xref: /linux/mm/vmalloc.c (revision 8b4a40809e5330c9da5d20107d693d92d73b31dc)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/highmem.h>
14 #include <linux/slab.h>
15 #include <linux/spinlock.h>
16 #include <linux/interrupt.h>
17 
18 #include <linux/vmalloc.h>
19 
20 #include <asm/uaccess.h>
21 #include <asm/tlbflush.h>
22 
23 
24 DEFINE_RWLOCK(vmlist_lock);
25 struct vm_struct *vmlist;
26 
27 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
28 			    int node);
29 
30 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
31 {
32 	pte_t *pte;
33 
34 	pte = pte_offset_kernel(pmd, addr);
35 	do {
36 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
37 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
38 	} while (pte++, addr += PAGE_SIZE, addr != end);
39 }
40 
41 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
42 						unsigned long end)
43 {
44 	pmd_t *pmd;
45 	unsigned long next;
46 
47 	pmd = pmd_offset(pud, addr);
48 	do {
49 		next = pmd_addr_end(addr, end);
50 		if (pmd_none_or_clear_bad(pmd))
51 			continue;
52 		vunmap_pte_range(pmd, addr, next);
53 	} while (pmd++, addr = next, addr != end);
54 }
55 
56 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
57 						unsigned long end)
58 {
59 	pud_t *pud;
60 	unsigned long next;
61 
62 	pud = pud_offset(pgd, addr);
63 	do {
64 		next = pud_addr_end(addr, end);
65 		if (pud_none_or_clear_bad(pud))
66 			continue;
67 		vunmap_pmd_range(pud, addr, next);
68 	} while (pud++, addr = next, addr != end);
69 }
70 
71 void unmap_kernel_range(unsigned long addr, unsigned long size)
72 {
73 	pgd_t *pgd;
74 	unsigned long next;
75 	unsigned long start = addr;
76 	unsigned long end = addr + size;
77 
78 	BUG_ON(addr >= end);
79 	pgd = pgd_offset_k(addr);
80 	flush_cache_vunmap(addr, end);
81 	do {
82 		next = pgd_addr_end(addr, end);
83 		if (pgd_none_or_clear_bad(pgd))
84 			continue;
85 		vunmap_pud_range(pgd, addr, next);
86 	} while (pgd++, addr = next, addr != end);
87 	flush_tlb_kernel_range(start, end);
88 }
89 
90 static void unmap_vm_area(struct vm_struct *area)
91 {
92 	unmap_kernel_range((unsigned long)area->addr, area->size);
93 }
94 
95 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
96 			unsigned long end, pgprot_t prot, struct page ***pages)
97 {
98 	pte_t *pte;
99 
100 	pte = pte_alloc_kernel(pmd, addr);
101 	if (!pte)
102 		return -ENOMEM;
103 	do {
104 		struct page *page = **pages;
105 		WARN_ON(!pte_none(*pte));
106 		if (!page)
107 			return -ENOMEM;
108 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
109 		(*pages)++;
110 	} while (pte++, addr += PAGE_SIZE, addr != end);
111 	return 0;
112 }
113 
114 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
115 			unsigned long end, pgprot_t prot, struct page ***pages)
116 {
117 	pmd_t *pmd;
118 	unsigned long next;
119 
120 	pmd = pmd_alloc(&init_mm, pud, addr);
121 	if (!pmd)
122 		return -ENOMEM;
123 	do {
124 		next = pmd_addr_end(addr, end);
125 		if (vmap_pte_range(pmd, addr, next, prot, pages))
126 			return -ENOMEM;
127 	} while (pmd++, addr = next, addr != end);
128 	return 0;
129 }
130 
131 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
132 			unsigned long end, pgprot_t prot, struct page ***pages)
133 {
134 	pud_t *pud;
135 	unsigned long next;
136 
137 	pud = pud_alloc(&init_mm, pgd, addr);
138 	if (!pud)
139 		return -ENOMEM;
140 	do {
141 		next = pud_addr_end(addr, end);
142 		if (vmap_pmd_range(pud, addr, next, prot, pages))
143 			return -ENOMEM;
144 	} while (pud++, addr = next, addr != end);
145 	return 0;
146 }
147 
148 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
149 {
150 	pgd_t *pgd;
151 	unsigned long next;
152 	unsigned long addr = (unsigned long) area->addr;
153 	unsigned long end = addr + area->size - PAGE_SIZE;
154 	int err;
155 
156 	BUG_ON(addr >= end);
157 	pgd = pgd_offset_k(addr);
158 	do {
159 		next = pgd_addr_end(addr, end);
160 		err = vmap_pud_range(pgd, addr, next, prot, pages);
