xref: /linux/mm/vmalloc.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/debugobjects.h>
21 #include <linux/kallsyms.h>
22 #include <linux/list.h>
23 #include <linux/rbtree.h>
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
26 
27 #include <asm/atomic.h>
28 #include <asm/uaccess.h>
29 #include <asm/tlbflush.h>
30 
31 
32 /*** Page table manipulation functions ***/
33 
34 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
35 {
36 	pte_t *pte;
37 
38 	pte = pte_offset_kernel(pmd, addr);
39 	do {
40 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
41 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
42 	} while (pte++, addr += PAGE_SIZE, addr != end);
43 }
44 
45 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
46 {
47 	pmd_t *pmd;
48 	unsigned long next;
49 
50 	pmd = pmd_offset(pud, addr);
51 	do {
52 		next = pmd_addr_end(addr, end);
53 		if (pmd_none_or_clear_bad(pmd))
54 			continue;
55 		vunmap_pte_range(pmd, addr, next);
56 	} while (pmd++, addr = next, addr != end);
57 }
58 
59 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
60 {
61 	pud_t *pud;
62 	unsigned long next;
63 
64 	pud = pud_offset(pgd, addr);
65 	do {
66 		next = pud_addr_end(addr, end);
67 		if (pud_none_or_clear_bad(pud))
68 			continue;
69 		vunmap_pmd_range(pud, addr, next);
70 	} while (pud++, addr = next, addr != end);
71 }
72 
73 static void vunmap_page_range(unsigned long addr, unsigned long end)
74 {
75 	pgd_t *pgd;
76 	unsigned long next;
77 
78 	BUG_ON(addr >= end);
79 	pgd = pgd_offset_k(addr);
80 	flush_cache_vunmap(addr, end);
81 	do {
82 		next = pgd_addr_end(addr, end);
83 		if (pgd_none_or_clear_bad(pgd))
84 			continue;
85 		vunmap_pud_range(pgd, addr, next);
86 	} while (pgd++, addr = next, addr != end);
87 }
88 
89 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
90 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
91 {
92 	pte_t *pte;
93 
94 	/*
95 	 * nr is a running index into the array which helps higher level
96 	 * callers keep track of where we're up to.
97 	 */
98 
99 	pte = pte_alloc_kernel(pmd, addr);
100 	if (!pte)
101 		return -ENOMEM;
102 	do {
103 		struct page *page = pages[*nr];
104 
105 		if (WARN_ON(!pte_none(*pte)))
106 			return -EBUSY;
107 		if (WARN_ON(!page))
108 			return -ENOMEM;
109 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
110 		(*nr)++;
111 	} while (pte++, addr += PAGE_SIZE, addr != end);
112 	return 0;
113 }
114 
115 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
116 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
117 {
118 	pmd_t *pmd;
119 	unsigned long next;
120 
121 	pmd = pmd_alloc(&init_mm, pud, addr);
122 	if (!pmd)
123 		return -ENOMEM;
124 	do {
125 		next = pmd_addr_end(addr, end);
126 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
127 			return -ENOMEM;
128 	} while (pmd++, addr = next, addr != end);
129 	return 0;
130 }
131 
132 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
133 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
134 {
135 	pud_t *pud;
136 	unsigned long next;
137 
138 	pud = pud_alloc(&init_mm, pgd, addr);
139 	if (!pud)
140 		return -ENOMEM;
141 	do {
142 		next = pud_addr_end(addr, end);
143 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
144 			return -ENOMEM;
145 	} while (pud++, addr = next, addr != end);
146 	return 0;
147 }
148 
149 /*
150  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
151  * will have pfns corresponding to the "pages" array.
152  *
153  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
154  */
155 static int vmap_page_range(unsigned long addr, unsigned long end,
156 				pgprot_t prot, struct page **pages)
157 {
158 	pgd_t *pgd;
159 	unsigned long next;
160 	int err = 0;
161 	int nr = 0;
162 
163 	BUG_ON(addr >= end);
164 	pgd = pgd_offset_k(addr);
165 	do {
166 		next = pgd_addr_end(addr, end);
167 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
168 		if (err)
169 			break;
170 	} while (pgd++, addr = next, addr != end);
171 	flush_cache_vmap(addr, end);
172 
173 	if (unlikely(err))
174 		return err;
175 	return nr;
176 }
177 
178 static inline int is_vmalloc_or_module_addr(const void *x)
179 {
180 	/*
181 	 * x86-64 and sparc64 put modules in a special place,
182 	 * and fall back on vmalloc() if that fails. Others
183 	 * just put it in the vmalloc space.
184 	 */
185 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
186 	unsigned long addr = (unsigned long)x;
187 	if (addr >= MODULES_VADDR && addr < MODULES_END)
188 		return 1;
189 #endif
190 	return is_vmalloc_addr(x);
191 }
192 
193 /*
194  * Walk a vmap address to the struct page it maps.
195  */
196 struct page *vmalloc_to_page(const void *vmalloc_addr)
197 {
198 	unsigned long addr = (unsigned long) vmalloc_addr;
199 	struct page *page = NULL;
200 	pgd_t *pgd = pgd_offset_k(addr);
201 
202 	/*
203 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
204 	 * architectures that do not vmalloc module space
205 	 */
206 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
207 
208 	if (!pgd_none(*pgd)) {
209 		pud_t *pud = pud_offset(pgd, addr);
210 		if (!pud_none(*pud)) {
211 			pmd_t *pmd = pmd_offset(pud, addr);
212 			if (!pmd_none(*pmd)) {
213 				pte_t *ptep, pte;
214 
215 				ptep = pte_offset_map(pmd, addr);
216 				pte = *ptep;
217 				if (pte_present(pte))
218 					page = pte_page(pte);
219 				pte_unmap(ptep);
220 			}
221 		}
222 	}
223 	return page;
224 }
225 EXPORT_SYMBOL(vmalloc_to_page);
226 
227 /*
228  * Map a vmalloc()-space virtual address to the physical page frame number.
