1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/debugobjects.h> 22 #include <linux/kallsyms.h> 23 #include <linux/list.h> 24 #include <linux/rbtree.h> 25 #include <linux/radix-tree.h> 26 #include <linux/rcupdate.h> 27 #include <linux/pfn.h> 28 #include <linux/kmemleak.h> 29 #include <linux/atomic.h> 30 #include <linux/compiler.h> 31 #include <linux/llist.h> 32 #include <linux/bitops.h> 33 34 #include <asm/uaccess.h> 35 #include <asm/tlbflush.h> 36 #include <asm/shmparam.h> 37 38 #include "internal.h" 39 40 struct vfree_deferred { 41 struct llist_head list; 42 struct work_struct wq; 43 }; 44 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 45 46 static void __vunmap(const void *, int); 47 48 static void free_work(struct work_struct *w) 49 { 50 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 51 struct llist_node *llnode = llist_del_all(&p->list); 52 while (llnode) { 53 void *p = llnode; 54 llnode = llist_next(llnode); 55 __vunmap(p, 1); 56 } 57 } 58 59 /*** Page table manipulation functions ***/ 60 61 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 62 { 63 pte_t *pte; 64 65 pte = pte_offset_kernel(pmd, addr); 66 do { 67 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 68 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 69 } while (pte++, addr += PAGE_SIZE, addr != end); 70 } 71 72 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 73 { 74 pmd_t *pmd; 75 unsigned long next; 76 77 pmd = pmd_offset(pud, addr); 78 do { 79 next = pmd_addr_end(addr, end); 80 if (pmd_clear_huge(pmd)) 81 continue; 82 if (pmd_none_or_clear_bad(pmd)) 83 continue; 84 vunmap_pte_range(pmd, addr, next); 85 } while (pmd++, addr = next, addr != end); 86 } 87 88 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 89 { 90 pud_t *pud; 91 unsigned long next; 92 93 pud = pud_offset(pgd, addr); 94 do { 95 next = pud_addr_end(addr, end); 96 if (pud_clear_huge(pud)) 97 continue; 98 if (pud_none_or_clear_bad(pud)) 99 continue; 100 vunmap_pmd_range(pud, addr, next); 101 } while (pud++, addr = next, addr != end); 102 } 103 104 static void vunmap_page_range(unsigned long addr, unsigned long end) 105 { 106 pgd_t *pgd; 107 unsigned long next; 108 109 BUG_ON(addr >= end); 110 pgd = pgd_offset_k(addr); 111 do { 112 next = pgd_addr_end(addr, end); 113 if (pgd_none_or_clear_bad(pgd)) 114 continue; 115 vunmap_pud_range(pgd, addr, next); 116 } while (pgd++, addr = next, addr != end); 117 } 118 119 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 120 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 121 { 122 pte_t *pte; 123 124 /* 125 * nr is a running index into the array which helps higher level 126 * callers keep track of where we're up to. 127 */ 128 129 pte = pte_alloc_kernel(pmd, addr); 130 if (!pte) 131 return -ENOMEM; 132 do { 133 struct page *page = pages[*nr]; 134 135 if (WARN_ON(!pte_none(*pte))) 136 return -EBUSY; 137 if (WARN_ON(!page)) 138 return -ENOMEM; 139 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 140 (*nr)++; 141 } while (pte++, addr += PAGE_SIZE, addr != end); 142 return 0; 143 } 144 145 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 146 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 147 { 148 pmd_t *pmd; 149 unsigned long next; 150 151 pmd = pmd_alloc(&init_mm, pud, addr); 152 if (!pmd) 153 return -ENOMEM; 154 do { 155 next = pmd_addr_end(addr, end); 156 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 157 return -ENOMEM; 158 } while (pmd++, addr = next, addr != end); 159 return 0; 160 } 161 162 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 163 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 164 { 165 pud_t *pud; 166 unsigned long next; 167 168 pud = pud_alloc(&init_mm, pgd, addr); 169 if (!pud) 170 return -ENOMEM; 171 do { 172 next = pud_addr_end(addr, end); 173 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 174 return -ENOMEM; 175 } while (pud++, addr = next, addr != end); 176 return 0; 177 } 178 179 /* 180 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 181 * will have pfns corresponding to the "pages" array. 182 * 183 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 184 */ 185 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 186 pgprot_t prot, struct page **pages) 187 { 188 pgd_t *pgd; 189 unsigned long next; 190 unsigned long addr = start; 191 int err = 0; 192 int nr = 0; 193 194 BUG_ON(addr >= end); 195 pgd = pgd_offset_k(addr); 196 do { 197 next = pgd_addr_end(addr, end); 198 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 199 if (err) 200 return err; 201 } while (pgd++, addr = next, addr != end); 202 203 return nr; 204 } 205 206 static int vmap_page_range(unsigned long start, unsigned long end, 207 pgprot_t prot, struct page **pages) 208 { 209 int ret; 210 211 ret = vmap_page_range_noflush(start, end, prot, pages); 212 flush_cache_vmap(start, end); 213 return ret; 214 } 215 216 int is_vmalloc_or_module_addr(const void *x) 217 { 218 /* 219 * ARM, x86-64 and sparc64 put modules in a special place, 220 * and fall back on vmalloc() if that fails. Others 221 * just put it in the vmalloc space. 222 */ 223 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 224 unsigned long addr = (unsigned long)x; 225 if (addr >= MODULES_VADDR && addr < MODULES_END) 226 return 1; 227 #endif 228 return is_vmalloc_addr(x); 229 } 230 231 /* 232 * Walk a vmap address to the struct page it maps. 233 */ 234 struct page *vmalloc_to_page(const void *vmalloc_addr) 235 { 236 unsigned long addr = (unsigned long) vmalloc_addr; 237 struct page *page = NULL; 238 pgd_t *pgd = pgd_offset_k(addr); 239 240 /* 241 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 242 * architectures that do not vmalloc module space 243 */ 244 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 245 246 if (!pgd_none(*pgd)) { 247 pud_t *pud = pud_offset(pgd, addr); 248 if (!pud_none(*pud)) { 249 pmd_t *pmd = pmd_offset(pud, addr); 250 if (!pmd_none(*pmd)) { 251 pte_t *ptep, pte; 252 253 ptep = pte_offset_map(pmd, addr); 254 pte = *ptep; 255 if (pte_present(pte)) 256 page = pte_page(pte); 257 pte_unmap(ptep); 258 } 259 } 260 } 261 return page; 262 } 263 EXPORT_SYMBOL(vmalloc_to_page); 264 265 /* 266 * Map a vmalloc()-space virtual address to the physical page frame number. 267 */ 268 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 269 { 270 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 271 } 272 EXPORT_SYMBOL(vmalloc_to_pfn); 273 274 275 /*** Global kva allocator ***/ 276 277 #define VM_LAZY_FREE 0x01 278 #define VM_LAZY_FREEING 0x02 279 #define VM_VM_AREA 0x04 280 281 static DEFINE_SPINLOCK(vmap_area_lock); 282 /* Export for kexec only */ 283 LIST_HEAD(vmap_area_list); 284 static struct rb_root vmap_area_root = RB_ROOT; 285 286 /* The vmap cache globals are protected by vmap_area_lock */ 287 static struct rb_node *free_vmap_cache; 288 static unsigned long cached_hole_size; 289 static unsigned long cached_vstart; 290 static unsigned long cached_align; 291 292 static unsigned long vmap_area_pcpu_hole; 293 294 static struct vmap_area *__find_vmap_area(unsigned long addr) 295 { 296 struct rb_node *n = vmap_area_root.rb_node; 297 298 while (n) { 299 struct vmap_area *va; 300 301 va = rb_entry(n, struct vmap_area, rb_node); 302 if (addr < va->va_start) 303 n = n->rb_left; 304 else if (addr >= va->va_end) 305 n = n->rb_right; 306 else 307 return va; 308 } 309 310 return NULL; 311 } 312 313 static void __insert_vmap_area(struct vmap_area *va) 314 { 315 struct rb_node **p = &vmap_area_root.rb_node; 316 struct rb_node *parent = NULL; 317 struct rb_node *tmp; 318 319 while (*p) { 320 struct vmap_area *tmp_va; 321 322 parent = *p; 323 tmp_va = rb_entry(parent, struct vmap_area, rb_node); 324 if (va->va_start < tmp_va->va_end) 325 p = &(*p)->rb_left; 326 else if (va->va_end > tmp_va->va_start) 327 p = &(*p)->rb_right; 328 else 329 BUG(); 330 } 331 332 rb_link_node(&va->rb_node, parent, p); 333 rb_insert_color(&va->rb_node, &vmap_area_root); 334 335 /* address-sort this list */ 336 tmp = rb_prev(&va->rb_node); 337 if (tmp) { 338 struct vmap_area *prev; 339 prev = rb_entry(tmp, struct vmap_area, rb_node); 340 list_add_rcu(&va->list, &prev->list); 341 } else 342 list_add_rcu(&va->list, &vmap_area_list); 343 } 344 345 static void purge_vmap_area_lazy(void); 346 347 /* 348 * Allocate a region of KVA of the specified size and alignment, within the 349 * vstart and vend. 350 */ 351 static struct vmap_area *alloc_vmap_area(unsigned long size, 352 unsigned long align, 353 unsigned long vstart, unsigned long vend, 354 int node, gfp_t gfp_mask) 355 { 356 struct vmap_area *va; 357 struct rb_node *n; 358 unsigned long addr; 359 int purged = 0; 360 struct vmap_area *first; 361 362 BUG_ON(!size); 363 BUG_ON(offset_in_page(size)); 364 BUG_ON(!is_power_of_2(align)); 365 366 va = kmalloc_node(sizeof(struct vmap_area), 367 gfp_mask & GFP_RECLAIM_MASK, node); 368 if (unlikely(!va)) 369 return ERR_PTR(-ENOMEM); 370 371 /* 372 * Only scan the relevant parts containing pointers to other objects 373 * to avoid false negatives. 374 */ 375 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); 376 377 retry: 378 spin_lock(&vmap_area_lock); 379 /* 380 * Invalidate cache if we have more permissive parameters. 381 * cached_hole_size notes the largest hole noticed _below_ 382 * the vmap_area cached in free_vmap_cache: if size fits 383 * into that hole, we want to scan from vstart to reuse 384 * the hole instead of allocating above free_vmap_cache. 385 * Note that __free_vmap_area may update free_vmap_cache 386 * without updating cached_hole_size or cached_align. 