161 		if (err)
162 			break;
163 	} while (pgd++, addr = next, addr != end);
164 	flush_cache_vmap((unsigned long) area->addr, end);
165 	return err;
166 }
167 
168 static struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags,
169 					    unsigned long start, unsigned long end,
170 					    int node, gfp_t gfp_mask)
171 {
172 	struct vm_struct **p, *tmp, *area;
173 	unsigned long align = 1;
174 	unsigned long addr;
175 
176 	BUG_ON(in_interrupt());
177 	if (flags & VM_IOREMAP) {
178 		int bit = fls(size);
179 
180 		if (bit > IOREMAP_MAX_ORDER)
181 			bit = IOREMAP_MAX_ORDER;
182 		else if (bit < PAGE_SHIFT)
183 			bit = PAGE_SHIFT;
184 
185 		align = 1ul << bit;
186 	}
187 	addr = ALIGN(start, align);
188 	size = PAGE_ALIGN(size);
189 	if (unlikely(!size))
190 		return NULL;
191 
192 	area = kmalloc_node(sizeof(*area), gfp_mask & GFP_LEVEL_MASK, node);
193 	if (unlikely(!area))
194 		return NULL;
195 
196 	/*
197 	 * We always allocate a guard page.
198 	 */
199 	size += PAGE_SIZE;
200 
201 	write_lock(&vmlist_lock);
202 	for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
203 		if ((unsigned long)tmp->addr < addr) {
204 			if((unsigned long)tmp->addr + tmp->size >= addr)
205 				addr = ALIGN(tmp->size +
206 					     (unsigned long)tmp->addr, align);
207 			continue;
208 		}
209 		if ((size + addr) < addr)
210 			goto out;
211 		if (size + addr <= (unsigned long)tmp->addr)
212 			goto found;
213 		addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
214 		if (addr > end - size)
215 			goto out;
216 	}
217 
218 found:
219 	area->next = *p;
220 	*p = area;
221 
222 	area->flags = flags;
223 	area->addr = (void *)addr;
224 	area->size = size;
225 	area->pages = NULL;
226 	area->nr_pages = 0;
227 	area->phys_addr = 0;
228 	write_unlock(&vmlist_lock);
229 
230 	return area;
231 
232 out:
233 	write_unlock(&vmlist_lock);
234 	kfree(area);
235 	if (printk_ratelimit())
236 		printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
237 	return NULL;
238 }
239 
240 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
241 				unsigned long start, unsigned long end)
242 {
243 	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL);
244 }
245 
246 /**
247  *	get_vm_area  -  reserve a contingous kernel virtual area
248  *	@size:		size of the area
249  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
250  *
251  *	Search an area of @size in the kernel virtual mapping area,
252  *	and reserved it for out purposes.  Returns the area descriptor
253  *	on success or %NULL on failure.
254  */
255 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
256 {
257 	return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END);
258 }
259 
260 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
261 				   int node, gfp_t gfp_mask)
262 {
263 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
264 				  gfp_mask);
265 }
266 
267 /* Caller must hold vmlist_lock */
268 static struct vm_struct *__find_vm_area(void *addr)
269 {
270 	struct vm_struct *tmp;
271 
272 	for (tmp = vmlist; tmp != NULL; tmp = tmp->next) {
273 		 if (tmp->addr == addr)
274 			break;
275 	}
276 
277 	return tmp;
278 }
279 
280 /* Caller must hold vmlist_lock */
281 static struct vm_struct *__remove_vm_area(void *addr)
282 {
283 	struct vm_struct **p, *tmp;
284 
285 	for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
286 		 if (tmp->addr == addr)
287 			 goto found;
288 	}
289 	return NULL;
290 
291 found:
292 	unmap_vm_area(tmp);
293 	*p = tmp->next;
294 
295 	/*
296 	 * Remove the guard page.
297 	 */
298 	tmp->size -= PAGE_SIZE;
299 	return tmp;
300 }
301 
302 /**
303  *	remove_vm_area  -  find and remove a contingous kernel virtual area
304  *	@addr:		base address
305  *
306  *	Search for the kernel VM area starting at @addr, and remove it.
307  *	This function returns the found VM area, but using it is NOT safe
308  *	on SMP machines, except for its size or flags.
