xref: /linux/mm/vmalloc.c (revision 82a08bde3cf7bbbe90de57baa181bebf676582c7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/uio.h>
37 #include <linux/bitops.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/overflow.h>
40 #include <linux/pgtable.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 #include <linux/page_owner.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/vmalloc.h>
49 
50 #include "internal.h"
51 #include "pgalloc-track.h"
52 
53 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
54 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
55 
56 static int __init set_nohugeiomap(char *str)
57 {
58 	ioremap_max_page_shift = PAGE_SHIFT;
59 	return 0;
60 }
61 early_param("nohugeiomap", set_nohugeiomap);
62 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
63 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
64 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
65 
66 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
67 static bool __ro_after_init vmap_allow_huge = true;
68 
69 static int __init set_nohugevmalloc(char *str)
70 {
71 	vmap_allow_huge = false;
72 	return 0;
73 }
74 early_param("nohugevmalloc", set_nohugevmalloc);
75 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
76 static const bool vmap_allow_huge = false;
77 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
78 
79 bool is_vmalloc_addr(const void *x)
80 {
81 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
82 
83 	return addr >= VMALLOC_START && addr < VMALLOC_END;
84 }
85 EXPORT_SYMBOL(is_vmalloc_addr);
86 
87 struct vfree_deferred {
88 	struct llist_head list;
89 	struct work_struct wq;
90 };
91 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
92 
93 /*** Page table manipulation functions ***/
94 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
95 			phys_addr_t phys_addr, pgprot_t prot,
96 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
97 {
98 	pte_t *pte;
99 	u64 pfn;
100 	struct page *page;
101 	unsigned long size = PAGE_SIZE;
102 
103 	pfn = phys_addr >> PAGE_SHIFT;
104 	pte = pte_alloc_kernel_track(pmd, addr, mask);
105 	if (!pte)
106 		return -ENOMEM;
107 	do {
108 		if (unlikely(!pte_none(ptep_get(pte)))) {
109 			if (pfn_valid(pfn)) {
110 				page = pfn_to_page(pfn);
111 				dump_page(page, "remapping already mapped page");
112 			}
113 			BUG();
114 		}
115 
116 #ifdef CONFIG_HUGETLB_PAGE
117 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
118 		if (size != PAGE_SIZE) {
119 			pte_t entry = pfn_pte(pfn, prot);
120 
121 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
122 			set_huge_pte_at(&init_mm, addr, pte, entry, size);
123 			pfn += PFN_DOWN(size);
124 			continue;
125 		}
126 #endif
127 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
128 		pfn++;
129 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
130 	*mask |= PGTBL_PTE_MODIFIED;
131 	return 0;
132 }
133 
134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
135 			phys_addr_t phys_addr, pgprot_t prot,
136 			unsigned int max_page_shift)
137 {
138 	if (max_page_shift < PMD_SHIFT)
139 		return 0;
140 
141 	if (!arch_vmap_pmd_supported(prot))
142 		return 0;
143 
144 	if ((end - addr) != PMD_SIZE)
145 		return 0;
146 
147 	if (!IS_ALIGNED(addr, PMD_SIZE))
148 		return 0;
149 
150 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
151 		return 0;
152 
153 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
154 		return 0;
155 
156 	return pmd_set_huge(pmd, phys_addr, prot);
157 }
158 
159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
160 			phys_addr_t phys_addr, pgprot_t prot,
161 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
162 {
163 	pmd_t *pmd;
164 	unsigned long next;
165 
166 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
167 	if (!pmd)
168 		return -ENOMEM;
169 	do {
170 		next = pmd_addr_end(addr, end);
171 
172 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
173 					max_page_shift)) {
174 			*mask |= PGTBL_PMD_MODIFIED;
175 			continue;
176 		}
177 
178 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
179 			return -ENOMEM;
180 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
181 	return 0;
182 }
183 
184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
185 			phys_addr_t phys_addr, pgprot_t prot,
