1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/debugobjects.h> 22 #include <linux/kallsyms.h> 23 #include <linux/list.h> 24 #include <linux/rbtree.h> 25 #include <linux/radix-tree.h> 26 #include <linux/rcupdate.h> 27 #include <linux/pfn.h> 28 #include <linux/kmemleak.h> 29 #include <linux/atomic.h> 30 #include <linux/llist.h> 31 #include <asm/uaccess.h> 32 #include <asm/tlbflush.h> 33 #include <asm/shmparam.h> 34 35 struct vfree_deferred { 36 struct llist_head list; 37 struct work_struct wq; 38 }; 39 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 40 41 static void __vunmap(const void *, int); 42 43 static void free_work(struct work_struct *w) 44 { 45 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 46 struct llist_node *llnode = llist_del_all(&p->list); 47 while (llnode) { 48 void *p = llnode; 49 llnode = llist_next(llnode); 50 __vunmap(p, 1); 51 } 52 } 53 54 /*** Page table manipulation functions ***/ 55 56 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 57 { 58 pte_t *pte; 59 60 pte = pte_offset_kernel(pmd, addr); 61 do { 62 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 63 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 64 } while (pte++, addr += PAGE_SIZE, addr != end); 65 } 66 67 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 68 { 69 pmd_t *pmd; 70 unsigned long next; 71 72 pmd = pmd_offset(pud, addr); 73 do { 74 next = pmd_addr_end(addr, end); 75 if (pmd_none_or_clear_bad(pmd)) 76 continue; 77 vunmap_pte_range(pmd, addr, next); 78 } while (pmd++, addr = next, addr != end); 79 } 80 81 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 82 { 83 pud_t *pud; 84 unsigned long next; 85 86 pud = pud_offset(pgd, addr); 87 do { 88 next = pud_addr_end(addr, end); 89 if (pud_none_or_clear_bad(pud)) 90 continue; 91 vunmap_pmd_range(pud, addr, next); 92 } while (pud++, addr = next, addr != end); 93 } 94 95 static void vunmap_page_range(unsigned long addr, unsigned long end) 96 { 97 pgd_t *pgd; 98 unsigned long next; 99 100 BUG_ON(addr >= end); 101 pgd = pgd_offset_k(addr); 102 do { 103 next = pgd_addr_end(addr, end); 104 if (pgd_none_or_clear_bad(pgd)) 105 continue; 106 vunmap_pud_range(pgd, addr, next); 107 } while (pgd++, addr = next, addr != end); 108 } 109 110 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 111 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 112 { 113 pte_t *pte; 114 115 /* 116 * nr is a running index into the array which helps higher level 117 * callers keep track of where we're up to. 118 */ 119 120 pte = pte_alloc_kernel(pmd, addr); 121 if (!pte) 122 return -ENOMEM; 123 do { 124 struct page *page = pages[*nr]; 125 126 if (WARN_ON(!pte_none(*pte))) 127 return -EBUSY; 128 if (WARN_ON(!page)) 129 return -ENOMEM; 130 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 131 (*nr)++; 132 } while (pte++, addr += PAGE_SIZE, addr != end); 133 return 0; 134 } 135 136 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 137 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 138 { 139 pmd_t *pmd; 140 unsigned long next; 141 142 pmd = pmd_alloc(&init_mm, pud, addr); 143 if (!pmd) 144 return -ENOMEM; 145 do { 146 next = pmd_addr_end(addr, end); 147 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 148 return -ENOMEM; 149 } while (pmd++, addr = next, addr != end); 150 return 0; 151 } 152 153 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 154 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 155 { 156 pud_t *pud; 157 unsigned long next; 158 159 pud = pud_alloc(&init_mm, pgd, addr); 160 if (!pud) 161 return -ENOMEM; 162 do { 163 next = pud_addr_end(addr, end); 164 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 165 return -ENOMEM; 166 } while (pud++, addr = next, addr != end); 167 return 0; 168 } 169 170 /* 171 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 172 * will have pfns corresponding to the "pages" array. 173 * 174 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 175 */ 176 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 177 pgprot_t prot, struct page **pages) 178 { 179 pgd_t *pgd; 180 unsigned long next; 181 unsigned long addr = start; 182 int err = 0; 183 int nr = 0; 184 185 BUG_ON(addr >= end); 186 pgd = pgd_offset_k(addr); 187 do { 188 next = pgd_addr_end(addr, end); 189 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 190 if (err) 191 return err; 192 } while (pgd++, addr = next, addr != end); 193 194 return nr; 195 } 196 197 static int vmap_page_range(unsigned long start, unsigned long end, 198 pgprot_t prot, struct page **pages) 199 { 200 int ret; 201 202 ret = vmap_page_range_noflush(start, end, prot, pages); 203 flush_cache_vmap(start, end); 204 return ret; 205 } 206 207 int is_vmalloc_or_module_addr(const void *x) 208 { 209 /* 210 * ARM, x86-64 and sparc64 put modules in a special place, 211 * and fall back on vmalloc() if that fails. Others 212 * just put it in the vmalloc space. 213 */ 214 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 215 unsigned long addr = (unsigned long)x; 216 if (addr >= MODULES_VADDR && addr < MODULES_END) 217 return 1; 218 #endif 219 return is_vmalloc_addr(x); 220 } 221 222 /* 223 * Walk a vmap address to the struct page it maps. 224 */ 225 struct page *vmalloc_to_page(const void *vmalloc_addr) 226 { 227 unsigned long addr = (unsigned long) vmalloc_addr; 228 struct page *page = NULL; 229 pgd_t *pgd = pgd_offset_k(addr); 230 231 /* 232 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 233 * architectures that do not vmalloc module space 234 */ 235 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 236 237 if (!pgd_none(*pgd)) { 238 pud_t *pud = pud_offset(pgd, addr); 239 if (!pud_none(*pud)) { 240 pmd_t *pmd = pmd_offset(pud, addr); 241 if (!pmd_none(*pmd)) { 242 pte_t *ptep, pte; 243 244 ptep = pte_offset_map(pmd, addr); 245 pte = *ptep; 246 if (pte_present(pte)) 247 page = pte_page(pte); 248 pte_unmap(ptep); 249 } 250 } 251 } 252 return page; 253 } 254 EXPORT_SYMBOL(vmalloc_to_page); 255 256 /* 257 * Map a vmalloc()-space virtual address to the physical page frame number. 258 */ 259 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 260 { 261 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 262 } 263 EXPORT_SYMBOL(vmalloc_to_pfn); 264 265 266 /*** Global kva allocator ***/ 267 268 #define VM_LAZY_FREE 0x01 269 #define VM_LAZY_FREEING 0x02 270 #define VM_VM_AREA 0x04 271 272 static DEFINE_SPINLOCK(vmap_area_lock); 273 /* Export for kexec only */ 274 LIST_HEAD(vmap_area_list); 275 static struct rb_root vmap_area_root = RB_ROOT; 276 277 /* The vmap cache globals are protected by vmap_area_lock */ 278 static struct rb_node *free_vmap_cache; 279 static unsigned long cached_hole_size; 280 static unsigned long cached_vstart; 281 static unsigned long cached_align; 282 283 static unsigned long vmap_area_pcpu_hole; 284 285 static struct vmap_area *__find_vmap_area(unsigned long addr) 286 { 287 struct rb_node *n = vmap_area_root.rb_node; 288 289 while (n) { 290 struct vmap_area *va; 291 292 va = rb_entry(n, struct vmap_area, rb_node); 293 if (addr < va->va_start) 294 n = n->rb_left; 295 else if (addr >= va->va_end) 296 n = n->rb_right; 297 else 298 return va; 299 } 300 301 return NULL; 302 } 303 304 static void __insert_vmap_area(struct vmap_area *va) 305 { 306 struct rb_node **p = &vmap_area_root.rb_node; 307 struct rb_node *parent = NULL; 308 struct rb_node *tmp; 309 310 while (*p) { 311 struct vmap_area *tmp_va; 312 313 parent = *p; 314 tmp_va = rb_entry(parent, struct vmap_area, rb_node); 315 if (va->va_start < tmp_va->va_end) 316 p = &(*p)->rb_left; 317 else if (va->va_end > tmp_va->va_start) 318 p = &(*p)->rb_right; 319 else 320 BUG(); 321 } 322 323 rb_link_node(&va->rb_node, parent, p); 324 rb_insert_color(&va->rb_node, &vmap_area_root); 325 326 /* address-sort this list */ 327 tmp = rb_prev(&va->rb_node); 328 if (tmp) { 329 struct vmap_area *prev; 330 prev = rb_entry(tmp, struct vmap_area, rb_node); 331 list_add_rcu(&va->list, &prev->list); 332 } else 333 list_add_rcu(&va->list, &vmap_area_list); 334 } 335 336 static void purge_vmap_area_lazy(void); 337 338 /* 339 * Allocate a region of KVA of the specified size and alignment, within the 340 * vstart and vend. 341 */ 342 static struct vmap_area *alloc_vmap_area(unsigned long size, 343 unsigned long align, 344 unsigned long vstart, unsigned long vend, 345 int node, gfp_t gfp_mask) 346 { 347 struct vmap_area *va; 348 struct rb_node *n; 349 unsigned long addr; 350 int purged = 0; 351 struct vmap_area *first; 352 353 BUG_ON(!size); 354 BUG_ON(size & ~PAGE_MASK); 355 BUG_ON(!is_power_of_2(align)); 356 357 va = kmalloc_node(sizeof(struct vmap_area), 358 gfp_mask & GFP_RECLAIM_MASK, node); 359 if (unlikely(!va)) 360 return ERR_PTR(-ENOMEM); 361 362 retry: 363 spin_lock(&vmap_area_lock); 364 /* 365 * Invalidate cache if we have more permissive parameters. 366 * cached_hole_size notes the largest hole noticed _below_ 367 * the vmap_area cached in free_vmap_cache: if size fits 368 * into that hole, we want to scan from vstart to reuse 369 * the hole instead of allocating above free_vmap_cache. 370 * Note that __free_vmap_area may update free_vmap_cache 371 * without updating cached_hole_size or cached_align. 