387 */ 388 if (!free_vmap_cache || 389 size < cached_hole_size || 390 vstart < cached_vstart || 391 align < cached_align) { 392 nocache: 393 cached_hole_size = 0; 394 free_vmap_cache = NULL; 395 } 396 /* record if we encounter less permissive parameters */ 397 cached_vstart = vstart; 398 cached_align = align; 399 400 /* find starting point for our search */ 401 if (free_vmap_cache) { 402 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 403 addr = ALIGN(first->va_end, align); 404 if (addr < vstart) 405 goto nocache; 406 if (addr + size < addr) 407 goto overflow; 408 409 } else { 410 addr = ALIGN(vstart, align); 411 if (addr + size < addr) 412 goto overflow; 413 414 n = vmap_area_root.rb_node; 415 first = NULL; 416 417 while (n) { 418 struct vmap_area *tmp; 419 tmp = rb_entry(n, struct vmap_area, rb_node); 420 if (tmp->va_end >= addr) { 421 first = tmp; 422 if (tmp->va_start <= addr) 423 break; 424 n = n->rb_left; 425 } else 426 n = n->rb_right; 427 } 428 429 if (!first) 430 goto found; 431 } 432 433 /* from the starting point, walk areas until a suitable hole is found */ 434 while (addr + size > first->va_start && addr + size <= vend) { 435 if (addr + cached_hole_size < first->va_start) 436 cached_hole_size = first->va_start - addr; 437 addr = ALIGN(first->va_end, align); 438 if (addr + size < addr) 439 goto overflow; 440 441 if (list_is_last(&first->list, &vmap_area_list)) 442 goto found; 443 444 first = list_entry(first->list.next, 445 struct vmap_area, list); 446 } 447 448 found: 449 if (addr + size > vend) 450 goto overflow; 451 452 va->va_start = addr; 453 va->va_end = addr + size; 454 va->flags = 0; 455 __insert_vmap_area(va); 456 free_vmap_cache = &va->rb_node; 457 spin_unlock(&vmap_area_lock); 458 459 BUG_ON(va->va_start & (align-1)); 460 BUG_ON(va->va_start < vstart); 461 BUG_ON(va->va_end > vend); 462 463 return va; 464 465 overflow: 466 spin_unlock(&vmap_area_lock); 467 if (!purged) { 468 purge_vmap_area_lazy(); 469 purged = 1; 470 goto retry; 471 } 472 if (printk_ratelimit()) 473 pr_warn("vmap allocation for size %lu failed: " 474 "use vmalloc=<size> to increase size.\n", size); 475 kfree(va); 476 return ERR_PTR(-EBUSY); 477 } 478 479 static void __free_vmap_area(struct vmap_area *va) 480 { 481 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 482 483 if (free_vmap_cache) { 484 if (va->va_end < cached_vstart) { 485 free_vmap_cache = NULL; 486 } else { 487 struct vmap_area *cache; 488 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 489 if (va->va_start <= cache->va_start) { 490 free_vmap_cache = rb_prev(&va->rb_node); 491 /* 492 * We don't try to update cached_hole_size or 493 * cached_align, but it won't go very wrong. 494 */ 495 } 496 } 497 } 498 rb_erase(&va->rb_node, &vmap_area_root); 499 RB_CLEAR_NODE(&va->rb_node); 500 list_del_rcu(&va->list); 501 502 /* 503 * Track the highest possible candidate for pcpu area 504 * allocation. Areas outside of vmalloc area can be returned 505 * here too, consider only end addresses which fall inside 506 * vmalloc area proper. 507 */ 508 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 509 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 510 511 kfree_rcu(va, rcu_head); 512 } 513 514 /* 515 * Free a region of KVA allocated by alloc_vmap_area 516 */ 517 static void free_vmap_area(struct vmap_area *va) 518 { 519 spin_lock(&vmap_area_lock); 520 __free_vmap_area(va); 521 spin_unlock(&vmap_area_lock); 522 } 523 524 /* 525 * Clear the pagetable entries of a given vmap_area 526 */ 527 static void unmap_vmap_area(struct vmap_area *va) 528 { 529 vunmap_page_range(va->va_start, va->va_end); 530 } 531 532 static void vmap_debug_free_range(unsigned long start, unsigned long end) 533 { 534 /* 535 * Unmap page tables and force a TLB flush immediately if 536 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free 537 * bugs similarly to those in linear kernel virtual address 538 * space after a page has been freed. 539 * 540 * All the lazy freeing logic is still retained, in order to 541 * minimise intrusiveness of this debugging feature. 542 * 543 * This is going to be *slow* (linear kernel virtual address 544 * debugging doesn't do a broadcast TLB flush so it is a lot 545 * faster). 546 */ 547 #ifdef CONFIG_DEBUG_PAGEALLOC 548 vunmap_page_range(start, end); 549 flush_tlb_kernel_range(start, end); 550 #endif 551 } 552 553 /* 554 * lazy_max_pages is the maximum amount of virtual address space we gather up 555 * before attempting to purge with a TLB flush. 556 * 557 * There is a tradeoff here: a larger number will cover more kernel page tables 558 * and take slightly longer to purge, but it will linearly reduce the number of 559 * global TLB flushes that must be performed. It would seem natural to scale 560 * this number up linearly with the number of CPUs (because vmapping activity 561 * could also scale linearly with the number of CPUs), however it is likely 562 * that in practice, workloads might be constrained in other ways that mean 563 * vmap activity will not scale linearly with CPUs. Also, I want to be 564 * conservative and not introduce a big latency on huge systems, so go with 565 * a less aggressive log scale. It will still be an improvement over the old 566 * code, and it will be simple to change the scale factor if we find that it 567 * becomes a problem on bigger systems. 568 */ 569 static unsigned long lazy_max_pages(void) 570 { 571 unsigned int log; 572 573 log = fls(num_online_cpus()); 574 575 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 576 } 577 578 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 579 580 /* for per-CPU blocks */ 581 static void purge_fragmented_blocks_allcpus(void); 582 583 /* 584 * called before a call to iounmap() if the caller wants vm_area_struct's 585 * immediately freed. 586 */ 587 void set_iounmap_nonlazy(void) 588 { 589 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); 590 } 591 592 /* 593 * Purges all lazily-freed vmap areas. 594 * 595 * If sync is 0 then don't purge if there is already a purge in progress. 596 * If force_flush is 1, then flush kernel TLBs between *start and *end even 597 * if we found no lazy vmap areas to unmap (callers can use this to optimise 598 * their own TLB flushing). 599 * Returns with *start = min(*start, lowest purged address) 600 * *end = max(*end, highest purged address) 601 */ 602 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 603 int sync, int force_flush) 604 { 605 static DEFINE_SPINLOCK(purge_lock); 606 LIST_HEAD(valist); 607 struct vmap_area *va; 608 struct vmap_area *n_va; 609 int nr = 0; 610 611 /* 612 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 613 * should not expect such behaviour. This just simplifies locking for 614 * the case that isn't actually used at the moment anyway. 615 */ 616 if (!sync && !force_flush) { 617 if (!spin_trylock(&purge_lock)) 618 return; 619 } else 620 spin_lock(&purge_lock); 621 622 if (sync) 623 purge_fragmented_blocks_allcpus(); 624 625 rcu_read_lock(); 626 list_for_each_entry_rcu(va, &vmap_area_list, list) { 627 if (va->flags & VM_LAZY_FREE) { 628 if (va->va_start < *start) 629 *start = va->va_start; 630 if (va->va_end > *end) 631 *end = va->va_end; 632 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 633 list_add_tail(&va->purge_list, &valist); 634 va->flags |= VM_LAZY_FREEING; 635 va->flags &= ~VM_LAZY_FREE; 636 } 637 } 638 rcu_read_unlock(); 639 640 if (nr) 641 atomic_sub(nr, &vmap_lazy_nr); 642 643 if (nr || force_flush) 644 flush_tlb_kernel_range(*start, *end); 645 646 if (nr) { 647 spin_lock(&vmap_area_lock); 648 list_for_each_entry_safe(va, n_va, &valist, purge_list) 649 __free_vmap_area(va); 650 spin_unlock(&vmap_area_lock); 651 } 652 spin_unlock(&purge_lock); 653 } 654 655 /* 656 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 657 * is already purging. 658 */ 659 static void try_purge_vmap_area_lazy(void) 660 { 661 unsigned long start = ULONG_MAX, end = 0; 662 663 __purge_vmap_area_lazy(&start, &end, 0, 0); 664 } 665 666 /* 667 * Kick off a purge of the outstanding lazy areas. 668 */ 669 static void purge_vmap_area_lazy(void) 670 { 671 unsigned long start = ULONG_MAX, end = 0; 672 673 __purge_vmap_area_lazy(&start, &end, 1, 0); 674 } 675 676 /* 677 * Free a vmap area, caller ensuring that the area has been unmapped 678 * and flush_cache_vunmap had been called for the correct range 679 * previously. 680 */ 681 static void free_vmap_area_noflush(struct vmap_area *va) 682 { 683 va->flags |= VM_LAZY_FREE; 684 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 685 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 686 try_purge_vmap_area_lazy(); 687 } 688 689 /* 690 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been 691 * called for the correct range previously. 