1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/module.h> 13 #include <linux/highmem.h> 14 #include <linux/slab.h> 15 #include <linux/spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/seq_file.h> 18 #include <linux/debugobjects.h> 19 #include <linux/vmalloc.h> 20 #include <linux/kallsyms.h> 21 22 #include <asm/uaccess.h> 23 #include <asm/tlbflush.h> 24 25 26 DEFINE_RWLOCK(vmlist_lock); 27 struct vm_struct *vmlist; 28 29 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 30 int node, void *caller); 31 32 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 33 { 34 pte_t *pte; 35 36 pte = pte_offset_kernel(pmd, addr); 37 do { 38 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 39 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 40 } while (pte++, addr += PAGE_SIZE, addr != end); 41 } 42 43 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr, 44 unsigned long end) 45 { 46 pmd_t *pmd; 47 unsigned long next; 48 49 pmd = pmd_offset(pud, addr); 50 do { 51 next = pmd_addr_end(addr, end); 52 if (pmd_none_or_clear_bad(pmd)) 53 continue; 54 vunmap_pte_range(pmd, addr, next); 55 } while (pmd++, addr = next, addr != end); 56 } 57 58 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr, 59 unsigned long end) 60 { 61 pud_t *pud; 62 unsigned long next; 63 64 pud = pud_offset(pgd, addr); 65 do { 66 next = pud_addr_end(addr, end); 67 if (pud_none_or_clear_bad(pud)) 68 continue; 69 vunmap_pmd_range(pud, addr, next); 70 } while (pud++, addr = next, addr != end); 71 } 72 73 void unmap_kernel_range(unsigned long addr, unsigned long size) 74 { 75 pgd_t *pgd; 76 unsigned long next; 77 unsigned long start = addr; 78 unsigned long end = addr + size; 79 80 BUG_ON(addr >= end); 81 pgd = pgd_offset_k(addr); 82 flush_cache_vunmap(addr, end); 83 do { 84 next = pgd_addr_end(addr, end); 85 if (pgd_none_or_clear_bad(pgd)) 86 continue; 87 vunmap_pud_range(pgd, addr, next); 88 } while (pgd++, addr = next, addr != end); 89 flush_tlb_kernel_range(start, end); 90 } 91 92 static void unmap_vm_area(struct vm_struct *area) 93 { 94 unmap_kernel_range((unsigned long)area->addr, area->size); 95 } 96 97 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 98 unsigned long end, pgprot_t prot, struct page ***pages) 99 { 100 pte_t *pte; 101 102 pte = pte_alloc_kernel(pmd, addr); 103 if (!pte) 104 return -ENOMEM; 105 do { 106 struct page *page = **pages; 107 WARN_ON(!pte_none(*pte)); 108 if (!page) 109 return -ENOMEM; 110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 111 (*pages)++; 112 } while (pte++, addr += PAGE_SIZE, addr != end); 113 return 0; 114 } 115 116 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr, 117 unsigned long end, pgprot_t prot, struct page ***pages) 118 { 119 pmd_t *pmd; 120 unsigned long next; 121 122 pmd = pmd_alloc(&init_mm, pud, addr); 123 if (!pmd) 124 return -ENOMEM; 125 do { 126 next = pmd_addr_end(addr, end); 127 if (vmap_pte_range(pmd, addr, next, prot, pages)) 128 return -ENOMEM; 129 } while (pmd++, addr = next, addr != end); 130 return 0; 131 } 132 133 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr, 134 unsigned long end, pgprot_t prot, struct page ***pages) 135 { 136 pud_t *pud; 137 unsigned long next; 138 139 pud = pud_alloc(&init_mm, pgd, addr); 140 if (!pud) 141 return -ENOMEM; 142 do { 143 next = pud_addr_end(addr, end); 144 if (vmap_pmd_range(pud, addr, next, prot, pages)) 145 return -ENOMEM; 146 } while (pud++, addr = next, addr != end); 147 return 0; 148 } 149 150 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 151 { 152 pgd_t *pgd; 153 unsigned long next; 