309  */
310 struct vm_struct *remove_vm_area(void *addr)
311 {
312 	struct vm_struct *v;
313 	write_lock(&vmlist_lock);
314 	v = __remove_vm_area(addr);
315 	write_unlock(&vmlist_lock);
316 	return v;
317 }
318 
319 static void __vunmap(void *addr, int deallocate_pages)
320 {
321 	struct vm_struct *area;
322 
323 	if (!addr)
324 		return;
325 
326 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
327 		printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
328 		WARN_ON(1);
329 		return;
330 	}
331 
332 	area = remove_vm_area(addr);
333 	if (unlikely(!area)) {
334 		printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
335 				addr);
336 		WARN_ON(1);
337 		return;
338 	}
339 
340 	debug_check_no_locks_freed(addr, area->size);
341 
342 	if (deallocate_pages) {
343 		int i;
344 
345 		for (i = 0; i < area->nr_pages; i++) {
346 			BUG_ON(!area->pages[i]);
347 			__free_page(area->pages[i]);
348 		}
349 
350 		if (area->flags & VM_VPAGES)
351 			vfree(area->pages);
352 		else
353 			kfree(area->pages);
354 	}
355 
356 	kfree(area);
357 	return;
358 }
359 
360 /**
361  *	vfree  -  release memory allocated by vmalloc()
362  *	@addr:		memory base address
363  *
364  *	Free the virtually contiguous memory area starting at @addr, as
365  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
366  *	NULL, no operation is performed.
367  *
368  *	Must not be called in interrupt context.
369  */
370 void vfree(void *addr)
371 {
372 	BUG_ON(in_interrupt());
373 	__vunmap(addr, 1);
374 }
375 EXPORT_SYMBOL(vfree);
376 
377 /**
378  *	vunmap  -  release virtual mapping obtained by vmap()
379  *	@addr:		memory base address
380  *
381  *	Free the virtually contiguous memory area starting at @addr,
382  *	which was created from the page array passed to vmap().
383  *
384  *	Must not be called in interrupt context.
385  */
386 void vunmap(void *addr)
387 {
388 	BUG_ON(in_interrupt());
389 	__vunmap(addr, 0);
390 }
391 EXPORT_SYMBOL(vunmap);
392 
393 /**
394  *	vmap  -  map an array of pages into virtually contiguous space
395  *	@pages:		array of page pointers
396  *	@count:		number of pages to map
397  *	@flags:		vm_area->flags
398  *	@prot:		page protection for the mapping
399  *
400  *	Maps @count pages from @pages into contiguous kernel virtual
401  *	space.
402  */
403 void *vmap(struct page **pages, unsigned int count,
404 		unsigned long flags, pgprot_t prot)
405 {
406 	struct vm_struct *area;
407 
408 	if (count > num_physpages)
409 		return NULL;
410 
411 	area = get_vm_area((count << PAGE_SHIFT), flags);
412 	if (!area)
413 		return NULL;
414 	if (map_vm_area(area, prot, &pages)) {
415 		vunmap(area->addr);
416 		return NULL;
417 	}
418 
419 	return area->addr;
420 }
421 EXPORT_SYMBOL(vmap);
422 
423 void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
424 				pgprot_t prot, int node)
425 {
426 	struct page **pages;
427 	unsigned int nr_pages, array_size, i;
428 
429 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
430 	array_size = (nr_pages * sizeof(struct page *));
431 
432 	area->nr_pages = nr_pages;
433 	/* Please note that the recursion is strictly bounded. */
434 	if (array_size > PAGE_SIZE) {
435 		pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
436 					PAGE_KERNEL, node);
437 		area->flags |= VM_VPAGES;
438 	} else {
439 		pages = kmalloc_node(array_size,
440 				(gfp_mask & GFP_LEVEL_MASK) | __GFP_ZERO,
441 				node);
442 	}
443 	area->pages = pages;
444 	if (!area->pages) {
445 		remove_vm_area(area->addr);
446 		kfree(area);
447 		return NULL;
448 	}
449 
450 	for (i = 0; i < area->nr_pages; i++) {
451 		if (node < 0)
452 			area->pages[i] = alloc_page(gfp_mask);
453 		else
454 			area->pages[i] = alloc_pages_node(node, gfp_mask, 0);
455 		if (unlikely(!area->pages[i])) {
456 			/* Successfully allocated i pages, free them in __vunmap() */
457 			area->nr_pages = i;
458 			goto fail;
459 		}
460 	}
461 
462 	if (map_vm_area(area, prot, &pages))
463 		goto fail;
464 	return area->addr;
465 
466 fail:
467 	vfree(area->addr);
468 	return NULL;
469 }
470 
471 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
472 {
473 	return __vmalloc_area_node(area, gfp_mask, prot, -1);
474 }
475 
476 /**
477  *	__vmalloc_node  -  allocate virtually contiguous memory
478  *	@size:		allocation size
479  *	@gfp_mask:	flags for the page level allocator
480  *	@prot:		protection mask for the allocated pages
481  *	@node:		node to use for allocation or -1
482  *
483  *	Allocate enough pages to cover @size from the page level
484  *	allocator with @gfp_mask flags.  Map them into contiguous
485  *	kernel virtual space, using a pagetable protection of @prot.
