pages 2175 * @node: prefer to allocate data structures on this node 2176 * 2177 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 2178 * faster than vmap so it's good. But if you mix long-life and short-life 2179 * objects with vm_map_ram(), it could consume lots of address space through 2180 * fragmentation (especially on a 32bit machine). You could see failures in 2181 * the end. Please use this function for short-lived objects. 2182 * 2183 * Returns: a pointer to the address that has been mapped, or %NULL on failure 2184 */ 2185 void *vm_map_ram(struct page **pages, unsigned int count, int node) 2186 { 2187 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2188 unsigned long addr; 2189 void *mem; 2190 2191 if (likely(count <= VMAP_MAX_ALLOC)) { 2192 mem = vb_alloc(size, GFP_KERNEL); 2193 if (IS_ERR(mem)) 2194 return NULL; 2195 addr = (unsigned long)mem; 2196 } else { 2197 struct vmap_area *va; 2198 va = alloc_vmap_area(size, PAGE_SIZE, 2199 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 2200 if (IS_ERR(va)) 2201 return NULL; 2202 2203 addr = va->va_start; 2204 mem = (void *)addr; 2205 } 2206 2207 kasan_unpoison_vmalloc(mem, size); 2208 2209 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, 2210 pages, PAGE_SHIFT) < 0) { 2211 vm_unmap_ram(mem, count); 2212 return NULL; 2213 } 2214 2215 return mem; 2216 } 2217 EXPORT_SYMBOL(vm_map_ram); 2218 2219 static struct vm_struct *vmlist __initdata; 2220 2221 static inline unsigned int vm_area_page_order(struct vm_struct *vm) 2222 { 2223 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2224 return vm->page_order; 2225 #else 2226 return 0; 2227 #endif 2228 } 2229 2230 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) 2231 { 2232 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2233 vm->page_order = order; 2234 #else 2235 BUG_ON(order != 0); 2236 #endif 2237 } 2238 2239 /** 2240 * vm_area_add_early - add vmap area early during boot 2241 * @vm: vm_struct to add 2242 * 2243 * This function is used to add fixed kernel vm area to vmlist before 2244 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 2245 * should contain proper values and the other fields should be zero. 2246 * 2247 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2248 */ 2249 void __init vm_area_add_early(struct vm_struct *vm) 2250 { 2251 struct vm_struct *tmp, **p; 2252 2253 BUG_ON(vmap_initialized); 2254 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 2255 if (tmp->addr >= vm->addr) { 2256 BUG_ON(tmp->addr < vm->addr + vm->size); 2257 break; 2258 } else 2259 BUG_ON(tmp->addr + tmp->size > vm->addr); 2260 } 2261 vm->next = *p; 2262 *p = vm; 2263 } 2264 2265 /** 2266 * vm_area_register_early - register vmap area early during boot 2267 * @vm: vm_struct to register 2268 * @align: requested alignment 2269 * 2270 * This function is used to register kernel vm area before 2271 * vmalloc_init() is called. @vm->size and @vm->flags should contain 2272 * proper values on entry and other fields should be zero. On return, 2273 * vm->addr contains the allocated address. 2274 * 2275 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2276 */ 2277 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 2278 { 2279 unsigned long addr = ALIGN(VMALLOC_START, align); 2280 struct vm_struct *cur, **p; 2281 2282 BUG_ON(vmap_initialized); 2283 2284 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { 2285 if ((unsigned long)cur->addr - addr >= vm->size) 2286 break; 2287 addr = ALIGN((unsigned long)cur->addr + cur->size, align); 2288 } 2289 2290 BUG_ON(addr > VMALLOC_END - vm->size); 2291 vm->addr = (void *)addr; 2292 vm->next = *p; 2293 *p = vm; 2294 kasan_populate_early_vm_area_shadow(vm->addr, vm->size); 2295 } 2296 2297 static void vmap_init_free_space(void) 2298 { 2299 unsigned long vmap_start = 1; 2300 const unsigned long vmap_end = ULONG_MAX; 2301 struct vmap_area *busy, *free; 2302 2303 /* 2304 * B F B B B F 2305 * -|-----|.....|-----|-----|-----|.....|- 2306 * | The KVA space | 2307 * |<--------------------------------->| 2308 */ 2309 list_for_each_entry(busy, &vmap_area_list, list) { 2310 if (busy->va_start - vmap_start > 0) { 2311 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2312 if (!WARN_ON_ONCE(!free)) { 2313 free->va_start = vmap_start; 2314 free->va_end = busy->va_start; 2315 2316 insert_vmap_area_augment(free, NULL, 2317 &free_vmap_area_root, 2318 &free_vmap_area_list); 2319 } 2320 } 2321 2322 vmap_start = busy->va_end; 2323 } 2324 2325 if (vmap_end - vmap_start > 0) { 2326 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2327 if (!WARN_ON_ONCE(!free)) { 2328 free->va_start = vmap_start; 2329 free->va_end = vmap_end; 2330 2331 insert_vmap_area_augment(free, NULL, 2332 &free_vmap_area_root, 2333 &free_vmap_area_list); 2334 } 2335 } 2336 } 2337 2338 void __init vmalloc_init(void) 2339 { 2340 struct vmap_area *va; 2341 struct vm_struct *tmp; 2342 int i; 2343 2344 /* 2345 * Create the cache for vmap_area objects. 2346 */ 2347 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 2348 2349 for_each_possible_cpu(i) { 2350 struct vmap_block_queue *vbq; 2351 struct vfree_deferred *p; 2352 2353 vbq = &per_cpu(vmap_block_queue, i); 2354 spin_lock_init(&vbq->lock); 2355 INIT_LIST_HEAD(&vbq->free); 2356 p = &per_cpu(vfree_deferred, i); 2357 init_llist_head(&p->list); 2358 INIT_WORK(&p->wq, free_work); 2359 } 2360 2361 /* Import existing vmlist entries. */ 2362 for (tmp = vmlist; tmp; tmp = tmp->next) { 2363 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2364 if (WARN_ON_ONCE(!va)) 2365 continue; 2366 2367 va->va_start = (unsigned long)tmp->addr; 2368 va->va_end = va->va_start + tmp->size; 2369 va->vm = tmp; 2370 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 2371 } 2372 2373 /* 2374 * Now we can initialize a free vmap space. 2375 */ 2376 vmap_init_free_space(); 2377 vmap_initialized = true; 2378 } 2379 2380 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, 2381 struct vmap_area *va, unsigned long flags, const void *caller) 2382 { 2383 vm->flags = flags; 2384 vm->addr = (void *)va->va_start; 2385 vm->size = va->va_end - va->va_start; 2386 vm->caller = caller; 2387 va->vm = vm; 2388 } 2389 2390 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 2391 unsigned long flags, const void *caller) 2392 { 2393 spin_lock(&vmap_area_lock); 2394 setup_vmalloc_vm_locked(vm, va, flags, caller); 2395 spin_unlock(&vmap_area_lock); 2396 } 2397 2398 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 2399 { 2400 /* 2401 * Before removing VM_UNINITIALIZED, 2402 * we should make sure that vm has proper values. 2403 * Pair with smp_rmb() in show_numa_info(). 