229  */
230 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
231 {
232 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
233 }
234 EXPORT_SYMBOL(vmalloc_to_pfn);
235 
236 
237 /*** Global kva allocator ***/
238 
239 #define VM_LAZY_FREE	0x01
240 #define VM_LAZY_FREEING	0x02
241 #define VM_VM_AREA	0x04
242 
243 struct vmap_area {
244 	unsigned long va_start;
245 	unsigned long va_end;
246 	unsigned long flags;
247 	struct rb_node rb_node;		/* address sorted rbtree */
248 	struct list_head list;		/* address sorted list */
249 	struct list_head purge_list;	/* "lazy purge" list */
250 	void *private;
251 	struct rcu_head rcu_head;
252 };
253 
254 static DEFINE_SPINLOCK(vmap_area_lock);
255 static struct rb_root vmap_area_root = RB_ROOT;
256 static LIST_HEAD(vmap_area_list);
257 
258 static struct vmap_area *__find_vmap_area(unsigned long addr)
259 {
260 	struct rb_node *n = vmap_area_root.rb_node;
261 
262 	while (n) {
263 		struct vmap_area *va;
264 
265 		va = rb_entry(n, struct vmap_area, rb_node);
266 		if (addr < va->va_start)
267 			n = n->rb_left;
268 		else if (addr > va->va_start)
269 			n = n->rb_right;
270 		else
271 			return va;
272 	}
273 
274 	return NULL;
275 }
276 
277 static void __insert_vmap_area(struct vmap_area *va)
278 {
279 	struct rb_node **p = &vmap_area_root.rb_node;
280 	struct rb_node *parent = NULL;
281 	struct rb_node *tmp;
282 
283 	while (*p) {
284 		struct vmap_area *tmp;
285 
286 		parent = *p;
287 		tmp = rb_entry(parent, struct vmap_area, rb_node);
288 		if (va->va_start < tmp->va_end)
289 			p = &(*p)->rb_left;
290 		else if (va->va_end > tmp->va_start)
291 			p = &(*p)->rb_right;
292 		else
293 			BUG();
294 	}
295 
296 	rb_link_node(&va->rb_node, parent, p);
297 	rb_insert_color(&va->rb_node, &vmap_area_root);
298 
299 	/* address-sort this list so it is usable like the vmlist */
300 	tmp = rb_prev(&va->rb_node);
301 	if (tmp) {
302 		struct vmap_area *prev;
303 		prev = rb_entry(tmp, struct vmap_area, rb_node);
304 		list_add_rcu(&va->list, &prev->list);
305 	} else
306 		list_add_rcu(&va->list, &vmap_area_list);
307 }
308 
309 static void purge_vmap_area_lazy(void);
310 
311 /*
312  * Allocate a region of KVA of the specified size and alignment, within the
313  * vstart and vend.
314  */
315 static struct vmap_area *alloc_vmap_area(unsigned long size,
316 				unsigned long align,
317 				unsigned long vstart, unsigned long vend,
318 				int node, gfp_t gfp_mask)
319 {
320 	struct vmap_area *va;
321 	struct rb_node *n;
322 	unsigned long addr;
323 	int purged = 0;
324 
325 	BUG_ON(size & ~PAGE_MASK);
326 
327 	addr = ALIGN(vstart, align);
328 
329 	va = kmalloc_node(sizeof(struct vmap_area),
330 			gfp_mask & GFP_RECLAIM_MASK, node);
331 	if (unlikely(!va))
332 		return ERR_PTR(-ENOMEM);
333 
334 retry:
335 	spin_lock(&vmap_area_lock);
336 	/* XXX: could have a last_hole cache */
337 	n = vmap_area_root.rb_node;
338 	if (n) {
339 		struct vmap_area *first = NULL;
340 
341 		do {
342 			struct vmap_area *tmp;
343 			tmp = rb_entry(n, struct vmap_area, rb_node);
344 			if (tmp->va_end >= addr) {
345 				if (!first && tmp->va_start < addr + size)
346 					first = tmp;
347 				n = n->rb_left;
348 			} else {
349 				first = tmp;
350 				n = n->rb_right;
351 			}
352 		} while (n);
353 
354 		if (!first)
355 			goto found;
356 
357 		if (first->va_end < addr) {
358 			n = rb_next(&first->rb_node);
359 			if (n)
360 				first = rb_entry(n, struct vmap_area, rb_node);
361 			else
362 				goto found;
363 		}
364 
365 		while (addr + size >= first->va_start && addr + size <= vend) {
366 			addr = ALIGN(first->va_end + PAGE_SIZE, align);
367 
368 			n = rb_next(&first->rb_node);
369 			if (n)
370 				first = rb_entry(n, struct vmap_area, rb_node);
371 			else
372 				goto found;
373 		}
374 	}
375 found:
376 	if (addr + size > vend) {
377 		spin_unlock(&vmap_area_lock);
378 		if (!purged) {
379 			purge_vmap_area_lazy();
380 			purged = 1;
381 			goto retry;
382 		}
383 		if (printk_ratelimit())
384 			printk(KERN_WARNING "vmap allocation failed: "
385 				 "use vmalloc=<size> to increase size.\n");
386 		return ERR_PTR(-EBUSY);
387 	}
388 
389 	BUG_ON(addr & (align-1));
390 
391 	va->va_start = addr;
392 	va->va_end = addr + size;
393 	va->flags = 0;
394 	__insert_vmap_area(va);
395 	spin_unlock(&vmap_area_lock);
396 
397 	return va;
398 }
399 
400 static void rcu_free_va(struct rcu_head *head)
401 {
402 	struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
403 
404 	kfree(va);
405 }
406 
407 static void __free_vmap_area(struct vmap_area *va)
408 {
409 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
410 	rb_erase(&va->rb_node, &vmap_area_root);
411 	RB_CLEAR_NODE(&va->rb_node);
412 	list_del_rcu(&va->list);
413 
414 	call_rcu(&va->rcu_head, rcu_free_va);
415 }
416 
417 /*
418  * Free a region of KVA allocated by alloc_vmap_area
419  */
420 static void free_vmap_area(struct vmap_area *va)
421 {
422 	spin_lock(&vmap_area_lock);
423 	__free_vmap_area(va);
424 	spin_unlock(&vmap_area_lock);
425 }
426 
427 /*
428  * Clear the pagetable entries of a given vmap_area
429  */
430 static void unmap_vmap_area(struct vmap_area *va)
431 {
432 	vunmap_page_range(va->va_start, va->va_end);
433 }
434 
435 /*
436  * lazy_max_pages is the maximum amount of virtual address space we gather up
437  * before attempting to purge with a TLB flush.
438  *
439  * There is a tradeoff here: a larger number will cover more kernel page tables
440  * and take slightly longer to purge, but it will linearly reduce the number of
441  * global TLB flushes that must be performed. It would seem natural to scale
442  * this number up linearly with the number of CPUs (because vmapping activity
443  * could also scale linearly with the number of CPUs), however it is likely
444  * that in practice, workloads might be constrained in other ways that mean
445  * vmap activity will not scale linearly with CPUs. Also, I want to be
446  * conservative and not introduce a big latency on huge systems, so go with
447  * a less aggressive log scale. It will still be an improvement over the old
448  * code, and it will be simple to change the scale factor if we find that it
449  * becomes a problem on bigger systems.