692 */ 693 static void free_unmap_vmap_area_noflush(struct vmap_area *va) 694 { 695 unmap_vmap_area(va); 696 free_vmap_area_noflush(va); 697 } 698 699 /* 700 * Free and unmap a vmap area 701 */ 702 static void free_unmap_vmap_area(struct vmap_area *va) 703 { 704 flush_cache_vunmap(va->va_start, va->va_end); 705 free_unmap_vmap_area_noflush(va); 706 } 707 708 static struct vmap_area *find_vmap_area(unsigned long addr) 709 { 710 struct vmap_area *va; 711 712 spin_lock(&vmap_area_lock); 713 va = __find_vmap_area(addr); 714 spin_unlock(&vmap_area_lock); 715 716 return va; 717 } 718 719 static void free_unmap_vmap_area_addr(unsigned long addr) 720 { 721 struct vmap_area *va; 722 723 va = find_vmap_area(addr); 724 BUG_ON(!va); 725 free_unmap_vmap_area(va); 726 } 727 728 729 /*** Per cpu kva allocator ***/ 730 731 /* 732 * vmap space is limited especially on 32 bit architectures. Ensure there is 733 * room for at least 16 percpu vmap blocks per CPU. 734 */ 735 /* 736 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 737 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 738 * instead (we just need a rough idea) 739 */ 740 #if BITS_PER_LONG == 32 741 #define VMALLOC_SPACE (128UL*1024*1024) 742 #else 743 #define VMALLOC_SPACE (128UL*1024*1024*1024) 744 #endif 745 746 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 747 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 748 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 749 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 750 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 751 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 752 #define VMAP_BBMAP_BITS \ 753 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 754 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 755 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 756 757 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 758 759 static bool vmap_initialized __read_mostly = false; 760 761 struct vmap_block_queue { 762 spinlock_t lock; 763 struct list_head free; 764 }; 765 766 struct vmap_block { 767 spinlock_t lock; 768 struct vmap_area *va; 769 unsigned long free, dirty; 770 unsigned long dirty_min, dirty_max; /*< dirty range */ 771 struct list_head free_list; 772 struct rcu_head rcu_head; 773 struct list_head purge; 774 }; 775 776 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 777 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 778 779 /* 780 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 781 * in the free path. Could get rid of this if we change the API to return a 782 * "cookie" from alloc, to be passed to free. But no big deal yet. 783 */ 784 static DEFINE_SPINLOCK(vmap_block_tree_lock); 785 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 786 787 /* 788 * We should probably have a fallback mechanism to allocate virtual memory 789 * out of partially filled vmap blocks. However vmap block sizing should be 790 * fairly reasonable according to the vmalloc size, so it shouldn't be a 791 * big problem. 792 */ 793 794 static unsigned long addr_to_vb_idx(unsigned long addr) 795 { 796 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 797 addr /= VMAP_BLOCK_SIZE; 798 return addr; 799 } 800 801 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 802 { 803 unsigned long addr; 804 805 addr = va_start + (pages_off << PAGE_SHIFT); 806 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 807 return (void *)addr; 808 } 809 810 /** 811 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 812 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 813 * @order: how many 2^order pages should be occupied in newly allocated block 814 * @gfp_mask: flags for the page level allocator 815 * 816 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno) 817 */ 818 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 819 { 820 struct vmap_block_queue *vbq; 821 struct vmap_block *vb; 822 struct vmap_area *va; 823 unsigned long vb_idx; 824 int node, err; 825 void *vaddr; 826 827 node = numa_node_id(); 828 829 vb = kmalloc_node(sizeof(struct vmap_block), 830 gfp_mask & GFP_RECLAIM_MASK, node); 831 if (unlikely(!vb)) 832 return ERR_PTR(-ENOMEM); 833 834 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 835 VMALLOC_START, VMALLOC_END, 836 node, gfp_mask); 837 if (IS_ERR(va)) { 838 kfree(vb); 839 return ERR_CAST(va); 840 } 841 842 err = radix_tree_preload(gfp_mask); 843 if (unlikely(err)) { 844 kfree(vb); 845 free_vmap_area(va); 846 return ERR_PTR(err); 847 } 848 849 vaddr = vmap_block_vaddr(va->va_start, 0); 850 spin_lock_init(&vb->lock); 851 vb->va = va; 852 /* At least something should be left free */ 853 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 854 vb->free = VMAP_BBMAP_BITS - (1UL << order); 855 vb->dirty = 0; 856 vb->dirty_min = VMAP_BBMAP_BITS; 857 vb->dirty_max = 0; 858 INIT_LIST_HEAD(&vb->free_list); 859 860 vb_idx = addr_to_vb_idx(va->va_start); 861 spin_lock(&vmap_block_tree_lock); 862 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 863 spin_unlock(&vmap_block_tree_lock); 864 BUG_ON(err); 865 radix_tree_preload_end(); 866 867 vbq = &get_cpu_var(vmap_block_queue); 868 spin_lock(&vbq->lock); 869 list_add_tail_rcu(&vb->free_list, &vbq->free); 870 spin_unlock(&vbq->lock); 871 put_cpu_var(vmap_block_queue); 872 873 return vaddr; 874 } 875 876 static void free_vmap_block(struct vmap_block *vb) 877 { 878 struct vmap_block *tmp; 879 unsigned long vb_idx; 880 881 vb_idx = addr_to_vb_idx(vb->va->va_start); 882 spin_lock(&vmap_block_tree_lock); 883 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 884 spin_unlock(&vmap_block_tree_lock); 885 BUG_ON(tmp != vb); 886 887 free_vmap_area_noflush(vb->va); 888 kfree_rcu(vb, rcu_head); 889 } 890 891 static void purge_fragmented_blocks(int cpu) 892 { 893 LIST_HEAD(purge); 894 struct vmap_block *vb; 895 struct vmap_block *n_vb; 896 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 897 898 rcu_read_lock(); 899 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 900 901 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 902 continue; 903 904 spin_lock(&vb->lock); 905 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 906 vb->free = 0; /* prevent further allocs after releasing lock */ 907 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 908 vb->dirty_min = 0; 909 vb->dirty_max = VMAP_BBMAP_BITS; 910 spin_lock(&vbq->lock); 911 list_del_rcu(&vb->free_list); 912 spin_unlock(&vbq->lock); 913 spin_unlock(&vb->lock); 914 list_add_tail(&vb->purge, &purge); 915 } else 916 spin_unlock(&vb->lock); 917 } 918 rcu_read_unlock(); 919 920 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 921 list_del(&vb->purge); 922 free_vmap_block(vb); 923 } 924 } 925 926 static void purge_fragmented_blocks_allcpus(void) 927 { 928 int cpu; 929 930 for_each_possible_cpu(cpu) 931 purge_fragmented_blocks(cpu); 932 } 933 934 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 935 { 936 struct vmap_block_queue *vbq; 937 struct vmap_block *vb; 938 void *vaddr = NULL; 939 unsigned int order; 940 941 BUG_ON(offset_in_page(size)); 942 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 943 if (WARN_ON(size == 0)) { 944 /* 945 * Allocating 0 bytes isn't what caller wants since 946 * get_order(0) returns funny result. Just warn and terminate 947 * early. 948 */ 949 return NULL; 950 } 951 order = get_order(size); 952 953 rcu_read_lock(); 954 vbq = &get_cpu_var(vmap_block_queue); 955 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 956 unsigned long pages_off; 957 958 spin_lock(&vb->lock); 959 if (vb->free < (1UL << order)) { 960 spin_unlock(&vb->lock); 961 continue; 962 } 963 964 pages_off = VMAP_BBMAP_BITS - vb->free; 965 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 966 vb->free -= 1UL << order; 967 if (vb->free == 0) { 968 spin_lock(&vbq->lock); 969 list_del_rcu(&vb->free_list); 970 spin_unlock(&vbq->lock); 971 } 972 973 spin_unlock(&vb->lock); 974 break; 975 } 976 977 put_cpu_var(vmap_block_queue); 978 rcu_read_unlock(); 979 980 /* Allocate new block if nothing was found */ 981 if (!vaddr) 982 vaddr = new_vmap_block(order, gfp_mask); 983 984 return vaddr; 985 } 986 987 static void vb_free(const void *addr, unsigned long size) 988 { 989 unsigned long offset; 990 unsigned long vb_idx; 991 unsigned int order; 992 struct vmap_block *vb; 993 994 BUG_ON(offset_in_page(size)); 995 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 996 997 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 998 999 order = get_order(size); 1000 1001 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 1002 offset >>= PAGE_SHIFT; 1003 1004 vb_idx = addr_to_vb_idx((unsigned long)addr); 1005 rcu_read_lock(); 1006 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 1007 rcu_read_unlock(); 1008 BUG_ON(!vb); 1009 1010 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 1011 1012 spin_lock(&vb->lock); 1013 1014 /* Expand dirty range */ 1015 vb->dirty_min = min(vb->dirty_min, offset); 1016 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 1017 1018 vb->dirty += 1UL << order; 1019 if (vb->dirty == VMAP_BBMAP_BITS) { 1020 BUG_ON(vb->free); 1021 spin_unlock(&vb->lock); 1022 free_vmap_block(vb); 1023 } else 1024 spin_unlock(&vb->lock); 1025 } 1026 1027 /** 1028 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1029 * 1030 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1031 * to amortize TLB flushing overheads. What this means is that any page you 1032 * have now, may, in a former life, have been mapped into kernel virtual 1033 * address by the vmap layer and so there might be some CPUs with TLB entries 1034 * still referencing that page (additional to the regular 1:1 kernel mapping). 1035 * 1036 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1037 * be sure that none of the pages we have control over will have any aliases 1038 * from the vmap layer. 