372 */ 373 if (!free_vmap_cache || 374 size < cached_hole_size || 375 vstart < cached_vstart || 376 align < cached_align) { 377 nocache: 378 cached_hole_size = 0; 379 free_vmap_cache = NULL; 380 } 381 /* record if we encounter less permissive parameters */ 382 cached_vstart = vstart; 383 cached_align = align; 384 385 /* find starting point for our search */ 386 if (free_vmap_cache) { 387 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 388 addr = ALIGN(first->va_end, align); 389 if (addr < vstart) 390 goto nocache; 391 if (addr + size - 1 < addr) 392 goto overflow; 393 394 } else { 395 addr = ALIGN(vstart, align); 396 if (addr + size - 1 < addr) 397 goto overflow; 398 399 n = vmap_area_root.rb_node; 400 first = NULL; 401 402 while (n) { 403 struct vmap_area *tmp; 404 tmp = rb_entry(n, struct vmap_area, rb_node); 405 if (tmp->va_end >= addr) { 406 first = tmp; 407 if (tmp->va_start <= addr) 408 break; 409 n = n->rb_left; 410 } else 411 n = n->rb_right; 412 } 413 414 if (!first) 415 goto found; 416 } 417 418 /* from the starting point, walk areas until a suitable hole is found */ 419 while (addr + size > first->va_start && addr + size <= vend) { 420 if (addr + cached_hole_size < first->va_start) 421 cached_hole_size = first->va_start - addr; 422 addr = ALIGN(first->va_end, align); 423 if (addr + size - 1 < addr) 424 goto overflow; 425 426 if (list_is_last(&first->list, &vmap_area_list)) 427 goto found; 428 429 first = list_entry(first->list.next, 430 struct vmap_area, list); 431 } 432 433 found: 434 if (addr + size > vend) 435 goto overflow; 436 437 va->va_start = addr; 438 va->va_end = addr + size; 439 va->flags = 0; 440 __insert_vmap_area(va); 441 free_vmap_cache = &va->rb_node; 442 spin_unlock(&vmap_area_lock); 443 444 BUG_ON(va->va_start & (align-1)); 445 BUG_ON(va->va_start < vstart); 446 BUG_ON(va->va_end > vend); 447 448 return va; 449 450 overflow: 451 spin_unlock(&vmap_area_lock); 452 if (!purged) { 453 purge_vmap_area_lazy(); 454 purged = 1; 455 goto retry; 456 } 457 if (printk_ratelimit()) 458 printk(KERN_WARNING 459 "vmap allocation for size %lu failed: " 460 "use vmalloc=<size> to increase size.\n", size); 461 kfree(va); 462 return ERR_PTR(-EBUSY); 463 } 464 465 static void __free_vmap_area(struct vmap_area *va) 466 { 467 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 468 469 if (free_vmap_cache) { 470 if (va->va_end < cached_vstart) { 471 free_vmap_cache = NULL; 472 } else { 473 struct vmap_area *cache; 474 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 475 if (va->va_start <= cache->va_start) { 476 free_vmap_cache = rb_prev(&va->rb_node); 477 /* 478 * We don't try to update cached_hole_size or 479 * cached_align, but it won't go very wrong. 480 */ 481 } 482 } 483 } 484 rb_erase(&va->rb_node, &vmap_area_root); 485 RB_CLEAR_NODE(&va->rb_node); 486 list_del_rcu(&va->list); 487 488 /* 489 * Track the highest possible candidate for pcpu area 490 * allocation. Areas outside of vmalloc area can be returned 491 * here too, consider only end addresses which fall inside 492 * vmalloc area proper. 493 */ 494 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 495 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 496 497 kfree_rcu(va, rcu_head); 498 } 499 500 /* 501 * Free a region of KVA allocated by alloc_vmap_area 502 */ 503 static void free_vmap_area(struct vmap_area *va) 504 { 505 spin_lock(&vmap_area_lock); 506 __free_vmap_area(va); 507 spin_unlock(&vmap_area_lock); 508 } 509 510 /* 511 * Clear the pagetable entries of a given vmap_area 512 */ 513 static void unmap_vmap_area(struct vmap_area *va) 514 { 515 vunmap_page_range(va->va_start, va->va_end); 516 } 517 518 static void vmap_debug_free_range(unsigned long start, unsigned long end) 519 { 520 /* 521 * Unmap page tables and force a TLB flush immediately if 522 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free 523 * bugs similarly to those in linear kernel virtual address 524 * space after a page has been freed. 525 * 526 * All the lazy freeing logic is still retained, in order to 527 * minimise intrusiveness of this debugging feature. 528 * 529 * This is going to be *slow* (linear kernel virtual address 530 * debugging doesn't do a broadcast TLB flush so it is a lot 531 * faster). 532 */ 533 #ifdef CONFIG_DEBUG_PAGEALLOC 534 vunmap_page_range(start, end); 535 flush_tlb_kernel_range(start, end); 536 #endif 537 } 538 539 /* 540 * lazy_max_pages is the maximum amount of virtual address space we gather up 541 * before attempting to purge with a TLB flush. 542 * 543 * There is a tradeoff here: a larger number will cover more kernel page tables 544 * and take slightly longer to purge, but it will linearly reduce the number of 545 * global TLB flushes that must be performed. It would seem natural to scale 546 * this number up linearly with the number of CPUs (because vmapping activity 547 * could also scale linearly with the number of CPUs), however it is likely 548 * that in practice, workloads might be constrained in other ways that mean 549 * vmap activity will not scale linearly with CPUs. Also, I want to be 550 * conservative and not introduce a big latency on huge systems, so go with 551 * a less aggressive log scale. It will still be an improvement over the old 552 * code, and it will be simple to change the scale factor if we find that it 553 * becomes a problem on bigger systems. 554 */ 555 static unsigned long lazy_max_pages(void) 556 { 557 unsigned int log; 558 559 log = fls(num_online_cpus()); 560 561 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 562 } 563 564 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 565 566 /* for per-CPU blocks */ 567 static void purge_fragmented_blocks_allcpus(void); 568 569 /* 570 * called before a call to iounmap() if the caller wants vm_area_struct's 571 * immediately freed. 572 */ 573 void set_iounmap_nonlazy(void) 574 { 575 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); 576 } 577 578 /* 579 * Purges all lazily-freed vmap areas. 580 * 581 * If sync is 0 then don't purge if there is already a purge in progress. 582 * If force_flush is 1, then flush kernel TLBs between *start and *end even 583 * if we found no lazy vmap areas to unmap (callers can use this to optimise 584 * their own TLB flushing). 585 * Returns with *start = min(*start, lowest purged address) 586 * *end = max(*end, highest purged address) 587 */ 588 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 589 int sync, int force_flush) 590 { 591 static DEFINE_SPINLOCK(purge_lock); 592 LIST_HEAD(valist); 593 struct vmap_area *va; 594 struct vmap_area *n_va; 595 int nr = 0; 596 597 /* 598 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 599 * should not expect such behaviour. This just simplifies locking for 600 * the case that isn't actually used at the moment anyway. 601 */ 602 if (!sync && !force_flush) { 603 if (!spin_trylock(&purge_lock)) 604 return; 605 } else 606 spin_lock(&purge_lock); 607 608 if (sync) 609 purge_fragmented_blocks_allcpus(); 610 611 rcu_read_lock(); 612 list_for_each_entry_rcu(va, &vmap_area_list, list) { 613 if (va->flags & VM_LAZY_FREE) { 614 if (va->va_start < *start) 615 *start = va->va_start; 616 if (va->va_end > *end) 617 *end = va->va_end; 618 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 619 list_add_tail(&va->purge_list, &valist); 620 va->flags |= VM_LAZY_FREEING; 621 va->flags &= ~VM_LAZY_FREE; 622 } 623 } 624 rcu_read_unlock(); 625 626 if (nr) 627 atomic_sub(nr, &vmap_lazy_nr); 628 629 if (nr || force_flush) 630 flush_tlb_kernel_range(*start, *end); 631 632 if (nr) { 633 spin_lock(&vmap_area_lock); 634 list_for_each_entry_safe(va, n_va, &valist, purge_list) 635 __free_vmap_area(va); 636 spin_unlock(&vmap_area_lock); 637 } 638 spin_unlock(&purge_lock); 639 } 640 641 /* 642 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 643 * is already purging. 644 */ 645 static void try_purge_vmap_area_lazy(void) 646 { 647 unsigned long start = ULONG_MAX, end = 0; 648 649 __purge_vmap_area_lazy(&start, &end, 0, 0); 650 } 651 652 /* 653 * Kick off a purge of the outstanding lazy areas. 654 */ 655 static void purge_vmap_area_lazy(void) 656 { 657 unsigned long start = ULONG_MAX, end = 0; 658 659 __purge_vmap_area_lazy(&start, &end, 1, 0); 660 } 661 662 /* 663 * Free a vmap area, caller ensuring that the area has been unmapped 664 * and flush_cache_vunmap had been called for the correct range 665 * previously. 666 */ 667 static void free_vmap_area_noflush(struct vmap_area *va) 668 { 669 va->flags |= VM_LAZY_FREE; 670 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 671 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 672 try_purge_vmap_area_lazy(); 673 } 674 675 /* 676 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been 677 * called for the correct range previously. 