2404 */ 2405 smp_wmb(); 2406 vm->flags &= ~VM_UNINITIALIZED; 2407 } 2408 2409 static struct vm_struct *__get_vm_area_node(unsigned long size, 2410 unsigned long align, unsigned long shift, unsigned long flags, 2411 unsigned long start, unsigned long end, int node, 2412 gfp_t gfp_mask, const void *caller) 2413 { 2414 struct vmap_area *va; 2415 struct vm_struct *area; 2416 unsigned long requested_size = size; 2417 2418 BUG_ON(in_interrupt()); 2419 size = ALIGN(size, 1ul << shift); 2420 if (unlikely(!size)) 2421 return NULL; 2422 2423 if (flags & VM_IOREMAP) 2424 align = 1ul << clamp_t(int, get_count_order_long(size), 2425 PAGE_SHIFT, IOREMAP_MAX_ORDER); 2426 2427 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 2428 if (unlikely(!area)) 2429 return NULL; 2430 2431 if (!(flags & VM_NO_GUARD)) 2432 size += PAGE_SIZE; 2433 2434 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 2435 if (IS_ERR(va)) { 2436 kfree(area); 2437 return NULL; 2438 } 2439 2440 kasan_unpoison_vmalloc((void *)va->va_start, requested_size); 2441 2442 setup_vmalloc_vm(area, va, flags, caller); 2443 2444 return area; 2445 } 2446 2447 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 2448 unsigned long start, unsigned long end, 2449 const void *caller) 2450 { 2451 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, 2452 NUMA_NO_NODE, GFP_KERNEL, caller); 2453 } 2454 2455 /** 2456 * get_vm_area - reserve a contiguous kernel virtual area 2457 * @size: size of the area 2458 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 2459 * 2460 * Search an area of @size in the kernel virtual mapping area, 2461 * and reserved it for out purposes. Returns the area descriptor 2462 * on success or %NULL on failure. 2463 * 2464 * Return: the area descriptor on success or %NULL on failure. 2465 */ 2466 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 2467 { 2468 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2469 VMALLOC_START, VMALLOC_END, 2470 NUMA_NO_NODE, GFP_KERNEL, 2471 __builtin_return_address(0)); 2472 } 2473 2474 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 2475 const void *caller) 2476 { 2477 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2478 VMALLOC_START, VMALLOC_END, 2479 NUMA_NO_NODE, GFP_KERNEL, caller); 2480 } 2481 2482 /** 2483 * find_vm_area - find a continuous kernel virtual area 2484 * @addr: base address 2485 * 2486 * Search for the kernel VM area starting at @addr, and return it. 2487 * It is up to the caller to do all required locking to keep the returned 2488 * pointer valid. 2489 * 2490 * Return: the area descriptor on success or %NULL on failure. 2491 */ 2492 struct vm_struct *find_vm_area(const void *addr) 2493 { 2494 struct vmap_area *va; 2495 2496 va = find_vmap_area((unsigned long)addr); 2497 if (!va) 2498 return NULL; 2499 2500 return va->vm; 2501 } 2502 2503 /** 2504 * remove_vm_area - find and remove a continuous kernel virtual area 2505 * @addr: base address 2506 * 2507 * Search for the kernel VM area starting at @addr, and remove it. 2508 * This function returns the found VM area, but using it is NOT safe 2509 * on SMP machines, except for its size or flags. 2510 * 2511 * Return: the area descriptor on success or %NULL on failure. 2512 */ 2513 struct vm_struct *remove_vm_area(const void *addr) 2514 { 2515 struct vmap_area *va; 2516 2517 might_sleep(); 2518 2519 spin_lock(&vmap_area_lock); 2520 va = __find_vmap_area((unsigned long)addr); 2521 if (va && va->vm) { 2522 struct vm_struct *vm = va->vm; 2523 2524 va->vm = NULL; 2525 spin_unlock(&vmap_area_lock); 2526 2527 kasan_free_shadow(vm); 2528 free_unmap_vmap_area(va); 2529 2530 return vm; 2531 } 2532 2533 spin_unlock(&vmap_area_lock); 2534 return NULL; 2535 } 2536 2537 static inline void set_area_direct_map(const struct vm_struct *area, 2538 int (*set_direct_map)(struct page *page)) 2539 { 2540 int i; 2541 2542 /* HUGE_VMALLOC passes small pages to set_direct_map */ 2543 for (i = 0; i < area->nr_pages; i++) 2544 if (page_address(area->pages[i])) 2545 set_direct_map(area->pages[i]); 2546 } 2547 2548 /* Handle removing and resetting vm mappings related to the vm_struct. */ 2549 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) 2550 { 2551 unsigned long start = ULONG_MAX, end = 0; 2552 unsigned int page_order = vm_area_page_order(area); 2553 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; 2554 int flush_dmap = 0; 2555 int i; 2556 2557 remove_vm_area(area->addr); 2558 2559 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ 2560 if (!flush_reset) 2561 return; 2562 2563 /* 2564 * If not deallocating pages, just do the flush of the VM area and 2565 * return. 2566 */ 2567 if (!deallocate_pages) { 2568 vm_unmap_aliases(); 2569 return; 2570 } 2571 2572 /* 2573 * If execution gets here, flush the vm mapping and reset the direct 2574 * map. Find the start and end range of the direct mappings to make sure 2575 * the vm_unmap_aliases() flush includes the direct map. 2576 */ 2577 for (i = 0; i < area->nr_pages; i += 1U << page_order) { 2578 unsigned long addr = (unsigned long)page_address(area->pages[i]); 2579 if (addr) { 2580 unsigned long page_size; 2581 2582 page_size = PAGE_SIZE << page_order; 2583 start = min(addr, start); 2584 end = max(addr + page_size, end); 2585 flush_dmap = 1; 2586 } 2587 } 2588 2589 /* 2590 * Set direct map to something invalid so that it won't be cached if 2591 * there are any accesses after the TLB flush, then flush the TLB and 2592 * reset the direct map permissions to the default. 2593 */ 2594 set_area_direct_map(area, set_direct_map_invalid_noflush); 2595 _vm_unmap_aliases(start, end, flush_dmap); 2596 set_area_direct_map(area, set_direct_map_default_noflush); 2597 } 2598 2599 static void __vunmap(const void *addr, int deallocate_pages) 2600 { 2601 struct vm_struct *area; 2602 2603 if (!addr) 2604 return; 2605 2606 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 2607 addr)) 2608 return; 2609 2610 area = find_vm_area(addr); 2611 if (unlikely(!area)) { 2612 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 2613 addr); 2614 return; 2615 } 2616 2617 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 2618 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 2619 2620 kasan_poison_vmalloc(area->addr, get_vm_area_size(area)); 2621 2622 vm_remove_mappings(area, deallocate_pages); 2623 2624 if (deallocate_pages) { 2625 unsigned int page_order = vm_area_page_order(area); 2626 int i; 2627 2628 for (i = 0; i < area->nr_pages; i += 1U << page_order) { 2629 struct page *page = area->pages[i]; 2630 2631 BUG_ON(!page); 2632 __free_pages(page, page_order); 2633 cond_resched(); 2634 } 2635 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); 2636 2637 kvfree(area->pages); 2638 } 2639 2640 kfree(area); 2641 } 2642 2643 static inline void __vfree_deferred(const void *addr) 2644 { 2645 /* 2646 * Use raw_cpu_ptr() because this can be called from preemptible 2647 * context. Preemption is absolutely fine here, because the