186 			unsigned int max_page_shift)
187 {
188 	if (max_page_shift < PUD_SHIFT)
189 		return 0;
190 
191 	if (!arch_vmap_pud_supported(prot))
192 		return 0;
193 
194 	if ((end - addr) != PUD_SIZE)
195 		return 0;
196 
197 	if (!IS_ALIGNED(addr, PUD_SIZE))
198 		return 0;
199 
200 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
201 		return 0;
202 
203 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
204 		return 0;
205 
206 	return pud_set_huge(pud, phys_addr, prot);
207 }
208 
209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
210 			phys_addr_t phys_addr, pgprot_t prot,
211 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
212 {
213 	pud_t *pud;
214 	unsigned long next;
215 
216 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
217 	if (!pud)
218 		return -ENOMEM;
219 	do {
220 		next = pud_addr_end(addr, end);
221 
222 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
223 					max_page_shift)) {
224 			*mask |= PGTBL_PUD_MODIFIED;
225 			continue;
226 		}
227 
228 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
229 					max_page_shift, mask))
230 			return -ENOMEM;
231 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
232 	return 0;
233 }
234 
235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
236 			phys_addr_t phys_addr, pgprot_t prot,
237 			unsigned int max_page_shift)
238 {
239 	if (max_page_shift < P4D_SHIFT)
240 		return 0;
241 
242 	if (!arch_vmap_p4d_supported(prot))
243 		return 0;
244 
245 	if ((end - addr) != P4D_SIZE)
246 		return 0;
247 
248 	if (!IS_ALIGNED(addr, P4D_SIZE))
249 		return 0;
250 
251 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
252 		return 0;
253 
254 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
255 		return 0;
256 
257 	return p4d_set_huge(p4d, phys_addr, prot);
258 }
259 
260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
261 			phys_addr_t phys_addr, pgprot_t prot,
262 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
263 {
264 	p4d_t *p4d;
265 	unsigned long next;
266 
267 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
268 	if (!p4d)
269 		return -ENOMEM;
270 	do {
271 		next = p4d_addr_end(addr, end);
272 
273 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
274 					max_page_shift)) {
275 			*mask |= PGTBL_P4D_MODIFIED;
276 			continue;
277 		}
278 
279 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
280 					max_page_shift, mask))
281 			return -ENOMEM;
282 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
283 	return 0;
284 }
285 
286 static int vmap_range_noflush(unsigned long addr, unsigned long end,
287 			phys_addr_t phys_addr, pgprot_t prot,
288 			unsigned int max_page_shift)
289 {
290 	pgd_t *pgd;
291 	unsigned long start;
292 	unsigned long next;
293 	int err;
294 	pgtbl_mod_mask mask = 0;
295 
296 	might_sleep();
297 	BUG_ON(addr >= end);
298 
299 	start = addr;
300 	pgd = pgd_offset_k(addr);
301 	do {
302 		next = pgd_addr_end(addr, end);
303 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
304 					max_page_shift, &mask);
305 		if (err)
306 			break;
307 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
308 
309 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
310 		arch_sync_kernel_mappings(start, end);
311 
312 	return err;
313 }
314 
315 int vmap_page_range(unsigned long addr, unsigned long end,
316 		    phys_addr_t phys_addr, pgprot_t prot)
317 {
318 	int err;
319 
320 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
321 				 ioremap_max_page_shift);
322 	flush_cache_vmap(addr, end);
323 	if (!err)
324 		err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
325 					       ioremap_max_page_shift);
326 	return err;
327 }
328 
329 int ioremap_page_range(unsigned long addr, unsigned long end,
330 		phys_addr_t phys_addr, pgprot_t prot)
331 {
332 	struct vm_struct *area;
333 
334 	area = find_vm_area((void *)addr);
335 	if (!area || !(area->flags & VM_IOREMAP)) {
336 		WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr);
337 		return -EINVAL;
338 	}
339 	if (addr != (unsigned long)area->addr ||
340 	    (void *)end != area->addr + get_vm_area_size(area)) {
341 		WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n",
342 			  addr, end, (long)area->addr,
343 			  (long)area->addr + get_vm_area_size(area));
344 		return -ERANGE;