154 unsigned long addr = (unsigned long) area->addr; 155 unsigned long end = addr + area->size - PAGE_SIZE; 156 int err; 157 158 BUG_ON(addr >= end); 159 pgd = pgd_offset_k(addr); 160 do { 161 next = pgd_addr_end(addr, end); 162 err = vmap_pud_range(pgd, addr, next, prot, pages); 163 if (err) 164 break; 165 } while (pgd++, addr = next, addr != end); 166 flush_cache_vmap((unsigned long) area->addr, end); 167 return err; 168 } 169 EXPORT_SYMBOL_GPL(map_vm_area); 170 171 /* 172 * Map a vmalloc()-space virtual address to the physical page. 173 */ 174 struct page *vmalloc_to_page(const void *vmalloc_addr) 175 { 176 unsigned long addr = (unsigned long) vmalloc_addr; 177 struct page *page = NULL; 178 pgd_t *pgd = pgd_offset_k(addr); 179 pud_t *pud; 180 pmd_t *pmd; 181 pte_t *ptep, pte; 182 183 /* 184 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 185 * architectures that do not vmalloc module space 186 */ 187 VIRTUAL_BUG_ON(!is_vmalloc_addr(vmalloc_addr) && 188 !is_module_address(addr)); 189 190 if (!pgd_none(*pgd)) { 191 pud = pud_offset(pgd, addr); 192 if (!pud_none(*pud)) { 193 pmd = pmd_offset(pud, addr); 194 if (!pmd_none(*pmd)) { 195 ptep = pte_offset_map(pmd, addr); 196 pte = *ptep; 197 if (pte_present(pte)) 198 page = pte_page(pte); 199 pte_unmap(ptep); 200 } 201 } 202 } 203 return page; 204 } 205 EXPORT_SYMBOL(vmalloc_to_page); 206 207 /* 208 * Map a vmalloc()-space virtual address to the physical page frame number. 209 */ 210 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 211 { 212 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 213 } 214 EXPORT_SYMBOL(vmalloc_to_pfn); 215 216 static struct vm_struct * 217 __get_vm_area_node(unsigned long size, unsigned long flags, unsigned long start, 218 unsigned long end, int node, gfp_t gfp_mask, void *caller) 219 { 220 struct vm_struct **p, *tmp, *area; 221 unsigned long align = 1; 222 unsigned long addr; 223 224 BUG_ON(in_interrupt()); 225 if (flags & VM_IOREMAP) { 226 int bit = fls(size); 227 228 if (bit > IOREMAP_MAX_ORDER) 229 bit = IOREMAP_MAX_ORDER; 230 else if (bit < PAGE_SHIFT) 231 bit = PAGE_SHIFT; 232 233 align = 1ul << bit; 234 } 235 addr = ALIGN(start, align); 236 size = PAGE_ALIGN(size); 237 if (unlikely(!size)) 238 return NULL; 239 240 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 241 242 if (unlikely(!area)) 243 return NULL; 244 245 /* 246 * We always allocate a guard page. 247 */ 248 size += PAGE_SIZE; 249 250 write_lock(&vmlist_lock); 251 for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) { 252 if ((unsigned long)tmp->addr < addr) { 253 if((unsigned long)tmp->addr + tmp->size >= addr) 254 addr = ALIGN(tmp->size + 255 (unsigned long)tmp->addr, align); 256 continue; 257 } 258 if ((size + addr) < addr) 259 goto out; 260 if (size + addr <= (unsigned long)tmp->addr) 261 goto found; 262 addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align); 263 if (addr > end - size) 264 goto out; 265 } 266 if ((size + addr) < addr) 267 goto out; 268 if (addr > end - size) 269 goto out; 270 271 found: 272 area->next = *p; 273 *p = area; 274 275 area->flags = flags; 276 area->addr = (void *)addr; 277 area->size = size; 278 area->pages = NULL; 279 area->nr_pages = 0; 280 area->phys_addr = 0; 281 area->caller = caller; 282 write_unlock(&vmlist_lock); 283 284 return area; 285 286 out: 287 write_unlock(&vmlist_lock); 288 kfree(area); 289 if (printk_ratelimit()) 290 printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n"); 291 return NULL; 292 } 293 294 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 295 unsigned long start, unsigned long end) 296 { 297 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL, 298 __builtin_return_address(0)); 299 } 300 EXPORT_SYMBOL_GPL(__get_vm_area); 301 302 /** 303 * get_vm_area - reserve a contiguous kernel virtual area 304 * @size: size of the area 305 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 306 * 307 * Search an area of @size in the kernel virtual mapping area, 308 * and reserved it for out purposes. Returns the area descriptor 309 * on success or %NULL on failure. 