678 */ 679 static void free_unmap_vmap_area_noflush(struct vmap_area *va) 680 { 681 unmap_vmap_area(va); 682 free_vmap_area_noflush(va); 683 } 684 685 /* 686 * Free and unmap a vmap area 687 */ 688 static void free_unmap_vmap_area(struct vmap_area *va) 689 { 690 flush_cache_vunmap(va->va_start, va->va_end); 691 free_unmap_vmap_area_noflush(va); 692 } 693 694 static struct vmap_area *find_vmap_area(unsigned long addr) 695 { 696 struct vmap_area *va; 697 698 spin_lock(&vmap_area_lock); 699 va = __find_vmap_area(addr); 700 spin_unlock(&vmap_area_lock); 701 702 return va; 703 } 704 705 static void free_unmap_vmap_area_addr(unsigned long addr) 706 { 707 struct vmap_area *va; 708 709 va = find_vmap_area(addr); 710 BUG_ON(!va); 711 free_unmap_vmap_area(va); 712 } 713 714 715 /*** Per cpu kva allocator ***/ 716 717 /* 718 * vmap space is limited especially on 32 bit architectures. Ensure there is 719 * room for at least 16 percpu vmap blocks per CPU. 720 */ 721 /* 722 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 723 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 724 * instead (we just need a rough idea) 725 */ 726 #if BITS_PER_LONG == 32 727 #define VMALLOC_SPACE (128UL*1024*1024) 728 #else 729 #define VMALLOC_SPACE (128UL*1024*1024*1024) 730 #endif 731 732 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 733 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 734 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 735 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 736 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 737 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 738 #define VMAP_BBMAP_BITS \ 739 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 740 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 741 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 742 743 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 744 745 static bool vmap_initialized __read_mostly = false; 746 747 struct vmap_block_queue { 748 spinlock_t lock; 749 struct list_head free; 750 }; 751 752 struct vmap_block { 753 spinlock_t lock; 754 struct vmap_area *va; 755 struct vmap_block_queue *vbq; 756 unsigned long free, dirty; 757 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); 758 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); 759 struct list_head free_list; 760 struct rcu_head rcu_head; 761 struct list_head purge; 762 }; 763 764 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 765 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 766 767 /* 768 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 769 * in the free path. Could get rid of this if we change the API to return a 770 * "cookie" from alloc, to be passed to free. But no big deal yet. 771 */ 772 static DEFINE_SPINLOCK(vmap_block_tree_lock); 773 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 774 775 /* 776 * We should probably have a fallback mechanism to allocate virtual memory 777 * out of partially filled vmap blocks. However vmap block sizing should be 778 * fairly reasonable according to the vmalloc size, so it shouldn't be a 779 * big problem. 780 */ 781 782 static unsigned long addr_to_vb_idx(unsigned long addr) 783 { 784 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 785 addr /= VMAP_BLOCK_SIZE; 786 return addr; 787 } 788 789 static struct vmap_block *new_vmap_block(gfp_t gfp_mask) 790 { 791 struct vmap_block_queue *vbq; 792 struct vmap_block *vb; 793 struct vmap_area *va; 794 unsigned long vb_idx; 795 int node, err; 796 797 node = numa_node_id(); 798 799 vb = kmalloc_node(sizeof(struct vmap_block), 800 gfp_mask & GFP_RECLAIM_MASK, node); 801 if (unlikely(!vb)) 802 return ERR_PTR(-ENOMEM); 803 804 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 805 VMALLOC_START, VMALLOC_END, 806 node, gfp_mask); 807 if (IS_ERR(va)) { 808 kfree(vb); 809 return ERR_CAST(va); 810 } 811 812 err = radix_tree_preload(gfp_mask); 813 if (unlikely(err)) { 814 kfree(vb); 815 free_vmap_area(va); 816 return ERR_PTR(err); 817 } 818 819 spin_lock_init(&vb->lock); 820 vb->va = va; 821 vb->free = VMAP_BBMAP_BITS; 822 vb->dirty = 0; 823 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); 824 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); 825 INIT_LIST_HEAD(&vb->free_list); 826 827 vb_idx = addr_to_vb_idx(va->va_start); 828 spin_lock(&vmap_block_tree_lock); 829 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 830 spin_unlock(&vmap_block_tree_lock); 831 BUG_ON(err); 832 radix_tree_preload_end(); 833 834 vbq = &get_cpu_var(vmap_block_queue); 835 vb->vbq = vbq; 836 spin_lock(&vbq->lock); 837 list_add_rcu(&vb->free_list, &vbq->free); 838 spin_unlock(&vbq->lock); 839 put_cpu_var(vmap_block_queue); 840 841 return vb; 842 } 843 844 static void free_vmap_block(struct vmap_block *vb) 845 { 846 struct vmap_block *tmp; 847 unsigned long vb_idx; 848 849 vb_idx = addr_to_vb_idx(vb->va->va_start); 850 spin_lock(&vmap_block_tree_lock); 851 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 852 spin_unlock(&vmap_block_tree_lock); 853 BUG_ON(tmp != vb); 854 855 free_vmap_area_noflush(vb->va); 856 kfree_rcu(vb, rcu_head); 857 } 858 859 static void purge_fragmented_blocks(int cpu) 860 { 861 LIST_HEAD(purge); 862 struct vmap_block *vb; 863 struct vmap_block *n_vb; 864 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 865 866 rcu_read_lock(); 867 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 868 869 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 870 continue; 871 872 spin_lock(&vb->lock); 873 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 874 vb->free = 0; /* prevent further allocs after releasing lock */ 875 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 876 bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS); 877 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS); 878 spin_lock(&vbq->lock); 879 list_del_rcu(&vb->free_list); 880 spin_unlock(&vbq->lock); 881 spin_unlock(&vb->lock); 882 list_add_tail(&vb->purge, &purge); 883 } else 884 spin_unlock(&vb->lock); 885 } 886 rcu_read_unlock(); 887 888 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 889 list_del(&vb->purge); 890 free_vmap_block(vb); 891 } 892 } 893 894 static void purge_fragmented_blocks_thiscpu(void) 895 { 896 purge_fragmented_blocks(smp_processor_id()); 897 } 898 899 static void purge_fragmented_blocks_allcpus(void) 900 { 901 int cpu; 902 903 for_each_possible_cpu(cpu) 904 purge_fragmented_blocks(cpu); 905 } 906 907 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 908 { 909 struct vmap_block_queue *vbq; 910 struct vmap_block *vb; 911 unsigned long addr = 0; 912 unsigned int order; 913 int purge = 0; 914 915 BUG_ON(size & ~PAGE_MASK); 916 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 917 if (WARN_ON(size == 0)) { 918 /* 919 * Allocating 0 bytes isn't what caller wants since 920 * get_order(0) returns funny result. Just warn and terminate 921 * early. 922 */ 923 return NULL; 924 } 925 order = get_order(size); 926 927 again: 928 rcu_read_lock(); 929 vbq = &get_cpu_var(vmap_block_queue); 930 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 931 int i; 932 933 spin_lock(&vb->lock); 934 if (vb->free < 1UL << order) 935 goto next; 936 937 i = bitmap_find_free_region(vb->alloc_map, 938 VMAP_BBMAP_BITS, order); 939 940 if (i < 0) { 941 if (vb->free + vb->dirty == VMAP_BBMAP_BITS) { 942 /* fragmented and no outstanding allocations */ 943 BUG_ON(vb->dirty != VMAP_BBMAP_BITS); 944 purge = 1; 945 } 946 goto next; 947 } 948 addr = vb->va->va_start + (i << PAGE_SHIFT); 949 BUG_ON(addr_to_vb_idx(addr) != 950 addr_to_vb_idx(vb->va->va_start)); 951 vb->free -= 1UL << order; 952 if (vb->free == 0) { 953 spin_lock(&vbq->lock); 954 list_del_rcu(&vb->free_list); 955 spin_unlock(&vbq->lock); 956 } 957 spin_unlock(&vb->lock); 958 break; 959 next: 960 spin_unlock(&vb->lock); 961 } 962 963 if (purge) 964 purge_fragmented_blocks_thiscpu(); 965 966 put_cpu_var(vmap_block_queue); 967 rcu_read_unlock(); 968 969 if (!addr) { 970 vb = new_vmap_block(gfp_mask); 971 if (IS_ERR(vb)) 972 return vb; 973 goto again; 974 } 975 976 return (void *)addr; 977 } 978 979 static void vb_free(const void *addr, unsigned long size) 980 { 981 unsigned long offset; 982 unsigned long vb_idx; 983 unsigned int order; 984 struct vmap_block *vb; 985 986 BUG_ON(size & ~PAGE_MASK); 987 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 988 989 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 990 991 order = get_order(size); 992 993 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 994 995 vb_idx = addr_to_vb_idx((unsigned long)addr); 996 rcu_read_lock(); 997 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 998 rcu_read_unlock(); 999 BUG_ON(!vb); 1000 1001 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 1002 1003 spin_lock(&vb->lock); 1004 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order)); 1005 1006 vb->dirty += 1UL << order; 1007 if (vb->dirty == VMAP_BBMAP_BITS) { 1008 BUG_ON(vb->free); 1009 spin_unlock(&vb->lock); 1010 free_vmap_block(vb); 1011 } else 1012 spin_unlock(&vb->lock); 1013 } 1014 1015 /** 1016 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1017 * 1018 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1019 * to amortize TLB flushing overheads. What this means is that any page you 1020 * have now, may, in a former life, have been mapped into kernel virtual 1021 * address by the vmap layer and so there might be some CPUs with TLB entries 1022 * still referencing that page (additional to the regular 1:1 kernel mapping). 1023 * 1024 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1025 * be sure that none of the pages we have control over will have any aliases 1026 * from the vmap layer. 