450  */
451 static unsigned long lazy_max_pages(void)
452 {
453 	unsigned int log;
454 
455 	log = fls(num_online_cpus());
456 
457 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
458 }
459 
460 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
461 
462 /*
463  * Purges all lazily-freed vmap areas.
464  *
465  * If sync is 0 then don't purge if there is already a purge in progress.
466  * If force_flush is 1, then flush kernel TLBs between *start and *end even
467  * if we found no lazy vmap areas to unmap (callers can use this to optimise
468  * their own TLB flushing).
469  * Returns with *start = min(*start, lowest purged address)
470  *              *end = max(*end, highest purged address)
471  */
472 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
473 					int sync, int force_flush)
474 {
475 	static DEFINE_SPINLOCK(purge_lock);
476 	LIST_HEAD(valist);
477 	struct vmap_area *va;
478 	int nr = 0;
479 
480 	/*
481 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
482 	 * should not expect such behaviour. This just simplifies locking for
483 	 * the case that isn't actually used at the moment anyway.
484 	 */
485 	if (!sync && !force_flush) {
486 		if (!spin_trylock(&purge_lock))
487 			return;
488 	} else
489 		spin_lock(&purge_lock);
490 
491 	rcu_read_lock();
492 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
493 		if (va->flags & VM_LAZY_FREE) {
494 			if (va->va_start < *start)
495 				*start = va->va_start;
496 			if (va->va_end > *end)
497 				*end = va->va_end;
498 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
499 			unmap_vmap_area(va);
500 			list_add_tail(&va->purge_list, &valist);
501 			va->flags |= VM_LAZY_FREEING;
502 			va->flags &= ~VM_LAZY_FREE;
503 		}
504 	}
505 	rcu_read_unlock();
506 
507 	if (nr) {
508 		BUG_ON(nr > atomic_read(&vmap_lazy_nr));
509 		atomic_sub(nr, &vmap_lazy_nr);
510 	}
511 
512 	if (nr || force_flush)
513 		flush_tlb_kernel_range(*start, *end);
514 
515 	if (nr) {
516 		spin_lock(&vmap_area_lock);
517 		list_for_each_entry(va, &valist, purge_list)
518 			__free_vmap_area(va);
519 		spin_unlock(&vmap_area_lock);
520 	}
521 	spin_unlock(&purge_lock);
522 }
523 
524 /*
525  * Kick off a purge of the outstanding lazy areas.
526  */
527 static void purge_vmap_area_lazy(void)
528 {
529 	unsigned long start = ULONG_MAX, end = 0;
530 
531 	__purge_vmap_area_lazy(&start, &end, 0, 0);
532 }
533 
534 /*
535  * Free and unmap a vmap area
536  */
537 static void free_unmap_vmap_area(struct vmap_area *va)
538 {
539 	va->flags |= VM_LAZY_FREE;
540 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
541 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
542 		purge_vmap_area_lazy();
543 }
544 
545 static struct vmap_area *find_vmap_area(unsigned long addr)
546 {
547 	struct vmap_area *va;
548 
549 	spin_lock(&vmap_area_lock);
550 	va = __find_vmap_area(addr);
551 	spin_unlock(&vmap_area_lock);
552 
553 	return va;
554 }
555 
556 static void free_unmap_vmap_area_addr(unsigned long addr)
557 {
558 	struct vmap_area *va;
559 
560 	va = find_vmap_area(addr);
561 	BUG_ON(!va);
562 	free_unmap_vmap_area(va);
563 }
564 
565 
566 /*** Per cpu kva allocator ***/
567 
568 /*
569  * vmap space is limited especially on 32 bit architectures. Ensure there is
570  * room for at least 16 percpu vmap blocks per CPU.
571  */
572 /*
573  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
574  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
575  * instead (we just need a rough idea)
576  */
577 #if BITS_PER_LONG == 32
578 #define VMALLOC_SPACE		(128UL*1024*1024)
579 #else
580 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
581 #endif
582 
583 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
584 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
585 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
586 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
587 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
588 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
589 #define VMAP_BBMAP_BITS		VMAP_MIN(VMAP_BBMAP_BITS_MAX,		\
590 					VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
591 						VMALLOC_PAGES / NR_CPUS / 16))
592 
593 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
594 
595 struct vmap_block_queue {
596 	spinlock_t lock;
597 	struct list_head free;
598 	struct list_head dirty;
599 	unsigned int nr_dirty;
600 };
601 
602 struct vmap_block {
603 	spinlock_t lock;
604 	struct vmap_area *va;
605 	struct vmap_block_queue *vbq;
606 	unsigned long free, dirty;
607 	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
608 	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
609 	union {
610 		struct {
611 			struct list_head free_list;
612 			struct list_head dirty_list;
613 		};
614 		struct rcu_head rcu_head;
615 	};
616 };
617 
618 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
619 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
620 
621 /*
622  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
623  * in the free path. Could get rid of this if we change the API to return a
624  * "cookie" from alloc, to be passed to free. But no big deal yet.
625  */
626 static DEFINE_SPINLOCK(vmap_block_tree_lock);
627 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
628 
629 /*
630  * We should probably have a fallback mechanism to allocate virtual memory
631  * out of partially filled vmap blocks. However vmap block sizing should be
632  * fairly reasonable according to the vmalloc size, so it shouldn't be a
633  * big problem.
