1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1993 Linus Torvalds 4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 7 * Numa awareness, Christoph Lameter, SGI, June 2005 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/set_memory.h> 22 #include <linux/debugobjects.h> 23 #include <linux/kallsyms.h> 24 #include <linux/list.h> 25 #include <linux/notifier.h> 26 #include <linux/rbtree.h> 27 #include <linux/xarray.h> 28 #include <linux/io.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/memcontrol.h> 35 #include <linux/llist.h> 36 #include <linux/uio.h> 37 #include <linux/bitops.h> 38 #include <linux/rbtree_augmented.h> 39 #include <linux/overflow.h> 40 #include <linux/pgtable.h> 41 #include <linux/hugetlb.h> 42 #include <linux/sched/mm.h> 43 #include <asm/tlbflush.h> 44 #include <asm/shmparam.h> 45 #include <linux/page_owner.h> 46 47 #define CREATE_TRACE_POINTS 48 #include <trace/events/vmalloc.h> 49 50 #include "internal.h" 51 #include "pgalloc-track.h" 52 53 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 54 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; 55 56 static int __init set_nohugeiomap(char *str) 57 { 58 ioremap_max_page_shift = PAGE_SHIFT; 59 return 0; 60 } 61 early_param("nohugeiomap", set_nohugeiomap); 62 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 63 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; 64 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 65 66 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 67 static bool __ro_after_init vmap_allow_huge = true; 68 69 static int __init set_nohugevmalloc(char *str) 70 { 71 vmap_allow_huge = false; 72 return 0; 73 } 74 early_param("nohugevmalloc", set_nohugevmalloc); 75 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 76 static const bool vmap_allow_huge = false; 77 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 78 79 bool is_vmalloc_addr(const void *x) 80 { 81 unsigned long addr = (unsigned long)kasan_reset_tag(x); 82 83 return addr >= VMALLOC_START && addr < VMALLOC_END; 84 } 85 EXPORT_SYMBOL(is_vmalloc_addr); 86 87 struct vfree_deferred { 88 struct llist_head list; 89 struct work_struct wq; 90 }; 91 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 92 93 /*** Page table manipulation functions ***/ 94 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 95 phys_addr_t phys_addr, pgprot_t prot, 96 unsigned int max_page_shift, pgtbl_mod_mask *mask) 97 { 98 pte_t *pte; 99 u64 pfn; 100 struct page *page; 101 unsigned long size = PAGE_SIZE; 102 103 pfn = phys_addr >> PAGE_SHIFT; 104 pte = pte_alloc_kernel_track(pmd, addr, mask); 105 if (!pte) 106 return -ENOMEM; 107 do { 108 if (unlikely(!pte_none(ptep_get(pte)))) { 109 if (pfn_valid(pfn)) { 110 page = pfn_to_page(pfn); 111 dump_page(page, "remapping already mapped page"); 112 } 113 BUG(); 114 } 115 116 #ifdef CONFIG_HUGETLB_PAGE 117 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); 118 if (size != PAGE_SIZE) { 119 pte_t entry = pfn_pte(pfn, prot); 120 121 entry = arch_make_huge_pte(entry, ilog2(size), 0); 122 set_huge_pte_at(&init_mm, addr, pte, entry, size); 123 pfn += PFN_DOWN(size); 124 continue; 125 } 126 #endif 127 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); 128 pfn++; 129 } while (pte += PFN_DOWN(size), addr += size, addr != end); 130 *mask |= PGTBL_PTE_MODIFIED; 131 return 0; 132 } 133 134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, 135 phys_addr_t phys_addr, pgprot_t prot, 136 unsigned int max_page_shift) 137 { 138 if (max_page_shift < PMD_SHIFT) 139 return 0; 140 141 if (!arch_vmap_pmd_supported(prot)) 142 return 0; 143 144 if ((end - addr) != PMD_SIZE) 145 return 0; 146 147 if (!IS_ALIGNED(addr, PMD_SIZE)) 148 return 0; 149 150 if (!IS_ALIGNED(phys_addr, PMD_SIZE)) 151 return 0; 152 153 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) 154 return 0; 155 156 return pmd_set_huge(pmd, phys_addr, prot); 157 } 158 159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 160 phys_addr_t phys_addr, pgprot_t prot, 161 unsigned int max_page_shift, pgtbl_mod_mask *mask) 162 { 163 pmd_t *pmd; 164 unsigned long next; 165 166 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 167 if (!pmd) 168 return -ENOMEM; 169 do { 170 next = pmd_addr_end(addr, end); 171 172 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, 173 max_page_shift)) { 174 *mask |= PGTBL_PMD_MODIFIED; 175 continue; 176 } 177 178 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) 179 return -ENOMEM; 180 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); 181 return 0; 182 } 183 184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, 185 phys_addr_t phys_addr, pgprot_t prot, 186 unsigned int max_page_shift) 187 { 188 if (max_page_shift < PUD_SHIFT) 189 return 0; 190 191 if (!arch_vmap_pud_supported(prot)) 192 return 0; 193 194 if ((end - addr) != PUD_SIZE) 195 return 0; 196 197 if (!IS_ALIGNED(addr, PUD_SIZE)) 198 return 0; 199 200 if (!IS_ALIGNED(phys_addr, PUD_SIZE)) 201 return 0; 202 203 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) 204 return 0; 205 206 return pud_set_huge(pud, phys_addr, prot); 207 } 208 209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 210 phys_addr_t phys_addr, pgprot_t prot, 211 unsigned int max_page_shift, pgtbl_mod_mask *mask) 212 { 213 pud_t *pud; 214 unsigned long next; 215 216 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 217 if (!pud) 218 return -ENOMEM; 219 do { 220 next = pud_addr_end(addr, end); 221 222 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, 223 max_page_shift)) { 224 *mask |= PGTBL_PUD_MODIFIED; 225 continue; 226 } 227 228 if (vmap_pmd_range(pud, addr, next, phys_addr, prot, 229 max_page_shift, mask)) 230 return -ENOMEM; 231 } while (pud++, phys_addr += (next - addr), addr = next, addr != end); 232 return 0; 233 } 234 235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, 236 phys_addr_t phys_addr, pgprot_t prot, 237 unsigned int max_page_shift) 238 { 239 if (max_page_shift < P4D_SHIFT) 240 return 0; 241 242 if (!arch_vmap_p4d_supported(prot)) 243 return 0; 244 245 if ((end - addr) != P4D_SIZE) 246 return 0; 247 248 if (!IS_ALIGNED(addr, P4D_SIZE)) 249 return 0; 250 251 if (!IS_ALIGNED(phys_addr, P4D_SIZE)) 252 return 0; 253 254 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) 255 return 0; 256 257 return p4d_set_huge(p4d, phys_addr, prot); 258 } 259 260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 261 phys_addr_t phys_addr, pgprot_t prot, 262 unsigned int max_page_shift, pgtbl_mod_mask *mask) 263 { 264 p4d_t *p4d; 265 unsigned long next; 266 267 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 268 if (!p4d) 269 return -ENOMEM; 270 do { 271 next = p4d_addr_end(addr, end); 272 273 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, 274 max_page_shift)) { 275 *mask |= PGTBL_P4D_MODIFIED; 276 continue; 277 } 278 279 if (vmap_pud_range(p4d, addr, next, phys_addr, prot, 280 max_page_shift, mask)) 281 return -ENOMEM; 282 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); 283 return 0; 284 } 285 286 static int vmap_range_noflush(unsigned long addr, unsigned long end, 287 phys_addr_t phys_addr, pgprot_t prot, 288 unsigned int max_page_shift) 289 { 290 pgd_t *pgd; 291 unsigned long start; 292 unsigned long next; 293 int err; 294 pgtbl_mod_mask mask = 0; 295 296 might_sleep(); 297 BUG_ON(addr >= end); 298 299 start = addr; 300 pgd = pgd_offset_k(addr); 301 do { 302 next = pgd_addr_end(addr, end); 303 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, 304 max_page_shift, &mask); 305 if (err) 306 break; 307 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); 308 309 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 310 arch_sync_kernel_mappings(start, end); 311 312 return err; 313 } 314 315 int vmap_page_range(unsigned long addr, unsigned long end, 316 phys_addr_t phys_addr, pgprot_t prot) 317 { 318 int err; 319 320 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), 321 ioremap_max_page_shift); 322 flush_cache_vmap(addr, end); 323 if (!err) 324 err = kmsan_ioremap_page_range(addr, end, phys_addr, prot, 325 ioremap_max_page_shift); 326 return err; 327 } 328 329 int ioremap_page_range(unsigned long addr, unsigned long end, 330 phys_addr_t phys_addr, pgprot_t prot) 331 { 332 struct vm_struct *area; 333 334 area = find_vm_area((void *)addr); 335 if (!area || !(area->flags & VM_IOREMAP)) { 336 WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr); 337 return -EINVAL; 338 } 339 if (addr != (unsigned long)area->addr || 340 (void *)end != area->addr + get_vm_area_size(area)) { 341 WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n", 342 addr, end, (long)area->addr, 343 (long)area->addr + get_vm_area_size(area)); 344 return -ERANGE; 345 } 346 return vmap_page_range(addr, end, phys_addr, prot); 347 } 348 349 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 350 pgtbl_mod_mask *mask) 351 { 352 pte_t *pte; 353 354 pte = pte_offset_kernel(pmd, addr); 355 do { 356 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 357 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 358 } while (pte++, addr += PAGE_SIZE, addr != end); 359 *mask |= PGTBL_PTE_MODIFIED; 360 } 361 362 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 363 pgtbl_mod_mask *mask) 364 { 365 pmd_t *pmd; 366 unsigned long next; 367 int cleared; 368 369 pmd = pmd_offset(pud, addr); 370 do { 371 next = pmd_addr_end(addr, end); 372 373 cleared = pmd_clear_huge(pmd); 374 if (cleared || pmd_bad(*pmd)) 375 *mask |= PGTBL_PMD_MODIFIED; 376 377 if (cleared) 378 continue; 379 if (pmd_none_or_clear_bad(pmd)) 380 continue; 381 vunmap_pte_range(pmd, addr, next, mask); 382 383 cond_resched(); 384 } while (pmd++, addr = next, addr != end); 385 } 386 387 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 388 pgtbl_mod_mask *mask) 389 { 390 pud_t *pud; 391 unsigned long next; 392 int cleared; 393 394 pud = pud_offset(p4d, addr); 395 do { 396 next = pud_addr_end(addr, end); 397 398 cleared = pud_clear_huge(pud); 399 if (cleared || pud_bad(*pud)) 400 *mask |= PGTBL_PUD_MODIFIED; 401 402 if (cleared) 403 continue; 404 if (pud_none_or_clear_bad(pud)) 405 continue; 406 vunmap_pmd_range(pud, addr, next, mask); 407 } while (pud++, addr = next, addr != end); 408 } 409 410 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 411 pgtbl_mod_mask *mask) 412 { 413 p4d_t *p4d; 414 unsigned long next; 415 416 p4d = p4d_offset(pgd, addr); 417 do { 418 next = p4d_addr_end(addr, end); 419 420 p4d_clear_huge(p4d); 421 if (p4d_bad(*p4d)) 422 *mask |= PGTBL_P4D_MODIFIED; 423 424 if (p4d_none_or_clear_bad(p4d)) 425 continue; 426 vunmap_pud_range(p4d, addr, next, mask); 427 } while (p4d++, addr = next, addr != end); 428 } 429 430 /* 431 * vunmap_range_noflush is similar to vunmap_range, but does not 432 * flush caches or TLBs. 433 * 434 * The caller is responsible for calling flush_cache_vmap() before calling 435 * this function, and flush_tlb_kernel_range after it has returned 436 * successfully (and before the addresses are expected to cause a page fault 437 * or be re-mapped for something else, if TLB flushes are being delayed or 438 * coalesced). 439 * 440 * This is an internal function only. Do not use outside mm/. 441 */ 442 void __vunmap_range_noflush(unsigned long start, unsigned long end) 443 { 444 unsigned long next; 445 pgd_t *pgd; 446 unsigned long addr = start; 447 pgtbl_mod_mask mask = 0; 448 449 BUG_ON(addr >= end); 450 pgd = pgd_offset_k(addr); 451 do { 452 next = pgd_addr_end(addr, end); 453 if (pgd_bad(*pgd)) 454 mask |= PGTBL_PGD_MODIFIED; 455 if (pgd_none_or_clear_bad(pgd)) 456 continue; 457 vunmap_p4d_range(pgd, addr, next, &mask); 458 } while (pgd++, addr = next, addr != end); 459 460 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 461 arch_sync_kernel_mappings(start, end); 462 } 463 464 void vunmap_range_noflush(unsigned long start, unsigned long end) 465 { 466 kmsan_vunmap_range_noflush(start, end); 467 __vunmap_range_noflush(start, end); 468 } 469 470 /** 471 * vunmap_range - unmap kernel virtual addresses 472 * @addr: start of the VM area to unmap 473 * @end: end of the VM area to unmap (non-inclusive) 474 * 475 * Clears any present PTEs in the virtual address range, flushes TLBs and 476 * caches. Any subsequent access to the address before it has been re-mapped 477 * is a kernel bug. 478 */ 479 void vunmap_range(unsigned long addr, unsigned long end) 480 { 481 flush_cache_vunmap(addr, end); 482 vunmap_range_noflush(addr, end); 483 flush_tlb_kernel_range(addr, end); 484 } 485 486 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, 487 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 488 pgtbl_mod_mask *mask) 489 { 490 pte_t *pte; 491 492 /* 493 * nr is a running index into the array which helps higher level 494 * callers keep track of where we're up to. 495 */ 496 497 pte = pte_alloc_kernel_track(pmd, addr, mask); 498 if (!pte) 499 return -ENOMEM; 500 do { 501 struct page *page = pages[*nr]; 502 503 if (WARN_ON(!pte_none(ptep_get(pte)))) 504 return -EBUSY; 505 if (WARN_ON(!page)) 506 return -ENOMEM; 507 if (WARN_ON(!pfn_valid(page_to_pfn(page)))) 508 return -EINVAL; 509 510 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 511 (*nr)++; 512 } while (pte++, addr += PAGE_SIZE, addr != end); 513 *mask |= PGTBL_PTE_MODIFIED; 514 return 0; 515 } 516 517 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, 518 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 519 pgtbl_mod_mask *mask) 520 { 521 pmd_t *pmd; 522 unsigned long next; 523 524 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 525 if (!pmd) 526 return -ENOMEM; 527 do { 528 next = pmd_addr_end(addr, end); 529 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) 530 return -ENOMEM; 531 } while (pmd++, addr = next, addr != end); 532 return 0; 533 } 534 535 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, 536 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 537 pgtbl_mod_mask *mask) 538 { 539 pud_t *pud; 540 unsigned long next; 541 542 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 543 if (!pud) 544 return -ENOMEM; 545 do { 546 next = pud_addr_end(addr, end); 547 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) 548 return -ENOMEM; 549 } while (pud++, addr = next, addr != end); 550 return 0; 551 } 552 553 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, 554 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 555 pgtbl_mod_mask *mask) 556 { 557 p4d_t *p4d; 558 unsigned long next; 559 560 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 561 if (!p4d) 562 return -ENOMEM; 563 do { 564 next = p4d_addr_end(addr, end); 565 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) 566 return -ENOMEM; 567 } while (p4d++, addr = next, addr != end); 568 return 0; 569 } 570 571 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, 572 pgprot_t prot, struct page **pages) 573 { 574 unsigned long start = addr; 575 pgd_t *pgd; 576 unsigned long next; 577 int err = 0; 578 int nr = 0; 579 pgtbl_mod_mask mask = 0; 580 581 BUG_ON(addr >= end); 582 pgd = pgd_offset_k(addr); 583 do { 584 next = pgd_addr_end(addr, end); 585 if (pgd_bad(*pgd)) 586 mask |= PGTBL_PGD_MODIFIED; 587 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); 588 if (err) 589 break; 590 } while (pgd++, addr = next, addr != end); 591 592 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 593 arch_sync_kernel_mappings(start, end); 594 595 return err; 596 } 597 598 /* 599 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not 600 * flush caches. 601 * 602 * The caller is responsible for calling flush_cache_vmap() after this 603 * function returns successfully and before the addresses are accessed. 604 * 605 * This is an internal function only. Do not use outside mm/. 606 */ 607 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end, 608 pgprot_t prot, struct page **pages, unsigned int page_shift) 609 { 610 unsigned int i, nr = (end - addr) >> PAGE_SHIFT; 611 612 WARN_ON(page_shift < PAGE_SHIFT); 613 614 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || 615 page_shift == PAGE_SHIFT) 616 return vmap_small_pages_range_noflush(addr, end, prot, pages); 617 618 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { 619 int err; 620 621 err = vmap_range_noflush(addr, addr + (1UL << page_shift), 622 page_to_phys(pages[i]), prot, 623 page_shift); 624 if (err) 625 return err; 626 627 addr += 1UL << page_shift; 628 } 629 630 return 0; 631 } 632 633 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 634 pgprot_t prot, struct page **pages, unsigned int page_shift) 635 { 636 int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages, 637 page_shift); 638 639 if (ret) 640 return ret; 641 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 642 } 643 644 /** 645 * vmap_pages_range - map pages to a kernel virtual address 646 * @addr: start of the VM area to map 647 * @end: end of the VM area to map (non-inclusive) 648 * @prot: page protection flags to use 649 * @pages: pages to map (always PAGE_SIZE pages) 650 * @page_shift: maximum shift that the pages may be mapped with, @pages must 651 * be aligned and contiguous up to at least this shift. 652 * 653 * RETURNS: 654 * 0 on success, -errno on failure. 655 */ 656 int vmap_pages_range(unsigned long addr, unsigned long end, 657 pgprot_t prot, struct page **pages, unsigned int page_shift) 658 { 659 int err; 660 661 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 662 flush_cache_vmap(addr, end); 663 return err; 664 } 665 666 static int check_sparse_vm_area(struct vm_struct *area, unsigned long start, 667 unsigned long end) 668 { 669 might_sleep(); 670 if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS)) 671 return -EINVAL; 672 if (WARN_ON_ONCE(area->flags & VM_NO_GUARD)) 673 return -EINVAL; 674 if (WARN_ON_ONCE(!(area->flags & VM_SPARSE))) 675 return -EINVAL; 676 if ((end - start) >> PAGE_SHIFT > totalram_pages()) 677 return -E2BIG; 678 if (start < (unsigned long)area->addr || 679 (void *)end > area->addr + get_vm_area_size(area)) 680 return -ERANGE; 681 return 0; 682 } 683 684 /** 685 * vm_area_map_pages - map pages inside given sparse vm_area 686 * @area: vm_area 687 * @start: start address inside vm_area 688 * @end: end address inside vm_area 689 * @pages: pages to map (always PAGE_SIZE pages) 690 */ 691 int vm_area_map_pages(struct vm_struct *area, unsigned long start, 692 unsigned long end, struct page **pages) 693 { 694 int err; 695 696 err = check_sparse_vm_area(area, start, end); 697 if (err) 698 return err; 699 700 return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT); 701 } 702 703 /** 704 * vm_area_unmap_pages - unmap pages inside given sparse vm_area 705 * @area: vm_area 706 * @start: start address inside vm_area 707 * @end: end address inside vm_area 708 */ 709 void vm_area_unmap_pages(struct vm_struct *area, unsigned long start, 710 unsigned long end) 711 { 712 if (check_sparse_vm_area(area, start, end)) 713 return; 714 715 vunmap_range(start, end); 716 } 717 718 int is_vmalloc_or_module_addr(const void *x) 719 { 720 /* 721 * ARM, x86-64 and sparc64 put modules in a special place, 722 * and fall back on vmalloc() if that fails. Others 723 * just put it in the vmalloc space. 