xref: /linux/mm/vmalloc.c (revision 93d546399c2b7d66a54d5fbd5eee17de19246bf6)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/debugobjects.h>
21 #include <linux/kallsyms.h>
22 #include <linux/list.h>
23 #include <linux/rbtree.h>
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
26 
27 #include <asm/atomic.h>
28 #include <asm/uaccess.h>
29 #include <asm/tlbflush.h>
30 
31 
32 /*** Page table manipulation functions ***/
33 
34 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
35 {
36 	pte_t *pte;
37 
38 	pte = pte_offset_kernel(pmd, addr);
39 	do {
40 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
41 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
42 	} while (pte++, addr += PAGE_SIZE, addr != end);
43 }
44 
45 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
46 {
47 	pmd_t *pmd;
48 	unsigned long next;
49 
50 	pmd = pmd_offset(pud, addr);
51 	do {
52 		next = pmd_addr_end(addr, end);
53 		if (pmd_none_or_clear_bad(pmd))
54 			continue;
55 		vunmap_pte_range(pmd, addr, next);
56 	} while (pmd++, addr = next, addr != end);
57 }
58 
59 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
60 {
61 	pud_t *pud;
62 	unsigned long next;
63 
64 	pud = pud_offset(pgd, addr);
65 	do {
66 		next = pud_addr_end(addr, end);
67 		if (pud_none_or_clear_bad(pud))
68 			continue;
69 		vunmap_pmd_range(pud, addr, next);
70 	} while (pud++, addr = next, addr != end);
71 }
72 
73 static void vunmap_page_range(unsigned long addr, unsigned long end)
74 {
75 	pgd_t *pgd;
76 	unsigned long next;
77 
78 	BUG_ON(addr >= end);
79 	pgd = pgd_offset_k(addr);
80 	do {
81 		next = pgd_addr_end(addr, end);
82 		if (pgd_none_or_clear_bad(pgd))
83 			continue;
84 		vunmap_pud_range(pgd, addr, next);
85 	} while (pgd++, addr = next, addr != end);
86 }
87 
88 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
89 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
90 {
91 	pte_t *pte;
92 
93 	/*
94 	 * nr is a running index into the array which helps higher level
95 	 * callers keep track of where we're up to.
96 	 */
97 
98 	pte = pte_alloc_kernel(pmd, addr);
99 	if (!pte)
100 		return -ENOMEM;
101 	do {
102 		struct page *page = pages[*nr];
103 
104 		if (WARN_ON(!pte_none(*pte)))
105 			return -EBUSY;
106 		if (WARN_ON(!page))
107 			return -ENOMEM;
108 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
109 		(*nr)++;
110 	} while (pte++, addr += PAGE_SIZE, addr != end);
111 	return 0;
112 }
113 
114 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
115 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
116 {
117 	pmd_t *pmd;
118 	unsigned long next;
119 
120 	pmd = pmd_alloc(&init_mm, pud, addr);
121 	if (!pmd)
122 		return -ENOMEM;
123 	do {
124 		next = pmd_addr_end(addr, end);
125 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
126 			return -ENOMEM;
127 	} while (pmd++, addr = next, addr != end);
128 	return 0;
129 }
130 
131 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
132 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
133 {
134 	pud_t *pud;
135 	unsigned long next;
136 
137 	pud = pud_alloc(&init_mm, pgd, addr);
138 	if (!pud)
139 		return -ENOMEM;
140 	do {
141 		next = pud_addr_end(addr, end);
142 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
143 			return -ENOMEM;
144 	} while (pud++, addr = next, addr != end);
145 	return 0;
146 }
147 
148 /*
149  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
150  * will have pfns corresponding to the "pages" array.
151  *
152  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
153  */
154 static int vmap_page_range(unsigned long addr, unsigned long end,
155 				pgprot_t prot, struct page **pages)
156 {
157 	pgd_t *pgd;
158 	unsigned long next;
159 	int err = 0;
160 	int nr = 0;
161 
162 	BUG_ON(addr >= end);
163 	pgd = pgd_offset_k(addr);
164 	do {
165 		next = pgd_addr_end(addr, end);
166 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
167 		if (err)
168 			break;
169 	} while (pgd++, addr = next, addr != end);
170 	flush_cache_vmap(addr, end);
171 
172 	if (unlikely(err))
173 		return err;
174 	return nr;
175 }
176 
177 static inline int is_vmalloc_or_module_addr(const void *x)
178 {
179 	/*
180 	 * ARM, x86-64 and sparc64 put modules in a special place,
181 	 * and fall back on vmalloc() if that fails. Others
182 	 * just put it in the vmalloc space.
183 	 */
184 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
185 	unsigned long addr = (unsigned long)x;
186 	if (addr >= MODULES_VADDR && addr < MODULES_END)
187 		return 1;
188 #endif
189 	return is_vmalloc_addr(x);
190 }
191 
192 /*
193  * Walk a vmap address to the struct page it maps.
194  */
195 struct page *vmalloc_to_page(const void *vmalloc_addr)
196 {
197 	unsigned long addr = (unsigned long) vmalloc_addr;
198 	struct page *page = NULL;
199 	pgd_t *pgd = pgd_offset_k(addr);
200 
201 	/*
202 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
203 	 * architectures that do not vmalloc module space
204 	 */
205 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
206 
207 	if (!pgd_none(*pgd)) {
208 		pud_t *pud = pud_offset(pgd, addr);
209 		if (!pud_none(*pud)) {
210 			pmd_t *pmd = pmd_offset(pud, addr);
211 			if (!pmd_none(*pmd)) {
212 				pte_t *ptep, pte;
213 
214 				ptep = pte_offset_map(pmd, addr);
215 				pte = *ptep;
216 				if (pte_present(pte))
217 					page = pte_page(pte);
218 				pte_unmap(ptep);
219 			}
220 		}
221 	}
222 	return page;
223 }
224 EXPORT_SYMBOL(vmalloc_to_page);
225 
226 /*
227  * Map a vmalloc()-space virtual address to the physical page frame number.
