xref: /linux/mm/vmalloc.c (revision a5766f11cfd3a0c03450d99c8fe548c2940be884)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/highmem.h>
14 #include <linux/slab.h>
15 #include <linux/spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/seq_file.h>
18 #include <linux/debugobjects.h>
19 #include <linux/vmalloc.h>
20 #include <linux/kallsyms.h>
21 
22 #include <asm/uaccess.h>
23 #include <asm/tlbflush.h>
24 
25 
26 DEFINE_RWLOCK(vmlist_lock);
27 struct vm_struct *vmlist;
28 
29 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
30 			    int node, void *caller);
31 
32 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
33 {
34 	pte_t *pte;
35 
36 	pte = pte_offset_kernel(pmd, addr);
37 	do {
38 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
39 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
40 	} while (pte++, addr += PAGE_SIZE, addr != end);
41 }
42 
43 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
44 						unsigned long end)
45 {
46 	pmd_t *pmd;
47 	unsigned long next;
48 
49 	pmd = pmd_offset(pud, addr);
50 	do {
51 		next = pmd_addr_end(addr, end);
52 		if (pmd_none_or_clear_bad(pmd))
53 			continue;
54 		vunmap_pte_range(pmd, addr, next);
55 	} while (pmd++, addr = next, addr != end);
56 }
57 
58 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
59 						unsigned long end)
60 {
61 	pud_t *pud;
62 	unsigned long next;
63 
64 	pud = pud_offset(pgd, addr);
65 	do {
66 		next = pud_addr_end(addr, end);
67 		if (pud_none_or_clear_bad(pud))
68 			continue;
69 		vunmap_pmd_range(pud, addr, next);
70 	} while (pud++, addr = next, addr != end);
71 }
72 
73 void unmap_kernel_range(unsigned long addr, unsigned long size)
74 {
75 	pgd_t *pgd;
76 	unsigned long next;
77 	unsigned long start = addr;
78 	unsigned long end = addr + size;
79 
80 	BUG_ON(addr >= end);
81 	pgd = pgd_offset_k(addr);
82 	flush_cache_vunmap(addr, end);
83 	do {
84 		next = pgd_addr_end(addr, end);
85 		if (pgd_none_or_clear_bad(pgd))
86 			continue;
87 		vunmap_pud_range(pgd, addr, next);
88 	} while (pgd++, addr = next, addr != end);
89 	flush_tlb_kernel_range(start, end);
90 }
91 
92 static void unmap_vm_area(struct vm_struct *area)
93 {
94 	unmap_kernel_range((unsigned long)area->addr, area->size);
95 }
96 
97 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
98 			unsigned long end, pgprot_t prot, struct page ***pages)
99 {
100 	pte_t *pte;
101 
102 	pte = pte_alloc_kernel(pmd, addr);
103 	if (!pte)
104 		return -ENOMEM;
105 	do {
106 		struct page *page = **pages;
107 		WARN_ON(!pte_none(*pte));
108 		if (!page)
109 			return -ENOMEM;
110 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
111 		(*pages)++;
112 	} while (pte++, addr += PAGE_SIZE, addr != end);
113 	return 0;
114 }
115 
116 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 			unsigned long end, pgprot_t prot, struct page ***pages)
118 {
119 	pmd_t *pmd;
120 	unsigned long next;
121 
122 	pmd = pmd_alloc(&init_mm, pud, addr);
123 	if (!pmd)
124 		return -ENOMEM;
125 	do {
126 		next = pmd_addr_end(addr, end);
127 		if (vmap_pte_range(pmd, addr, next, prot, pages))
128 			return -ENOMEM;
129 	} while (pmd++, addr = next, addr != end);
130 	return 0;
131 }
132 
133 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 			unsigned long end, pgprot_t prot, struct page ***pages)
135 {
136 	pud_t *pud;
137 	unsigned long next;
138 
139 	pud = pud_alloc(&init_mm, pgd, addr);
140 	if (!pud)
141 		return -ENOMEM;
142 	do {
143 		next = pud_addr_end(addr, end);
144 		if (vmap_pmd_range(pud, addr, next, prot, pages))
145 			return -ENOMEM;
146 	} while (pud++, addr = next, addr != end);
147 	return 0;
148 }
149 
150 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
151 {
152 	pgd_t *pgd;
153 	unsigned long next;
154 	unsigned long addr = (unsigned long) area->addr;
155 	unsigned long end = addr + area->size - PAGE_SIZE;
156 	int err;
157 
158 	BUG_ON(addr >= end);
159 	pgd = pgd_offset_k(addr);
160 	do {
161 		next = pgd_addr_end(addr, end);
162 		err = vmap_pud_range(pgd, addr, next, prot, pages);
163 		if (err)
164 			break;
165 	} while (pgd++, addr = next, addr != end);
166 	flush_cache_vmap((unsigned long) area->addr, end);
167 	return err;
168 }
169 EXPORT_SYMBOL_GPL(map_vm_area);
170 
171 /*
172  * Map a vmalloc()-space virtual address to the physical page.