724 */ 725 #if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR) 726 unsigned long addr = (unsigned long)kasan_reset_tag(x); 727 if (addr >= MODULES_VADDR && addr < MODULES_END) 728 return 1; 729 #endif 730 return is_vmalloc_addr(x); 731 } 732 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr); 733 734 /* 735 * Walk a vmap address to the struct page it maps. Huge vmap mappings will 736 * return the tail page that corresponds to the base page address, which 737 * matches small vmap mappings. 738 */ 739 struct page *vmalloc_to_page(const void *vmalloc_addr) 740 { 741 unsigned long addr = (unsigned long) vmalloc_addr; 742 struct page *page = NULL; 743 pgd_t *pgd = pgd_offset_k(addr); 744 p4d_t *p4d; 745 pud_t *pud; 746 pmd_t *pmd; 747 pte_t *ptep, pte; 748 749 /* 750 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 751 * architectures that do not vmalloc module space 752 */ 753 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 754 755 if (pgd_none(*pgd)) 756 return NULL; 757 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 758 return NULL; /* XXX: no allowance for huge pgd */ 759 if (WARN_ON_ONCE(pgd_bad(*pgd))) 760 return NULL; 761 762 p4d = p4d_offset(pgd, addr); 763 if (p4d_none(*p4d)) 764 return NULL; 765 if (p4d_leaf(*p4d)) 766 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); 767 if (WARN_ON_ONCE(p4d_bad(*p4d))) 768 return NULL; 769 770 pud = pud_offset(p4d, addr); 771 if (pud_none(*pud)) 772 return NULL; 773 if (pud_leaf(*pud)) 774 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 775 if (WARN_ON_ONCE(pud_bad(*pud))) 776 return NULL; 777 778 pmd = pmd_offset(pud, addr); 779 if (pmd_none(*pmd)) 780 return NULL; 781 if (pmd_leaf(*pmd)) 782 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 783 if (WARN_ON_ONCE(pmd_bad(*pmd))) 784 return NULL; 785 786 ptep = pte_offset_kernel(pmd, addr); 787 pte = ptep_get(ptep); 788 if (pte_present(pte)) 789 page = pte_page(pte); 790 791 return page; 792 } 793 EXPORT_SYMBOL(vmalloc_to_page); 794 795 /* 796 * Map a vmalloc()-space virtual address to the physical page frame number. 797 */ 798 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 799 { 800 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 801 } 802 EXPORT_SYMBOL(vmalloc_to_pfn); 803 804 805 /*** Global kva allocator ***/ 806 807 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 808 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 809 810 811 static DEFINE_SPINLOCK(free_vmap_area_lock); 812 static bool vmap_initialized __read_mostly; 813 814 /* 815 * This kmem_cache is used for vmap_area objects. Instead of 816 * allocating from slab we reuse an object from this cache to 817 * make things faster. Especially in "no edge" splitting of 818 * free block. 819 */ 820 static struct kmem_cache *vmap_area_cachep; 821 822 /* 823 * This linked list is used in pair with free_vmap_area_root. 824 * It gives O(1) access to prev/next to perform fast coalescing. 825 */ 826 static LIST_HEAD(free_vmap_area_list); 827 828 /* 829 * This augment red-black tree represents the free vmap space. 830 * All vmap_area objects in this tree are sorted by va->va_start 831 * address. It is used for allocation and merging when a vmap 832 * object is released. 833 * 834 * Each vmap_area node contains a maximum available free block 835 * of its sub-tree, right or left. Therefore it is possible to 836 * find a lowest match of free area. 837 */ 838 static struct rb_root free_vmap_area_root = RB_ROOT; 839 840 /* 841 * Preload a CPU with one object for "no edge" split case. The 842 * aim is to get rid of allocations from the atomic context, thus 843 * to use more permissive allocation masks. 844 */ 845 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 846 847 /* 848 * This structure defines a single, solid model where a list and 849 * rb-tree are part of one entity protected by the lock. Nodes are 850 * sorted in ascending order, thus for O(1) access to left/right 851 * neighbors a list is used as well as for sequential traversal. 852 */ 853 struct rb_list { 854 struct rb_root root; 855 struct list_head head; 856 spinlock_t lock; 857 }; 858 859 /* 860 * A fast size storage contains VAs up to 1M size. A pool consists 861 * of linked between each other ready to go VAs of certain sizes. 862 * An index in the pool-array corresponds to number of pages + 1. 863 */ 864 #define MAX_VA_SIZE_PAGES 256 865 866 struct vmap_pool { 867 struct list_head head; 868 unsigned long len; 869 }; 870 871 /* 872 * An effective vmap-node logic. Users make use of nodes instead 873 * of a global heap. It allows to balance an access and mitigate 874 * contention. 875 */ 876 static struct vmap_node { 877 /* Simple size segregated storage. */ 878 struct vmap_pool pool[MAX_VA_SIZE_PAGES]; 879 spinlock_t pool_lock; 880 bool skip_populate; 881 882 /* Bookkeeping data of this node. */ 883 struct rb_list busy; 884 struct rb_list lazy; 885 886 /* 887 * Ready-to-free areas. 888 */ 889 struct list_head purge_list; 890 struct work_struct purge_work; 891 unsigned long nr_purged; 892 } single; 893 894 /* 895 * Initial setup consists of one single node, i.e. a balancing 896 * is fully disabled. Later on, after vmap is initialized these 897 * parameters are updated based on a system capacity. 898 */ 899 static struct vmap_node *vmap_nodes = &single; 900 static __read_mostly unsigned int nr_vmap_nodes = 1; 901 static __read_mostly unsigned int vmap_zone_size = 1; 902 903 /* A simple iterator over all vmap-nodes. */ 904 #define for_each_vmap_node(vn) \ 905 for ((vn) = &vmap_nodes[0]; \ 906 (vn) < &vmap_nodes[nr_vmap_nodes]; (vn)++) 907 908 static inline unsigned int 909 addr_to_node_id(unsigned long addr) 910 { 911 return (addr / vmap_zone_size) % nr_vmap_nodes; 912 } 913 914 static inline struct vmap_node * 915 addr_to_node(unsigned long addr) 916 { 917 return &vmap_nodes[addr_to_node_id(addr)]; 918 } 919 920 static inline struct vmap_node * 921 id_to_node(unsigned int id) 922 { 923 return &vmap_nodes[id % nr_vmap_nodes]; 924 } 925 926 static inline unsigned int 927 node_to_id(struct vmap_node *node) 928 { 929 /* Pointer arithmetic. */ 930 unsigned int id = node - vmap_nodes; 931 932 if (likely(id < nr_vmap_nodes)) 933 return id; 934 935 WARN_ONCE(1, "An address 0x%p is out-of-bounds.\n", node); 936 return 0; 937 } 938 939 /* 940 * We use the value 0 to represent "no node", that is why 941 * an encoded value will be the node-id incremented by 1. 942 * It is always greater then 0. A valid node_id which can 943 * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id 944 * is not valid 0 is returned. 945 */ 946 static unsigned int 947 encode_vn_id(unsigned int node_id) 948 { 949 /* Can store U8_MAX [0:254] nodes. */ 950 if (node_id < nr_vmap_nodes) 951 return (node_id + 1) << BITS_PER_BYTE; 952 953 /* Warn and no node encoded. */ 954 WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id); 955 return 0; 956 } 957 958 /* 959 * Returns an encoded node-id, the valid range is within 960 * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is 961 * returned if extracted data is wrong. 962 */ 963 static unsigned int 964 decode_vn_id(unsigned int val) 965 { 966 unsigned int node_id = (val >> BITS_PER_BYTE) - 1; 967 968 /* Can store U8_MAX [0:254] nodes. */ 969 if (node_id < nr_vmap_nodes) 970 return node_id; 971 972 /* If it was _not_ zero, warn. */ 973 WARN_ONCE(node_id != UINT_MAX, 974 "Decode wrong node id (%d)\n", node_id); 975 976 return nr_vmap_nodes; 977 } 978 979 static bool 980 is_vn_id_valid(unsigned int node_id) 981 { 982 if (node_id < nr_vmap_nodes) 983 return true; 984 985 return false; 986 } 987 988 static __always_inline unsigned long 989 va_size(struct vmap_area *va) 990 { 991 return (va->va_end - va->va_start); 992 } 993 994 static __always_inline unsigned long 995 get_subtree_max_size(struct rb_node *node) 996 { 997 struct vmap_area *va; 998 999 va = rb_entry_safe(node, struct vmap_area, rb_node); 1000 return va ? va->subtree_max_size : 0; 1001 } 1002 1003 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 1004 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 1005 1006 static void reclaim_and_purge_vmap_areas(void); 1007 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 1008 static void drain_vmap_area_work(struct work_struct *work); 1009 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); 1010 1011 static __cacheline_aligned_in_smp atomic_long_t nr_vmalloc_pages; 1012 static __cacheline_aligned_in_smp atomic_long_t vmap_lazy_nr; 1013 1014 unsigned long vmalloc_nr_pages(void) 1015 { 1016 return atomic_long_read(&nr_vmalloc_pages); 1017 } 1018 1019 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root) 1020 { 1021 struct rb_node *n = root->rb_node; 1022 1023 addr = (unsigned long)kasan_reset_tag((void *)addr); 1024 1025 while (n) { 1026 struct vmap_area *va; 1027 1028 va = rb_entry(n, struct vmap_area, rb_node); 1029 if (addr < va->va_start) 1030 n = n->rb_left; 1031 else if (addr >= va->va_end) 1032 n = n->rb_right; 1033 else 1034 return va; 1035 } 1036 1037 return NULL; 1038 } 1039 1040 /* Look up the first VA which satisfies addr < va_end, NULL if none. */ 1041 static struct vmap_area * 1042 __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root) 1043 { 1044 struct vmap_area *va = NULL; 1045 struct rb_node *n = root->rb_node; 1046 1047 addr = (unsigned long)kasan_reset_tag((void *)addr); 1048 1049 while (n) { 1050 struct vmap_area *tmp; 1051 1052 tmp = rb_entry(n, struct vmap_area, rb_node); 1053 if (tmp->va_end > addr) { 1054 va = tmp; 1055 if (tmp->va_start <= addr) 1056 break; 1057 1058 n = n->rb_left; 1059 } else 1060 n = n->rb_right; 1061 } 1062 1063 return va; 1064 } 1065 1066 /* 1067 * Returns a node where a first VA, that satisfies addr < va_end, resides. 1068 * If success, a node is locked. A user is responsible to unlock it when a 1069 * VA is no longer needed to be accessed. 1070 * 1071 * Returns NULL if nothing found. 1072 */ 1073 static struct vmap_node * 1074 find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va) 1075 { 1076 unsigned long va_start_lowest; 1077 struct vmap_node *vn; 1078 1079 repeat: 1080 va_start_lowest = 0; 1081 1082 for_each_vmap_node(vn) { 1083 spin_lock(&vn->busy.lock); 1084 *va = __find_vmap_area_exceed_addr(addr, &vn->busy.root); 1085 1086 if (*va) 1087 if (!va_start_lowest || (*va)->va_start < va_start_lowest) 1088 va_start_lowest = (*va)->va_start; 1089 spin_unlock(&vn->busy.lock); 1090 } 1091 1092 /* 1093 * Check if found VA exists, it might have gone away. In this case we 1094 * repeat the search because a VA has been removed concurrently and we 1095 * need to proceed to the next one, which is a rare case. 1096 */ 1097 if (va_start_lowest) { 1098 vn = addr_to_node(va_start_lowest); 1099 1100 spin_lock(&vn->busy.lock); 1101 *va = __find_vmap_area(va_start_lowest, &vn->busy.root); 1102 1103 if (*va) 1104 return vn; 1105 1106 spin_unlock(&vn->busy.lock); 1107 goto repeat; 1108 } 1109 1110 return NULL; 1111 } 1112 1113 /* 1114 * This function returns back addresses of parent node 1115 * and its left or right link for further processing. 1116 * 1117 * Otherwise NULL is returned. In that case all further 1118 * steps regarding inserting of conflicting overlap range 1119 * have to be declined and actually considered as a bug. 1120 */ 1121 static __always_inline struct rb_node ** 1122 find_va_links(struct vmap_area *va, 1123 struct rb_root *root, struct rb_node *from, 1124 struct rb_node **parent) 1125 { 1126 struct vmap_area *tmp_va; 1127 struct rb_node **link; 1128 1129 if (root) { 1130 link = &root->rb_node; 1131 if (unlikely(!*link)) { 1132 *parent = NULL; 1133 return link; 1134 } 1135 } else { 1136 link = &from; 1137 } 1138 1139 /* 1140 * Go to the bottom of the tree. When we hit the last point 1141 * we end up with parent rb_node and correct direction, i name 1142 * it link, where the new va->rb_node will be attached to. 1143 */ 1144 do { 1145 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 1146 1147 /* 1148 * During the traversal we also do some sanity check. 1149 * Trigger the BUG() if there are sides(left/right) 1150 * or full overlaps. 1151 */ 1152 if (va->va_end <= tmp_va->va_start) 1153 link = &(*link)->rb_left; 1154 else if (va->va_start >= tmp_va->va_end) 1155 link = &(*link)->rb_right; 1156 else { 1157 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", 1158 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); 1159 1160 return NULL; 1161 } 1162 } while (*link); 1163 1164 *parent = &tmp_va->rb_node; 1165 return link; 1166 } 1167 1168 static __always_inline struct list_head * 1169 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 1170 { 1171 struct list_head *list; 1172 1173 if (unlikely(!parent)) 1174 /* 1175 * The red-black tree where we try to find VA neighbors 1176 * before merging or inserting is empty, i.e. it means 1177 * there is no free vmap space. Normally it does not 1178 * happen but we handle this case anyway. 1179 */ 1180 return NULL; 1181 1182 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 1183 return (&parent->rb_right == link ? list->next : list); 1184 } 1185 1186 static __always_inline void 1187 __link_va(struct vmap_area *va, struct rb_root *root, 1188 struct rb_node *parent, struct rb_node **link, 1189 struct list_head *head, bool augment) 1190 { 1191 /* 1192 * VA is still not in the list, but we can 1193 * identify its future previous list_head node. 1194 */ 1195 if (likely(parent)) { 1196 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 1197 if (&parent->rb_right != link) 1198 head = head->prev; 1199 } 1200 1201 /* Insert to the rb-tree */ 1202 rb_link_node(&va->rb_node, parent, link); 1203 if (augment) { 1204 /* 1205 * Some explanation here. Just perform simple insertion 1206 * to the tree. We do not set va->subtree_max_size to 1207 * its current size before calling rb_insert_augmented(). 1208 * It is because we populate the tree from the bottom 1209 * to parent levels when the node _is_ in the tree. 1210 * 1211 * Therefore we set subtree_max_size to zero after insertion, 1212 * to let __augment_tree_propagate_from() puts everything to 1213 * the correct order later on. 1214 */ 1215 rb_insert_augmented(&va->rb_node, 1216 root, &free_vmap_area_rb_augment_cb); 1217 va->subtree_max_size = 0; 1218 } else { 1219 rb_insert_color(&va->rb_node, root); 1220 } 1221 1222 /* Address-sort this list */ 1223 list_add(&va->list, head); 1224 } 1225 1226 static __always_inline void 1227 link_va(struct vmap_area *va, struct rb_root *root, 1228 struct rb_node *parent, struct rb_node **link, 1229 struct list_head *head) 1230 { 1231 __link_va(va, root, parent, link, head, false); 1232 } 1233 1234 static __always_inline void 1235 link_va_augment(struct vmap_area *va, struct rb_root *root, 1236 struct rb_node *parent, struct rb_node **link, 1237 struct list_head *head) 1238 { 1239 __link_va(va, root, parent, link, head, true); 1240 } 1241 1242 static __always_inline void 1243 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment) 1244 { 1245 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 1246 return; 1247 1248 if (augment) 1249 rb_erase_augmented(&va->rb_node, 1250 root, &free_vmap_area_rb_augment_cb); 1251 else 1252 rb_erase(&va->rb_node, root); 1253 1254 list_del_init(&va->list); 1255 RB_CLEAR_NODE(&va->rb_node); 1256 } 1257 1258 static __always_inline void 1259 unlink_va(struct vmap_area *va, struct rb_root *root) 1260 { 1261 __unlink_va(va, root, false); 1262 } 1263 1264 static __always_inline void 1265 unlink_va_augment(struct vmap_area *va, struct rb_root *root) 1266 { 1267 __unlink_va(va, root, true); 1268 } 1269 1270 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1271 /* 1272 * Gets called when remove the node and rotate. 1273 */ 1274 static __always_inline unsigned long 1275 compute_subtree_max_size(struct vmap_area *va) 1276 { 1277 return max3(va_size(va), 1278 get_subtree_max_size(va->rb_node.rb_left), 1279 get_subtree_max_size(va->rb_node.rb_right)); 1280 } 1281 1282 static void 1283 augment_tree_propagate_check(void) 1284 { 1285 struct vmap_area *va; 1286 unsigned long computed_size; 1287 1288 list_for_each_entry(va, &free_vmap_area_list, list) { 1289 computed_size = compute_subtree_max_size(va); 1290 if (computed_size != va->subtree_max_size) 1291 pr_emerg("tree is corrupted: %lu, %lu\n", 1292 va_size(va), va->subtree_max_size); 1293 } 1294 } 1295 #endif 1296 1297 /* 1298 * This function populates subtree_max_size from bottom to upper 1299 * levels starting from VA point. The propagation must be done 1300 * when VA size is modified by changing its va_start/va_end. Or 1301 * in case of newly inserting of VA to the tree. 1302 * 1303 * It means that __augment_tree_propagate_from() must be called: 1304 * - After VA has been inserted to the tree(free path); 1305 * - After VA has been shrunk(allocation path); 1306 * - After VA has been increased(merging path). 1307 * 1308 * Please note that, it does not mean that upper parent nodes 1309 * and their subtree_max_size are recalculated all the time up 1310 * to the root node. 1311 * 1312 * 4--8 1313 * /\ 1314 * / \ 1315 * / \ 1316 * 2--2 8--8 1317 * 1318 * For example if we modify the node 4, shrinking it to 2, then 1319 * no any modification is required. If we shrink the node 2 to 1 1320 * its subtree_max_size is updated only, and set to 1. If we shrink 1321 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 1322 * node becomes 4--6. 1323 */ 1324 static __always_inline void 1325 augment_tree_propagate_from(struct vmap_area *va) 1326 { 1327 /* 1328 * Populate the tree from bottom towards the root until 1329 * the calculated maximum available size of checked node 1330 * is equal to its current one. 1331 */ 1332 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); 1333 1334 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1335 augment_tree_propagate_check(); 1336 #endif 1337 } 1338 1339 static void 1340 insert_vmap_area(struct vmap_area *va, 1341 struct rb_root *root, struct list_head *head) 1342 { 1343 struct rb_node **link; 1344 struct rb_node *parent; 1345 1346 link = find_va_links(va, root, NULL, &parent); 1347 if (link) 1348 link_va(va, root, parent, link, head); 1349 } 1350 1351 static void 1352 insert_vmap_area_augment(struct vmap_area *va, 1353 struct rb_node *from, struct rb_root *root, 1354 struct list_head *head) 1355 { 1356 struct rb_node **link; 1357 struct rb_node *parent; 1358 1359 if (from) 1360 link = find_va_links(va, NULL, from, &parent); 1361 else 1362 link = find_va_links(va, root, NULL, &parent); 1363 1364 if (link) { 1365 link_va_augment(va, root, parent, link, head); 1366 augment_tree_propagate_from(va); 1367 } 1368 } 1369 1370 /* 1371 * Merge de-allocated chunk of VA memory with previous 1372 * and next free blocks. If coalesce is not done a new 1373 * free area is inserted. If VA has been merged, it is 1374 * freed. 1375 * 1376 * Please note, it can return NULL in case of overlap 1377 * ranges, followed by WARN() report. Despite it is a 1378 * buggy behaviour, a system can be alive and keep 1379 * ongoing. 