1027 */ 1028 void vm_unmap_aliases(void) 1029 { 1030 unsigned long start = ULONG_MAX, end = 0; 1031 int cpu; 1032 int flush = 0; 1033 1034 if (unlikely(!vmap_initialized)) 1035 return; 1036 1037 for_each_possible_cpu(cpu) { 1038 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1039 struct vmap_block *vb; 1040 1041 rcu_read_lock(); 1042 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1043 int i; 1044 1045 spin_lock(&vb->lock); 1046 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); 1047 while (i < VMAP_BBMAP_BITS) { 1048 unsigned long s, e; 1049 int j; 1050 j = find_next_zero_bit(vb->dirty_map, 1051 VMAP_BBMAP_BITS, i); 1052 1053 s = vb->va->va_start + (i << PAGE_SHIFT); 1054 e = vb->va->va_start + (j << PAGE_SHIFT); 1055 flush = 1; 1056 1057 if (s < start) 1058 start = s; 1059 if (e > end) 1060 end = e; 1061 1062 i = j; 1063 i = find_next_bit(vb->dirty_map, 1064 VMAP_BBMAP_BITS, i); 1065 } 1066 spin_unlock(&vb->lock); 1067 } 1068 rcu_read_unlock(); 1069 } 1070 1071 __purge_vmap_area_lazy(&start, &end, 1, flush); 1072 } 1073 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1074 1075 /** 1076 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1077 * @mem: the pointer returned by vm_map_ram 1078 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1079 */ 1080 void vm_unmap_ram(const void *mem, unsigned int count) 1081 { 1082 unsigned long size = count << PAGE_SHIFT; 1083 unsigned long addr = (unsigned long)mem; 1084 1085 BUG_ON(!addr); 1086 BUG_ON(addr < VMALLOC_START); 1087 BUG_ON(addr > VMALLOC_END); 1088 BUG_ON(addr & (PAGE_SIZE-1)); 1089 1090 debug_check_no_locks_freed(mem, size); 1091 vmap_debug_free_range(addr, addr+size); 1092 1093 if (likely(count <= VMAP_MAX_ALLOC)) 1094 vb_free(mem, size); 1095 else 1096 free_unmap_vmap_area_addr(addr); 1097 } 1098 EXPORT_SYMBOL(vm_unmap_ram); 1099 1100 /** 1101 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1102 * @pages: an array of pointers to the pages to be mapped 1103 * @count: number of pages 1104 * @node: prefer to allocate data structures on this node 1105 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1106 * 1107 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1108 */ 1109 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1110 { 1111 unsigned long size = count << PAGE_SHIFT; 1112 unsigned long addr; 1113 void *mem; 1114 1115 if (likely(count <= VMAP_MAX_ALLOC)) { 1116 mem = vb_alloc(size, GFP_KERNEL); 1117 if (IS_ERR(mem)) 1118 return NULL; 1119 addr = (unsigned long)mem; 1120 } else { 1121 struct vmap_area *va; 1122 va = alloc_vmap_area(size, PAGE_SIZE, 1123 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1124 if (IS_ERR(va)) 1125 return NULL; 1126 1127 addr = va->va_start; 1128 mem = (void *)addr; 1129 } 1130 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1131 vm_unmap_ram(mem, count); 1132 return NULL; 1133 } 1134 return mem; 1135 } 1136 EXPORT_SYMBOL(vm_map_ram); 1137 1138 static struct vm_struct *vmlist __initdata; 1139 /** 1140 * vm_area_add_early - add vmap area early during boot 1141 * @vm: vm_struct to add 1142 * 1143 * This function is used to add fixed kernel vm area to vmlist before 1144 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1145 * should contain proper values and the other fields should be zero. 1146 * 1147 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1148 */ 1149 void __init vm_area_add_early(struct vm_struct *vm) 1150 { 1151 struct vm_struct *tmp, **p; 1152 1153 BUG_ON(vmap_initialized); 1154 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1155 if (tmp->addr >= vm->addr) { 1156 BUG_ON(tmp->addr < vm->addr + vm->size); 1157 break; 1158 } else 1159 BUG_ON(tmp->addr + tmp->size > vm->addr); 1160 } 1161 vm->next = *p; 1162 *p = vm; 1163 } 1164 1165 /** 1166 * vm_area_register_early - register vmap area early during boot 1167 * @vm: vm_struct to register 1168 * @align: requested alignment 1169 * 1170 * This function is used to register kernel vm area before 1171 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1172 * proper values on entry and other fields should be zero. On return, 1173 * vm->addr contains the allocated address. 1174 * 1175 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1176 */ 1177 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1178 { 1179 static size_t vm_init_off __initdata; 1180 unsigned long addr; 1181 1182 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1183 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1184 1185 vm->addr = (void *)addr; 1186 1187 vm_area_add_early(vm); 1188 } 1189 1190 void __init vmalloc_init(void) 1191 { 1192 struct vmap_area *va; 1193 struct vm_struct *tmp; 1194 int i; 1195 1196 for_each_possible_cpu(i) { 1197 struct vmap_block_queue *vbq; 1198 struct vfree_deferred *p; 1199 1200 vbq = &per_cpu(vmap_block_queue, i); 1201 spin_lock_init(&vbq->lock); 1202 INIT_LIST_HEAD(&vbq->free); 1203 p = &per_cpu(vfree_deferred, i); 1204 init_llist_head(&p->list); 1205 INIT_WORK(&p->wq, free_work); 1206 } 1207 1208 /* Import existing vmlist entries. */ 1209 for (tmp = vmlist; tmp; tmp = tmp->next) { 1210 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1211 va->flags = VM_VM_AREA; 1212 va->va_start = (unsigned long)tmp->addr; 1213 va->va_end = va->va_start + tmp->size; 1214 va->vm = tmp; 1215 __insert_vmap_area(va); 1216 } 1217 1218 vmap_area_pcpu_hole = VMALLOC_END; 1219 1220 vmap_initialized = true; 1221 } 1222 1223 /** 1224 * map_kernel_range_noflush - map kernel VM area with the specified pages 1225 * @addr: start of the VM area to map 1226 * @size: size of the VM area to map 1227 * @prot: page protection flags to use 1228 * @pages: pages to map 1229 * 1230 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1231 * specify should have been allocated using get_vm_area() and its 1232 * friends. 1233 * 1234 * NOTE: 1235 * This function does NOT do any cache flushing. The caller is 1236 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1237 * before calling this function. 1238 * 1239 * RETURNS: 1240 * The number of pages mapped on success, -errno on failure. 1241 */ 1242 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1243 pgprot_t prot, struct page **pages) 1244 { 1245 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1246 } 1247 1248 /** 1249 * unmap_kernel_range_noflush - unmap kernel VM area 1250 * @addr: start of the VM area to unmap 1251 * @size: size of the VM area to unmap 1252 * 1253 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1254 * specify should have been allocated using get_vm_area() and its 1255 * friends. 1256 * 1257 * NOTE: 1258 * This function does NOT do any cache flushing. The caller is 1259 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1260 * before calling this function and flush_tlb_kernel_range() after. 1261 */ 1262 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1263 { 1264 vunmap_page_range(addr, addr + size); 1265 } 1266 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1267 1268 /** 1269 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1270 * @addr: start of the VM area to unmap 1271 * @size: size of the VM area to unmap 1272 * 1273 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1274 * the unmapping and tlb after. 1275 */ 1276 void unmap_kernel_range(unsigned long addr, unsigned long size) 1277 { 1278 unsigned long end = addr + size; 1279 1280 flush_cache_vunmap(addr, end); 1281 vunmap_page_range(addr, end); 1282 flush_tlb_kernel_range(addr, end); 1283 } 1284 1285 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 1286 { 1287 unsigned long addr = (unsigned long)area->addr; 1288 unsigned long end = addr + area->size - PAGE_SIZE; 1289 int err; 1290 1291 err = vmap_page_range(addr, end, prot, *pages); 1292 if (err > 0) { 1293 *pages += err; 1294 err = 0; 1295 } 1296 1297 return err; 1298 } 1299 EXPORT_SYMBOL_GPL(map_vm_area); 1300 1301 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1302 unsigned long flags, const void *caller) 1303 { 1304 spin_lock(&vmap_area_lock); 1305 vm->flags = flags; 1306 vm->addr = (void *)va->va_start; 1307 vm->size = va->va_end - va->va_start; 1308 vm->caller = caller; 1309 va->vm = vm; 1310 va->flags |= VM_VM_AREA; 1311 spin_unlock(&vmap_area_lock); 1312 } 1313 1314 static void clear_vm_unlist(struct vm_struct *vm) 1315 { 1316 /* 1317 * Before removing VM_UNLIST, 1318 * we should make sure that vm has proper values. 1319 * Pair with smp_rmb() in show_numa_info(). 1320 */ 1321 smp_wmb(); 1322 vm->flags &= ~VM_UNLIST; 1323 } 1324 1325 static struct vm_struct *__get_vm_area_node(unsigned long size, 1326 unsigned long align, unsigned long flags, unsigned long start, 1327 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 1328 { 1329 struct vmap_area *va; 1330 struct vm_struct *area; 1331 1332 BUG_ON(in_interrupt()); 1333 if (flags & VM_IOREMAP) 1334 align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER); 1335 1336 size = PAGE_ALIGN(size); 1337 if (unlikely(!size)) 1338 return NULL; 1339 1340 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1341 if (unlikely(!area)) 1342 return NULL; 1343 1344 /* 1345 * We always allocate a guard page. 1346 */ 1347 size += PAGE_SIZE; 1348 1349 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1350 if (IS_ERR(va)) { 1351 kfree(area); 1352 return NULL; 1353 } 1354 1355 setup_vmalloc_vm(area, va, flags, caller); 1356 1357 return area; 1358 } 1359 1360 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1361 unsigned long start, unsigned long end) 1362 { 1363 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1364 GFP_KERNEL, __builtin_return_address(0)); 1365 } 1366 EXPORT_SYMBOL_GPL(__get_vm_area); 1367 1368 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1369 unsigned long start, unsigned long end, 1370 const void *caller) 1371 { 1372 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1373 GFP_KERNEL, caller); 1374 } 1375 1376 /** 1377 * get_vm_area - reserve a contiguous kernel virtual area 1378 * @size: size of the area 1379 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1380 * 1381 * Search an area of @size in the kernel virtual mapping area, 1382 * and reserved it for out purposes. Returns the area descriptor 1383 * on success or %NULL on failure. 1384 */ 1385 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1386 { 1387 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1388 NUMA_NO_NODE, GFP_KERNEL, 1389 __builtin_return_address(0)); 1390 } 1391 1392 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1393 const void *caller) 1394 { 1395 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1396 NUMA_NO_NODE, GFP_KERNEL, caller); 1397 } 1398 1399 /** 1400 * find_vm_area - find a continuous kernel virtual area 1401 * @addr: base address 1402 * 1403 * Search for the kernel VM area starting at @addr, and return it. 1404 * It is up to the caller to do all required locking to keep the returned 1405 * pointer valid. 