228  */
229 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
230 {
231 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
232 }
233 EXPORT_SYMBOL(vmalloc_to_pfn);
234 
235 
236 /*** Global kva allocator ***/
237 
238 #define VM_LAZY_FREE	0x01
239 #define VM_LAZY_FREEING	0x02
240 #define VM_VM_AREA	0x04
241 
242 struct vmap_area {
243 	unsigned long va_start;
244 	unsigned long va_end;
245 	unsigned long flags;
246 	struct rb_node rb_node;		/* address sorted rbtree */
247 	struct list_head list;		/* address sorted list */
248 	struct list_head purge_list;	/* "lazy purge" list */
249 	void *private;
250 	struct rcu_head rcu_head;
251 };
252 
253 static DEFINE_SPINLOCK(vmap_area_lock);
254 static struct rb_root vmap_area_root = RB_ROOT;
255 static LIST_HEAD(vmap_area_list);
256 
257 static struct vmap_area *__find_vmap_area(unsigned long addr)
258 {
259 	struct rb_node *n = vmap_area_root.rb_node;
260 
261 	while (n) {
262 		struct vmap_area *va;
263 
264 		va = rb_entry(n, struct vmap_area, rb_node);
265 		if (addr < va->va_start)
266 			n = n->rb_left;
267 		else if (addr > va->va_start)
268 			n = n->rb_right;
269 		else
270 			return va;
271 	}
272 
273 	return NULL;
274 }
275 
276 static void __insert_vmap_area(struct vmap_area *va)
277 {
278 	struct rb_node **p = &vmap_area_root.rb_node;
279 	struct rb_node *parent = NULL;
280 	struct rb_node *tmp;
281 
282 	while (*p) {
283 		struct vmap_area *tmp;
284 
285 		parent = *p;
286 		tmp = rb_entry(parent, struct vmap_area, rb_node);
287 		if (va->va_start < tmp->va_end)
288 			p = &(*p)->rb_left;
289 		else if (va->va_end > tmp->va_start)
290 			p = &(*p)->rb_right;
291 		else
292 			BUG();
293 	}
294 
295 	rb_link_node(&va->rb_node, parent, p);
296 	rb_insert_color(&va->rb_node, &vmap_area_root);
297 
298 	/* address-sort this list so it is usable like the vmlist */
299 	tmp = rb_prev(&va->rb_node);
300 	if (tmp) {
301 		struct vmap_area *prev;
302 		prev = rb_entry(tmp, struct vmap_area, rb_node);
303 		list_add_rcu(&va->list, &prev->list);
304 	} else
305 		list_add_rcu(&va->list, &vmap_area_list);
306 }
307 
308 static void purge_vmap_area_lazy(void);
309 
310 /*
311  * Allocate a region of KVA of the specified size and alignment, within the
312  * vstart and vend.
313  */
314 static struct vmap_area *alloc_vmap_area(unsigned long size,
315 				unsigned long align,
316 				unsigned long vstart, unsigned long vend,
317 				int node, gfp_t gfp_mask)
318 {
319 	struct vmap_area *va;
320 	struct rb_node *n;
321 	unsigned long addr;
322 	int purged = 0;
323 
324 	BUG_ON(size & ~PAGE_MASK);
325 
326 	va = kmalloc_node(sizeof(struct vmap_area),
327 			gfp_mask & GFP_RECLAIM_MASK, node);
328 	if (unlikely(!va))
329 		return ERR_PTR(-ENOMEM);
330 
331 retry:
332 	addr = ALIGN(vstart, align);
333 
334 	spin_lock(&vmap_area_lock);
335 	/* XXX: could have a last_hole cache */
336 	n = vmap_area_root.rb_node;
337 	if (n) {
338 		struct vmap_area *first = NULL;
339 
340 		do {
341 			struct vmap_area *tmp;
342 			tmp = rb_entry(n, struct vmap_area, rb_node);
343 			if (tmp->va_end >= addr) {
344 				if (!first && tmp->va_start < addr + size)
345 					first = tmp;
346 				n = n->rb_left;
347 			} else {
348 				first = tmp;
349 				n = n->rb_right;
350 			}
351 		} while (n);
352 
353 		if (!first)
354 			goto found;
355 
356 		if (first->va_end < addr) {
357 			n = rb_next(&first->rb_node);
358 			if (n)
359 				first = rb_entry(n, struct vmap_area, rb_node);
360 			else
361 				goto found;
362 		}
363 
364 		while (addr + size > first->va_start && addr + size <= vend) {
365 			addr = ALIGN(first->va_end + PAGE_SIZE, align);
366 
367 			n = rb_next(&first->rb_node);
368 			if (n)
369 				first = rb_entry(n, struct vmap_area, rb_node);
370 			else
371 				goto found;
372 		}
373 	}
374 found:
375 	if (addr + size > vend) {
376 		spin_unlock(&vmap_area_lock);
377 		if (!purged) {
378 			purge_vmap_area_lazy();
379 			purged = 1;
380 			goto retry;
381 		}
382 		if (printk_ratelimit())
383 			printk(KERN_WARNING "vmap allocation failed: "
384 				 "use vmalloc=<size> to increase size.\n");
385 		return ERR_PTR(-EBUSY);
386 	}
387 
388 	BUG_ON(addr & (align-1));
389 
390 	va->va_start = addr;
391 	va->va_end = addr + size;
392 	va->flags = 0;
393 	__insert_vmap_area(va);
394 	spin_unlock(&vmap_area_lock);
395 
396 	return va;
397 }
398 
399 static void rcu_free_va(struct rcu_head *head)
400 {
401 	struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
402 
403 	kfree(va);
404 }
405 
406 static void __free_vmap_area(struct vmap_area *va)
407 {
408 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
409 	rb_erase(&va->rb_node, &vmap_area_root);
410 	RB_CLEAR_NODE(&va->rb_node);
411 	list_del_rcu(&va->list);
412 
413 	call_rcu(&va->rcu_head, rcu_free_va);
414 }
415 
416 /*
417  * Free a region of KVA allocated by alloc_vmap_area
418  */
419 static void free_vmap_area(struct vmap_area *va)
420 {
421 	spin_lock(&vmap_area_lock);
422 	__free_vmap_area(va);
423 	spin_unlock(&vmap_area_lock);
424 }
425 
426 /*
427  * Clear the pagetable entries of a given vmap_area
428  */
429 static void unmap_vmap_area(struct vmap_area *va)
430 {
431 	vunmap_page_range(va->va_start, va->va_end);
432 }
433 
434 /*
435  * lazy_max_pages is the maximum amount of virtual address space we gather up
436  * before attempting to purge with a TLB flush.
437  *
438  * There is a tradeoff here: a larger number will cover more kernel page tables
439  * and take slightly longer to purge, but it will linearly reduce the number of
440  * global TLB flushes that must be performed. It would seem natural to scale
441  * this number up linearly with the number of CPUs (because vmapping activity
442  * could also scale linearly with the number of CPUs), however it is likely
443  * that in practice, workloads might be constrained in other ways that mean
444  * vmap activity will not scale linearly with CPUs. Also, I want to be
445  * conservative and not introduce a big latency on huge systems, so go with
446  * a less aggressive log scale. It will still be an improvement over the old
447  * code, and it will be simple to change the scale factor if we find that it
448  * becomes a problem on bigger systems.