1380 */ 1381 static __always_inline struct vmap_area * 1382 __merge_or_add_vmap_area(struct vmap_area *va, 1383 struct rb_root *root, struct list_head *head, bool augment) 1384 { 1385 struct vmap_area *sibling; 1386 struct list_head *next; 1387 struct rb_node **link; 1388 struct rb_node *parent; 1389 bool merged = false; 1390 1391 /* 1392 * Find a place in the tree where VA potentially will be 1393 * inserted, unless it is merged with its sibling/siblings. 1394 */ 1395 link = find_va_links(va, root, NULL, &parent); 1396 if (!link) 1397 return NULL; 1398 1399 /* 1400 * Get next node of VA to check if merging can be done. 1401 */ 1402 next = get_va_next_sibling(parent, link); 1403 if (unlikely(next == NULL)) 1404 goto insert; 1405 1406 /* 1407 * start end 1408 * | | 1409 * |<------VA------>|<-----Next----->| 1410 * | | 1411 * start end 1412 */ 1413 if (next != head) { 1414 sibling = list_entry(next, struct vmap_area, list); 1415 if (sibling->va_start == va->va_end) { 1416 sibling->va_start = va->va_start; 1417 1418 /* Free vmap_area object. */ 1419 kmem_cache_free(vmap_area_cachep, va); 1420 1421 /* Point to the new merged area. */ 1422 va = sibling; 1423 merged = true; 1424 } 1425 } 1426 1427 /* 1428 * start end 1429 * | | 1430 * |<-----Prev----->|<------VA------>| 1431 * | | 1432 * start end 1433 */ 1434 if (next->prev != head) { 1435 sibling = list_entry(next->prev, struct vmap_area, list); 1436 if (sibling->va_end == va->va_start) { 1437 /* 1438 * If both neighbors are coalesced, it is important 1439 * to unlink the "next" node first, followed by merging 1440 * with "previous" one. Otherwise the tree might not be 1441 * fully populated if a sibling's augmented value is 1442 * "normalized" because of rotation operations. 1443 */ 1444 if (merged) 1445 __unlink_va(va, root, augment); 1446 1447 sibling->va_end = va->va_end; 1448 1449 /* Free vmap_area object. */ 1450 kmem_cache_free(vmap_area_cachep, va); 1451 1452 /* Point to the new merged area. */ 1453 va = sibling; 1454 merged = true; 1455 } 1456 } 1457 1458 insert: 1459 if (!merged) 1460 __link_va(va, root, parent, link, head, augment); 1461 1462 return va; 1463 } 1464 1465 static __always_inline struct vmap_area * 1466 merge_or_add_vmap_area(struct vmap_area *va, 1467 struct rb_root *root, struct list_head *head) 1468 { 1469 return __merge_or_add_vmap_area(va, root, head, false); 1470 } 1471 1472 static __always_inline struct vmap_area * 1473 merge_or_add_vmap_area_augment(struct vmap_area *va, 1474 struct rb_root *root, struct list_head *head) 1475 { 1476 va = __merge_or_add_vmap_area(va, root, head, true); 1477 if (va) 1478 augment_tree_propagate_from(va); 1479 1480 return va; 1481 } 1482 1483 static __always_inline bool 1484 is_within_this_va(struct vmap_area *va, unsigned long size, 1485 unsigned long align, unsigned long vstart) 1486 { 1487 unsigned long nva_start_addr; 1488 1489 if (va->va_start > vstart) 1490 nva_start_addr = ALIGN(va->va_start, align); 1491 else 1492 nva_start_addr = ALIGN(vstart, align); 1493 1494 /* Can be overflowed due to big size or alignment. */ 1495 if (nva_start_addr + size < nva_start_addr || 1496 nva_start_addr < vstart) 1497 return false; 1498 1499 return (nva_start_addr + size <= va->va_end); 1500 } 1501 1502 /* 1503 * Find the first free block(lowest start address) in the tree, 1504 * that will accomplish the request corresponding to passing 1505 * parameters. Please note, with an alignment bigger than PAGE_SIZE, 1506 * a search length is adjusted to account for worst case alignment 1507 * overhead. 1508 */ 1509 static __always_inline struct vmap_area * 1510 find_vmap_lowest_match(struct rb_root *root, unsigned long size, 1511 unsigned long align, unsigned long vstart, bool adjust_search_size) 1512 { 1513 struct vmap_area *va; 1514 struct rb_node *node; 1515 unsigned long length; 1516 1517 /* Start from the root. */ 1518 node = root->rb_node; 1519 1520 /* Adjust the search size for alignment overhead. */ 1521 length = adjust_search_size ? size + align - 1 : size; 1522 1523 while (node) { 1524 va = rb_entry(node, struct vmap_area, rb_node); 1525 1526 if (get_subtree_max_size(node->rb_left) >= length && 1527 vstart < va->va_start) { 1528 node = node->rb_left; 1529 } else { 1530 if (is_within_this_va(va, size, align, vstart)) 1531 return va; 1532 1533 /* 1534 * Does not make sense to go deeper towards the right 1535 * sub-tree if it does not have a free block that is 1536 * equal or bigger to the requested search length. 1537 */ 1538 if (get_subtree_max_size(node->rb_right) >= length) { 1539 node = node->rb_right; 1540 continue; 1541 } 1542 1543 /* 1544 * OK. We roll back and find the first right sub-tree, 1545 * that will satisfy the search criteria. It can happen 1546 * due to "vstart" restriction or an alignment overhead 1547 * that is bigger then PAGE_SIZE. 1548 */ 1549 while ((node = rb_parent(node))) { 1550 va = rb_entry(node, struct vmap_area, rb_node); 1551 if (is_within_this_va(va, size, align, vstart)) 1552 return va; 1553 1554 if (get_subtree_max_size(node->rb_right) >= length && 1555 vstart <= va->va_start) { 1556 /* 1557 * Shift the vstart forward. Please note, we update it with 1558 * parent's start address adding "1" because we do not want 1559 * to enter same sub-tree after it has already been checked 1560 * and no suitable free block found there. 1561 */ 1562 vstart = va->va_start + 1; 1563 node = node->rb_right; 1564 break; 1565 } 1566 } 1567 } 1568 } 1569 1570 return NULL; 1571 } 1572 1573 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1574 #include <linux/random.h> 1575 1576 static struct vmap_area * 1577 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size, 1578 unsigned long align, unsigned long vstart) 1579 { 1580 struct vmap_area *va; 1581 1582 list_for_each_entry(va, head, list) { 1583 if (!is_within_this_va(va, size, align, vstart)) 1584 continue; 1585 1586 return va; 1587 } 1588 1589 return NULL; 1590 } 1591 1592 static void 1593 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head, 1594 unsigned long size, unsigned long align) 1595 { 1596 struct vmap_area *va_1, *va_2; 1597 unsigned long vstart; 1598 unsigned int rnd; 1599 1600 get_random_bytes(&rnd, sizeof(rnd)); 1601 vstart = VMALLOC_START + rnd; 1602 1603 va_1 = find_vmap_lowest_match(root, size, align, vstart, false); 1604 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart); 1605 1606 if (va_1 != va_2) 1607 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 1608 va_1, va_2, vstart); 1609 } 1610 #endif 1611 1612 enum fit_type { 1613 NOTHING_FIT = 0, 1614 FL_FIT_TYPE = 1, /* full fit */ 1615 LE_FIT_TYPE = 2, /* left edge fit */ 1616 RE_FIT_TYPE = 3, /* right edge fit */ 1617 NE_FIT_TYPE = 4 /* no edge fit */ 1618 }; 1619 1620 static __always_inline enum fit_type 1621 classify_va_fit_type(struct vmap_area *va, 1622 unsigned long nva_start_addr, unsigned long size) 1623 { 1624 enum fit_type type; 1625 1626 /* Check if it is within VA. */ 1627 if (nva_start_addr < va->va_start || 1628 nva_start_addr + size > va->va_end) 1629 return NOTHING_FIT; 1630 1631 /* Now classify. */ 1632 if (va->va_start == nva_start_addr) { 1633 if (va->va_end == nva_start_addr + size) 1634 type = FL_FIT_TYPE; 1635 else 1636 type = LE_FIT_TYPE; 1637 } else if (va->va_end == nva_start_addr + size) { 1638 type = RE_FIT_TYPE; 1639 } else { 1640 type = NE_FIT_TYPE; 1641 } 1642 1643 return type; 1644 } 1645 1646 static __always_inline int 1647 va_clip(struct rb_root *root, struct list_head *head, 1648 struct vmap_area *va, unsigned long nva_start_addr, 1649 unsigned long size) 1650 { 1651 struct vmap_area *lva = NULL; 1652 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size); 1653 1654 if (type == FL_FIT_TYPE) { 1655 /* 1656 * No need to split VA, it fully fits. 1657 * 1658 * | | 1659 * V NVA V 1660 * |---------------| 1661 */ 1662 unlink_va_augment(va, root); 1663 kmem_cache_free(vmap_area_cachep, va); 1664 } else if (type == LE_FIT_TYPE) { 1665 /* 1666 * Split left edge of fit VA. 1667 * 1668 * | | 1669 * V NVA V R 1670 * |-------|-------| 1671 */ 1672 va->va_start += size; 1673 } else if (type == RE_FIT_TYPE) { 1674 /* 1675 * Split right edge of fit VA. 1676 * 1677 * | | 1678 * L V NVA V 1679 * |-------|-------| 1680 */ 1681 va->va_end = nva_start_addr; 1682 } else if (type == NE_FIT_TYPE) { 1683 /* 1684 * Split no edge of fit VA. 1685 * 1686 * | | 1687 * L V NVA V R 1688 * |---|-------|---| 1689 */ 1690 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 1691 if (unlikely(!lva)) { 1692 /* 1693 * For percpu allocator we do not do any pre-allocation 1694 * and leave it as it is. The reason is it most likely 1695 * never ends up with NE_FIT_TYPE splitting. In case of 1696 * percpu allocations offsets and sizes are aligned to 1697 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 1698 * are its main fitting cases. 1699 * 1700 * There are a few exceptions though, as an example it is 1701 * a first allocation (early boot up) when we have "one" 1702 * big free space that has to be split. 1703 * 1704 * Also we can hit this path in case of regular "vmap" 1705 * allocations, if "this" current CPU was not preloaded. 1706 * See the comment in alloc_vmap_area() why. If so, then 1707 * GFP_NOWAIT is used instead to get an extra object for 1708 * split purpose. That is rare and most time does not 1709 * occur. 1710 * 1711 * What happens if an allocation gets failed. Basically, 1712 * an "overflow" path is triggered to purge lazily freed 1713 * areas to free some memory, then, the "retry" path is 1714 * triggered to repeat one more time. See more details 1715 * in alloc_vmap_area() function. 1716 */ 1717 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 1718 if (!lva) 1719 return -1; 1720 } 1721 1722 /* 1723 * Build the remainder. 1724 */ 1725 lva->va_start = va->va_start; 1726 lva->va_end = nva_start_addr; 1727 1728 /* 1729 * Shrink this VA to remaining size. 1730 */ 1731 va->va_start = nva_start_addr + size; 1732 } else { 1733 return -1; 1734 } 1735 1736 if (type != FL_FIT_TYPE) { 1737 augment_tree_propagate_from(va); 1738 1739 if (lva) /* type == NE_FIT_TYPE */ 1740 insert_vmap_area_augment(lva, &va->rb_node, root, head); 1741 } 1742 1743 return 0; 1744 } 1745 1746 static unsigned long 1747 va_alloc(struct vmap_area *va, 1748 struct rb_root *root, struct list_head *head, 1749 unsigned long size, unsigned long align, 1750 unsigned long vstart, unsigned long vend) 1751 { 1752 unsigned long nva_start_addr; 1753 int ret; 1754 1755 if (va->va_start > vstart) 1756 nva_start_addr = ALIGN(va->va_start, align); 1757 else 1758 nva_start_addr = ALIGN(vstart, align); 1759 1760 /* Check the "vend" restriction. */ 1761 if (nva_start_addr + size > vend) 1762 return vend; 1763 1764 /* Update the free vmap_area. */ 1765 ret = va_clip(root, head, va, nva_start_addr, size); 1766 if (WARN_ON_ONCE(ret)) 1767 return vend; 1768 1769 return nva_start_addr; 1770 } 1771 1772 /* 1773 * Returns a start address of the newly allocated area, if success. 1774 * Otherwise a vend is returned that indicates failure. 1775 */ 1776 static __always_inline unsigned long 1777 __alloc_vmap_area(struct rb_root *root, struct list_head *head, 1778 unsigned long size, unsigned long align, 1779 unsigned long vstart, unsigned long vend) 1780 { 1781 bool adjust_search_size = true; 1782 unsigned long nva_start_addr; 1783 struct vmap_area *va; 1784 1785 /* 1786 * Do not adjust when: 1787 * a) align <= PAGE_SIZE, because it does not make any sense. 1788 * All blocks(their start addresses) are at least PAGE_SIZE 1789 * aligned anyway; 1790 * b) a short range where a requested size corresponds to exactly 1791 * specified [vstart:vend] interval and an alignment > PAGE_SIZE. 1792 * With adjusted search length an allocation would not succeed. 1793 */ 1794 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) 1795 adjust_search_size = false; 1796 1797 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size); 1798 if (unlikely(!va)) 1799 return vend; 1800 1801 nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend); 1802 if (nva_start_addr == vend) 1803 return vend; 1804 1805 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1806 find_vmap_lowest_match_check(root, head, size, align); 1807 #endif 1808 1809 return nva_start_addr; 1810 } 1811 1812 /* 1813 * Free a region of KVA allocated by alloc_vmap_area 1814 */ 1815 static void free_vmap_area(struct vmap_area *va) 1816 { 1817 struct vmap_node *vn = addr_to_node(va->va_start); 1818 1819 /* 1820 * Remove from the busy tree/list. 1821 */ 1822 spin_lock(&vn->busy.lock); 1823 unlink_va(va, &vn->busy.root); 1824 spin_unlock(&vn->busy.lock); 1825 1826 /* 1827 * Insert/Merge it back to the free tree/list. 1828 */ 1829 spin_lock(&free_vmap_area_lock); 1830 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); 1831 spin_unlock(&free_vmap_area_lock); 1832 } 1833 1834 static inline void 1835 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) 1836 { 1837 struct vmap_area *va = NULL, *tmp; 1838 1839 /* 1840 * Preload this CPU with one extra vmap_area object. It is used 1841 * when fit type of free area is NE_FIT_TYPE. It guarantees that 1842 * a CPU that does an allocation is preloaded. 1843 * 1844 * We do it in non-atomic context, thus it allows us to use more 1845 * permissive allocation masks to be more stable under low memory 1846 * condition and high memory pressure. 1847 */ 1848 if (!this_cpu_read(ne_fit_preload_node)) 1849 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1850 1851 spin_lock(lock); 1852 1853 tmp = NULL; 1854 if (va && !__this_cpu_try_cmpxchg(ne_fit_preload_node, &tmp, va)) 1855 kmem_cache_free(vmap_area_cachep, va); 1856 } 1857 1858 static struct vmap_pool * 1859 size_to_va_pool(struct vmap_node *vn, unsigned long size) 1860 { 1861 unsigned int idx = (size - 1) / PAGE_SIZE; 1862 1863 if (idx < MAX_VA_SIZE_PAGES) 1864 return &vn->pool[idx]; 1865 1866 return NULL; 1867 } 1868 1869 static bool 1870 node_pool_add_va(struct vmap_node *n, struct vmap_area *va) 1871 { 1872 struct vmap_pool *vp; 1873 1874 vp = size_to_va_pool(n, va_size(va)); 1875 if (!vp) 1876 return false; 1877 1878 spin_lock(&n->pool_lock); 1879 list_add(&va->list, &vp->head); 1880 WRITE_ONCE(vp->len, vp->len + 1); 1881 spin_unlock(&n->pool_lock); 1882 1883 return true; 1884 } 1885 1886 static struct vmap_area * 1887 node_pool_del_va(struct vmap_node *vn, unsigned long size, 1888 unsigned long align, unsigned long vstart, 1889 unsigned long vend) 1890 { 1891 struct vmap_area *va = NULL; 1892 struct vmap_pool *vp; 1893 int err = 0; 1894 1895 vp = size_to_va_pool(vn, size); 1896 if (!vp || list_empty(&vp->head)) 1897 return NULL; 1898 1899 spin_lock(&vn->pool_lock); 1900 if (!list_empty(&vp->head)) { 1901 va = list_first_entry(&vp->head, struct vmap_area, list); 1902 1903 if (IS_ALIGNED(va->va_start, align)) { 1904 /* 1905 * Do some sanity check and emit a warning 1906 * if one of below checks detects an error. 1907 */ 1908 err |= (va_size(va) != size); 1909 err |= (va->va_start < vstart); 1910 err |= (va->va_end > vend); 1911 1912 if (!WARN_ON_ONCE(err)) { 1913 list_del_init(&va->list); 1914 WRITE_ONCE(vp->len, vp->len - 1); 1915 } else { 1916 va = NULL; 1917 } 1918 } else { 1919 list_move_tail(&va->list, &vp->head); 1920 va = NULL; 1921 } 1922 } 1923 spin_unlock(&vn->pool_lock); 1924 1925 return va; 1926 } 1927 1928 static struct vmap_area * 1929 node_alloc(unsigned long size, unsigned long align, 1930 unsigned long vstart, unsigned long vend, 1931 unsigned long *addr, unsigned int *vn_id) 1932 { 1933 struct vmap_area *va; 1934 1935 *vn_id = 0; 1936 *addr = vend; 1937 1938 /* 1939 * Fallback to a global heap if not vmalloc or there 1940 * is only one node. 1941 */ 1942 if (vstart != VMALLOC_START || vend != VMALLOC_END || 1943 nr_vmap_nodes == 1) 1944 return NULL; 1945 1946 *vn_id = raw_smp_processor_id() % nr_vmap_nodes; 1947 va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend); 1948 *vn_id = encode_vn_id(*vn_id); 1949 1950 if (va) 1951 *addr = va->va_start; 1952 1953 return va; 1954 } 1955 1956 static inline void setup_vmalloc_vm(struct vm_struct *vm, 1957 struct vmap_area *va, unsigned long flags, const void *caller) 1958 { 1959 vm->flags = flags; 1960 vm->addr = (void *)va->va_start; 1961 vm->size = vm->requested_size = va_size(va); 1962 vm->caller = caller; 1963 va->vm = vm; 1964 } 1965 1966 /* 1967 * Allocate a region of KVA of the specified size and alignment, within the 1968 * vstart and vend. If vm is passed in, the two will also be bound. 1969 */ 1970 static struct vmap_area *alloc_vmap_area(unsigned long size, 1971 unsigned long align, 1972 unsigned long vstart, unsigned long vend, 1973 int node, gfp_t gfp_mask, 1974 unsigned long va_flags, struct vm_struct *vm) 1975 { 1976 struct vmap_node *vn; 1977 struct vmap_area *va; 1978 unsigned long freed; 1979 unsigned long addr; 1980 unsigned int vn_id; 1981 int purged = 0; 1982 int ret; 1983 1984 if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align))) 1985 return ERR_PTR(-EINVAL); 1986 1987 if (unlikely(!vmap_initialized)) 1988 return ERR_PTR(-EBUSY); 1989 1990 might_sleep(); 1991 1992 /* 1993 * If a VA is obtained from a global heap(if it fails here) 1994 * it is anyway marked with this "vn_id" so it is returned 1995 * to this pool's node later. Such way gives a possibility 1996 * to populate pools based on users demand. 1997 * 1998 * On success a ready to go VA is returned. 1999 */ 2000 va = node_alloc(size, align, vstart, vend, &addr, &vn_id); 2001 if (!va) { 2002 gfp_mask = gfp_mask & GFP_RECLAIM_MASK; 2003 2004 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 2005 if (unlikely(!va)) 2006 return ERR_PTR(-ENOMEM); 2007 2008 /* 2009 * Only scan the relevant parts containing pointers to other objects 2010 * to avoid false negatives. 2011 */ 2012 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); 2013 } 2014 2015 retry: 2016 if (addr == vend) { 2017 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); 2018 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list, 2019 size, align, vstart, vend); 2020 spin_unlock(&free_vmap_area_lock); 2021 } 2022 2023 trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend); 2024 2025 /* 2026 * If an allocation fails, the "vend" address is 2027 * returned. Therefore trigger the overflow path. 2028 */ 2029 if (unlikely(addr == vend)) 2030 goto overflow; 2031 2032 va->va_start = addr; 2033 va->va_end = addr + size; 2034 va->vm = NULL; 2035 va->flags = (va_flags | vn_id); 2036 2037 if (vm) { 2038 vm->addr = (void *)va->va_start; 2039 vm->size = va_size(va); 2040 va->vm = vm; 2041 } 2042 2043 vn = addr_to_node(va->va_start); 2044 2045 spin_lock(&vn->busy.lock); 2046 insert_vmap_area(va, &vn->busy.root, &vn->busy.head); 2047 spin_unlock(&vn->busy.lock); 2048 2049 BUG_ON(!IS_ALIGNED(va->va_start, align)); 2050 BUG_ON(va->va_start < vstart); 2051 BUG_ON(va->va_end > vend); 2052 2053 ret = kasan_populate_vmalloc(addr, size); 2054 if (ret) { 2055 free_vmap_area(va); 2056 return ERR_PTR(ret); 2057 } 2058 2059 return va; 2060 2061 overflow: 2062 if (!purged) { 2063 reclaim_and_purge_vmap_areas(); 2064 purged = 1; 2065 goto retry; 2066 } 2067 2068 freed = 0; 2069 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 2070 2071 if (freed > 0) { 2072 purged = 0; 2073 goto retry; 2074 } 2075 2076 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 2077 pr_warn("vmalloc_node_range for size %lu failed: Address range restricted to %#lx - %#lx\n", 2078 size, vstart, vend); 2079 2080 kmem_cache_free(vmap_area_cachep, va); 2081 return ERR_PTR(-EBUSY); 2082 } 2083 2084 int register_vmap_purge_notifier(struct notifier_block *nb) 2085 { 2086 return blocking_notifier_chain_register(&vmap_notify_list, nb); 2087 } 2088 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 2089 2090 int unregister_vmap_purge_notifier(struct notifier_block *nb) 2091 { 2092 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 2093 } 2094 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 2095 2096 /* 2097 * lazy_max_pages is the maximum amount of virtual address space we gather up 2098 * before attempting to purge with a TLB flush. 