634  */
635 
636 static unsigned long addr_to_vb_idx(unsigned long addr)
637 {
638 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
639 	addr /= VMAP_BLOCK_SIZE;
640 	return addr;
641 }
642 
643 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
644 {
645 	struct vmap_block_queue *vbq;
646 	struct vmap_block *vb;
647 	struct vmap_area *va;
648 	unsigned long vb_idx;
649 	int node, err;
650 
651 	node = numa_node_id();
652 
653 	vb = kmalloc_node(sizeof(struct vmap_block),
654 			gfp_mask & GFP_RECLAIM_MASK, node);
655 	if (unlikely(!vb))
656 		return ERR_PTR(-ENOMEM);
657 
658 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
659 					VMALLOC_START, VMALLOC_END,
660 					node, gfp_mask);
661 	if (unlikely(IS_ERR(va))) {
662 		kfree(vb);
663 		return ERR_PTR(PTR_ERR(va));
664 	}
665 
666 	err = radix_tree_preload(gfp_mask);
667 	if (unlikely(err)) {
668 		kfree(vb);
669 		free_vmap_area(va);
670 		return ERR_PTR(err);
671 	}
672 
673 	spin_lock_init(&vb->lock);
674 	vb->va = va;
675 	vb->free = VMAP_BBMAP_BITS;
676 	vb->dirty = 0;
677 	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
678 	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
679 	INIT_LIST_HEAD(&vb->free_list);
680 	INIT_LIST_HEAD(&vb->dirty_list);
681 
682 	vb_idx = addr_to_vb_idx(va->va_start);
683 	spin_lock(&vmap_block_tree_lock);
684 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
685 	spin_unlock(&vmap_block_tree_lock);
686 	BUG_ON(err);
687 	radix_tree_preload_end();
688 
689 	vbq = &get_cpu_var(vmap_block_queue);
690 	vb->vbq = vbq;
691 	spin_lock(&vbq->lock);
692 	list_add(&vb->free_list, &vbq->free);
693 	spin_unlock(&vbq->lock);
694 	put_cpu_var(vmap_cpu_blocks);
695 
696 	return vb;
697 }
698 
699 static void rcu_free_vb(struct rcu_head *head)
700 {
701 	struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
702 
703 	kfree(vb);
704 }
705 
706 static void free_vmap_block(struct vmap_block *vb)
707 {
708 	struct vmap_block *tmp;
709 	unsigned long vb_idx;
710 
711 	spin_lock(&vb->vbq->lock);
712 	if (!list_empty(&vb->free_list))
713 		list_del(&vb->free_list);
714 	if (!list_empty(&vb->dirty_list))
715 		list_del(&vb->dirty_list);
716 	spin_unlock(&vb->vbq->lock);
717 
718 	vb_idx = addr_to_vb_idx(vb->va->va_start);
719 	spin_lock(&vmap_block_tree_lock);
720 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
721 	spin_unlock(&vmap_block_tree_lock);
722 	BUG_ON(tmp != vb);
723 
724 	free_unmap_vmap_area(vb->va);
725 	call_rcu(&vb->rcu_head, rcu_free_vb);
726 }
727 
728 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
729 {
730 	struct vmap_block_queue *vbq;
731 	struct vmap_block *vb;
732 	unsigned long addr = 0;
733 	unsigned int order;
734 
735 	BUG_ON(size & ~PAGE_MASK);
736 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
737 	order = get_order(size);
738 
739 again:
740 	rcu_read_lock();
741 	vbq = &get_cpu_var(vmap_block_queue);
742 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
743 		int i;
744 
745 		spin_lock(&vb->lock);
746 		i = bitmap_find_free_region(vb->alloc_map,
747 						VMAP_BBMAP_BITS, order);
748 
749 		if (i >= 0) {
750 			addr = vb->va->va_start + (i << PAGE_SHIFT);
751 			BUG_ON(addr_to_vb_idx(addr) !=
752 					addr_to_vb_idx(vb->va->va_start));
753 			vb->free -= 1UL << order;
754 			if (vb->free == 0) {
755 				spin_lock(&vbq->lock);
756 				list_del_init(&vb->free_list);
757 				spin_unlock(&vbq->lock);
758 			}
759 			spin_unlock(&vb->lock);
760 			break;
761 		}
762 		spin_unlock(&vb->lock);
763 	}
764 	put_cpu_var(vmap_cpu_blocks);
765 	rcu_read_unlock();
766 
767 	if (!addr) {
768 		vb = new_vmap_block(gfp_mask);
769 		if (IS_ERR(vb))
770 			return vb;
771 		goto again;
772 	}
773 
774 	return (void *)addr;
775 }
776 
777 static void vb_free(const void *addr, unsigned long size)
778 {
779 	unsigned long offset;
780 	unsigned long vb_idx;
781 	unsigned int order;
782 	struct vmap_block *vb;
783 
784 	BUG_ON(size & ~PAGE_MASK);
785 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
786 	order = get_order(size);
787 
788 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
789 
790 	vb_idx = addr_to_vb_idx((unsigned long)addr);
791 	rcu_read_lock();
792 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
793 	rcu_read_unlock();
794 	BUG_ON(!vb);
795 
796 	spin_lock(&vb->lock);
797 	bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
798 	if (!vb->dirty) {
799 		spin_lock(&vb->vbq->lock);
800 		list_add(&vb->dirty_list, &vb->vbq->dirty);
801 		spin_unlock(&vb->vbq->lock);
802 	}
803 	vb->dirty += 1UL << order;
804 	if (vb->dirty == VMAP_BBMAP_BITS) {
805 		BUG_ON(vb->free || !list_empty(&vb->free_list));
806 		spin_unlock(&vb->lock);
807 		free_vmap_block(vb);
808 	} else
809 		spin_unlock(&vb->lock);
810 }
811 
812 /**
813  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
814  *
815  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
816  * to amortize TLB flushing overheads. What this means is that any page you
817  * have now, may, in a former life, have been mapped into kernel virtual
818  * address by the vmap layer and so there might be some CPUs with TLB entries
819  * still referencing that page (additional to the regular 1:1 kernel mapping).
820  *
821  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
822  * be sure that none of the pages we have control over will have any aliases
823  * from the vmap layer.