449  */
450 static unsigned long lazy_max_pages(void)
451 {
452 	unsigned int log;
453 
454 	log = fls(num_online_cpus());
455 
456 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
457 }
458 
459 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
460 
461 /*
462  * Purges all lazily-freed vmap areas.
463  *
464  * If sync is 0 then don't purge if there is already a purge in progress.
465  * If force_flush is 1, then flush kernel TLBs between *start and *end even
466  * if we found no lazy vmap areas to unmap (callers can use this to optimise
467  * their own TLB flushing).
468  * Returns with *start = min(*start, lowest purged address)
469  *              *end = max(*end, highest purged address)
470  */
471 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
472 					int sync, int force_flush)
473 {
474 	static DEFINE_SPINLOCK(purge_lock);
475 	LIST_HEAD(valist);
476 	struct vmap_area *va;
477 	int nr = 0;
478 
479 	/*
480 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
481 	 * should not expect such behaviour. This just simplifies locking for
482 	 * the case that isn't actually used at the moment anyway.
483 	 */
484 	if (!sync && !force_flush) {
485 		if (!spin_trylock(&purge_lock))
486 			return;
487 	} else
488 		spin_lock(&purge_lock);
489 
490 	rcu_read_lock();
491 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
492 		if (va->flags & VM_LAZY_FREE) {
493 			if (va->va_start < *start)
494 				*start = va->va_start;
495 			if (va->va_end > *end)
496 				*end = va->va_end;
497 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
498 			unmap_vmap_area(va);
499 			list_add_tail(&va->purge_list, &valist);
500 			va->flags |= VM_LAZY_FREEING;
501 			va->flags &= ~VM_LAZY_FREE;
502 		}
503 	}
504 	rcu_read_unlock();
505 
506 	if (nr) {
507 		BUG_ON(nr > atomic_read(&vmap_lazy_nr));
508 		atomic_sub(nr, &vmap_lazy_nr);
509 	}
510 
511 	if (nr || force_flush)
512 		flush_tlb_kernel_range(*start, *end);
513 
514 	if (nr) {
515 		spin_lock(&vmap_area_lock);
516 		list_for_each_entry(va, &valist, purge_list)
517 			__free_vmap_area(va);
518 		spin_unlock(&vmap_area_lock);
519 	}
520 	spin_unlock(&purge_lock);
521 }
522 
523 /*
524  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
525  * is already purging.
526  */
527 static void try_purge_vmap_area_lazy(void)
528 {
529 	unsigned long start = ULONG_MAX, end = 0;
530 
531 	__purge_vmap_area_lazy(&start, &end, 0, 0);
532 }
533 
534 /*
535  * Kick off a purge of the outstanding lazy areas.
536  */
537 static void purge_vmap_area_lazy(void)
538 {
539 	unsigned long start = ULONG_MAX, end = 0;
540 
541 	__purge_vmap_area_lazy(&start, &end, 1, 0);
542 }
543 
544 /*
545  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
546  * called for the correct range previously.
547  */
548 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
549 {
550 	va->flags |= VM_LAZY_FREE;
551 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
552 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
553 		try_purge_vmap_area_lazy();
554 }
555 
556 /*
557  * Free and unmap a vmap area
558  */
559 static void free_unmap_vmap_area(struct vmap_area *va)
560 {
561 	flush_cache_vunmap(va->va_start, va->va_end);
562 	free_unmap_vmap_area_noflush(va);
563 }
564 
565 static struct vmap_area *find_vmap_area(unsigned long addr)
566 {
567 	struct vmap_area *va;
568 
569 	spin_lock(&vmap_area_lock);
570 	va = __find_vmap_area(addr);
571 	spin_unlock(&vmap_area_lock);
572 
573 	return va;
574 }
575 
576 static void free_unmap_vmap_area_addr(unsigned long addr)
577 {
578 	struct vmap_area *va;
579 
580 	va = find_vmap_area(addr);
581 	BUG_ON(!va);
582 	free_unmap_vmap_area(va);
583 }
584 
585 
586 /*** Per cpu kva allocator ***/
587 
588 /*
589  * vmap space is limited especially on 32 bit architectures. Ensure there is
590  * room for at least 16 percpu vmap blocks per CPU.
591  */
592 /*
593  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
594  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
595  * instead (we just need a rough idea)
596  */
597 #if BITS_PER_LONG == 32
598 #define VMALLOC_SPACE		(128UL*1024*1024)
599 #else
600 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
601 #endif
602 
603 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
604 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
605 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
606 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
607 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
608 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
609 #define VMAP_BBMAP_BITS		VMAP_MIN(VMAP_BBMAP_BITS_MAX,		\
610 					VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
611 						VMALLOC_PAGES / NR_CPUS / 16))
612 
613 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
614 
615 static bool vmap_initialized __read_mostly = false;
616 
617 struct vmap_block_queue {
618 	spinlock_t lock;
619 	struct list_head free;
620 	struct list_head dirty;
621 	unsigned int nr_dirty;
622 };
623 
624 struct vmap_block {
625 	spinlock_t lock;
626 	struct vmap_area *va;
627 	struct vmap_block_queue *vbq;
628 	unsigned long free, dirty;
629 	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
630 	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
631 	union {
632 		struct {
633 			struct list_head free_list;
634 			struct list_head dirty_list;
635 		};
636 		struct rcu_head rcu_head;
637 	};
638 };
639 
640 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
641 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
642 
643 /*
644  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
645  * in the free path. Could get rid of this if we change the API to return a
646  * "cookie" from alloc, to be passed to free. But no big deal yet.
647  */
648 static DEFINE_SPINLOCK(vmap_block_tree_lock);
649 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
650 
651 /*
652  * We should probably have a fallback mechanism to allocate virtual memory
653  * out of partially filled vmap blocks. However vmap block sizing should be
654  * fairly reasonable according to the vmalloc size, so it shouldn't be a
655  * big problem.