1406 */ 1407 struct vm_struct *find_vm_area(const void *addr) 1408 { 1409 struct vmap_area *va; 1410 1411 va = find_vmap_area((unsigned long)addr); 1412 if (va && va->flags & VM_VM_AREA) 1413 return va->vm; 1414 1415 return NULL; 1416 } 1417 1418 /** 1419 * remove_vm_area - find and remove a continuous kernel virtual area 1420 * @addr: base address 1421 * 1422 * Search for the kernel VM area starting at @addr, and remove it. 1423 * This function returns the found VM area, but using it is NOT safe 1424 * on SMP machines, except for its size or flags. 1425 */ 1426 struct vm_struct *remove_vm_area(const void *addr) 1427 { 1428 struct vmap_area *va; 1429 1430 va = find_vmap_area((unsigned long)addr); 1431 if (va && va->flags & VM_VM_AREA) { 1432 struct vm_struct *vm = va->vm; 1433 1434 spin_lock(&vmap_area_lock); 1435 va->vm = NULL; 1436 va->flags &= ~VM_VM_AREA; 1437 spin_unlock(&vmap_area_lock); 1438 1439 vmap_debug_free_range(va->va_start, va->va_end); 1440 free_unmap_vmap_area(va); 1441 vm->size -= PAGE_SIZE; 1442 1443 return vm; 1444 } 1445 return NULL; 1446 } 1447 1448 static void __vunmap(const void *addr, int deallocate_pages) 1449 { 1450 struct vm_struct *area; 1451 1452 if (!addr) 1453 return; 1454 1455 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 1456 addr)); 1457 return; 1458 1459 area = remove_vm_area(addr); 1460 if (unlikely(!area)) { 1461 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1462 addr); 1463 return; 1464 } 1465 1466 debug_check_no_locks_freed(addr, area->size); 1467 debug_check_no_obj_freed(addr, area->size); 1468 1469 if (deallocate_pages) { 1470 int i; 1471 1472 for (i = 0; i < area->nr_pages; i++) { 1473 struct page *page = area->pages[i]; 1474 1475 BUG_ON(!page); 1476 __free_page(page); 1477 } 1478 1479 if (area->flags & VM_VPAGES) 1480 vfree(area->pages); 1481 else 1482 kfree(area->pages); 1483 } 1484 1485 kfree(area); 1486 return; 1487 } 1488 1489 /** 1490 * vfree - release memory allocated by vmalloc() 1491 * @addr: memory base address 1492 * 1493 * Free the virtually continuous memory area starting at @addr, as 1494 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1495 * NULL, no operation is performed. 1496 * 1497 * Must not be called in NMI context (strictly speaking, only if we don't 1498 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 1499 * conventions for vfree() arch-depenedent would be a really bad idea) 1500 * 1501 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node) 1502 * 1503 */ 1504 void vfree(const void *addr) 1505 { 1506 BUG_ON(in_nmi()); 1507 1508 kmemleak_free(addr); 1509 1510 if (!addr) 1511 return; 1512 if (unlikely(in_interrupt())) { 1513 struct vfree_deferred *p = &__get_cpu_var(vfree_deferred); 1514 llist_add((struct llist_node *)addr, &p->list); 1515 schedule_work(&p->wq); 1516 } else 1517 __vunmap(addr, 1); 1518 } 1519 EXPORT_SYMBOL(vfree); 1520 1521 /** 1522 * vunmap - release virtual mapping obtained by vmap() 1523 * @addr: memory base address 1524 * 1525 * Free the virtually contiguous memory area starting at @addr, 1526 * which was created from the page array passed to vmap(). 1527 * 1528 * Must not be called in interrupt context. 1529 */ 1530 void vunmap(const void *addr) 1531 { 1532 BUG_ON(in_interrupt()); 1533 might_sleep(); 1534 if (addr) 1535 __vunmap(addr, 0); 1536 } 1537 EXPORT_SYMBOL(vunmap); 1538 1539 /** 1540 * vmap - map an array of pages into virtually contiguous space 1541 * @pages: array of page pointers 1542 * @count: number of pages to map 1543 * @flags: vm_area->flags 1544 * @prot: page protection for the mapping 1545 * 1546 * Maps @count pages from @pages into contiguous kernel virtual 1547 * space. 1548 */ 1549 void *vmap(struct page **pages, unsigned int count, 1550 unsigned long flags, pgprot_t prot) 1551 { 1552 struct vm_struct *area; 1553 1554 might_sleep(); 1555 1556 if (count > totalram_pages) 1557 return NULL; 1558 1559 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1560 __builtin_return_address(0)); 1561 if (!area) 1562 return NULL; 1563 1564 if (map_vm_area(area, prot, &pages)) { 1565 vunmap(area->addr); 1566 return NULL; 1567 } 1568 1569 return area->addr; 1570 } 1571 EXPORT_SYMBOL(vmap); 1572 1573 static void *__vmalloc_node(unsigned long size, unsigned long align, 1574 gfp_t gfp_mask, pgprot_t prot, 1575 int node, const void *caller); 1576 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1577 pgprot_t prot, int node, const void *caller) 1578 { 1579 const int order = 0; 1580 struct page **pages; 1581 unsigned int nr_pages, array_size, i; 1582 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1583 1584 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 1585 array_size = (nr_pages * sizeof(struct page *)); 1586 1587 area->nr_pages = nr_pages; 1588 /* Please note that the recursion is strictly bounded. */ 1589 if (array_size > PAGE_SIZE) { 1590 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, 1591 PAGE_KERNEL, node, caller); 1592 area->flags |= VM_VPAGES; 1593 } else { 1594 pages = kmalloc_node(array_size, nested_gfp, node); 1595 } 1596 area->pages = pages; 1597 area->caller = caller; 1598 if (!area->pages) { 1599 remove_vm_area(area->addr); 1600 kfree(area); 1601 return NULL; 1602 } 1603 1604 for (i = 0; i < area->nr_pages; i++) { 1605 struct page *page; 1606 gfp_t tmp_mask = gfp_mask | __GFP_NOWARN; 1607 1608 if (node < 0) 1609 page = alloc_page(tmp_mask); 1610 else 1611 page = alloc_pages_node(node, tmp_mask, order); 1612 1613 if (unlikely(!page)) { 1614 /* Successfully allocated i pages, free them in __vunmap() */ 1615 area->nr_pages = i; 1616 goto fail; 1617 } 1618 area->pages[i] = page; 1619 } 1620 1621 if (map_vm_area(area, prot, &pages)) 1622 goto fail; 1623 return area->addr; 1624 1625 fail: 1626 warn_alloc_failed(gfp_mask, order, 1627 "vmalloc: allocation failure, allocated %ld of %ld bytes\n", 1628 (area->nr_pages*PAGE_SIZE), area->size); 1629 vfree(area->addr); 1630 return NULL; 1631 } 1632 1633 /** 1634 * __vmalloc_node_range - allocate virtually contiguous memory 1635 * @size: allocation size 1636 * @align: desired alignment 1637 * @start: vm area range start 1638 * @end: vm area range end 1639 * @gfp_mask: flags for the page level allocator 1640 * @prot: protection mask for the allocated pages 1641 * @node: node to use for allocation or NUMA_NO_NODE 1642 * @caller: caller's return address 1643 * 1644 * Allocate enough pages to cover @size from the page level 1645 * allocator with @gfp_mask flags. Map them into contiguous 1646 * kernel virtual space, using a pagetable protection of @prot. 1647 */ 1648 void *__vmalloc_node_range(unsigned long size, unsigned long align, 1649 unsigned long start, unsigned long end, gfp_t gfp_mask, 1650 pgprot_t prot, int node, const void *caller) 1651 { 1652 struct vm_struct *area; 1653 void *addr; 1654 unsigned long real_size = size; 1655 1656 size = PAGE_ALIGN(size); 1657 if (!size || (size >> PAGE_SHIFT) > totalram_pages) 1658 goto fail; 1659 1660 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST, 1661 start, end, node, gfp_mask, caller); 1662 if (!area) 1663 goto fail; 1664 1665 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller); 1666 if (!addr) 1667 return NULL; 1668 1669 /* 1670 * In this function, newly allocated vm_struct has VM_UNLIST flag. 1671 * It means that vm_struct is not fully initialized. 1672 * Now, it is fully initialized, so remove this flag here. 1673 */ 1674 clear_vm_unlist(area); 1675 1676 /* 1677 * A ref_count = 3 is needed because the vm_struct and vmap_area 1678 * structures allocated in the __get_vm_area_node() function contain 1679 * references to the virtual address of the vmalloc'ed block. 1680 */ 1681 kmemleak_alloc(addr, real_size, 3, gfp_mask); 1682 1683 return addr; 1684 1685 fail: 1686 warn_alloc_failed(gfp_mask, 0, 1687 "vmalloc: allocation failure: %lu bytes\n", 1688 real_size); 1689 return NULL; 1690 } 1691 1692 /** 1693 * __vmalloc_node - allocate virtually contiguous memory 1694 * @size: allocation size 1695 * @align: desired alignment 1696 * @gfp_mask: flags for the page level allocator 1697 * @prot: protection mask for the allocated pages 1698 * @node: node to use for allocation or NUMA_NO_NODE 1699 * @caller: caller's return address 1700 * 1701 * Allocate enough pages to cover @size from the page level 1702 * allocator with @gfp_mask flags. Map them into contiguous 1703 * kernel virtual space, using a pagetable protection of @prot. 1704 */ 1705 static void *__vmalloc_node(unsigned long size, unsigned long align, 1706 gfp_t gfp_mask, pgprot_t prot, 1707 int node, const void *caller) 1708 { 1709 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 1710 gfp_mask, prot, node, caller); 1711 } 1712 1713 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1714 { 1715 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 1716 __builtin_return_address(0)); 1717 } 1718 EXPORT_SYMBOL(__vmalloc); 1719 1720 static inline void *__vmalloc_node_flags(unsigned long size, 1721 int node, gfp_t flags) 1722 { 1723 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 1724 node, __builtin_return_address(0)); 1725 } 1726 1727 /** 1728 * vmalloc - allocate virtually contiguous memory 1729 * @size: allocation size 1730 * Allocate enough pages to cover @size from the page level 1731 * allocator and map them into contiguous kernel virtual space. 1732 * 1733 * For tight control over page level allocator and protection flags 1734 * use __vmalloc() instead. 