824  */
825 void vm_unmap_aliases(void)
826 {
827 	unsigned long start = ULONG_MAX, end = 0;
828 	int cpu;
829 	int flush = 0;
830 
831 	for_each_possible_cpu(cpu) {
832 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
833 		struct vmap_block *vb;
834 
835 		rcu_read_lock();
836 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
837 			int i;
838 
839 			spin_lock(&vb->lock);
840 			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
841 			while (i < VMAP_BBMAP_BITS) {
842 				unsigned long s, e;
843 				int j;
844 				j = find_next_zero_bit(vb->dirty_map,
845 					VMAP_BBMAP_BITS, i);
846 
847 				s = vb->va->va_start + (i << PAGE_SHIFT);
848 				e = vb->va->va_start + (j << PAGE_SHIFT);
849 				vunmap_page_range(s, e);
850 				flush = 1;
851 
852 				if (s < start)
853 					start = s;
854 				if (e > end)
855 					end = e;
856 
857 				i = j;
858 				i = find_next_bit(vb->dirty_map,
859 							VMAP_BBMAP_BITS, i);
860 			}
861 			spin_unlock(&vb->lock);
862 		}
863 		rcu_read_unlock();
864 	}
865 
866 	__purge_vmap_area_lazy(&start, &end, 1, flush);
867 }
868 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
869 
870 /**
871  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
872  * @mem: the pointer returned by vm_map_ram
873  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
874  */
875 void vm_unmap_ram(const void *mem, unsigned int count)
876 {
877 	unsigned long size = count << PAGE_SHIFT;
878 	unsigned long addr = (unsigned long)mem;
879 
880 	BUG_ON(!addr);
881 	BUG_ON(addr < VMALLOC_START);
882 	BUG_ON(addr > VMALLOC_END);
883 	BUG_ON(addr & (PAGE_SIZE-1));
884 
885 	debug_check_no_locks_freed(mem, size);
886 
887 	if (likely(count <= VMAP_MAX_ALLOC))
888 		vb_free(mem, size);
889 	else
890 		free_unmap_vmap_area_addr(addr);
891 }
892 EXPORT_SYMBOL(vm_unmap_ram);
893 
894 /**
895  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
896  * @pages: an array of pointers to the pages to be mapped
897  * @count: number of pages
898  * @node: prefer to allocate data structures on this node
899  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
900  *
901  * Returns: a pointer to the address that has been mapped, or %NULL on failure
902  */
903 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
904 {
905 	unsigned long size = count << PAGE_SHIFT;
906 	unsigned long addr;
907 	void *mem;
908 
909 	if (likely(count <= VMAP_MAX_ALLOC)) {
910 		mem = vb_alloc(size, GFP_KERNEL);
911 		if (IS_ERR(mem))
912 			return NULL;
913 		addr = (unsigned long)mem;
914 	} else {
915 		struct vmap_area *va;
916 		va = alloc_vmap_area(size, PAGE_SIZE,
917 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
918 		if (IS_ERR(va))
919 			return NULL;
920 
921 		addr = va->va_start;
922 		mem = (void *)addr;
923 	}
924 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
925 		vm_unmap_ram(mem, count);
926 		return NULL;
927 	}
928 	return mem;
929 }
930 EXPORT_SYMBOL(vm_map_ram);
931 
932 void __init vmalloc_init(void)
933 {
934 	int i;
935 
936 	for_each_possible_cpu(i) {
937 		struct vmap_block_queue *vbq;
938 
939 		vbq = &per_cpu(vmap_block_queue, i);
940 		spin_lock_init(&vbq->lock);
941 		INIT_LIST_HEAD(&vbq->free);
942 		INIT_LIST_HEAD(&vbq->dirty);
943 		vbq->nr_dirty = 0;
944 	}
945 }
946 
947 void unmap_kernel_range(unsigned long addr, unsigned long size)
948 {
949 	unsigned long end = addr + size;
950 	vunmap_page_range(addr, end);
951 	flush_tlb_kernel_range(addr, end);
952 }
953 
954 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
955 {
956 	unsigned long addr = (unsigned long)area->addr;
957 	unsigned long end = addr + area->size - PAGE_SIZE;
958 	int err;
959 
960 	err = vmap_page_range(addr, end, prot, *pages);
961 	if (err > 0) {
962 		*pages += err;
963 		err = 0;
964 	}
965 
966 	return err;
967 }
968 EXPORT_SYMBOL_GPL(map_vm_area);
969 
970 /*** Old vmalloc interfaces ***/
971 DEFINE_RWLOCK(vmlist_lock);
972 struct vm_struct *vmlist;
973 
974 static struct vm_struct *__get_vm_area_node(unsigned long size,
975 		unsigned long flags, unsigned long start, unsigned long end,
976 		int node, gfp_t gfp_mask, void *caller)
977 {
978 	static struct vmap_area *va;
979 	struct vm_struct *area;
980 	struct vm_struct *tmp, **p;
981 	unsigned long align = 1;
982 
983 	BUG_ON(in_interrupt());
984 	if (flags & VM_IOREMAP) {
985 		int bit = fls(size);
986 
987 		if (bit > IOREMAP_MAX_ORDER)
988 			bit = IOREMAP_MAX_ORDER;
989 		else if (bit < PAGE_SHIFT)
990 			bit = PAGE_SHIFT;
991 
992 		align = 1ul << bit;
993 	}
994 
995 	size = PAGE_ALIGN(size);
996 	if (unlikely(!size))
997 		return NULL;
998 
999 	area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1000 	if (unlikely(!area))
1001 		return NULL;
1002 
1003 	/*
1004 	 * We always allocate a guard page.
1005 	 */
1006 	size += PAGE_SIZE;
1007 
1008 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1009 	if (IS_ERR(va)) {
1010 		kfree(area);
1011 		return NULL;
1012 	}
1013 
1014 	area->flags = flags;
1015 	area->addr = (void *)va->va_start;
1016 	area->size = size;
1017 	area->pages = NULL;
1018 	area->nr_pages = 0;
1019 	area->phys_addr = 0;
1020 	area->caller = caller;
1021 	va->private = area;
1022 	va->flags |= VM_VM_AREA;
1023 
1024 	write_lock(&vmlist_lock);
1025 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1026 		if (tmp->addr >= area->addr)
1027 			break;
1028 	}
1029 	area->next = *p;
1030 	*p = area;
1031 	write_unlock(&vmlist_lock);
1032 
1033 	return area;
1034 }
1035 
1036 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1037 				unsigned long start, unsigned long end)
1038 {
1039 	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1040 						__builtin_return_address(0));
1041 }
1042 EXPORT_SYMBOL_GPL(__get_vm_area);
1043 
1044 /**
1045  *	get_vm_area  -  reserve a contiguous kernel virtual area
1046  *	@size:		size of the area
1047  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1048  *
1049  *	Search an area of @size in the kernel virtual mapping area,
1050  *	and reserved it for out purposes.  Returns the area descriptor
1051  *	on success or %NULL on failure.
1052  */
1053 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1054 {
1055 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1056 				-1, GFP_KERNEL, __builtin_return_address(0));
1057 }
1058 
1059 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1060 				void *caller)
1061 {
1062 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1063 						-1, GFP_KERNEL, caller);
1064 }
1065 
1066 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1067 				   int node, gfp_t gfp_mask)
1068 {
1069 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
1070 				  gfp_mask, __builtin_return_address(0));
1071 }
1072 
1073 static struct vm_struct *find_vm_area(const void *addr)
1074 {
1075 	struct vmap_area *va;
1076 
1077 	va = find_vmap_area((unsigned long)addr);
1078 	if (va && va->flags & VM_VM_AREA)
1079 		return va->private;
1080 
1081 	return NULL;
1082 }
1083 
1084 /**
1085  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1086  *	@addr:		base address
1087  *
1088  *	Search for the kernel VM area starting at @addr, and remove it.
1089  *	This function returns the found VM area, but using it is NOT safe
1090  *	on SMP machines, except for its size or flags.