656  */
657 
658 static unsigned long addr_to_vb_idx(unsigned long addr)
659 {
660 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
661 	addr /= VMAP_BLOCK_SIZE;
662 	return addr;
663 }
664 
665 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
666 {
667 	struct vmap_block_queue *vbq;
668 	struct vmap_block *vb;
669 	struct vmap_area *va;
670 	unsigned long vb_idx;
671 	int node, err;
672 
673 	node = numa_node_id();
674 
675 	vb = kmalloc_node(sizeof(struct vmap_block),
676 			gfp_mask & GFP_RECLAIM_MASK, node);
677 	if (unlikely(!vb))
678 		return ERR_PTR(-ENOMEM);
679 
680 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
681 					VMALLOC_START, VMALLOC_END,
682 					node, gfp_mask);
683 	if (unlikely(IS_ERR(va))) {
684 		kfree(vb);
685 		return ERR_PTR(PTR_ERR(va));
686 	}
687 
688 	err = radix_tree_preload(gfp_mask);
689 	if (unlikely(err)) {
690 		kfree(vb);
691 		free_vmap_area(va);
692 		return ERR_PTR(err);
693 	}
694 
695 	spin_lock_init(&vb->lock);
696 	vb->va = va;
697 	vb->free = VMAP_BBMAP_BITS;
698 	vb->dirty = 0;
699 	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
700 	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
701 	INIT_LIST_HEAD(&vb->free_list);
702 	INIT_LIST_HEAD(&vb->dirty_list);
703 
704 	vb_idx = addr_to_vb_idx(va->va_start);
705 	spin_lock(&vmap_block_tree_lock);
706 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
707 	spin_unlock(&vmap_block_tree_lock);
708 	BUG_ON(err);
709 	radix_tree_preload_end();
710 
711 	vbq = &get_cpu_var(vmap_block_queue);
712 	vb->vbq = vbq;
713 	spin_lock(&vbq->lock);
714 	list_add(&vb->free_list, &vbq->free);
715 	spin_unlock(&vbq->lock);
716 	put_cpu_var(vmap_cpu_blocks);
717 
718 	return vb;
719 }
720 
721 static void rcu_free_vb(struct rcu_head *head)
722 {
723 	struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
724 
725 	kfree(vb);
726 }
727 
728 static void free_vmap_block(struct vmap_block *vb)
729 {
730 	struct vmap_block *tmp;
731 	unsigned long vb_idx;
732 
733 	spin_lock(&vb->vbq->lock);
734 	if (!list_empty(&vb->free_list))
735 		list_del(&vb->free_list);
736 	if (!list_empty(&vb->dirty_list))
737 		list_del(&vb->dirty_list);
738 	spin_unlock(&vb->vbq->lock);
739 
740 	vb_idx = addr_to_vb_idx(vb->va->va_start);
741 	spin_lock(&vmap_block_tree_lock);
742 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
743 	spin_unlock(&vmap_block_tree_lock);
744 	BUG_ON(tmp != vb);
745 
746 	free_unmap_vmap_area_noflush(vb->va);
747 	call_rcu(&vb->rcu_head, rcu_free_vb);
748 }
749 
750 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
751 {
752 	struct vmap_block_queue *vbq;
753 	struct vmap_block *vb;
754 	unsigned long addr = 0;
755 	unsigned int order;
756 
757 	BUG_ON(size & ~PAGE_MASK);
758 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
759 	order = get_order(size);
760 
761 again:
762 	rcu_read_lock();
763 	vbq = &get_cpu_var(vmap_block_queue);
764 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
765 		int i;
766 
767 		spin_lock(&vb->lock);
768 		i = bitmap_find_free_region(vb->alloc_map,
769 						VMAP_BBMAP_BITS, order);
770 
771 		if (i >= 0) {
772 			addr = vb->va->va_start + (i << PAGE_SHIFT);
773 			BUG_ON(addr_to_vb_idx(addr) !=
774 					addr_to_vb_idx(vb->va->va_start));
775 			vb->free -= 1UL << order;
776 			if (vb->free == 0) {
777 				spin_lock(&vbq->lock);
778 				list_del_init(&vb->free_list);
779 				spin_unlock(&vbq->lock);
780 			}
781 			spin_unlock(&vb->lock);
782 			break;
783 		}
784 		spin_unlock(&vb->lock);
785 	}
786 	put_cpu_var(vmap_cpu_blocks);
787 	rcu_read_unlock();
788 
789 	if (!addr) {
790 		vb = new_vmap_block(gfp_mask);
791 		if (IS_ERR(vb))
792 			return vb;
793 		goto again;
794 	}
795 
796 	return (void *)addr;
797 }
798 
799 static void vb_free(const void *addr, unsigned long size)
800 {
801 	unsigned long offset;
802 	unsigned long vb_idx;
803 	unsigned int order;
804 	struct vmap_block *vb;
805 
806 	BUG_ON(size & ~PAGE_MASK);
807 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
808 
809 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
810 
811 	order = get_order(size);
812 
813 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
814 
815 	vb_idx = addr_to_vb_idx((unsigned long)addr);
816 	rcu_read_lock();
817 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
818 	rcu_read_unlock();
819 	BUG_ON(!vb);
820 
821 	spin_lock(&vb->lock);
822 	bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
823 	if (!vb->dirty) {
824 		spin_lock(&vb->vbq->lock);
825 		list_add(&vb->dirty_list, &vb->vbq->dirty);
826 		spin_unlock(&vb->vbq->lock);
827 	}
828 	vb->dirty += 1UL << order;
829 	if (vb->dirty == VMAP_BBMAP_BITS) {
830 		BUG_ON(vb->free || !list_empty(&vb->free_list));
831 		spin_unlock(&vb->lock);
832 		free_vmap_block(vb);
833 	} else
834 		spin_unlock(&vb->lock);
835 }
836 
837 /**
838  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
839  *
840  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
841  * to amortize TLB flushing overheads. What this means is that any page you
842  * have now, may, in a former life, have been mapped into kernel virtual
843  * address by the vmap layer and so there might be some CPUs with TLB entries
844  * still referencing that page (additional to the regular 1:1 kernel mapping).
845  *
846  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
847  * be sure that none of the pages we have control over will have any aliases
848  * from the vmap layer.