345 	}
346 	return vmap_page_range(addr, end, phys_addr, prot);
347 }
348 
349 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
350 			     pgtbl_mod_mask *mask)
351 {
352 	pte_t *pte;
353 
354 	pte = pte_offset_kernel(pmd, addr);
355 	do {
356 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
357 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
358 	} while (pte++, addr += PAGE_SIZE, addr != end);
359 	*mask |= PGTBL_PTE_MODIFIED;
360 }
361 
362 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
363 			     pgtbl_mod_mask *mask)
364 {
365 	pmd_t *pmd;
366 	unsigned long next;
367 	int cleared;
368 
369 	pmd = pmd_offset(pud, addr);
370 	do {
371 		next = pmd_addr_end(addr, end);
372 
373 		cleared = pmd_clear_huge(pmd);
374 		if (cleared || pmd_bad(*pmd))
375 			*mask |= PGTBL_PMD_MODIFIED;
376 
377 		if (cleared)
378 			continue;
379 		if (pmd_none_or_clear_bad(pmd))
380 			continue;
381 		vunmap_pte_range(pmd, addr, next, mask);
382 
383 		cond_resched();
384 	} while (pmd++, addr = next, addr != end);
385 }
386 
387 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
388 			     pgtbl_mod_mask *mask)
389 {
390 	pud_t *pud;
391 	unsigned long next;
392 	int cleared;
393 
394 	pud = pud_offset(p4d, addr);
395 	do {
396 		next = pud_addr_end(addr, end);
397 
398 		cleared = pud_clear_huge(pud);
399 		if (cleared || pud_bad(*pud))
400 			*mask |= PGTBL_PUD_MODIFIED;
401 
402 		if (cleared)
403 			continue;
404 		if (pud_none_or_clear_bad(pud))
405 			continue;
406 		vunmap_pmd_range(pud, addr, next, mask);
407 	} while (pud++, addr = next, addr != end);
408 }
409 
410 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
411 			     pgtbl_mod_mask *mask)
412 {
413 	p4d_t *p4d;
414 	unsigned long next;
415 
416 	p4d = p4d_offset(pgd, addr);
417 	do {
418 		next = p4d_addr_end(addr, end);
419 
420 		p4d_clear_huge(p4d);
421 		if (p4d_bad(*p4d))
422 			*mask |= PGTBL_P4D_MODIFIED;
423 
424 		if (p4d_none_or_clear_bad(p4d))
425 			continue;
426 		vunmap_pud_range(p4d, addr, next, mask);
427 	} while (p4d++, addr = next, addr != end);
428 }
429 
430 /*
431  * vunmap_range_noflush is similar to vunmap_range, but does not
432  * flush caches or TLBs.
433  *
434  * The caller is responsible for calling flush_cache_vmap() before calling
435  * this function, and flush_tlb_kernel_range after it has returned
436  * successfully (and before the addresses are expected to cause a page fault
437  * or be re-mapped for something else, if TLB flushes are being delayed or
438  * coalesced).
439  *
440  * This is an internal function only. Do not use outside mm/.
441  */
442 void __vunmap_range_noflush(unsigned long start, unsigned long end)
443 {
444 	unsigned long next;
445 	pgd_t *pgd;
446 	unsigned long addr = start;
447 	pgtbl_mod_mask mask = 0;
448 
449 	BUG_ON(addr >= end);
450 	pgd = pgd_offset_k(addr);
451 	do {
452 		next = pgd_addr_end(addr, end);
453 		if (pgd_bad(*pgd))
454 			mask |= PGTBL_PGD_MODIFIED;
455 		if (pgd_none_or_clear_bad(pgd))
456 			continue;
457 		vunmap_p4d_range(pgd, addr, next, &mask);
458 	} while (pgd++, addr = next, addr != end);
459 
460 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
461 		arch_sync_kernel_mappings(start, end);
462 }
463 
464 void vunmap_range_noflush(unsigned long start, unsigned long end)
465 {
466 	kmsan_vunmap_range_noflush(start, end);
467 	__vunmap_range_noflush(start, end);
468 }
469 
470 /**
471  * vunmap_range - unmap kernel virtual addresses
472  * @addr: start of the VM area to unmap
473  * @end: end of the VM area to unmap (non-inclusive)
474  *
475  * Clears any present PTEs in the virtual address range, flushes TLBs and
476  * caches. Any subsequent access to the address before it has been re-mapped
477  * is a kernel bug.
478  */
479 void vunmap_range(unsigned long addr, unsigned long end)
480 {
481 	flush_cache_vunmap(addr, end);
482 	vunmap_range_noflush(addr, end);
483 	flush_tlb_kernel_range(addr, end);
484 }
485 
486 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
487 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
488 		pgtbl_mod_mask *mask)
489 {
490 	pte_t *pte;
491 
492 	/*
493 	 * nr is a running index into the array which helps higher level
494 	 * callers keep track of where we're up to.
