xref: /linux/mm/vmalloc.c (revision 9307c29524502c21f0e8a6d96d850b2f5bc0bd9a)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <linux/llist.h>
31 #include <asm/uaccess.h>
32 #include <asm/tlbflush.h>
33 #include <asm/shmparam.h>
34 
35 struct vfree_deferred {
36 	struct llist_head list;
37 	struct work_struct wq;
38 };
39 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
40 
41 static void __vunmap(const void *, int);
42 
43 static void free_work(struct work_struct *w)
44 {
45 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
46 	struct llist_node *llnode = llist_del_all(&p->list);
47 	while (llnode) {
48 		void *p = llnode;
49 		llnode = llist_next(llnode);
50 		__vunmap(p, 1);
51 	}
52 }
53 
54 /*** Page table manipulation functions ***/
55 
56 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
57 {
58 	pte_t *pte;
59 
60 	pte = pte_offset_kernel(pmd, addr);
61 	do {
62 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
63 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
64 	} while (pte++, addr += PAGE_SIZE, addr != end);
65 }
66 
67 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
68 {
69 	pmd_t *pmd;
70 	unsigned long next;
71 
72 	pmd = pmd_offset(pud, addr);
73 	do {
74 		next = pmd_addr_end(addr, end);
75 		if (pmd_none_or_clear_bad(pmd))
76 			continue;
77 		vunmap_pte_range(pmd, addr, next);
78 	} while (pmd++, addr = next, addr != end);
79 }
80 
81 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
82 {
83 	pud_t *pud;
84 	unsigned long next;
85 
86 	pud = pud_offset(pgd, addr);
87 	do {
88 		next = pud_addr_end(addr, end);
89 		if (pud_none_or_clear_bad(pud))
90 			continue;
91 		vunmap_pmd_range(pud, addr, next);
92 	} while (pud++, addr = next, addr != end);
93 }
94 
95 static void vunmap_page_range(unsigned long addr, unsigned long end)
96 {
97 	pgd_t *pgd;
98 	unsigned long next;
99 
100 	BUG_ON(addr >= end);
101 	pgd = pgd_offset_k(addr);
102 	do {
103 		next = pgd_addr_end(addr, end);
104 		if (pgd_none_or_clear_bad(pgd))
105 			continue;
106 		vunmap_pud_range(pgd, addr, next);
107 	} while (pgd++, addr = next, addr != end);
108 }
109 
110 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
111 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
112 {
113 	pte_t *pte;
114 
115 	/*
116 	 * nr is a running index into the array which helps higher level
117 	 * callers keep track of where we're up to.
118 	 */
119 
120 	pte = pte_alloc_kernel(pmd, addr);
121 	if (!pte)
122 		return -ENOMEM;
123 	do {
124 		struct page *page = pages[*nr];
125 
126 		if (WARN_ON(!pte_none(*pte)))
127 			return -EBUSY;
128 		if (WARN_ON(!page))
129 			return -ENOMEM;
130 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
131 		(*nr)++;
132 	} while (pte++, addr += PAGE_SIZE, addr != end);
133 	return 0;
134 }
135 
136 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
137 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
138 {
139 	pmd_t *pmd;
140 	unsigned long next;
141 
142 	pmd = pmd_alloc(&init_mm, pud, addr);
143 	if (!pmd)
144 		return -ENOMEM;
145 	do {
146 		next = pmd_addr_end(addr, end);
147 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
148 			return -ENOMEM;
149 	} while (pmd++, addr = next, addr != end);
150 	return 0;
151 }
152 
153 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
154 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
155 {
156 	pud_t *pud;
157 	unsigned long next;
158 
159 	pud = pud_alloc(&init_mm, pgd, addr);
160 	if (!pud)
161 		return -ENOMEM;
162 	do {
163 		next = pud_addr_end(addr, end);
164 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
165 			return -ENOMEM;
166 	} while (pud++, addr = next, addr != end);
167 	return 0;
168 }
169 
170 /*
171  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
172  * will have pfns corresponding to the "pages" array.
173  *
174  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
175  */
176 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
177 				   pgprot_t prot, struct page **pages)
178 {
179 	pgd_t *pgd;
180 	unsigned long next;
181 	unsigned long addr = start;
182 	int err = 0;
183 	int nr = 0;
184 
185 	BUG_ON(addr >= end);
186 	pgd = pgd_offset_k(addr);
187 	do {
188 		next = pgd_addr_end(addr, end);
189 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
190 		if (err)
191 			return err;
192 	} while (pgd++, addr = next, addr != end);
193 
194 	return nr;
195 }
196 
197 static int vmap_page_range(unsigned long start, unsigned long end,
198 			   pgprot_t prot, struct page **pages)
199 {
200 	int ret;
201 
202 	ret = vmap_page_range_noflush(start, end, prot, pages);
203 	flush_cache_vmap(start, end);
204 	return ret;
205 }
206 
207 int is_vmalloc_or_module_addr(const void *x)
208 {
209 	/*
210 	 * ARM, x86-64 and sparc64 put modules in a special place,
211 	 * and fall back on vmalloc() if that fails. Others
212 	 * just put it in the vmalloc space.
213 	 */
214 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
215 	unsigned long addr = (unsigned long)x;
216 	if (addr >= MODULES_VADDR && addr < MODULES_END)
217 		return 1;
218 #endif
219 	return is_vmalloc_addr(x);
220 }
221 
222 /*
223  * Walk a vmap address to the struct page it maps.
224  */
225 struct page *vmalloc_to_page(const void *vmalloc_addr)
226 {
227 	unsigned long addr = (unsigned long) vmalloc_addr;
228 	struct page *page = NULL;
229 	pgd_t *pgd = pgd_offset_k(addr);
230 
231 	/*
232 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
233 	 * architectures that do not vmalloc module space
234 	 */
235 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
236 
237 	if (!pgd_none(*pgd)) {
238 		pud_t *pud = pud_offset(pgd, addr);
239 		if (!pud_none(*pud)) {
240 			pmd_t *pmd = pmd_offset(pud, addr);
241 			if (!pmd_none(*pmd)) {
242 				pte_t *ptep, pte;
243 
244 				ptep = pte_offset_map(pmd, addr);
245 				pte = *ptep;
246 				if (pte_present(pte))
247 					page = pte_page(pte);
248 				pte_unmap(ptep);
249 			}
250 		}
251 	}
252 	return page;
253 }
254 EXPORT_SYMBOL(vmalloc_to_page);
255 
256 /*
257  * Map a vmalloc()-space virtual address to the physical page frame number.
258  */
259 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
260 {
261 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
262 }
263 EXPORT_SYMBOL(vmalloc_to_pfn);
264 
265 
266 /*** Global kva allocator ***/
267 
268 #define VM_LAZY_FREE	0x01
269 #define VM_LAZY_FREEING	0x02
270 #define VM_VM_AREA	0x04
271 
272 static DEFINE_SPINLOCK(vmap_area_lock);
273 /* Export for kexec only */
274 LIST_HEAD(vmap_area_list);
275 static struct rb_root vmap_area_root = RB_ROOT;
276 
277 /* The vmap cache globals are protected by vmap_area_lock */
278 static struct rb_node *free_vmap_cache;
279 static unsigned long cached_hole_size;
280 static unsigned long cached_vstart;
281 static unsigned long cached_align;
282 
283 static unsigned long vmap_area_pcpu_hole;
284 
285 static struct vmap_area *__find_vmap_area(unsigned long addr)
286 {
287 	struct rb_node *n = vmap_area_root.rb_node;
288 
289 	while (n) {
290 		struct vmap_area *va;
291 
292 		va = rb_entry(n, struct vmap_area, rb_node);
293 		if (addr < va->va_start)
294 			n = n->rb_left;
295 		else if (addr >= va->va_end)
296 			n = n->rb_right;
297 		else
298 			return va;
299 	}
300 
301 	return NULL;
302 }
303 
304 static void __insert_vmap_area(struct vmap_area *va)
305 {
306 	struct rb_node **p = &vmap_area_root.rb_node;
307 	struct rb_node *parent = NULL;
308 	struct rb_node *tmp;
309 
310 	while (*p) {
311 		struct vmap_area *tmp_va;
312 
313 		parent = *p;
314 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
315 		if (va->va_start < tmp_va->va_end)
316 			p = &(*p)->rb_left;
317 		else if (va->va_end > tmp_va->va_start)
318 			p = &(*p)->rb_right;
319 		else
320 			BUG();
321 	}
322 
323 	rb_link_node(&va->rb_node, parent, p);
324 	rb_insert_color(&va->rb_node, &vmap_area_root);
325 
326 	/* address-sort this list */
327 	tmp = rb_prev(&va->rb_node);
328 	if (tmp) {
329 		struct vmap_area *prev;
330 		prev = rb_entry(tmp, struct vmap_area, rb_node);
331 		list_add_rcu(&va->list, &prev->list);
332 	} else
333 		list_add_rcu(&va->list, &vmap_area_list);
334 }
335 
336 static void purge_vmap_area_lazy(void);
337 
338 /*
339  * Allocate a region of KVA of the specified size and alignment, within the
340  * vstart and vend.
341  */
342 static struct vmap_area *alloc_vmap_area(unsigned long size,
343 				unsigned long align,
344 				unsigned long vstart, unsigned long vend,
345 				int node, gfp_t gfp_mask)
346 {
347 	struct vmap_area *va;
348 	struct rb_node *n;
349 	unsigned long addr;
350 	int purged = 0;
351 	struct vmap_area *first;
352 
353 	BUG_ON(!size);
354 	BUG_ON(size & ~PAGE_MASK);
355 	BUG_ON(!is_power_of_2(align));
356 
357 	va = kmalloc_node(sizeof(struct vmap_area),
358 			gfp_mask & GFP_RECLAIM_MASK, node);
359 	if (unlikely(!va))
360 		return ERR_PTR(-ENOMEM);
361 
362 retry:
363 	spin_lock(&vmap_area_lock);
364 	/*
365 	 * Invalidate cache if we have more permissive parameters.
366 	 * cached_hole_size notes the largest hole noticed _below_
367 	 * the vmap_area cached in free_vmap_cache: if size fits
368 	 * into that hole, we want to scan from vstart to reuse
369 	 * the hole instead of allocating above free_vmap_cache.
370 	 * Note that __free_vmap_area may update free_vmap_cache
371 	 * without updating cached_hole_size or cached_align.
