1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/slab.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/seq_file.h> 19 #include <linux/debugobjects.h> 20 #include <linux/kallsyms.h> 21 #include <linux/list.h> 22 #include <linux/rbtree.h> 23 #include <linux/radix-tree.h> 24 #include <linux/rcupdate.h> 25 26 #include <asm/atomic.h> 27 #include <asm/uaccess.h> 28 #include <asm/tlbflush.h> 29 30 31 /*** Page table manipulation functions ***/ 32 33 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 34 { 35 pte_t *pte; 36 37 pte = pte_offset_kernel(pmd, addr); 38 do { 39 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 40 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 41 } while (pte++, addr += PAGE_SIZE, addr != end); 42 } 43 44 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 45 { 46 pmd_t *pmd; 47 unsigned long next; 48 49 pmd = pmd_offset(pud, addr); 50 do { 51 next = pmd_addr_end(addr, end); 52 if (pmd_none_or_clear_bad(pmd)) 53 continue; 54 vunmap_pte_range(pmd, addr, next); 55 } while (pmd++, addr = next, addr != end); 56 } 57 58 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 59 { 60 pud_t *pud; 61 unsigned long next; 62 63 pud = pud_offset(pgd, addr); 64 do { 65 next = pud_addr_end(addr, end); 66 if (pud_none_or_clear_bad(pud)) 67 continue; 68 vunmap_pmd_range(pud, addr, next); 69 } while (pud++, addr = next, addr != end); 70 } 71 72 static void vunmap_page_range(unsigned long addr, unsigned long end) 73 { 74 pgd_t *pgd; 75 unsigned long next; 76 77 BUG_ON(addr >= end); 78 pgd = pgd_offset_k(addr); 79 flush_cache_vunmap(addr, end); 80 do { 81 next = pgd_addr_end(addr, end); 82 if (pgd_none_or_clear_bad(pgd)) 83 continue; 84 vunmap_pud_range(pgd, addr, next); 85 } while (pgd++, addr = next, addr != end); 86 } 87 88 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 89 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 90 { 91 pte_t *pte; 92 93 /* 94 * nr is a running index into the array which helps higher level 95 * callers keep track of where we're up to. 96 */ 97 98 pte = pte_alloc_kernel(pmd, addr); 99 if (!pte) 100 return -ENOMEM; 101 do { 102 struct page *page = pages[*nr]; 103 104 if (WARN_ON(!pte_none(*pte))) 105 return -EBUSY; 106 if (WARN_ON(!page)) 107 return -ENOMEM; 108 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 109 (*nr)++; 110 } while (pte++, addr += PAGE_SIZE, addr != end); 111 return 0; 112 } 113 114 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 115 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 116 { 117 pmd_t *pmd; 118 unsigned long next; 119 120 pmd = pmd_alloc(&init_mm, pud, addr); 121 if (!pmd) 122 return -ENOMEM; 123 do { 124 next = pmd_addr_end(addr, end); 125 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 126 return -ENOMEM; 127 } while (pmd++, addr = next, addr != end); 128 return 0; 129 } 130 131 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 132 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 133 { 134 pud_t *pud; 135 unsigned long next; 136 137 pud = pud_alloc(&init_mm, pgd, addr); 138 if (!pud) 139 return -ENOMEM; 140 do { 141 next = pud_addr_end(addr, end); 142 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 143 return -ENOMEM; 144 } while (pud++, addr = next, addr != end); 145 return 0; 146 } 147 148 /* 149 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 150 * will have pfns corresponding to the "pages" array. 151 * 152 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 153 */ 154 static int vmap_page_range(unsigned long addr, unsigned long end, 155 pgprot_t prot, struct page **pages) 156 { 157 pgd_t *pgd; 158 unsigned long next; 159 int err = 0; 160 int nr = 0; 161 162 BUG_ON(addr >= end); 163 pgd = pgd_offset_k(addr); 164 do { 165 next = pgd_addr_end(addr, end); 166 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 167 if (err) 168 break; 169 } while (pgd++, addr = next, addr != end); 170 flush_cache_vmap(addr, end); 171 172 if (unlikely(err)) 173 return err; 174 return nr; 175 } 176 177 static inline int is_vmalloc_or_module_addr(const void *x) 178 { 179 /* 180 * x86-64 and sparc64 put modules in a special place, 181 * and fall back on vmalloc() if that fails. Others 182 * just put it in the vmalloc space. 183 */ 184 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 185 unsigned long addr = (unsigned long)x; 186 if (addr >= MODULES_VADDR && addr < MODULES_END) 187 return 1; 188 #endif 189 return is_vmalloc_addr(x); 190 } 191 192 /* 193 * Walk a vmap address to the struct page it maps. 194 */ 195 struct page *vmalloc_to_page(const void *vmalloc_addr) 196 { 197 unsigned long addr = (unsigned long) vmalloc_addr; 198 struct page *page = NULL; 199 pgd_t *pgd = pgd_offset_k(addr); 200 201 /* 202 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 203 * architectures that do not vmalloc module space 204 */ 205 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 206 207 if (!pgd_none(*pgd)) { 208 pud_t *pud = pud_offset(pgd, addr); 209 if (!pud_none(*pud)) { 210 pmd_t *pmd = pmd_offset(pud, addr); 211 if (!pmd_none(*pmd)) { 212 pte_t *ptep, pte; 213 214 ptep = pte_offset_map(pmd, addr); 215 pte = *ptep; 216 if (pte_present(pte)) 217 page = pte_page(pte); 218 pte_unmap(ptep); 219 } 220 } 221 } 222 return page; 223 } 224 EXPORT_SYMBOL(vmalloc_to_page); 225 226 /* 227 * Map a vmalloc()-space virtual address to the physical page frame number. 