310 */ 311 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 312 { 313 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, 314 -1, GFP_KERNEL, __builtin_return_address(0)); 315 } 316 317 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 318 void *caller) 319 { 320 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, 321 -1, GFP_KERNEL, caller); 322 } 323 324 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, 325 int node, gfp_t gfp_mask) 326 { 327 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node, 328 gfp_mask, __builtin_return_address(0)); 329 } 330 331 /* Caller must hold vmlist_lock */ 332 static struct vm_struct *__find_vm_area(const void *addr) 333 { 334 struct vm_struct *tmp; 335 336 for (tmp = vmlist; tmp != NULL; tmp = tmp->next) { 337 if (tmp->addr == addr) 338 break; 339 } 340 341 return tmp; 342 } 343 344 /* Caller must hold vmlist_lock */ 345 static struct vm_struct *__remove_vm_area(const void *addr) 346 { 347 struct vm_struct **p, *tmp; 348 349 for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) { 350 if (tmp->addr == addr) 351 goto found; 352 } 353 return NULL; 354 355 found: 356 unmap_vm_area(tmp); 357 *p = tmp->next; 358 359 /* 360 * Remove the guard page. 361 */ 362 tmp->size -= PAGE_SIZE; 363 return tmp; 364 } 365 366 /** 367 * remove_vm_area - find and remove a continuous kernel virtual area 368 * @addr: base address 369 * 370 * Search for the kernel VM area starting at @addr, and remove it. 371 * This function returns the found VM area, but using it is NOT safe 372 * on SMP machines, except for its size or flags. 373 */ 374 struct vm_struct *remove_vm_area(const void *addr) 375 { 376 struct vm_struct *v; 377 write_lock(&vmlist_lock); 378 v = __remove_vm_area(addr); 379 write_unlock(&vmlist_lock); 380 return v; 381 } 382 383 static void __vunmap(const void *addr, int deallocate_pages) 384 { 385 struct vm_struct *area; 386 387 if (!addr) 388 return; 389 390 if ((PAGE_SIZE-1) & (unsigned long)addr) { 391 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 392 return; 393 } 394 395 area = remove_vm_area(addr); 396 if (unlikely(!area)) { 397 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 398 addr); 399 return; 400 } 401 402 debug_check_no_locks_freed(addr, area->size); 403 debug_check_no_obj_freed(addr, area->size); 404 405 if (deallocate_pages) { 406 int i; 407 408 for (i = 0; i < area->nr_pages; i++) { 409 struct page *page = area->pages[i]; 410 411 BUG_ON(!page); 412 __free_page(page); 413 } 414 415 if (area->flags & VM_VPAGES) 416 vfree(area->pages); 417 else 418 kfree(area->pages); 419 } 420 421 kfree(area); 422 return; 423 } 424 425 /** 426 * vfree - release memory allocated by vmalloc() 427 * @addr: memory base address 428 * 429 * Free the virtually continuous memory area starting at @addr, as 430 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 431 * NULL, no operation is performed. 432 * 433 * Must not be called in interrupt context. 