1039 */ 1040 void vm_unmap_aliases(void) 1041 { 1042 unsigned long start = ULONG_MAX, end = 0; 1043 int cpu; 1044 int flush = 0; 1045 1046 if (unlikely(!vmap_initialized)) 1047 return; 1048 1049 for_each_possible_cpu(cpu) { 1050 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1051 struct vmap_block *vb; 1052 1053 rcu_read_lock(); 1054 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1055 spin_lock(&vb->lock); 1056 if (vb->dirty) { 1057 unsigned long va_start = vb->va->va_start; 1058 unsigned long s, e; 1059 1060 s = va_start + (vb->dirty_min << PAGE_SHIFT); 1061 e = va_start + (vb->dirty_max << PAGE_SHIFT); 1062 1063 start = min(s, start); 1064 end = max(e, end); 1065 1066 flush = 1; 1067 } 1068 spin_unlock(&vb->lock); 1069 } 1070 rcu_read_unlock(); 1071 } 1072 1073 __purge_vmap_area_lazy(&start, &end, 1, flush); 1074 } 1075 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1076 1077 /** 1078 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1079 * @mem: the pointer returned by vm_map_ram 1080 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1081 */ 1082 void vm_unmap_ram(const void *mem, unsigned int count) 1083 { 1084 unsigned long size = count << PAGE_SHIFT; 1085 unsigned long addr = (unsigned long)mem; 1086 1087 BUG_ON(!addr); 1088 BUG_ON(addr < VMALLOC_START); 1089 BUG_ON(addr > VMALLOC_END); 1090 BUG_ON(addr & (PAGE_SIZE-1)); 1091 1092 debug_check_no_locks_freed(mem, size); 1093 vmap_debug_free_range(addr, addr+size); 1094 1095 if (likely(count <= VMAP_MAX_ALLOC)) 1096 vb_free(mem, size); 1097 else 1098 free_unmap_vmap_area_addr(addr); 1099 } 1100 EXPORT_SYMBOL(vm_unmap_ram); 1101 1102 /** 1103 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1104 * @pages: an array of pointers to the pages to be mapped 1105 * @count: number of pages 1106 * @node: prefer to allocate data structures on this node 1107 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1108 * 1109 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 1110 * faster than vmap so it's good. But if you mix long-life and short-life 1111 * objects with vm_map_ram(), it could consume lots of address space through 1112 * fragmentation (especially on a 32bit machine). You could see failures in 1113 * the end. Please use this function for short-lived objects. 1114 * 1115 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1116 */ 1117 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1118 { 1119 unsigned long size = count << PAGE_SHIFT; 1120 unsigned long addr; 1121 void *mem; 1122 1123 if (likely(count <= VMAP_MAX_ALLOC)) { 1124 mem = vb_alloc(size, GFP_KERNEL); 1125 if (IS_ERR(mem)) 1126 return NULL; 1127 addr = (unsigned long)mem; 1128 } else { 1129 struct vmap_area *va; 1130 va = alloc_vmap_area(size, PAGE_SIZE, 1131 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1132 if (IS_ERR(va)) 1133 return NULL; 1134 1135 addr = va->va_start; 1136 mem = (void *)addr; 1137 } 1138 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1139 vm_unmap_ram(mem, count); 1140 return NULL; 1141 } 1142 return mem; 1143 } 1144 EXPORT_SYMBOL(vm_map_ram); 1145 1146 static struct vm_struct *vmlist __initdata; 1147 /** 1148 * vm_area_add_early - add vmap area early during boot 1149 * @vm: vm_struct to add 1150 * 1151 * This function is used to add fixed kernel vm area to vmlist before 1152 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1153 * should contain proper values and the other fields should be zero. 1154 * 1155 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1156 */ 1157 void __init vm_area_add_early(struct vm_struct *vm) 1158 { 1159 struct vm_struct *tmp, **p; 1160 1161 BUG_ON(vmap_initialized); 1162 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1163 if (tmp->addr >= vm->addr) { 1164 BUG_ON(tmp->addr < vm->addr + vm->size); 1165 break; 1166 } else 1167 BUG_ON(tmp->addr + tmp->size > vm->addr); 1168 } 1169 vm->next = *p; 1170 *p = vm; 1171 } 1172 1173 /** 1174 * vm_area_register_early - register vmap area early during boot 1175 * @vm: vm_struct to register 1176 * @align: requested alignment 1177 * 1178 * This function is used to register kernel vm area before 1179 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1180 * proper values on entry and other fields should be zero. On return, 1181 * vm->addr contains the allocated address. 1182 * 1183 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1184 */ 1185 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1186 { 1187 static size_t vm_init_off __initdata; 1188 unsigned long addr; 1189 1190 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1191 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1192 1193 vm->addr = (void *)addr; 1194 1195 vm_area_add_early(vm); 1196 } 1197 1198 void __init vmalloc_init(void) 1199 { 1200 struct vmap_area *va; 1201 struct vm_struct *tmp; 1202 int i; 1203 1204 for_each_possible_cpu(i) { 1205 struct vmap_block_queue *vbq; 1206 struct vfree_deferred *p; 1207 1208 vbq = &per_cpu(vmap_block_queue, i); 1209 spin_lock_init(&vbq->lock); 1210 INIT_LIST_HEAD(&vbq->free); 1211 p = &per_cpu(vfree_deferred, i); 1212 init_llist_head(&p->list); 1213 INIT_WORK(&p->wq, free_work); 1214 } 1215 1216 /* Import existing vmlist entries. */ 1217 for (tmp = vmlist; tmp; tmp = tmp->next) { 1218 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1219 va->flags = VM_VM_AREA; 1220 va->va_start = (unsigned long)tmp->addr; 1221 va->va_end = va->va_start + tmp->size; 1222 va->vm = tmp; 1223 __insert_vmap_area(va); 1224 } 1225 1226 vmap_area_pcpu_hole = VMALLOC_END; 1227 1228 vmap_initialized = true; 1229 } 1230 1231 /** 1232 * map_kernel_range_noflush - map kernel VM area with the specified pages 1233 * @addr: start of the VM area to map 1234 * @size: size of the VM area to map 1235 * @prot: page protection flags to use 1236 * @pages: pages to map 1237 * 1238 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1239 * specify should have been allocated using get_vm_area() and its 1240 * friends. 1241 * 1242 * NOTE: 1243 * This function does NOT do any cache flushing. The caller is 1244 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1245 * before calling this function. 1246 * 1247 * RETURNS: 1248 * The number of pages mapped on success, -errno on failure. 1249 */ 1250 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1251 pgprot_t prot, struct page **pages) 1252 { 1253 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1254 } 1255 1256 /** 1257 * unmap_kernel_range_noflush - unmap kernel VM area 1258 * @addr: start of the VM area to unmap 1259 * @size: size of the VM area to unmap 1260 * 1261 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1262 * specify should have been allocated using get_vm_area() and its 1263 * friends. 1264 * 1265 * NOTE: 1266 * This function does NOT do any cache flushing. The caller is 1267 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1268 * before calling this function and flush_tlb_kernel_range() after. 1269 */ 1270 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1271 { 1272 vunmap_page_range(addr, addr + size); 1273 } 1274 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1275 1276 /** 1277 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1278 * @addr: start of the VM area to unmap 1279 * @size: size of the VM area to unmap 1280 * 1281 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1282 * the unmapping and tlb after. 1283 */ 1284 void unmap_kernel_range(unsigned long addr, unsigned long size) 1285 { 1286 unsigned long end = addr + size; 1287 1288 flush_cache_vunmap(addr, end); 1289 vunmap_page_range(addr, end); 1290 flush_tlb_kernel_range(addr, end); 1291 } 1292 EXPORT_SYMBOL_GPL(unmap_kernel_range); 1293 1294 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) 1295 { 1296 unsigned long addr = (unsigned long)area->addr; 1297 unsigned long end = addr + get_vm_area_size(area); 1298 int err; 1299 1300 err = vmap_page_range(addr, end, prot, pages); 1301 1302 return err > 0 ? 0 : err; 1303 } 1304 EXPORT_SYMBOL_GPL(map_vm_area); 1305 1306 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1307 unsigned long flags, const void *caller) 1308 { 1309 spin_lock(&vmap_area_lock); 1310 vm->flags = flags; 1311 vm->addr = (void *)va->va_start; 1312 vm->size = va->va_end - va->va_start; 1313 vm->caller = caller; 1314 va->vm = vm; 1315 va->flags |= VM_VM_AREA; 1316 spin_unlock(&vmap_area_lock); 1317 } 1318 1319 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 1320 { 1321 /* 1322 * Before removing VM_UNINITIALIZED, 1323 * we should make sure that vm has proper values. 1324 * Pair with smp_rmb() in show_numa_info(). 1325 */ 1326 smp_wmb(); 1327 vm->flags &= ~VM_UNINITIALIZED; 1328 } 1329 1330 static struct vm_struct *__get_vm_area_node(unsigned long size, 1331 unsigned long align, unsigned long flags, unsigned long start, 1332 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 1333 { 1334 struct vmap_area *va; 1335 struct vm_struct *area; 1336 1337 BUG_ON(in_interrupt()); 1338 if (flags & VM_IOREMAP) 1339 align = 1ul << clamp_t(int, fls_long(size), 1340 PAGE_SHIFT, IOREMAP_MAX_ORDER); 1341 1342 size = PAGE_ALIGN(size); 1343 if (unlikely(!size)) 1344 return NULL; 1345 1346 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1347 if (unlikely(!area)) 1348 return NULL; 1349 1350 if (!(flags & VM_NO_GUARD)) 1351 size += PAGE_SIZE; 1352 1353 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1354 if (IS_ERR(va)) { 1355 kfree(area); 1356 return NULL; 1357 } 1358 1359 setup_vmalloc_vm(area, va, flags, caller); 1360 1361 return area; 1362 } 1363 1364 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1365 unsigned long start, unsigned long end) 1366 { 1367 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1368 GFP_KERNEL, __builtin_return_address(0)); 1369 } 1370 EXPORT_SYMBOL_GPL(__get_vm_area); 1371 1372 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1373 unsigned long start, unsigned long end, 1374 const void *caller) 1375 { 1376 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1377 GFP_KERNEL, caller); 1378 } 1379 1380 /** 1381 * get_vm_area - reserve a contiguous kernel virtual area 1382 * @size: size of the area 1383 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1384 * 1385 * Search an area of @size in the kernel virtual mapping area, 1386 * and reserved it for out purposes. Returns the area descriptor 1387 * on success or %NULL on failure. 