llist_add() 2648 * implementation is lockless, so it works even if we are adding to 2649 * another cpu's list. schedule_work() should be fine with this too. 2650 */ 2651 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 2652 2653 if (llist_add((struct llist_node *)addr, &p->list)) 2654 schedule_work(&p->wq); 2655 } 2656 2657 /** 2658 * vfree_atomic - release memory allocated by vmalloc() 2659 * @addr: memory base address 2660 * 2661 * This one is just like vfree() but can be called in any atomic context 2662 * except NMIs. 2663 */ 2664 void vfree_atomic(const void *addr) 2665 { 2666 BUG_ON(in_nmi()); 2667 2668 kmemleak_free(addr); 2669 2670 if (!addr) 2671 return; 2672 __vfree_deferred(addr); 2673 } 2674 2675 static void __vfree(const void *addr) 2676 { 2677 if (unlikely(in_interrupt())) 2678 __vfree_deferred(addr); 2679 else 2680 __vunmap(addr, 1); 2681 } 2682 2683 /** 2684 * vfree - Release memory allocated by vmalloc() 2685 * @addr: Memory base address 2686 * 2687 * Free the virtually continuous memory area starting at @addr, as obtained 2688 * from one of the vmalloc() family of APIs. This will usually also free the 2689 * physical memory underlying the virtual allocation, but that memory is 2690 * reference counted, so it will not be freed until the last user goes away. 2691 * 2692 * If @addr is NULL, no operation is performed. 2693 * 2694 * Context: 2695 * May sleep if called *not* from interrupt context. 2696 * Must not be called in NMI context (strictly speaking, it could be 2697 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 2698 * conventions for vfree() arch-dependent would be a really bad idea). 2699 */ 2700 void vfree(const void *addr) 2701 { 2702 BUG_ON(in_nmi()); 2703 2704 kmemleak_free(addr); 2705 2706 might_sleep_if(!in_interrupt()); 2707 2708 if (!addr) 2709 return; 2710 2711 __vfree(addr); 2712 } 2713 EXPORT_SYMBOL(vfree); 2714 2715 /** 2716 * vunmap - release virtual mapping obtained by vmap() 2717 * @addr: memory base address 2718 * 2719 * Free the virtually contiguous memory area starting at @addr, 2720 * which was created from the page array passed to vmap(). 2721 * 2722 * Must not be called in interrupt context. 2723 */ 2724 void vunmap(const void *addr) 2725 { 2726 BUG_ON(in_interrupt()); 2727 might_sleep(); 2728 if (addr) 2729 __vunmap(addr, 0); 2730 } 2731 EXPORT_SYMBOL(vunmap); 2732 2733 /** 2734 * vmap - map an array of pages into virtually contiguous space 2735 * @pages: array of page pointers 2736 * @count: number of pages to map 2737 * @flags: vm_area->flags 2738 * @prot: page protection for the mapping 2739 * 2740 * Maps @count pages from @pages into contiguous kernel virtual space. 2741 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself 2742 * (which must be kmalloc or vmalloc memory) and one reference per pages in it 2743 * are transferred from the caller to vmap(), and will be freed / dropped when 2744 * vfree() is called on the return value. 2745 * 2746 * Return: the address of the area or %NULL on failure 2747 */ 2748 void *vmap(struct page **pages, unsigned int count, 2749 unsigned long flags, pgprot_t prot) 2750 { 2751 struct vm_struct *area; 2752 unsigned long addr; 2753 unsigned long size; /* In bytes */ 2754 2755 might_sleep(); 2756 2757 /* 2758 * Your top guard is someone else's bottom guard. Not having a top 2759 * guard compromises someone else's mappings too. 2760 */ 2761 if (WARN_ON_ONCE(flags & VM_NO_GUARD)) 2762 flags &= ~VM_NO_GUARD; 2763 2764 if (count > totalram_pages()) 2765 return NULL; 2766 2767 size = (unsigned long)count << PAGE_SHIFT; 2768 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 2769 if (!area) 2770 return NULL; 2771 2772 addr = (unsigned long)area->addr; 2773 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), 2774 pages, PAGE_SHIFT) < 0) { 2775 vunmap(area->addr); 2776 return NULL; 2777 } 2778 2779 if (flags & VM_MAP_PUT_PAGES) { 2780 area->pages = pages; 2781 area->nr_pages = count; 2782 } 2783 return area->addr; 2784 } 2785 EXPORT_SYMBOL(vmap); 2786 2787 #ifdef CONFIG_VMAP_PFN 2788 struct vmap_pfn_data { 2789 unsigned long *pfns; 2790 pgprot_t prot; 2791 unsigned int idx; 2792 }; 2793 2794 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) 2795 { 2796 struct vmap_pfn_data *data = private; 2797 2798 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx]))) 2799 return -EINVAL; 2800 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot)); 2801 return 0; 2802 } 2803 2804 /** 2805 * vmap_pfn - map an array of PFNs into virtually contiguous space 2806 * @pfns: array of PFNs 2807 * @count: number of pages to map 2808 * @prot: page protection for the mapping 2809 * 2810 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns 2811 * the start address of the mapping. 2812 */ 2813 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) 2814 { 2815 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; 2816 struct vm_struct *area; 2817 2818 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, 2819 __builtin_return_address(0)); 2820 if (!area) 2821 return NULL; 2822 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2823 count * PAGE_SIZE, vmap_pfn_apply, &data)) { 2824 free_vm_area(area); 2825 return NULL; 2826 } 2827 return area->addr; 2828 } 2829 EXPORT_SYMBOL_GPL(vmap_pfn); 2830 #endif /* CONFIG_VMAP_PFN */ 2831 2832 static inline unsigned int 2833 vm_area_alloc_pages(gfp_t gfp, int nid, 2834 unsigned int order, unsigned int nr_pages, struct page **pages) 2835 { 2836 unsigned int nr_allocated = 0; 2837 struct page *page; 2838 int i; 2839 2840 /* 2841 * For order-0 pages we make use of bulk allocator, if 2842 * the page array is partly or not at all populated due 2843 * to fails, fallback to a single page allocator that is 2844 * more permissive. 2845 */ 2846 if (!order) { 2847 while (nr_allocated < nr_pages) { 2848 unsigned int nr, nr_pages_request; 2849 2850 /* 2851 * A maximum allowed request is hard-coded and is 100 2852 * pages per call. That is done in order to prevent a 2853 * long preemption off scenario in the bulk-allocator 2854 * so the range is [1:100]. 2855 */ 2856 nr_pages_request = min(100U, nr_pages - nr_allocated); 2857 2858 /* memory allocation should consider mempolicy, we can't 2859 * wrongly use nearest node when nid == NUMA_NO_NODE, 2860 * otherwise memory may be allocated in only one node, 2861 * but mempolcy want to alloc memory by interleaving. 2862 */ 2863 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) 2864 nr = alloc_pages_bulk_array_mempolicy(gfp, 2865 nr_pages_request, 2866 pages + nr_allocated); 2867 2868 else 2869 nr = alloc_pages_bulk_array_node(gfp, nid, 2870 nr_pages_request, 2871 pages + nr_allocated); 2872 2873 nr_allocated += nr; 2874 cond_resched(); 2875 2876 /* 2877 * If zero or pages were obtained partly, 2878 * fallback to a single page allocator. 