173  */
174 struct page *vmalloc_to_page(const void *vmalloc_addr)
175 {
176 	unsigned long addr = (unsigned long) vmalloc_addr;
177 	struct page *page = NULL;
178 	pgd_t *pgd = pgd_offset_k(addr);
179 	pud_t *pud;
180 	pmd_t *pmd;
181 	pte_t *ptep, pte;
182 
183 	/*
184 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
185 	 * architectures that do not vmalloc module space
186 	 */
187 	VIRTUAL_BUG_ON(!is_vmalloc_addr(vmalloc_addr) &&
188 			!is_module_address(addr));
189 
190 	if (!pgd_none(*pgd)) {
191 		pud = pud_offset(pgd, addr);
192 		if (!pud_none(*pud)) {
193 			pmd = pmd_offset(pud, addr);
194 			if (!pmd_none(*pmd)) {
195 				ptep = pte_offset_map(pmd, addr);
196 				pte = *ptep;
197 				if (pte_present(pte))
198 					page = pte_page(pte);
199 				pte_unmap(ptep);
200 			}
201 		}
202 	}
203 	return page;
204 }
205 EXPORT_SYMBOL(vmalloc_to_page);
206 
207 /*
208  * Map a vmalloc()-space virtual address to the physical page frame number.
209  */
210 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
211 {
212 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
213 }
214 EXPORT_SYMBOL(vmalloc_to_pfn);
215 
216 static struct vm_struct *
217 __get_vm_area_node(unsigned long size, unsigned long flags, unsigned long start,
218 		unsigned long end, int node, gfp_t gfp_mask, void *caller)
219 {
220 	struct vm_struct **p, *tmp, *area;
221 	unsigned long align = 1;
222 	unsigned long addr;
223 
224 	BUG_ON(in_interrupt());
225 	if (flags & VM_IOREMAP) {
226 		int bit = fls(size);
227 
228 		if (bit > IOREMAP_MAX_ORDER)
229 			bit = IOREMAP_MAX_ORDER;
230 		else if (bit < PAGE_SHIFT)
231 			bit = PAGE_SHIFT;
232 
233 		align = 1ul << bit;
234 	}
235 	addr = ALIGN(start, align);
236 	size = PAGE_ALIGN(size);
237 	if (unlikely(!size))
238 		return NULL;
239 
240 	area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
241 
242 	if (unlikely(!area))
243 		return NULL;
244 
245 	/*
246 	 * We always allocate a guard page.