434 */ 435 void vfree(const void *addr) 436 { 437 BUG_ON(in_interrupt()); 438 __vunmap(addr, 1); 439 } 440 EXPORT_SYMBOL(vfree); 441 442 /** 443 * vunmap - release virtual mapping obtained by vmap() 444 * @addr: memory base address 445 * 446 * Free the virtually contiguous memory area starting at @addr, 447 * which was created from the page array passed to vmap(). 448 * 449 * Must not be called in interrupt context. 450 */ 451 void vunmap(const void *addr) 452 { 453 BUG_ON(in_interrupt()); 454 __vunmap(addr, 0); 455 } 456 EXPORT_SYMBOL(vunmap); 457 458 /** 459 * vmap - map an array of pages into virtually contiguous space 460 * @pages: array of page pointers 461 * @count: number of pages to map 462 * @flags: vm_area->flags 463 * @prot: page protection for the mapping 464 * 465 * Maps @count pages from @pages into contiguous kernel virtual 466 * space. 467 */ 468 void *vmap(struct page **pages, unsigned int count, 469 unsigned long flags, pgprot_t prot) 470 { 471 struct vm_struct *area; 472 473 if (count > num_physpages) 474 return NULL; 475 476 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 477 __builtin_return_address(0)); 478 if (!area) 479 return NULL; 480 481 if (map_vm_area(area, prot, &pages)) { 482 vunmap(area->addr); 483 return NULL; 484 } 485 486 return area->addr; 487 } 488 EXPORT_SYMBOL(vmap); 489 490 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 491 pgprot_t prot, int node, void *caller) 492 { 493 struct page **pages; 494 unsigned int nr_pages, array_size, i; 495 496 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 497 array_size = (nr_pages * sizeof(struct page *)); 498 499 area->nr_pages = nr_pages; 500 /* Please note that the recursion is strictly bounded. */ 501 if (array_size > PAGE_SIZE) { 502 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO, 503 PAGE_KERNEL, node, caller); 504 area->flags |= VM_VPAGES; 505 } else { 506 pages = kmalloc_node(array_size, 507 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO, 508 node); 509 } 510 area->pages = pages; 511 area->caller = caller; 512 if (!area->pages) { 513 remove_vm_area(area->addr); 514 kfree(area); 515 return NULL; 516 } 517 518 for (i = 0; i < area->nr_pages; i++) { 519 struct page *page; 520 521 if (node < 0) 522 page = alloc_page(gfp_mask); 523 else 524 page = alloc_pages_node(node, gfp_mask, 0); 525 526 if (unlikely(!page)) { 527 /* Successfully allocated i pages, free them in __vunmap() */ 528 area->nr_pages = i; 529 goto fail; 530 } 531 area->pages[i] = page; 532 } 533 534 if (map_vm_area(area, prot, &pages)) 535 goto fail; 536 return area->addr; 537 538 fail: 539 vfree(area->addr); 540 return NULL; 541 } 542 543 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) 544 { 545 return __vmalloc_area_node(area, gfp_mask, prot, -1, 546 __builtin_return_address(0)); 547 } 548 549 /** 550 * __vmalloc_node - allocate virtually contiguous memory 551 * @size: allocation size 552 * @gfp_mask: flags for the page level allocator 553 * @prot: protection mask for the allocated pages 554 * @node: node to use for allocation or -1 555 * @caller: caller's return address 556 * 557 * Allocate enough pages to cover @size from the page level 558 * allocator with @gfp_mask flags. Map them into contiguous 559 * kernel virtual space, using a pagetable protection of @prot. 560 */ 561 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 562 int node, void *caller) 563 { 564 struct vm_struct *area; 565 566 size = PAGE_ALIGN(size); 567 if (!size || (size >> PAGE_SHIFT) > num_physpages) 568 return NULL; 569 570 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END, 571 node, gfp_mask, caller); 572 573 if (!area) 574 return NULL; 575 576 return __vmalloc_area_node(area, gfp_mask, prot, node, caller); 577 } 578 579 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 580 { 581 return __vmalloc_node(size, gfp_mask, prot, -1, 582 __builtin_return_address(0)); 583 } 584 EXPORT_SYMBOL(__vmalloc); 585 586 /** 587 * vmalloc - allocate virtually contiguous memory 588 * @size: allocation size 589 * Allocate enough pages to cover @size from the page level 590 * allocator and map them into contiguous kernel virtual space. 