372 	 */
373 	if (!free_vmap_cache ||
374 			size < cached_hole_size ||
375 			vstart < cached_vstart ||
376 			align < cached_align) {
377 nocache:
378 		cached_hole_size = 0;
379 		free_vmap_cache = NULL;
380 	}
381 	/* record if we encounter less permissive parameters */
382 	cached_vstart = vstart;
383 	cached_align = align;
384 
385 	/* find starting point for our search */
386 	if (free_vmap_cache) {
387 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
388 		addr = ALIGN(first->va_end, align);
389 		if (addr < vstart)
390 			goto nocache;
391 		if (addr + size - 1 < addr)
392 			goto overflow;
393 
394 	} else {
395 		addr = ALIGN(vstart, align);
396 		if (addr + size - 1 < addr)
397 			goto overflow;
398 
399 		n = vmap_area_root.rb_node;
400 		first = NULL;
401 
402 		while (n) {
403 			struct vmap_area *tmp;
404 			tmp = rb_entry(n, struct vmap_area, rb_node);
405 			if (tmp->va_end >= addr) {
406 				first = tmp;
407 				if (tmp->va_start <= addr)
408 					break;
409 				n = n->rb_left;
410 			} else
411 				n = n->rb_right;
412 		}
413 
414 		if (!first)
415 			goto found;
416 	}
417 
418 	/* from the starting point, walk areas until a suitable hole is found */
419 	while (addr + size > first->va_start && addr + size <= vend) {
420 		if (addr + cached_hole_size < first->va_start)
421 			cached_hole_size = first->va_start - addr;
422 		addr = ALIGN(first->va_end, align);
423 		if (addr + size - 1 < addr)
424 			goto overflow;
425 
426 		if (list_is_last(&first->list, &vmap_area_list))
427 			goto found;
428 
429 		first = list_entry(first->list.next,
430 				struct vmap_area, list);
431 	}
432 
433 found:
434 	if (addr + size > vend)
435 		goto overflow;
436 
437 	va->va_start = addr;
438 	va->va_end = addr + size;
439 	va->flags = 0;
440 	__insert_vmap_area(va);
441 	free_vmap_cache = &va->rb_node;
442 	spin_unlock(&vmap_area_lock);
443 
444 	BUG_ON(va->va_start & (align-1));
445 	BUG_ON(va->va_start < vstart);
446 	BUG_ON(va->va_end > vend);
447 
448 	return va;
449 
450 overflow:
451 	spin_unlock(&vmap_area_lock);
452 	if (!purged) {
453 		purge_vmap_area_lazy();
454 		purged = 1;
455 		goto retry;
456 	}
457 	if (printk_ratelimit())
458 		printk(KERN_WARNING
459 			"vmap allocation for size %lu failed: "
460 			"use vmalloc=<size> to increase size.\n", size);
461 	kfree(va);
462 	return ERR_PTR(-EBUSY);
463 }
464 
465 static void __free_vmap_area(struct vmap_area *va)
466 {
467 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
468 
469 	if (free_vmap_cache) {
470 		if (va->va_end < cached_vstart) {
471 			free_vmap_cache = NULL;
472 		} else {
473 			struct vmap_area *cache;
474 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
475 			if (va->va_start <= cache->va_start) {
476 				free_vmap_cache = rb_prev(&va->rb_node);
477 				/*
478 				 * We don't try to update cached_hole_size or
479 				 * cached_align, but it won't go very wrong.
480 				 */
481 			}
482 		}
483 	}
484 	rb_erase(&va->rb_node, &vmap_area_root);
485 	RB_CLEAR_NODE(&va->rb_node);
486 	list_del_rcu(&va->list);
487 
488 	/*
489 	 * Track the highest possible candidate for pcpu area
490 	 * allocation.  Areas outside of vmalloc area can be returned
491 	 * here too, consider only end addresses which fall inside
492 	 * vmalloc area proper.
493 	 */
494 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
495 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
496 
497 	kfree_rcu(va, rcu_head);
498 }
499 
500 /*
501  * Free a region of KVA allocated by alloc_vmap_area
502  */
503 static void free_vmap_area(struct vmap_area *va)
504 {
505 	spin_lock(&vmap_area_lock);
506 	__free_vmap_area(va);
507 	spin_unlock(&vmap_area_lock);
508 }
509 
510 /*
511  * Clear the pagetable entries of a given vmap_area
512  */
513 static void unmap_vmap_area(struct vmap_area *va)
514 {
515 	vunmap_page_range(va->va_start, va->va_end);
516 }
517 
518 static void vmap_debug_free_range(unsigned long start, unsigned long end)
519 {
520 	/*
521 	 * Unmap page tables and force a TLB flush immediately if
522 	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
523 	 * bugs similarly to those in linear kernel virtual address
524 	 * space after a page has been freed.
525 	 *
526 	 * All the lazy freeing logic is still retained, in order to
527 	 * minimise intrusiveness of this debugging feature.
528 	 *
529 	 * This is going to be *slow* (linear kernel virtual address
530 	 * debugging doesn't do a broadcast TLB flush so it is a lot
531 	 * faster).
532 	 */
533 #ifdef CONFIG_DEBUG_PAGEALLOC
534 	vunmap_page_range(start, end);
535 	flush_tlb_kernel_range(start, end);
536 #endif
537 }
538 
539 /*
540  * lazy_max_pages is the maximum amount of virtual address space we gather up
541  * before attempting to purge with a TLB flush.
542  *
543  * There is a tradeoff here: a larger number will cover more kernel page tables
544  * and take slightly longer to purge, but it will linearly reduce the number of
545  * global TLB flushes that must be performed. It would seem natural to scale
546  * this number up linearly with the number of CPUs (because vmapping activity
547  * could also scale linearly with the number of CPUs), however it is likely
548  * that in practice, workloads might be constrained in other ways that mean
549  * vmap activity will not scale linearly with CPUs. Also, I want to be
550  * conservative and not introduce a big latency on huge systems, so go with
551  * a less aggressive log scale. It will still be an improvement over the old
552  * code, and it will be simple to change the scale factor if we find that it
553  * becomes a problem on bigger systems.
554  */
555 static unsigned long lazy_max_pages(void)
556 {
557 	unsigned int log;
558 
559 	log = fls(num_online_cpus());
560 
561 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
562 }
563 
564 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
565 
566 /* for per-CPU blocks */
567 static void purge_fragmented_blocks_allcpus(void);
568 
569 /*
570  * called before a call to iounmap() if the caller wants vm_area_struct's
571  * immediately freed.
572  */
573 void set_iounmap_nonlazy(void)
574 {
575 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
576 }
577 
578 /*
579  * Purges all lazily-freed vmap areas.
580  *
581  * If sync is 0 then don't purge if there is already a purge in progress.
582  * If force_flush is 1, then flush kernel TLBs between *start and *end even
583  * if we found no lazy vmap areas to unmap (callers can use this to optimise
584  * their own TLB flushing).
585  * Returns with *start = min(*start, lowest purged address)
586  *              *end = max(*end, highest purged address)
587  */
588 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
589 					int sync, int force_flush)
590 {
591 	static DEFINE_SPINLOCK(purge_lock);
592 	LIST_HEAD(valist);
593 	struct vmap_area *va;
594 	struct vmap_area *n_va;
595 	int nr = 0;
596 
597 	/*
598 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
599 	 * should not expect such behaviour. This just simplifies locking for
600 	 * the case that isn't actually used at the moment anyway.
601 	 */
602 	if (!sync && !force_flush) {
603 		if (!spin_trylock(&purge_lock))
604 			return;
605 	} else
606 		spin_lock(&purge_lock);
607 
608 	if (sync)
609 		purge_fragmented_blocks_allcpus();
610 
611 	rcu_read_lock();
612 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
613 		if (va->flags & VM_LAZY_FREE) {
614 			if (va->va_start < *start)
615 				*start = va->va_start;
616 			if (va->va_end > *end)
617 				*end = va->va_end;
618 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
619 			list_add_tail(&va->purge_list, &valist);
620 			va->flags |= VM_LAZY_FREEING;
621 			va->flags &= ~VM_LAZY_FREE;
622 		}
623 	}
624 	rcu_read_unlock();
625 
626 	if (nr)
627 		atomic_sub(nr, &vmap_lazy_nr);
628 
629 	if (nr || force_flush)
630 		flush_tlb_kernel_range(*start, *end);
631 
632 	if (nr) {
633 		spin_lock(&vmap_area_lock);
634 		list_for_each_entry_safe(va, n_va, &valist, purge_list)
635 			__free_vmap_area(va);
636 		spin_unlock(&vmap_area_lock);
637 	}
638 	spin_unlock(&purge_lock);
639 }
640 
641 /*
642  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
643  * is already purging.
644  */
645 static void try_purge_vmap_area_lazy(void)
646 {
647 	unsigned long start = ULONG_MAX, end = 0;
648 
649 	__purge_vmap_area_lazy(&start, &end, 0, 0);
650 }
651 
652 /*
653  * Kick off a purge of the outstanding lazy areas.
654  */
655 static void purge_vmap_area_lazy(void)
656 {
657 	unsigned long start = ULONG_MAX, end = 0;
658 
659 	__purge_vmap_area_lazy(&start, &end, 1, 0);
660 }
661 
662 /*
663  * Free a vmap area, caller ensuring that the area has been unmapped
664  * and flush_cache_vunmap had been called for the correct range
665  * previously.
666  */
667 static void free_vmap_area_noflush(struct vmap_area *va)
668 {
669 	va->flags |= VM_LAZY_FREE;
670 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
671 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
672 		try_purge_vmap_area_lazy();
673 }
674 
675 /*
676  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
677  * called for the correct range previously.
678  */
679 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
680 {
681 	unmap_vmap_area(va);
682 	free_vmap_area_noflush(va);
683 }
684 
685 /*
686  * Free and unmap a vmap area
687  */
688 static void free_unmap_vmap_area(struct vmap_area *va)
689 {
690 	flush_cache_vunmap(va->va_start, va->va_end);
691 	free_unmap_vmap_area_noflush(va);
692 }
693 
694 static struct vmap_area *find_vmap_area(unsigned long addr)
695 {
696 	struct vmap_area *va;
697 
698 	spin_lock(&vmap_area_lock);
699 	va = __find_vmap_area(addr);
700 	spin_unlock(&vmap_area_lock);
701 
702 	return va;
703 }
704 
705 static void free_unmap_vmap_area_addr(unsigned long addr)
706 {
707 	struct vmap_area *va;
708 
709 	va = find_vmap_area(addr);
710 	BUG_ON(!va);
711 	free_unmap_vmap_area(va);
712 }
713 
714 
715 /*** Per cpu kva allocator ***/
716 
717 /*
718  * vmap space is limited especially on 32 bit architectures. Ensure there is
719  * room for at least 16 percpu vmap blocks per CPU.