486  */
487 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
488 			    int node)
489 {
490 	struct vm_struct *area;
491 
492 	size = PAGE_ALIGN(size);
493 	if (!size || (size >> PAGE_SHIFT) > num_physpages)
494 		return NULL;
495 
496 	area = get_vm_area_node(size, VM_ALLOC, node, gfp_mask);
497 	if (!area)
498 		return NULL;
499 
500 	return __vmalloc_area_node(area, gfp_mask, prot, node);
501 }
502 
503 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
504 {
505 	return __vmalloc_node(size, gfp_mask, prot, -1);
506 }
507 EXPORT_SYMBOL(__vmalloc);
508 
509 /**
510  *	vmalloc  -  allocate virtually contiguous memory
511  *	@size:		allocation size
512  *	Allocate enough pages to cover @size from the page level
513  *	allocator and map them into contiguous kernel virtual space.
514  *
515  *	For tight control over page level allocator and protection flags
516  *	use __vmalloc() instead.
517  */
518 void *vmalloc(unsigned long size)
519 {
520 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
521 }
522 EXPORT_SYMBOL(vmalloc);
523 
524 /**
525  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
526  * @size: allocation size
527  *
528  * The resulting memory area is zeroed so it can be mapped to userspace
529  * without leaking data.
530  */
531 void *vmalloc_user(unsigned long size)
532 {
533 	struct vm_struct *area;
534 	void *ret;
535 
536 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
537 	if (ret) {
538 		write_lock(&vmlist_lock);
539 		area = __find_vm_area(ret);
540 		area->flags |= VM_USERMAP;
541 		write_unlock(&vmlist_lock);
542 	}
543 	return ret;
544 }
545 EXPORT_SYMBOL(vmalloc_user);
546 
547 /**
548  *	vmalloc_node  -  allocate memory on a specific node
549  *	@size:		allocation size
550  *	@node:		numa node
551  *
552  *	Allocate enough pages to cover @size from the page level
553  *	allocator and map them into contiguous kernel virtual space.
554  *
555  *	For tight control over page level allocator and protection flags
556  *	use __vmalloc() instead.
557  */
558 void *vmalloc_node(unsigned long size, int node)
559 {
560 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, node);
561 }
562 EXPORT_SYMBOL(vmalloc_node);
563 
564 #ifndef PAGE_KERNEL_EXEC
565 # define PAGE_KERNEL_EXEC PAGE_KERNEL
566 #endif
567 
568 /**
569  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
570  *	@size:		allocation size
571  *
572  *	Kernel-internal function to allocate enough pages to cover @size
573  *	the page level allocator and map them into contiguous and
574  *	executable kernel virtual space.
575  *
576  *	For tight control over page level allocator and protection flags
577  *	use __vmalloc() instead.
578  */
579 
580 void *vmalloc_exec(unsigned long size)
581 {
582 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
583 }
584 
585 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
586 #define GFP_VMALLOC32 GFP_DMA32
587 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
588 #define GFP_VMALLOC32 GFP_DMA
589 #else
590 #define GFP_VMALLOC32 GFP_KERNEL
591 #endif
592 
593 /**
594  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
595  *	@size:		allocation size
596  *
597  *	Allocate enough 32bit PA addressable pages to cover @size from the
598  *	page level allocator and map them into contiguous kernel virtual space.
599  */
600 void *vmalloc_32(unsigned long size)
601 {
602 	return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
603 }
604 EXPORT_SYMBOL(vmalloc_32);
605 
606 /**
607  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
608  *	@size:		allocation size
609  *
610  * The resulting memory area is 32bit addressable and zeroed so it can be
611  * mapped to userspace without leaking data.