2879 */ 2880 if (nr != nr_pages_request) 2881 break; 2882 } 2883 } else 2884 /* 2885 * Compound pages required for remap_vmalloc_page if 2886 * high-order pages. 2887 */ 2888 gfp |= __GFP_COMP; 2889 2890 /* High-order pages or fallback path if "bulk" fails. */ 2891 2892 while (nr_allocated < nr_pages) { 2893 if (fatal_signal_pending(current)) 2894 break; 2895 2896 if (nid == NUMA_NO_NODE) 2897 page = alloc_pages(gfp, order); 2898 else 2899 page = alloc_pages_node(nid, gfp, order); 2900 if (unlikely(!page)) 2901 break; 2902 2903 /* 2904 * Careful, we allocate and map page-order pages, but 2905 * tracking is done per PAGE_SIZE page so as to keep the 2906 * vm_struct APIs independent of the physical/mapped size. 2907 */ 2908 for (i = 0; i < (1U << order); i++) 2909 pages[nr_allocated + i] = page + i; 2910 2911 cond_resched(); 2912 nr_allocated += 1U << order; 2913 } 2914 2915 return nr_allocated; 2916 } 2917 2918 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 2919 pgprot_t prot, unsigned int page_shift, 2920 int node) 2921 { 2922 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 2923 const gfp_t orig_gfp_mask = gfp_mask; 2924 unsigned long addr = (unsigned long)area->addr; 2925 unsigned long size = get_vm_area_size(area); 2926 unsigned long array_size; 2927 unsigned int nr_small_pages = size >> PAGE_SHIFT; 2928 unsigned int page_order; 2929 2930 array_size = (unsigned long)nr_small_pages * sizeof(struct page *); 2931 gfp_mask |= __GFP_NOWARN; 2932 if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) 2933 gfp_mask |= __GFP_HIGHMEM; 2934 2935 /* Please note that the recursion is strictly bounded. */ 2936 if (array_size > PAGE_SIZE) { 2937 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node, 2938 area->caller); 2939 } else { 2940 area->pages = kmalloc_node(array_size, nested_gfp, node); 2941 } 2942 2943 if (!area->pages) { 2944 warn_alloc(orig_gfp_mask, NULL, 2945 "vmalloc error: size %lu, failed to allocated page array size %lu", 2946 nr_small_pages * PAGE_SIZE, array_size); 2947 free_vm_area(area); 2948 return NULL; 2949 } 2950 2951 set_vm_area_page_order(area, page_shift - PAGE_SHIFT); 2952 page_order = vm_area_page_order(area); 2953 2954 area->nr_pages = vm_area_alloc_pages(gfp_mask, node, 2955 page_order, nr_small_pages, area->pages); 2956 2957 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 2958 2959 /* 2960 * If not enough pages were obtained to accomplish an 2961 * allocation request, free them via __vfree() if any. 2962 */ 2963 if (area->nr_pages != nr_small_pages) { 2964 warn_alloc(orig_gfp_mask, NULL, 2965 "vmalloc error: size %lu, page order %u, failed to allocate pages", 2966 area->nr_pages * PAGE_SIZE, page_order); 2967 goto fail; 2968 } 2969 2970 if (vmap_pages_range(addr, addr + size, prot, area->pages, 2971 page_shift) < 0) { 2972 warn_alloc(orig_gfp_mask, NULL, 2973 "vmalloc error: size %lu, failed to map pages", 2974 area->nr_pages * PAGE_SIZE); 2975 goto fail; 2976 } 2977 2978 return area->addr; 2979 2980 fail: 2981 __vfree(area->addr); 2982 return NULL; 2983 } 2984 2985 /** 2986 * __vmalloc_node_range - allocate virtually contiguous memory 2987 * @size: allocation size 2988 * @align: desired alignment 2989 * @start: vm area range start 2990 * @end: vm area range end 2991 * @gfp_mask: flags for the page level allocator 2992 * @prot: protection mask for the allocated pages 2993 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 2994 * @node: node to use for allocation or NUMA_NO_NODE 2995 * @caller: caller's return address 2996 * 2997 * Allocate enough pages to cover @size from the page level 2998 * allocator with @gfp_mask flags. Please note that the full set of gfp 2999 * flags are not supported. GFP_KERNEL would be a preferred allocation mode 3000 * but GFP_NOFS and GFP_NOIO are supported as well. Zone modifiers are not 3001 * supported. From the reclaim modifiers__GFP_DIRECT_RECLAIM is required (aka 3002 * GFP_NOWAIT is not supported) and only __GFP_NOFAIL is supported (aka 3003 * __GFP_NORETRY and __GFP_RETRY_MAYFAIL are not supported). 3004 * __GFP_NOWARN can be used to suppress error messages about failures. 3005 * 3006 * Map them into contiguous kernel virtual space, using a pagetable 3007 * protection of @prot. 3008 * 3009 * Return: the address of the area or %NULL on failure 3010 */ 3011 void *__vmalloc_node_range(unsigned long size, unsigned long align, 3012 unsigned long start, unsigned long end, gfp_t gfp_mask, 3013 pgprot_t prot, unsigned long vm_flags, int node, 3014 const void *caller) 3015 { 3016 struct vm_struct *area; 3017 void *addr; 3018 unsigned long real_size = size; 3019 unsigned long real_align = align; 3020 unsigned int shift = PAGE_SHIFT; 3021 3022 if (WARN_ON_ONCE(!size)) 3023 return NULL; 3024 3025 if ((size >> PAGE_SHIFT) > totalram_pages()) { 3026 warn_alloc(gfp_mask, NULL, 3027 "vmalloc error: size %lu, exceeds total pages", 3028 real_size); 3029 return NULL; 3030 } 3031 3032 if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP)) { 3033 unsigned long size_per_node; 3034 3035 /* 3036 * Try huge pages. Only try for PAGE_KERNEL allocations, 3037 * others like modules don't yet expect huge pages in 3038 * their allocations due to apply_to_page_range not 3039 * supporting them. 3040 */ 3041 3042 size_per_node = size; 3043 if (node == NUMA_NO_NODE) 3044 size_per_node /= num_online_nodes(); 3045 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE) 3046 shift = PMD_SHIFT; 3047 else 3048 shift = arch_vmap_pte_supported_shift(size_per_node); 3049 3050 align = max(real_align, 1UL << shift); 3051 size = ALIGN(real_size, 1UL << shift); 3052 } 3053 3054 again: 3055 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC | 3056 VM_UNINITIALIZED | vm_flags, start, end, node, 3057 gfp_mask, caller); 3058 if (!area) { 3059 warn_alloc(gfp_mask, NULL, 3060 "vmalloc error: size %lu, vm_struct allocation failed", 3061 real_size); 3062 goto fail; 3063 } 3064 3065 addr = __vmalloc_area_node(area, gfp_mask, prot, shift, node); 3066 if (!addr) 3067 goto fail; 3068 3069 /* 3070 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 3071 * flag. It means that vm_struct is not fully initialized. 3072 * Now, it is fully initialized, so remove this flag here. 3073 */ 3074 clear_vm_uninitialized_flag(area); 3075 3076 size = PAGE_ALIGN(size); 3077 kmemleak_vmalloc(area, size, gfp_mask); 3078 3079 return addr; 3080 3081 fail: 3082 if (shift > PAGE_SHIFT) { 3083 shift = PAGE_SHIFT; 3084 align = real_align; 3085 size = real_size; 3086 goto again; 3087 } 3088 3089 return NULL; 3090 } 3091 3092 /** 3093 * __vmalloc_node - allocate virtually contiguous memory 3094 * @size: allocation size 3095 * @align: desired alignment 3096 * @gfp_mask: flags for the page level allocator 3097 * @node: node to use for allocation or NUMA_NO_NODE 3098 * @caller: caller's return address 3099 * 3100 * Allocate enough pages to cover @size from the page level allocator with 3101 * @gfp_mask flags. Map them into contiguous kernel virtual space. 