720  */
721 /*
722  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
723  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
724  * instead (we just need a rough idea)
725  */
726 #if BITS_PER_LONG == 32
727 #define VMALLOC_SPACE		(128UL*1024*1024)
728 #else
729 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
730 #endif
731 
732 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
733 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
734 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
735 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
736 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
737 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
738 #define VMAP_BBMAP_BITS		\
739 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
740 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
741 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
742 
743 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
744 
745 static bool vmap_initialized __read_mostly = false;
746 
747 struct vmap_block_queue {
748 	spinlock_t lock;
749 	struct list_head free;
750 };
751 
752 struct vmap_block {
753 	spinlock_t lock;
754 	struct vmap_area *va;
755 	struct vmap_block_queue *vbq;
756 	unsigned long free, dirty;
757 	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
758 	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
759 	struct list_head free_list;
760 	struct rcu_head rcu_head;
761 	struct list_head purge;
762 };
763 
764 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
765 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
766 
767 /*
768  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
769  * in the free path. Could get rid of this if we change the API to return a
770  * "cookie" from alloc, to be passed to free. But no big deal yet.
771  */
772 static DEFINE_SPINLOCK(vmap_block_tree_lock);
773 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
774 
775 /*
776  * We should probably have a fallback mechanism to allocate virtual memory
777  * out of partially filled vmap blocks. However vmap block sizing should be
778  * fairly reasonable according to the vmalloc size, so it shouldn't be a
779  * big problem.
780  */
781 
782 static unsigned long addr_to_vb_idx(unsigned long addr)
783 {
784 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
785 	addr /= VMAP_BLOCK_SIZE;
786 	return addr;
787 }
788 
789 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
790 {
791 	struct vmap_block_queue *vbq;
792 	struct vmap_block *vb;
793 	struct vmap_area *va;
794 	unsigned long vb_idx;
795 	int node, err;
796 
797 	node = numa_node_id();
798 
799 	vb = kmalloc_node(sizeof(struct vmap_block),
800 			gfp_mask & GFP_RECLAIM_MASK, node);
801 	if (unlikely(!vb))
802 		return ERR_PTR(-ENOMEM);
803 
804 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
805 					VMALLOC_START, VMALLOC_END,
806 					node, gfp_mask);
807 	if (IS_ERR(va)) {
808 		kfree(vb);
809 		return ERR_CAST(va);
810 	}
811 
812 	err = radix_tree_preload(gfp_mask);
813 	if (unlikely(err)) {
814 		kfree(vb);
815 		free_vmap_area(va);
816 		return ERR_PTR(err);
817 	}
818 
819 	spin_lock_init(&vb->lock);
820 	vb->va = va;
821 	vb->free = VMAP_BBMAP_BITS;
822 	vb->dirty = 0;
823 	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
824 	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
825 	INIT_LIST_HEAD(&vb->free_list);
826 
827 	vb_idx = addr_to_vb_idx(va->va_start);
828 	spin_lock(&vmap_block_tree_lock);
829 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
830 	spin_unlock(&vmap_block_tree_lock);
831 	BUG_ON(err);
832 	radix_tree_preload_end();
833 
834 	vbq = &get_cpu_var(vmap_block_queue);
835 	vb->vbq = vbq;
836 	spin_lock(&vbq->lock);
837 	list_add_rcu(&vb->free_list, &vbq->free);
838 	spin_unlock(&vbq->lock);
839 	put_cpu_var(vmap_block_queue);
840 
841 	return vb;
842 }
843 
844 static void free_vmap_block(struct vmap_block *vb)
845 {
846 	struct vmap_block *tmp;
847 	unsigned long vb_idx;
848 
849 	vb_idx = addr_to_vb_idx(vb->va->va_start);
850 	spin_lock(&vmap_block_tree_lock);
851 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
852 	spin_unlock(&vmap_block_tree_lock);
853 	BUG_ON(tmp != vb);
854 
855 	free_vmap_area_noflush(vb->va);
856 	kfree_rcu(vb, rcu_head);
857 }
858 
859 static void purge_fragmented_blocks(int cpu)
860 {
861 	LIST_HEAD(purge);
862 	struct vmap_block *vb;
863 	struct vmap_block *n_vb;
864 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
865 
866 	rcu_read_lock();
867 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
868 
869 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
870 			continue;
871 
872 		spin_lock(&vb->lock);
873 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
874 			vb->free = 0; /* prevent further allocs after releasing lock */
875 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
876 			bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
877 			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
878 			spin_lock(&vbq->lock);
879 			list_del_rcu(&vb->free_list);
880 			spin_unlock(&vbq->lock);
881 			spin_unlock(&vb->lock);
882 			list_add_tail(&vb->purge, &purge);
883 		} else
884 			spin_unlock(&vb->lock);
885 	}
886 	rcu_read_unlock();
887 
888 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
889 		list_del(&vb->purge);
890 		free_vmap_block(vb);
891 	}
892 }
893 
894 static void purge_fragmented_blocks_thiscpu(void)
895 {
896 	purge_fragmented_blocks(smp_processor_id());
897 }
898 
899 static void purge_fragmented_blocks_allcpus(void)
900 {
901 	int cpu;
902 
903 	for_each_possible_cpu(cpu)
904 		purge_fragmented_blocks(cpu);
905 }
906 
907 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
908 {
909 	struct vmap_block_queue *vbq;
910 	struct vmap_block *vb;
911 	unsigned long addr = 0;
912 	unsigned int order;
913 	int purge = 0;
914 
915 	BUG_ON(size & ~PAGE_MASK);
916 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
917 	if (WARN_ON(size == 0)) {
918 		/*
919 		 * Allocating 0 bytes isn't what caller wants since
920 		 * get_order(0) returns funny result. Just warn and terminate
921 		 * early.
922 		 */
923 		return NULL;
924 	}
925 	order = get_order(size);
926 
927 again:
928 	rcu_read_lock();
929 	vbq = &get_cpu_var(vmap_block_queue);
930 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
931 		int i;
932 
933 		spin_lock(&vb->lock);
934 		if (vb->free < 1UL << order)
935 			goto next;
936 
937 		i = bitmap_find_free_region(vb->alloc_map,
938 						VMAP_BBMAP_BITS, order);
939 
940 		if (i < 0) {
941 			if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
942 				/* fragmented and no outstanding allocations */
943 				BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
944 				purge = 1;
945 			}
946 			goto next;
947 		}
948 		addr = vb->va->va_start + (i << PAGE_SHIFT);
949 		BUG_ON(addr_to_vb_idx(addr) !=
950 				addr_to_vb_idx(vb->va->va_start));
951 		vb->free -= 1UL << order;
952 		if (vb->free == 0) {
953 			spin_lock(&vbq->lock);
954 			list_del_rcu(&vb->free_list);
955 			spin_unlock(&vbq->lock);
956 		}
957 		spin_unlock(&vb->lock);
958 		break;
959 next:
960 		spin_unlock(&vb->lock);
961 	}
962 
963 	if (purge)
964 		purge_fragmented_blocks_thiscpu();
965 
966 	put_cpu_var(vmap_block_queue);
967 	rcu_read_unlock();
968 
969 	if (!addr) {
970 		vb = new_vmap_block(gfp_mask);
971 		if (IS_ERR(vb))
972 			return vb;
973 		goto again;
974 	}
975 
976 	return (void *)addr;
977 }
978 
979 static void vb_free(const void *addr, unsigned long size)
980 {
981 	unsigned long offset;
982 	unsigned long vb_idx;
983 	unsigned int order;
984 	struct vmap_block *vb;
985 
986 	BUG_ON(size & ~PAGE_MASK);
987 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
988 
989 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
990 
991 	order = get_order(size);
992 
993 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
994 
995 	vb_idx = addr_to_vb_idx((unsigned long)addr);
996 	rcu_read_lock();
997 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
998 	rcu_read_unlock();
999 	BUG_ON(!vb);
1000 
1001 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1002 
1003 	spin_lock(&vb->lock);
1004 	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
1005 
1006 	vb->dirty += 1UL << order;
1007 	if (vb->dirty == VMAP_BBMAP_BITS) {
1008 		BUG_ON(vb->free);
1009 		spin_unlock(&vb->lock);
1010 		free_vmap_block(vb);
1011 	} else
1012 		spin_unlock(&vb->lock);
1013 }
1014 
1015 /**
1016  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1017  *
1018  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1019  * to amortize TLB flushing overheads. What this means is that any page you
1020  * have now, may, in a former life, have been mapped into kernel virtual
1021  * address by the vmap layer and so there might be some CPUs with TLB entries
1022  * still referencing that page (additional to the regular 1:1 kernel mapping).
1023  *
1024  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1025  * be sure that none of the pages we have control over will have any aliases
1026  * from the vmap layer.