2099 * 2100 * There is a tradeoff here: a larger number will cover more kernel page tables 2101 * and take slightly longer to purge, but it will linearly reduce the number of 2102 * global TLB flushes that must be performed. It would seem natural to scale 2103 * this number up linearly with the number of CPUs (because vmapping activity 2104 * could also scale linearly with the number of CPUs), however it is likely 2105 * that in practice, workloads might be constrained in other ways that mean 2106 * vmap activity will not scale linearly with CPUs. Also, I want to be 2107 * conservative and not introduce a big latency on huge systems, so go with 2108 * a less aggressive log scale. It will still be an improvement over the old 2109 * code, and it will be simple to change the scale factor if we find that it 2110 * becomes a problem on bigger systems. 2111 */ 2112 static unsigned long lazy_max_pages(void) 2113 { 2114 unsigned int log; 2115 2116 log = fls(num_online_cpus()); 2117 2118 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 2119 } 2120 2121 /* 2122 * Serialize vmap purging. There is no actual critical section protected 2123 * by this lock, but we want to avoid concurrent calls for performance 2124 * reasons and to make the pcpu_get_vm_areas more deterministic. 2125 */ 2126 static DEFINE_MUTEX(vmap_purge_lock); 2127 2128 /* for per-CPU blocks */ 2129 static void purge_fragmented_blocks_allcpus(void); 2130 static cpumask_t purge_nodes; 2131 2132 static void 2133 reclaim_list_global(struct list_head *head) 2134 { 2135 struct vmap_area *va, *n; 2136 2137 if (list_empty(head)) 2138 return; 2139 2140 spin_lock(&free_vmap_area_lock); 2141 list_for_each_entry_safe(va, n, head, list) 2142 merge_or_add_vmap_area_augment(va, 2143 &free_vmap_area_root, &free_vmap_area_list); 2144 spin_unlock(&free_vmap_area_lock); 2145 } 2146 2147 static void 2148 decay_va_pool_node(struct vmap_node *vn, bool full_decay) 2149 { 2150 LIST_HEAD(decay_list); 2151 struct rb_root decay_root = RB_ROOT; 2152 struct vmap_area *va, *nva; 2153 unsigned long n_decay; 2154 int i; 2155 2156 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { 2157 LIST_HEAD(tmp_list); 2158 2159 if (list_empty(&vn->pool[i].head)) 2160 continue; 2161 2162 /* Detach the pool, so no-one can access it. */ 2163 spin_lock(&vn->pool_lock); 2164 list_replace_init(&vn->pool[i].head, &tmp_list); 2165 spin_unlock(&vn->pool_lock); 2166 2167 if (full_decay) 2168 WRITE_ONCE(vn->pool[i].len, 0); 2169 2170 /* Decay a pool by ~25% out of left objects. */ 2171 n_decay = vn->pool[i].len >> 2; 2172 2173 list_for_each_entry_safe(va, nva, &tmp_list, list) { 2174 list_del_init(&va->list); 2175 merge_or_add_vmap_area(va, &decay_root, &decay_list); 2176 2177 if (!full_decay) { 2178 WRITE_ONCE(vn->pool[i].len, vn->pool[i].len - 1); 2179 2180 if (!--n_decay) 2181 break; 2182 } 2183 } 2184 2185 /* 2186 * Attach the pool back if it has been partly decayed. 2187 * Please note, it is supposed that nobody(other contexts) 2188 * can populate the pool therefore a simple list replace 2189 * operation takes place here. 2190 */ 2191 if (!full_decay && !list_empty(&tmp_list)) { 2192 spin_lock(&vn->pool_lock); 2193 list_replace_init(&tmp_list, &vn->pool[i].head); 2194 spin_unlock(&vn->pool_lock); 2195 } 2196 } 2197 2198 reclaim_list_global(&decay_list); 2199 } 2200 2201 static void 2202 kasan_release_vmalloc_node(struct vmap_node *vn) 2203 { 2204 struct vmap_area *va; 2205 unsigned long start, end; 2206 2207 start = list_first_entry(&vn->purge_list, struct vmap_area, list)->va_start; 2208 end = list_last_entry(&vn->purge_list, struct vmap_area, list)->va_end; 2209 2210 list_for_each_entry(va, &vn->purge_list, list) { 2211 if (is_vmalloc_or_module_addr((void *) va->va_start)) 2212 kasan_release_vmalloc(va->va_start, va->va_end, 2213 va->va_start, va->va_end, 2214 KASAN_VMALLOC_PAGE_RANGE); 2215 } 2216 2217 kasan_release_vmalloc(start, end, start, end, KASAN_VMALLOC_TLB_FLUSH); 2218 } 2219 2220 static void purge_vmap_node(struct work_struct *work) 2221 { 2222 struct vmap_node *vn = container_of(work, 2223 struct vmap_node, purge_work); 2224 unsigned long nr_purged_pages = 0; 2225 struct vmap_area *va, *n_va; 2226 LIST_HEAD(local_list); 2227 2228 if (IS_ENABLED(CONFIG_KASAN_VMALLOC)) 2229 kasan_release_vmalloc_node(vn); 2230 2231 vn->nr_purged = 0; 2232 2233 list_for_each_entry_safe(va, n_va, &vn->purge_list, list) { 2234 unsigned long nr = va_size(va) >> PAGE_SHIFT; 2235 unsigned int vn_id = decode_vn_id(va->flags); 2236 2237 list_del_init(&va->list); 2238 2239 nr_purged_pages += nr; 2240 vn->nr_purged++; 2241 2242 if (is_vn_id_valid(vn_id) && !vn->skip_populate) 2243 if (node_pool_add_va(vn, va)) 2244 continue; 2245 2246 /* Go back to global. */ 2247 list_add(&va->list, &local_list); 2248 } 2249 2250 atomic_long_sub(nr_purged_pages, &vmap_lazy_nr); 2251 2252 reclaim_list_global(&local_list); 2253 } 2254 2255 /* 2256 * Purges all lazily-freed vmap areas. 2257 */ 2258 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end, 2259 bool full_pool_decay) 2260 { 2261 unsigned long nr_purged_areas = 0; 2262 unsigned int nr_purge_helpers; 2263 unsigned int nr_purge_nodes; 2264 struct vmap_node *vn; 2265 int i; 2266 2267 lockdep_assert_held(&vmap_purge_lock); 2268 2269 /* 2270 * Use cpumask to mark which node has to be processed. 2271 */ 2272 purge_nodes = CPU_MASK_NONE; 2273 2274 for_each_vmap_node(vn) { 2275 INIT_LIST_HEAD(&vn->purge_list); 2276 vn->skip_populate = full_pool_decay; 2277 decay_va_pool_node(vn, full_pool_decay); 2278 2279 if (RB_EMPTY_ROOT(&vn->lazy.root)) 2280 continue; 2281 2282 spin_lock(&vn->lazy.lock); 2283 WRITE_ONCE(vn->lazy.root.rb_node, NULL); 2284 list_replace_init(&vn->lazy.head, &vn->purge_list); 2285 spin_unlock(&vn->lazy.lock); 2286 2287 start = min(start, list_first_entry(&vn->purge_list, 2288 struct vmap_area, list)->va_start); 2289 2290 end = max(end, list_last_entry(&vn->purge_list, 2291 struct vmap_area, list)->va_end); 2292 2293 cpumask_set_cpu(node_to_id(vn), &purge_nodes); 2294 } 2295 2296 nr_purge_nodes = cpumask_weight(&purge_nodes); 2297 if (nr_purge_nodes > 0) { 2298 flush_tlb_kernel_range(start, end); 2299 2300 /* One extra worker is per a lazy_max_pages() full set minus one. */ 2301 nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages(); 2302 nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1; 2303 2304 for_each_cpu(i, &purge_nodes) { 2305 vn = &vmap_nodes[i]; 2306 2307 if (nr_purge_helpers > 0) { 2308 INIT_WORK(&vn->purge_work, purge_vmap_node); 2309 2310 if (cpumask_test_cpu(i, cpu_online_mask)) 2311 schedule_work_on(i, &vn->purge_work); 2312 else 2313 schedule_work(&vn->purge_work); 2314 2315 nr_purge_helpers--; 2316 } else { 2317 vn->purge_work.func = NULL; 2318 purge_vmap_node(&vn->purge_work); 2319 nr_purged_areas += vn->nr_purged; 2320 } 2321 } 2322 2323 for_each_cpu(i, &purge_nodes) { 2324 vn = &vmap_nodes[i]; 2325 2326 if (vn->purge_work.func) { 2327 flush_work(&vn->purge_work); 2328 nr_purged_areas += vn->nr_purged; 2329 } 2330 } 2331 } 2332 2333 trace_purge_vmap_area_lazy(start, end, nr_purged_areas); 2334 return nr_purged_areas > 0; 2335 } 2336 2337 /* 2338 * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list. 2339 */ 2340 static void reclaim_and_purge_vmap_areas(void) 2341 2342 { 2343 mutex_lock(&vmap_purge_lock); 2344 purge_fragmented_blocks_allcpus(); 2345 __purge_vmap_area_lazy(ULONG_MAX, 0, true); 2346 mutex_unlock(&vmap_purge_lock); 2347 } 2348 2349 static void drain_vmap_area_work(struct work_struct *work) 2350 { 2351 mutex_lock(&vmap_purge_lock); 2352 __purge_vmap_area_lazy(ULONG_MAX, 0, false); 2353 mutex_unlock(&vmap_purge_lock); 2354 } 2355 2356 /* 2357 * Free a vmap area, caller ensuring that the area has been unmapped, 2358 * unlinked and flush_cache_vunmap had been called for the correct 2359 * range previously. 2360 */ 2361 static void free_vmap_area_noflush(struct vmap_area *va) 2362 { 2363 unsigned long nr_lazy_max = lazy_max_pages(); 2364 unsigned long va_start = va->va_start; 2365 unsigned int vn_id = decode_vn_id(va->flags); 2366 struct vmap_node *vn; 2367 unsigned long nr_lazy; 2368 2369 if (WARN_ON_ONCE(!list_empty(&va->list))) 2370 return; 2371 2372 nr_lazy = atomic_long_add_return_relaxed(va_size(va) >> PAGE_SHIFT, 2373 &vmap_lazy_nr); 2374 2375 /* 2376 * If it was request by a certain node we would like to 2377 * return it to that node, i.e. its pool for later reuse. 2378 */ 2379 vn = is_vn_id_valid(vn_id) ? 2380 id_to_node(vn_id):addr_to_node(va->va_start); 2381 2382 spin_lock(&vn->lazy.lock); 2383 insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head); 2384 spin_unlock(&vn->lazy.lock); 2385 2386 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max); 2387 2388 /* After this point, we may free va at any time */ 2389 if (unlikely(nr_lazy > nr_lazy_max)) 2390 schedule_work(&drain_vmap_work); 2391 } 2392 2393 /* 2394 * Free and unmap a vmap area 2395 */ 2396 static void free_unmap_vmap_area(struct vmap_area *va) 2397 { 2398 flush_cache_vunmap(va->va_start, va->va_end); 2399 vunmap_range_noflush(va->va_start, va->va_end); 2400 if (debug_pagealloc_enabled_static()) 2401 flush_tlb_kernel_range(va->va_start, va->va_end); 2402 2403 free_vmap_area_noflush(va); 2404 } 2405 2406 struct vmap_area *find_vmap_area(unsigned long addr) 2407 { 2408 struct vmap_node *vn; 2409 struct vmap_area *va; 2410 int i, j; 2411 2412 if (unlikely(!vmap_initialized)) 2413 return NULL; 2414 2415 /* 2416 * An addr_to_node_id(addr) converts an address to a node index 2417 * where a VA is located. If VA spans several zones and passed 2418 * addr is not the same as va->va_start, what is not common, we 2419 * may need to scan extra nodes. See an example: 2420 * 2421 * <----va----> 2422 * -|-----|-----|-----|-----|- 2423 * 1 2 0 1 2424 * 2425 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed 2426 * addr is within 2 or 0 nodes we should do extra work. 2427 */ 2428 i = j = addr_to_node_id(addr); 2429 do { 2430 vn = &vmap_nodes[i]; 2431 2432 spin_lock(&vn->busy.lock); 2433 va = __find_vmap_area(addr, &vn->busy.root); 2434 spin_unlock(&vn->busy.lock); 2435 2436 if (va) 2437 return va; 2438 } while ((i = (i + 1) % nr_vmap_nodes) != j); 2439 2440 return NULL; 2441 } 2442 2443 static struct vmap_area *find_unlink_vmap_area(unsigned long addr) 2444 { 2445 struct vmap_node *vn; 2446 struct vmap_area *va; 2447 int i, j; 2448 2449 /* 2450 * Check the comment in the find_vmap_area() about the loop. 2451 */ 2452 i = j = addr_to_node_id(addr); 2453 do { 2454 vn = &vmap_nodes[i]; 2455 2456 spin_lock(&vn->busy.lock); 2457 va = __find_vmap_area(addr, &vn->busy.root); 2458 if (va) 2459 unlink_va(va, &vn->busy.root); 2460 spin_unlock(&vn->busy.lock); 2461 2462 if (va) 2463 return va; 2464 } while ((i = (i + 1) % nr_vmap_nodes) != j); 2465 2466 return NULL; 2467 } 2468 2469 /*** Per cpu kva allocator ***/ 2470 2471 /* 2472 * vmap space is limited especially on 32 bit architectures. Ensure there is 2473 * room for at least 16 percpu vmap blocks per CPU. 2474 */ 2475 /* 2476 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 2477 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 2478 * instead (we just need a rough idea) 2479 */ 2480 #if BITS_PER_LONG == 32 2481 #define VMALLOC_SPACE (128UL*1024*1024) 2482 #else 2483 #define VMALLOC_SPACE (128UL*1024*1024*1024) 2484 #endif 2485 2486 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 2487 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 2488 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 2489 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 2490 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 2491 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 2492 #define VMAP_BBMAP_BITS \ 2493 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 2494 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 2495 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 2496 2497 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 2498 2499 /* 2500 * Purge threshold to prevent overeager purging of fragmented blocks for 2501 * regular operations: Purge if vb->free is less than 1/4 of the capacity. 2502 */ 2503 #define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4) 2504 2505 #define VMAP_RAM 0x1 /* indicates vm_map_ram area*/ 2506 #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/ 2507 #define VMAP_FLAGS_MASK 0x3 2508 2509 struct vmap_block_queue { 2510 spinlock_t lock; 2511 struct list_head free; 2512 2513 /* 2514 * An xarray requires an extra memory dynamically to 2515 * be allocated. If it is an issue, we can use rb-tree 2516 * instead. 2517 */ 2518 struct xarray vmap_blocks; 2519 }; 2520 2521 struct vmap_block { 2522 spinlock_t lock; 2523 struct vmap_area *va; 2524 unsigned long free, dirty; 2525 DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS); 2526 unsigned long dirty_min, dirty_max; /*< dirty range */ 2527 struct list_head free_list; 2528 struct rcu_head rcu_head; 2529 struct list_head purge; 2530 unsigned int cpu; 2531 }; 2532 2533 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 2534 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 2535 2536 /* 2537 * In order to fast access to any "vmap_block" associated with a 2538 * specific address, we use a hash. 2539 * 2540 * A per-cpu vmap_block_queue is used in both ways, to serialize 2541 * an access to free block chains among CPUs(alloc path) and it 2542 * also acts as a vmap_block hash(alloc/free paths). It means we 2543 * overload it, since we already have the per-cpu array which is 2544 * used as a hash table. When used as a hash a 'cpu' passed to 2545 * per_cpu() is not actually a CPU but rather a hash index. 2546 * 2547 * A hash function is addr_to_vb_xa() which hashes any address 2548 * to a specific index(in a hash) it belongs to. This then uses a 2549 * per_cpu() macro to access an array with generated index. 2550 * 2551 * An example: 2552 * 2553 * CPU_1 CPU_2 CPU_0 2554 * | | | 2555 * V V V 2556 * 0 10 20 30 40 50 60 2557 * |------|------|------|------|------|------|...<vmap address space> 2558 * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2 2559 * 2560 * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus 2561 * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock; 2562 * 2563 * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus 2564 * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock; 2565 * 2566 * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus 2567 * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock. 2568 * 2569 * This technique almost always avoids lock contention on insert/remove, 2570 * however xarray spinlocks protect against any contention that remains. 2571 */ 2572 static struct xarray * 2573 addr_to_vb_xa(unsigned long addr) 2574 { 2575 int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids; 2576 2577 /* 2578 * Please note, nr_cpu_ids points on a highest set 2579 * possible bit, i.e. we never invoke cpumask_next() 2580 * if an index points on it which is nr_cpu_ids - 1. 2581 */ 2582 if (!cpu_possible(index)) 2583 index = cpumask_next(index, cpu_possible_mask); 2584 2585 return &per_cpu(vmap_block_queue, index).vmap_blocks; 2586 } 2587 2588 /* 2589 * We should probably have a fallback mechanism to allocate virtual memory 2590 * out of partially filled vmap blocks. However vmap block sizing should be 2591 * fairly reasonable according to the vmalloc size, so it shouldn't be a 2592 * big problem. 