591 * 592 * For tight control over page level allocator and protection flags 593 * use __vmalloc() instead. 594 */ 595 void *vmalloc(unsigned long size) 596 { 597 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 598 -1, __builtin_return_address(0)); 599 } 600 EXPORT_SYMBOL(vmalloc); 601 602 /** 603 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 604 * @size: allocation size 605 * 606 * The resulting memory area is zeroed so it can be mapped to userspace 607 * without leaking data. 608 */ 609 void *vmalloc_user(unsigned long size) 610 { 611 struct vm_struct *area; 612 void *ret; 613 614 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL); 615 if (ret) { 616 write_lock(&vmlist_lock); 617 area = __find_vm_area(ret); 618 area->flags |= VM_USERMAP; 619 write_unlock(&vmlist_lock); 620 } 621 return ret; 622 } 623 EXPORT_SYMBOL(vmalloc_user); 624 625 /** 626 * vmalloc_node - allocate memory on a specific node 627 * @size: allocation size 628 * @node: numa node 629 * 630 * Allocate enough pages to cover @size from the page level 631 * allocator and map them into contiguous kernel virtual space. 632 * 633 * For tight control over page level allocator and protection flags 634 * use __vmalloc() instead. 635 */ 636 void *vmalloc_node(unsigned long size, int node) 637 { 638 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 639 node, __builtin_return_address(0)); 640 } 641 EXPORT_SYMBOL(vmalloc_node); 642 643 #ifndef PAGE_KERNEL_EXEC 644 # define PAGE_KERNEL_EXEC PAGE_KERNEL 645 #endif 646 647 /** 648 * vmalloc_exec - allocate virtually contiguous, executable memory 649 * @size: allocation size 650 * 651 * Kernel-internal function to allocate enough pages to cover @size 652 * the page level allocator and map them into contiguous and 653 * executable kernel virtual space. 654 * 655 * For tight control over page level allocator and protection flags 656 * use __vmalloc() instead. 657 */ 658 659 void *vmalloc_exec(unsigned long size) 660 { 661 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 662 } 663 664 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 665 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 666 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 667 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 668 #else 669 #define GFP_VMALLOC32 GFP_KERNEL 670 #endif 671 672 /** 673 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 674 * @size: allocation size 675 * 676 * Allocate enough 32bit PA addressable pages to cover @size from the 677 * page level allocator and map them into contiguous kernel virtual space. 