1027  */
1028 void vm_unmap_aliases(void)
1029 {
1030 	unsigned long start = ULONG_MAX, end = 0;
1031 	int cpu;
1032 	int flush = 0;
1033 
1034 	if (unlikely(!vmap_initialized))
1035 		return;
1036 
1037 	for_each_possible_cpu(cpu) {
1038 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1039 		struct vmap_block *vb;
1040 
1041 		rcu_read_lock();
1042 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1043 			int i;
1044 
1045 			spin_lock(&vb->lock);
1046 			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1047 			while (i < VMAP_BBMAP_BITS) {
1048 				unsigned long s, e;
1049 				int j;
1050 				j = find_next_zero_bit(vb->dirty_map,
1051 					VMAP_BBMAP_BITS, i);
1052 
1053 				s = vb->va->va_start + (i << PAGE_SHIFT);
1054 				e = vb->va->va_start + (j << PAGE_SHIFT);
1055 				flush = 1;
1056 
1057 				if (s < start)
1058 					start = s;
1059 				if (e > end)
1060 					end = e;
1061 
1062 				i = j;
1063 				i = find_next_bit(vb->dirty_map,
1064 							VMAP_BBMAP_BITS, i);
1065 			}
1066 			spin_unlock(&vb->lock);
1067 		}
1068 		rcu_read_unlock();
1069 	}
1070 
1071 	__purge_vmap_area_lazy(&start, &end, 1, flush);
1072 }
1073 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1074 
1075 /**
1076  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1077  * @mem: the pointer returned by vm_map_ram
1078  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1079  */
1080 void vm_unmap_ram(const void *mem, unsigned int count)
1081 {
1082 	unsigned long size = count << PAGE_SHIFT;
1083 	unsigned long addr = (unsigned long)mem;
1084 
1085 	BUG_ON(!addr);
1086 	BUG_ON(addr < VMALLOC_START);
1087 	BUG_ON(addr > VMALLOC_END);
1088 	BUG_ON(addr & (PAGE_SIZE-1));
1089 
1090 	debug_check_no_locks_freed(mem, size);
1091 	vmap_debug_free_range(addr, addr+size);
1092 
1093 	if (likely(count <= VMAP_MAX_ALLOC))
1094 		vb_free(mem, size);
1095 	else
1096 		free_unmap_vmap_area_addr(addr);
1097 }
1098 EXPORT_SYMBOL(vm_unmap_ram);
1099 
1100 /**
1101  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1102  * @pages: an array of pointers to the pages to be mapped
1103  * @count: number of pages
1104  * @node: prefer to allocate data structures on this node
1105  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1106  *
1107  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1108  */
1109 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1110 {
1111 	unsigned long size = count << PAGE_SHIFT;
1112 	unsigned long addr;
1113 	void *mem;
1114 
1115 	if (likely(count <= VMAP_MAX_ALLOC)) {
1116 		mem = vb_alloc(size, GFP_KERNEL);
1117 		if (IS_ERR(mem))
1118 			return NULL;
1119 		addr = (unsigned long)mem;
1120 	} else {
1121 		struct vmap_area *va;
1122 		va = alloc_vmap_area(size, PAGE_SIZE,
1123 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1124 		if (IS_ERR(va))
1125 			return NULL;
1126 
1127 		addr = va->va_start;
1128 		mem = (void *)addr;
1129 	}
1130 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1131 		vm_unmap_ram(mem, count);
1132 		return NULL;
1133 	}
1134 	return mem;
1135 }
1136 EXPORT_SYMBOL(vm_map_ram);
1137 
1138 static struct vm_struct *vmlist __initdata;
1139 /**
1140  * vm_area_add_early - add vmap area early during boot
1141  * @vm: vm_struct to add
1142  *
1143  * This function is used to add fixed kernel vm area to vmlist before
1144  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1145  * should contain proper values and the other fields should be zero.
1146  *
1147  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1148  */
1149 void __init vm_area_add_early(struct vm_struct *vm)
1150 {
1151 	struct vm_struct *tmp, **p;
1152 
1153 	BUG_ON(vmap_initialized);
1154 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1155 		if (tmp->addr >= vm->addr) {
1156 			BUG_ON(tmp->addr < vm->addr + vm->size);
1157 			break;
1158 		} else
1159 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1160 	}
1161 	vm->next = *p;
1162 	*p = vm;
1163 }
1164 
1165 /**
1166  * vm_area_register_early - register vmap area early during boot
1167  * @vm: vm_struct to register
1168  * @align: requested alignment
1169  *
1170  * This function is used to register kernel vm area before
1171  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1172  * proper values on entry and other fields should be zero.  On return,
1173  * vm->addr contains the allocated address.
1174  *
1175  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1176  */
1177 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1178 {
1179 	static size_t vm_init_off __initdata;
1180 	unsigned long addr;
1181 
1182 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1183 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1184 
1185 	vm->addr = (void *)addr;
1186 
1187 	vm_area_add_early(vm);
1188 }
1189 
1190 void __init vmalloc_init(void)
1191 {
1192 	struct vmap_area *va;
1193 	struct vm_struct *tmp;
1194 	int i;
1195 
1196 	for_each_possible_cpu(i) {
1197 		struct vmap_block_queue *vbq;
1198 		struct vfree_deferred *p;
1199 
1200 		vbq = &per_cpu(vmap_block_queue, i);
1201 		spin_lock_init(&vbq->lock);
1202 		INIT_LIST_HEAD(&vbq->free);
1203 		p = &per_cpu(vfree_deferred, i);
1204 		init_llist_head(&p->list);
1205 		INIT_WORK(&p->wq, free_work);
1206 	}
1207 
1208 	/* Import existing vmlist entries. */
1209 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1210 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1211 		va->flags = VM_VM_AREA;
1212 		va->va_start = (unsigned long)tmp->addr;
1213 		va->va_end = va->va_start + tmp->size;
1214 		va->vm = tmp;
1215 		__insert_vmap_area(va);
1216 	}
1217 
1218 	vmap_area_pcpu_hole = VMALLOC_END;
1219 
1220 	vmap_initialized = true;
1221 }
1222 
1223 /**
1224  * map_kernel_range_noflush - map kernel VM area with the specified pages
1225  * @addr: start of the VM area to map
1226  * @size: size of the VM area to map
1227  * @prot: page protection flags to use
1228  * @pages: pages to map
1229  *
1230  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1231  * specify should have been allocated using get_vm_area() and its
1232  * friends.
1233  *
1234  * NOTE:
1235  * This function does NOT do any cache flushing.  The caller is
1236  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1237  * before calling this function.
1238  *
1239  * RETURNS:
1240  * The number of pages mapped on success, -errno on failure.
1241  */
1242 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1243 			     pgprot_t prot, struct page **pages)
1244 {
1245 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1246 }
1247 
1248 /**
1249  * unmap_kernel_range_noflush - unmap kernel VM area
1250  * @addr: start of the VM area to unmap
1251  * @size: size of the VM area to unmap
1252  *
1253  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1254  * specify should have been allocated using get_vm_area() and its
1255  * friends.
1256  *
1257  * NOTE:
1258  * This function does NOT do any cache flushing.  The caller is
1259  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1260  * before calling this function and flush_tlb_kernel_range() after.
1261  */
1262 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1263 {
1264 	vunmap_page_range(addr, addr + size);
1265 }
1266 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1267 
1268 /**
1269  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1270  * @addr: start of the VM area to unmap
1271  * @size: size of the VM area to unmap
1272  *
1273  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1274  * the unmapping and tlb after.
1275  */
1276 void unmap_kernel_range(unsigned long addr, unsigned long size)
1277 {
1278 	unsigned long end = addr + size;
1279 
1280 	flush_cache_vunmap(addr, end);
1281 	vunmap_page_range(addr, end);
1282 	flush_tlb_kernel_range(addr, end);
1283 }
1284 
1285 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1286 {
1287 	unsigned long addr = (unsigned long)area->addr;
1288 	unsigned long end = addr + area->size - PAGE_SIZE;
1289 	int err;
1290 
1291 	err = vmap_page_range(addr, end, prot, *pages);
1292 	if (err > 0) {
1293 		*pages += err;
1294 		err = 0;
1295 	}
1296 
1297 	return err;
1298 }
1299 EXPORT_SYMBOL_GPL(map_vm_area);
1300 
1301 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1302 			      unsigned long flags, const void *caller)
1303 {
1304 	spin_lock(&vmap_area_lock);
1305 	vm->flags = flags;
1306 	vm->addr = (void *)va->va_start;
1307 	vm->size = va->va_end - va->va_start;
1308 	vm->caller = caller;
1309 	va->vm = vm;
1310 	va->flags |= VM_VM_AREA;
1311 	spin_unlock(&vmap_area_lock);
1312 }
1313 
1314 static void clear_vm_unlist(struct vm_struct *vm)
1315 {
1316 	/*
1317 	 * Before removing VM_UNLIST,
1318 	 * we should make sure that vm has proper values.
1319 	 * Pair with smp_rmb() in show_numa_info().
1320 	 */
1321 	smp_wmb();
1322 	vm->flags &= ~VM_UNLIST;
1323 }
1324 
1325 static struct vm_struct *__get_vm_area_node(unsigned long size,
1326 		unsigned long align, unsigned long flags, unsigned long start,
1327 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1328 {
1329 	struct vmap_area *va;
1330 	struct vm_struct *area;
1331 
1332 	BUG_ON(in_interrupt());
1333 	if (flags & VM_IOREMAP)
1334 		align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER);
1335 
1336 	size = PAGE_ALIGN(size);
1337 	if (unlikely(!size))
1338 		return NULL;
1339 
1340 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1341 	if (unlikely(!area))
1342 		return NULL;
1343 
1344 	/*
1345 	 * We always allocate a guard page.
1346 	 */
1347 	size += PAGE_SIZE;
1348 
1349 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1350 	if (IS_ERR(va)) {
1351 		kfree(area);
1352 		return NULL;
1353 	}
1354 
1355 	setup_vmalloc_vm(area, va, flags, caller);
1356 
1357 	return area;
1358 }
1359 
1360 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1361 				unsigned long start, unsigned long end)
1362 {
1363 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1364 				  GFP_KERNEL, __builtin_return_address(0));
1365 }
1366 EXPORT_SYMBOL_GPL(__get_vm_area);
1367 
1368 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1369 				       unsigned long start, unsigned long end,
1370 				       const void *caller)
1371 {
1372 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1373 				  GFP_KERNEL, caller);
1374 }
1375 
1376 /**
1377  *	get_vm_area  -  reserve a contiguous kernel virtual area
1378  *	@size:		size of the area
1379  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1380  *
1381  *	Search an area of @size in the kernel virtual mapping area,
1382  *	and reserved it for out purposes.  Returns the area descriptor
1383  *	on success or %NULL on failure.
1384  */
1385 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1386 {
1387 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1388 				  NUMA_NO_NODE, GFP_KERNEL,
1389 				  __builtin_return_address(0));
1390 }
1391 
1392 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1393 				const void *caller)
1394 {
1395 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1396 				  NUMA_NO_NODE, GFP_KERNEL, caller);
1397 }
1398 
1399 /**
1400  *	find_vm_area  -  find a continuous kernel virtual area
1401  *	@addr:		base address
1402  *
1403  *	Search for the kernel VM area starting at @addr, and return it.
1404  *	It is up to the caller to do all required locking to keep the returned
1405  *	pointer valid.
1406  */
1407 struct vm_struct *find_vm_area(const void *addr)
1408 {
1409 	struct vmap_area *va;
1410 
1411 	va = find_vmap_area((unsigned long)addr);
1412 	if (va && va->flags & VM_VM_AREA)
1413 		return va->vm;
1414 
1415 	return NULL;
1416 }
1417 
1418 /**
1419  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1420  *	@addr:		base address
1421  *
1422  *	Search for the kernel VM area starting at @addr, and remove it.