3102 * 3103 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 3104 * and __GFP_NOFAIL are not supported 3105 * 3106 * Any use of gfp flags outside of GFP_KERNEL should be consulted 3107 * with mm people. 3108 * 3109 * Return: pointer to the allocated memory or %NULL on error 3110 */ 3111 void *__vmalloc_node(unsigned long size, unsigned long align, 3112 gfp_t gfp_mask, int node, const void *caller) 3113 { 3114 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 3115 gfp_mask, PAGE_KERNEL, 0, node, caller); 3116 } 3117 /* 3118 * This is only for performance analysis of vmalloc and stress purpose. 3119 * It is required by vmalloc test module, therefore do not use it other 3120 * than that. 3121 */ 3122 #ifdef CONFIG_TEST_VMALLOC_MODULE 3123 EXPORT_SYMBOL_GPL(__vmalloc_node); 3124 #endif 3125 3126 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 3127 { 3128 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE, 3129 __builtin_return_address(0)); 3130 } 3131 EXPORT_SYMBOL(__vmalloc); 3132 3133 /** 3134 * vmalloc - allocate virtually contiguous memory 3135 * @size: allocation size 3136 * 3137 * Allocate enough pages to cover @size from the page level 3138 * allocator and map them into contiguous kernel virtual space. 3139 * 3140 * For tight control over page level allocator and protection flags 3141 * use __vmalloc() instead. 3142 * 3143 * Return: pointer to the allocated memory or %NULL on error 3144 */ 3145 void *vmalloc(unsigned long size) 3146 { 3147 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE, 3148 __builtin_return_address(0)); 3149 } 3150 EXPORT_SYMBOL(vmalloc); 3151 3152 /** 3153 * vmalloc_no_huge - allocate virtually contiguous memory using small pages 3154 * @size: allocation size 3155 * 3156 * Allocate enough non-huge pages to cover @size from the page level 3157 * allocator and map them into contiguous kernel virtual space. 3158 * 3159 * Return: pointer to the allocated memory or %NULL on error 3160 */ 3161 void *vmalloc_no_huge(unsigned long size) 3162 { 3163 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 3164 GFP_KERNEL, PAGE_KERNEL, VM_NO_HUGE_VMAP, 3165 NUMA_NO_NODE, __builtin_return_address(0)); 3166 } 3167 EXPORT_SYMBOL(vmalloc_no_huge); 3168 3169 /** 3170 * vzalloc - allocate virtually contiguous memory with zero fill 3171 * @size: allocation size 3172 * 3173 * Allocate enough pages to cover @size from the page level 3174 * allocator and map them into contiguous kernel virtual space. 3175 * The memory allocated is set to zero. 3176 * 3177 * For tight control over page level allocator and protection flags 3178 * use __vmalloc() instead. 3179 * 3180 * Return: pointer to the allocated memory or %NULL on error 3181 */ 3182 void *vzalloc(unsigned long size) 3183 { 3184 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 3185 __builtin_return_address(0)); 3186 } 3187 EXPORT_SYMBOL(vzalloc); 3188 3189 /** 3190 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 3191 * @size: allocation size 3192 * 3193 * The resulting memory area is zeroed so it can be mapped to userspace 3194 * without leaking data. 3195 * 3196 * Return: pointer to the allocated memory or %NULL on error 3197 */ 3198 void *vmalloc_user(unsigned long size) 3199 { 3200 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3201 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 3202 VM_USERMAP, NUMA_NO_NODE, 3203 __builtin_return_address(0)); 3204 } 3205 EXPORT_SYMBOL(vmalloc_user); 3206 3207 /** 3208 * vmalloc_node - allocate memory on a specific node 3209 * @size: allocation size 3210 * @node: numa node 3211 * 3212 * Allocate enough pages to cover @size from the page level 3213 * allocator and map them into contiguous kernel virtual space. 3214 * 3215 * For tight control over page level allocator and protection flags 3216 * use __vmalloc() instead. 3217 * 3218 * Return: pointer to the allocated memory or %NULL on error 3219 */ 3220 void *vmalloc_node(unsigned long size, int node) 3221 { 3222 return __vmalloc_node(size, 1, GFP_KERNEL, node, 3223 __builtin_return_address(0)); 3224 } 3225 EXPORT_SYMBOL(vmalloc_node); 3226 3227 /** 3228 * vzalloc_node - allocate memory on a specific node with zero fill 3229 * @size: allocation size 3230 * @node: numa node 3231 * 3232 * Allocate enough pages to cover @size from the page level 3233 * allocator and map them into contiguous kernel virtual space. 3234 * The memory allocated is set to zero. 3235 * 3236 * Return: pointer to the allocated memory or %NULL on error 3237 */ 3238 void *vzalloc_node(unsigned long size, int node) 3239 { 3240 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node, 3241 __builtin_return_address(0)); 3242 } 3243 EXPORT_SYMBOL(vzalloc_node); 3244 3245 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 3246 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3247 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 3248 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 3249 #else 3250 /* 3251 * 64b systems should always have either DMA or DMA32 zones. For others 3252 * GFP_DMA32 should do the right thing and use the normal zone. 3253 */ 3254 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3255 #endif 3256 3257 /** 3258 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 3259 * @size: allocation size 3260 * 3261 * Allocate enough 32bit PA addressable pages to cover @size from the 3262 * page level allocator and map them into contiguous kernel virtual space. 3263 * 3264 * Return: pointer to the allocated memory or %NULL on error 3265 */ 3266 void *vmalloc_32(unsigned long size) 3267 { 3268 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, 3269 __builtin_return_address(0)); 3270 } 3271 EXPORT_SYMBOL(vmalloc_32); 3272 3273 /** 3274 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 3275 * @size: allocation size 3276 * 3277 * The resulting memory area is 32bit addressable and zeroed so it can be 3278 * mapped to userspace without leaking data. 3279 * 3280 * Return: pointer to the allocated memory or %NULL on error 3281 */ 3282 void *vmalloc_32_user(unsigned long size) 3283 { 3284 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3285 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 3286 VM_USERMAP, NUMA_NO_NODE, 3287 __builtin_return_address(0)); 3288 } 3289 EXPORT_SYMBOL(vmalloc_32_user); 3290 3291 /* 3292 * small helper routine , copy contents to buf from addr. 3293 * If the page is not present, fill zero. 3294 */ 3295 3296 static int aligned_vread(char *buf, char *addr, unsigned long count) 3297 { 3298 struct page *p; 3299 int copied = 0; 3300 3301 while (count) { 3302 unsigned long offset, length; 3303 3304 offset = offset_in_page(addr); 3305 length = PAGE_SIZE - offset; 3306 if (length > count) 3307 length = count; 3308 p = vmalloc_to_page(addr); 3309 /* 3310 * To do safe access to this _mapped_ area, we need 3311 * lock. But adding lock here means that we need to add 3312 * overhead of vmalloc()/vfree() calls for this _debug_ 3313 * interface, rarely used. Instead of that, we'll use 3314 * kmap() and get small overhead in this access function. 