228 */ 229 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 230 { 231 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 232 } 233 EXPORT_SYMBOL(vmalloc_to_pfn); 234 235 236 /*** Global kva allocator ***/ 237 238 #define VM_LAZY_FREE 0x01 239 #define VM_LAZY_FREEING 0x02 240 #define VM_VM_AREA 0x04 241 242 struct vmap_area { 243 unsigned long va_start; 244 unsigned long va_end; 245 unsigned long flags; 246 struct rb_node rb_node; /* address sorted rbtree */ 247 struct list_head list; /* address sorted list */ 248 struct list_head purge_list; /* "lazy purge" list */ 249 void *private; 250 struct rcu_head rcu_head; 251 }; 252 253 static DEFINE_SPINLOCK(vmap_area_lock); 254 static struct rb_root vmap_area_root = RB_ROOT; 255 static LIST_HEAD(vmap_area_list); 256 257 static struct vmap_area *__find_vmap_area(unsigned long addr) 258 { 259 struct rb_node *n = vmap_area_root.rb_node; 260 261 while (n) { 262 struct vmap_area *va; 263 264 va = rb_entry(n, struct vmap_area, rb_node); 265 if (addr < va->va_start) 266 n = n->rb_left; 267 else if (addr > va->va_start) 268 n = n->rb_right; 269 else 270 return va; 271 } 272 273 return NULL; 274 } 275 276 static void __insert_vmap_area(struct vmap_area *va) 277 { 278 struct rb_node **p = &vmap_area_root.rb_node; 279 struct rb_node *parent = NULL; 280 struct rb_node *tmp; 281 282 while (*p) { 283 struct vmap_area *tmp; 284 285 parent = *p; 286 tmp = rb_entry(parent, struct vmap_area, rb_node); 287 if (va->va_start < tmp->va_end) 288 p = &(*p)->rb_left; 289 else if (va->va_end > tmp->va_start) 290 p = &(*p)->rb_right; 291 else 292 BUG(); 293 } 294 295 rb_link_node(&va->rb_node, parent, p); 296 rb_insert_color(&va->rb_node, &vmap_area_root); 297 298 /* address-sort this list so it is usable like the vmlist */ 299 tmp = rb_prev(&va->rb_node); 300 if (tmp) { 301 struct vmap_area *prev; 302 prev = rb_entry(tmp, struct vmap_area, rb_node); 303 list_add_rcu(&va->list, &prev->list); 304 } else 305 list_add_rcu(&va->list, &vmap_area_list); 306 } 307 308 static void purge_vmap_area_lazy(void); 309 310 /* 311 * Allocate a region of KVA of the specified size and alignment, within the 312 * vstart and vend. 313 */ 314 static struct vmap_area *alloc_vmap_area(unsigned long size, 315 unsigned long align, 316 unsigned long vstart, unsigned long vend, 317 int node, gfp_t gfp_mask) 318 { 319 struct vmap_area *va; 320 struct rb_node *n; 321 unsigned long addr; 322 int purged = 0; 323 324 BUG_ON(size & ~PAGE_MASK); 325 326 addr = ALIGN(vstart, align); 327 328 va = kmalloc_node(sizeof(struct vmap_area), 329 gfp_mask & GFP_RECLAIM_MASK, node); 330 if (unlikely(!va)) 331 return ERR_PTR(-ENOMEM); 332 333 retry: 334 spin_lock(&vmap_area_lock); 335 /* XXX: could have a last_hole cache */ 336 n = vmap_area_root.rb_node; 337 if (n) { 338 struct vmap_area *first = NULL; 339 340 do { 341 struct vmap_area *tmp; 342 tmp = rb_entry(n, struct vmap_area, rb_node); 343 if (tmp->va_end >= addr) { 344 if (!first && tmp->va_start < addr + size) 345 first = tmp; 346 n = n->rb_left; 347 } else { 348 first = tmp; 349 n = n->rb_right; 350 } 351 } while (n); 352 353 if (!first) 354 goto found; 355 356 if (first->va_end < addr) { 357 n = rb_next(&first->rb_node); 358 if (n) 359 first = rb_entry(n, struct vmap_area, rb_node); 360 else 361 goto found; 362 } 363 364 while (addr + size >= first->va_start && addr + size <= vend) { 365 addr = ALIGN(first->va_end + PAGE_SIZE, align); 366 367 n = rb_next(&first->rb_node); 368 if (n) 369 first = rb_entry(n, struct vmap_area, rb_node); 370 else 371 goto found; 372 } 373 } 374 found: 375 if (addr + size > vend) { 376 spin_unlock(&vmap_area_lock); 377 if (!purged) { 378 purge_vmap_area_lazy(); 379 purged = 1; 380 goto retry; 381 } 382 if (printk_ratelimit()) 383 printk(KERN_WARNING "vmap allocation failed: " 384 "use vmalloc=<size> to increase size.\n"); 385 return ERR_PTR(-EBUSY); 386 } 387 388 BUG_ON(addr & (align-1)); 389 390 va->va_start = addr; 391 va->va_end = addr + size; 392 va->flags = 0; 393 __insert_vmap_area(va); 394 spin_unlock(&vmap_area_lock); 395 396 return va; 397 } 398 399 static void rcu_free_va(struct rcu_head *head) 400 { 401 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head); 402 403 kfree(va); 404 } 405 406 static void __free_vmap_area(struct vmap_area *va) 407 { 408 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 409 rb_erase(&va->rb_node, &vmap_area_root); 410 RB_CLEAR_NODE(&va->rb_node); 411 list_del_rcu(&va->list); 412 413 call_rcu(&va->rcu_head, rcu_free_va); 414 } 415 416 /* 417 * Free a region of KVA allocated by alloc_vmap_area 418 */ 419 static void free_vmap_area(struct vmap_area *va) 420 { 421 spin_lock(&vmap_area_lock); 422 __free_vmap_area(va); 423 spin_unlock(&vmap_area_lock); 424 } 425 426 /* 427 * Clear the pagetable entries of a given vmap_area 428 */ 429 static void unmap_vmap_area(struct vmap_area *va) 430 { 431 vunmap_page_range(va->va_start, va->va_end); 432 } 433 434 /* 435 * lazy_max_pages is the maximum amount of virtual address space we gather up 436 * before attempting to purge with a TLB flush. 437 * 438 * There is a tradeoff here: a larger number will cover more kernel page tables 439 * and take slightly longer to purge, but it will linearly reduce the number of 440 * global TLB flushes that must be performed. It would seem natural to scale 441 * this number up linearly with the number of CPUs (because vmapping activity 442 * could also scale linearly with the number of CPUs), however it is likely 443 * that in practice, workloads might be constrained in other ways that mean 444 * vmap activity will not scale linearly with CPUs. Also, I want to be 445 * conservative and not introduce a big latency on huge systems, so go with 446 * a less aggressive log scale. It will still be an improvement over the old 447 * code, and it will be simple to change the scale factor if we find that it 448 * becomes a problem on bigger systems. 