1388 */ 1389 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1390 { 1391 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1392 NUMA_NO_NODE, GFP_KERNEL, 1393 __builtin_return_address(0)); 1394 } 1395 1396 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1397 const void *caller) 1398 { 1399 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1400 NUMA_NO_NODE, GFP_KERNEL, caller); 1401 } 1402 1403 /** 1404 * find_vm_area - find a continuous kernel virtual area 1405 * @addr: base address 1406 * 1407 * Search for the kernel VM area starting at @addr, and return it. 1408 * It is up to the caller to do all required locking to keep the returned 1409 * pointer valid. 1410 */ 1411 struct vm_struct *find_vm_area(const void *addr) 1412 { 1413 struct vmap_area *va; 1414 1415 va = find_vmap_area((unsigned long)addr); 1416 if (va && va->flags & VM_VM_AREA) 1417 return va->vm; 1418 1419 return NULL; 1420 } 1421 1422 /** 1423 * remove_vm_area - find and remove a continuous kernel virtual area 1424 * @addr: base address 1425 * 1426 * Search for the kernel VM area starting at @addr, and remove it. 1427 * This function returns the found VM area, but using it is NOT safe 1428 * on SMP machines, except for its size or flags. 1429 */ 1430 struct vm_struct *remove_vm_area(const void *addr) 1431 { 1432 struct vmap_area *va; 1433 1434 va = find_vmap_area((unsigned long)addr); 1435 if (va && va->flags & VM_VM_AREA) { 1436 struct vm_struct *vm = va->vm; 1437 1438 spin_lock(&vmap_area_lock); 1439 va->vm = NULL; 1440 va->flags &= ~VM_VM_AREA; 1441 spin_unlock(&vmap_area_lock); 1442 1443 vmap_debug_free_range(va->va_start, va->va_end); 1444 kasan_free_shadow(vm); 1445 free_unmap_vmap_area(va); 1446 vm->size -= PAGE_SIZE; 1447 1448 return vm; 1449 } 1450 return NULL; 1451 } 1452 1453 static void __vunmap(const void *addr, int deallocate_pages) 1454 { 1455 struct vm_struct *area; 1456 1457 if (!addr) 1458 return; 1459 1460 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 1461 addr)) 1462 return; 1463 1464 area = remove_vm_area(addr); 1465 if (unlikely(!area)) { 1466 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1467 addr); 1468 return; 1469 } 1470 1471 debug_check_no_locks_freed(addr, area->size); 1472 debug_check_no_obj_freed(addr, area->size); 1473 1474 if (deallocate_pages) { 1475 int i; 1476 1477 for (i = 0; i < area->nr_pages; i++) { 1478 struct page *page = area->pages[i]; 1479 1480 BUG_ON(!page); 1481 __free_page(page); 1482 } 1483 1484 if (area->flags & VM_VPAGES) 1485 vfree(area->pages); 1486 else 1487 kfree(area->pages); 1488 } 1489 1490 kfree(area); 1491 return; 1492 } 1493 1494 /** 1495 * vfree - release memory allocated by vmalloc() 1496 * @addr: memory base address 1497 * 1498 * Free the virtually continuous memory area starting at @addr, as 1499 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1500 * NULL, no operation is performed. 1501 * 1502 * Must not be called in NMI context (strictly speaking, only if we don't 1503 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 1504 * conventions for vfree() arch-depenedent would be a really bad idea) 1505 * 1506 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node) 1507 */ 1508 void vfree(const void *addr) 1509 { 1510 BUG_ON(in_nmi()); 1511 1512 kmemleak_free(addr); 1513 1514 if (!addr) 1515 return; 1516 if (unlikely(in_interrupt())) { 1517 struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred); 1518 if (llist_add((struct llist_node *)addr, &p->list)) 1519 schedule_work(&p->wq); 1520 } else 1521 __vunmap(addr, 1); 1522 } 1523 EXPORT_SYMBOL(vfree); 1524 1525 /** 1526 * vunmap - release virtual mapping obtained by vmap() 1527 * @addr: memory base address 1528 * 1529 * Free the virtually contiguous memory area starting at @addr, 1530 * which was created from the page array passed to vmap(). 1531 * 1532 * Must not be called in interrupt context. 1533 */ 1534 void vunmap(const void *addr) 1535 { 1536 BUG_ON(in_interrupt()); 1537 might_sleep(); 1538 if (addr) 1539 __vunmap(addr, 0); 1540 } 1541 EXPORT_SYMBOL(vunmap); 1542 1543 /** 1544 * vmap - map an array of pages into virtually contiguous space 1545 * @pages: array of page pointers 1546 * @count: number of pages to map 1547 * @flags: vm_area->flags 1548 * @prot: page protection for the mapping 1549 * 1550 * Maps @count pages from @pages into contiguous kernel virtual 1551 * space. 1552 */ 1553 void *vmap(struct page **pages, unsigned int count, 1554 unsigned long flags, pgprot_t prot) 1555 { 1556 struct vm_struct *area; 1557 1558 might_sleep(); 1559 1560 if (count > totalram_pages) 1561 return NULL; 1562 1563 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1564 __builtin_return_address(0)); 1565 if (!area) 1566 return NULL; 1567 1568 if (map_vm_area(area, prot, pages)) { 1569 vunmap(area->addr); 1570 return NULL; 1571 } 1572 1573 return area->addr; 1574 } 1575 EXPORT_SYMBOL(vmap); 1576 1577 static void *__vmalloc_node(unsigned long size, unsigned long align, 1578 gfp_t gfp_mask, pgprot_t prot, 1579 int node, const void *caller); 1580 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1581 pgprot_t prot, int node) 1582 { 1583 const int order = 0; 1584 struct page **pages; 1585 unsigned int nr_pages, array_size, i; 1586 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1587 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; 1588 1589 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 1590 array_size = (nr_pages * sizeof(struct page *)); 1591 1592 area->nr_pages = nr_pages; 1593 /* Please note that the recursion is strictly bounded. */ 1594 if (array_size > PAGE_SIZE) { 1595 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, 1596 PAGE_KERNEL, node, area->caller); 1597 area->flags |= VM_VPAGES; 1598 } else { 1599 pages = kmalloc_node(array_size, nested_gfp, node); 1600 } 1601 area->pages = pages; 1602 if (!area->pages) { 1603 remove_vm_area(area->addr); 1604 kfree(area); 1605 return NULL; 1606 } 1607 1608 for (i = 0; i < area->nr_pages; i++) { 1609 struct page *page; 1610 1611 if (node == NUMA_NO_NODE) 1612 page = alloc_page(alloc_mask); 1613 else 1614 page = alloc_pages_node(node, alloc_mask, order); 1615 1616 if (unlikely(!page)) { 1617 /* Successfully allocated i pages, free them in __vunmap() */ 1618 area->nr_pages = i; 1619 goto fail; 1620 } 1621 area->pages[i] = page; 1622 if (gfpflags_allow_blocking(gfp_mask)) 1623 cond_resched(); 1624 } 1625 1626 if (map_vm_area(area, prot, pages)) 1627 goto fail; 1628 return area->addr; 1629 1630 fail: 1631 warn_alloc_failed(gfp_mask, order, 1632 "vmalloc: allocation failure, allocated %ld of %ld bytes\n", 1633 (area->nr_pages*PAGE_SIZE), area->size); 1634 vfree(area->addr); 1635 return NULL; 1636 } 1637 1638 /** 1639 * __vmalloc_node_range - allocate virtually contiguous memory 1640 * @size: allocation size 1641 * @align: desired alignment 1642 * @start: vm area range start 1643 * @end: vm area range end 1644 * @gfp_mask: flags for the page level allocator 1645 * @prot: protection mask for the allocated pages 1646 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 1647 * @node: node to use for allocation or NUMA_NO_NODE 1648 * @caller: caller's return address 1649 * 1650 * Allocate enough pages to cover @size from the page level 1651 * allocator with @gfp_mask flags. Map them into contiguous 1652 * kernel virtual space, using a pagetable protection of @prot. 1653 */ 1654 void *__vmalloc_node_range(unsigned long size, unsigned long align, 1655 unsigned long start, unsigned long end, gfp_t gfp_mask, 1656 pgprot_t prot, unsigned long vm_flags, int node, 1657 const void *caller) 1658 { 1659 struct vm_struct *area; 1660 void *addr; 1661 unsigned long real_size = size; 1662 1663 size = PAGE_ALIGN(size); 1664 if (!size || (size >> PAGE_SHIFT) > totalram_pages) 1665 goto fail; 1666 1667 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | 1668 vm_flags, start, end, node, gfp_mask, caller); 1669 if (!area) 1670 goto fail; 1671 1672 addr = __vmalloc_area_node(area, gfp_mask, prot, node); 1673 if (!addr) 1674 return NULL; 1675 1676 /* 1677 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 1678 * flag. It means that vm_struct is not fully initialized. 1679 * Now, it is fully initialized, so remove this flag here. 1680 */ 1681 clear_vm_uninitialized_flag(area); 1682 1683 /* 1684 * A ref_count = 2 is needed because vm_struct allocated in 1685 * __get_vm_area_node() contains a reference to the virtual address of 1686 * the vmalloc'ed block. 