247 	 */
248 	size += PAGE_SIZE;
249 
250 	write_lock(&vmlist_lock);
251 	for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
252 		if ((unsigned long)tmp->addr < addr) {
253 			if((unsigned long)tmp->addr + tmp->size >= addr)
254 				addr = ALIGN(tmp->size +
255 					     (unsigned long)tmp->addr, align);
256 			continue;
257 		}
258 		if ((size + addr) < addr)
259 			goto out;
260 		if (size + addr <= (unsigned long)tmp->addr)
261 			goto found;
262 		addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
263 		if (addr > end - size)
264 			goto out;
265 	}
266 	if ((size + addr) < addr)
267 		goto out;
268 	if (addr > end - size)
269 		goto out;
270 
271 found:
272 	area->next = *p;
273 	*p = area;
274 
275 	area->flags = flags;
276 	area->addr = (void *)addr;
277 	area->size = size;
278 	area->pages = NULL;
279 	area->nr_pages = 0;
280 	area->phys_addr = 0;
281 	area->caller = caller;
282 	write_unlock(&vmlist_lock);
283 
284 	return area;
285 
286 out:
287 	write_unlock(&vmlist_lock);
288 	kfree(area);
289 	if (printk_ratelimit())
290 		printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
291 	return NULL;
292 }
293 
294 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
295 				unsigned long start, unsigned long end)
296 {
297 	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
298 						__builtin_return_address(0));
299 }
300 EXPORT_SYMBOL_GPL(__get_vm_area);
301 
302 /**
303  *	get_vm_area  -  reserve a contiguous kernel virtual area
304  *	@size:		size of the area
305  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
306  *
307  *	Search an area of @size in the kernel virtual mapping area,
308  *	and reserved it for out purposes.  Returns the area descriptor
309  *	on success or %NULL on failure.
310  */
311 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
312 {
313 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
314 				-1, GFP_KERNEL, __builtin_return_address(0));
315 }
316 
317 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
318 				void *caller)
319 {
320 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
321 						-1, GFP_KERNEL, caller);
322 }
323 
324 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
325 				   int node, gfp_t gfp_mask)
326 {
327 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
328 				  gfp_mask, __builtin_return_address(0));
329 }
330 
331 /* Caller must hold vmlist_lock */
332 static struct vm_struct *__find_vm_area(const void *addr)
333 {
334 	struct vm_struct *tmp;
335 
336 	for (tmp = vmlist; tmp != NULL; tmp = tmp->next) {
337 		 if (tmp->addr == addr)
338 			break;
339 	}
340 
341 	return tmp;
342 }
343 
344 /* Caller must hold vmlist_lock */
345 static struct vm_struct *__remove_vm_area(const void *addr)
346 {
347 	struct vm_struct **p, *tmp;
348 
349 	for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
350 		 if (tmp->addr == addr)
351 			 goto found;
352 	}
353 	return NULL;
354 
355 found:
356 	unmap_vm_area(tmp);
357 	*p = tmp->next;
358 
359 	/*
360 	 * Remove the guard page.
361 	 */
362 	tmp->size -= PAGE_SIZE;
363 	return tmp;
364 }
365 
366 /**
367  *	remove_vm_area  -  find and remove a continuous kernel virtual area
368  *	@addr:		base address
369  *
370  *	Search for the kernel VM area starting at @addr, and remove it.
371  *	This function returns the found VM area, but using it is NOT safe
372  *	on SMP machines, except for its size or flags.
373  */
374 struct vm_struct *remove_vm_area(const void *addr)
375 {
376 	struct vm_struct *v;
377 	write_lock(&vmlist_lock);
378 	v = __remove_vm_area(addr);
379 	write_unlock(&vmlist_lock);
380 	return v;
381 }
382 
383 static void __vunmap(const void *addr, int deallocate_pages)
384 {
385 	struct vm_struct *area;
386 
387 	if (!addr)
388 		return;
389 
390 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
391 		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
392 		return;
393 	}
394 
395 	area = remove_vm_area(addr);
396 	if (unlikely(!area)) {
397 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
398 				addr);
399 		return;
400 	}
401 
402 	debug_check_no_locks_freed(addr, area->size);
403 	debug_check_no_obj_freed(addr, area->size);
404 
405 	if (deallocate_pages) {
406 		int i;
407 
408 		for (i = 0; i < area->nr_pages; i++) {
409 			struct page *page = area->pages[i];
410 
411 			BUG_ON(!page);
412 			__free_page(page);
413 		}
414 
415 		if (area->flags & VM_VPAGES)
416 			vfree(area->pages);
417 		else
418 			kfree(area->pages);
419 	}
420 
421 	kfree(area);
422 	return;
423 }
424 
425 /**
426  *	vfree  -  release memory allocated by vmalloc()
427  *	@addr:		memory base address
428  *
429  *	Free the virtually continuous memory area starting at @addr, as
430  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
431  *	NULL, no operation is performed.
432  *
433  *	Must not be called in interrupt context.