3315 */ 3316 if (p) { 3317 /* We can expect USER0 is not used -- see vread() */ 3318 void *map = kmap_atomic(p); 3319 memcpy(buf, map + offset, length); 3320 kunmap_atomic(map); 3321 } else 3322 memset(buf, 0, length); 3323 3324 addr += length; 3325 buf += length; 3326 copied += length; 3327 count -= length; 3328 } 3329 return copied; 3330 } 3331 3332 /** 3333 * vread() - read vmalloc area in a safe way. 3334 * @buf: buffer for reading data 3335 * @addr: vm address. 3336 * @count: number of bytes to be read. 3337 * 3338 * This function checks that addr is a valid vmalloc'ed area, and 3339 * copy data from that area to a given buffer. If the given memory range 3340 * of [addr...addr+count) includes some valid address, data is copied to 3341 * proper area of @buf. If there are memory holes, they'll be zero-filled. 3342 * IOREMAP area is treated as memory hole and no copy is done. 3343 * 3344 * If [addr...addr+count) doesn't includes any intersects with alive 3345 * vm_struct area, returns 0. @buf should be kernel's buffer. 3346 * 3347 * Note: In usual ops, vread() is never necessary because the caller 3348 * should know vmalloc() area is valid and can use memcpy(). 3349 * This is for routines which have to access vmalloc area without 3350 * any information, as /proc/kcore. 3351 * 3352 * Return: number of bytes for which addr and buf should be increased 3353 * (same number as @count) or %0 if [addr...addr+count) doesn't 3354 * include any intersection with valid vmalloc area 3355 */ 3356 long vread(char *buf, char *addr, unsigned long count) 3357 { 3358 struct vmap_area *va; 3359 struct vm_struct *vm; 3360 char *vaddr, *buf_start = buf; 3361 unsigned long buflen = count; 3362 unsigned long n; 3363 3364 /* Don't allow overflow */ 3365 if ((unsigned long) addr + count < count) 3366 count = -(unsigned long) addr; 3367 3368 spin_lock(&vmap_area_lock); 3369 va = find_vmap_area_exceed_addr((unsigned long)addr); 3370 if (!va) 3371 goto finished; 3372 3373 /* no intersects with alive vmap_area */ 3374 if ((unsigned long)addr + count <= va->va_start) 3375 goto finished; 3376 3377 list_for_each_entry_from(va, &vmap_area_list, list) { 3378 if (!count) 3379 break; 3380 3381 if (!va->vm) 3382 continue; 3383 3384 vm = va->vm; 3385 vaddr = (char *) vm->addr; 3386 if (addr >= vaddr + get_vm_area_size(vm)) 3387 continue; 3388 while (addr < vaddr) { 3389 if (count == 0) 3390 goto finished; 3391 *buf = '\0'; 3392 buf++; 3393 addr++; 3394 count--; 3395 } 3396 n = vaddr + get_vm_area_size(vm) - addr; 3397 if (n > count) 3398 n = count; 3399 if (!(vm->flags & VM_IOREMAP)) 3400 aligned_vread(buf, addr, n); 3401 else /* IOREMAP area is treated as memory hole */ 3402 memset(buf, 0, n); 3403 buf += n; 3404 addr += n; 3405 count -= n; 3406 } 3407 finished: 3408 spin_unlock(&vmap_area_lock); 3409 3410 if (buf == buf_start) 3411 return 0; 3412 /* zero-fill memory holes */ 3413 if (buf != buf_start + buflen) 3414 memset(buf, 0, buflen - (buf - buf_start)); 3415 3416 return buflen; 3417 } 3418 3419 /** 3420 * remap_vmalloc_range_partial - map vmalloc pages to userspace 3421 * @vma: vma to cover 3422 * @uaddr: target user address to start at 3423 * @kaddr: virtual address of vmalloc kernel memory 3424 * @pgoff: offset from @kaddr to start at 3425 * @size: size of map area 3426 * 3427 * Returns: 0 for success, -Exxx on failure 3428 * 3429 * This function checks that @kaddr is a valid vmalloc'ed area, 3430 * and that it is big enough to cover the range starting at 3431 * @uaddr in @vma. Will return failure if that criteria isn't 3432 * met. 3433 * 3434 * Similar to remap_pfn_range() (see mm/memory.c) 3435 */ 3436 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 3437 void *kaddr, unsigned long pgoff, 3438 unsigned long size) 3439 { 3440 struct vm_struct *area; 3441 unsigned long off; 3442 unsigned long end_index; 3443 3444 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) 3445 return -EINVAL; 3446 3447 size = PAGE_ALIGN(size); 3448 3449 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 3450 return -EINVAL; 3451 3452 area = find_vm_area(kaddr); 3453 if (!area) 3454 return -EINVAL; 3455 3456 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 3457 return -EINVAL; 3458 3459 if (check_add_overflow(size, off, &end_index) || 3460 end_index > get_vm_area_size(area)) 3461 return -EINVAL; 3462 kaddr += off; 3463 3464 do { 3465 struct page *page = vmalloc_to_page(kaddr); 3466 int ret; 3467 3468 ret = vm_insert_page(vma, uaddr, page); 3469 if (ret) 3470 return ret; 3471 3472 uaddr += PAGE_SIZE; 3473 kaddr += PAGE_SIZE; 3474 size -= PAGE_SIZE; 3475 } while (size > 0); 3476 3477 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 3478 3479 return 0; 3480 } 3481 3482 /** 3483 * remap_vmalloc_range - map vmalloc pages to userspace 3484 * @vma: vma to cover (map full range of vma) 3485 * @addr: vmalloc memory 3486 * @pgoff: number of pages into addr before first page to map 3487 * 3488 * Returns: 0 for success, -Exxx on failure 3489 * 3490 * This function checks that addr is a valid vmalloc'ed area, and 3491 * that it is big enough to cover the vma. Will return failure if 3492 * that criteria isn't met. 3493 * 3494 * Similar to remap_pfn_range() (see mm/memory.c) 3495 */ 3496 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 3497 unsigned long pgoff) 3498 { 3499 return remap_vmalloc_range_partial(vma, vma->vm_start, 3500 addr, pgoff, 3501 vma->vm_end - vma->vm_start); 3502 } 3503 EXPORT_SYMBOL(remap_vmalloc_range); 3504 3505 void free_vm_area(struct vm_struct *area) 3506 { 3507 struct vm_struct *ret; 3508 ret = remove_vm_area(area->addr); 3509 BUG_ON(ret != area); 3510 kfree(area); 3511 } 3512 EXPORT_SYMBOL_GPL(free_vm_area); 3513 3514 #ifdef CONFIG_SMP 3515 static struct vmap_area *node_to_va(struct rb_node *n) 3516 { 3517 return rb_entry_safe(n, struct vmap_area, rb_node); 3518 } 3519 3520 /** 3521 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 3522 * @addr: target address 3523 * 3524 * Returns: vmap_area if it is found. If there is no such area 3525 * the first highest(reverse order) vmap_area is returned 3526 * i.e. va->va_start < addr && va->va_end < addr or NULL 3527 * if there are no any areas before @addr. 3528 */ 3529 static struct vmap_area * 3530 pvm_find_va_enclose_addr(unsigned long addr) 3531 { 3532 struct vmap_area *va, *tmp; 3533 struct rb_node *n; 3534 3535 n = free_vmap_area_root.rb_node; 3536 va = NULL; 3537 3538 while (n) { 3539 tmp = rb_entry(n, struct vmap_area, rb_node); 3540 if (tmp->va_start <= addr) { 3541 va = tmp; 3542 if (tmp->va_end >= addr) 3543 break; 3544 3545 n = n->rb_right; 3546 } else { 3547 n = n->rb_left; 3548 } 3549 } 3550 3551 return va; 3552 } 3553 3554 /** 3555 * pvm_determine_end_from_reverse - find the highest aligned address 3556 * of free block below VMALLOC_END 3557 * @va: 3558 * in - the VA we start the search(reverse order); 3559 * out - the VA with the highest aligned end address. 