1423  *	This function returns the found VM area, but using it is NOT safe
1424  *	on SMP machines, except for its size or flags.
1425  */
1426 struct vm_struct *remove_vm_area(const void *addr)
1427 {
1428 	struct vmap_area *va;
1429 
1430 	va = find_vmap_area((unsigned long)addr);
1431 	if (va && va->flags & VM_VM_AREA) {
1432 		struct vm_struct *vm = va->vm;
1433 
1434 		spin_lock(&vmap_area_lock);
1435 		va->vm = NULL;
1436 		va->flags &= ~VM_VM_AREA;
1437 		spin_unlock(&vmap_area_lock);
1438 
1439 		vmap_debug_free_range(va->va_start, va->va_end);
1440 		free_unmap_vmap_area(va);
1441 		vm->size -= PAGE_SIZE;
1442 
1443 		return vm;
1444 	}
1445 	return NULL;
1446 }
1447 
1448 static void __vunmap(const void *addr, int deallocate_pages)
1449 {
1450 	struct vm_struct *area;
1451 
1452 	if (!addr)
1453 		return;
1454 
1455 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1456 			addr));
1457 		return;
1458 
1459 	area = remove_vm_area(addr);
1460 	if (unlikely(!area)) {
1461 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1462 				addr);
1463 		return;
1464 	}
1465 
1466 	debug_check_no_locks_freed(addr, area->size);
1467 	debug_check_no_obj_freed(addr, area->size);
1468 
1469 	if (deallocate_pages) {
1470 		int i;
1471 
1472 		for (i = 0; i < area->nr_pages; i++) {
1473 			struct page *page = area->pages[i];
1474 
1475 			BUG_ON(!page);
1476 			__free_page(page);
1477 		}
1478 
1479 		if (area->flags & VM_VPAGES)
1480 			vfree(area->pages);
1481 		else
1482 			kfree(area->pages);
1483 	}
1484 
1485 	kfree(area);
1486 	return;
1487 }
1488 
1489 /**
1490  *	vfree  -  release memory allocated by vmalloc()
1491  *	@addr:		memory base address
1492  *
1493  *	Free the virtually continuous memory area starting at @addr, as
1494  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1495  *	NULL, no operation is performed.
1496  *
1497  *	Must not be called in NMI context (strictly speaking, only if we don't
1498  *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1499  *	conventions for vfree() arch-depenedent would be a really bad idea)
1500  *
1501  *	NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1502  *
1503  */
1504 void vfree(const void *addr)
1505 {
1506 	BUG_ON(in_nmi());
1507 
1508 	kmemleak_free(addr);
1509 
1510 	if (!addr)
1511 		return;
1512 	if (unlikely(in_interrupt())) {
1513 		struct vfree_deferred *p = &__get_cpu_var(vfree_deferred);
1514 		llist_add((struct llist_node *)addr, &p->list);
1515 		schedule_work(&p->wq);
1516 	} else
1517 		__vunmap(addr, 1);
1518 }
1519 EXPORT_SYMBOL(vfree);
1520 
1521 /**
1522  *	vunmap  -  release virtual mapping obtained by vmap()
1523  *	@addr:		memory base address
1524  *
1525  *	Free the virtually contiguous memory area starting at @addr,
1526  *	which was created from the page array passed to vmap().
1527  *
1528  *	Must not be called in interrupt context.
1529  */
1530 void vunmap(const void *addr)
1531 {
1532 	BUG_ON(in_interrupt());
1533 	might_sleep();
1534 	if (addr)
1535 		__vunmap(addr, 0);
1536 }
1537 EXPORT_SYMBOL(vunmap);
1538 
1539 /**
1540  *	vmap  -  map an array of pages into virtually contiguous space
1541  *	@pages:		array of page pointers
1542  *	@count:		number of pages to map
1543  *	@flags:		vm_area->flags
1544  *	@prot:		page protection for the mapping
1545  *
1546  *	Maps @count pages from @pages into contiguous kernel virtual
1547  *	space.
1548  */
1549 void *vmap(struct page **pages, unsigned int count,
1550 		unsigned long flags, pgprot_t prot)
1551 {
1552 	struct vm_struct *area;
1553 
1554 	might_sleep();
1555 
1556 	if (count > totalram_pages)
1557 		return NULL;
1558 
1559 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1560 					__builtin_return_address(0));
1561 	if (!area)
1562 		return NULL;
1563 
1564 	if (map_vm_area(area, prot, &pages)) {
1565 		vunmap(area->addr);
1566 		return NULL;
1567 	}
1568 
1569 	return area->addr;
1570 }
1571 EXPORT_SYMBOL(vmap);
1572 
1573 static void *__vmalloc_node(unsigned long size, unsigned long align,
1574 			    gfp_t gfp_mask, pgprot_t prot,
1575 			    int node, const void *caller);
1576 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1577 				 pgprot_t prot, int node, const void *caller)
1578 {
1579 	const int order = 0;
1580 	struct page **pages;
1581 	unsigned int nr_pages, array_size, i;
1582 	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1583 
1584 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1585 	array_size = (nr_pages * sizeof(struct page *));
1586 
1587 	area->nr_pages = nr_pages;
1588 	/* Please note that the recursion is strictly bounded. */
1589 	if (array_size > PAGE_SIZE) {
1590 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1591 				PAGE_KERNEL, node, caller);
1592 		area->flags |= VM_VPAGES;
1593 	} else {
1594 		pages = kmalloc_node(array_size, nested_gfp, node);
1595 	}
1596 	area->pages = pages;
1597 	area->caller = caller;
1598 	if (!area->pages) {
1599 		remove_vm_area(area->addr);
1600 		kfree(area);
1601 		return NULL;
1602 	}
1603 
1604 	for (i = 0; i < area->nr_pages; i++) {
1605 		struct page *page;
1606 		gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1607 
1608 		if (node < 0)
1609 			page = alloc_page(tmp_mask);
1610 		else
1611 			page = alloc_pages_node(node, tmp_mask, order);
1612 
1613 		if (unlikely(!page)) {
1614 			/* Successfully allocated i pages, free them in __vunmap() */
1615 			area->nr_pages = i;
1616 			goto fail;
1617 		}
1618 		area->pages[i] = page;
1619 	}
1620 
1621 	if (map_vm_area(area, prot, &pages))
1622 		goto fail;
1623 	return area->addr;
1624 
1625 fail:
1626 	warn_alloc_failed(gfp_mask, order,
1627 			  "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1628 			  (area->nr_pages*PAGE_SIZE), area->size);
1629 	vfree(area->addr);
1630 	return NULL;
1631 }
1632 
1633 /**
1634  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1635  *	@size:		allocation size
1636  *	@align:		desired alignment
1637  *	@start:		vm area range start
1638  *	@end:		vm area range end
1639  *	@gfp_mask:	flags for the page level allocator
1640  *	@prot:		protection mask for the allocated pages
1641  *	@node:		node to use for allocation or NUMA_NO_NODE
1642  *	@caller:	caller's return address
1643  *
1644  *	Allocate enough pages to cover @size from the page level
1645  *	allocator with @gfp_mask flags.  Map them into contiguous
1646  *	kernel virtual space, using a pagetable protection of @prot.
1647  */
1648 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1649 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1650 			pgprot_t prot, int node, const void *caller)
1651 {
1652 	struct vm_struct *area;
1653 	void *addr;
1654 	unsigned long real_size = size;
1655 
1656 	size = PAGE_ALIGN(size);
1657 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1658 		goto fail;
1659 
1660 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST,
1661 				  start, end, node, gfp_mask, caller);
1662 	if (!area)
1663 		goto fail;
1664 
1665 	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1666 	if (!addr)
1667 		return NULL;
1668 
1669 	/*
1670 	 * In this function, newly allocated vm_struct has VM_UNLIST flag.
1671 	 * It means that vm_struct is not fully initialized.
1672 	 * Now, it is fully initialized, so remove this flag here.
1673 	 */
1674 	clear_vm_unlist(area);
1675 
1676 	/*
1677 	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1678 	 * structures allocated in the __get_vm_area_node() function contain
1679 	 * references to the virtual address of the vmalloc'ed block.
1680 	 */
1681 	kmemleak_alloc(addr, real_size, 3, gfp_mask);
1682 
1683 	return addr;
1684 
1685 fail:
1686 	warn_alloc_failed(gfp_mask, 0,
1687 			  "vmalloc: allocation failure: %lu bytes\n",
1688 			  real_size);
1689 	return NULL;
1690 }
1691 
1692 /**
1693  *	__vmalloc_node  -  allocate virtually contiguous memory
1694  *	@size:		allocation size
1695  *	@align:		desired alignment
1696  *	@gfp_mask:	flags for the page level allocator
1697  *	@prot:		protection mask for the allocated pages
1698  *	@node:		node to use for allocation or NUMA_NO_NODE
1699  *	@caller:	caller's return address
1700  *
1701  *	Allocate enough pages to cover @size from the page level
1702  *	allocator with @gfp_mask flags.  Map them into contiguous
1703  *	kernel virtual space, using a pagetable protection of @prot.
1704  */
1705 static void *__vmalloc_node(unsigned long size, unsigned long align,
1706 			    gfp_t gfp_mask, pgprot_t prot,
1707 			    int node, const void *caller)
1708 {
1709 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1710 				gfp_mask, prot, node, caller);
1711 }
1712 
1713 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1714 {
1715 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1716 				__builtin_return_address(0));
1717 }
1718 EXPORT_SYMBOL(__vmalloc);
1719 
1720 static inline void *__vmalloc_node_flags(unsigned long size,
1721 					int node, gfp_t flags)
1722 {
1723 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1724 					node, __builtin_return_address(0));
1725 }
1726 
1727 /**
1728  *	vmalloc  -  allocate virtually contiguous memory
1729  *	@size:		allocation size
1730  *	Allocate enough pages to cover @size from the page level
1731  *	allocator and map them into contiguous kernel virtual space.
1732  *
1733  *	For tight control over page level allocator and protection flags
1734  *	use __vmalloc() instead.
1735  */
1736 void *vmalloc(unsigned long size)
1737 {
1738 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1739 				    GFP_KERNEL | __GFP_HIGHMEM);
1740 }
1741 EXPORT_SYMBOL(vmalloc);
1742 
1743 /**
1744  *	vzalloc - allocate virtually contiguous memory with zero fill
1745  *	@size:	allocation size
1746  *	Allocate enough pages to cover @size from the page level
1747  *	allocator and map them into contiguous kernel virtual space.
1748  *	The memory allocated is set to zero.