434  */
435 void vfree(const void *addr)
436 {
437 	BUG_ON(in_interrupt());
438 	__vunmap(addr, 1);
439 }
440 EXPORT_SYMBOL(vfree);
441 
442 /**
443  *	vunmap  -  release virtual mapping obtained by vmap()
444  *	@addr:		memory base address
445  *
446  *	Free the virtually contiguous memory area starting at @addr,
447  *	which was created from the page array passed to vmap().
448  *
449  *	Must not be called in interrupt context.
450  */
451 void vunmap(const void *addr)
452 {
453 	BUG_ON(in_interrupt());
454 	__vunmap(addr, 0);
455 }
456 EXPORT_SYMBOL(vunmap);
457 
458 /**
459  *	vmap  -  map an array of pages into virtually contiguous space
460  *	@pages:		array of page pointers
461  *	@count:		number of pages to map
462  *	@flags:		vm_area->flags
463  *	@prot:		page protection for the mapping
464  *
465  *	Maps @count pages from @pages into contiguous kernel virtual
466  *	space.
467  */
468 void *vmap(struct page **pages, unsigned int count,
469 		unsigned long flags, pgprot_t prot)
470 {
471 	struct vm_struct *area;
472 
473 	if (count > num_physpages)
474 		return NULL;
475 
476 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
477 					__builtin_return_address(0));
478 	if (!area)
479 		return NULL;
480 
481 	if (map_vm_area(area, prot, &pages)) {
482 		vunmap(area->addr);
483 		return NULL;
484 	}
485 
486 	return area->addr;
487 }
488 EXPORT_SYMBOL(vmap);
489 
490 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
491 				 pgprot_t prot, int node, void *caller)
492 {
493 	struct page **pages;
494 	unsigned int nr_pages, array_size, i;
495 
496 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
497 	array_size = (nr_pages * sizeof(struct page *));
498 
499 	area->nr_pages = nr_pages;
500 	/* Please note that the recursion is strictly bounded. */
501 	if (array_size > PAGE_SIZE) {
502 		pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
503 				PAGE_KERNEL, node, caller);
504 		area->flags |= VM_VPAGES;
505 	} else {
506 		pages = kmalloc_node(array_size,
507 				(gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
508 				node);
509 	}
510 	area->pages = pages;
511 	area->caller = caller;
512 	if (!area->pages) {
513 		remove_vm_area(area->addr);
514 		kfree(area);
515 		return NULL;
516 	}
517 
518 	for (i = 0; i < area->nr_pages; i++) {
519 		struct page *page;
520 
521 		if (node < 0)
522 			page = alloc_page(gfp_mask);
523 		else
524 			page = alloc_pages_node(node, gfp_mask, 0);
525 
526 		if (unlikely(!page)) {
527 			/* Successfully allocated i pages, free them in __vunmap() */
528 			area->nr_pages = i;
529 			goto fail;
530 		}
531 		area->pages[i] = page;
532 	}
533 
534 	if (map_vm_area(area, prot, &pages))
535 		goto fail;
536 	return area->addr;
537 
538 fail:
539 	vfree(area->addr);
540 	return NULL;
541 }
542 
543 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
544 {
545 	return __vmalloc_area_node(area, gfp_mask, prot, -1,
546 					__builtin_return_address(0));
547 }
548 
549 /**
550  *	__vmalloc_node  -  allocate virtually contiguous memory
551  *	@size:		allocation size
552  *	@gfp_mask:	flags for the page level allocator
553  *	@prot:		protection mask for the allocated pages
554  *	@node:		node to use for allocation or -1
555  *	@caller:	caller's return address
556  *
557  *	Allocate enough pages to cover @size from the page level
558  *	allocator with @gfp_mask flags.  Map them into contiguous
559  *	kernel virtual space, using a pagetable protection of @prot.