2593 */ 2594 2595 static unsigned long addr_to_vb_idx(unsigned long addr) 2596 { 2597 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 2598 addr /= VMAP_BLOCK_SIZE; 2599 return addr; 2600 } 2601 2602 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 2603 { 2604 unsigned long addr; 2605 2606 addr = va_start + (pages_off << PAGE_SHIFT); 2607 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 2608 return (void *)addr; 2609 } 2610 2611 /** 2612 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 2613 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 2614 * @order: how many 2^order pages should be occupied in newly allocated block 2615 * @gfp_mask: flags for the page level allocator 2616 * 2617 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 2618 */ 2619 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 2620 { 2621 struct vmap_block_queue *vbq; 2622 struct vmap_block *vb; 2623 struct vmap_area *va; 2624 struct xarray *xa; 2625 unsigned long vb_idx; 2626 int node, err; 2627 void *vaddr; 2628 2629 node = numa_node_id(); 2630 2631 vb = kmalloc_node(sizeof(struct vmap_block), 2632 gfp_mask & GFP_RECLAIM_MASK, node); 2633 if (unlikely(!vb)) 2634 return ERR_PTR(-ENOMEM); 2635 2636 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 2637 VMALLOC_START, VMALLOC_END, 2638 node, gfp_mask, 2639 VMAP_RAM|VMAP_BLOCK, NULL); 2640 if (IS_ERR(va)) { 2641 kfree(vb); 2642 return ERR_CAST(va); 2643 } 2644 2645 vaddr = vmap_block_vaddr(va->va_start, 0); 2646 spin_lock_init(&vb->lock); 2647 vb->va = va; 2648 /* At least something should be left free */ 2649 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 2650 bitmap_zero(vb->used_map, VMAP_BBMAP_BITS); 2651 vb->free = VMAP_BBMAP_BITS - (1UL << order); 2652 vb->dirty = 0; 2653 vb->dirty_min = VMAP_BBMAP_BITS; 2654 vb->dirty_max = 0; 2655 bitmap_set(vb->used_map, 0, (1UL << order)); 2656 INIT_LIST_HEAD(&vb->free_list); 2657 vb->cpu = raw_smp_processor_id(); 2658 2659 xa = addr_to_vb_xa(va->va_start); 2660 vb_idx = addr_to_vb_idx(va->va_start); 2661 err = xa_insert(xa, vb_idx, vb, gfp_mask); 2662 if (err) { 2663 kfree(vb); 2664 free_vmap_area(va); 2665 return ERR_PTR(err); 2666 } 2667 /* 2668 * list_add_tail_rcu could happened in another core 2669 * rather than vb->cpu due to task migration, which 2670 * is safe as list_add_tail_rcu will ensure the list's 2671 * integrity together with list_for_each_rcu from read 2672 * side. 2673 */ 2674 vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu); 2675 spin_lock(&vbq->lock); 2676 list_add_tail_rcu(&vb->free_list, &vbq->free); 2677 spin_unlock(&vbq->lock); 2678 2679 return vaddr; 2680 } 2681 2682 static void free_vmap_block(struct vmap_block *vb) 2683 { 2684 struct vmap_node *vn; 2685 struct vmap_block *tmp; 2686 struct xarray *xa; 2687 2688 xa = addr_to_vb_xa(vb->va->va_start); 2689 tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start)); 2690 BUG_ON(tmp != vb); 2691 2692 vn = addr_to_node(vb->va->va_start); 2693 spin_lock(&vn->busy.lock); 2694 unlink_va(vb->va, &vn->busy.root); 2695 spin_unlock(&vn->busy.lock); 2696 2697 free_vmap_area_noflush(vb->va); 2698 kfree_rcu(vb, rcu_head); 2699 } 2700 2701 static bool purge_fragmented_block(struct vmap_block *vb, 2702 struct list_head *purge_list, bool force_purge) 2703 { 2704 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu); 2705 2706 if (vb->free + vb->dirty != VMAP_BBMAP_BITS || 2707 vb->dirty == VMAP_BBMAP_BITS) 2708 return false; 2709 2710 /* Don't overeagerly purge usable blocks unless requested */ 2711 if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD)) 2712 return false; 2713 2714 /* prevent further allocs after releasing lock */ 2715 WRITE_ONCE(vb->free, 0); 2716 /* prevent purging it again */ 2717 WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS); 2718 vb->dirty_min = 0; 2719 vb->dirty_max = VMAP_BBMAP_BITS; 2720 spin_lock(&vbq->lock); 2721 list_del_rcu(&vb->free_list); 2722 spin_unlock(&vbq->lock); 2723 list_add_tail(&vb->purge, purge_list); 2724 return true; 2725 } 2726 2727 static void free_purged_blocks(struct list_head *purge_list) 2728 { 2729 struct vmap_block *vb, *n_vb; 2730 2731 list_for_each_entry_safe(vb, n_vb, purge_list, purge) { 2732 list_del(&vb->purge); 2733 free_vmap_block(vb); 2734 } 2735 } 2736 2737 static void purge_fragmented_blocks(int cpu) 2738 { 2739 LIST_HEAD(purge); 2740 struct vmap_block *vb; 2741 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2742 2743 rcu_read_lock(); 2744 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2745 unsigned long free = READ_ONCE(vb->free); 2746 unsigned long dirty = READ_ONCE(vb->dirty); 2747 2748 if (free + dirty != VMAP_BBMAP_BITS || 2749 dirty == VMAP_BBMAP_BITS) 2750 continue; 2751 2752 spin_lock(&vb->lock); 2753 purge_fragmented_block(vb, &purge, true); 2754 spin_unlock(&vb->lock); 2755 } 2756 rcu_read_unlock(); 2757 free_purged_blocks(&purge); 2758 } 2759 2760 static void purge_fragmented_blocks_allcpus(void) 2761 { 2762 int cpu; 2763 2764 for_each_possible_cpu(cpu) 2765 purge_fragmented_blocks(cpu); 2766 } 2767 2768 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 2769 { 2770 struct vmap_block_queue *vbq; 2771 struct vmap_block *vb; 2772 void *vaddr = NULL; 2773 unsigned int order; 2774 2775 BUG_ON(offset_in_page(size)); 2776 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2777 if (WARN_ON(size == 0)) { 2778 /* 2779 * Allocating 0 bytes isn't what caller wants since 2780 * get_order(0) returns funny result. Just warn and terminate 2781 * early. 2782 */ 2783 return ERR_PTR(-EINVAL); 2784 } 2785 order = get_order(size); 2786 2787 rcu_read_lock(); 2788 vbq = raw_cpu_ptr(&vmap_block_queue); 2789 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2790 unsigned long pages_off; 2791 2792 if (READ_ONCE(vb->free) < (1UL << order)) 2793 continue; 2794 2795 spin_lock(&vb->lock); 2796 if (vb->free < (1UL << order)) { 2797 spin_unlock(&vb->lock); 2798 continue; 2799 } 2800 2801 pages_off = VMAP_BBMAP_BITS - vb->free; 2802 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 2803 WRITE_ONCE(vb->free, vb->free - (1UL << order)); 2804 bitmap_set(vb->used_map, pages_off, (1UL << order)); 2805 if (vb->free == 0) { 2806 spin_lock(&vbq->lock); 2807 list_del_rcu(&vb->free_list); 2808 spin_unlock(&vbq->lock); 2809 } 2810 2811 spin_unlock(&vb->lock); 2812 break; 2813 } 2814 2815 rcu_read_unlock(); 2816 2817 /* Allocate new block if nothing was found */ 2818 if (!vaddr) 2819 vaddr = new_vmap_block(order, gfp_mask); 2820 2821 return vaddr; 2822 } 2823 2824 static void vb_free(unsigned long addr, unsigned long size) 2825 { 2826 unsigned long offset; 2827 unsigned int order; 2828 struct vmap_block *vb; 2829 struct xarray *xa; 2830 2831 BUG_ON(offset_in_page(size)); 2832 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2833 2834 flush_cache_vunmap(addr, addr + size); 2835 2836 order = get_order(size); 2837 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; 2838 2839 xa = addr_to_vb_xa(addr); 2840 vb = xa_load(xa, addr_to_vb_idx(addr)); 2841 2842 spin_lock(&vb->lock); 2843 bitmap_clear(vb->used_map, offset, (1UL << order)); 2844 spin_unlock(&vb->lock); 2845 2846 vunmap_range_noflush(addr, addr + size); 2847 2848 if (debug_pagealloc_enabled_static()) 2849 flush_tlb_kernel_range(addr, addr + size); 2850 2851 spin_lock(&vb->lock); 2852 2853 /* Expand the not yet TLB flushed dirty range */ 2854 vb->dirty_min = min(vb->dirty_min, offset); 2855 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 2856 2857 WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order)); 2858 if (vb->dirty == VMAP_BBMAP_BITS) { 2859 BUG_ON(vb->free); 2860 spin_unlock(&vb->lock); 2861 free_vmap_block(vb); 2862 } else 2863 spin_unlock(&vb->lock); 2864 } 2865 2866 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 2867 { 2868 LIST_HEAD(purge_list); 2869 int cpu; 2870 2871 if (unlikely(!vmap_initialized)) 2872 return; 2873 2874 mutex_lock(&vmap_purge_lock); 2875 2876 for_each_possible_cpu(cpu) { 2877 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2878 struct vmap_block *vb; 2879 unsigned long idx; 2880 2881 rcu_read_lock(); 2882 xa_for_each(&vbq->vmap_blocks, idx, vb) { 2883 spin_lock(&vb->lock); 2884 2885 /* 2886 * Try to purge a fragmented block first. If it's 2887 * not purgeable, check whether there is dirty 2888 * space to be flushed. 2889 */ 2890 if (!purge_fragmented_block(vb, &purge_list, false) && 2891 vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) { 2892 unsigned long va_start = vb->va->va_start; 2893 unsigned long s, e; 2894 2895 s = va_start + (vb->dirty_min << PAGE_SHIFT); 2896 e = va_start + (vb->dirty_max << PAGE_SHIFT); 2897 2898 start = min(s, start); 2899 end = max(e, end); 2900 2901 /* Prevent that this is flushed again */ 2902 vb->dirty_min = VMAP_BBMAP_BITS; 2903 vb->dirty_max = 0; 2904 2905 flush = 1; 2906 } 2907 spin_unlock(&vb->lock); 2908 } 2909 rcu_read_unlock(); 2910 } 2911 free_purged_blocks(&purge_list); 2912 2913 if (!__purge_vmap_area_lazy(start, end, false) && flush) 2914 flush_tlb_kernel_range(start, end); 2915 mutex_unlock(&vmap_purge_lock); 2916 } 2917 2918 /** 2919 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 2920 * 2921 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 2922 * to amortize TLB flushing overheads. What this means is that any page you 2923 * have now, may, in a former life, have been mapped into kernel virtual 2924 * address by the vmap layer and so there might be some CPUs with TLB entries 2925 * still referencing that page (additional to the regular 1:1 kernel mapping). 2926 * 2927 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 2928 * be sure that none of the pages we have control over will have any aliases 2929 * from the vmap layer. 2930 */ 2931 void vm_unmap_aliases(void) 2932 { 2933 unsigned long start = ULONG_MAX, end = 0; 2934 int flush = 0; 2935 2936 _vm_unmap_aliases(start, end, flush); 2937 } 2938 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 2939 2940 /** 2941 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 2942 * @mem: the pointer returned by vm_map_ram 2943 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 2944 */ 2945 void vm_unmap_ram(const void *mem, unsigned int count) 2946 { 2947 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2948 unsigned long addr = (unsigned long)kasan_reset_tag(mem); 2949 struct vmap_area *va; 2950 2951 might_sleep(); 2952 BUG_ON(!addr); 2953 BUG_ON(addr < VMALLOC_START); 2954 BUG_ON(addr > VMALLOC_END); 2955 BUG_ON(!PAGE_ALIGNED(addr)); 2956 2957 kasan_poison_vmalloc(mem, size); 2958 2959 if (likely(count <= VMAP_MAX_ALLOC)) { 2960 debug_check_no_locks_freed(mem, size); 2961 vb_free(addr, size); 2962 return; 2963 } 2964 2965 va = find_unlink_vmap_area(addr); 2966 if (WARN_ON_ONCE(!va)) 2967 return; 2968 2969 debug_check_no_locks_freed((void *)va->va_start, va_size(va)); 2970 free_unmap_vmap_area(va); 2971 } 2972 EXPORT_SYMBOL(vm_unmap_ram); 2973 2974 /** 2975 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 2976 * @pages: an array of pointers to the pages to be mapped 2977 * @count: number of pages 2978 * @node: prefer to allocate data structures on this node 2979 * 2980 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 2981 * faster than vmap so it's good. But if you mix long-life and short-life 2982 * objects with vm_map_ram(), it could consume lots of address space through 2983 * fragmentation (especially on a 32bit machine). You could see failures in 2984 * the end. Please use this function for short-lived objects. 2985 * 2986 * Returns: a pointer to the address that has been mapped, or %NULL on failure 2987 */ 2988 void *vm_map_ram(struct page **pages, unsigned int count, int node) 2989 { 2990 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2991 unsigned long addr; 2992 void *mem; 2993 2994 if (likely(count <= VMAP_MAX_ALLOC)) { 2995 mem = vb_alloc(size, GFP_KERNEL); 2996 if (IS_ERR(mem)) 2997 return NULL; 2998 addr = (unsigned long)mem; 2999 } else { 3000 struct vmap_area *va; 3001 va = alloc_vmap_area(size, PAGE_SIZE, 3002 VMALLOC_START, VMALLOC_END, 3003 node, GFP_KERNEL, VMAP_RAM, 3004 NULL); 3005 if (IS_ERR(va)) 3006 return NULL; 3007 3008 addr = va->va_start; 3009 mem = (void *)addr; 3010 } 3011 3012 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, 3013 pages, PAGE_SHIFT) < 0) { 3014 vm_unmap_ram(mem, count); 3015 return NULL; 3016 } 3017 3018 /* 3019 * Mark the pages as accessible, now that they are mapped. 3020 * With hardware tag-based KASAN, marking is skipped for 3021 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 3022 */ 3023 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); 3024 3025 return mem; 3026 } 3027 EXPORT_SYMBOL(vm_map_ram); 3028 3029 static struct vm_struct *vmlist __initdata; 3030 3031 static inline unsigned int vm_area_page_order(struct vm_struct *vm) 3032 { 3033 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 3034 return vm->page_order; 3035 #else 3036 return 0; 3037 #endif 3038 } 3039 3040 unsigned int get_vm_area_page_order(struct vm_struct *vm) 3041 { 3042 return vm_area_page_order(vm); 3043 } 3044 3045 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) 3046 { 3047 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 3048 vm->page_order = order; 3049 #else 3050 BUG_ON(order != 0); 3051 #endif 3052 } 3053 3054 /** 3055 * vm_area_add_early - add vmap area early during boot 3056 * @vm: vm_struct to add 3057 * 3058 * This function is used to add fixed kernel vm area to vmlist before 3059 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 3060 * should contain proper values and the other fields should be zero. 3061 * 3062 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 3063 */ 3064 void __init vm_area_add_early(struct vm_struct *vm) 3065 { 3066 struct vm_struct *tmp, **p; 3067 3068 BUG_ON(vmap_initialized); 3069 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 3070 if (tmp->addr >= vm->addr) { 3071 BUG_ON(tmp->addr < vm->addr + vm->size); 3072 break; 3073 } else 3074 BUG_ON(tmp->addr + tmp->size > vm->addr); 3075 } 3076 vm->next = *p; 3077 *p = vm; 3078 } 3079 3080 /** 3081 * vm_area_register_early - register vmap area early during boot 3082 * @vm: vm_struct to register 3083 * @align: requested alignment 3084 * 3085 * This function is used to register kernel vm area before 3086 * vmalloc_init() is called. @vm->size and @vm->flags should contain 3087 * proper values on entry and other fields should be zero. On return, 3088 * vm->addr contains the allocated address. 3089 * 3090 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 3091 */ 3092 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 3093 { 3094 unsigned long addr = ALIGN(VMALLOC_START, align); 3095 struct vm_struct *cur, **p; 3096 3097 BUG_ON(vmap_initialized); 3098 3099 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { 3100 if ((unsigned long)cur->addr - addr >= vm->size) 3101 break; 3102 addr = ALIGN((unsigned long)cur->addr + cur->size, align); 3103 } 3104 3105 BUG_ON(addr > VMALLOC_END - vm->size); 3106 vm->addr = (void *)addr; 3107 vm->next = *p; 3108 *p = vm; 3109 kasan_populate_early_vm_area_shadow(vm->addr, vm->size); 3110 } 3111 3112 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 3113 { 3114 /* 3115 * Before removing VM_UNINITIALIZED, 3116 * we should make sure that vm has proper values. 3117 * Pair with smp_rmb() in show_numa_info(). 3118 */ 3119 smp_wmb(); 3120 vm->flags &= ~VM_UNINITIALIZED; 3121 } 3122 3123 struct vm_struct *__get_vm_area_node(unsigned long size, 3124 unsigned long align, unsigned long shift, unsigned long flags, 3125 unsigned long start, unsigned long end, int node, 3126 gfp_t gfp_mask, const void *caller) 3127 { 3128 struct vmap_area *va; 3129 struct vm_struct *area; 3130 unsigned long requested_size = size; 3131 3132 BUG_ON(in_interrupt()); 3133 size = ALIGN(size, 1ul << shift); 3134 if (unlikely(!size)) 3135 return NULL; 3136 3137 if (flags & VM_IOREMAP) 3138 align = 1ul << clamp_t(int, get_count_order_long(size), 3139 PAGE_SHIFT, IOREMAP_MAX_ORDER); 3140 3141 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 3142 if (unlikely(!area)) 3143 return NULL; 3144 3145 if (!(flags & VM_NO_GUARD)) 3146 size += PAGE_SIZE; 3147 3148 area->flags = flags; 3149 area->caller = caller; 3150 area->requested_size = requested_size; 3151 3152 va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area); 3153 if (IS_ERR(va)) { 3154 kfree(area); 3155 return NULL; 3156 } 3157 3158 /* 3159 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a 3160 * best-effort approach, as they can be mapped outside of vmalloc code. 3161 * For VM_ALLOC mappings, the pages are marked as accessible after 3162 * getting mapped in __vmalloc_node_range(). 3163 * With hardware tag-based KASAN, marking is skipped for 3164 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 3165 */ 3166 if (!(flags & VM_ALLOC)) 3167 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, 3168 KASAN_VMALLOC_PROT_NORMAL); 3169 3170 return area; 3171 } 3172 3173 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 3174 unsigned long start, unsigned long end, 3175 const void *caller) 3176 { 3177 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, 3178 NUMA_NO_NODE, GFP_KERNEL, caller); 3179 } 3180 3181 /** 3182 * get_vm_area - reserve a contiguous kernel virtual area 3183 * @size: size of the area 3184 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 3185 * 3186 * Search an area of @size in the kernel virtual mapping area, 3187 * and reserved it for out purposes. Returns the area descriptor 3188 * on success or %NULL on failure. 3189 * 3190 * Return: the area descriptor on success or %NULL on failure. 3191 */ 3192 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 3193 { 3194 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 3195 VMALLOC_START, VMALLOC_END, 3196 NUMA_NO_NODE, GFP_KERNEL, 3197 __builtin_return_address(0)); 3198 } 3199 3200 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 3201 const void *caller) 3202 { 3203 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 3204 VMALLOC_START, VMALLOC_END, 3205 NUMA_NO_NODE, GFP_KERNEL, caller); 3206 } 3207 3208 /** 3209 * find_vm_area - find a continuous kernel virtual area 3210 * @addr: base address 3211 * 3212 * Search for the kernel VM area starting at @addr, and return it. 3213 * It is up to the caller to do all required locking to keep the returned 3214 * pointer valid. 3215 * 3216 * Return: the area descriptor on success or %NULL on failure. 3217 */ 3218 struct vm_struct *find_vm_area(const void *addr) 3219 { 3220 struct vmap_area *va; 3221 3222 va = find_vmap_area((unsigned long)addr); 3223 if (!va) 3224 return NULL; 3225 3226 return va->vm; 3227 } 3228 3229 /** 3230 * remove_vm_area - find and remove a continuous kernel virtual area 3231 * @addr: base address 3232 * 3233 * Search for the kernel VM area starting at @addr, and remove it. 3234 * This function returns the found VM area, but using it is NOT safe 3235 * on SMP machines, except for its size or flags. 3236 * 3237 * Return: the area descriptor on success or %NULL on failure. 3238 */ 3239 struct vm_struct *remove_vm_area(const void *addr) 3240 { 3241 struct vmap_area *va; 3242 struct vm_struct *vm; 3243 3244 might_sleep(); 3245 3246 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 3247 addr)) 3248 return NULL; 3249 3250 va = find_unlink_vmap_area((unsigned long)addr); 3251 if (!va || !va->vm) 3252 return NULL; 3253 vm = va->vm; 3254 3255 debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm)); 3256 debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm)); 3257 kasan_free_module_shadow(vm); 3258 kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm)); 3259 3260 free_unmap_vmap_area(va); 3261 return vm; 3262 } 3263 3264 static inline void set_area_direct_map(const struct vm_struct *area, 3265 int (*set_direct_map)(struct page *page)) 3266 { 3267 int i; 3268 3269 /* HUGE_VMALLOC passes small pages to set_direct_map */ 3270 for (i = 0; i < area->nr_pages; i++) 3271 if (page_address(area->pages[i])) 3272 set_direct_map(area->pages[i]); 3273 } 3274 3275 /* 3276 * Flush the vm mapping and reset the direct map. 3277 */ 3278 static void vm_reset_perms(struct vm_struct *area) 3279 { 3280 unsigned long start = ULONG_MAX, end = 0; 3281 unsigned int page_order = vm_area_page_order(area); 3282 int flush_dmap = 0; 3283 int i; 3284 3285 /* 3286 * Find the start and end range of the direct mappings to make sure that 3287 * the vm_unmap_aliases() flush includes the direct map. 3288 */ 3289 for (i = 0; i < area->nr_pages; i += 1U << page_order) { 3290 unsigned long addr = (unsigned long)page_address(area->pages[i]); 3291 3292 if (addr) { 3293 unsigned long page_size; 3294 3295 page_size = PAGE_SIZE << page_order; 3296 start = min(addr, start); 3297 end = max(addr + page_size, end); 3298 flush_dmap = 1; 3299 } 3300 } 3301 3302 /* 3303 * Set direct map to something invalid so that it won't be cached if 3304 * there are any accesses after the TLB flush, then flush the TLB and 3305 * reset the direct map permissions to the default. 