3560 * @align: alignment for required highest address 3561 * 3562 * Returns: determined end address within vmap_area 3563 */ 3564 static unsigned long 3565 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 3566 { 3567 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3568 unsigned long addr; 3569 3570 if (likely(*va)) { 3571 list_for_each_entry_from_reverse((*va), 3572 &free_vmap_area_list, list) { 3573 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 3574 if ((*va)->va_start < addr) 3575 return addr; 3576 } 3577 } 3578 3579 return 0; 3580 } 3581 3582 /** 3583 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 3584 * @offsets: array containing offset of each area 3585 * @sizes: array containing size of each area 3586 * @nr_vms: the number of areas to allocate 3587 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 3588 * 3589 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 3590 * vm_structs on success, %NULL on failure 3591 * 3592 * Percpu allocator wants to use congruent vm areas so that it can 3593 * maintain the offsets among percpu areas. This function allocates 3594 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 3595 * be scattered pretty far, distance between two areas easily going up 3596 * to gigabytes. To avoid interacting with regular vmallocs, these 3597 * areas are allocated from top. 3598 * 3599 * Despite its complicated look, this allocator is rather simple. It 3600 * does everything top-down and scans free blocks from the end looking 3601 * for matching base. While scanning, if any of the areas do not fit the 3602 * base address is pulled down to fit the area. Scanning is repeated till 3603 * all the areas fit and then all necessary data structures are inserted 3604 * and the result is returned. 3605 */ 3606 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 3607 const size_t *sizes, int nr_vms, 3608 size_t align) 3609 { 3610 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 3611 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3612 struct vmap_area **vas, *va; 3613 struct vm_struct **vms; 3614 int area, area2, last_area, term_area; 3615 unsigned long base, start, size, end, last_end, orig_start, orig_end; 3616 bool purged = false; 3617 enum fit_type type; 3618 3619 /* verify parameters and allocate data structures */ 3620 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 3621 for (last_area = 0, area = 0; area < nr_vms; area++) { 3622 start = offsets[area]; 3623 end = start + sizes[area]; 3624 3625 /* is everything aligned properly? */ 3626 BUG_ON(!IS_ALIGNED(offsets[area], align)); 3627 BUG_ON(!IS_ALIGNED(sizes[area], align)); 3628 3629 /* detect the area with the highest address */ 3630 if (start > offsets[last_area]) 3631 last_area = area; 3632 3633 for (area2 = area + 1; area2 < nr_vms; area2++) { 3634 unsigned long start2 = offsets[area2]; 3635 unsigned long end2 = start2 + sizes[area2]; 3636 3637 BUG_ON(start2 < end && start < end2); 3638 } 3639 } 3640 last_end = offsets[last_area] + sizes[last_area]; 3641 3642 if (vmalloc_end - vmalloc_start < last_end) { 3643 WARN_ON(true); 3644 return NULL; 3645 } 3646 3647 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 3648 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 3649 if (!vas || !vms) 3650 goto err_free2; 3651 3652 for (area = 0; area < nr_vms; area++) { 3653 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 3654 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 3655 if (!vas[area] || !vms[area]) 3656 goto err_free; 3657 } 3658 retry: 3659 spin_lock(&free_vmap_area_lock); 3660 3661 /* start scanning - we scan from the top, begin with the last area */ 3662 area = term_area = last_area; 3663 start = offsets[area]; 3664 end = start + sizes[area]; 3665 3666 va = pvm_find_va_enclose_addr(vmalloc_end); 3667 base = pvm_determine_end_from_reverse(&va, align) - end; 3668 3669 while (true) { 3670 /* 3671 * base might have underflowed, add last_end before 3672 * comparing. 3673 */ 3674 if (base + last_end < vmalloc_start + last_end) 3675 goto overflow; 3676 3677 /* 3678 * Fitting base has not been found. 3679 */ 3680 if (va == NULL) 3681 goto overflow; 3682 3683 /* 3684 * If required width exceeds current VA block, move 3685 * base downwards and then recheck. 3686 */ 3687 if (base + end > va->va_end) { 3688 base = pvm_determine_end_from_reverse(&va, align) - end; 3689 term_area = area; 3690 continue; 3691 } 3692 3693 /* 3694 * If this VA does not fit, move base downwards and recheck. 3695 */ 3696 if (base + start < va->va_start) { 3697 va = node_to_va(rb_prev(&va->rb_node)); 3698 base = pvm_determine_end_from_reverse(&va, align) - end; 3699 term_area = area; 3700 continue; 3701 } 3702 3703 /* 3704 * This area fits, move on to the previous one. If 3705 * the previous one is the terminal one, we're done. 3706 */ 3707 area = (area + nr_vms - 1) % nr_vms; 3708 if (area == term_area) 3709 break; 3710 3711 start = offsets[area]; 3712 end = start + sizes[area]; 3713 va = pvm_find_va_enclose_addr(base + end); 3714 } 3715 3716 /* we've found a fitting base, insert all va's */ 3717 for (area = 0; area < nr_vms; area++) { 3718 int ret; 3719 3720 start = base + offsets[area]; 3721 size = sizes[area]; 3722 3723 va = pvm_find_va_enclose_addr(start); 3724 if (WARN_ON_ONCE(va == NULL)) 3725 /* It is a BUG(), but trigger recovery instead. */ 3726 goto recovery; 3727 3728 type = classify_va_fit_type(va, start, size); 3729 if (WARN_ON_ONCE(type == NOTHING_FIT)) 3730 /* It is a BUG(), but trigger recovery instead. */ 3731 goto recovery; 3732 3733 ret = adjust_va_to_fit_type(va, start, size, type); 3734 if (unlikely(ret)) 3735 goto recovery; 3736 3737 /* Allocated area. */ 3738 va = vas[area]; 3739 va->va_start = start; 3740 va->va_end = start + size; 3741 } 3742 3743 spin_unlock(&free_vmap_area_lock); 3744 3745 /* populate the kasan shadow space */ 3746 for (area = 0; area < nr_vms; area++) { 3747 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) 3748 goto err_free_shadow; 3749 3750 kasan_unpoison_vmalloc((void *)vas[area]->va_start, 3751 sizes[area]); 3752 } 3753 3754 /* insert all vm's */ 3755 spin_lock(&vmap_area_lock); 3756 for (area = 0; area < nr_vms; area++) { 3757 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list); 3758 3759 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, 3760 pcpu_get_vm_areas); 3761 } 3762 spin_unlock(&vmap_area_lock); 3763 3764 kfree(vas); 3765 return vms; 3766 3767 recovery: 3768 /* 3769 * Remove previously allocated areas. There is no 3770 * need in removing these areas from the busy tree, 3771 * because they are inserted only on the final step 3772 * and when pcpu_get_vm_areas() is success. 