849  */
850 void vm_unmap_aliases(void)
851 {
852 	unsigned long start = ULONG_MAX, end = 0;
853 	int cpu;
854 	int flush = 0;
855 
856 	if (unlikely(!vmap_initialized))
857 		return;
858 
859 	for_each_possible_cpu(cpu) {
860 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
861 		struct vmap_block *vb;
862 
863 		rcu_read_lock();
864 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
865 			int i;
866 
867 			spin_lock(&vb->lock);
868 			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
869 			while (i < VMAP_BBMAP_BITS) {
870 				unsigned long s, e;
871 				int j;
872 				j = find_next_zero_bit(vb->dirty_map,
873 					VMAP_BBMAP_BITS, i);
874 
875 				s = vb->va->va_start + (i << PAGE_SHIFT);
876 				e = vb->va->va_start + (j << PAGE_SHIFT);
877 				vunmap_page_range(s, e);
878 				flush = 1;
879 
880 				if (s < start)
881 					start = s;
882 				if (e > end)
883 					end = e;
884 
885 				i = j;
886 				i = find_next_bit(vb->dirty_map,
887 							VMAP_BBMAP_BITS, i);
888 			}
889 			spin_unlock(&vb->lock);
890 		}
891 		rcu_read_unlock();
892 	}
893 
894 	__purge_vmap_area_lazy(&start, &end, 1, flush);
895 }
896 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
897 
898 /**
899  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
900  * @mem: the pointer returned by vm_map_ram
901  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
902  */
903 void vm_unmap_ram(const void *mem, unsigned int count)
904 {
905 	unsigned long size = count << PAGE_SHIFT;
906 	unsigned long addr = (unsigned long)mem;
907 
908 	BUG_ON(!addr);
909 	BUG_ON(addr < VMALLOC_START);
910 	BUG_ON(addr > VMALLOC_END);
911 	BUG_ON(addr & (PAGE_SIZE-1));
912 
913 	debug_check_no_locks_freed(mem, size);
914 
915 	if (likely(count <= VMAP_MAX_ALLOC))
916 		vb_free(mem, size);
917 	else
918 		free_unmap_vmap_area_addr(addr);
919 }
920 EXPORT_SYMBOL(vm_unmap_ram);
921 
922 /**
923  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
924  * @pages: an array of pointers to the pages to be mapped
925  * @count: number of pages
926  * @node: prefer to allocate data structures on this node
927  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
928  *
929  * Returns: a pointer to the address that has been mapped, or %NULL on failure
930  */
931 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
932 {
933 	unsigned long size = count << PAGE_SHIFT;
934 	unsigned long addr;
935 	void *mem;
936 
937 	if (likely(count <= VMAP_MAX_ALLOC)) {
938 		mem = vb_alloc(size, GFP_KERNEL);
939 		if (IS_ERR(mem))
940 			return NULL;
941 		addr = (unsigned long)mem;
942 	} else {
943 		struct vmap_area *va;
944 		va = alloc_vmap_area(size, PAGE_SIZE,
945 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
946 		if (IS_ERR(va))
947 			return NULL;
948 
949 		addr = va->va_start;
950 		mem = (void *)addr;
951 	}
952 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
953 		vm_unmap_ram(mem, count);
954 		return NULL;
955 	}
956 	return mem;
957 }
958 EXPORT_SYMBOL(vm_map_ram);
959 
960 void __init vmalloc_init(void)
961 {
962 	int i;
963 
964 	for_each_possible_cpu(i) {
965 		struct vmap_block_queue *vbq;
966 
967 		vbq = &per_cpu(vmap_block_queue, i);
968 		spin_lock_init(&vbq->lock);
969 		INIT_LIST_HEAD(&vbq->free);
970 		INIT_LIST_HEAD(&vbq->dirty);
971 		vbq->nr_dirty = 0;
972 	}
973 
974 	vmap_initialized = true;
975 }
976 
977 void unmap_kernel_range(unsigned long addr, unsigned long size)
978 {
979 	unsigned long end = addr + size;
980 	vunmap_page_range(addr, end);
981 	flush_tlb_kernel_range(addr, end);
982 }
983 
984 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
985 {
986 	unsigned long addr = (unsigned long)area->addr;
987 	unsigned long end = addr + area->size - PAGE_SIZE;
988 	int err;
989 
990 	err = vmap_page_range(addr, end, prot, *pages);
991 	if (err > 0) {
992 		*pages += err;
993 		err = 0;
994 	}
995 
996 	return err;
997 }
998 EXPORT_SYMBOL_GPL(map_vm_area);
999 
1000 /*** Old vmalloc interfaces ***/
1001 DEFINE_RWLOCK(vmlist_lock);
1002 struct vm_struct *vmlist;
1003 
1004 static struct vm_struct *__get_vm_area_node(unsigned long size,
1005 		unsigned long flags, unsigned long start, unsigned long end,
1006 		int node, gfp_t gfp_mask, void *caller)
1007 {
1008 	static struct vmap_area *va;
1009 	struct vm_struct *area;
1010 	struct vm_struct *tmp, **p;
1011 	unsigned long align = 1;
1012 
1013 	BUG_ON(in_interrupt());
1014 	if (flags & VM_IOREMAP) {
1015 		int bit = fls(size);
1016 
1017 		if (bit > IOREMAP_MAX_ORDER)
1018 			bit = IOREMAP_MAX_ORDER;
1019 		else if (bit < PAGE_SHIFT)
1020 			bit = PAGE_SHIFT;
1021 
1022 		align = 1ul << bit;
1023 	}
1024 
1025 	size = PAGE_ALIGN(size);
1026 	if (unlikely(!size))
1027 		return NULL;
1028 
1029 	area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1030 	if (unlikely(!area))
1031 		return NULL;
1032 
1033 	/*
1034 	 * We always allocate a guard page.
1035 	 */
1036 	size += PAGE_SIZE;
1037 
1038 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1039 	if (IS_ERR(va)) {
1040 		kfree(area);
1041 		return NULL;
1042 	}
1043 
1044 	area->flags = flags;
1045 	area->addr = (void *)va->va_start;
1046 	area->size = size;
1047 	area->pages = NULL;
1048 	area->nr_pages = 0;
1049 	area->phys_addr = 0;
1050 	area->caller = caller;
1051 	va->private = area;
1052 	va->flags |= VM_VM_AREA;
1053 
1054 	write_lock(&vmlist_lock);
1055 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1056 		if (tmp->addr >= area->addr)
1057 			break;
1058 	}
1059 	area->next = *p;
1060 	*p = area;
1061 	write_unlock(&vmlist_lock);
1062 
1063 	return area;
1064 }
1065 
1066 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1067 				unsigned long start, unsigned long end)
1068 {
1069 	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1070 						__builtin_return_address(0));
1071 }
1072 EXPORT_SYMBOL_GPL(__get_vm_area);
1073 
1074 /**
1075  *	get_vm_area  -  reserve a contiguous kernel virtual area
1076  *	@size:		size of the area
1077  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1078  *
1079  *	Search an area of @size in the kernel virtual mapping area,
1080  *	and reserved it for out purposes.  Returns the area descriptor
1081  *	on success or %NULL on failure.
1082  */
1083 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1084 {
1085 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1086 				-1, GFP_KERNEL, __builtin_return_address(0));
1087 }
1088 
1089 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1090 				void *caller)
1091 {
1092 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1093 						-1, GFP_KERNEL, caller);
1094 }
1095 
1096 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1097 				   int node, gfp_t gfp_mask)
1098 {
1099 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
1100 				  gfp_mask, __builtin_return_address(0));
1101 }
1102 
1103 static struct vm_struct *find_vm_area(const void *addr)
1104 {
1105 	struct vmap_area *va;
1106 
1107 	va = find_vmap_area((unsigned long)addr);
1108 	if (va && va->flags & VM_VM_AREA)
1109 		return va->private;
1110 
1111 	return NULL;
1112 }
1113 
1114 /**
1115  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1116  *	@addr:		base address
1117  *
1118  *	Search for the kernel VM area starting at @addr, and remove it.
1119  *	This function returns the found VM area, but using it is NOT safe
1120  *	on SMP machines, except for its size or flags.