449 */ 450 static unsigned long lazy_max_pages(void) 451 { 452 unsigned int log; 453 454 log = fls(num_online_cpus()); 455 456 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 457 } 458 459 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 460 461 /* 462 * Purges all lazily-freed vmap areas. 463 * 464 * If sync is 0 then don't purge if there is already a purge in progress. 465 * If force_flush is 1, then flush kernel TLBs between *start and *end even 466 * if we found no lazy vmap areas to unmap (callers can use this to optimise 467 * their own TLB flushing). 468 * Returns with *start = min(*start, lowest purged address) 469 * *end = max(*end, highest purged address) 470 */ 471 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 472 int sync, int force_flush) 473 { 474 static DEFINE_SPINLOCK(purge_lock); 475 LIST_HEAD(valist); 476 struct vmap_area *va; 477 int nr = 0; 478 479 /* 480 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 481 * should not expect such behaviour. This just simplifies locking for 482 * the case that isn't actually used at the moment anyway. 483 */ 484 if (!sync && !force_flush) { 485 if (!spin_trylock(&purge_lock)) 486 return; 487 } else 488 spin_lock(&purge_lock); 489 490 rcu_read_lock(); 491 list_for_each_entry_rcu(va, &vmap_area_list, list) { 492 if (va->flags & VM_LAZY_FREE) { 493 if (va->va_start < *start) 494 *start = va->va_start; 495 if (va->va_end > *end) 496 *end = va->va_end; 497 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 498 unmap_vmap_area(va); 499 list_add_tail(&va->purge_list, &valist); 500 va->flags |= VM_LAZY_FREEING; 501 va->flags &= ~VM_LAZY_FREE; 502 } 503 } 504 rcu_read_unlock(); 505 506 if (nr) { 507 BUG_ON(nr > atomic_read(&vmap_lazy_nr)); 508 atomic_sub(nr, &vmap_lazy_nr); 509 } 510 511 if (nr || force_flush) 512 flush_tlb_kernel_range(*start, *end); 513 514 if (nr) { 515 spin_lock(&vmap_area_lock); 516 list_for_each_entry(va, &valist, purge_list) 517 __free_vmap_area(va); 518 spin_unlock(&vmap_area_lock); 519 } 520 spin_unlock(&purge_lock); 521 } 522 523 /* 524 * Kick off a purge of the outstanding lazy areas. 525 */ 526 static void purge_vmap_area_lazy(void) 527 { 528 unsigned long start = ULONG_MAX, end = 0; 529 530 __purge_vmap_area_lazy(&start, &end, 0, 0); 531 } 532 533 /* 534 * Free and unmap a vmap area 535 */ 536 static void free_unmap_vmap_area(struct vmap_area *va) 537 { 538 va->flags |= VM_LAZY_FREE; 539 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 540 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 541 purge_vmap_area_lazy(); 542 } 543 544 static struct vmap_area *find_vmap_area(unsigned long addr) 545 { 546 struct vmap_area *va; 547 548 spin_lock(&vmap_area_lock); 549 va = __find_vmap_area(addr); 550 spin_unlock(&vmap_area_lock); 551 552 return va; 553 } 554 555 static void free_unmap_vmap_area_addr(unsigned long addr) 556 { 557 struct vmap_area *va; 558 559 va = find_vmap_area(addr); 560 BUG_ON(!va); 561 free_unmap_vmap_area(va); 562 } 563 564 565 /*** Per cpu kva allocator ***/ 566 567 /* 568 * vmap space is limited especially on 32 bit architectures. Ensure there is 569 * room for at least 16 percpu vmap blocks per CPU. 570 */ 571 /* 572 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 573 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 574 * instead (we just need a rough idea) 575 */ 576 #if BITS_PER_LONG == 32 577 #define VMALLOC_SPACE (128UL*1024*1024) 578 #else 579 #define VMALLOC_SPACE (128UL*1024*1024*1024) 580 #endif 581 582 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 583 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 584 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 585 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 586 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 587 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 588 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 589 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 590 VMALLOC_PAGES / NR_CPUS / 16)) 591 592 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 593 594 struct vmap_block_queue { 595 spinlock_t lock; 596 struct list_head free; 597 struct list_head dirty; 598 unsigned int nr_dirty; 599 }; 600 601 struct vmap_block { 602 spinlock_t lock; 603 struct vmap_area *va; 604 struct vmap_block_queue *vbq; 605 unsigned long free, dirty; 606 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); 607 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); 608 union { 609 struct { 610 struct list_head free_list; 611 struct list_head dirty_list; 612 }; 613 struct rcu_head rcu_head; 614 }; 615 }; 616 617 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 618 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 619 620 /* 621 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 622 * in the free path. Could get rid of this if we change the API to return a 623 * "cookie" from alloc, to be passed to free. But no big deal yet. 624 */ 625 static DEFINE_SPINLOCK(vmap_block_tree_lock); 626 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 627 628 /* 629 * We should probably have a fallback mechanism to allocate virtual memory 630 * out of partially filled vmap blocks. However vmap block sizing should be 631 * fairly reasonable according to the vmalloc size, so it shouldn't be a 632 * big problem. 