1749  *
1750  *	For tight control over page level allocator and protection flags
1751  *	use __vmalloc() instead.
1752  */
1753 void *vzalloc(unsigned long size)
1754 {
1755 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1756 				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1757 }
1758 EXPORT_SYMBOL(vzalloc);
1759 
1760 /**
1761  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1762  * @size: allocation size
1763  *
1764  * The resulting memory area is zeroed so it can be mapped to userspace
1765  * without leaking data.
1766  */
1767 void *vmalloc_user(unsigned long size)
1768 {
1769 	struct vm_struct *area;
1770 	void *ret;
1771 
1772 	ret = __vmalloc_node(size, SHMLBA,
1773 			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1774 			     PAGE_KERNEL, NUMA_NO_NODE,
1775 			     __builtin_return_address(0));
1776 	if (ret) {
1777 		area = find_vm_area(ret);
1778 		area->flags |= VM_USERMAP;
1779 	}
1780 	return ret;
1781 }
1782 EXPORT_SYMBOL(vmalloc_user);
1783 
1784 /**
1785  *	vmalloc_node  -  allocate memory on a specific node
1786  *	@size:		allocation size
1787  *	@node:		numa node
1788  *
1789  *	Allocate enough pages to cover @size from the page level
1790  *	allocator and map them into contiguous kernel virtual space.
1791  *
1792  *	For tight control over page level allocator and protection flags
1793  *	use __vmalloc() instead.
1794  */
1795 void *vmalloc_node(unsigned long size, int node)
1796 {
1797 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1798 					node, __builtin_return_address(0));
1799 }
1800 EXPORT_SYMBOL(vmalloc_node);
1801 
1802 /**
1803  * vzalloc_node - allocate memory on a specific node with zero fill
1804  * @size:	allocation size
1805  * @node:	numa node
1806  *
1807  * Allocate enough pages to cover @size from the page level
1808  * allocator and map them into contiguous kernel virtual space.
1809  * The memory allocated is set to zero.
1810  *
1811  * For tight control over page level allocator and protection flags
1812  * use __vmalloc_node() instead.
1813  */
1814 void *vzalloc_node(unsigned long size, int node)
1815 {
1816 	return __vmalloc_node_flags(size, node,
1817 			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1818 }
1819 EXPORT_SYMBOL(vzalloc_node);
1820 
1821 #ifndef PAGE_KERNEL_EXEC
1822 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1823 #endif
1824 
1825 /**
1826  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1827  *	@size:		allocation size
1828  *
1829  *	Kernel-internal function to allocate enough pages to cover @size
1830  *	the page level allocator and map them into contiguous and
1831  *	executable kernel virtual space.
1832  *
1833  *	For tight control over page level allocator and protection flags
1834  *	use __vmalloc() instead.
1835  */
1836 
1837 void *vmalloc_exec(unsigned long size)
1838 {
1839 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1840 			      NUMA_NO_NODE, __builtin_return_address(0));
1841 }
1842 
1843 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1844 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1845 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1846 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1847 #else
1848 #define GFP_VMALLOC32 GFP_KERNEL
1849 #endif
1850 
1851 /**
1852  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1853  *	@size:		allocation size
1854  *
1855  *	Allocate enough 32bit PA addressable pages to cover @size from the
1856  *	page level allocator and map them into contiguous kernel virtual space.
1857  */
1858 void *vmalloc_32(unsigned long size)
1859 {
1860 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1861 			      NUMA_NO_NODE, __builtin_return_address(0));
1862 }
1863 EXPORT_SYMBOL(vmalloc_32);
1864 
1865 /**
1866  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1867  *	@size:		allocation size
1868  *
1869  * The resulting memory area is 32bit addressable and zeroed so it can be
1870  * mapped to userspace without leaking data.
1871  */
1872 void *vmalloc_32_user(unsigned long size)
1873 {
1874 	struct vm_struct *area;
1875 	void *ret;
1876 
1877 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1878 			     NUMA_NO_NODE, __builtin_return_address(0));
1879 	if (ret) {
1880 		area = find_vm_area(ret);
1881 		area->flags |= VM_USERMAP;
1882 	}
1883 	return ret;
1884 }
1885 EXPORT_SYMBOL(vmalloc_32_user);
1886 
1887 /*
1888  * small helper routine , copy contents to buf from addr.
1889  * If the page is not present, fill zero.
1890  */
1891 
1892 static int aligned_vread(char *buf, char *addr, unsigned long count)
1893 {
1894 	struct page *p;
1895 	int copied = 0;
1896 
1897 	while (count) {
1898 		unsigned long offset, length;
1899 
1900 		offset = (unsigned long)addr & ~PAGE_MASK;
1901 		length = PAGE_SIZE - offset;
1902 		if (length > count)
1903 			length = count;
1904 		p = vmalloc_to_page(addr);
1905 		/*
1906 		 * To do safe access to this _mapped_ area, we need
1907 		 * lock. But adding lock here means that we need to add
1908 		 * overhead of vmalloc()/vfree() calles for this _debug_
1909 		 * interface, rarely used. Instead of that, we'll use
1910 		 * kmap() and get small overhead in this access function.
1911 		 */
1912 		if (p) {
1913 			/*
1914 			 * we can expect USER0 is not used (see vread/vwrite's
1915 			 * function description)
1916 			 */
1917 			void *map = kmap_atomic(p);
1918 			memcpy(buf, map + offset, length);
1919 			kunmap_atomic(map);
1920 		} else
1921 			memset(buf, 0, length);
1922 
1923 		addr += length;
1924 		buf += length;
1925 		copied += length;
1926 		count -= length;
1927 	}
1928 	return copied;
1929 }
1930 
1931 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1932 {
1933 	struct page *p;
1934 	int copied = 0;
1935 
1936 	while (count) {
1937 		unsigned long offset, length;
1938 
1939 		offset = (unsigned long)addr & ~PAGE_MASK;
1940 		length = PAGE_SIZE - offset;
1941 		if (length > count)
1942 			length = count;
1943 		p = vmalloc_to_page(addr);
1944 		/*
1945 		 * To do safe access to this _mapped_ area, we need
1946 		 * lock. But adding lock here means that we need to add
1947 		 * overhead of vmalloc()/vfree() calles for this _debug_
1948 		 * interface, rarely used. Instead of that, we'll use
1949 		 * kmap() and get small overhead in this access function.
1950 		 */
1951 		if (p) {
1952 			/*
1953 			 * we can expect USER0 is not used (see vread/vwrite's
1954 			 * function description)
1955 			 */
1956 			void *map = kmap_atomic(p);
1957 			memcpy(map + offset, buf, length);
1958 			kunmap_atomic(map);
1959 		}
1960 		addr += length;
1961 		buf += length;
1962 		copied += length;
1963 		count -= length;
1964 	}
1965 	return copied;
1966 }
1967 
1968 /**
1969  *	vread() -  read vmalloc area in a safe way.
1970  *	@buf:		buffer for reading data
1971  *	@addr:		vm address.
1972  *	@count:		number of bytes to be read.
1973  *
1974  *	Returns # of bytes which addr and buf should be increased.
1975  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1976  *	includes any intersect with alive vmalloc area.
1977  *
1978  *	This function checks that addr is a valid vmalloc'ed area, and
1979  *	copy data from that area to a given buffer. If the given memory range
1980  *	of [addr...addr+count) includes some valid address, data is copied to
1981  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1982  *	IOREMAP area is treated as memory hole and no copy is done.
1983  *
1984  *	If [addr...addr+count) doesn't includes any intersects with alive
1985  *	vm_struct area, returns 0. @buf should be kernel's buffer.
1986  *
1987  *	Note: In usual ops, vread() is never necessary because the caller
1988  *	should know vmalloc() area is valid and can use memcpy().
1989  *	This is for routines which have to access vmalloc area without
1990  *	any informaion, as /dev/kmem.
1991  *
1992  */
1993 
1994 long vread(char *buf, char *addr, unsigned long count)
1995 {
1996 	struct vmap_area *va;
1997 	struct vm_struct *vm;
1998 	char *vaddr, *buf_start = buf;
1999 	unsigned long buflen = count;
2000 	unsigned long n;
2001 
2002 	/* Don't allow overflow */
2003 	if ((unsigned long) addr + count < count)
2004 		count = -(unsigned long) addr;
2005 
2006 	spin_lock(&vmap_area_lock);
2007 	list_for_each_entry(va, &vmap_area_list, list) {
2008 		if (!count)
2009 			break;
2010 
2011 		if (!(va->flags & VM_VM_AREA))
2012 			continue;
2013 
2014 		vm = va->vm;
2015 		vaddr = (char *) vm->addr;
2016 		if (addr >= vaddr + vm->size - PAGE_SIZE)
2017 			continue;
2018 		while (addr < vaddr) {
2019 			if (count == 0)
2020 				goto finished;
2021 			*buf = '\0';
2022 			buf++;
2023 			addr++;
2024 			count--;
2025 		}
2026 		n = vaddr + vm->size - PAGE_SIZE - addr;
2027 		if (n > count)
2028 			n = count;
2029 		if (!(vm->flags & VM_IOREMAP))
2030 			aligned_vread(buf, addr, n);
2031 		else /* IOREMAP area is treated as memory hole */
2032 			memset(buf, 0, n);
2033 		buf += n;
2034 		addr += n;
2035 		count -= n;
2036 	}
2037 finished:
2038 	spin_unlock(&vmap_area_lock);
2039 
2040 	if (buf == buf_start)
2041 		return 0;
2042 	/* zero-fill memory holes */
2043 	if (buf != buf_start + buflen)
2044 		memset(buf, 0, buflen - (buf - buf_start));
2045 
2046 	return buflen;
2047 }
2048 
2049 /**
2050  *	vwrite() -  write vmalloc area in a safe way.
2051  *	@buf:		buffer for source data
2052  *	@addr:		vm address.
2053  *	@count:		number of bytes to be read.
2054  *
2055  *	Returns # of bytes which addr and buf should be incresed.
2056  *	(same number to @count).
2057  *	If [addr...addr+count) doesn't includes any intersect with valid
2058  *	vmalloc area, returns 0.
2059  *
2060  *	This function checks that addr is a valid vmalloc'ed area, and
2061  *	copy data from a buffer to the given addr. If specified range of
2062  *	[addr...addr+count) includes some valid address, data is copied from
2063  *	proper area of @buf. If there are memory holes, no copy to hole.
2064  *	IOREMAP area is treated as memory hole and no copy is done.