1121  */
1122 struct vm_struct *remove_vm_area(const void *addr)
1123 {
1124 	struct vmap_area *va;
1125 
1126 	va = find_vmap_area((unsigned long)addr);
1127 	if (va && va->flags & VM_VM_AREA) {
1128 		struct vm_struct *vm = va->private;
1129 		struct vm_struct *tmp, **p;
1130 		free_unmap_vmap_area(va);
1131 		vm->size -= PAGE_SIZE;
1132 
1133 		write_lock(&vmlist_lock);
1134 		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1135 			;
1136 		*p = tmp->next;
1137 		write_unlock(&vmlist_lock);
1138 
1139 		return vm;
1140 	}
1141 	return NULL;
1142 }
1143 
1144 static void __vunmap(const void *addr, int deallocate_pages)
1145 {
1146 	struct vm_struct *area;
1147 
1148 	if (!addr)
1149 		return;
1150 
1151 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1152 		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1153 		return;
1154 	}
1155 
1156 	area = remove_vm_area(addr);
1157 	if (unlikely(!area)) {
1158 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1159 				addr);
1160 		return;
1161 	}
1162 
1163 	debug_check_no_locks_freed(addr, area->size);
1164 	debug_check_no_obj_freed(addr, area->size);
1165 
1166 	if (deallocate_pages) {
1167 		int i;
1168 
1169 		for (i = 0; i < area->nr_pages; i++) {
1170 			struct page *page = area->pages[i];
1171 
1172 			BUG_ON(!page);
1173 			__free_page(page);
1174 		}
1175 
1176 		if (area->flags & VM_VPAGES)
1177 			vfree(area->pages);
1178 		else
1179 			kfree(area->pages);
1180 	}
1181 
1182 	kfree(area);
1183 	return;
1184 }
1185 
1186 /**
1187  *	vfree  -  release memory allocated by vmalloc()
1188  *	@addr:		memory base address
1189  *
1190  *	Free the virtually continuous memory area starting at @addr, as
1191  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1192  *	NULL, no operation is performed.
1193  *
1194  *	Must not be called in interrupt context.
1195  */
1196 void vfree(const void *addr)
1197 {
1198 	BUG_ON(in_interrupt());
1199 	__vunmap(addr, 1);
1200 }
1201 EXPORT_SYMBOL(vfree);
1202 
1203 /**
1204  *	vunmap  -  release virtual mapping obtained by vmap()
1205  *	@addr:		memory base address
1206  *
1207  *	Free the virtually contiguous memory area starting at @addr,
1208  *	which was created from the page array passed to vmap().
1209  *
1210  *	Must not be called in interrupt context.
1211  */
1212 void vunmap(const void *addr)
1213 {
1214 	BUG_ON(in_interrupt());
1215 	__vunmap(addr, 0);
1216 }
1217 EXPORT_SYMBOL(vunmap);
1218 
1219 /**
1220  *	vmap  -  map an array of pages into virtually contiguous space
1221  *	@pages:		array of page pointers
1222  *	@count:		number of pages to map
1223  *	@flags:		vm_area->flags
1224  *	@prot:		page protection for the mapping
1225  *
1226  *	Maps @count pages from @pages into contiguous kernel virtual
1227  *	space.
1228  */
1229 void *vmap(struct page **pages, unsigned int count,
1230 		unsigned long flags, pgprot_t prot)
1231 {
1232 	struct vm_struct *area;
1233 
1234 	if (count > num_physpages)
1235 		return NULL;
1236 
1237 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1238 					__builtin_return_address(0));
1239 	if (!area)
1240 		return NULL;
1241 
1242 	if (map_vm_area(area, prot, &pages)) {
1243 		vunmap(area->addr);
1244 		return NULL;
1245 	}
1246 
1247 	return area->addr;
1248 }
1249 EXPORT_SYMBOL(vmap);
1250 
1251 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1252 			    int node, void *caller);
1253 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1254 				 pgprot_t prot, int node, void *caller)
1255 {
1256 	struct page **pages;
1257 	unsigned int nr_pages, array_size, i;
1258 
1259 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1260 	array_size = (nr_pages * sizeof(struct page *));
1261 
1262 	area->nr_pages = nr_pages;
1263 	/* Please note that the recursion is strictly bounded. */
1264 	if (array_size > PAGE_SIZE) {
1265 		pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
1266 				PAGE_KERNEL, node, caller);
1267 		area->flags |= VM_VPAGES;
1268 	} else {
1269 		pages = kmalloc_node(array_size,
1270 				(gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
1271 				node);
1272 	}
1273 	area->pages = pages;
1274 	area->caller = caller;
1275 	if (!area->pages) {
1276 		remove_vm_area(area->addr);
1277 		kfree(area);
1278 		return NULL;
1279 	}
1280 
1281 	for (i = 0; i < area->nr_pages; i++) {
1282 		struct page *page;
1283 
1284 		if (node < 0)
1285 			page = alloc_page(gfp_mask);
1286 		else
1287 			page = alloc_pages_node(node, gfp_mask, 0);
1288 
1289 		if (unlikely(!page)) {
1290 			/* Successfully allocated i pages, free them in __vunmap() */
1291 			area->nr_pages = i;
1292 			goto fail;
1293 		}
1294 		area->pages[i] = page;
1295 	}
1296 
1297 	if (map_vm_area(area, prot, &pages))
1298 		goto fail;
1299 	return area->addr;
1300 
1301 fail:
1302 	vfree(area->addr);
1303 	return NULL;
1304 }
1305 
1306 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1307 {
1308 	return __vmalloc_area_node(area, gfp_mask, prot, -1,
1309 					__builtin_return_address(0));
1310 }
1311 
1312 /**
1313  *	__vmalloc_node  -  allocate virtually contiguous memory
1314  *	@size:		allocation size
1315  *	@gfp_mask:	flags for the page level allocator
1316  *	@prot:		protection mask for the allocated pages
1317  *	@node:		node to use for allocation or -1
1318  *	@caller:	caller's return address
1319  *
1320  *	Allocate enough pages to cover @size from the page level
1321  *	allocator with @gfp_mask flags.  Map them into contiguous
1322  *	kernel virtual space, using a pagetable protection of @prot.
1323  */
1324 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1325 						int node, void *caller)
1326 {
1327 	struct vm_struct *area;
1328 
1329 	size = PAGE_ALIGN(size);
1330 	if (!size || (size >> PAGE_SHIFT) > num_physpages)
1331 		return NULL;
1332 
1333 	area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1334 						node, gfp_mask, caller);
1335 
1336 	if (!area)
1337 		return NULL;
1338 
1339 	return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1340 }
1341 
1342 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1343 {
1344 	return __vmalloc_node(size, gfp_mask, prot, -1,
1345 				__builtin_return_address(0));
1346 }
1347 EXPORT_SYMBOL(__vmalloc);
1348 
1349 /**
1350  *	vmalloc  -  allocate virtually contiguous memory
1351  *	@size:		allocation size
1352  *	Allocate enough pages to cover @size from the page level
1353  *	allocator and map them into contiguous kernel virtual space.