1735 */ 1736 void *vmalloc(unsigned long size) 1737 { 1738 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1739 GFP_KERNEL | __GFP_HIGHMEM); 1740 } 1741 EXPORT_SYMBOL(vmalloc); 1742 1743 /** 1744 * vzalloc - allocate virtually contiguous memory with zero fill 1745 * @size: allocation size 1746 * Allocate enough pages to cover @size from the page level 1747 * allocator and map them into contiguous kernel virtual space. 1748 * The memory allocated is set to zero. 1749 * 1750 * For tight control over page level allocator and protection flags 1751 * use __vmalloc() instead. 1752 */ 1753 void *vzalloc(unsigned long size) 1754 { 1755 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1756 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1757 } 1758 EXPORT_SYMBOL(vzalloc); 1759 1760 /** 1761 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1762 * @size: allocation size 1763 * 1764 * The resulting memory area is zeroed so it can be mapped to userspace 1765 * without leaking data. 1766 */ 1767 void *vmalloc_user(unsigned long size) 1768 { 1769 struct vm_struct *area; 1770 void *ret; 1771 1772 ret = __vmalloc_node(size, SHMLBA, 1773 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1774 PAGE_KERNEL, NUMA_NO_NODE, 1775 __builtin_return_address(0)); 1776 if (ret) { 1777 area = find_vm_area(ret); 1778 area->flags |= VM_USERMAP; 1779 } 1780 return ret; 1781 } 1782 EXPORT_SYMBOL(vmalloc_user); 1783 1784 /** 1785 * vmalloc_node - allocate memory on a specific node 1786 * @size: allocation size 1787 * @node: numa node 1788 * 1789 * Allocate enough pages to cover @size from the page level 1790 * allocator and map them into contiguous kernel virtual space. 1791 * 1792 * For tight control over page level allocator and protection flags 1793 * use __vmalloc() instead. 1794 */ 1795 void *vmalloc_node(unsigned long size, int node) 1796 { 1797 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1798 node, __builtin_return_address(0)); 1799 } 1800 EXPORT_SYMBOL(vmalloc_node); 1801 1802 /** 1803 * vzalloc_node - allocate memory on a specific node with zero fill 1804 * @size: allocation size 1805 * @node: numa node 1806 * 1807 * Allocate enough pages to cover @size from the page level 1808 * allocator and map them into contiguous kernel virtual space. 1809 * The memory allocated is set to zero. 1810 * 1811 * For tight control over page level allocator and protection flags 1812 * use __vmalloc_node() instead. 1813 */ 1814 void *vzalloc_node(unsigned long size, int node) 1815 { 1816 return __vmalloc_node_flags(size, node, 1817 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1818 } 1819 EXPORT_SYMBOL(vzalloc_node); 1820 1821 #ifndef PAGE_KERNEL_EXEC 1822 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1823 #endif 1824 1825 /** 1826 * vmalloc_exec - allocate virtually contiguous, executable memory 1827 * @size: allocation size 1828 * 1829 * Kernel-internal function to allocate enough pages to cover @size 1830 * the page level allocator and map them into contiguous and 1831 * executable kernel virtual space. 1832 * 1833 * For tight control over page level allocator and protection flags 1834 * use __vmalloc() instead. 1835 */ 1836 1837 void *vmalloc_exec(unsigned long size) 1838 { 1839 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1840 NUMA_NO_NODE, __builtin_return_address(0)); 1841 } 1842 1843 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1844 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1845 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1846 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1847 #else 1848 #define GFP_VMALLOC32 GFP_KERNEL 1849 #endif 1850 1851 /** 1852 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1853 * @size: allocation size 1854 * 1855 * Allocate enough 32bit PA addressable pages to cover @size from the 1856 * page level allocator and map them into contiguous kernel virtual space. 1857 */ 1858 void *vmalloc_32(unsigned long size) 1859 { 1860 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 1861 NUMA_NO_NODE, __builtin_return_address(0)); 1862 } 1863 EXPORT_SYMBOL(vmalloc_32); 1864 1865 /** 1866 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1867 * @size: allocation size 1868 * 1869 * The resulting memory area is 32bit addressable and zeroed so it can be 1870 * mapped to userspace without leaking data. 1871 */ 1872 void *vmalloc_32_user(unsigned long size) 1873 { 1874 struct vm_struct *area; 1875 void *ret; 1876 1877 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1878 NUMA_NO_NODE, __builtin_return_address(0)); 1879 if (ret) { 1880 area = find_vm_area(ret); 1881 area->flags |= VM_USERMAP; 1882 } 1883 return ret; 1884 } 1885 EXPORT_SYMBOL(vmalloc_32_user); 1886 1887 /* 1888 * small helper routine , copy contents to buf from addr. 1889 * If the page is not present, fill zero. 1890 */ 1891 1892 static int aligned_vread(char *buf, char *addr, unsigned long count) 1893 { 1894 struct page *p; 1895 int copied = 0; 1896 1897 while (count) { 1898 unsigned long offset, length; 1899 1900 offset = (unsigned long)addr & ~PAGE_MASK; 1901 length = PAGE_SIZE - offset; 1902 if (length > count) 1903 length = count; 1904 p = vmalloc_to_page(addr); 1905 /* 1906 * To do safe access to this _mapped_ area, we need 1907 * lock. But adding lock here means that we need to add 1908 * overhead of vmalloc()/vfree() calles for this _debug_ 1909 * interface, rarely used. Instead of that, we'll use 1910 * kmap() and get small overhead in this access function. 1911 */ 1912 if (p) { 1913 /* 1914 * we can expect USER0 is not used (see vread/vwrite's 1915 * function description) 1916 */ 1917 void *map = kmap_atomic(p); 1918 memcpy(buf, map + offset, length); 1919 kunmap_atomic(map); 1920 } else 1921 memset(buf, 0, length); 1922 1923 addr += length; 1924 buf += length; 1925 copied += length; 1926 count -= length; 1927 } 1928 return copied; 1929 } 1930 1931 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 1932 { 1933 struct page *p; 1934 int copied = 0; 1935 1936 while (count) { 1937 unsigned long offset, length; 1938 1939 offset = (unsigned long)addr & ~PAGE_MASK; 1940 length = PAGE_SIZE - offset; 1941 if (length > count) 1942 length = count; 1943 p = vmalloc_to_page(addr); 1944 /* 1945 * To do safe access to this _mapped_ area, we need 1946 * lock. But adding lock here means that we need to add 1947 * overhead of vmalloc()/vfree() calles for this _debug_ 1948 * interface, rarely used. Instead of that, we'll use 1949 * kmap() and get small overhead in this access function. 1950 */ 1951 if (p) { 1952 /* 1953 * we can expect USER0 is not used (see vread/vwrite's 1954 * function description) 1955 */ 1956 void *map = kmap_atomic(p); 1957 memcpy(map + offset, buf, length); 1958 kunmap_atomic(map); 1959 } 1960 addr += length; 1961 buf += length; 1962 copied += length; 1963 count -= length; 1964 } 1965 return copied; 1966 } 1967 1968 /** 1969 * vread() - read vmalloc area in a safe way. 1970 * @buf: buffer for reading data 1971 * @addr: vm address. 1972 * @count: number of bytes to be read. 1973 * 1974 * Returns # of bytes which addr and buf should be increased. 1975 * (same number to @count). Returns 0 if [addr...addr+count) doesn't 1976 * includes any intersect with alive vmalloc area. 1977 * 1978 * This function checks that addr is a valid vmalloc'ed area, and 1979 * copy data from that area to a given buffer. If the given memory range 1980 * of [addr...addr+count) includes some valid address, data is copied to 1981 * proper area of @buf. If there are memory holes, they'll be zero-filled. 1982 * IOREMAP area is treated as memory hole and no copy is done. 1983 * 1984 * If [addr...addr+count) doesn't includes any intersects with alive 1985 * vm_struct area, returns 0. @buf should be kernel's buffer. 1986 * 1987 * Note: In usual ops, vread() is never necessary because the caller 1988 * should know vmalloc() area is valid and can use memcpy(). 1989 * This is for routines which have to access vmalloc area without 1990 * any informaion, as /dev/kmem. 1991 * 1992 */ 1993 1994 long vread(char *buf, char *addr, unsigned long count) 1995 { 1996 struct vmap_area *va; 1997 struct vm_struct *vm; 1998 char *vaddr, *buf_start = buf; 1999 unsigned long buflen = count; 2000 unsigned long n; 2001 2002 /* Don't allow overflow */ 2003 if ((unsigned long) addr + count < count) 2004 count = -(unsigned long) addr; 2005 2006 spin_lock(&vmap_area_lock); 2007 list_for_each_entry(va, &vmap_area_list, list) { 2008 if (!count) 2009 break; 2010 2011 if (!(va->flags & VM_VM_AREA)) 2012 continue; 2013 2014 vm = va->vm; 2015 vaddr = (char *) vm->addr; 2016 if (addr >= vaddr + vm->size - PAGE_SIZE) 2017 continue; 2018 while (addr < vaddr) { 2019 if (count == 0) 2020 goto finished; 2021 *buf = '\0'; 2022 buf++; 2023 addr++; 2024 count--; 2025 } 2026 n = vaddr + vm->size - PAGE_SIZE - addr; 2027 if (n > count) 2028 n = count; 2029 if (!(vm->flags & VM_IOREMAP)) 2030 aligned_vread(buf, addr, n); 2031 else /* IOREMAP area is treated as memory hole */ 2032 memset(buf, 0, n); 2033 buf += n; 2034 addr += n; 2035 count -= n; 2036 } 2037 finished: 2038 spin_unlock(&vmap_area_lock); 2039 2040 if (buf == buf_start) 2041 return 0; 2042 /* zero-fill memory holes */ 2043 if (buf != buf_start + buflen) 2044 memset(buf, 0, buflen - (buf - buf_start)); 2045 2046 return buflen; 2047 } 2048 2049 /** 2050 * vwrite() - write vmalloc area in a safe way. 2051 * @buf: buffer for source data 2052 * @addr: vm address. 2053 * @count: number of bytes to be read. 2054 * 2055 * Returns # of bytes which addr and buf should be incresed. 