1091  */
1092 struct vm_struct *remove_vm_area(const void *addr)
1093 {
1094 	struct vmap_area *va;
1095 
1096 	va = find_vmap_area((unsigned long)addr);
1097 	if (va && va->flags & VM_VM_AREA) {
1098 		struct vm_struct *vm = va->private;
1099 		struct vm_struct *tmp, **p;
1100 		free_unmap_vmap_area(va);
1101 		vm->size -= PAGE_SIZE;
1102 
1103 		write_lock(&vmlist_lock);
1104 		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1105 			;
1106 		*p = tmp->next;
1107 		write_unlock(&vmlist_lock);
1108 
1109 		return vm;
1110 	}
1111 	return NULL;
1112 }
1113 
1114 static void __vunmap(const void *addr, int deallocate_pages)
1115 {
1116 	struct vm_struct *area;
1117 
1118 	if (!addr)
1119 		return;
1120 
1121 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1122 		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1123 		return;
1124 	}
1125 
1126 	area = remove_vm_area(addr);
1127 	if (unlikely(!area)) {
1128 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1129 				addr);
1130 		return;
1131 	}
1132 
1133 	debug_check_no_locks_freed(addr, area->size);
1134 	debug_check_no_obj_freed(addr, area->size);
1135 
1136 	if (deallocate_pages) {
1137 		int i;
1138 
1139 		for (i = 0; i < area->nr_pages; i++) {
1140 			struct page *page = area->pages[i];
1141 
1142 			BUG_ON(!page);
1143 			__free_page(page);
1144 		}
1145 
1146 		if (area->flags & VM_VPAGES)
1147 			vfree(area->pages);
1148 		else
1149 			kfree(area->pages);
1150 	}
1151 
1152 	kfree(area);
1153 	return;
1154 }
1155 
1156 /**
1157  *	vfree  -  release memory allocated by vmalloc()
1158  *	@addr:		memory base address
1159  *
1160  *	Free the virtually continuous memory area starting at @addr, as
1161  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1162  *	NULL, no operation is performed.
1163  *
1164  *	Must not be called in interrupt context.
1165  */
1166 void vfree(const void *addr)
1167 {
1168 	BUG_ON(in_interrupt());
1169 	__vunmap(addr, 1);
1170 }
1171 EXPORT_SYMBOL(vfree);
1172 
1173 /**
1174  *	vunmap  -  release virtual mapping obtained by vmap()
1175  *	@addr:		memory base address
1176  *
1177  *	Free the virtually contiguous memory area starting at @addr,
1178  *	which was created from the page array passed to vmap().
1179  *
1180  *	Must not be called in interrupt context.
1181  */
1182 void vunmap(const void *addr)
1183 {
1184 	BUG_ON(in_interrupt());
1185 	__vunmap(addr, 0);
1186 }
1187 EXPORT_SYMBOL(vunmap);
1188 
1189 /**
1190  *	vmap  -  map an array of pages into virtually contiguous space
1191  *	@pages:		array of page pointers
1192  *	@count:		number of pages to map
1193  *	@flags:		vm_area->flags
1194  *	@prot:		page protection for the mapping
1195  *
1196  *	Maps @count pages from @pages into contiguous kernel virtual
1197  *	space.
1198  */
1199 void *vmap(struct page **pages, unsigned int count,
1200 		unsigned long flags, pgprot_t prot)
1201 {
1202 	struct vm_struct *area;
1203 
1204 	if (count > num_physpages)
1205 		return NULL;
1206 
1207 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1208 					__builtin_return_address(0));
1209 	if (!area)
1210 		return NULL;
1211 
1212 	if (map_vm_area(area, prot, &pages)) {
1213 		vunmap(area->addr);
1214 		return NULL;
1215 	}
1216 
1217 	return area->addr;
1218 }
1219 EXPORT_SYMBOL(vmap);
1220 
1221 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1222 			    int node, void *caller);
1223 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1224 				 pgprot_t prot, int node, void *caller)
1225 {
1226 	struct page **pages;
1227 	unsigned int nr_pages, array_size, i;
1228 
1229 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1230 	array_size = (nr_pages * sizeof(struct page *));
1231 
1232 	area->nr_pages = nr_pages;
1233 	/* Please note that the recursion is strictly bounded. */
1234 	if (array_size > PAGE_SIZE) {
1235 		pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
1236 				PAGE_KERNEL, node, caller);
1237 		area->flags |= VM_VPAGES;
1238 	} else {
1239 		pages = kmalloc_node(array_size,
1240 				(gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
1241 				node);
1242 	}
1243 	area->pages = pages;
1244 	area->caller = caller;
1245 	if (!area->pages) {
1246 		remove_vm_area(area->addr);
1247 		kfree(area);
1248 		return NULL;
1249 	}
1250 
1251 	for (i = 0; i < area->nr_pages; i++) {
1252 		struct page *page;
1253 
1254 		if (node < 0)
1255 			page = alloc_page(gfp_mask);
1256 		else
1257 			page = alloc_pages_node(node, gfp_mask, 0);
1258 
1259 		if (unlikely(!page)) {
1260 			/* Successfully allocated i pages, free them in __vunmap() */
1261 			area->nr_pages = i;
1262 			goto fail;
1263 		}
1264 		area->pages[i] = page;
1265 	}
1266 
1267 	if (map_vm_area(area, prot, &pages))
1268 		goto fail;
1269 	return area->addr;
1270 
1271 fail:
1272 	vfree(area->addr);
1273 	return NULL;
1274 }
1275 
1276 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1277 {
1278 	return __vmalloc_area_node(area, gfp_mask, prot, -1,
1279 					__builtin_return_address(0));
1280 }
1281 
1282 /**
1283  *	__vmalloc_node  -  allocate virtually contiguous memory
1284  *	@size:		allocation size
1285  *	@gfp_mask:	flags for the page level allocator
1286  *	@prot:		protection mask for the allocated pages
1287  *	@node:		node to use for allocation or -1
1288  *	@caller:	caller's return address
1289  *
1290  *	Allocate enough pages to cover @size from the page level
1291  *	allocator with @gfp_mask flags.  Map them into contiguous
1292  *	kernel virtual space, using a pagetable protection of @prot.
1293  */
1294 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1295 						int node, void *caller)
1296 {
1297 	struct vm_struct *area;
1298 
1299 	size = PAGE_ALIGN(size);
1300 	if (!size || (size >> PAGE_SHIFT) > num_physpages)
1301 		return NULL;
1302 
1303 	area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1304 						node, gfp_mask, caller);
1305 
1306 	if (!area)
1307 		return NULL;
1308 
1309 	return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1310 }
1311 
1312 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1313 {
1314 	return __vmalloc_node(size, gfp_mask, prot, -1,
1315 				__builtin_return_address(0));
1316 }
1317 EXPORT_SYMBOL(__vmalloc);
1318 
1319 /**
1320  *	vmalloc  -  allocate virtually contiguous memory
1321  *	@size:		allocation size
1322  *	Allocate enough pages to cover @size from the page level
1323  *	allocator and map them into contiguous kernel virtual space.