633 */ 634 635 static unsigned long addr_to_vb_idx(unsigned long addr) 636 { 637 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 638 addr /= VMAP_BLOCK_SIZE; 639 return addr; 640 } 641 642 static struct vmap_block *new_vmap_block(gfp_t gfp_mask) 643 { 644 struct vmap_block_queue *vbq; 645 struct vmap_block *vb; 646 struct vmap_area *va; 647 unsigned long vb_idx; 648 int node, err; 649 650 node = numa_node_id(); 651 652 vb = kmalloc_node(sizeof(struct vmap_block), 653 gfp_mask & GFP_RECLAIM_MASK, node); 654 if (unlikely(!vb)) 655 return ERR_PTR(-ENOMEM); 656 657 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 658 VMALLOC_START, VMALLOC_END, 659 node, gfp_mask); 660 if (unlikely(IS_ERR(va))) { 661 kfree(vb); 662 return ERR_PTR(PTR_ERR(va)); 663 } 664 665 err = radix_tree_preload(gfp_mask); 666 if (unlikely(err)) { 667 kfree(vb); 668 free_vmap_area(va); 669 return ERR_PTR(err); 670 } 671 672 spin_lock_init(&vb->lock); 673 vb->va = va; 674 vb->free = VMAP_BBMAP_BITS; 675 vb->dirty = 0; 676 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); 677 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); 678 INIT_LIST_HEAD(&vb->free_list); 679 INIT_LIST_HEAD(&vb->dirty_list); 680 681 vb_idx = addr_to_vb_idx(va->va_start); 682 spin_lock(&vmap_block_tree_lock); 683 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 684 spin_unlock(&vmap_block_tree_lock); 685 BUG_ON(err); 686 radix_tree_preload_end(); 687 688 vbq = &get_cpu_var(vmap_block_queue); 689 vb->vbq = vbq; 690 spin_lock(&vbq->lock); 691 list_add(&vb->free_list, &vbq->free); 692 spin_unlock(&vbq->lock); 693 put_cpu_var(vmap_cpu_blocks); 694 695 return vb; 696 } 697 698 static void rcu_free_vb(struct rcu_head *head) 699 { 700 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head); 701 702 kfree(vb); 703 } 704 705 static void free_vmap_block(struct vmap_block *vb) 706 { 707 struct vmap_block *tmp; 708 unsigned long vb_idx; 709 710 spin_lock(&vb->vbq->lock); 711 if (!list_empty(&vb->free_list)) 712 list_del(&vb->free_list); 713 if (!list_empty(&vb->dirty_list)) 714 list_del(&vb->dirty_list); 715 spin_unlock(&vb->vbq->lock); 716 717 vb_idx = addr_to_vb_idx(vb->va->va_start); 718 spin_lock(&vmap_block_tree_lock); 719 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 720 spin_unlock(&vmap_block_tree_lock); 721 BUG_ON(tmp != vb); 722 723 free_unmap_vmap_area(vb->va); 724 call_rcu(&vb->rcu_head, rcu_free_vb); 725 } 726 727 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 728 { 729 struct vmap_block_queue *vbq; 730 struct vmap_block *vb; 731 unsigned long addr = 0; 732 unsigned int order; 733 734 BUG_ON(size & ~PAGE_MASK); 735 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 736 order = get_order(size); 737 738 again: 739 rcu_read_lock(); 740 vbq = &get_cpu_var(vmap_block_queue); 741 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 742 int i; 743 744 spin_lock(&vb->lock); 745 i = bitmap_find_free_region(vb->alloc_map, 746 VMAP_BBMAP_BITS, order); 747 748 if (i >= 0) { 749 addr = vb->va->va_start + (i << PAGE_SHIFT); 750 BUG_ON(addr_to_vb_idx(addr) != 751 addr_to_vb_idx(vb->va->va_start)); 752 vb->free -= 1UL << order; 753 if (vb->free == 0) { 754 spin_lock(&vbq->lock); 755 list_del_init(&vb->free_list); 756 spin_unlock(&vbq->lock); 757 } 758 spin_unlock(&vb->lock); 759 break; 760 } 761 spin_unlock(&vb->lock); 762 } 763 put_cpu_var(vmap_cpu_blocks); 764 rcu_read_unlock(); 765 766 if (!addr) { 767 vb = new_vmap_block(gfp_mask); 768 if (IS_ERR(vb)) 769 return vb; 770 goto again; 771 } 772 773 return (void *)addr; 774 } 775 776 static void vb_free(const void *addr, unsigned long size) 777 { 778 unsigned long offset; 779 unsigned long vb_idx; 780 unsigned int order; 781 struct vmap_block *vb; 782 783 BUG_ON(size & ~PAGE_MASK); 784 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 785 order = get_order(size); 786 787 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 788 789 vb_idx = addr_to_vb_idx((unsigned long)addr); 790 rcu_read_lock(); 791 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 792 rcu_read_unlock(); 793 BUG_ON(!vb); 794 795 spin_lock(&vb->lock); 796 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order); 797 if (!vb->dirty) { 798 spin_lock(&vb->vbq->lock); 799 list_add(&vb->dirty_list, &vb->vbq->dirty); 800 spin_unlock(&vb->vbq->lock); 801 } 802 vb->dirty += 1UL << order; 803 if (vb->dirty == VMAP_BBMAP_BITS) { 804 BUG_ON(vb->free || !list_empty(&vb->free_list)); 805 spin_unlock(&vb->lock); 806 free_vmap_block(vb); 807 } else 808 spin_unlock(&vb->lock); 809 } 810 811 /** 812 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 813 * 814 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 815 * to amortize TLB flushing overheads. What this means is that any page you 816 * have now, may, in a former life, have been mapped into kernel virtual 817 * address by the vmap layer and so there might be some CPUs with TLB entries 818 * still referencing that page (additional to the regular 1:1 kernel mapping). 819 * 820 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 821 * be sure that none of the pages we have control over will have any aliases 822 * from the vmap layer. 