2065  *
2066  *	If [addr...addr+count) doesn't includes any intersects with alive
2067  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2068  *
2069  *	Note: In usual ops, vwrite() is never necessary because the caller
2070  *	should know vmalloc() area is valid and can use memcpy().
2071  *	This is for routines which have to access vmalloc area without
2072  *	any informaion, as /dev/kmem.
2073  */
2074 
2075 long vwrite(char *buf, char *addr, unsigned long count)
2076 {
2077 	struct vmap_area *va;
2078 	struct vm_struct *vm;
2079 	char *vaddr;
2080 	unsigned long n, buflen;
2081 	int copied = 0;
2082 
2083 	/* Don't allow overflow */
2084 	if ((unsigned long) addr + count < count)
2085 		count = -(unsigned long) addr;
2086 	buflen = count;
2087 
2088 	spin_lock(&vmap_area_lock);
2089 	list_for_each_entry(va, &vmap_area_list, list) {
2090 		if (!count)
2091 			break;
2092 
2093 		if (!(va->flags & VM_VM_AREA))
2094 			continue;
2095 
2096 		vm = va->vm;
2097 		vaddr = (char *) vm->addr;
2098 		if (addr >= vaddr + vm->size - PAGE_SIZE)
2099 			continue;
2100 		while (addr < vaddr) {
2101 			if (count == 0)
2102 				goto finished;
2103 			buf++;
2104 			addr++;
2105 			count--;
2106 		}
2107 		n = vaddr + vm->size - PAGE_SIZE - addr;
2108 		if (n > count)
2109 			n = count;
2110 		if (!(vm->flags & VM_IOREMAP)) {
2111 			aligned_vwrite(buf, addr, n);
2112 			copied++;
2113 		}
2114 		buf += n;
2115 		addr += n;
2116 		count -= n;
2117 	}
2118 finished:
2119 	spin_unlock(&vmap_area_lock);
2120 	if (!copied)
2121 		return 0;
2122 	return buflen;
2123 }
2124 
2125 /**
2126  *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2127  *	@vma:		vma to cover
2128  *	@uaddr:		target user address to start at
2129  *	@kaddr:		virtual address of vmalloc kernel memory
2130  *	@size:		size of map area
2131  *
2132  *	Returns:	0 for success, -Exxx on failure
2133  *
2134  *	This function checks that @kaddr is a valid vmalloc'ed area,
2135  *	and that it is big enough to cover the range starting at
2136  *	@uaddr in @vma. Will return failure if that criteria isn't
2137  *	met.
2138  *
2139  *	Similar to remap_pfn_range() (see mm/memory.c)
2140  */
2141 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2142 				void *kaddr, unsigned long size)
2143 {
2144 	struct vm_struct *area;
2145 
2146 	size = PAGE_ALIGN(size);
2147 
2148 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2149 		return -EINVAL;
2150 
2151 	area = find_vm_area(kaddr);
2152 	if (!area)
2153 		return -EINVAL;
2154 
2155 	if (!(area->flags & VM_USERMAP))
2156 		return -EINVAL;
2157 
2158 	if (kaddr + size > area->addr + area->size)
2159 		return -EINVAL;
2160 
2161 	do {
2162 		struct page *page = vmalloc_to_page(kaddr);
2163 		int ret;
2164 
2165 		ret = vm_insert_page(vma, uaddr, page);
2166 		if (ret)
2167 			return ret;
2168 
2169 		uaddr += PAGE_SIZE;
2170 		kaddr += PAGE_SIZE;
2171 		size -= PAGE_SIZE;
2172 	} while (size > 0);
2173 
2174 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2175 
2176 	return 0;
2177 }
2178 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2179 
2180 /**
2181  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2182  *	@vma:		vma to cover (map full range of vma)
2183  *	@addr:		vmalloc memory
2184  *	@pgoff:		number of pages into addr before first page to map
2185  *
2186  *	Returns:	0 for success, -Exxx on failure
2187  *
2188  *	This function checks that addr is a valid vmalloc'ed area, and
2189  *	that it is big enough to cover the vma. Will return failure if
2190  *	that criteria isn't met.
2191  *
2192  *	Similar to remap_pfn_range() (see mm/memory.c)
2193  */
2194 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2195 						unsigned long pgoff)
2196 {
2197 	return remap_vmalloc_range_partial(vma, vma->vm_start,
2198 					   addr + (pgoff << PAGE_SHIFT),
2199 					   vma->vm_end - vma->vm_start);
2200 }
2201 EXPORT_SYMBOL(remap_vmalloc_range);
2202 
2203 /*
2204  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2205  * have one.
2206  */
2207 void  __attribute__((weak)) vmalloc_sync_all(void)
2208 {
2209 }
2210 
2211 
2212 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2213 {
2214 	pte_t ***p = data;
2215 
2216 	if (p) {
2217 		*(*p) = pte;
2218 		(*p)++;
2219 	}
2220 	return 0;
2221 }
2222 
2223 /**
2224  *	alloc_vm_area - allocate a range of kernel address space
2225  *	@size:		size of the area
2226  *	@ptes:		returns the PTEs for the address space
2227  *
2228  *	Returns:	NULL on failure, vm_struct on success
2229  *
2230  *	This function reserves a range of kernel address space, and
2231  *	allocates pagetables to map that range.  No actual mappings
2232  *	are created.
2233  *
2234  *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2235  *	allocated for the VM area are returned.
2236  */
2237 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2238 {
2239 	struct vm_struct *area;
2240 
2241 	area = get_vm_area_caller(size, VM_IOREMAP,
2242 				__builtin_return_address(0));
2243 	if (area == NULL)
2244 		return NULL;
2245 
2246 	/*
2247 	 * This ensures that page tables are constructed for this region
2248 	 * of kernel virtual address space and mapped into init_mm.
2249 	 */
2250 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2251 				size, f, ptes ? &ptes : NULL)) {
2252 		free_vm_area(area);
2253 		return NULL;
2254 	}
2255 
2256 	return area;
2257 }
2258 EXPORT_SYMBOL_GPL(alloc_vm_area);
2259 
2260 void free_vm_area(struct vm_struct *area)
2261 {
2262 	struct vm_struct *ret;
2263 	ret = remove_vm_area(area->addr);
2264 	BUG_ON(ret != area);
2265 	kfree(area);
2266 }
2267 EXPORT_SYMBOL_GPL(free_vm_area);
2268 
2269 #ifdef CONFIG_SMP
2270 static struct vmap_area *node_to_va(struct rb_node *n)
2271 {
2272 	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2273 }
2274 
2275 /**
2276  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2277  * @end: target address
2278  * @pnext: out arg for the next vmap_area
2279  * @pprev: out arg for the previous vmap_area
2280  *
2281  * Returns: %true if either or both of next and prev are found,
2282  *	    %false if no vmap_area exists
2283  *
2284  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2285  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2286  */
2287 static bool pvm_find_next_prev(unsigned long end,
2288 			       struct vmap_area **pnext,
2289 			       struct vmap_area **pprev)
2290 {
2291 	struct rb_node *n = vmap_area_root.rb_node;
2292 	struct vmap_area *va = NULL;
2293 
2294 	while (n) {
2295 		va = rb_entry(n, struct vmap_area, rb_node);
2296 		if (end < va->va_end)
2297 			n = n->rb_left;
2298 		else if (end > va->va_end)
2299 			n = n->rb_right;
2300 		else
2301 			break;
2302 	}
2303 
2304 	if (!va)
2305 		return false;
2306 
2307 	if (va->va_end > end) {
2308 		*pnext = va;
2309 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2310 	} else {
2311 		*pprev = va;
2312 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2313 	}
2314 	return true;
2315 }
2316 
2317 /**
2318  * pvm_determine_end - find the highest aligned address between two vmap_areas
2319  * @pnext: in/out arg for the next vmap_area
2320  * @pprev: in/out arg for the previous vmap_area
2321  * @align: alignment
2322  *
2323  * Returns: determined end address
2324  *
2325  * Find the highest aligned address between *@pnext and *@pprev below
2326  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2327  * down address is between the end addresses of the two vmap_areas.
2328  *
2329  * Please note that the address returned by this function may fall
2330  * inside *@pnext vmap_area.  The caller is responsible for checking
2331  * that.
2332  */
2333 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2334 				       struct vmap_area **pprev,
2335 				       unsigned long align)
2336 {
2337 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2338 	unsigned long addr;
2339 
2340 	if (*pnext)
2341 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2342 	else
2343 		addr = vmalloc_end;
2344 
2345 	while (*pprev && (*pprev)->va_end > addr) {
2346 		*pnext = *pprev;
2347 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2348 	}
2349 
2350 	return addr;
2351 }
2352 
2353 /**
2354  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2355  * @offsets: array containing offset of each area
2356  * @sizes: array containing size of each area
2357  * @nr_vms: the number of areas to allocate
2358  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2359  *
2360  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2361  *	    vm_structs on success, %NULL on failure
2362  *
2363  * Percpu allocator wants to use congruent vm areas so that it can
2364  * maintain the offsets among percpu areas.  This function allocates
2365  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2366  * be scattered pretty far, distance between two areas easily going up
2367  * to gigabytes.  To avoid interacting with regular vmallocs, these
2368  * areas are allocated from top.
2369  *
2370  * Despite its complicated look, this allocator is rather simple.  It
2371  * does everything top-down and scans areas from the end looking for
2372  * matching slot.  While scanning, if any of the areas overlaps with
2373  * existing vmap_area, the base address is pulled down to fit the
2374  * area.  Scanning is repeated till all the areas fit and then all
2375  * necessary data structres are inserted and the result is returned.