1324  *
1325  *	For tight control over page level allocator and protection flags
1326  *	use __vmalloc() instead.
1327  */
1328 void *vmalloc(unsigned long size)
1329 {
1330 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1331 					-1, __builtin_return_address(0));
1332 }
1333 EXPORT_SYMBOL(vmalloc);
1334 
1335 /**
1336  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1337  * @size: allocation size
1338  *
1339  * The resulting memory area is zeroed so it can be mapped to userspace
1340  * without leaking data.
1341  */
1342 void *vmalloc_user(unsigned long size)
1343 {
1344 	struct vm_struct *area;
1345 	void *ret;
1346 
1347 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
1348 	if (ret) {
1349 		area = find_vm_area(ret);
1350 		area->flags |= VM_USERMAP;
1351 	}
1352 	return ret;
1353 }
1354 EXPORT_SYMBOL(vmalloc_user);
1355 
1356 /**
1357  *	vmalloc_node  -  allocate memory on a specific node
1358  *	@size:		allocation size
1359  *	@node:		numa node
1360  *
1361  *	Allocate enough pages to cover @size from the page level
1362  *	allocator and map them into contiguous kernel virtual space.
1363  *
1364  *	For tight control over page level allocator and protection flags
1365  *	use __vmalloc() instead.
1366  */
1367 void *vmalloc_node(unsigned long size, int node)
1368 {
1369 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1370 					node, __builtin_return_address(0));
1371 }
1372 EXPORT_SYMBOL(vmalloc_node);
1373 
1374 #ifndef PAGE_KERNEL_EXEC
1375 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1376 #endif
1377 
1378 /**
1379  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1380  *	@size:		allocation size
1381  *
1382  *	Kernel-internal function to allocate enough pages to cover @size
1383  *	the page level allocator and map them into contiguous and
1384  *	executable kernel virtual space.
1385  *
1386  *	For tight control over page level allocator and protection flags
1387  *	use __vmalloc() instead.
1388  */
1389 
1390 void *vmalloc_exec(unsigned long size)
1391 {
1392 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
1393 }
1394 
1395 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1396 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1397 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1398 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1399 #else
1400 #define GFP_VMALLOC32 GFP_KERNEL
1401 #endif
1402 
1403 /**
1404  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1405  *	@size:		allocation size
1406  *
1407  *	Allocate enough 32bit PA addressable pages to cover @size from the
1408  *	page level allocator and map them into contiguous kernel virtual space.
1409  */
1410 void *vmalloc_32(unsigned long size)
1411 {
1412 	return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
1413 }
1414 EXPORT_SYMBOL(vmalloc_32);
1415 
1416 /**
1417  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1418  *	@size:		allocation size
1419  *
1420  * The resulting memory area is 32bit addressable and zeroed so it can be
1421  * mapped to userspace without leaking data.
1422  */
1423 void *vmalloc_32_user(unsigned long size)
1424 {
1425 	struct vm_struct *area;
1426 	void *ret;
1427 
1428 	ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
1429 	if (ret) {
1430 		area = find_vm_area(ret);
1431 		area->flags |= VM_USERMAP;
1432 	}
1433 	return ret;
1434 }
1435 EXPORT_SYMBOL(vmalloc_32_user);
1436 
1437 long vread(char *buf, char *addr, unsigned long count)
1438 {
1439 	struct vm_struct *tmp;
1440 	char *vaddr, *buf_start = buf;
1441 	unsigned long n;
1442 
1443 	/* Don't allow overflow */
1444 	if ((unsigned long) addr + count < count)
1445 		count = -(unsigned long) addr;
1446 
1447 	read_lock(&vmlist_lock);
1448 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1449 		vaddr = (char *) tmp->addr;
1450 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1451 			continue;
1452 		while (addr < vaddr) {
1453 			if (count == 0)
1454 				goto finished;
1455 			*buf = '\0';
1456 			buf++;
1457 			addr++;
1458 			count--;
1459 		}
1460 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1461 		do {
1462 			if (count == 0)
1463 				goto finished;
1464 			*buf = *addr;
1465 			buf++;
1466 			addr++;
1467 			count--;
1468 		} while (--n > 0);
1469 	}
1470 finished:
1471 	read_unlock(&vmlist_lock);
1472 	return buf - buf_start;
1473 }
1474 
1475 long vwrite(char *buf, char *addr, unsigned long count)
1476 {
1477 	struct vm_struct *tmp;
1478 	char *vaddr, *buf_start = buf;
1479 	unsigned long n;
1480 
1481 	/* Don't allow overflow */
1482 	if ((unsigned long) addr + count < count)
1483 		count = -(unsigned long) addr;
1484 
1485 	read_lock(&vmlist_lock);
1486 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1487 		vaddr = (char *) tmp->addr;
1488 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1489 			continue;
1490 		while (addr < vaddr) {
1491 			if (count == 0)
1492 				goto finished;
1493 			buf++;
1494 			addr++;
1495 			count--;
1496 		}
1497 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1498 		do {
1499 			if (count == 0)
1500 				goto finished;
1501 			*addr = *buf;
1502 			buf++;
1503 			addr++;
1504 			count--;
1505 		} while (--n > 0);
1506 	}
1507 finished:
1508 	read_unlock(&vmlist_lock);
1509 	return buf - buf_start;
1510 }
1511 
1512 /**
1513  *	remap_vmalloc_range  -  map vmalloc pages to userspace
1514  *	@vma:		vma to cover (map full range of vma)
1515  *	@addr:		vmalloc memory
1516  *	@pgoff:		number of pages into addr before first page to map
1517  *
1518  *	Returns:	0 for success, -Exxx on failure
1519  *
1520  *	This function checks that addr is a valid vmalloc'ed area, and
1521  *	that it is big enough to cover the vma. Will return failure if
1522  *	that criteria isn't met.