3306 */ 3307 set_area_direct_map(area, set_direct_map_invalid_noflush); 3308 _vm_unmap_aliases(start, end, flush_dmap); 3309 set_area_direct_map(area, set_direct_map_default_noflush); 3310 } 3311 3312 static void delayed_vfree_work(struct work_struct *w) 3313 { 3314 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 3315 struct llist_node *t, *llnode; 3316 3317 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 3318 vfree(llnode); 3319 } 3320 3321 /** 3322 * vfree_atomic - release memory allocated by vmalloc() 3323 * @addr: memory base address 3324 * 3325 * This one is just like vfree() but can be called in any atomic context 3326 * except NMIs. 3327 */ 3328 void vfree_atomic(const void *addr) 3329 { 3330 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 3331 3332 BUG_ON(in_nmi()); 3333 kmemleak_free(addr); 3334 3335 /* 3336 * Use raw_cpu_ptr() because this can be called from preemptible 3337 * context. Preemption is absolutely fine here, because the llist_add() 3338 * implementation is lockless, so it works even if we are adding to 3339 * another cpu's list. schedule_work() should be fine with this too. 3340 */ 3341 if (addr && llist_add((struct llist_node *)addr, &p->list)) 3342 schedule_work(&p->wq); 3343 } 3344 3345 /** 3346 * vfree - Release memory allocated by vmalloc() 3347 * @addr: Memory base address 3348 * 3349 * Free the virtually continuous memory area starting at @addr, as obtained 3350 * from one of the vmalloc() family of APIs. This will usually also free the 3351 * physical memory underlying the virtual allocation, but that memory is 3352 * reference counted, so it will not be freed until the last user goes away. 3353 * 3354 * If @addr is NULL, no operation is performed. 3355 * 3356 * Context: 3357 * May sleep if called *not* from interrupt context. 3358 * Must not be called in NMI context (strictly speaking, it could be 3359 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 3360 * conventions for vfree() arch-dependent would be a really bad idea). 3361 */ 3362 void vfree(const void *addr) 3363 { 3364 struct vm_struct *vm; 3365 int i; 3366 3367 if (unlikely(in_interrupt())) { 3368 vfree_atomic(addr); 3369 return; 3370 } 3371 3372 BUG_ON(in_nmi()); 3373 kmemleak_free(addr); 3374 might_sleep(); 3375 3376 if (!addr) 3377 return; 3378 3379 vm = remove_vm_area(addr); 3380 if (unlikely(!vm)) { 3381 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 3382 addr); 3383 return; 3384 } 3385 3386 if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS)) 3387 vm_reset_perms(vm); 3388 /* All pages of vm should be charged to same memcg, so use first one. */ 3389 if (vm->nr_pages && !(vm->flags & VM_MAP_PUT_PAGES)) 3390 mod_memcg_page_state(vm->pages[0], MEMCG_VMALLOC, -vm->nr_pages); 3391 for (i = 0; i < vm->nr_pages; i++) { 3392 struct page *page = vm->pages[i]; 3393 3394 BUG_ON(!page); 3395 /* 3396 * High-order allocs for huge vmallocs are split, so 3397 * can be freed as an array of order-0 allocations 3398 */ 3399 __free_page(page); 3400 cond_resched(); 3401 } 3402 if (!(vm->flags & VM_MAP_PUT_PAGES)) 3403 atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages); 3404 kvfree(vm->pages); 3405 kfree(vm); 3406 } 3407 EXPORT_SYMBOL(vfree); 3408 3409 /** 3410 * vunmap - release virtual mapping obtained by vmap() 3411 * @addr: memory base address 3412 * 3413 * Free the virtually contiguous memory area starting at @addr, 3414 * which was created from the page array passed to vmap(). 3415 * 3416 * Must not be called in interrupt context. 3417 */ 3418 void vunmap(const void *addr) 3419 { 3420 struct vm_struct *vm; 3421 3422 BUG_ON(in_interrupt()); 3423 might_sleep(); 3424 3425 if (!addr) 3426 return; 3427 vm = remove_vm_area(addr); 3428 if (unlikely(!vm)) { 3429 WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n", 3430 addr); 3431 return; 3432 } 3433 kfree(vm); 3434 } 3435 EXPORT_SYMBOL(vunmap); 3436 3437 /** 3438 * vmap - map an array of pages into virtually contiguous space 3439 * @pages: array of page pointers 3440 * @count: number of pages to map 3441 * @flags: vm_area->flags 3442 * @prot: page protection for the mapping 3443 * 3444 * Maps @count pages from @pages into contiguous kernel virtual space. 3445 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself 3446 * (which must be kmalloc or vmalloc memory) and one reference per pages in it 3447 * are transferred from the caller to vmap(), and will be freed / dropped when 3448 * vfree() is called on the return value. 3449 * 3450 * Return: the address of the area or %NULL on failure 3451 */ 3452 void *vmap(struct page **pages, unsigned int count, 3453 unsigned long flags, pgprot_t prot) 3454 { 3455 struct vm_struct *area; 3456 unsigned long addr; 3457 unsigned long size; /* In bytes */ 3458 3459 might_sleep(); 3460 3461 if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS)) 3462 return NULL; 3463 3464 /* 3465 * Your top guard is someone else's bottom guard. Not having a top 3466 * guard compromises someone else's mappings too. 3467 */ 3468 if (WARN_ON_ONCE(flags & VM_NO_GUARD)) 3469 flags &= ~VM_NO_GUARD; 3470 3471 if (count > totalram_pages()) 3472 return NULL; 3473 3474 size = (unsigned long)count << PAGE_SHIFT; 3475 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 3476 if (!area) 3477 return NULL; 3478 3479 addr = (unsigned long)area->addr; 3480 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), 3481 pages, PAGE_SHIFT) < 0) { 3482 vunmap(area->addr); 3483 return NULL; 3484 } 3485 3486 if (flags & VM_MAP_PUT_PAGES) { 3487 area->pages = pages; 3488 area->nr_pages = count; 3489 } 3490 return area->addr; 3491 } 3492 EXPORT_SYMBOL(vmap); 3493 3494 #ifdef CONFIG_VMAP_PFN 3495 struct vmap_pfn_data { 3496 unsigned long *pfns; 3497 pgprot_t prot; 3498 unsigned int idx; 3499 }; 3500 3501 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) 3502 { 3503 struct vmap_pfn_data *data = private; 3504 unsigned long pfn = data->pfns[data->idx]; 3505 pte_t ptent; 3506 3507 if (WARN_ON_ONCE(pfn_valid(pfn))) 3508 return -EINVAL; 3509 3510 ptent = pte_mkspecial(pfn_pte(pfn, data->prot)); 3511 set_pte_at(&init_mm, addr, pte, ptent); 3512 3513 data->idx++; 3514 return 0; 3515 } 3516 3517 /** 3518 * vmap_pfn - map an array of PFNs into virtually contiguous space 3519 * @pfns: array of PFNs 3520 * @count: number of pages to map 3521 * @prot: page protection for the mapping 3522 * 3523 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns 3524 * the start address of the mapping. 3525 */ 3526 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) 3527 { 3528 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; 3529 struct vm_struct *area; 3530 3531 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, 3532 __builtin_return_address(0)); 3533 if (!area) 3534 return NULL; 3535 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 3536 count * PAGE_SIZE, vmap_pfn_apply, &data)) { 3537 free_vm_area(area); 3538 return NULL; 3539 } 3540 3541 flush_cache_vmap((unsigned long)area->addr, 3542 (unsigned long)area->addr + count * PAGE_SIZE); 3543 3544 return area->addr; 3545 } 3546 EXPORT_SYMBOL_GPL(vmap_pfn); 3547 #endif /* CONFIG_VMAP_PFN */ 3548 3549 static inline unsigned int 3550 vm_area_alloc_pages(gfp_t gfp, int nid, 3551 unsigned int order, unsigned int nr_pages, struct page **pages) 3552 { 3553 unsigned int nr_allocated = 0; 3554 struct page *page; 3555 int i; 3556 3557 /* 3558 * For order-0 pages we make use of bulk allocator, if 3559 * the page array is partly or not at all populated due 3560 * to fails, fallback to a single page allocator that is 3561 * more permissive. 3562 */ 3563 if (!order) { 3564 while (nr_allocated < nr_pages) { 3565 unsigned int nr, nr_pages_request; 3566 3567 /* 3568 * A maximum allowed request is hard-coded and is 100 3569 * pages per call. That is done in order to prevent a 3570 * long preemption off scenario in the bulk-allocator 3571 * so the range is [1:100]. 3572 */ 3573 nr_pages_request = min(100U, nr_pages - nr_allocated); 3574 3575 /* memory allocation should consider mempolicy, we can't 3576 * wrongly use nearest node when nid == NUMA_NO_NODE, 3577 * otherwise memory may be allocated in only one node, 3578 * but mempolicy wants to alloc memory by interleaving. 3579 */ 3580 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) 3581 nr = alloc_pages_bulk_mempolicy_noprof(gfp, 3582 nr_pages_request, 3583 pages + nr_allocated); 3584 else 3585 nr = alloc_pages_bulk_node_noprof(gfp, nid, 3586 nr_pages_request, 3587 pages + nr_allocated); 3588 3589 nr_allocated += nr; 3590 cond_resched(); 3591 3592 /* 3593 * If zero or pages were obtained partly, 3594 * fallback to a single page allocator. 3595 */ 3596 if (nr != nr_pages_request) 3597 break; 3598 } 3599 } 3600 3601 /* High-order pages or fallback path if "bulk" fails. */ 3602 while (nr_allocated < nr_pages) { 3603 if (!(gfp & __GFP_NOFAIL) && fatal_signal_pending(current)) 3604 break; 3605 3606 if (nid == NUMA_NO_NODE) 3607 page = alloc_pages_noprof(gfp, order); 3608 else 3609 page = alloc_pages_node_noprof(nid, gfp, order); 3610 3611 if (unlikely(!page)) 3612 break; 3613 3614 /* 3615 * High-order allocations must be able to be treated as 3616 * independent small pages by callers (as they can with 3617 * small-page vmallocs). Some drivers do their own refcounting 3618 * on vmalloc_to_page() pages, some use page->mapping, 3619 * page->lru, etc. 3620 */ 3621 if (order) 3622 split_page(page, order); 3623 3624 /* 3625 * Careful, we allocate and map page-order pages, but 3626 * tracking is done per PAGE_SIZE page so as to keep the 3627 * vm_struct APIs independent of the physical/mapped size. 3628 */ 3629 for (i = 0; i < (1U << order); i++) 3630 pages[nr_allocated + i] = page + i; 3631 3632 cond_resched(); 3633 nr_allocated += 1U << order; 3634 } 3635 3636 return nr_allocated; 3637 } 3638 3639 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 3640 pgprot_t prot, unsigned int page_shift, 3641 int node) 3642 { 3643 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 3644 bool nofail = gfp_mask & __GFP_NOFAIL; 3645 unsigned long addr = (unsigned long)area->addr; 3646 unsigned long size = get_vm_area_size(area); 3647 unsigned long array_size; 3648 unsigned int nr_small_pages = size >> PAGE_SHIFT; 3649 unsigned int page_order; 3650 unsigned int flags; 3651 int ret; 3652 3653 array_size = (unsigned long)nr_small_pages * sizeof(struct page *); 3654 3655 if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) 3656 gfp_mask |= __GFP_HIGHMEM; 3657 3658 /* Please note that the recursion is strictly bounded. */ 3659 if (array_size > PAGE_SIZE) { 3660 area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node, 3661 area->caller); 3662 } else { 3663 area->pages = kmalloc_node_noprof(array_size, nested_gfp, node); 3664 } 3665 3666 if (!area->pages) { 3667 warn_alloc(gfp_mask, NULL, 3668 "vmalloc error: size %lu, failed to allocated page array size %lu", 3669 nr_small_pages * PAGE_SIZE, array_size); 3670 free_vm_area(area); 3671 return NULL; 3672 } 3673 3674 set_vm_area_page_order(area, page_shift - PAGE_SHIFT); 3675 page_order = vm_area_page_order(area); 3676 3677 /* 3678 * High-order nofail allocations are really expensive and 3679 * potentially dangerous (pre-mature OOM, disruptive reclaim 3680 * and compaction etc. 3681 * 3682 * Please note, the __vmalloc_node_range_noprof() falls-back 3683 * to order-0 pages if high-order attempt is unsuccessful. 3684 */ 3685 area->nr_pages = vm_area_alloc_pages((page_order ? 3686 gfp_mask & ~__GFP_NOFAIL : gfp_mask) | __GFP_NOWARN, 3687 node, page_order, nr_small_pages, area->pages); 3688 3689 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 3690 /* All pages of vm should be charged to same memcg, so use first one. */ 3691 if (gfp_mask & __GFP_ACCOUNT && area->nr_pages) 3692 mod_memcg_page_state(area->pages[0], MEMCG_VMALLOC, 3693 area->nr_pages); 3694 3695 /* 3696 * If not enough pages were obtained to accomplish an 3697 * allocation request, free them via vfree() if any. 3698 */ 3699 if (area->nr_pages != nr_small_pages) { 3700 /* 3701 * vm_area_alloc_pages() can fail due to insufficient memory but 3702 * also:- 3703 * 3704 * - a pending fatal signal 3705 * - insufficient huge page-order pages 3706 * 3707 * Since we always retry allocations at order-0 in the huge page 3708 * case a warning for either is spurious. 3709 */ 3710 if (!fatal_signal_pending(current) && page_order == 0) 3711 warn_alloc(gfp_mask, NULL, 3712 "vmalloc error: size %lu, failed to allocate pages", 3713 area->nr_pages * PAGE_SIZE); 3714 goto fail; 3715 } 3716 3717 /* 3718 * page tables allocations ignore external gfp mask, enforce it 3719 * by the scope API 3720 */ 3721 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3722 flags = memalloc_nofs_save(); 3723 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3724 flags = memalloc_noio_save(); 3725 3726 do { 3727 ret = vmap_pages_range(addr, addr + size, prot, area->pages, 3728 page_shift); 3729 if (nofail && (ret < 0)) 3730 schedule_timeout_uninterruptible(1); 3731 } while (nofail && (ret < 0)); 3732 3733 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3734 memalloc_nofs_restore(flags); 3735 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3736 memalloc_noio_restore(flags); 3737 3738 if (ret < 0) { 3739 warn_alloc(gfp_mask, NULL, 3740 "vmalloc error: size %lu, failed to map pages", 3741 area->nr_pages * PAGE_SIZE); 3742 goto fail; 3743 } 3744 3745 return area->addr; 3746 3747 fail: 3748 vfree(area->addr); 3749 return NULL; 3750 } 3751 3752 /** 3753 * __vmalloc_node_range - allocate virtually contiguous memory 3754 * @size: allocation size 3755 * @align: desired alignment 3756 * @start: vm area range start 3757 * @end: vm area range end 3758 * @gfp_mask: flags for the page level allocator 3759 * @prot: protection mask for the allocated pages 3760 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 3761 * @node: node to use for allocation or NUMA_NO_NODE 3762 * @caller: caller's return address 3763 * 3764 * Allocate enough pages to cover @size from the page level 3765 * allocator with @gfp_mask flags. Please note that the full set of gfp 3766 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all 3767 * supported. 3768 * Zone modifiers are not supported. From the reclaim modifiers 3769 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) 3770 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and 3771 * __GFP_RETRY_MAYFAIL are not supported). 3772 * 3773 * __GFP_NOWARN can be used to suppress failures messages. 3774 * 3775 * Map them into contiguous kernel virtual space, using a pagetable 3776 * protection of @prot. 3777 * 3778 * Return: the address of the area or %NULL on failure 3779 */ 3780 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align, 3781 unsigned long start, unsigned long end, gfp_t gfp_mask, 3782 pgprot_t prot, unsigned long vm_flags, int node, 3783 const void *caller) 3784 { 3785 struct vm_struct *area; 3786 void *ret; 3787 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; 3788 unsigned long original_align = align; 3789 unsigned int shift = PAGE_SHIFT; 3790 3791 if (WARN_ON_ONCE(!size)) 3792 return NULL; 3793 3794 if ((size >> PAGE_SHIFT) > totalram_pages()) { 3795 warn_alloc(gfp_mask, NULL, 3796 "vmalloc error: size %lu, exceeds total pages", 3797 size); 3798 return NULL; 3799 } 3800 3801 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { 3802 /* 3803 * Try huge pages. Only try for PAGE_KERNEL allocations, 3804 * others like modules don't yet expect huge pages in 3805 * their allocations due to apply_to_page_range not 3806 * supporting them. 3807 */ 3808 3809 if (arch_vmap_pmd_supported(prot) && size >= PMD_SIZE) 3810 shift = PMD_SHIFT; 3811 else 3812 shift = arch_vmap_pte_supported_shift(size); 3813 3814 align = max(original_align, 1UL << shift); 3815 } 3816 3817 again: 3818 area = __get_vm_area_node(size, align, shift, VM_ALLOC | 3819 VM_UNINITIALIZED | vm_flags, start, end, node, 3820 gfp_mask, caller); 3821 if (!area) { 3822 bool nofail = gfp_mask & __GFP_NOFAIL; 3823 warn_alloc(gfp_mask, NULL, 3824 "vmalloc error: size %lu, vm_struct allocation failed%s", 3825 size, (nofail) ? ". Retrying." : ""); 3826 if (nofail) { 3827 schedule_timeout_uninterruptible(1); 3828 goto again; 3829 } 3830 goto fail; 3831 } 3832 3833 /* 3834 * Prepare arguments for __vmalloc_area_node() and 3835 * kasan_unpoison_vmalloc(). 3836 */ 3837 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { 3838 if (kasan_hw_tags_enabled()) { 3839 /* 3840 * Modify protection bits to allow tagging. 3841 * This must be done before mapping. 3842 */ 3843 prot = arch_vmap_pgprot_tagged(prot); 3844 3845 /* 3846 * Skip page_alloc poisoning and zeroing for physical 3847 * pages backing VM_ALLOC mapping. Memory is instead 3848 * poisoned and zeroed by kasan_unpoison_vmalloc(). 3849 */ 3850 gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO; 3851 } 3852 3853 /* Take note that the mapping is PAGE_KERNEL. */ 3854 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; 3855 } 3856 3857 /* Allocate physical pages and map them into vmalloc space. */ 3858 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); 3859 if (!ret) 3860 goto fail; 3861 3862 /* 3863 * Mark the pages as accessible, now that they are mapped. 3864 * The condition for setting KASAN_VMALLOC_INIT should complement the 3865 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check 3866 * to make sure that memory is initialized under the same conditions. 3867 * Tag-based KASAN modes only assign tags to normal non-executable 3868 * allocations, see __kasan_unpoison_vmalloc(). 3869 */ 3870 kasan_flags |= KASAN_VMALLOC_VM_ALLOC; 3871 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) && 3872 (gfp_mask & __GFP_SKIP_ZERO)) 3873 kasan_flags |= KASAN_VMALLOC_INIT; 3874 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ 3875 area->addr = kasan_unpoison_vmalloc(area->addr, size, kasan_flags); 3876 3877 /* 3878 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 3879 * flag. It means that vm_struct is not fully initialized. 3880 * Now, it is fully initialized, so remove this flag here. 3881 */ 3882 clear_vm_uninitialized_flag(area); 3883 3884 if (!(vm_flags & VM_DEFER_KMEMLEAK)) 3885 kmemleak_vmalloc(area, PAGE_ALIGN(size), gfp_mask); 3886 3887 return area->addr; 3888 3889 fail: 3890 if (shift > PAGE_SHIFT) { 3891 shift = PAGE_SHIFT; 3892 align = original_align; 3893 goto again; 3894 } 3895 3896 return NULL; 3897 } 3898 3899 /** 3900 * __vmalloc_node - allocate virtually contiguous memory 3901 * @size: allocation size 3902 * @align: desired alignment 3903 * @gfp_mask: flags for the page level allocator 3904 * @node: node to use for allocation or NUMA_NO_NODE 3905 * @caller: caller's return address 3906 * 3907 * Allocate enough pages to cover @size from the page level allocator with 3908 * @gfp_mask flags. Map them into contiguous kernel virtual space. 3909 * 3910 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 3911 * and __GFP_NOFAIL are not supported 3912 * 3913 * Any use of gfp flags outside of GFP_KERNEL should be consulted 3914 * with mm people. 3915 * 3916 * Return: pointer to the allocated memory or %NULL on error 3917 */ 3918 void *__vmalloc_node_noprof(unsigned long size, unsigned long align, 3919 gfp_t gfp_mask, int node, const void *caller) 3920 { 3921 return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END, 3922 gfp_mask, PAGE_KERNEL, 0, node, caller); 3923 } 3924 /* 3925 * This is only for performance analysis of vmalloc and stress purpose. 