1354  *
1355  *	For tight control over page level allocator and protection flags
1356  *	use __vmalloc() instead.
1357  */
1358 void *vmalloc(unsigned long size)
1359 {
1360 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1361 					-1, __builtin_return_address(0));
1362 }
1363 EXPORT_SYMBOL(vmalloc);
1364 
1365 /**
1366  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1367  * @size: allocation size
1368  *
1369  * The resulting memory area is zeroed so it can be mapped to userspace
1370  * without leaking data.
1371  */
1372 void *vmalloc_user(unsigned long size)
1373 {
1374 	struct vm_struct *area;
1375 	void *ret;
1376 
1377 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
1378 	if (ret) {
1379 		area = find_vm_area(ret);
1380 		area->flags |= VM_USERMAP;
1381 	}
1382 	return ret;
1383 }
1384 EXPORT_SYMBOL(vmalloc_user);
1385 
1386 /**
1387  *	vmalloc_node  -  allocate memory on a specific node
1388  *	@size:		allocation size
1389  *	@node:		numa node
1390  *
1391  *	Allocate enough pages to cover @size from the page level
1392  *	allocator and map them into contiguous kernel virtual space.
1393  *
1394  *	For tight control over page level allocator and protection flags
1395  *	use __vmalloc() instead.
1396  */
1397 void *vmalloc_node(unsigned long size, int node)
1398 {
1399 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1400 					node, __builtin_return_address(0));
1401 }
1402 EXPORT_SYMBOL(vmalloc_node);
1403 
1404 #ifndef PAGE_KERNEL_EXEC
1405 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1406 #endif
1407 
1408 /**
1409  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1410  *	@size:		allocation size
1411  *
1412  *	Kernel-internal function to allocate enough pages to cover @size
1413  *	the page level allocator and map them into contiguous and
1414  *	executable kernel virtual space.
1415  *
1416  *	For tight control over page level allocator and protection flags
1417  *	use __vmalloc() instead.
1418  */
1419 
1420 void *vmalloc_exec(unsigned long size)
1421 {
1422 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
1423 }
1424 
1425 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1426 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1427 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1428 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1429 #else
1430 #define GFP_VMALLOC32 GFP_KERNEL
1431 #endif
1432 
1433 /**
1434  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1435  *	@size:		allocation size
1436  *
1437  *	Allocate enough 32bit PA addressable pages to cover @size from the
1438  *	page level allocator and map them into contiguous kernel virtual space.
1439  */
1440 void *vmalloc_32(unsigned long size)
1441 {
1442 	return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
1443 }
1444 EXPORT_SYMBOL(vmalloc_32);
1445 
1446 /**
1447  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1448  *	@size:		allocation size
1449  *
1450  * The resulting memory area is 32bit addressable and zeroed so it can be
1451  * mapped to userspace without leaking data.
1452  */
1453 void *vmalloc_32_user(unsigned long size)
1454 {
1455 	struct vm_struct *area;
1456 	void *ret;
1457 
1458 	ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
1459 	if (ret) {
1460 		area = find_vm_area(ret);
1461 		area->flags |= VM_USERMAP;
1462 	}
1463 	return ret;
1464 }
1465 EXPORT_SYMBOL(vmalloc_32_user);
1466 
1467 long vread(char *buf, char *addr, unsigned long count)
1468 {
1469 	struct vm_struct *tmp;
1470 	char *vaddr, *buf_start = buf;
1471 	unsigned long n;
1472 
1473 	/* Don't allow overflow */
1474 	if ((unsigned long) addr + count < count)
1475 		count = -(unsigned long) addr;
1476 
1477 	read_lock(&vmlist_lock);
1478 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1479 		vaddr = (char *) tmp->addr;
1480 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1481 			continue;
1482 		while (addr < vaddr) {
1483 			if (count == 0)
1484 				goto finished;
1485 			*buf = '\0';
1486 			buf++;
1487 			addr++;
1488 			count--;
1489 		}
1490 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1491 		do {
1492 			if (count == 0)
1493 				goto finished;
1494 			*buf = *addr;
1495 			buf++;
1496 			addr++;
1497 			count--;
1498 		} while (--n > 0);
1499 	}
1500 finished:
1501 	read_unlock(&vmlist_lock);
1502 	return buf - buf_start;
1503 }
1504 
1505 long vwrite(char *buf, char *addr, unsigned long count)
1506 {
1507 	struct vm_struct *tmp;
1508 	char *vaddr, *buf_start = buf;
1509 	unsigned long n;
1510 
1511 	/* Don't allow overflow */
1512 	if ((unsigned long) addr + count < count)
1513 		count = -(unsigned long) addr;
1514 
1515 	read_lock(&vmlist_lock);
1516 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1517 		vaddr = (char *) tmp->addr;
1518 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1519 			continue;
1520 		while (addr < vaddr) {
1521 			if (count == 0)
1522 				goto finished;
1523 			buf++;
1524 			addr++;
1525 			count--;
1526 		}
1527 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1528 		do {
1529 			if (count == 0)
1530 				goto finished;
1531 			*addr = *buf;
1532 			buf++;
1533 			addr++;
1534 			count--;
1535 		} while (--n > 0);
1536 	}
1537 finished:
1538 	read_unlock(&vmlist_lock);
1539 	return buf - buf_start;
1540 }
1541 
1542 /**
1543  *	remap_vmalloc_range  -  map vmalloc pages to userspace
1544  *	@vma:		vma to cover (map full range of vma)
1545  *	@addr:		vmalloc memory
1546  *	@pgoff:		number of pages into addr before first page to map
1547  *
1548  *	Returns:	0 for success, -Exxx on failure
1549  *
1550  *	This function checks that addr is a valid vmalloc'ed area, and
1551  *	that it is big enough to cover the vma. Will return failure if
1552  *	that criteria isn't met.