823 */ 824 void vm_unmap_aliases(void) 825 { 826 unsigned long start = ULONG_MAX, end = 0; 827 int cpu; 828 int flush = 0; 829 830 for_each_possible_cpu(cpu) { 831 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 832 struct vmap_block *vb; 833 834 rcu_read_lock(); 835 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 836 int i; 837 838 spin_lock(&vb->lock); 839 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); 840 while (i < VMAP_BBMAP_BITS) { 841 unsigned long s, e; 842 int j; 843 j = find_next_zero_bit(vb->dirty_map, 844 VMAP_BBMAP_BITS, i); 845 846 s = vb->va->va_start + (i << PAGE_SHIFT); 847 e = vb->va->va_start + (j << PAGE_SHIFT); 848 vunmap_page_range(s, e); 849 flush = 1; 850 851 if (s < start) 852 start = s; 853 if (e > end) 854 end = e; 855 856 i = j; 857 i = find_next_bit(vb->dirty_map, 858 VMAP_BBMAP_BITS, i); 859 } 860 spin_unlock(&vb->lock); 861 } 862 rcu_read_unlock(); 863 } 864 865 __purge_vmap_area_lazy(&start, &end, 1, flush); 866 } 867 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 868 869 /** 870 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 871 * @mem: the pointer returned by vm_map_ram 872 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 873 */ 874 void vm_unmap_ram(const void *mem, unsigned int count) 875 { 876 unsigned long size = count << PAGE_SHIFT; 877 unsigned long addr = (unsigned long)mem; 878 879 BUG_ON(!addr); 880 BUG_ON(addr < VMALLOC_START); 881 BUG_ON(addr > VMALLOC_END); 882 BUG_ON(addr & (PAGE_SIZE-1)); 883 884 debug_check_no_locks_freed(mem, size); 885 886 if (likely(count <= VMAP_MAX_ALLOC)) 887 vb_free(mem, size); 888 else 889 free_unmap_vmap_area_addr(addr); 890 } 891 EXPORT_SYMBOL(vm_unmap_ram); 892 893 /** 894 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 895 * @pages: an array of pointers to the pages to be mapped 896 * @count: number of pages 897 * @node: prefer to allocate data structures on this node 898 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 899 * @returns: a pointer to the address that has been mapped, or NULL on failure 900 */ 901 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 902 { 903 unsigned long size = count << PAGE_SHIFT; 904 unsigned long addr; 905 void *mem; 906 907 if (likely(count <= VMAP_MAX_ALLOC)) { 908 mem = vb_alloc(size, GFP_KERNEL); 909 if (IS_ERR(mem)) 910 return NULL; 911 addr = (unsigned long)mem; 912 } else { 913 struct vmap_area *va; 914 va = alloc_vmap_area(size, PAGE_SIZE, 915 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 916 if (IS_ERR(va)) 917 return NULL; 918 919 addr = va->va_start; 920 mem = (void *)addr; 921 } 922 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 923 vm_unmap_ram(mem, count); 924 return NULL; 925 } 926 return mem; 927 } 928 EXPORT_SYMBOL(vm_map_ram); 929 930 void __init vmalloc_init(void) 931 { 932 int i; 933 934 for_each_possible_cpu(i) { 935 struct vmap_block_queue *vbq; 936 937 vbq = &per_cpu(vmap_block_queue, i); 938 spin_lock_init(&vbq->lock); 939 INIT_LIST_HEAD(&vbq->free); 940 INIT_LIST_HEAD(&vbq->dirty); 941 vbq->nr_dirty = 0; 942 } 943 } 944 945 void unmap_kernel_range(unsigned long addr, unsigned long size) 946 { 947 unsigned long end = addr + size; 948 vunmap_page_range(addr, end); 949 flush_tlb_kernel_range(addr, end); 950 } 951 952 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 953 { 954 unsigned long addr = (unsigned long)area->addr; 955 unsigned long end = addr + area->size - PAGE_SIZE; 956 int err; 957 958 err = vmap_page_range(addr, end, prot, *pages); 959 if (err > 0) { 960 *pages += err; 961 err = 0; 962 } 963 964 return err; 965 } 966 EXPORT_SYMBOL_GPL(map_vm_area); 967 968 /*** Old vmalloc interfaces ***/ 969 DEFINE_RWLOCK(vmlist_lock); 970 struct vm_struct *vmlist; 971 972 static struct vm_struct *__get_vm_area_node(unsigned long size, 973 unsigned long flags, unsigned long start, unsigned long end, 974 int node, gfp_t gfp_mask, void *caller) 975 { 976 static struct vmap_area *va; 977 struct vm_struct *area; 978 struct vm_struct *tmp, **p; 979 unsigned long align = 1; 980 981 BUG_ON(in_interrupt()); 982 if (flags & VM_IOREMAP) { 983 int bit = fls(size); 984 985 if (bit > IOREMAP_MAX_ORDER) 986 bit = IOREMAP_MAX_ORDER; 987 else if (bit < PAGE_SHIFT) 988 bit = PAGE_SHIFT; 989 990 align = 1ul << bit; 991 } 992 993 size = PAGE_ALIGN(size); 994 if (unlikely(!size)) 995 return NULL; 996 997 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 998 if (unlikely(!area)) 999 return NULL; 1000 1001 /* 1002 * We always allocate a guard page. 1003 */ 1004 size += PAGE_SIZE; 1005 1006 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1007 if (IS_ERR(va)) { 1008 kfree(area); 1009 return NULL; 1010 } 1011 1012 area->flags = flags; 1013 area->addr = (void *)va->va_start; 1014 area->size = size; 1015 area->pages = NULL; 1016 area->nr_pages = 0; 1017 area->phys_addr = 0; 1018 area->caller = caller; 1019 va->private = area; 1020 va->flags |= VM_VM_AREA; 1021 1022 write_lock(&vmlist_lock); 1023 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1024 if (tmp->addr >= area->addr) 1025 break; 1026 } 1027 area->next = *p; 1028 *p = area; 1029 write_unlock(&vmlist_lock); 1030 1031 return area; 1032 } 1033 1034 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1035 unsigned long start, unsigned long end) 1036 { 1037 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL, 1038 __builtin_return_address(0)); 1039 } 1040 EXPORT_SYMBOL_GPL(__get_vm_area); 1041 1042 /** 1043 * get_vm_area - reserve a contiguous kernel virtual area 1044 * @size: size of the area 1045 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1046 * 1047 * Search an area of @size in the kernel virtual mapping area, 1048 * and reserved it for out purposes. Returns the area descriptor 1049 * on success or %NULL on failure. 1050 */ 1051 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1052 { 1053 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, 1054 -1, GFP_KERNEL, __builtin_return_address(0)); 1055 } 1056 1057 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1058 void *caller) 1059 { 1060 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, 1061 -1, GFP_KERNEL, caller); 1062 } 1063 1064 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, 1065 int node, gfp_t gfp_mask) 1066 { 1067 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node, 1068 gfp_mask, __builtin_return_address(0)); 1069 } 1070 1071 static struct vm_struct *find_vm_area(const void *addr) 1072 { 1073 struct vmap_area *va; 1074 1075 va = find_vmap_area((unsigned long)addr); 1076 if (va && va->flags & VM_VM_AREA) 1077 return va->private; 1078 1079 return NULL; 1080 } 1081 1082 /** 1083 * remove_vm_area - find and remove a continuous kernel virtual area 1084 * @addr: base address 1085 * 1086 * Search for the kernel VM area starting at @addr, and remove it. 1087 * This function returns the found VM area, but using it is NOT safe 1088 * on SMP machines, except for its size or flags. 