612  */
613 void *vmalloc_32_user(unsigned long size)
614 {
615 	struct vm_struct *area;
616 	void *ret;
617 
618 	ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
619 	if (ret) {
620 		write_lock(&vmlist_lock);
621 		area = __find_vm_area(ret);
622 		area->flags |= VM_USERMAP;
623 		write_unlock(&vmlist_lock);
624 	}
625 	return ret;
626 }
627 EXPORT_SYMBOL(vmalloc_32_user);
628 
629 long vread(char *buf, char *addr, unsigned long count)
630 {
631 	struct vm_struct *tmp;
632 	char *vaddr, *buf_start = buf;
633 	unsigned long n;
634 
635 	/* Don't allow overflow */
636 	if ((unsigned long) addr + count < count)
637 		count = -(unsigned long) addr;
638 
639 	read_lock(&vmlist_lock);
640 	for (tmp = vmlist; tmp; tmp = tmp->next) {
641 		vaddr = (char *) tmp->addr;
642 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
643 			continue;
644 		while (addr < vaddr) {
645 			if (count == 0)
646 				goto finished;
647 			*buf = '\0';
648 			buf++;
649 			addr++;
650 			count--;
651 		}
652 		n = vaddr + tmp->size - PAGE_SIZE - addr;
653 		do {
654 			if (count == 0)
655 				goto finished;
656 			*buf = *addr;
657 			buf++;
658 			addr++;
659 			count--;
660 		} while (--n > 0);
661 	}
662 finished:
663 	read_unlock(&vmlist_lock);
664 	return buf - buf_start;
665 }
666 
667 long vwrite(char *buf, char *addr, unsigned long count)
668 {
669 	struct vm_struct *tmp;
670 	char *vaddr, *buf_start = buf;
671 	unsigned long n;
672 
673 	/* Don't allow overflow */
674 	if ((unsigned long) addr + count < count)
675 		count = -(unsigned long) addr;
676 
677 	read_lock(&vmlist_lock);
678 	for (tmp = vmlist; tmp; tmp = tmp->next) {
679 		vaddr = (char *) tmp->addr;
680 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
681 			continue;
682 		while (addr < vaddr) {
683 			if (count == 0)
684 				goto finished;
685 			buf++;
686 			addr++;
687 			count--;
688 		}
689 		n = vaddr + tmp->size - PAGE_SIZE - addr;
690 		do {
691 			if (count == 0)
692 				goto finished;
693 			*addr = *buf;
694 			buf++;
695 			addr++;
696 			count--;
697 		} while (--n > 0);
698 	}
699 finished:
700 	read_unlock(&vmlist_lock);
701 	return buf - buf_start;
702 }
703 
704 /**
705  *	remap_vmalloc_range  -  map vmalloc pages to userspace
706  *	@vma:		vma to cover (map full range of vma)
707  *	@addr:		vmalloc memory
708  *	@pgoff:		number of pages into addr before first page to map
709  *	@returns:	0 for success, -Exxx on failure
710  *
711  *	This function checks that addr is a valid vmalloc'ed area, and
712  *	that it is big enough to cover the vma. Will return failure if
713  *	that criteria isn't met.
714  *
715  *	Similar to remap_pfn_range() (see mm/memory.c)
716  */
717 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
718 						unsigned long pgoff)
719 {
720 	struct vm_struct *area;
721 	unsigned long uaddr = vma->vm_start;
722 	unsigned long usize = vma->vm_end - vma->vm_start;
723 	int ret;
724 
725 	if ((PAGE_SIZE-1) & (unsigned long)addr)
726 		return -EINVAL;
727 
728 	read_lock(&vmlist_lock);
729 	area = __find_vm_area(addr);
730 	if (!area)
731 		goto out_einval_locked;
732 
733 	if (!(area->flags & VM_USERMAP))
734 		goto out_einval_locked;
735 
736 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
737 		goto out_einval_locked;
738 	read_unlock(&vmlist_lock);
739 
740 	addr += pgoff << PAGE_SHIFT;
741 	do {
742 		struct page *page = vmalloc_to_page(addr);
743 		ret = vm_insert_page(vma, uaddr, page);
744 		if (ret)
745 			return ret;
746 
747 		uaddr += PAGE_SIZE;
748 		addr += PAGE_SIZE;
749 		usize -= PAGE_SIZE;
750 	} while (usize > 0);
751 
752 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
753 	vma->vm_flags |= VM_RESERVED;
754 
755 	return ret;
756 
757 out_einval_locked:
758 	read_unlock(&vmlist_lock);
759 	return -EINVAL;
760 }
761 EXPORT_SYMBOL(remap_vmalloc_range);
762 
763 /*
764  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
765  * have one.
766  */
767 void  __attribute__((weak)) vmalloc_sync_all(void)
768 {
769 }
770