1687 */ 1688 kmemleak_alloc(addr, real_size, 2, gfp_mask); 1689 1690 return addr; 1691 1692 fail: 1693 warn_alloc_failed(gfp_mask, 0, 1694 "vmalloc: allocation failure: %lu bytes\n", 1695 real_size); 1696 return NULL; 1697 } 1698 1699 /** 1700 * __vmalloc_node - allocate virtually contiguous memory 1701 * @size: allocation size 1702 * @align: desired alignment 1703 * @gfp_mask: flags for the page level allocator 1704 * @prot: protection mask for the allocated pages 1705 * @node: node to use for allocation or NUMA_NO_NODE 1706 * @caller: caller's return address 1707 * 1708 * Allocate enough pages to cover @size from the page level 1709 * allocator with @gfp_mask flags. Map them into contiguous 1710 * kernel virtual space, using a pagetable protection of @prot. 1711 */ 1712 static void *__vmalloc_node(unsigned long size, unsigned long align, 1713 gfp_t gfp_mask, pgprot_t prot, 1714 int node, const void *caller) 1715 { 1716 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 1717 gfp_mask, prot, 0, node, caller); 1718 } 1719 1720 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1721 { 1722 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 1723 __builtin_return_address(0)); 1724 } 1725 EXPORT_SYMBOL(__vmalloc); 1726 1727 static inline void *__vmalloc_node_flags(unsigned long size, 1728 int node, gfp_t flags) 1729 { 1730 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 1731 node, __builtin_return_address(0)); 1732 } 1733 1734 /** 1735 * vmalloc - allocate virtually contiguous memory 1736 * @size: allocation size 1737 * Allocate enough pages to cover @size from the page level 1738 * allocator and map them into contiguous kernel virtual space. 1739 * 1740 * For tight control over page level allocator and protection flags 1741 * use __vmalloc() instead. 1742 */ 1743 void *vmalloc(unsigned long size) 1744 { 1745 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1746 GFP_KERNEL | __GFP_HIGHMEM); 1747 } 1748 EXPORT_SYMBOL(vmalloc); 1749 1750 /** 1751 * vzalloc - allocate virtually contiguous memory with zero fill 1752 * @size: allocation size 1753 * Allocate enough pages to cover @size from the page level 1754 * allocator and map them into contiguous kernel virtual space. 1755 * The memory allocated is set to zero. 1756 * 1757 * For tight control over page level allocator and protection flags 1758 * use __vmalloc() instead. 1759 */ 1760 void *vzalloc(unsigned long size) 1761 { 1762 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1763 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1764 } 1765 EXPORT_SYMBOL(vzalloc); 1766 1767 /** 1768 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1769 * @size: allocation size 1770 * 1771 * The resulting memory area is zeroed so it can be mapped to userspace 1772 * without leaking data. 1773 */ 1774 void *vmalloc_user(unsigned long size) 1775 { 1776 struct vm_struct *area; 1777 void *ret; 1778 1779 ret = __vmalloc_node(size, SHMLBA, 1780 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1781 PAGE_KERNEL, NUMA_NO_NODE, 1782 __builtin_return_address(0)); 1783 if (ret) { 1784 area = find_vm_area(ret); 1785 area->flags |= VM_USERMAP; 1786 } 1787 return ret; 1788 } 1789 EXPORT_SYMBOL(vmalloc_user); 1790 1791 /** 1792 * vmalloc_node - allocate memory on a specific node 1793 * @size: allocation size 1794 * @node: numa node 1795 * 1796 * Allocate enough pages to cover @size from the page level 1797 * allocator and map them into contiguous kernel virtual space. 1798 * 1799 * For tight control over page level allocator and protection flags 1800 * use __vmalloc() instead. 1801 */ 1802 void *vmalloc_node(unsigned long size, int node) 1803 { 1804 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1805 node, __builtin_return_address(0)); 1806 } 1807 EXPORT_SYMBOL(vmalloc_node); 1808 1809 /** 1810 * vzalloc_node - allocate memory on a specific node with zero fill 1811 * @size: allocation size 1812 * @node: numa node 1813 * 1814 * Allocate enough pages to cover @size from the page level 1815 * allocator and map them into contiguous kernel virtual space. 1816 * The memory allocated is set to zero. 1817 * 1818 * For tight control over page level allocator and protection flags 1819 * use __vmalloc_node() instead. 1820 */ 1821 void *vzalloc_node(unsigned long size, int node) 1822 { 1823 return __vmalloc_node_flags(size, node, 1824 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1825 } 1826 EXPORT_SYMBOL(vzalloc_node); 1827 1828 #ifndef PAGE_KERNEL_EXEC 1829 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1830 #endif 1831 1832 /** 1833 * vmalloc_exec - allocate virtually contiguous, executable memory 1834 * @size: allocation size 1835 * 1836 * Kernel-internal function to allocate enough pages to cover @size 1837 * the page level allocator and map them into contiguous and 1838 * executable kernel virtual space. 1839 * 1840 * For tight control over page level allocator and protection flags 1841 * use __vmalloc() instead. 1842 */ 1843 1844 void *vmalloc_exec(unsigned long size) 1845 { 1846 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1847 NUMA_NO_NODE, __builtin_return_address(0)); 1848 } 1849 1850 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1851 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1852 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1853 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1854 #else 1855 #define GFP_VMALLOC32 GFP_KERNEL 1856 #endif 1857 1858 /** 1859 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1860 * @size: allocation size 1861 * 1862 * Allocate enough 32bit PA addressable pages to cover @size from the 1863 * page level allocator and map them into contiguous kernel virtual space. 1864 */ 1865 void *vmalloc_32(unsigned long size) 1866 { 1867 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 1868 NUMA_NO_NODE, __builtin_return_address(0)); 1869 } 1870 EXPORT_SYMBOL(vmalloc_32); 1871 1872 /** 1873 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1874 * @size: allocation size 1875 * 1876 * The resulting memory area is 32bit addressable and zeroed so it can be 1877 * mapped to userspace without leaking data. 1878 */ 1879 void *vmalloc_32_user(unsigned long size) 1880 { 1881 struct vm_struct *area; 1882 void *ret; 1883 1884 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1885 NUMA_NO_NODE, __builtin_return_address(0)); 1886 if (ret) { 1887 area = find_vm_area(ret); 1888 area->flags |= VM_USERMAP; 1889 } 1890 return ret; 1891 } 1892 EXPORT_SYMBOL(vmalloc_32_user); 1893 1894 /* 1895 * small helper routine , copy contents to buf from addr. 1896 * If the page is not present, fill zero. 1897 */ 1898 1899 static int aligned_vread(char *buf, char *addr, unsigned long count) 1900 { 1901 struct page *p; 1902 int copied = 0; 1903 1904 while (count) { 1905 unsigned long offset, length; 1906 1907 offset = offset_in_page(addr); 1908 length = PAGE_SIZE - offset; 1909 if (length > count) 1910 length = count; 1911 p = vmalloc_to_page(addr); 1912 /* 1913 * To do safe access to this _mapped_ area, we need 1914 * lock. But adding lock here means that we need to add 1915 * overhead of vmalloc()/vfree() calles for this _debug_ 1916 * interface, rarely used. Instead of that, we'll use 1917 * kmap() and get small overhead in this access function. 1918 */ 1919 if (p) { 1920 /* 1921 * we can expect USER0 is not used (see vread/vwrite's 1922 * function description) 1923 */ 1924 void *map = kmap_atomic(p); 1925 memcpy(buf, map + offset, length); 1926 kunmap_atomic(map); 1927 } else 1928 memset(buf, 0, length); 1929 1930 addr += length; 1931 buf += length; 1932 copied += length; 1933 count -= length; 1934 } 1935 return copied; 1936 } 1937 1938 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 1939 { 1940 struct page *p; 1941 int copied = 0; 1942 1943 while (count) { 1944 unsigned long offset, length; 1945 1946 offset = offset_in_page(addr); 1947 length = PAGE_SIZE - offset; 1948 if (length > count) 1949 length = count; 1950 p = vmalloc_to_page(addr); 1951 /* 1952 * To do safe access to this _mapped_ area, we need 1953 * lock. But adding lock here means that we need to add 1954 * overhead of vmalloc()/vfree() calles for this _debug_ 1955 * interface, rarely used. Instead of that, we'll use 1956 * kmap() and get small overhead in this access function. 1957 */ 1958 if (p) { 1959 /* 1960 * we can expect USER0 is not used (see vread/vwrite's 1961 * function description) 1962 */ 1963 void *map = kmap_atomic(p); 1964 memcpy(map + offset, buf, length); 1965 kunmap_atomic(map); 1966 } 1967 addr += length; 1968 buf += length; 1969 copied += length; 1970 count -= length; 1971 } 1972 return copied; 1973 } 1974 1975 /** 1976 * vread() - read vmalloc area in a safe way. 1977 * @buf: buffer for reading data 1978 * @addr: vm address. 1979 * @count: number of bytes to be read. 1980 * 1981 * Returns # of bytes which addr and buf should be increased. 1982 * (same number to @count). Returns 0 if [addr...addr+count) doesn't 1983 * includes any intersect with alive vmalloc area. 1984 * 1985 * This function checks that addr is a valid vmalloc'ed area, and 1986 * copy data from that area to a given buffer. If the given memory range 1987 * of [addr...addr+count) includes some valid address, data is copied to 1988 * proper area of @buf. If there are memory holes, they'll be zero-filled. 1989 * IOREMAP area is treated as memory hole and no copy is done. 1990 * 1991 * If [addr...addr+count) doesn't includes any intersects with alive 1992 * vm_struct area, returns 0. @buf should be kernel's buffer. 1993 * 1994 * Note: In usual ops, vread() is never necessary because the caller 1995 * should know vmalloc() area is valid and can use memcpy(). 1996 * This is for routines which have to access vmalloc area without 1997 * any informaion, as /dev/kmem. 1998 * 1999 */ 2000 2001 long vread(char *buf, char *addr, unsigned long count) 2002 { 2003 struct vmap_area *va; 2004 struct vm_struct *vm; 2005 char *vaddr, *buf_start = buf; 2006 unsigned long buflen = count; 2007 unsigned long n; 2008 2009 /* Don't allow overflow */ 2010 if ((unsigned long) addr + count < count) 2011 count = -(unsigned long) addr; 2012 2013 spin_lock(&vmap_area_lock); 2014 list_for_each_entry(va, &vmap_area_list, list) { 2015 if (!count) 2016 break; 2017 2018 if (!