2056 * (same number to @count). 2057 * If [addr...addr+count) doesn't includes any intersect with valid 2058 * vmalloc area, returns 0. 2059 * 2060 * This function checks that addr is a valid vmalloc'ed area, and 2061 * copy data from a buffer to the given addr. If specified range of 2062 * [addr...addr+count) includes some valid address, data is copied from 2063 * proper area of @buf. If there are memory holes, no copy to hole. 2064 * IOREMAP area is treated as memory hole and no copy is done. 2065 * 2066 * If [addr...addr+count) doesn't includes any intersects with alive 2067 * vm_struct area, returns 0. @buf should be kernel's buffer. 2068 * 2069 * Note: In usual ops, vwrite() is never necessary because the caller 2070 * should know vmalloc() area is valid and can use memcpy(). 2071 * This is for routines which have to access vmalloc area without 2072 * any informaion, as /dev/kmem. 2073 */ 2074 2075 long vwrite(char *buf, char *addr, unsigned long count) 2076 { 2077 struct vmap_area *va; 2078 struct vm_struct *vm; 2079 char *vaddr; 2080 unsigned long n, buflen; 2081 int copied = 0; 2082 2083 /* Don't allow overflow */ 2084 if ((unsigned long) addr + count < count) 2085 count = -(unsigned long) addr; 2086 buflen = count; 2087 2088 spin_lock(&vmap_area_lock); 2089 list_for_each_entry(va, &vmap_area_list, list) { 2090 if (!count) 2091 break; 2092 2093 if (!(va->flags & VM_VM_AREA)) 2094 continue; 2095 2096 vm = va->vm; 2097 vaddr = (char *) vm->addr; 2098 if (addr >= vaddr + vm->size - PAGE_SIZE) 2099 continue; 2100 while (addr < vaddr) { 2101 if (count == 0) 2102 goto finished; 2103 buf++; 2104 addr++; 2105 count--; 2106 } 2107 n = vaddr + vm->size - PAGE_SIZE - addr; 2108 if (n > count) 2109 n = count; 2110 if (!(vm->flags & VM_IOREMAP)) { 2111 aligned_vwrite(buf, addr, n); 2112 copied++; 2113 } 2114 buf += n; 2115 addr += n; 2116 count -= n; 2117 } 2118 finished: 2119 spin_unlock(&vmap_area_lock); 2120 if (!copied) 2121 return 0; 2122 return buflen; 2123 } 2124 2125 /** 2126 * remap_vmalloc_range_partial - map vmalloc pages to userspace 2127 * @vma: vma to cover 2128 * @uaddr: target user address to start at 2129 * @kaddr: virtual address of vmalloc kernel memory 2130 * @size: size of map area 2131 * 2132 * Returns: 0 for success, -Exxx on failure 2133 * 2134 * This function checks that @kaddr is a valid vmalloc'ed area, 2135 * and that it is big enough to cover the range starting at 2136 * @uaddr in @vma. Will return failure if that criteria isn't 2137 * met. 2138 * 2139 * Similar to remap_pfn_range() (see mm/memory.c) 2140 */ 2141 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 2142 void *kaddr, unsigned long size) 2143 { 2144 struct vm_struct *area; 2145 2146 size = PAGE_ALIGN(size); 2147 2148 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 2149 return -EINVAL; 2150 2151 area = find_vm_area(kaddr); 2152 if (!area) 2153 return -EINVAL; 2154 2155 if (!(area->flags & VM_USERMAP)) 2156 return -EINVAL; 2157 2158 if (kaddr + size > area->addr + area->size) 2159 return -EINVAL; 2160 2161 do { 2162 struct page *page = vmalloc_to_page(kaddr); 2163 int ret; 2164 2165 ret = vm_insert_page(vma, uaddr, page); 2166 if (ret) 2167 return ret; 2168 2169 uaddr += PAGE_SIZE; 2170 kaddr += PAGE_SIZE; 2171 size -= PAGE_SIZE; 2172 } while (size > 0); 2173 2174 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 2175 2176 return 0; 2177 } 2178 EXPORT_SYMBOL(remap_vmalloc_range_partial); 2179 2180 /** 2181 * remap_vmalloc_range - map vmalloc pages to userspace 2182 * @vma: vma to cover (map full range of vma) 2183 * @addr: vmalloc memory 2184 * @pgoff: number of pages into addr before first page to map 2185 * 2186 * Returns: 0 for success, -Exxx on failure 2187 * 2188 * This function checks that addr is a valid vmalloc'ed area, and 2189 * that it is big enough to cover the vma. Will return failure if 2190 * that criteria isn't met. 2191 * 2192 * Similar to remap_pfn_range() (see mm/memory.c) 2193 */ 2194 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2195 unsigned long pgoff) 2196 { 2197 return remap_vmalloc_range_partial(vma, vma->vm_start, 2198 addr + (pgoff << PAGE_SHIFT), 2199 vma->vm_end - vma->vm_start); 2200 } 2201 EXPORT_SYMBOL(remap_vmalloc_range); 2202 2203 /* 2204 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2205 * have one. 2206 */ 2207 void __attribute__((weak)) vmalloc_sync_all(void) 2208 { 2209 } 2210 2211 2212 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 2213 { 2214 pte_t ***p = data; 2215 2216 if (p) { 2217 *(*p) = pte; 2218 (*p)++; 2219 } 2220 return 0; 2221 } 2222 2223 /** 2224 * alloc_vm_area - allocate a range of kernel address space 2225 * @size: size of the area 2226 * @ptes: returns the PTEs for the address space 2227 * 2228 * Returns: NULL on failure, vm_struct on success 2229 * 2230 * This function reserves a range of kernel address space, and 2231 * allocates pagetables to map that range. No actual mappings 2232 * are created. 2233 * 2234 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 2235 * allocated for the VM area are returned. 2236 */ 2237 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 2238 { 2239 struct vm_struct *area; 2240 2241 area = get_vm_area_caller(size, VM_IOREMAP, 2242 __builtin_return_address(0)); 2243 if (area == NULL) 2244 return NULL; 2245 2246 /* 2247 * This ensures that page tables are constructed for this region 2248 * of kernel virtual address space and mapped into init_mm. 2249 */ 2250 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2251 size, f, ptes ? &ptes : NULL)) { 2252 free_vm_area(area); 2253 return NULL; 2254 } 2255 2256 return area; 2257 } 2258 EXPORT_SYMBOL_GPL(alloc_vm_area); 2259 2260 void free_vm_area(struct vm_struct *area) 2261 { 2262 struct vm_struct *ret; 2263 ret = remove_vm_area(area->addr); 2264 BUG_ON(ret != area); 2265 kfree(area); 2266 } 2267 EXPORT_SYMBOL_GPL(free_vm_area); 2268 2269 #ifdef CONFIG_SMP 2270 static struct vmap_area *node_to_va(struct rb_node *n) 2271 { 2272 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; 2273 } 2274 2275 /** 2276 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2277 * @end: target address 2278 * @pnext: out arg for the next vmap_area 2279 * @pprev: out arg for the previous vmap_area 2280 * 2281 * Returns: %true if either or both of next and prev are found, 2282 * %false if no vmap_area exists 2283 * 2284 * Find vmap_areas end addresses of which enclose @end. ie. if not 2285 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2286 */ 2287 static bool pvm_find_next_prev(unsigned long end, 2288 struct vmap_area **pnext, 2289 struct vmap_area **pprev) 2290 { 2291 struct rb_node *n = vmap_area_root.rb_node; 2292 struct vmap_area *va = NULL; 2293 2294 while (n) { 2295 va = rb_entry(n, struct vmap_area, rb_node); 2296 if (end < va->va_end) 2297 n = n->rb_left; 2298 else if (end > va->va_end) 2299 n = n->rb_right; 2300 else 2301 break; 2302 } 2303 2304 if (!va) 2305 return false; 2306 2307 if (va->va_end > end) { 2308 *pnext = va; 2309 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2310 } else { 2311 *pprev = va; 2312 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2313 } 2314 return true; 2315 } 2316 2317 /** 2318 * pvm_determine_end - find the highest aligned address between two vmap_areas 2319 * @pnext: in/out arg for the next vmap_area 2320 * @pprev: in/out arg for the previous vmap_area 2321 * @align: alignment 2322 * 2323 * Returns: determined end address 2324 * 2325 * Find the highest aligned address between *@pnext and *@pprev below 2326 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2327 * down address is between the end addresses of the two vmap_areas. 2328 * 2329 * Please note that the address returned by this function may fall 2330 * inside *@pnext vmap_area. The caller is responsible for checking 2331 * that. 2332 */ 2333 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2334 struct vmap_area **pprev, 2335 unsigned long align) 2336 { 2337 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2338 unsigned long addr; 2339 2340 if (*pnext) 2341 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2342 else 2343 addr = vmalloc_end; 2344 2345 while (*pprev && (*pprev)->va_end > addr) { 2346 *pnext = *pprev; 2347 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2348 } 2349 2350 return addr; 2351 } 2352 2353 /** 2354 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2355 * @offsets: array containing offset of each area 2356 * @sizes: array containing size of each area 2357 * @nr_vms: the number of areas to allocate 2358 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2359 * 2360 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2361 * vm_structs on success, %NULL on failure 2362 * 2363 * Percpu allocator wants to use congruent vm areas so that it can 2364 * maintain the offsets among percpu areas. This function allocates 2365 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 2366 * be scattered pretty far, distance between two areas easily going up 2367 * to gigabytes. To avoid interacting with regular vmallocs, these 2368 * areas are allocated from top. 2369 * 2370 * Despite its complicated look, this allocator is rather simple. It 2371 * does everything top-down and scans areas from the end looking for 2372 * matching slot. While scanning, if any of the areas overlaps with 2373 * existing vmap_area, the base address is pulled down to fit the 2374 * area. Scanning is repeated till all the areas fit and then all 2375 * necessary data structres are inserted and the result is returned. 