2376  */
2377 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2378 				     const size_t *sizes, int nr_vms,
2379 				     size_t align)
2380 {
2381 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2382 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2383 	struct vmap_area **vas, *prev, *next;
2384 	struct vm_struct **vms;
2385 	int area, area2, last_area, term_area;
2386 	unsigned long base, start, end, last_end;
2387 	bool purged = false;
2388 
2389 	/* verify parameters and allocate data structures */
2390 	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2391 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2392 		start = offsets[area];
2393 		end = start + sizes[area];
2394 
2395 		/* is everything aligned properly? */
2396 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2397 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2398 
2399 		/* detect the area with the highest address */
2400 		if (start > offsets[last_area])
2401 			last_area = area;
2402 
2403 		for (area2 = 0; area2 < nr_vms; area2++) {
2404 			unsigned long start2 = offsets[area2];
2405 			unsigned long end2 = start2 + sizes[area2];
2406 
2407 			if (area2 == area)
2408 				continue;
2409 
2410 			BUG_ON(start2 >= start && start2 < end);
2411 			BUG_ON(end2 <= end && end2 > start);
2412 		}
2413 	}
2414 	last_end = offsets[last_area] + sizes[last_area];
2415 
2416 	if (vmalloc_end - vmalloc_start < last_end) {
2417 		WARN_ON(true);
2418 		return NULL;
2419 	}
2420 
2421 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2422 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2423 	if (!vas || !vms)
2424 		goto err_free2;
2425 
2426 	for (area = 0; area < nr_vms; area++) {
2427 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2428 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2429 		if (!vas[area] || !vms[area])
2430 			goto err_free;
2431 	}
2432 retry:
2433 	spin_lock(&vmap_area_lock);
2434 
2435 	/* start scanning - we scan from the top, begin with the last area */
2436 	area = term_area = last_area;
2437 	start = offsets[area];
2438 	end = start + sizes[area];
2439 
2440 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2441 		base = vmalloc_end - last_end;
2442 		goto found;
2443 	}
2444 	base = pvm_determine_end(&next, &prev, align) - end;
2445 
2446 	while (true) {
2447 		BUG_ON(next && next->va_end <= base + end);
2448 		BUG_ON(prev && prev->va_end > base + end);
2449 
2450 		/*
2451 		 * base might have underflowed, add last_end before
2452 		 * comparing.
2453 		 */
2454 		if (base + last_end < vmalloc_start + last_end) {
2455 			spin_unlock(&vmap_area_lock);
2456 			if (!purged) {
2457 				purge_vmap_area_lazy();
2458 				purged = true;
2459 				goto retry;
2460 			}
2461 			goto err_free;
2462 		}
2463 
2464 		/*
2465 		 * If next overlaps, move base downwards so that it's
2466 		 * right below next and then recheck.
2467 		 */
2468 		if (next && next->va_start < base + end) {
2469 			base = pvm_determine_end(&next, &prev, align) - end;
2470 			term_area = area;
2471 			continue;
2472 		}
2473 
2474 		/*
2475 		 * If prev overlaps, shift down next and prev and move
2476 		 * base so that it's right below new next and then
2477 		 * recheck.
2478 		 */
2479 		if (prev && prev->va_end > base + start)  {
2480 			next = prev;
2481 			prev = node_to_va(rb_prev(&next->rb_node));
2482 			base = pvm_determine_end(&next, &prev, align) - end;
2483 			term_area = area;
2484 			continue;
2485 		}
2486 
2487 		/*
2488 		 * This area fits, move on to the previous one.  If
2489 		 * the previous one is the terminal one, we're done.
2490 		 */
2491 		area = (area + nr_vms - 1) % nr_vms;
2492 		if (area == term_area)
2493 			break;
2494 		start = offsets[area];
2495 		end = start + sizes[area];
2496 		pvm_find_next_prev(base + end, &next, &prev);
2497 	}
2498 found:
2499 	/* we've found a fitting base, insert all va's */
2500 	for (area = 0; area < nr_vms; area++) {
2501 		struct vmap_area *va = vas[area];
2502 
2503 		va->va_start = base + offsets[area];
2504 		va->va_end = va->va_start + sizes[area];
2505 		__insert_vmap_area(va);
2506 	}
2507 
2508 	vmap_area_pcpu_hole = base + offsets[last_area];
2509 
2510 	spin_unlock(&vmap_area_lock);
2511 
2512 	/* insert all vm's */
2513 	for (area = 0; area < nr_vms; area++)
2514 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2515 				 pcpu_get_vm_areas);
2516 
2517 	kfree(vas);
2518 	return vms;
2519 
2520 err_free:
2521 	for (area = 0; area < nr_vms; area++) {
2522 		kfree(vas[area]);
2523 		kfree(vms[area]);
2524 	}
2525 err_free2:
2526 	kfree(vas);
2527 	kfree(vms);
2528 	return NULL;
2529 }
2530 
2531 /**
2532  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2533  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2534  * @nr_vms: the number of allocated areas
2535  *
2536  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2537  */
2538 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2539 {
2540 	int i;
2541 
2542 	for (i = 0; i < nr_vms; i++)
2543 		free_vm_area(vms[i]);
2544 	kfree(vms);
2545 }
2546 #endif	/* CONFIG_SMP */
2547 
2548 #ifdef CONFIG_PROC_FS
2549 static void *s_start(struct seq_file *m, loff_t *pos)
2550 	__acquires(&vmap_area_lock)
2551 {
2552 	loff_t n = *pos;
2553 	struct vmap_area *va;
2554 
2555 	spin_lock(&vmap_area_lock);
2556 	va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2557 	while (n > 0 && &va->list != &vmap_area_list) {
2558 		n--;
2559 		va = list_entry(va->list.next, typeof(*va), list);
2560 	}
2561 	if (!n && &va->list != &vmap_area_list)
2562 		return va;
2563 
2564 	return NULL;
2565 
2566 }
2567 
2568 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2569 {
2570 	struct vmap_area *va = p, *next;
2571 
2572 	++*pos;
2573 	next = list_entry(va->list.next, typeof(*va), list);
2574 	if (&next->list != &vmap_area_list)
2575 		return next;
2576 
2577 	return NULL;
2578 }
2579 
2580 static void s_stop(struct seq_file *m, void *p)
2581 	__releases(&vmap_area_lock)
2582 {
2583 	spin_unlock(&vmap_area_lock);
2584 }
2585 
2586 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2587 {
2588 	if (IS_ENABLED(CONFIG_NUMA)) {
2589 		unsigned int nr, *counters = m->private;
2590 
2591 		if (!counters)
2592 			return;
2593 
2594 		/* Pair with smp_wmb() in clear_vm_unlist() */
2595 		smp_rmb();
2596 		if (v->flags & VM_UNLIST)
2597 			return;
2598 
2599 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2600 
2601 		for (nr = 0; nr < v->nr_pages; nr++)
2602 			counters[page_to_nid(v->pages[nr])]++;
2603 
2604 		for_each_node_state(nr, N_HIGH_MEMORY)
2605 			if (counters[nr])
2606 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2607 	}
2608 }
2609 
2610 static int s_show(struct seq_file *m, void *p)
2611 {
2612 	struct vmap_area *va = p;
2613 	struct vm_struct *v;
2614 
2615 	if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2616 		return 0;
2617 
2618 	if (!(va->flags & VM_VM_AREA)) {
2619 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
2620 			(void *)va->va_start, (void *)va->va_end,
2621 					va->va_end - va->va_start);
2622 		return 0;
2623 	}
2624 
2625 	v = va->vm;
2626 
2627 	seq_printf(m, "0x%pK-0x%pK %7ld",
2628 		v->addr, v->addr + v->size, v->size);
2629 
2630 	if (v->caller)
2631 		seq_printf(m, " %pS", v->caller);
2632 
2633 	if (v->nr_pages)
2634 		seq_printf(m, " pages=%d", v->nr_pages);
2635 
2636 	if (v->phys_addr)
2637 		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2638 
2639 	if (v->flags & VM_IOREMAP)
2640 		seq_printf(m, " ioremap");
2641 
2642 	if (v->flags & VM_ALLOC)
2643 		seq_printf(m, " vmalloc");
2644 
2645 	if (v->flags & VM_MAP)
2646 		seq_printf(m, " vmap");
2647 
2648 	if (v->flags & VM_USERMAP)
2649 		seq_printf(m, " user");
2650 
2651 	if (v->flags & VM_VPAGES)
2652 		seq_printf(m, " vpages");
2653 
2654 	show_numa_info(m, v);
2655 	seq_putc(m, '\n');
2656 	return 0;
2657 }
2658 
2659 static const struct seq_operations vmalloc_op = {
2660 	.start = s_start,
2661 	.next = s_next,
2662 	.stop = s_stop,
2663 	.show = s_show,
2664 };
2665 
2666 static int vmalloc_open(struct inode *inode, struct file *file)
2667 {
2668 	unsigned int *ptr = NULL;
2669 	int ret;
2670 
2671 	if (IS_ENABLED(CONFIG_NUMA)) {
2672 		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2673 		if (ptr == NULL)
2674 			return -ENOMEM;
2675 	}
2676 	ret = seq_open(file, &vmalloc_op);
2677 	if (!ret) {
2678 		struct seq_file *m = file->private_data;
2679 		m->private = ptr;
2680 	} else
2681 		kfree(ptr);
2682 	return ret;
2683 }
2684 
2685 static const struct file_operations proc_vmalloc_operations = {
2686 	.open		= vmalloc_open,
2687 	.read		= seq_read,
2688 	.llseek		= seq_lseek,
2689 	.release	= seq_release_private,
2690 };
2691 
2692 static int __init proc_vmalloc_init(void)
2693 {
2694 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2695 	return 0;
2696 }
2697 module_init(proc_vmalloc_init);
2698 
2699 void get_vmalloc_info(struct vmalloc_info *vmi)
2700 {
2701 	struct vmap_area *va;
2702 	unsigned long free_area_size;
2703 	unsigned long prev_end;
2704 
2705 	vmi->used = 0;
2706 	vmi->largest_chunk = 0;
2707 
2708 	prev_end = VMALLOC_START;
2709 
2710 	spin_lock(&vmap_area_lock);
2711 
2712 	if (list_empty(&vmap_area_list)) {
2713 		vmi->largest_chunk = VMALLOC_TOTAL;
2714 		goto out;
2715 	}
2716 
2717 	list_for_each_entry(va, &vmap_area_list, list) {
2718 		unsigned long addr = va->va_start;
2719 
2720 		/*
2721 		 * Some archs keep another range for modules in vmalloc space
2722 		 */
2723 		if (addr < VMALLOC_START)
2724 			continue;
2725 		if (addr >= VMALLOC_END)
2726 			break;
2727 
2728 		if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2729 			continue;
2730 
2731 		vmi->used += (va->va_end - va->va_start);
2732 
2733 		free_area_size = addr - prev_end;
2734 		if (vmi->largest_chunk < free_area_size)
2735 			vmi->largest_chunk = free_area_size;
2736 
2737 		prev_end = va->va_end;
2738 	}
2739 
2740 	if (VMALLOC_END - prev_end > vmi->largest_chunk)
2741 		vmi->largest_chunk = VMALLOC_END - prev_end;
2742 
2743 out:
2744 	spin_unlock(&vmap_area_lock);
2745 }
2746 #endif
2747 
2748