560  */
561 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
562 						int node, void *caller)
563 {
564 	struct vm_struct *area;
565 
566 	size = PAGE_ALIGN(size);
567 	if (!size || (size >> PAGE_SHIFT) > num_physpages)
568 		return NULL;
569 
570 	area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
571 						node, gfp_mask, caller);
572 
573 	if (!area)
574 		return NULL;
575 
576 	return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
577 }
578 
579 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
580 {
581 	return __vmalloc_node(size, gfp_mask, prot, -1,
582 				__builtin_return_address(0));
583 }
584 EXPORT_SYMBOL(__vmalloc);
585 
586 /**
587  *	vmalloc  -  allocate virtually contiguous memory
588  *	@size:		allocation size
589  *	Allocate enough pages to cover @size from the page level
590  *	allocator and map them into contiguous kernel virtual space.
591  *
592  *	For tight control over page level allocator and protection flags
593  *	use __vmalloc() instead.
594  */
595 void *vmalloc(unsigned long size)
596 {
597 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
598 					-1, __builtin_return_address(0));
599 }
600 EXPORT_SYMBOL(vmalloc);
601 
602 /**
603  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
604  * @size: allocation size
605  *
606  * The resulting memory area is zeroed so it can be mapped to userspace
607  * without leaking data.
608  */
609 void *vmalloc_user(unsigned long size)
610 {
611 	struct vm_struct *area;
612 	void *ret;
613 
614 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
615 	if (ret) {
616 		write_lock(&vmlist_lock);
617 		area = __find_vm_area(ret);
618 		area->flags |= VM_USERMAP;
619 		write_unlock(&vmlist_lock);
620 	}
621 	return ret;
622 }
623 EXPORT_SYMBOL(vmalloc_user);
624 
625 /**
626  *	vmalloc_node  -  allocate memory on a specific node
627  *	@size:		allocation size
628  *	@node:		numa node
629  *
630  *	Allocate enough pages to cover @size from the page level
631  *	allocator and map them into contiguous kernel virtual space.
632  *
633  *	For tight control over page level allocator and protection flags
634  *	use __vmalloc() instead.
635  */
636 void *vmalloc_node(unsigned long size, int node)
637 {
638 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
639 					node, __builtin_return_address(0));
640 }
641 EXPORT_SYMBOL(vmalloc_node);
642 
643 #ifndef PAGE_KERNEL_EXEC
644 # define PAGE_KERNEL_EXEC PAGE_KERNEL
645 #endif
646 
647 /**
648  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
649  *	@size:		allocation size
650  *
651  *	Kernel-internal function to allocate enough pages to cover @size
652  *	the page level allocator and map them into contiguous and
653  *	executable kernel virtual space.
654  *
655  *	For tight control over page level allocator and protection flags
656  *	use __vmalloc() instead.
657  */
658 
659 void *vmalloc_exec(unsigned long size)
660 {
661 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
662 }
663 
664 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
665 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
666 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
667 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
668 #else
669 #define GFP_VMALLOC32 GFP_KERNEL
670 #endif
671 
672 /**
673  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
674  *	@size:		allocation size
675  *
676  *	Allocate enough 32bit PA addressable pages to cover @size from the
677  *	page level allocator and map them into contiguous kernel virtual space.
678  */
679 void *vmalloc_32(unsigned long size)
680 {
681 	return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
682 }
683 EXPORT_SYMBOL(vmalloc_32);
684 
685 /**
686  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
687  *	@size:		allocation size
688  *
689  * The resulting memory area is 32bit addressable and zeroed so it can be
690  * mapped to userspace without leaking data.