1089 */ 1090 struct vm_struct *remove_vm_area(const void *addr) 1091 { 1092 struct vmap_area *va; 1093 1094 va = find_vmap_area((unsigned long)addr); 1095 if (va && va->flags & VM_VM_AREA) { 1096 struct vm_struct *vm = va->private; 1097 struct vm_struct *tmp, **p; 1098 free_unmap_vmap_area(va); 1099 vm->size -= PAGE_SIZE; 1100 1101 write_lock(&vmlist_lock); 1102 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) 1103 ; 1104 *p = tmp->next; 1105 write_unlock(&vmlist_lock); 1106 1107 return vm; 1108 } 1109 return NULL; 1110 } 1111 1112 static void __vunmap(const void *addr, int deallocate_pages) 1113 { 1114 struct vm_struct *area; 1115 1116 if (!addr) 1117 return; 1118 1119 if ((PAGE_SIZE-1) & (unsigned long)addr) { 1120 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 1121 return; 1122 } 1123 1124 area = remove_vm_area(addr); 1125 if (unlikely(!area)) { 1126 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1127 addr); 1128 return; 1129 } 1130 1131 debug_check_no_locks_freed(addr, area->size); 1132 debug_check_no_obj_freed(addr, area->size); 1133 1134 if (deallocate_pages) { 1135 int i; 1136 1137 for (i = 0; i < area->nr_pages; i++) { 1138 struct page *page = area->pages[i]; 1139 1140 BUG_ON(!page); 1141 __free_page(page); 1142 } 1143 1144 if (area->flags & VM_VPAGES) 1145 vfree(area->pages); 1146 else 1147 kfree(area->pages); 1148 } 1149 1150 kfree(area); 1151 return; 1152 } 1153 1154 /** 1155 * vfree - release memory allocated by vmalloc() 1156 * @addr: memory base address 1157 * 1158 * Free the virtually continuous memory area starting at @addr, as 1159 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1160 * NULL, no operation is performed. 1161 * 1162 * Must not be called in interrupt context. 1163 */ 1164 void vfree(const void *addr) 1165 { 1166 BUG_ON(in_interrupt()); 1167 __vunmap(addr, 1); 1168 } 1169 EXPORT_SYMBOL(vfree); 1170 1171 /** 1172 * vunmap - release virtual mapping obtained by vmap() 1173 * @addr: memory base address 1174 * 1175 * Free the virtually contiguous memory area starting at @addr, 1176 * which was created from the page array passed to vmap(). 1177 * 1178 * Must not be called in interrupt context. 1179 */ 1180 void vunmap(const void *addr) 1181 { 1182 BUG_ON(in_interrupt()); 1183 __vunmap(addr, 0); 1184 } 1185 EXPORT_SYMBOL(vunmap); 1186 1187 /** 1188 * vmap - map an array of pages into virtually contiguous space 1189 * @pages: array of page pointers 1190 * @count: number of pages to map 1191 * @flags: vm_area->flags 1192 * @prot: page protection for the mapping 1193 * 1194 * Maps @count pages from @pages into contiguous kernel virtual 1195 * space. 1196 */ 1197 void *vmap(struct page **pages, unsigned int count, 1198 unsigned long flags, pgprot_t prot) 1199 { 1200 struct vm_struct *area; 1201 1202 if (count > num_physpages) 1203 return NULL; 1204 1205 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1206 __builtin_return_address(0)); 1207 if (!area) 1208 return NULL; 1209 1210 if (map_vm_area(area, prot, &pages)) { 1211 vunmap(area->addr); 1212 return NULL; 1213 } 1214 1215 return area->addr; 1216 } 1217 EXPORT_SYMBOL(vmap); 1218 1219 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 1220 int node, void *caller); 1221 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1222 pgprot_t prot, int node, void *caller) 1223 { 1224 struct page **pages; 1225 unsigned int nr_pages, array_size, i; 1226 1227 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 1228 array_size = (nr_pages * sizeof(struct page *)); 1229 1230 area->nr_pages = nr_pages; 1231 /* Please note that the recursion is strictly bounded. */ 1232 if (array_size > PAGE_SIZE) { 1233 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO, 1234 PAGE_KERNEL, node, caller); 1235 area->flags |= VM_VPAGES; 1236 } else { 1237 pages = kmalloc_node(array_size, 1238 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO, 1239 node); 1240 } 1241 area->pages = pages; 1242 area->caller = caller; 1243 if (!area->pages) { 1244 remove_vm_area(area->addr); 1245 kfree(area); 1246 return NULL; 1247 } 1248 1249 for (i = 0; i < area->nr_pages; i++) { 1250 struct page *page; 1251 1252 if (node < 0) 1253 page = alloc_page(gfp_mask); 1254 else 1255 page = alloc_pages_node(node, gfp_mask, 0); 1256 1257 if (unlikely(!page)) { 1258 /* Successfully allocated i pages, free them in __vunmap() */ 1259 area->nr_pages = i; 1260 goto fail; 1261 } 1262 area->pages[i] = page; 1263 } 1264 1265 if (map_vm_area(area, prot, &pages)) 1266 goto fail; 1267 return area->addr; 1268 1269 fail: 1270 vfree(area->addr); 1271 return NULL; 1272 } 1273 1274 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) 1275 { 1276 return __vmalloc_area_node(area, gfp_mask, prot, -1, 1277 __builtin_return_address(0)); 1278 } 1279 1280 /** 1281 * __vmalloc_node - allocate virtually contiguous memory 1282 * @size: allocation size 1283 * @gfp_mask: flags for the page level allocator 1284 * @prot: protection mask for the allocated pages 1285 * @node: node to use for allocation or -1 1286 * @caller: caller's return address 1287 * 1288 * Allocate enough pages to cover @size from the page level 1289 * allocator with @gfp_mask flags. Map them into contiguous 