678 */ 679 void *vmalloc_32(unsigned long size) 680 { 681 return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL); 682 } 683 EXPORT_SYMBOL(vmalloc_32); 684 685 /** 686 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 687 * @size: allocation size 688 * 689 * The resulting memory area is 32bit addressable and zeroed so it can be 690 * mapped to userspace without leaking data. 691 */ 692 void *vmalloc_32_user(unsigned long size) 693 { 694 struct vm_struct *area; 695 void *ret; 696 697 ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL); 698 if (ret) { 699 write_lock(&vmlist_lock); 700 area = __find_vm_area(ret); 701 area->flags |= VM_USERMAP; 702 write_unlock(&vmlist_lock); 703 } 704 return ret; 705 } 706 EXPORT_SYMBOL(vmalloc_32_user); 707 708 long vread(char *buf, char *addr, unsigned long count) 709 { 710 struct vm_struct *tmp; 711 char *vaddr, *buf_start = buf; 712 unsigned long n; 713 714 /* Don't allow overflow */ 715 if ((unsigned long) addr + count < count) 716 count = -(unsigned long) addr; 717 718 read_lock(&vmlist_lock); 719 for (tmp = vmlist; tmp; tmp = tmp->next) { 720 vaddr = (char *) tmp->addr; 721 if (addr >= vaddr + tmp->size - PAGE_SIZE) 722 continue; 723 while (addr < vaddr) { 724 if (count == 0) 725 goto finished; 726 *buf = '\0'; 727 buf++; 728 addr++; 729 count--; 730 } 731 n = vaddr + tmp->size - PAGE_SIZE - addr; 732 do { 733 if (count == 0) 734 goto finished; 735 *buf = *addr; 736 buf++; 737 addr++; 738 count--; 739 } while (--n > 0); 740 } 741 finished: 742 read_unlock(&vmlist_lock); 743 return buf - buf_start; 744 } 745 746 long vwrite(char *buf, char *addr, unsigned long count) 747 { 748 struct vm_struct *tmp; 749 char *vaddr, *buf_start = buf; 750 unsigned long n; 751 752 /* Don't allow overflow */ 753 if ((unsigned long) addr + count < count) 754 count = -(unsigned long) addr; 755 756 read_lock(&vmlist_lock); 757 for (tmp = vmlist; tmp; tmp = tmp->next) { 758 vaddr = (char *) tmp->addr; 759 if (addr >= vaddr + tmp->size - PAGE_SIZE) 760 continue; 761 while (addr < vaddr) { 762 if (count == 0) 763 goto finished; 764 buf++; 765 addr++; 766 count--; 767 } 768 n = vaddr + tmp->size - PAGE_SIZE - addr; 769 do { 770 if (count == 0) 771 goto finished; 772 *addr = *buf; 773 buf++; 774 addr++; 775 count--; 776 } while (--n > 0); 777 } 778 finished: 779 read_unlock(&vmlist_lock); 780 return buf - buf_start; 781 } 782 783 /** 784 * remap_vmalloc_range - map vmalloc pages to userspace 785 * @vma: vma to cover (map full range of vma) 786 * @addr: vmalloc memory 787 * @pgoff: number of pages into addr before first page to map 788 * 789 * Returns: 0 for success, -Exxx on failure 790 * 791 * This function checks that addr is a valid vmalloc'ed area, and 792 * that it is big enough to cover the vma. Will return failure if 793 * that criteria isn't met. 794 * 795 * Similar to remap_pfn_range() (see mm/memory.c) 796 */ 797 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 798 unsigned long pgoff) 799 { 800 struct vm_struct *area; 801 unsigned long uaddr = vma->vm_start; 802 unsigned long usize = vma->vm_end - vma->vm_start; 803 int ret; 804 805 if ((PAGE_SIZE-1) & (unsigned long)addr) 806 return -EINVAL; 807 808 read_lock(&vmlist_lock); 809 area = __find_vm_area(addr); 810 if (!area) 811 goto out_einval_locked; 812 813 if (!(area->flags & VM_USERMAP)) 814 goto out_einval_locked; 815 816 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 817 goto out_einval_locked; 818 read_unlock(&vmlist_lock); 819 820 addr += pgoff << PAGE_SHIFT; 821 do { 822 struct page *page = vmalloc_to_page(addr); 823 ret = vm_insert_page(vma, uaddr, page); 824 if (ret) 825 return ret; 826 827 uaddr += PAGE_SIZE; 828 addr += PAGE_SIZE; 829 usize -= PAGE_SIZE; 830 } while (usize > 0); 831 832 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 833 vma->vm_flags |= VM_RESERVED; 834 835 return ret; 836 837 out_einval_locked: 838 read_unlock(&vmlist_lock); 839 return -EINVAL; 840 } 841 EXPORT_SYMBOL(remap_vmalloc_range); 842 843 /* 844 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 845 * have