691  */
692 void *vmalloc_32_user(unsigned long size)
693 {
694 	struct vm_struct *area;
695 	void *ret;
696 
697 	ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
698 	if (ret) {
699 		write_lock(&vmlist_lock);
700 		area = __find_vm_area(ret);
701 		area->flags |= VM_USERMAP;
702 		write_unlock(&vmlist_lock);
703 	}
704 	return ret;
705 }
706 EXPORT_SYMBOL(vmalloc_32_user);
707 
708 long vread(char *buf, char *addr, unsigned long count)
709 {
710 	struct vm_struct *tmp;
711 	char *vaddr, *buf_start = buf;
712 	unsigned long n;
713 
714 	/* Don't allow overflow */
715 	if ((unsigned long) addr + count < count)
716 		count = -(unsigned long) addr;
717 
718 	read_lock(&vmlist_lock);
719 	for (tmp = vmlist; tmp; tmp = tmp->next) {
720 		vaddr = (char *) tmp->addr;
721 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
722 			continue;
723 		while (addr < vaddr) {
724 			if (count == 0)
725 				goto finished;
726 			*buf = '\0';
727 			buf++;
728 			addr++;
729 			count--;
730 		}
731 		n = vaddr + tmp->size - PAGE_SIZE - addr;
732 		do {
733 			if (count == 0)
734 				goto finished;
735 			*buf = *addr;
736 			buf++;
737 			addr++;
738 			count--;
739 		} while (--n > 0);
740 	}
741 finished:
742 	read_unlock(&vmlist_lock);
743 	return buf - buf_start;
744 }
745 
746 long vwrite(char *buf, char *addr, unsigned long count)
747 {
748 	struct vm_struct *tmp;
749 	char *vaddr, *buf_start = buf;
750 	unsigned long n;
751 
752 	/* Don't allow overflow */
753 	if ((unsigned long) addr + count < count)
754 		count = -(unsigned long) addr;
755 
756 	read_lock(&vmlist_lock);
757 	for (tmp = vmlist; tmp; tmp = tmp->next) {
758 		vaddr = (char *) tmp->addr;
759 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
760 			continue;
761 		while (addr < vaddr) {
762 			if (count == 0)
763 				goto finished;
764 			buf++;
765 			addr++;
766 			count--;
767 		}
768 		n = vaddr + tmp->size - PAGE_SIZE - addr;
769 		do {
770 			if (count == 0)
771 				goto finished;
772 			*addr = *buf;
773 			buf++;
774 			addr++;
775 			count--;
776 		} while (--n > 0);
777 	}
778 finished:
779 	read_unlock(&vmlist_lock);
780 	return buf - buf_start;
781 }
782 
783 /**
784  *	remap_vmalloc_range  -  map vmalloc pages to userspace
785  *	@vma:		vma to cover (map full range of vma)
786  *	@addr:		vmalloc memory
787  *	@pgoff:		number of pages into addr before first page to map
788  *
789  *	Returns:	0 for success, -Exxx on failure
790  *
791  *	This function checks that addr is a valid vmalloc'ed area, and
792  *	that it is big enough to cover the vma. Will return failure if
793  *	that criteria isn't met.
794  *
795  *	Similar to remap_pfn_range() (see mm/memory.c)
796  */
797 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
798 						unsigned long pgoff)
799 {
800 	struct vm_struct *area;
801 	unsigned long uaddr = vma->vm_start;
802 	unsigned long usize = vma->vm_end - vma->vm_start;
803 	int ret;
804 
805 	if ((PAGE_SIZE-1) & (unsigned long)addr)
806 		return -EINVAL;
807 
808 	read_lock(&vmlist_lock);
809 	area = __find_vm_area(addr);
810 	if (!area)
811 		goto out_einval_locked;
812 
813 	if (!(area->flags & VM_USERMAP))
814 		goto out_einval_locked;
815 
816 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
817 		goto out_einval_locked;
818 	read_unlock(&vmlist_lock);
819 
820 	addr += pgoff << PAGE_SHIFT;
821 	do {
822 		struct page *page = vmalloc_to_page(addr);
823 		ret = vm_insert_page(vma, uaddr, page);
824 		if (ret)
825 			return ret;
826 
827 		uaddr += PAGE_SIZE;
828 		addr += PAGE_SIZE;
829 		usize -= PAGE_SIZE;
830 	} while (usize > 0);
831 
832 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
833 	vma->vm_flags |= VM_RESERVED;
834 
835 	return ret;
836 
837 out_einval_locked:
838 	read_unlock(&vmlist_lock);
839 	return -EINVAL;
840 }
841 EXPORT_SYMBOL(remap_vmalloc_range);
842 
843 /*
844  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
845  * have one.
846  */
847 void  __attribute__((weak)) vmalloc_sync_all(void)
848 {
849 }
850 
851 
852 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
853 {
854 	/* apply_to_page_range() does all the hard work. */
855 	return 0;
856 }
857 
858 /**
859  *	alloc_vm_area - allocate a range of kernel address space
860  *	@size:		size of the area
861  *
862  *	Returns:	NULL on failure, vm_struct on success
863  *
864  *	This function reserves a range of kernel address space, and
865  *	allocates pagetables to map that range.  No actual mappings
866  *	are created.  If the kernel address space is not shared
867  *	between processes, it syncs the pagetable across all
868  *	processes.