1290 * kernel virtual space, using a pagetable protection of @prot. 1291 */ 1292 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 1293 int node, void *caller) 1294 { 1295 struct vm_struct *area; 1296 1297 size = PAGE_ALIGN(size); 1298 if (!size || (size >> PAGE_SHIFT) > num_physpages) 1299 return NULL; 1300 1301 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END, 1302 node, gfp_mask, caller); 1303 1304 if (!area) 1305 return NULL; 1306 1307 return __vmalloc_area_node(area, gfp_mask, prot, node, caller); 1308 } 1309 1310 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1311 { 1312 return __vmalloc_node(size, gfp_mask, prot, -1, 1313 __builtin_return_address(0)); 1314 } 1315 EXPORT_SYMBOL(__vmalloc); 1316 1317 /** 1318 * vmalloc - allocate virtually contiguous memory 1319 * @size: allocation size 1320 * Allocate enough pages to cover @size from the page level 1321 * allocator and map them into contiguous kernel virtual space. 1322 * 1323 * For tight control over page level allocator and protection flags 1324 * use __vmalloc() instead. 1325 */ 1326 void *vmalloc(unsigned long size) 1327 { 1328 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1329 -1, __builtin_return_address(0)); 1330 } 1331 EXPORT_SYMBOL(vmalloc); 1332 1333 /** 1334 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1335 * @size: allocation size 1336 * 1337 * The resulting memory area is zeroed so it can be mapped to userspace 1338 * without leaking data. 1339 */ 1340 void *vmalloc_user(unsigned long size) 1341 { 1342 struct vm_struct *area; 1343 void *ret; 1344 1345 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL); 1346 if (ret) { 1347 area = find_vm_area(ret); 1348 area->flags |= VM_USERMAP; 1349 } 1350 return ret; 1351 } 1352 EXPORT_SYMBOL(vmalloc_user); 1353 1354 /** 1355 * vmalloc_node - allocate memory on a specific node 1356 * @size: allocation size 1357 * @node: numa node 1358 * 1359 * Allocate enough pages to cover @size from the page level 1360 * allocator and map them into contiguous kernel virtual space. 1361 * 1362 * For tight control over page level allocator and protection flags 1363 * use __vmalloc() instead. 1364 */ 1365 void *vmalloc_node(unsigned long size, int node) 1366 { 1367 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1368 node, __builtin_return_address(0)); 1369 } 1370 EXPORT_SYMBOL(vmalloc_node); 1371 1372 #ifndef PAGE_KERNEL_EXEC 1373 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1374 #endif 1375 1376 /** 1377 * vmalloc_exec - allocate virtually contiguous, executable memory 1378 * @size: allocation size 1379 * 1380 * Kernel-internal function to allocate enough pages to cover @size 1381 * the page level allocator and map them into contiguous and 1382 * executable kernel virtual space. 1383 * 1384 * For tight control over page level allocator and protection flags 1385 * use __vmalloc() instead. 1386 */ 1387 1388 void *vmalloc_exec(unsigned long size) 1389 { 1390 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 1391 } 1392 1393 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1394 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1395 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1396 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1397 #else 1398 #define GFP_VMALLOC32 GFP_KERNEL 1399 #endif 1400 1401 /** 1402 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1403 * @size: allocation size 1404 * 1405 * Allocate enough 32bit PA addressable pages to cover @size from the 1406 * page level allocator and map them into contiguous kernel virtual space. 1407 */ 1408 void *vmalloc_32(unsigned long size) 1409 { 1410 return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL); 1411 } 1412 EXPORT_SYMBOL(vmalloc_32); 1413 1414 /** 1415 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1416 * @size: allocation size 1417 * 1418 * The resulting memory area is 32bit addressable and zeroed so it can be 1419 * mapped to userspace without leaking data. 1420 */ 1421 void *vmalloc_32_user(unsigned long size) 1422 { 1423 struct vm_struct *area; 1424 void *ret; 1425 1426 ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL); 1427 if (ret) { 1428 area = find_vm_area(ret); 1429 area->flags |= VM_USERMAP; 1430 } 1431 return ret; 1432 } 1433 EXPORT_SYMBOL(vmalloc_32_user); 1434 1435 long vread(char *buf, char *addr, unsigned long count) 1436 { 1437 struct vm_struct *tmp; 1438 char *vaddr, *buf_start = buf; 1439 unsigned long n; 1440 1441 /* Don't allow overflow */ 1442 if ((unsigned long) addr + count < count) 1443 count = -(unsigned long) addr; 1444 1445 read_lock(&vmlist_lock); 1446 for (tmp = vmlist; tmp; tmp = tmp->next) { 1447 vaddr = (char *) tmp->addr; 1448 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1449 continue; 1450 while (addr < vaddr) { 1451 if (count == 0) 1452 goto finished; 1453 *buf = '\0'; 1454 buf++; 1455 addr++; 1456 count--; 1457 } 1458 n = vaddr + tmp->size - PAGE_SIZE - addr; 1459 do { 1460 if (count == 0) 1461 goto finished; 1462 *buf = *addr; 1463 buf++; 1464 addr++; 1465 count--; 1466 } while (--n > 0); 1467 } 1468 finished: 1469 read_unlock(&vmlist_lock); 1470 return buf - buf_start; 1471 } 1472 1473 long vwrite(char *buf, char *addr, unsigned long count) 1474 { 1475 struct vm_struct *tmp; 1476 char *vaddr, *buf_start = buf; 1477 unsigned long n; 1478 1479 /* Don't allow overflow */ 1480 if ((unsigned long) addr + count < count) 1481 count = -(unsigned long) addr; 1482 1483 read_lock(&vmlist_lock); 1484 for (tmp = vmlist; tmp; tmp = tmp->next) { 1485 vaddr = (char *) tmp->addr; 1486 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1487 continue; 1488 while (addr < vaddr) { 1489 