one. 846 */ 847 void __attribute__((weak)) vmalloc_sync_all(void) 848 { 849 } 850 851 852 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 853 { 854 /* apply_to_page_range() does all the hard work. */ 855 return 0; 856 } 857 858 /** 859 * alloc_vm_area - allocate a range of kernel address space 860 * @size: size of the area 861 * 862 * Returns: NULL on failure, vm_struct on success 863 * 864 * This function reserves a range of kernel address space, and 865 * allocates pagetables to map that range. No actual mappings 866 * are created. If the kernel address space is not shared 867 * between processes, it syncs the pagetable across all 868 * processes. 869 */ 870 struct vm_struct *alloc_vm_area(size_t size) 871 { 872 struct vm_struct *area; 873 874 area = get_vm_area_caller(size, VM_IOREMAP, 875 __builtin_return_address(0)); 876 if (area == NULL) 877 return NULL; 878 879 /* 880 * This ensures that page tables are constructed for this region 881 * of kernel virtual address space and mapped into init_mm. 882 */ 883 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 884 area->size, f, NULL)) { 885 free_vm_area(area); 886 return NULL; 887 } 888 889 /* Make sure the pagetables are constructed in process kernel 890 mappings */ 891 vmalloc_sync_all(); 892 893 return area; 894 } 895 EXPORT_SYMBOL_GPL(alloc_vm_area); 896 897 void free_vm_area(struct vm_struct *area) 898 { 899 struct vm_struct *ret; 900 ret = remove_vm_area(area->addr); 901 BUG_ON(ret != area); 902 kfree(area); 903 } 904 EXPORT_SYMBOL_GPL(free_vm_area); 905 906 907 #ifdef CONFIG_PROC_FS 908 static void *s_start(struct seq_file *m, loff_t *pos) 909 { 910 loff_t n = *pos; 911 struct vm_struct *v; 912 913 read_lock(&vmlist_lock); 914 v = vmlist; 915 while (n > 0 && v) { 916 n--; 917 v = v->next; 918 } 919 if (!n) 920 return v; 921 922 return NULL; 923 924 } 925 926 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 927 { 928 struct vm_struct *v = p; 929 930 ++*pos; 931 return v->next; 932 } 933 934 static void s_stop(struct seq_file *m, void *p) 935 { 936 read_unlock(&vmlist_lock); 937 } 938 939 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 940 { 941 if (NUMA_BUILD) { 942 unsigned int nr, *counters = m->private; 943 944 if (!counters) 945 return; 946 947 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 948 949 for (nr = 0; nr < v->nr_pages; nr++) 950 counters[page_to_nid(v->pages[nr])]++; 951 952 for_each_node_state(nr, N_HIGH_MEMORY) 953 if (counters[nr]) 954 seq_printf(m, " N%u=%u", nr, counters[nr]); 955 } 956 } 957 958 static int s_show(struct seq_file *m, void *p) 959 { 960 struct vm_struct *v = p; 961 962 seq_printf(m, "0x%p-0x%p %7ld", 963 v->addr, v->addr + v->size, v->size); 964 965 if (v->caller) { 966 char buff[2 * KSYM_NAME_LEN]; 967 968 seq_putc(m, ' '); 969 sprint_symbol(buff, (unsigned long)v->caller); 970 seq_puts(m, buff); 971 } 972 973 if (v->nr_pages) 974 seq_printf(m, " pages=%d", v->nr_pages); 975 976 if (v->phys_addr) 977 seq_printf(m, " phys=%lx", v->phys_addr); 978 979 if (v->flags & VM_IOREMAP) 980 seq_printf(m, " ioremap"); 981 982 if (v->flags & VM_ALLOC) 983 seq_printf(m, " vmalloc"); 984 985 if (v->flags & VM_MAP) 986 seq_printf(m, " vmap"); 987 988 if (v->flags & VM_USERMAP) 989 seq_printf(m, " user"); 990 991 if (v->flags & VM_VPAGES) 992 seq_printf(m, " vpages"); 993 994 show_numa_info(m, v); 995 seq_putc(m, '\n'); 996 return 0; 997 } 998 999 const struct seq_operations vmalloc_op = { 1000 .start = s_start, 1001 .next = s_next, 1002 .stop = s_stop, 1003 .show = s_show, 1004 }; 1005 #endif 1006 1007