3926 * It is required by vmalloc test module, therefore do not use it other 3927 * than that. 3928 */ 3929 #ifdef CONFIG_TEST_VMALLOC_MODULE 3930 EXPORT_SYMBOL_GPL(__vmalloc_node_noprof); 3931 #endif 3932 3933 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask) 3934 { 3935 return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE, 3936 __builtin_return_address(0)); 3937 } 3938 EXPORT_SYMBOL(__vmalloc_noprof); 3939 3940 /** 3941 * vmalloc - allocate virtually contiguous memory 3942 * @size: allocation size 3943 * 3944 * Allocate enough pages to cover @size from the page level 3945 * allocator and map them into contiguous kernel virtual space. 3946 * 3947 * For tight control over page level allocator and protection flags 3948 * use __vmalloc() instead. 3949 * 3950 * Return: pointer to the allocated memory or %NULL on error 3951 */ 3952 void *vmalloc_noprof(unsigned long size) 3953 { 3954 return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE, 3955 __builtin_return_address(0)); 3956 } 3957 EXPORT_SYMBOL(vmalloc_noprof); 3958 3959 /** 3960 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages 3961 * @size: allocation size 3962 * @gfp_mask: flags for the page level allocator 3963 * 3964 * Allocate enough pages to cover @size from the page level 3965 * allocator and map them into contiguous kernel virtual space. 3966 * If @size is greater than or equal to PMD_SIZE, allow using 3967 * huge pages for the memory 3968 * 3969 * Return: pointer to the allocated memory or %NULL on error 3970 */ 3971 void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask) 3972 { 3973 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END, 3974 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 3975 NUMA_NO_NODE, __builtin_return_address(0)); 3976 } 3977 EXPORT_SYMBOL_GPL(vmalloc_huge_noprof); 3978 3979 /** 3980 * vzalloc - allocate virtually contiguous memory with zero fill 3981 * @size: allocation size 3982 * 3983 * Allocate enough pages to cover @size from the page level 3984 * allocator and map them into contiguous kernel virtual space. 3985 * The memory allocated is set to zero. 3986 * 3987 * For tight control over page level allocator and protection flags 3988 * use __vmalloc() instead. 3989 * 3990 * Return: pointer to the allocated memory or %NULL on error 3991 */ 3992 void *vzalloc_noprof(unsigned long size) 3993 { 3994 return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 3995 __builtin_return_address(0)); 3996 } 3997 EXPORT_SYMBOL(vzalloc_noprof); 3998 3999 /** 4000 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 4001 * @size: allocation size 4002 * 4003 * The resulting memory area is zeroed so it can be mapped to userspace 4004 * without leaking data. 4005 * 4006 * Return: pointer to the allocated memory or %NULL on error 4007 */ 4008 void *vmalloc_user_noprof(unsigned long size) 4009 { 4010 return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END, 4011 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 4012 VM_USERMAP, NUMA_NO_NODE, 4013 __builtin_return_address(0)); 4014 } 4015 EXPORT_SYMBOL(vmalloc_user_noprof); 4016 4017 /** 4018 * vmalloc_node - allocate memory on a specific node 4019 * @size: allocation size 4020 * @node: numa node 4021 * 4022 * Allocate enough pages to cover @size from the page level 4023 * allocator and map them into contiguous kernel virtual space. 4024 * 4025 * For tight control over page level allocator and protection flags 4026 * use __vmalloc() instead. 4027 * 4028 * Return: pointer to the allocated memory or %NULL on error 4029 */ 4030 void *vmalloc_node_noprof(unsigned long size, int node) 4031 { 4032 return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node, 4033 __builtin_return_address(0)); 4034 } 4035 EXPORT_SYMBOL(vmalloc_node_noprof); 4036 4037 /** 4038 * vzalloc_node - allocate memory on a specific node with zero fill 4039 * @size: allocation size 4040 * @node: numa node 4041 * 4042 * Allocate enough pages to cover @size from the page level 4043 * allocator and map them into contiguous kernel virtual space. 4044 * The memory allocated is set to zero. 4045 * 4046 * Return: pointer to the allocated memory or %NULL on error 4047 */ 4048 void *vzalloc_node_noprof(unsigned long size, int node) 4049 { 4050 return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node, 4051 __builtin_return_address(0)); 4052 } 4053 EXPORT_SYMBOL(vzalloc_node_noprof); 4054 4055 /** 4056 * vrealloc - reallocate virtually contiguous memory; contents remain unchanged 4057 * @p: object to reallocate memory for 4058 * @size: the size to reallocate 4059 * @flags: the flags for the page level allocator 4060 * 4061 * If @p is %NULL, vrealloc() behaves exactly like vmalloc(). If @size is 0 and 4062 * @p is not a %NULL pointer, the object pointed to is freed. 4063 * 4064 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 4065 * initial memory allocation, every subsequent call to this API for the same 4066 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 4067 * __GFP_ZERO is not fully honored by this API. 4068 * 4069 * In any case, the contents of the object pointed to are preserved up to the 4070 * lesser of the new and old sizes. 4071 * 4072 * This function must not be called concurrently with itself or vfree() for the 4073 * same memory allocation. 4074 * 4075 * Return: pointer to the allocated memory; %NULL if @size is zero or in case of 4076 * failure 4077 */ 4078 void *vrealloc_noprof(const void *p, size_t size, gfp_t flags) 4079 { 4080 struct vm_struct *vm = NULL; 4081 size_t alloced_size = 0; 4082 size_t old_size = 0; 4083 void *n; 4084 4085 if (!size) { 4086 vfree(p); 4087 return NULL; 4088 } 4089 4090 if (p) { 4091 vm = find_vm_area(p); 4092 if (unlikely(!vm)) { 4093 WARN(1, "Trying to vrealloc() nonexistent vm area (%p)\n", p); 4094 return NULL; 4095 } 4096 4097 alloced_size = get_vm_area_size(vm); 4098 old_size = vm->requested_size; 4099 if (WARN(alloced_size < old_size, 4100 "vrealloc() has mismatched area vs requested sizes (%p)\n", p)) 4101 return NULL; 4102 } 4103 4104 /* 4105 * TODO: Shrink the vm_area, i.e. unmap and free unused pages. What 4106 * would be a good heuristic for when to shrink the vm_area? 4107 */ 4108 if (size <= old_size) { 4109 /* Zero out "freed" memory. */ 4110 if (want_init_on_free()) 4111 memset((void *)p + size, 0, old_size - size); 4112 vm->requested_size = size; 4113 kasan_poison_vmalloc(p + size, old_size - size); 4114 return (void *)p; 4115 } 4116 4117 /* 4118 * We already have the bytes available in the allocation; use them. 4119 */ 4120 if (size <= alloced_size) { 4121 kasan_unpoison_vmalloc(p + old_size, size - old_size, 4122 KASAN_VMALLOC_PROT_NORMAL); 4123 /* Zero out "alloced" memory. */ 4124 if (want_init_on_alloc(flags)) 4125 memset((void *)p + old_size, 0, size - old_size); 4126 vm->requested_size = size; 4127 } 4128 4129 /* TODO: Grow the vm_area, i.e. allocate and map additional pages. */ 4130 n = __vmalloc_noprof(size, flags); 4131 if (!n) 4132 return NULL; 4133 4134 if (p) { 4135 memcpy(n, p, old_size); 4136 vfree(p); 4137 } 4138 4139 return n; 4140 } 4141 4142 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 4143 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 4144 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 4145 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 4146 #else 4147 /* 4148 * 64b systems should always have either DMA or DMA32 zones. For others 4149 * GFP_DMA32 should do the right thing and use the normal zone. 4150 */ 4151 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 4152 #endif 4153 4154 /** 4155 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 4156 * @size: allocation size 4157 * 4158 * Allocate enough 32bit PA addressable pages to cover @size from the 4159 * page level allocator and map them into contiguous kernel virtual space. 4160 * 4161 * Return: pointer to the allocated memory or %NULL on error 4162 */ 4163 void *vmalloc_32_noprof(unsigned long size) 4164 { 4165 return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, 4166 __builtin_return_address(0)); 4167 } 4168 EXPORT_SYMBOL(vmalloc_32_noprof); 4169 4170 /** 4171 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 4172 * @size: allocation size 4173 * 4174 * The resulting memory area is 32bit addressable and zeroed so it can be 4175 * mapped to userspace without leaking data. 4176 * 4177 * Return: pointer to the allocated memory or %NULL on error 4178 */ 4179 void *vmalloc_32_user_noprof(unsigned long size) 4180 { 4181 return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END, 4182 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 4183 VM_USERMAP, NUMA_NO_NODE, 4184 __builtin_return_address(0)); 4185 } 4186 EXPORT_SYMBOL(vmalloc_32_user_noprof); 4187 4188 /* 4189 * Atomically zero bytes in the iterator. 4190 * 4191 * Returns the number of zeroed bytes. 4192 */ 4193 static size_t zero_iter(struct iov_iter *iter, size_t count) 4194 { 4195 size_t remains = count; 4196 4197 while (remains > 0) { 4198 size_t num, copied; 4199 4200 num = min_t(size_t, remains, PAGE_SIZE); 4201 copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter); 4202 remains -= copied; 4203 4204 if (copied < num) 4205 break; 4206 } 4207 4208 return count - remains; 4209 } 4210 4211 /* 4212 * small helper routine, copy contents to iter from addr. 4213 * If the page is not present, fill zero. 4214 * 4215 * Returns the number of copied bytes. 4216 */ 4217 static size_t aligned_vread_iter(struct iov_iter *iter, 4218 const char *addr, size_t count) 4219 { 4220 size_t remains = count; 4221 struct page *page; 4222 4223 while (remains > 0) { 4224 unsigned long offset, length; 4225 size_t copied = 0; 4226 4227 offset = offset_in_page(addr); 4228 length = PAGE_SIZE - offset; 4229 if (length > remains) 4230 length = remains; 4231 page = vmalloc_to_page(addr); 4232 /* 4233 * To do safe access to this _mapped_ area, we need lock. But 4234 * adding lock here means that we need to add overhead of 4235 * vmalloc()/vfree() calls for this _debug_ interface, rarely 4236 * used. Instead of that, we'll use an local mapping via 4237 * copy_page_to_iter_nofault() and accept a small overhead in 4238 * this access function. 4239 */ 4240 if (page) 4241 copied = copy_page_to_iter_nofault(page, offset, 4242 length, iter); 4243 else 4244 copied = zero_iter(iter, length); 4245 4246 addr += copied; 4247 remains -= copied; 4248 4249 if (copied != length) 4250 break; 4251 } 4252 4253 return count - remains; 4254 } 4255 4256 /* 4257 * Read from a vm_map_ram region of memory. 4258 * 4259 * Returns the number of copied bytes. 4260 */ 4261 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr, 4262 size_t count, unsigned long flags) 4263 { 4264 char *start; 4265 struct vmap_block *vb; 4266 struct xarray *xa; 4267 unsigned long offset; 4268 unsigned int rs, re; 4269 size_t remains, n; 4270 4271 /* 4272 * If it's area created by vm_map_ram() interface directly, but 4273 * not further subdividing and delegating management to vmap_block, 4274 * handle it here. 4275 */ 4276 if (!(flags & VMAP_BLOCK)) 4277 return aligned_vread_iter(iter, addr, count); 4278 4279 remains = count; 4280 4281 /* 4282 * Area is split into regions and tracked with vmap_block, read out 4283 * each region and zero fill the hole between regions. 4284 */ 4285 xa = addr_to_vb_xa((unsigned long) addr); 4286 vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr)); 4287 if (!vb) 4288 goto finished_zero; 4289 4290 spin_lock(&vb->lock); 4291 if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) { 4292 spin_unlock(&vb->lock); 4293 goto finished_zero; 4294 } 4295 4296 for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) { 4297 size_t copied; 4298 4299 if (remains == 0) 4300 goto finished; 4301 4302 start = vmap_block_vaddr(vb->va->va_start, rs); 4303 4304 if (addr < start) { 4305 size_t to_zero = min_t(size_t, start - addr, remains); 4306 size_t zeroed = zero_iter(iter, to_zero); 4307 4308 addr += zeroed; 4309 remains -= zeroed; 4310 4311 if (remains == 0 || zeroed != to_zero) 4312 goto finished; 4313 } 4314 4315 /*it could start reading from the middle of used region*/ 4316 offset = offset_in_page(addr); 4317 n = ((re - rs + 1) << PAGE_SHIFT) - offset; 4318 if (n > remains) 4319 n = remains; 4320 4321 copied = aligned_vread_iter(iter, start + offset, n); 4322 4323 addr += copied; 4324 remains -= copied; 4325 4326 if (copied != n) 4327 goto finished; 4328 } 4329 4330 spin_unlock(&vb->lock); 4331 4332 finished_zero: 4333 /* zero-fill the left dirty or free regions */ 4334 return count - remains + zero_iter(iter, remains); 4335 finished: 4336 /* We couldn't copy/zero everything */ 4337 spin_unlock(&vb->lock); 4338 return count - remains; 4339 } 4340 4341 /** 4342 * vread_iter() - read vmalloc area in a safe way to an iterator. 4343 * @iter: the iterator to which data should be written. 4344 * @addr: vm address. 4345 * @count: number of bytes to be read. 4346 * 4347 * This function checks that addr is a valid vmalloc'ed area, and 4348 * copy data from that area to a given buffer. If the given memory range 4349 * of [addr...addr+count) includes some valid address, data is copied to 4350 * proper area of @buf. If there are memory holes, they'll be zero-filled. 4351 * IOREMAP area is treated as memory hole and no copy is done. 4352 * 4353 * If [addr...addr+count) doesn't includes any intersects with alive 4354 * vm_struct area, returns 0. @buf should be kernel's buffer. 4355 * 4356 * Note: In usual ops, vread() is never necessary because the caller 4357 * should know vmalloc() area is valid and can use memcpy(). 4358 * This is for routines which have to access vmalloc area without 4359 * any information, as /proc/kcore. 4360 * 4361 * Return: number of bytes for which addr and buf should be increased 4362 * (same number as @count) or %0 if [addr...addr+count) doesn't 4363 * include any intersection with valid vmalloc area 4364 */ 4365 long vread_iter(struct iov_iter *iter, const char *addr, size_t count) 4366 { 4367 struct vmap_node *vn; 4368 struct vmap_area *va; 4369 struct vm_struct *vm; 4370 char *vaddr; 4371 size_t n, size, flags, remains; 4372 unsigned long next; 4373 4374 addr = kasan_reset_tag(addr); 4375 4376 /* Don't allow overflow */ 4377 if ((unsigned long) addr + count < count) 4378 count = -(unsigned long) addr; 4379 4380 remains = count; 4381 4382 vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va); 4383 if (!vn) 4384 goto finished_zero; 4385 4386 /* no intersects with alive vmap_area */ 4387 if ((unsigned long)addr + remains <= va->va_start) 4388 goto finished_zero; 4389 4390 do { 4391 size_t copied; 4392 4393 if (remains == 0) 4394 goto finished; 4395 4396 vm = va->vm; 4397 flags = va->flags & VMAP_FLAGS_MASK; 4398 /* 4399 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need 4400 * be set together with VMAP_RAM. 4401 */ 4402 WARN_ON(flags == VMAP_BLOCK); 4403 4404 if (!vm && !flags) 4405 goto next_va; 4406 4407 if (vm && (vm->flags & VM_UNINITIALIZED)) 4408 goto next_va; 4409 4410 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 4411 smp_rmb(); 4412 4413 vaddr = (char *) va->va_start; 4414 size = vm ? get_vm_area_size(vm) : va_size(va); 4415 4416 if (addr >= vaddr + size) 4417 goto next_va; 4418 4419 if (addr < vaddr) { 4420 size_t to_zero = min_t(size_t, vaddr - addr, remains); 4421 size_t zeroed = zero_iter(iter, to_zero); 4422 4423 addr += zeroed; 4424 remains -= zeroed; 4425 4426 if (remains == 0 || zeroed != to_zero) 4427 goto finished; 4428 } 4429 4430 n = vaddr + size - addr; 4431 if (n > remains) 4432 n = remains; 4433 4434 if (flags & VMAP_RAM) 4435 copied = vmap_ram_vread_iter(iter, addr, n, flags); 4436 else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE)))) 4437 copied = aligned_vread_iter(iter, addr, n); 4438 else /* IOREMAP | SPARSE area is treated as memory hole */ 4439 copied = zero_iter(iter, n); 4440 4441 addr += copied; 4442 remains -= copied; 4443 4444 if (copied != n) 4445 goto finished; 4446 4447 next_va: 4448 next = va->va_end; 4449 spin_unlock(&vn->busy.lock); 4450 } while ((vn = find_vmap_area_exceed_addr_lock(next, &va))); 4451 4452 finished_zero: 4453 if (vn) 4454 spin_unlock(&vn->busy.lock); 4455 4456 /* zero-fill memory holes */ 4457 return count - remains + zero_iter(iter, remains); 4458 finished: 4459 /* Nothing remains, or We couldn't copy/zero everything. */ 4460 if (vn) 4461 spin_unlock(&vn->busy.lock); 4462 4463 return count - remains; 4464 } 4465 4466 /** 4467 * remap_vmalloc_range_partial - map vmalloc pages to userspace 4468 * @vma: vma to cover 4469 * @uaddr: target user address to start at 4470 * @kaddr: virtual address of vmalloc kernel memory 4471 * @pgoff: offset from @kaddr to start at 4472 * @size: size of map area 4473 * 4474 * Returns: 0 for success, -Exxx on failure 4475 * 4476 * This function checks that @kaddr is a valid vmalloc'ed area, 4477 * and that it is big enough to cover the range starting at 4478 * @uaddr in @vma. Will return failure if that criteria isn't 4479 * met. 4480 * 4481 * Similar to remap_pfn_range() (see mm/memory.c) 4482 */ 4483 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 4484 void *kaddr, unsigned long pgoff, 4485 unsigned long size) 4486 { 4487 struct vm_struct *area; 4488 unsigned long off; 4489 unsigned long end_index; 4490 4491 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) 4492 return -EINVAL; 4493 4494 size = PAGE_ALIGN(size); 4495 4496 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 4497 return -EINVAL; 4498 4499 area = find_vm_area(kaddr); 4500 if (!area) 4501 return -EINVAL; 4502 4503 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 4504 return -EINVAL; 4505 4506 if (check_add_overflow(size, off, &end_index) || 4507 end_index > get_vm_area_size(area)) 4508 return -EINVAL; 4509 kaddr += off; 4510 4511 do { 4512 struct page *page = vmalloc_to_page(kaddr); 4513 int ret; 4514 4515 ret = vm_insert_page(vma, uaddr, page); 4516 if (ret) 4517 return ret; 4518 4519 uaddr += PAGE_SIZE; 4520 kaddr += PAGE_SIZE; 4521 size -= PAGE_SIZE; 4522 } while (size > 0); 4523 4524 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP); 4525 4526 return 0; 4527 } 4528 4529 /** 4530 * remap_vmalloc_range - map vmalloc pages to userspace 4531 * @vma: vma to cover (map full range of vma) 4532 * @addr: vmalloc memory 4533 * @pgoff: number of pages into addr before first page to map 4534 * 4535 * Returns: 0 for success, -Exxx on failure 4536 * 4537 * This function checks that addr is a valid vmalloc'ed area, and 4538 * that it is big enough to cover the vma. Will return failure if 4539 * that criteria isn't met. 4540 * 4541 * Similar to remap_pfn_range() (see mm/memory.c) 4542 */ 4543 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 4544 unsigned long pgoff) 4545 { 4546 return remap_vmalloc_range_partial(vma, vma->vm_start, 4547 addr, pgoff, 4548 vma->vm_end - vma->vm_start); 4549 } 4550 EXPORT_SYMBOL(remap_vmalloc_range); 4551 4552 void free_vm_area(struct vm_struct *area) 4553 { 4554 struct vm_struct *ret; 4555 ret = remove_vm_area(area->addr); 4556 BUG_ON(ret != area); 4557 kfree(area); 4558 } 4559 EXPORT_SYMBOL_GPL(free_vm_area); 4560 4561 #ifdef CONFIG_SMP 4562 static struct vmap_area *node_to_va(struct rb_node *n) 4563 { 4564 return rb_entry_safe(n, struct vmap_area, rb_node); 4565 } 4566 4567 /** 4568 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 4569 * @addr: target address 4570 * 4571 * Returns: vmap_area if it is found. If there is no such area 4572 * the first highest(reverse order) vmap_area is returned 4573 * i.e. va->va_start < addr && va->va_end < addr or NULL 4574 * if there are no any areas before @addr. 4575 */ 4576 static struct vmap_area * 4577 pvm_find_va_enclose_addr(unsigned long addr) 4578 { 4579 struct vmap_area *va, *tmp; 4580 struct rb_node *n; 4581 4582 n = free_vmap_area_root.rb_node; 4583 va = NULL; 4584 4585 while (n) { 4586 tmp = rb_entry(n, struct vmap_area, rb_node); 4587 if (tmp->va_start <= addr) { 4588 va = tmp; 4589 if (tmp->va_end >= addr) 4590 break; 4591 4592 n = n->rb_right; 4593 } else { 4594 n = n->rb_left; 4595 } 4596 } 4597 4598 return va; 4599 } 4600 4601 /** 4602 * pvm_determine_end_from_reverse - find the highest aligned address 4603 * of free block below VMALLOC_END 4604 * @va: 4605 * in - the VA we start the search(reverse order); 4606 * out - the VA with the highest aligned end address. 