(va->flags & VM_VM_AREA)) 2019 continue; 2020 2021 vm = va->vm; 2022 vaddr = (char *) vm->addr; 2023 if (addr >= vaddr + get_vm_area_size(vm)) 2024 continue; 2025 while (addr < vaddr) { 2026 if (count == 0) 2027 goto finished; 2028 *buf = '\0'; 2029 buf++; 2030 addr++; 2031 count--; 2032 } 2033 n = vaddr + get_vm_area_size(vm) - addr; 2034 if (n > count) 2035 n = count; 2036 if (!(vm->flags & VM_IOREMAP)) 2037 aligned_vread(buf, addr, n); 2038 else /* IOREMAP area is treated as memory hole */ 2039 memset(buf, 0, n); 2040 buf += n; 2041 addr += n; 2042 count -= n; 2043 } 2044 finished: 2045 spin_unlock(&vmap_area_lock); 2046 2047 if (buf == buf_start) 2048 return 0; 2049 /* zero-fill memory holes */ 2050 if (buf != buf_start + buflen) 2051 memset(buf, 0, buflen - (buf - buf_start)); 2052 2053 return buflen; 2054 } 2055 2056 /** 2057 * vwrite() - write vmalloc area in a safe way. 2058 * @buf: buffer for source data 2059 * @addr: vm address. 2060 * @count: number of bytes to be read. 2061 * 2062 * Returns # of bytes which addr and buf should be incresed. 2063 * (same number to @count). 2064 * If [addr...addr+count) doesn't includes any intersect with valid 2065 * vmalloc area, returns 0. 2066 * 2067 * This function checks that addr is a valid vmalloc'ed area, and 2068 * copy data from a buffer to the given addr. If specified range of 2069 * [addr...addr+count) includes some valid address, data is copied from 2070 * proper area of @buf. If there are memory holes, no copy to hole. 2071 * IOREMAP area is treated as memory hole and no copy is done. 2072 * 2073 * If [addr...addr+count) doesn't includes any intersects with alive 2074 * vm_struct area, returns 0. @buf should be kernel's buffer. 2075 * 2076 * Note: In usual ops, vwrite() is never necessary because the caller 2077 * should know vmalloc() area is valid and can use memcpy(). 2078 * This is for routines which have to access vmalloc area without 2079 * any informaion, as /dev/kmem. 2080 */ 2081 2082 long vwrite(char *buf, char *addr, unsigned long count) 2083 { 2084 struct vmap_area *va; 2085 struct vm_struct *vm; 2086 char *vaddr; 2087 unsigned long n, buflen; 2088 int copied = 0; 2089 2090 /* Don't allow overflow */ 2091 if ((unsigned long) addr + count < count) 2092 count = -(unsigned long) addr; 2093 buflen = count; 2094 2095 spin_lock(&vmap_area_lock); 2096 list_for_each_entry(va, &vmap_area_list, list) { 2097 if (!count) 2098 break; 2099 2100 if (!(va->flags & VM_VM_AREA)) 2101 continue; 2102 2103 vm = va->vm; 2104 vaddr = (char *) vm->addr; 2105 if (addr >= vaddr + get_vm_area_size(vm)) 2106 continue; 2107 while (addr < vaddr) { 2108 if (count == 0) 2109 goto finished; 2110 buf++; 2111 addr++; 2112 count--; 2113 } 2114 n = vaddr + get_vm_area_size(vm) - addr; 2115 if (n > count) 2116 n = count; 2117 if (!(vm->flags & VM_IOREMAP)) { 2118 aligned_vwrite(buf, addr, n); 2119 copied++; 2120 } 2121 buf += n; 2122 addr += n; 2123 count -= n; 2124 } 2125 finished: 2126 spin_unlock(&vmap_area_lock); 2127 if (!copied) 2128 return 0; 2129 return buflen; 2130 } 2131 2132 /** 2133 * remap_vmalloc_range_partial - map vmalloc pages to userspace 2134 * @vma: vma to cover 2135 * @uaddr: target user address to start at 2136 * @kaddr: virtual address of vmalloc kernel memory 2137 * @size: size of map area 2138 * 2139 * Returns: 0 for success, -Exxx on failure 2140 * 2141 * This function checks that @kaddr is a valid vmalloc'ed area, 2142 * and that it is big enough to cover the range starting at 2143 * @uaddr in @vma. Will return failure if that criteria isn't 2144 * met. 2145 * 2146 * Similar to remap_pfn_range() (see mm/memory.c) 2147 */ 2148 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 2149 void *kaddr, unsigned long size) 2150 { 2151 struct vm_struct *area; 2152 2153 size = PAGE_ALIGN(size); 2154 2155 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 2156 return -EINVAL; 2157 2158 area = find_vm_area(kaddr); 2159 if (!area) 2160 return -EINVAL; 2161 2162 if (!(area->flags & VM_USERMAP)) 2163 return -EINVAL; 2164 2165 if (kaddr + size > area->addr + area->size) 2166 return -EINVAL; 2167 2168 do { 2169 struct page *page = vmalloc_to_page(kaddr); 2170 int ret; 2171 2172 ret = vm_insert_page(vma, uaddr, page); 2173 if (ret) 2174 return ret; 2175 2176 uaddr += PAGE_SIZE; 2177 kaddr += PAGE_SIZE; 2178 size -= PAGE_SIZE; 2179 } while (size > 0); 2180 2181 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 2182 2183 return 0; 2184 } 2185 EXPORT_SYMBOL(remap_vmalloc_range_partial); 2186 2187 /** 2188 * remap_vmalloc_range - map vmalloc pages to userspace 2189 * @vma: vma to cover (map full range of vma) 2190 * @addr: vmalloc memory 2191 * @pgoff: number of pages into addr before first page to map 2192 * 2193 * Returns: 0 for success, -Exxx on failure 2194 * 2195 * This function checks that addr is a valid vmalloc'ed area, and 2196 * that it is big enough to cover the vma. Will return failure if 2197 * that criteria isn't met. 2198 * 2199 * Similar to remap_pfn_range() (see mm/memory.c) 2200 */ 2201 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2202 unsigned long pgoff) 2203 { 2204 return remap_vmalloc_range_partial(vma, vma->vm_start, 2205 addr + (pgoff << PAGE_SHIFT), 2206 vma->vm_end - vma->vm_start); 2207 } 2208 EXPORT_SYMBOL(remap_vmalloc_range); 2209 2210 /* 2211 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2212 * have one. 2213 */ 2214 void __weak vmalloc_sync_all(void) 2215 { 2216 } 2217 2218 2219 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 2220 { 2221 pte_t ***p = data; 2222 2223 if (p) { 2224 *(*p) = pte; 2225 (*p)++; 2226 } 2227 return 0; 2228 } 2229 2230 /** 2231 * alloc_vm_area - allocate a range of kernel address space 2232 * @size: size of the area 2233 * @ptes: returns the PTEs for the address space 2234 * 2235 * Returns: NULL on failure, vm_struct on success 2236 * 2237 * This function reserves a range of kernel address space, and 2238 * allocates pagetables to map that range. No actual mappings 2239 * are created. 2240 * 2241 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 2242 * allocated for the VM area are returned. 2243 */ 2244 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 2245 { 2246 struct vm_struct *area; 2247 2248 area = get_vm_area_caller(size, VM_IOREMAP, 2249 __builtin_return_address(0)); 2250 if (area == NULL) 2251 return NULL; 2252 2253 /* 2254 * This ensures that page tables are constructed for this region 2255 * of kernel virtual address space and mapped into init_mm. 2256 */ 2257 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2258 size, f, ptes ? &ptes : NULL)) { 2259 free_vm_area(area); 2260 return NULL; 2261 } 2262 2263 return area; 2264 } 2265 EXPORT_SYMBOL_GPL(alloc_vm_area); 2266 2267 void free_vm_area(struct vm_struct *area) 2268 { 2269 struct vm_struct *ret; 2270 ret = remove_vm_area(area->addr); 2271 BUG_ON(ret != area); 2272 kfree(area); 2273 } 2274 EXPORT_SYMBOL_GPL(free_vm_area); 2275 2276 #ifdef CONFIG_SMP 2277 static struct vmap_area *node_to_va(struct rb_node *n) 2278 { 2279 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; 2280 } 2281 2282 /** 2283 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2284 * @end: target address 2285 * @pnext: out arg for the next vmap_area 2286 * @pprev: out arg for the previous vmap_area 2287 * 2288 * Returns: %true if either or both of next and prev are found, 2289 * %false if no vmap_area exists 2290 * 2291 * Find vmap_areas end addresses of which enclose @end. ie. if not 2292 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2293 */ 2294 static bool pvm_find_next_prev(unsigned long end, 2295 struct vmap_area **pnext, 2296 struct vmap_area **pprev) 2297 { 2298 struct rb_node *n = vmap_area_root.rb_node; 2299 struct vmap_area *va = NULL; 2300 2301 while (n) { 2302 va = rb_entry(n, struct vmap_area, rb_node); 2303 if (end < va->va_end) 2304 n = n->rb_left; 2305 else if (end > va->va_end) 2306 n = n->rb_right; 2307 else 2308 break; 2309 } 2310 2311 if (!va) 2312 return false; 2313 2314 if (va->va_end > end) { 2315 *pnext = va; 2316 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2317 } else { 2318 *pprev = va; 2319 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2320 } 2321 return true; 2322 } 2323 2324 /** 2325 * pvm_determine_end - find the highest aligned address between two vmap_areas 2326 * @pnext: in/out arg for the next vmap_area 2327 * @pprev: in/out arg for the previous vmap_area 2328 * @align: alignment 2329 * 2330 * Returns: determined end address 2331 * 2332 * Find the highest aligned address between *@pnext and *@pprev below 2333 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2334 * down address is between the end addresses of the two vmap_areas. 