1553  *
1554  *	Similar to remap_pfn_range() (see mm/memory.c)
1555  */
1556 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1557 						unsigned long pgoff)
1558 {
1559 	struct vm_struct *area;
1560 	unsigned long uaddr = vma->vm_start;
1561 	unsigned long usize = vma->vm_end - vma->vm_start;
1562 
1563 	if ((PAGE_SIZE-1) & (unsigned long)addr)
1564 		return -EINVAL;
1565 
1566 	area = find_vm_area(addr);
1567 	if (!area)
1568 		return -EINVAL;
1569 
1570 	if (!(area->flags & VM_USERMAP))
1571 		return -EINVAL;
1572 
1573 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1574 		return -EINVAL;
1575 
1576 	addr += pgoff << PAGE_SHIFT;
1577 	do {
1578 		struct page *page = vmalloc_to_page(addr);
1579 		int ret;
1580 
1581 		ret = vm_insert_page(vma, uaddr, page);
1582 		if (ret)
1583 			return ret;
1584 
1585 		uaddr += PAGE_SIZE;
1586 		addr += PAGE_SIZE;
1587 		usize -= PAGE_SIZE;
1588 	} while (usize > 0);
1589 
1590 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
1591 	vma->vm_flags |= VM_RESERVED;
1592 
1593 	return 0;
1594 }
1595 EXPORT_SYMBOL(remap_vmalloc_range);
1596 
1597 /*
1598  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1599  * have one.
1600  */
1601 void  __attribute__((weak)) vmalloc_sync_all(void)
1602 {
1603 }
1604 
1605 
1606 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
1607 {
1608 	/* apply_to_page_range() does all the hard work. */
1609 	return 0;
1610 }
1611 
1612 /**
1613  *	alloc_vm_area - allocate a range of kernel address space
1614  *	@size:		size of the area
1615  *
1616  *	Returns:	NULL on failure, vm_struct on success
1617  *
1618  *	This function reserves a range of kernel address space, and
1619  *	allocates pagetables to map that range.  No actual mappings
1620  *	are created.  If the kernel address space is not shared
1621  *	between processes, it syncs the pagetable across all
1622  *	processes.
1623  */
1624 struct vm_struct *alloc_vm_area(size_t size)
1625 {
1626 	struct vm_struct *area;
1627 
1628 	area = get_vm_area_caller(size, VM_IOREMAP,
1629 				__builtin_return_address(0));
1630 	if (area == NULL)
1631 		return NULL;
1632 
1633 	/*
1634 	 * This ensures that page tables are constructed for this region
1635 	 * of kernel virtual address space and mapped into init_mm.
1636 	 */
1637 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1638 				area->size, f, NULL)) {
1639 		free_vm_area(area);
1640 		return NULL;
1641 	}
1642 
1643 	/* Make sure the pagetables are constructed in process kernel
1644 	   mappings */
1645 	vmalloc_sync_all();
1646 
1647 	return area;
1648 }
1649 EXPORT_SYMBOL_GPL(alloc_vm_area);
1650 
1651 void free_vm_area(struct vm_struct *area)
1652 {
1653 	struct vm_struct *ret;
1654 	ret = remove_vm_area(area->addr);
1655 	BUG_ON(ret != area);
1656 	kfree(area);
1657 }
1658 EXPORT_SYMBOL_GPL(free_vm_area);
1659 
1660 
1661 #ifdef CONFIG_PROC_FS
1662 static void *s_start(struct seq_file *m, loff_t *pos)
1663 {
1664 	loff_t n = *pos;
1665 	struct vm_struct *v;
1666 
1667 	read_lock(&vmlist_lock);
1668 	v = vmlist;
1669 	while (n > 0 && v) {
1670 		n--;
1671 		v = v->next;
1672 	}
1673 	if (!n)
1674 		return v;
1675 
1676 	return NULL;
1677 
1678 }
1679 
1680 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1681 {
1682 	struct vm_struct *v = p;
1683 
1684 	++*pos;
1685 	return v->next;
1686 }
1687 
1688 static void s_stop(struct seq_file *m, void *p)
1689 {
1690 	read_unlock(&vmlist_lock);
1691 }
1692 
1693 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1694 {
1695 	if (NUMA_BUILD) {
1696 		unsigned int nr, *counters = m->private;
1697 
1698 		if (!counters)
1699 			return;
1700 
1701 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1702 
1703 		for (nr = 0; nr < v->nr_pages; nr++)
1704 			counters[page_to_nid(v->pages[nr])]++;
1705 
1706 		for_each_node_state(nr, N_HIGH_MEMORY)
1707 			if (counters[nr])
1708 				seq_printf(m, " N%u=%u", nr, counters[nr]);
1709 	}
1710 }
1711 
1712 static int s_show(struct seq_file *m, void *p)
1713 {
1714 	struct vm_struct *v = p;
1715 
1716 	seq_printf(m, "0x%p-0x%p %7ld",
1717 		v->addr, v->addr + v->size, v->size);
1718 
1719 	if (v->caller) {
1720 		char buff[KSYM_SYMBOL_LEN];
1721 
1722 		seq_putc(m, ' ');
1723 		sprint_symbol(buff, (unsigned long)v->caller);
1724 		seq_puts(m, buff);
1725 	}
1726 
1727 	if (v->nr_pages)
1728 		seq_printf(m, " pages=%d", v->nr_pages);
1729 
1730 	if (v->phys_addr)
1731 		seq_printf(m, " phys=%lx", v->phys_addr);
1732 
1733 	if (v->flags & VM_IOREMAP)
1734 		seq_printf(m, " ioremap");
1735 
1736 	if (v->flags & VM_ALLOC)
1737 		seq_printf(m, " vmalloc");
1738 
1739 	if (v->flags & VM_MAP)
1740 		seq_printf(m, " vmap");
1741 
1742 	if (v->flags & VM_USERMAP)
1743 		seq_printf(m, " user");
1744 
1745 	if (v->flags & VM_VPAGES)
1746 		seq_printf(m, " vpages");
1747 
1748 	show_numa_info(m, v);
1749 	seq_putc(m, '\n');
1750 	return 0;
1751 }
1752 
1753 static const struct seq_operations vmalloc_op = {
1754 	.start = s_start,
1755 	.next = s_next,
1756 	.stop = s_stop,
1757 	.show = s_show,
1758 };
1759 
1760 static int vmalloc_open(struct inode *inode, struct file *file)
1761 {
1762 	unsigned int *ptr = NULL;
1763 	int ret;
1764 
1765 	if (NUMA_BUILD)
1766 		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
1767 	ret = seq_open(file, &vmalloc_op);
1768 	if (!ret) {
1769 		struct seq_file *m = file->private_data;
1770 		m->private = ptr;
1771 	} else
1772 		kfree(ptr);
1773 	return ret;
1774 }
1775 
1776 static const struct file_operations proc_vmalloc_operations = {
1777 	.open		= vmalloc_open,
1778 	.read		= seq_read,
1779 	.llseek		= seq_lseek,
1780 	.release	= seq_release_private,
1781 };
1782 
1783 static int __init proc_vmalloc_init(void)
1784 {
1785 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
1786 	return 0;
1787 }
1788 module_init(proc_vmalloc_init);
1789 #endif
1790 
1791