4607 * @align: alignment for required highest address 4608 * 4609 * Returns: determined end address within vmap_area 4610 */ 4611 static unsigned long 4612 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 4613 { 4614 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 4615 unsigned long addr; 4616 4617 if (likely(*va)) { 4618 list_for_each_entry_from_reverse((*va), 4619 &free_vmap_area_list, list) { 4620 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 4621 if ((*va)->va_start < addr) 4622 return addr; 4623 } 4624 } 4625 4626 return 0; 4627 } 4628 4629 /** 4630 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 4631 * @offsets: array containing offset of each area 4632 * @sizes: array containing size of each area 4633 * @nr_vms: the number of areas to allocate 4634 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 4635 * 4636 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 4637 * vm_structs on success, %NULL on failure 4638 * 4639 * Percpu allocator wants to use congruent vm areas so that it can 4640 * maintain the offsets among percpu areas. This function allocates 4641 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 4642 * be scattered pretty far, distance between two areas easily going up 4643 * to gigabytes. To avoid interacting with regular vmallocs, these 4644 * areas are allocated from top. 4645 * 4646 * Despite its complicated look, this allocator is rather simple. It 4647 * does everything top-down and scans free blocks from the end looking 4648 * for matching base. While scanning, if any of the areas do not fit the 4649 * base address is pulled down to fit the area. Scanning is repeated till 4650 * all the areas fit and then all necessary data structures are inserted 4651 * and the result is returned. 4652 */ 4653 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 4654 const size_t *sizes, int nr_vms, 4655 size_t align) 4656 { 4657 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 4658 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 4659 struct vmap_area **vas, *va; 4660 struct vm_struct **vms; 4661 int area, area2, last_area, term_area; 4662 unsigned long base, start, size, end, last_end, orig_start, orig_end; 4663 bool purged = false; 4664 4665 /* verify parameters and allocate data structures */ 4666 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 4667 for (last_area = 0, area = 0; area < nr_vms; area++) { 4668 start = offsets[area]; 4669 end = start + sizes[area]; 4670 4671 /* is everything aligned properly? */ 4672 BUG_ON(!IS_ALIGNED(offsets[area], align)); 4673 BUG_ON(!IS_ALIGNED(sizes[area], align)); 4674 4675 /* detect the area with the highest address */ 4676 if (start > offsets[last_area]) 4677 last_area = area; 4678 4679 for (area2 = area + 1; area2 < nr_vms; area2++) { 4680 unsigned long start2 = offsets[area2]; 4681 unsigned long end2 = start2 + sizes[area2]; 4682 4683 BUG_ON(start2 < end && start < end2); 4684 } 4685 } 4686 last_end = offsets[last_area] + sizes[last_area]; 4687 4688 if (vmalloc_end - vmalloc_start < last_end) { 4689 WARN_ON(true); 4690 return NULL; 4691 } 4692 4693 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 4694 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 4695 if (!vas || !vms) 4696 goto err_free2; 4697 4698 for (area = 0; area < nr_vms; area++) { 4699 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 4700 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 4701 if (!vas[area] || !vms[area]) 4702 goto err_free; 4703 } 4704 retry: 4705 spin_lock(&free_vmap_area_lock); 4706 4707 /* start scanning - we scan from the top, begin with the last area */ 4708 area = term_area = last_area; 4709 start = offsets[area]; 4710 end = start + sizes[area]; 4711 4712 va = pvm_find_va_enclose_addr(vmalloc_end); 4713 base = pvm_determine_end_from_reverse(&va, align) - end; 4714 4715 while (true) { 4716 /* 4717 * base might have underflowed, add last_end before 4718 * comparing. 4719 */ 4720 if (base + last_end < vmalloc_start + last_end) 4721 goto overflow; 4722 4723 /* 4724 * Fitting base has not been found. 4725 */ 4726 if (va == NULL) 4727 goto overflow; 4728 4729 /* 4730 * If required width exceeds current VA block, move 4731 * base downwards and then recheck. 4732 */ 4733 if (base + end > va->va_end) { 4734 base = pvm_determine_end_from_reverse(&va, align) - end; 4735 term_area = area; 4736 continue; 4737 } 4738 4739 /* 4740 * If this VA does not fit, move base downwards and recheck. 4741 */ 4742 if (base + start < va->va_start) { 4743 va = node_to_va(rb_prev(&va->rb_node)); 4744 base = pvm_determine_end_from_reverse(&va, align) - end; 4745 term_area = area; 4746 continue; 4747 } 4748 4749 /* 4750 * This area fits, move on to the previous one. If 4751 * the previous one is the terminal one, we're done. 4752 */ 4753 area = (area + nr_vms - 1) % nr_vms; 4754 if (area == term_area) 4755 break; 4756 4757 start = offsets[area]; 4758 end = start + sizes[area]; 4759 va = pvm_find_va_enclose_addr(base + end); 4760 } 4761 4762 /* we've found a fitting base, insert all va's */ 4763 for (area = 0; area < nr_vms; area++) { 4764 int ret; 4765 4766 start = base + offsets[area]; 4767 size = sizes[area]; 4768 4769 va = pvm_find_va_enclose_addr(start); 4770 if (WARN_ON_ONCE(va == NULL)) 4771 /* It is a BUG(), but trigger recovery instead. */ 4772 goto recovery; 4773 4774 ret = va_clip(&free_vmap_area_root, 4775 &free_vmap_area_list, va, start, size); 4776 if (WARN_ON_ONCE(unlikely(ret))) 4777 /* It is a BUG(), but trigger recovery instead. */ 4778 goto recovery; 4779 4780 /* Allocated area. */ 4781 va = vas[area]; 4782 va->va_start = start; 4783 va->va_end = start + size; 4784 } 4785 4786 spin_unlock(&free_vmap_area_lock); 4787 4788 /* populate the kasan shadow space */ 4789 for (area = 0; area < nr_vms; area++) { 4790 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) 4791 goto err_free_shadow; 4792 } 4793 4794 /* insert all vm's */ 4795 for (area = 0; area < nr_vms; area++) { 4796 struct vmap_node *vn = addr_to_node(vas[area]->va_start); 4797 4798 spin_lock(&vn->busy.lock); 4799 insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head); 4800 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 4801 pcpu_get_vm_areas); 4802 spin_unlock(&vn->busy.lock); 4803 } 4804 4805 /* 4806 * Mark allocated areas as accessible. Do it now as a best-effort 4807 * approach, as they can be mapped outside of vmalloc code. 4808 * With hardware tag-based KASAN, marking is skipped for 4809 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 4810 */ 4811 for (area = 0; area < nr_vms; area++) 4812 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, 4813 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); 4814 4815 kfree(vas); 4816 return vms; 4817 4818 recovery: 4819 /* 4820 * Remove previously allocated areas. There is no 4821 * need in removing these areas from the busy tree, 4822 * because they are inserted only on the final step 4823 * and when pcpu_get_vm_areas() is success. 4824 */ 4825 while (area--) { 4826 orig_start = vas[area]->va_start; 4827 orig_end = vas[area]->va_end; 4828 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 4829 &free_vmap_area_list); 4830 if (va) 4831 kasan_release_vmalloc(orig_start, orig_end, 4832 va->va_start, va->va_end, 4833 KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH); 4834 vas[area] = NULL; 4835 } 4836 4837 overflow: 4838 spin_unlock(&free_vmap_area_lock); 4839 if (!purged) { 4840 reclaim_and_purge_vmap_areas(); 4841 purged = true; 4842 4843 /* Before "retry", check if we recover. */ 4844 for (area = 0; area < nr_vms; area++) { 4845 if (vas[area]) 4846 continue; 4847 4848 vas[area] = kmem_cache_zalloc( 4849 vmap_area_cachep, GFP_KERNEL); 4850 if (!vas[area]) 4851 goto err_free; 4852 } 4853 4854 goto retry; 4855 } 4856 4857 err_free: 4858 for (area = 0; area < nr_vms; area++) { 4859 if (vas[area]) 4860 kmem_cache_free(vmap_area_cachep, vas[area]); 4861 4862 kfree(vms[area]); 4863 } 4864 err_free2: 4865 kfree(vas); 4866 kfree(vms); 4867 return NULL; 4868 4869 err_free_shadow: 4870 spin_lock(&free_vmap_area_lock); 4871 /* 4872 * We release all the vmalloc shadows, even the ones for regions that 4873 * hadn't been successfully added. This relies on kasan_release_vmalloc 4874 * being able to tolerate this case. 4875 */ 4876 for (area = 0; area < nr_vms; area++) { 4877 orig_start = vas[area]->va_start; 4878 orig_end = vas[area]->va_end; 4879 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 4880 &free_vmap_area_list); 4881 if (va) 4882 kasan_release_vmalloc(orig_start, orig_end, 4883 va->va_start, va->va_end, 4884 KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH); 4885 vas[area] = NULL; 4886 kfree(vms[area]); 4887 } 4888 spin_unlock(&free_vmap_area_lock); 4889 kfree(vas); 4890 kfree(vms); 4891 return NULL; 4892 } 4893 4894 /** 4895 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 4896 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 4897 * @nr_vms: the number of allocated areas 4898 * 4899 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 4900 */ 4901 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 4902 { 4903 int i; 4904 4905 for (i = 0; i < nr_vms; i++) 4906 free_vm_area(vms[i]); 4907 kfree(vms); 4908 } 4909 #endif /* CONFIG_SMP */ 4910 4911 #ifdef CONFIG_PRINTK 4912 bool vmalloc_dump_obj(void *object) 4913 { 4914 const void *caller; 4915 struct vm_struct *vm; 4916 struct vmap_area *va; 4917 struct vmap_node *vn; 4918 unsigned long addr; 4919 unsigned int nr_pages; 4920 4921 addr = PAGE_ALIGN((unsigned long) object); 4922 vn = addr_to_node(addr); 4923 4924 if (!spin_trylock(&vn->busy.lock)) 4925 return false; 4926 4927 va = __find_vmap_area(addr, &vn->busy.root); 4928 if (!va || !va->vm) { 4929 spin_unlock(&vn->busy.lock); 4930 return false; 4931 } 4932 4933 vm = va->vm; 4934 addr = (unsigned long) vm->addr; 4935 caller = vm->caller; 4936 nr_pages = vm->nr_pages; 4937 spin_unlock(&vn->busy.lock); 4938 4939 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", 4940 nr_pages, addr, caller); 4941 4942 return true; 4943 } 4944 #endif 4945 4946 #ifdef CONFIG_PROC_FS 4947 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 4948 { 4949 if (IS_ENABLED(CONFIG_NUMA)) { 4950 unsigned int nr, *counters = m->private; 4951 unsigned int step = 1U << vm_area_page_order(v); 4952 4953 if (!counters) 4954 return; 4955 4956 if (v->flags & VM_UNINITIALIZED) 4957 return; 4958 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 4959 smp_rmb(); 4960 4961 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 4962 4963 for (nr = 0; nr < v->nr_pages; nr += step) 4964 counters[page_to_nid(v->pages[nr])] += step; 4965 for_each_node_state(nr, N_HIGH_MEMORY) 4966 if (counters[nr]) 4967 seq_printf(m, " N%u=%u", nr, counters[nr]); 4968 } 4969 } 4970 4971 static void show_purge_info(struct seq_file *m) 4972 { 4973 struct vmap_node *vn; 4974 struct vmap_area *va; 4975 4976 for_each_vmap_node(vn) { 4977 spin_lock(&vn->lazy.lock); 4978 list_for_each_entry(va, &vn->lazy.head, list) { 4979 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 4980 (void *)va->va_start, (void *)va->va_end, 4981 va_size(va)); 4982 } 4983 spin_unlock(&vn->lazy.lock); 4984 } 4985 } 4986 4987 static int vmalloc_info_show(struct seq_file *m, void *p) 4988 { 4989 struct vmap_node *vn; 4990 struct vmap_area *va; 4991 struct vm_struct *v; 4992 4993 for_each_vmap_node(vn) { 4994 spin_lock(&vn->busy.lock); 4995 list_for_each_entry(va, &vn->busy.head, list) { 4996 if (!va->vm) { 4997 if (va->flags & VMAP_RAM) 4998 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 4999 (void *)va->va_start, (void *)va->va_end, 5000 va_size(va)); 5001 5002 continue; 5003 } 5004 5005 v = va->vm; 5006 5007 seq_printf(m, "0x%pK-0x%pK %7ld", 5008 v->addr, v->addr + v->size, v->size); 5009 5010 if (v->caller) 5011 seq_printf(m, " %pS", v->caller); 5012 5013 if (v->nr_pages) 5014 seq_printf(m, " pages=%d", v->nr_pages); 5015 5016 if (v->phys_addr) 5017 seq_printf(m, " phys=%pa", &v->phys_addr); 5018 5019 if (v->flags & VM_IOREMAP) 5020 seq_puts(m, " ioremap"); 5021 5022 if (v->flags & VM_SPARSE) 5023 seq_puts(m, " sparse"); 5024 5025 if (v->flags & VM_ALLOC) 5026 seq_puts(m, " vmalloc"); 5027 5028 if (v->flags & VM_MAP) 5029 seq_puts(m, " vmap"); 5030 5031 if (v->flags & VM_USERMAP) 5032 seq_puts(m, " user"); 5033 5034 if (v->flags & VM_DMA_COHERENT) 5035 seq_puts(m, " dma-coherent"); 5036 5037 if (is_vmalloc_addr(v->pages)) 5038 seq_puts(m, " vpages"); 5039 5040 show_numa_info(m, v); 5041 seq_putc(m, '\n'); 5042 } 5043 spin_unlock(&vn->busy.lock); 5044 } 5045 5046 /* 5047 * As a final step, dump "unpurged" areas. 5048 */ 5049 show_purge_info(m); 5050 return 0; 5051 } 5052 5053 static int __init proc_vmalloc_init(void) 5054 { 5055 void *priv_data = NULL; 5056 5057 if (IS_ENABLED(CONFIG_NUMA)) 5058 priv_data = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 5059 5060 proc_create_single_data("vmallocinfo", 5061 0400, NULL, vmalloc_info_show, priv_data); 5062 5063 return 0; 5064 } 5065 module_init(proc_vmalloc_init); 5066 5067 #endif 5068 5069 static void __init vmap_init_free_space(void) 5070 { 5071 unsigned long vmap_start = 1; 5072 const unsigned long vmap_end = ULONG_MAX; 5073 struct vmap_area *free; 5074 struct vm_struct *busy; 5075 5076 /* 5077 * B F B B B F 5078 * -|-----|.....|-----|-----|-----|.....|- 5079 * | The KVA space | 5080 * |<--------------------------------->| 5081 */ 5082 for (busy = vmlist; busy; busy = busy->next) { 5083 if ((unsigned long) busy->addr - vmap_start > 0) { 5084 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 5085 if (!WARN_ON_ONCE(!free)) { 5086 free->va_start = vmap_start; 5087 free->va_end = (unsigned long) busy->addr; 5088 5089 insert_vmap_area_augment(free, NULL, 5090 &free_vmap_area_root, 5091 &free_vmap_area_list); 5092 } 5093 } 5094 5095 vmap_start = (unsigned long) busy->addr + busy->size; 5096 } 5097 5098 if (vmap_end - vmap_start > 0) { 5099 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 5100 if (!WARN_ON_ONCE(!free)) { 5101 free->va_start = vmap_start; 5102 free->va_end = vmap_end; 5103 5104 insert_vmap_area_augment(free, NULL, 5105 &free_vmap_area_root, 5106 &free_vmap_area_list); 5107 } 5108 } 5109 } 5110 5111 static void vmap_init_nodes(void) 5112 { 5113 struct vmap_node *vn; 5114 int i; 5115 5116 #if BITS_PER_LONG == 64 5117 /* 5118 * A high threshold of max nodes is fixed and bound to 128, 5119 * thus a scale factor is 1 for systems where number of cores 5120 * are less or equal to specified threshold. 5121 * 5122 * As for NUMA-aware notes. For bigger systems, for example 5123 * NUMA with multi-sockets, where we can end-up with thousands 5124 * of cores in total, a "sub-numa-clustering" should be added. 5125 * 5126 * In this case a NUMA domain is considered as a single entity 5127 * with dedicated sub-nodes in it which describe one group or 5128 * set of cores. Therefore a per-domain purging is supposed to 5129 * be added as well as a per-domain balancing. 5130 */ 5131 int n = clamp_t(unsigned int, num_possible_cpus(), 1, 128); 5132 5133 if (n > 1) { 5134 vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN); 5135 if (vn) { 5136 /* Node partition is 16 pages. */ 5137 vmap_zone_size = (1 << 4) * PAGE_SIZE; 5138 nr_vmap_nodes = n; 5139 vmap_nodes = vn; 5140 } else { 5141 pr_err("Failed to allocate an array. Disable a node layer\n"); 5142 } 5143 } 5144 #endif 5145 5146 for_each_vmap_node(vn) { 5147 vn->busy.root = RB_ROOT; 5148 INIT_LIST_HEAD(&vn->busy.head); 5149 spin_lock_init(&vn->busy.lock); 5150 5151 vn->lazy.root = RB_ROOT; 5152 INIT_LIST_HEAD(&vn->lazy.head); 5153 spin_lock_init(&vn->lazy.lock); 5154 5155 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { 5156 INIT_LIST_HEAD(&vn->pool[i].head); 5157 WRITE_ONCE(vn->pool[i].len, 0); 5158 } 5159 5160 spin_lock_init(&vn->pool_lock); 5161 } 5162 } 5163 5164 static unsigned long 5165 vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 5166 { 5167 unsigned long count = 0; 5168 struct vmap_node *vn; 5169 int i; 5170 5171 for_each_vmap_node(vn) { 5172 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) 5173 count += READ_ONCE(vn->pool[i].len); 5174 } 5175 5176 return count ? count : SHRINK_EMPTY; 5177 } 5178 5179 static unsigned long 5180 vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 5181 { 5182 struct vmap_node *vn; 5183 5184 for_each_vmap_node(vn) 5185 decay_va_pool_node(vn, true); 5186 5187 return SHRINK_STOP; 5188 } 5189 5190 void __init vmalloc_init(void) 5191 { 5192 struct shrinker *vmap_node_shrinker; 5193 struct vmap_area *va; 5194 struct vmap_node *vn; 5195 struct vm_struct *tmp; 5196 int i; 5197 5198 /* 5199 * Create the cache for vmap_area objects. 5200 */ 5201 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 5202 5203 for_each_possible_cpu(i) { 5204 struct vmap_block_queue *vbq; 5205 struct vfree_deferred *p; 5206 5207 vbq = &per_cpu(vmap_block_queue, i); 5208 spin_lock_init(&vbq->lock); 5209 INIT_LIST_HEAD(&vbq->free); 5210 p = &per_cpu(vfree_deferred, i); 5211 init_llist_head(&p->list); 5212 INIT_WORK(&p->wq, delayed_vfree_work); 5213 xa_init(&vbq->vmap_blocks); 5214 } 5215 5216 /* 5217 * Setup nodes before importing vmlist. 5218 */ 5219 vmap_init_nodes(); 5220 5221 /* Import existing vmlist entries. */ 5222 for (tmp = vmlist; tmp; tmp = tmp->next) { 5223 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 5224 if (WARN_ON_ONCE(!va)) 5225 continue; 5226 5227 va->va_start = (unsigned long)tmp->addr; 5228 va->va_end = va->va_start + tmp->size; 5229 va->vm = tmp; 5230 5231 vn = addr_to_node(va->va_start); 5232 insert_vmap_area(va, &vn->busy.root, &vn->busy.head); 5233 } 5234 5235 /* 5236 * Now we can initialize a free vmap space. 5237 */ 5238 vmap_init_free_space(); 5239 vmap_initialized = true; 5240 5241 vmap_node_shrinker = shrinker_alloc(0, "vmap-node"); 5242 if (!vmap_node_shrinker) { 5243 pr_err("Failed to allocate vmap-node shrinker!\n"); 5244 return; 5245 } 5246 5247 vmap_node_shrinker->count_objects = vmap_node_shrink_count; 5248 vmap_node_shrinker->scan_objects = vmap_node_shrink_scan; 5249 shrinker_register(vmap_node_shrinker); 5250 } 5251