2335 * 2336 * Please note that the address returned by this function may fall 2337 * inside *@pnext vmap_area. The caller is responsible for checking 2338 * that. 2339 */ 2340 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2341 struct vmap_area **pprev, 2342 unsigned long align) 2343 { 2344 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2345 unsigned long addr; 2346 2347 if (*pnext) 2348 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2349 else 2350 addr = vmalloc_end; 2351 2352 while (*pprev && (*pprev)->va_end > addr) { 2353 *pnext = *pprev; 2354 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2355 } 2356 2357 return addr; 2358 } 2359 2360 /** 2361 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2362 * @offsets: array containing offset of each area 2363 * @sizes: array containing size of each area 2364 * @nr_vms: the number of areas to allocate 2365 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2366 * 2367 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2368 * vm_structs on success, %NULL on failure 2369 * 2370 * Percpu allocator wants to use congruent vm areas so that it can 2371 * maintain the offsets among percpu areas. This function allocates 2372 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 2373 * be scattered pretty far, distance between two areas easily going up 2374 * to gigabytes. To avoid interacting with regular vmallocs, these 2375 * areas are allocated from top. 2376 * 2377 * Despite its complicated look, this allocator is rather simple. It 2378 * does everything top-down and scans areas from the end looking for 2379 * matching slot. While scanning, if any of the areas overlaps with 2380 * existing vmap_area, the base address is pulled down to fit the 2381 * area. Scanning is repeated till all the areas fit and then all 2382 * necessary data structres are inserted and the result is returned. 2383 */ 2384 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2385 const size_t *sizes, int nr_vms, 2386 size_t align) 2387 { 2388 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2389 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2390 struct vmap_area **vas, *prev, *next; 2391 struct vm_struct **vms; 2392 int area, area2, last_area, term_area; 2393 unsigned long base, start, end, last_end; 2394 bool purged = false; 2395 2396 /* verify parameters and allocate data structures */ 2397 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 2398 for (last_area = 0, area = 0; area < nr_vms; area++) { 2399 start = offsets[area]; 2400 end = start + sizes[area]; 2401 2402 /* is everything aligned properly? */ 2403 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2404 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2405 2406 /* detect the area with the highest address */ 2407 if (start > offsets[last_area]) 2408 last_area = area; 2409 2410 for (area2 = 0; area2 < nr_vms; area2++) { 2411 unsigned long start2 = offsets[area2]; 2412 unsigned long end2 = start2 + sizes[area2]; 2413 2414 if (area2 == area) 2415 continue; 2416 2417 BUG_ON(start2 >= start && start2 < end); 2418 BUG_ON(end2 <= end && end2 > start); 2419 } 2420 } 2421 last_end = offsets[last_area] + sizes[last_area]; 2422 2423 if (vmalloc_end - vmalloc_start < last_end) { 2424 WARN_ON(true); 2425 return NULL; 2426 } 2427 2428 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 2429 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 2430 if (!vas || !vms) 2431 goto err_free2; 2432 2433 for (area = 0; area < nr_vms; area++) { 2434 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); 2435 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 2436 if (!vas[area] || !vms[area]) 2437 goto err_free; 2438 } 2439 retry: 2440 spin_lock(&vmap_area_lock); 2441 2442 /* start scanning - we scan from the top, begin with the last area */ 2443 area = term_area = last_area; 2444 start = offsets[area]; 2445 end = start + sizes[area]; 2446 2447 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2448 base = vmalloc_end - last_end; 2449 goto found; 2450 } 2451 base = pvm_determine_end(&next, &prev, align) - end; 2452 2453 while (true) { 2454 BUG_ON(next && next->va_end <= base + end); 2455 BUG_ON(prev && prev->va_end > base + end); 2456 2457 /* 2458 * base might have underflowed, add last_end before 2459 * comparing. 2460 */ 2461 if (base + last_end < vmalloc_start + last_end) { 2462 spin_unlock(&vmap_area_lock); 2463 if (!purged) { 2464 purge_vmap_area_lazy(); 2465 purged = true; 2466 goto retry; 2467 } 2468 goto err_free; 2469 } 2470 2471 /* 2472 * If next overlaps, move base downwards so that it's 2473 * right below next and then recheck. 2474 */ 2475 if (next && next->va_start < base + end) { 2476 base = pvm_determine_end(&next, &prev, align) - end; 2477 term_area = area; 2478 continue; 2479 } 2480 2481 /* 2482 * If prev overlaps, shift down next and prev and move 2483 * base so that it's right below new next and then 2484 * recheck. 2485 */ 2486 if (prev && prev->va_end > base + start) { 2487 next = prev; 2488 prev = node_to_va(rb_prev(&next->rb_node)); 2489 base = pvm_determine_end(&next, &prev, align) - end; 2490 term_area = area; 2491 continue; 2492 } 2493 2494 /* 2495 * This area fits, move on to the previous one. If 2496 * the previous one is the terminal one, we're done. 2497 */ 2498 area = (area + nr_vms - 1) % nr_vms; 2499 if (area == term_area) 2500 break; 2501 start = offsets[area]; 2502 end = start + sizes[area]; 2503 pvm_find_next_prev(base + end, &next, &prev); 2504 } 2505 found: 2506 /* we've found a fitting base, insert all va's */ 2507 for (area = 0; area < nr_vms; area++) { 2508 struct vmap_area *va = vas[area]; 2509 2510 va->va_start = base + offsets[area]; 2511 va->va_end = va->va_start + sizes[area]; 2512 __insert_vmap_area(va); 2513 } 2514 2515 vmap_area_pcpu_hole = base + offsets[last_area]; 2516 2517 spin_unlock(&vmap_area_lock); 2518 2519 /* insert all vm's */ 2520 for (area = 0; area < nr_vms; area++) 2521 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2522 pcpu_get_vm_areas); 2523 2524 kfree(vas); 2525 return vms; 2526 2527 err_free: 2528 for (area = 0; area < nr_vms; area++) { 2529 kfree(vas[area]); 2530 kfree(vms[area]); 2531 } 2532 err_free2: 2533 kfree(vas); 2534 kfree(vms); 2535 return NULL; 2536 } 2537 2538 /** 2539 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2540 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2541 * @nr_vms: the number of allocated areas 2542 * 2543 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2544 */ 2545 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2546 { 2547 int i; 2548 2549 for (i = 0; i < nr_vms; i++) 2550 free_vm_area(vms[i]); 2551 kfree(vms); 2552 } 2553 #endif /* CONFIG_SMP */ 2554 2555 #ifdef CONFIG_PROC_FS 2556 static void *s_start(struct seq_file *m, loff_t *pos) 2557 __acquires(&vmap_area_lock) 2558 { 2559 loff_t n = *pos; 2560 struct vmap_area *va; 2561 2562 spin_lock(&vmap_area_lock); 2563 va = list_entry((&vmap_area_list)->next, typeof(*va), list); 2564 while (n > 0 && &va->list != &vmap_area_list) { 2565 n--; 2566 va = list_entry(va->list.next, typeof(*va), list); 2567 } 2568 if (!n && &va->list != &vmap_area_list) 2569 return va; 2570 2571 return NULL; 2572 2573 } 2574 2575 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2576 { 2577 struct vmap_area *va = p, *next; 2578 2579 ++*pos; 2580 next = list_entry(va->list.next, typeof(*va), list); 2581 if (&next->list != &vmap_area_list) 2582 return next; 2583 2584 return NULL; 2585 } 2586 2587 static void s_stop(struct seq_file *m, void *p) 2588 __releases(&vmap_area_lock) 2589 { 2590 spin_unlock(&vmap_area_lock); 2591 } 2592 2593 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2594 { 2595 if (IS_ENABLED(CONFIG_NUMA)) { 2596 unsigned int nr, *counters = m->private; 2597 2598 if (!counters) 2599 return; 2600 2601 if (v->flags & VM_UNINITIALIZED) 2602 return; 2603 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 2604 smp_rmb(); 2605 2606 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2607 2608 for (nr = 0; nr < v->nr_pages; nr++) 2609 counters[page_to_nid(v->pages[nr])]++; 2610 2611 for_each_node_state(nr, N_HIGH_MEMORY) 2612 if (counters[nr]) 2613 seq_printf(m, " N%u=%u", nr, counters[nr]); 2614 } 2615 } 2616 2617 static int s_show(struct seq_file *m, void *p) 2618 { 2619 struct vmap_area *va = p; 2620 struct vm_struct *v; 2621 2622 /* 2623 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on 2624 * behalf of vmap area is being tear down or vm_map_ram allocation. 2625 */ 2626 if (!(va->flags & VM_VM_AREA)) 2627 return 0; 2628 2629 v = va->vm; 2630 2631 seq_printf(m, "0x%pK-0x%pK %7ld", 2632 v->addr, v->addr + v->size, v->size); 2633 2634 if (v->caller) 2635 seq_printf(m, " %pS", v->caller); 2636 2637 if (v->nr_pages) 2638 seq_printf(m, " pages=%d", v->nr_pages); 2639 2640 if (v->phys_addr) 2641 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); 2642 2643 if (v->flags & VM_IOREMAP) 2644 seq_puts(m, " ioremap"); 2645 2646 if (v->flags & VM_ALLOC) 2647 seq_puts(m, " vmalloc"); 2648 2649 if (v->flags & VM_MAP) 2650 seq_puts(m, " vmap"); 2651 2652 if (v->flags & VM_USERMAP) 2653 seq_puts(m, " user"); 2654 2655 if (v->flags & VM_VPAGES) 2656 seq_puts(m, " vpages"); 2657 2658 show_numa_info(m, v); 2659 seq_putc(m, '\n'); 2660 return 0; 2661 } 2662 2663 static const struct seq_operations vmalloc_op = { 2664 .start = s_start, 2665 .next = s_next, 2666 .stop = s_stop, 2667 .show = s_show, 2668 }; 2669 2670 static int vmalloc_open(struct inode *inode, struct file *file) 2671 { 2672 if (IS_ENABLED(CONFIG_NUMA)) 2673 return seq_open_private(file, &vmalloc_op, 2674 nr_node_ids * sizeof(unsigned int)); 2675 else 2676 return seq_open(file, &vmalloc_op); 2677 } 2678 2679 static const struct file_operations proc_vmalloc_operations = { 2680 .open = vmalloc_open, 2681 .read = seq_read, 2682 .llseek = seq_lseek, 2683 .release = seq_release_private, 2684 }; 2685 2686 static int __init proc_vmalloc_init(void) 2687 { 2688 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 2689 return 0; 2690 } 2691 module_init(proc_vmalloc_init); 2692 2693 #endif 2694 2695