1523  *
1524  *	Similar to remap_pfn_range() (see mm/memory.c)
1525  */
1526 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1527 						unsigned long pgoff)
1528 {
1529 	struct vm_struct *area;
1530 	unsigned long uaddr = vma->vm_start;
1531 	unsigned long usize = vma->vm_end - vma->vm_start;
1532 
1533 	if ((PAGE_SIZE-1) & (unsigned long)addr)
1534 		return -EINVAL;
1535 
1536 	area = find_vm_area(addr);
1537 	if (!area)
1538 		return -EINVAL;
1539 
1540 	if (!(area->flags & VM_USERMAP))
1541 		return -EINVAL;
1542 
1543 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1544 		return -EINVAL;
1545 
1546 	addr += pgoff << PAGE_SHIFT;
1547 	do {
1548 		struct page *page = vmalloc_to_page(addr);
1549 		int ret;
1550 
1551 		ret = vm_insert_page(vma, uaddr, page);
1552 		if (ret)
1553 			return ret;
1554 
1555 		uaddr += PAGE_SIZE;
1556 		addr += PAGE_SIZE;
1557 		usize -= PAGE_SIZE;
1558 	} while (usize > 0);
1559 
1560 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
1561 	vma->vm_flags |= VM_RESERVED;
1562 
1563 	return 0;
1564 }
1565 EXPORT_SYMBOL(remap_vmalloc_range);
1566 
1567 /*
1568  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1569  * have one.
1570  */
1571 void  __attribute__((weak)) vmalloc_sync_all(void)
1572 {
1573 }
1574 
1575 
1576 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
1577 {
1578 	/* apply_to_page_range() does all the hard work. */
1579 	return 0;
1580 }
1581 
1582 /**
1583  *	alloc_vm_area - allocate a range of kernel address space
1584  *	@size:		size of the area
1585  *
1586  *	Returns:	NULL on failure, vm_struct on success
1587  *
1588  *	This function reserves a range of kernel address space, and
1589  *	allocates pagetables to map that range.  No actual mappings
1590  *	are created.  If the kernel address space is not shared
1591  *	between processes, it syncs the pagetable across all
1592  *	processes.
1593  */
1594 struct vm_struct *alloc_vm_area(size_t size)
1595 {
1596 	struct vm_struct *area;
1597 
1598 	area = get_vm_area_caller(size, VM_IOREMAP,
1599 				__builtin_return_address(0));
1600 	if (area == NULL)
1601 		return NULL;
1602 
1603 	/*
1604 	 * This ensures that page tables are constructed for this region
1605 	 * of kernel virtual address space and mapped into init_mm.
1606 	 */
1607 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1608 				area->size, f, NULL)) {
1609 		free_vm_area(area);
1610 		return NULL;
1611 	}
1612 
1613 	/* Make sure the pagetables are constructed in process kernel
1614 	   mappings */
1615 	vmalloc_sync_all();
1616 
1617 	return area;
1618 }
1619 EXPORT_SYMBOL_GPL(alloc_vm_area);
1620 
1621 void free_vm_area(struct vm_struct *area)
1622 {
1623 	struct vm_struct *ret;
1624 	ret = remove_vm_area(area->addr);
1625 	BUG_ON(ret != area);
1626 	kfree(area);
1627 }
1628 EXPORT_SYMBOL_GPL(free_vm_area);
1629 
1630 
1631 #ifdef CONFIG_PROC_FS
1632 static void *s_start(struct seq_file *m, loff_t *pos)
1633 {
1634 	loff_t n = *pos;
1635 	struct vm_struct *v;
1636 
1637 	read_lock(&vmlist_lock);
1638 	v = vmlist;
1639 	while (n > 0 && v) {
1640 		n--;
1641 		v = v->next;
1642 	}
1643 	if (!n)
1644 		return v;
1645 
1646 	return NULL;
1647 
1648 }
1649 
1650 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1651 {
1652 	struct vm_struct *v = p;
1653 
1654 	++*pos;
1655 	return v->next;
1656 }
1657 
1658 static void s_stop(struct seq_file *m, void *p)
1659 {
1660 	read_unlock(&vmlist_lock);
1661 }
1662 
1663 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1664 {
1665 	if (NUMA_BUILD) {
1666 		unsigned int nr, *counters = m->private;
1667 
1668 		if (!counters)
1669 			return;
1670 
1671 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1672 
1673 		for (nr = 0; nr < v->nr_pages; nr++)
1674 			counters[page_to_nid(v->pages[nr])]++;
1675 
1676 		for_each_node_state(nr, N_HIGH_MEMORY)
1677 			if (counters[nr])
1678 				seq_printf(m, " N%u=%u", nr, counters[nr]);
1679 	}
1680 }
1681 
1682 static int s_show(struct seq_file *m, void *p)
1683 {
1684 	struct vm_struct *v = p;
1685 
1686 	seq_printf(m, "0x%p-0x%p %7ld",
1687 		v->addr, v->addr + v->size, v->size);
1688 
1689 	if (v->caller) {
1690 		char buff[2 * KSYM_NAME_LEN];
1691 
1692 		seq_putc(m, ' ');
1693 		sprint_symbol(buff, (unsigned long)v->caller);
1694 		seq_puts(m, buff);
1695 	}
1696 
1697 	if (v->nr_pages)
1698 		seq_printf(m, " pages=%d", v->nr_pages);
1699 
1700 	if (v->phys_addr)
1701 		seq_printf(m, " phys=%lx", v->phys_addr);
1702 
1703 	if (v->flags & VM_IOREMAP)
1704 		seq_printf(m, " ioremap");
1705 
1706 	if (v->flags & VM_ALLOC)
1707 		seq_printf(m, " vmalloc");
1708 
1709 	if (v->flags & VM_MAP)
1710 		seq_printf(m, " vmap");
1711 
1712 	if (v->flags & VM_USERMAP)
1713 		seq_printf(m, " user");
1714 
1715 	if (v->flags & VM_VPAGES)
1716 		seq_printf(m, " vpages");
1717 
1718 	show_numa_info(m, v);
1719 	seq_putc(m, '\n');
1720 	return 0;
1721 }
1722 
1723 static const struct seq_operations vmalloc_op = {
1724 	.start = s_start,
1725 	.next = s_next,
1726 	.stop = s_stop,
1727 	.show = s_show,
1728 };
1729 
1730 static int vmalloc_open(struct inode *inode, struct file *file)
1731 {
1732 	unsigned int *ptr = NULL;
1733 	int ret;
1734 
1735 	if (NUMA_BUILD)
1736 		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
1737 	ret = seq_open(file, &vmalloc_op);
1738 	if (!ret) {
1739 		struct seq_file *m = file->private_data;
1740 		m->private = ptr;
1741 	} else
1742 		kfree(ptr);
1743 	return ret;
1744 }
1745 
1746 static const struct file_operations proc_vmalloc_operations = {
1747 	.open		= vmalloc_open,
1748 	.read		= seq_read,
1749 	.llseek		= seq_lseek,
1750 	.release	= seq_release_private,
1751 };
1752 
1753 static int __init proc_vmalloc_init(void)
1754 {
1755 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
1756 	return 0;
1757 }
1758 module_init(proc_vmalloc_init);
1759 #endif
1760 
1761