3773 */ 3774 while (area--) { 3775 orig_start = vas[area]->va_start; 3776 orig_end = vas[area]->va_end; 3777 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 3778 &free_vmap_area_list); 3779 if (va) 3780 kasan_release_vmalloc(orig_start, orig_end, 3781 va->va_start, va->va_end); 3782 vas[area] = NULL; 3783 } 3784 3785 overflow: 3786 spin_unlock(&free_vmap_area_lock); 3787 if (!purged) { 3788 purge_vmap_area_lazy(); 3789 purged = true; 3790 3791 /* Before "retry", check if we recover. */ 3792 for (area = 0; area < nr_vms; area++) { 3793 if (vas[area]) 3794 continue; 3795 3796 vas[area] = kmem_cache_zalloc( 3797 vmap_area_cachep, GFP_KERNEL); 3798 if (!vas[area]) 3799 goto err_free; 3800 } 3801 3802 goto retry; 3803 } 3804 3805 err_free: 3806 for (area = 0; area < nr_vms; area++) { 3807 if (vas[area]) 3808 kmem_cache_free(vmap_area_cachep, vas[area]); 3809 3810 kfree(vms[area]); 3811 } 3812 err_free2: 3813 kfree(vas); 3814 kfree(vms); 3815 return NULL; 3816 3817 err_free_shadow: 3818 spin_lock(&free_vmap_area_lock); 3819 /* 3820 * We release all the vmalloc shadows, even the ones for regions that 3821 * hadn't been successfully added. This relies on kasan_release_vmalloc 3822 * being able to tolerate this case. 3823 */ 3824 for (area = 0; area < nr_vms; area++) { 3825 orig_start = vas[area]->va_start; 3826 orig_end = vas[area]->va_end; 3827 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 3828 &free_vmap_area_list); 3829 if (va) 3830 kasan_release_vmalloc(orig_start, orig_end, 3831 va->va_start, va->va_end); 3832 vas[area] = NULL; 3833 kfree(vms[area]); 3834 } 3835 spin_unlock(&free_vmap_area_lock); 3836 kfree(vas); 3837 kfree(vms); 3838 return NULL; 3839 } 3840 3841 /** 3842 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 3843 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 3844 * @nr_vms: the number of allocated areas 3845 * 3846 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 3847 */ 3848 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 3849 { 3850 int i; 3851 3852 for (i = 0; i < nr_vms; i++) 3853 free_vm_area(vms[i]); 3854 kfree(vms); 3855 } 3856 #endif /* CONFIG_SMP */ 3857 3858 #ifdef CONFIG_PRINTK 3859 bool vmalloc_dump_obj(void *object) 3860 { 3861 struct vm_struct *vm; 3862 void *objp = (void *)PAGE_ALIGN((unsigned long)object); 3863 3864 vm = find_vm_area(objp); 3865 if (!vm) 3866 return false; 3867 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", 3868 vm->nr_pages, (unsigned long)vm->addr, vm->caller); 3869 return true; 3870 } 3871 #endif 3872 3873 #ifdef CONFIG_PROC_FS 3874 static void *s_start(struct seq_file *m, loff_t *pos) 3875 __acquires(&vmap_purge_lock) 3876 __acquires(&vmap_area_lock) 3877 { 3878 mutex_lock(&vmap_purge_lock); 3879 spin_lock(&vmap_area_lock); 3880 3881 return seq_list_start(&vmap_area_list, *pos); 3882 } 3883 3884 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 3885 { 3886 return seq_list_next(p, &vmap_area_list, pos); 3887 } 3888 3889 static void s_stop(struct seq_file *m, void *p) 3890 __releases(&vmap_area_lock) 3891 __releases(&vmap_purge_lock) 3892 { 3893 spin_unlock(&vmap_area_lock); 3894 mutex_unlock(&vmap_purge_lock); 3895 } 3896 3897 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 3898 { 3899 if (IS_ENABLED(CONFIG_NUMA)) { 3900 unsigned int nr, *counters = m->private; 3901 unsigned int step = 1U << vm_area_page_order(v); 3902 3903 if (!counters) 3904 return; 3905 3906 if (v->flags & VM_UNINITIALIZED) 3907 return; 3908 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 3909 smp_rmb(); 3910 3911 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 3912 3913 for (nr = 0; nr < v->nr_pages; nr += step) 3914 counters[page_to_nid(v->pages[nr])] += step; 3915 for_each_node_state(nr, N_HIGH_MEMORY) 3916 if (counters[nr]) 3917 seq_printf(m, " N%u=%u", nr, counters[nr]); 3918 } 3919 } 3920 3921 static void show_purge_info(struct seq_file *m) 3922 { 3923 struct vmap_area *va; 3924 3925 spin_lock(&purge_vmap_area_lock); 3926 list_for_each_entry(va, &purge_vmap_area_list, list) { 3927 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 3928 (void *)va->va_start, (void *)va->va_end, 3929 va->va_end - va->va_start); 3930 } 3931 spin_unlock(&purge_vmap_area_lock); 3932 } 3933 3934 static int s_show(struct seq_file *m, void *p) 3935 { 3936 struct vmap_area *va; 3937 struct vm_struct *v; 3938 3939 va = list_entry(p, struct vmap_area, list); 3940 3941 /* 3942 * s_show can encounter race with remove_vm_area, !vm on behalf 3943 * of vmap area is being tear down or vm_map_ram allocation. 3944 */ 3945 if (!va->vm) { 3946 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 3947 (void *)va->va_start, (void *)va->va_end, 3948 va->va_end - va->va_start); 3949 3950 goto final; 3951 } 3952 3953 v = va->vm; 3954 3955 seq_printf(m, "0x%pK-0x%pK %7ld", 3956 v->addr, v->addr + v->size, v->size); 3957 3958 if (v->caller) 3959 seq_printf(m, " %pS", v->caller); 3960 3961 if (v->nr_pages) 3962 seq_printf(m, " pages=%d", v->nr_pages); 3963 3964 if (v->phys_addr) 3965 seq_printf(m, " phys=%pa", &v->phys_addr); 3966 3967 if (v->flags & VM_IOREMAP) 3968 seq_puts(m, " ioremap"); 3969 3970 if (v->flags & VM_ALLOC) 3971 seq_puts(m, " vmalloc"); 3972 3973 if (v->flags & VM_MAP) 3974 seq_puts(m, " vmap"); 3975 3976 if (v->flags & VM_USERMAP) 3977 seq_puts(m, " user"); 3978 3979 if (v->flags & VM_DMA_COHERENT) 3980 seq_puts(m, " dma-coherent"); 3981 3982 if (is_vmalloc_addr(v->pages)) 3983 seq_puts(m, " vpages"); 3984 3985 show_numa_info(m, v); 3986 seq_putc(m, '\n'); 3987 3988 /* 3989 * As a final step, dump "unpurged" areas. 3990 */ 3991 final: 3992 if (list_is_last(&va->list, &vmap_area_list)) 3993 show_purge_info(m); 3994 3995 return 0; 3996 } 3997 3998 static const struct seq_operations vmalloc_op = { 3999 .start = s_start, 4000 .next = s_next, 4001 .stop = s_stop, 4002 .show = s_show, 4003 }; 4004 4005 static int __init proc_vmalloc_init(void) 4006 { 4007 if (IS_ENABLED(CONFIG_NUMA)) 4008 proc_create_seq_private("vmallocinfo", 0400, NULL, 4009 &vmalloc_op, 4010 nr_node_ids * sizeof(unsigned int), NULL); 4011 else 4012 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 4013 return 0; 4014 } 4015 module_init(proc_vmalloc_init); 4016 4017 #endif 4018