2376 */ 2377 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2378 const size_t *sizes, int nr_vms, 2379 size_t align) 2380 { 2381 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2382 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2383 struct vmap_area **vas, *prev, *next; 2384 struct vm_struct **vms; 2385 int area, area2, last_area, term_area; 2386 unsigned long base, start, end, last_end; 2387 bool purged = false; 2388 2389 /* verify parameters and allocate data structures */ 2390 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); 2391 for (last_area = 0, area = 0; area < nr_vms; area++) { 2392 start = offsets[area]; 2393 end = start + sizes[area]; 2394 2395 /* is everything aligned properly? */ 2396 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2397 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2398 2399 /* detect the area with the highest address */ 2400 if (start > offsets[last_area]) 2401 last_area = area; 2402 2403 for (area2 = 0; area2 < nr_vms; area2++) { 2404 unsigned long start2 = offsets[area2]; 2405 unsigned long end2 = start2 + sizes[area2]; 2406 2407 if (area2 == area) 2408 continue; 2409 2410 BUG_ON(start2 >= start && start2 < end); 2411 BUG_ON(end2 <= end && end2 > start); 2412 } 2413 } 2414 last_end = offsets[last_area] + sizes[last_area]; 2415 2416 if (vmalloc_end - vmalloc_start < last_end) { 2417 WARN_ON(true); 2418 return NULL; 2419 } 2420 2421 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 2422 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 2423 if (!vas || !vms) 2424 goto err_free2; 2425 2426 for (area = 0; area < nr_vms; area++) { 2427 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); 2428 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 2429 if (!vas[area] || !vms[area]) 2430 goto err_free; 2431 } 2432 retry: 2433 spin_lock(&vmap_area_lock); 2434 2435 /* start scanning - we scan from the top, begin with the last area */ 2436 area = term_area = last_area; 2437 start = offsets[area]; 2438 end = start + sizes[area]; 2439 2440 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2441 base = vmalloc_end - last_end; 2442 goto found; 2443 } 2444 base = pvm_determine_end(&next, &prev, align) - end; 2445 2446 while (true) { 2447 BUG_ON(next && next->va_end <= base + end); 2448 BUG_ON(prev && prev->va_end > base + end); 2449 2450 /* 2451 * base might have underflowed, add last_end before 2452 * comparing. 2453 */ 2454 if (base + last_end < vmalloc_start + last_end) { 2455 spin_unlock(&vmap_area_lock); 2456 if (!purged) { 2457 purge_vmap_area_lazy(); 2458 purged = true; 2459 goto retry; 2460 } 2461 goto err_free; 2462 } 2463 2464 /* 2465 * If next overlaps, move base downwards so that it's 2466 * right below next and then recheck. 2467 */ 2468 if (next && next->va_start < base + end) { 2469 base = pvm_determine_end(&next, &prev, align) - end; 2470 term_area = area; 2471 continue; 2472 } 2473 2474 /* 2475 * If prev overlaps, shift down next and prev and move 2476 * base so that it's right below new next and then 2477 * recheck. 2478 */ 2479 if (prev && prev->va_end > base + start) { 2480 next = prev; 2481 prev = node_to_va(rb_prev(&next->rb_node)); 2482 base = pvm_determine_end(&next, &prev, align) - end; 2483 term_area = area; 2484 continue; 2485 } 2486 2487 /* 2488 * This area fits, move on to the previous one. If 2489 * the previous one is the terminal one, we're done. 2490 */ 2491 area = (area + nr_vms - 1) % nr_vms; 2492 if (area == term_area) 2493 break; 2494 start = offsets[area]; 2495 end = start + sizes[area]; 2496 pvm_find_next_prev(base + end, &next, &prev); 2497 } 2498 found: 2499 /* we've found a fitting base, insert all va's */ 2500 for (area = 0; area < nr_vms; area++) { 2501 struct vmap_area *va = vas[area]; 2502 2503 va->va_start = base + offsets[area]; 2504 va->va_end = va->va_start + sizes[area]; 2505 __insert_vmap_area(va); 2506 } 2507 2508 vmap_area_pcpu_hole = base + offsets[last_area]; 2509 2510 spin_unlock(&vmap_area_lock); 2511 2512 /* insert all vm's */ 2513 for (area = 0; area < nr_vms; area++) 2514 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2515 pcpu_get_vm_areas); 2516 2517 kfree(vas); 2518 return vms; 2519 2520 err_free: 2521 for (area = 0; area < nr_vms; area++) { 2522 kfree(vas[area]); 2523 kfree(vms[area]); 2524 } 2525 err_free2: 2526 kfree(vas); 2527 kfree(vms); 2528 return NULL; 2529 } 2530 2531 /** 2532 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2533 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2534 * @nr_vms: the number of allocated areas 2535 * 2536 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2537 */ 2538 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2539 { 2540 int i; 2541 2542 for (i = 0; i < nr_vms; i++) 2543 free_vm_area(vms[i]); 2544 kfree(vms); 2545 } 2546 #endif /* CONFIG_SMP */ 2547 2548 #ifdef CONFIG_PROC_FS 2549 static void *s_start(struct seq_file *m, loff_t *pos) 2550 __acquires(&vmap_area_lock) 2551 { 2552 loff_t n = *pos; 2553 struct vmap_area *va; 2554 2555 spin_lock(&vmap_area_lock); 2556 va = list_entry((&vmap_area_list)->next, typeof(*va), list); 2557 while (n > 0 && &va->list != &vmap_area_list) { 2558 n--; 2559 va = list_entry(va->list.next, typeof(*va), list); 2560 } 2561 if (!n && &va->list != &vmap_area_list) 2562 return va; 2563 2564 return NULL; 2565 2566 } 2567 2568 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2569 { 2570 struct vmap_area *va = p, *next; 2571 2572 ++*pos; 2573 next = list_entry(va->list.next, typeof(*va), list); 2574 if (&next->list != &vmap_area_list) 2575 return next; 2576 2577 return NULL; 2578 } 2579 2580 static void s_stop(struct seq_file *m, void *p) 2581 __releases(&vmap_area_lock) 2582 { 2583 spin_unlock(&vmap_area_lock); 2584 } 2585 2586 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2587 { 2588 if (IS_ENABLED(CONFIG_NUMA)) { 2589 unsigned int nr, *counters = m->private; 2590 2591 if (!counters) 2592 return; 2593 2594 /* Pair with smp_wmb() in clear_vm_unlist() */ 2595 smp_rmb(); 2596 if (v->flags & VM_UNLIST) 2597 return; 2598 2599 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2600 2601 for (nr = 0; nr < v->nr_pages; nr++) 2602 counters[page_to_nid(v->pages[nr])]++; 2603 2604 for_each_node_state(nr, N_HIGH_MEMORY) 2605 if (counters[nr]) 2606 seq_printf(m, " N%u=%u", nr, counters[nr]); 2607 } 2608 } 2609 2610 static int s_show(struct seq_file *m, void *p) 2611 { 2612 struct vmap_area *va = p; 2613 struct vm_struct *v; 2614 2615 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING)) 2616 return 0; 2617 2618 if (!(va->flags & VM_VM_AREA)) { 2619 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 2620 (void *)va->va_start, (void *)va->va_end, 2621 va->va_end - va->va_start); 2622 return 0; 2623 } 2624 2625 v = va->vm; 2626 2627 seq_printf(m, "0x%pK-0x%pK %7ld", 2628 v->addr, v->addr + v->size, v->size); 2629 2630 if (v->caller) 2631 seq_printf(m, " %pS", v->caller); 2632 2633 if (v->nr_pages) 2634 seq_printf(m, " pages=%d", v->nr_pages); 2635 2636 if (v->phys_addr) 2637 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); 2638 2639 if (v->flags & VM_IOREMAP) 2640 seq_printf(m, " ioremap"); 2641 2642 if (v->flags & VM_ALLOC) 2643 seq_printf(m, " vmalloc"); 2644 2645 if (v->flags & VM_MAP) 2646 seq_printf(m, " vmap"); 2647 2648 if (v->flags & VM_USERMAP) 2649 seq_printf(m, " user"); 2650 2651 if (v->flags & VM_VPAGES) 2652 seq_printf(m, " vpages"); 2653 2654 show_numa_info(m, v); 2655 seq_putc(m, '\n'); 2656 return 0; 2657 } 2658 2659 static const struct seq_operations vmalloc_op = { 2660 .start = s_start, 2661 .next = s_next, 2662 .stop = s_stop, 2663 .show = s_show, 2664 }; 2665 2666 static int vmalloc_open(struct inode *inode, struct file *file) 2667 { 2668 unsigned int *ptr = NULL; 2669 int ret; 2670 2671 if (IS_ENABLED(CONFIG_NUMA)) { 2672 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 2673 if (ptr == NULL) 2674 return -ENOMEM; 2675 } 2676 ret = seq_open(file, &vmalloc_op); 2677 if (!ret) { 2678 struct seq_file *m = file->private_data; 2679 m->private = ptr; 2680 } else 2681 kfree(ptr); 2682 return ret; 2683 } 2684 2685 static const struct file_operations proc_vmalloc_operations = { 2686 .open = vmalloc_open, 2687 .read = seq_read, 2688 .llseek = seq_lseek, 2689 .release = seq_release_private, 2690 }; 2691 2692 static int __init proc_vmalloc_init(void) 2693 { 2694 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 2695 return 0; 2696 } 2697 module_init(proc_vmalloc_init); 2698 2699 void get_vmalloc_info(struct vmalloc_info *vmi) 2700 { 2701 struct vmap_area *va; 2702 unsigned long free_area_size; 2703 unsigned long prev_end; 2704 2705 vmi->used = 0; 2706 vmi->largest_chunk = 0; 2707 2708 prev_end = VMALLOC_START; 2709 2710 spin_lock(&vmap_area_lock); 2711 2712 if (list_empty(&vmap_area_list)) { 2713 vmi->largest_chunk = VMALLOC_TOTAL; 2714 goto out; 2715 } 2716 2717 list_for_each_entry(va, &vmap_area_list, list) { 2718 unsigned long addr = va->va_start; 2719 2720 /* 2721 * Some archs keep another range for modules in vmalloc space 2722 */ 2723 if (addr < VMALLOC_START) 2724 continue; 2725 if (addr >= VMALLOC_END) 2726 break; 2727 2728 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING)) 2729 continue; 2730 2731 vmi->used += (va->va_end - va->va_start); 2732 2733 free_area_size = addr - prev_end; 2734 if (vmi->largest_chunk < free_area_size) 2735 vmi->largest_chunk = free_area_size; 2736 2737 prev_end = va->va_end; 2738 } 2739 2740 if (VMALLOC_END - prev_end > vmi->largest_chunk) 2741 vmi->largest_chunk = VMALLOC_END - prev_end; 2742 2743 out: 2744 spin_unlock(&vmap_area_lock); 2745 } 2746 #endif 2747 2748