if (count == 0) 1490 goto finished; 1491 buf++; 1492 addr++; 1493 count--; 1494 } 1495 n = vaddr + tmp->size - PAGE_SIZE - addr; 1496 do { 1497 if (count == 0) 1498 goto finished; 1499 *addr = *buf; 1500 buf++; 1501 addr++; 1502 count--; 1503 } while (--n > 0); 1504 } 1505 finished: 1506 read_unlock(&vmlist_lock); 1507 return buf - buf_start; 1508 } 1509 1510 /** 1511 * remap_vmalloc_range - map vmalloc pages to userspace 1512 * @vma: vma to cover (map full range of vma) 1513 * @addr: vmalloc memory 1514 * @pgoff: number of pages into addr before first page to map 1515 * 1516 * Returns: 0 for success, -Exxx on failure 1517 * 1518 * This function checks that addr is a valid vmalloc'ed area, and 1519 * that it is big enough to cover the vma. Will return failure if 1520 * that criteria isn't met. 1521 * 1522 * Similar to remap_pfn_range() (see mm/memory.c) 1523 */ 1524 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1525 unsigned long pgoff) 1526 { 1527 struct vm_struct *area; 1528 unsigned long uaddr = vma->vm_start; 1529 unsigned long usize = vma->vm_end - vma->vm_start; 1530 1531 if ((PAGE_SIZE-1) & (unsigned long)addr) 1532 return -EINVAL; 1533 1534 area = find_vm_area(addr); 1535 if (!area) 1536 return -EINVAL; 1537 1538 if (!(area->flags & VM_USERMAP)) 1539 return -EINVAL; 1540 1541 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 1542 return -EINVAL; 1543 1544 addr += pgoff << PAGE_SHIFT; 1545 do { 1546 struct page *page = vmalloc_to_page(addr); 1547 int ret; 1548 1549 ret = vm_insert_page(vma, uaddr, page); 1550 if (ret) 1551 return ret; 1552 1553 uaddr += PAGE_SIZE; 1554 addr += PAGE_SIZE; 1555 usize -= PAGE_SIZE; 1556 } while (usize > 0); 1557 1558 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 1559 vma->vm_flags |= VM_RESERVED; 1560 1561 return 0; 1562 } 1563 EXPORT_SYMBOL(remap_vmalloc_range); 1564 1565 /* 1566 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 1567 * have one. 1568 */ 1569 void __attribute__((weak)) vmalloc_sync_all(void) 1570 { 1571 } 1572 1573 1574 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 1575 { 1576 /* apply_to_page_range() does all the hard work. */ 1577 return 0; 1578 } 1579 1580 /** 1581 * alloc_vm_area - allocate a range of kernel address space 1582 * @size: size of the area 1583 * 1584 * Returns: NULL on failure, vm_struct on success 1585 * 1586 * This function reserves a range of kernel address space, and 1587 * allocates pagetables to map that range. No actual mappings 1588 * are created. If the kernel address space is not shared 1589 * between processes, it syncs the pagetable across all 1590 * processes. 1591 */ 1592 struct vm_struct *alloc_vm_area(size_t size) 1593 { 1594 struct vm_struct *area; 1595 1596 area = get_vm_area_caller(size, VM_IOREMAP, 1597 __builtin_return_address(0)); 1598 if (area == NULL) 1599 return NULL; 1600 1601 /* 1602 * This ensures that page tables are constructed for this region 1603 * of kernel virtual address space and mapped into init_mm. 1604 */ 1605 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 1606 area->size, f, NULL)) { 1607 free_vm_area(area); 1608 return NULL; 1609 } 1610 1611 /* Make sure the pagetables are constructed in process kernel 1612 mappings */ 1613 vmalloc_sync_all(); 1614 1615 return area; 1616 } 1617 EXPORT_SYMBOL_GPL(alloc_vm_area); 1618 1619 void free_vm_area(struct vm_struct *area) 1620 { 1621 struct vm_struct *ret; 1622 ret = remove_vm_area(area->addr); 1623 BUG_ON(ret != area); 1624 kfree(area); 1625 } 1626 EXPORT_SYMBOL_GPL(free_vm_area); 1627 1628 1629 #ifdef CONFIG_PROC_FS 1630 static void *s_start(struct seq_file *m, loff_t *pos) 1631 { 1632 loff_t n = *pos; 1633 struct vm_struct *v; 1634 1635 read_lock(&vmlist_lock); 1636 v = vmlist; 1637 while (n > 0 && v) { 1638 n--; 1639 v = v->next; 1640 } 1641 if (!n) 1642 return v; 1643 1644 return NULL; 1645 1646 } 1647 1648 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 1649 { 1650 struct vm_struct *v = p; 1651 1652 ++*pos; 1653 return v->next; 1654 } 1655 1656 static void s_stop(struct seq_file *m, void *p) 1657 { 1658 read_unlock(&vmlist_lock); 1659 } 1660 1661 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 1662 { 1663 if (NUMA_BUILD) { 1664 unsigned int nr, *counters = m->private; 1665 1666 if (!counters) 1667 return; 1668 1669 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 1670 1671 for (nr = 0; nr < v->nr_pages; nr++) 1672 counters[page_to_nid(v->pages[nr])]++; 1673 1674 for_each_node_state(nr, N_HIGH_MEMORY) 1675 if (counters[nr]) 1676 seq_printf(m, " N%u=%u", nr, counters[nr]); 1677 } 1678 } 1679 1680 static int s_show(struct seq_file *m, void *p) 1681 { 1682 struct vm_struct *v = p; 1683 1684 seq_printf(m, "0x%p-0x%p %7ld", 1685 v->addr, v->addr + v->size, v->size); 1686 1687 if (v->caller) { 1688 char buff[2 * KSYM_NAME_LEN]; 1689 1690 seq_putc(m, ' '); 1691 sprint_symbol(buff, (unsigned long)v->caller); 1692 seq_puts(m, buff); 1693 } 1694 1695 if (v->nr_pages) 1696 seq_printf(m, " pages=%d", v->nr_pages); 1697 1698 if (v->phys_addr) 1699 seq_printf(m, " phys=%lx", v->phys_addr); 1700 1701 if (v->flags & VM_IOREMAP) 1702 seq_printf(m, " ioremap"); 1703 1704 if (v->flags & VM_ALLOC) 1705 seq_printf(m, " vmalloc"); 1706 1707 if (v->flags & VM_MAP) 1708 seq_printf(m, " vmap"); 1709 1710 if (v->flags & VM_USERMAP) 1711 seq_printf(m, " user"); 1712 1713 if (v->flags & VM_VPAGES) 1714 seq_printf(m, " vpages"); 1715 1716 show_numa_info(m, v); 1717 seq_putc(m, '\n'); 1718 return 0; 1719 } 1720 1721 const struct seq_operations vmalloc_op = { 1722 .start = s_start, 1723 .next = s_next, 1724 .stop = s_stop, 1725 .show = s_show, 1726 }; 1727 #endif 1728 1729