869  */
870 struct vm_struct *alloc_vm_area(size_t size)
871 {
872 	struct vm_struct *area;
873 
874 	area = get_vm_area_caller(size, VM_IOREMAP,
875 				__builtin_return_address(0));
876 	if (area == NULL)
877 		return NULL;
878 
879 	/*
880 	 * This ensures that page tables are constructed for this region
881 	 * of kernel virtual address space and mapped into init_mm.
882 	 */
883 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
884 				area->size, f, NULL)) {
885 		free_vm_area(area);
886 		return NULL;
887 	}
888 
889 	/* Make sure the pagetables are constructed in process kernel
890 	   mappings */
891 	vmalloc_sync_all();
892 
893 	return area;
894 }
895 EXPORT_SYMBOL_GPL(alloc_vm_area);
896 
897 void free_vm_area(struct vm_struct *area)
898 {
899 	struct vm_struct *ret;
900 	ret = remove_vm_area(area->addr);
901 	BUG_ON(ret != area);
902 	kfree(area);
903 }
904 EXPORT_SYMBOL_GPL(free_vm_area);
905 
906 
907 #ifdef CONFIG_PROC_FS
908 static void *s_start(struct seq_file *m, loff_t *pos)
909 {
910 	loff_t n = *pos;
911 	struct vm_struct *v;
912 
913 	read_lock(&vmlist_lock);
914 	v = vmlist;
915 	while (n > 0 && v) {
916 		n--;
917 		v = v->next;
918 	}
919 	if (!n)
920 		return v;
921 
922 	return NULL;
923 
924 }
925 
926 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
927 {
928 	struct vm_struct *v = p;
929 
930 	++*pos;
931 	return v->next;
932 }
933 
934 static void s_stop(struct seq_file *m, void *p)
935 {
936 	read_unlock(&vmlist_lock);
937 }
938 
939 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
940 {
941 	if (NUMA_BUILD) {
942 		unsigned int nr, *counters = m->private;
943 
944 		if (!counters)
945 			return;
946 
947 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
948 
949 		for (nr = 0; nr < v->nr_pages; nr++)
950 			counters[page_to_nid(v->pages[nr])]++;
951 
952 		for_each_node_state(nr, N_HIGH_MEMORY)
953 			if (counters[nr])
954 				seq_printf(m, " N%u=%u", nr, counters[nr]);
955 	}
956 }
957 
958 static int s_show(struct seq_file *m, void *p)
959 {
960 	struct vm_struct *v = p;
961 
962 	seq_printf(m, "0x%p-0x%p %7ld",
963 		v->addr, v->addr + v->size, v->size);
964 
965 	if (v->caller) {
966 		char buff[2 * KSYM_NAME_LEN];
967 
968 		seq_putc(m, ' ');
969 		sprint_symbol(buff, (unsigned long)v->caller);
970 		seq_puts(m, buff);
971 	}
972 
973 	if (v->nr_pages)
974 		seq_printf(m, " pages=%d", v->nr_pages);
975 
976 	if (v->phys_addr)
977 		seq_printf(m, " phys=%lx", v->phys_addr);
978 
979 	if (v->flags & VM_IOREMAP)
980 		seq_printf(m, " ioremap");
981 
982 	if (v->flags & VM_ALLOC)
983 		seq_printf(m, " vmalloc");
984 
985 	if (v->flags & VM_MAP)
986 		seq_printf(m, " vmap");
987 
988 	if (v->flags & VM_USERMAP)
989 		seq_printf(m, " user");
990 
991 	if (v->flags & VM_VPAGES)
992 		seq_printf(m, " vpages");
993 
994 	show_numa_info(m, v);
995 	seq_putc(m, '\n');
996 	return 0;
997 }
998 
999 const struct seq_operations vmalloc_op = {
1000 	.start = s_start,
1001 	.next = s_next,
1002 	.stop = s_stop,
1003 	.show = s_show,
1004 };
1005 #endif
1006 
1007