495 	 */
496 
497 	pte = pte_alloc_kernel_track(pmd, addr, mask);
498 	if (!pte)
499 		return -ENOMEM;
500 	do {
501 		struct page *page = pages[*nr];
502 
503 		if (WARN_ON(!pte_none(ptep_get(pte))))
504 			return -EBUSY;
505 		if (WARN_ON(!page))
506 			return -ENOMEM;
507 		if (WARN_ON(!pfn_valid(page_to_pfn(page))))
508 			return -EINVAL;
509 
510 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
511 		(*nr)++;
512 	} while (pte++, addr += PAGE_SIZE, addr != end);
513 	*mask |= PGTBL_PTE_MODIFIED;
514 	return 0;
515 }
516 
517 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
518 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
519 		pgtbl_mod_mask *mask)
520 {
521 	pmd_t *pmd;
522 	unsigned long next;
523 
524 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
525 	if (!pmd)
526 		return -ENOMEM;
527 	do {
528 		next = pmd_addr_end(addr, end);
529 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
530 			return -ENOMEM;
531 	} while (pmd++, addr = next, addr != end);
532 	return 0;
533 }
534 
535 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
536 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
537 		pgtbl_mod_mask *mask)
538 {
539 	pud_t *pud;
540 	unsigned long next;
541 
542 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
543 	if (!pud)
544 		return -ENOMEM;
545 	do {
546 		next = pud_addr_end(addr, end);
547 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
548 			return -ENOMEM;
549 	} while (pud++, addr = next, addr != end);
550 	return 0;
551 }
552 
553 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
554 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
555 		pgtbl_mod_mask *mask)
556 {
557 	p4d_t *p4d;
558 	unsigned long next;
559 
560 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
561 	if (!p4d)
562 		return -ENOMEM;
563 	do {
564 		next = p4d_addr_end(addr, end);
565 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
566 			return -ENOMEM;
567 	} while (p4d++, addr = next, addr != end);
568 	return 0;
569 }
570 
571 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
572 		pgprot_t prot, struct page **pages)
573 {
574 	unsigned long start = addr;
575 	pgd_t *pgd;
576 	unsigned long next;
577 	int err = 0;
578 	int nr = 0;
579 	pgtbl_mod_mask mask = 0;
580 
581 	BUG_ON(addr >= end);
582 	pgd = pgd_offset_k(addr);
583 	do {
584 		next = pgd_addr_end(addr, end);
585 		if (pgd_bad(*pgd))
586 			mask |= PGTBL_PGD_MODIFIED;
587 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
588 		if (err)
589 			break;
590 	} while (pgd++, addr = next, addr != end);
591 
592 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
593 		arch_sync_kernel_mappings(start, end);
594 
595 	return err;
596 }
597 
598 /*
599  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
600  * flush caches.
601  *
602  * The caller is responsible for calling flush_cache_vmap() after this
603  * function returns successfully and before the addresses are accessed.
604  *
605  * This is an internal function only. Do not use outside mm/.
606  */
607 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
608 		pgprot_t prot, struct page **pages, unsigned int page_shift)
609 {
610 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
611 
612 	WARN_ON(page_shift < PAGE_SHIFT);
613 
614 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
615 			page_shift == PAGE_SHIFT)
616 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
617 
618 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
619 		int err;
620 
621 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
622 					page_to_phys(pages[i]), prot,
623 					page_shift);
624 		if (err)
625 			return err;
626 
627 		addr += 1UL << page_shift;
628 	}
629 
630 	return 0;
631 }
632 
633 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
634 		pgprot_t prot, struct page **pages, unsigned int page_shift)
635 {
636 	int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
637 						 page_shift);
638 
639 	if (ret)
640 		return ret;
641 	return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
642 }
643 
644 /**
645  * vmap_pages_range - map pages to a kernel virtual address
646  * @addr: start of the VM area to map
647  * @end: end of the VM area to map (non-inclusive)
648  * @prot: page protection flags to use
649  * @pages: pages to map (always PAGE_SIZE pages)
650  * @page_shift: maximum shift that the pages may be mapped with, @pages must
651  * be aligned and contiguous up to at least this shift.
652  *
653  * RETURNS:
654  * 0 on success, -errno on failure.
655  */
656 int vmap_pages_range(unsigned long addr, unsigned long end,
657 		pgprot_t prot, struct page **pages, unsigned int page_shift)
658 {
659 	int err;
660 
661 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
662 	flush_cache_vmap(addr, end);
663 	return err;
664 }
665 
666 static int check_sparse_vm_area(struct vm_struct *area, unsigned long start,
667 				unsigned long end)
668 {
669 	might_sleep();
670 	if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS))
671 		return -EINVAL;
672 	if (WARN_ON_ONCE(area->flags & VM_NO_GUARD))
673 		return -EINVAL;
674 	if (WARN_ON_ONCE(!(area->flags & VM_SPARSE)))
675 		return -EINVAL;
676 	if ((end - start) >> PAGE_SHIFT > totalram_pages())
677 		return -E2BIG;
678 	if (start < (unsigned long)area->addr ||
679 	    (void *)end > area->addr + get_vm_area_size(area))
680 		return -ERANGE;
681 	return 0;
682 }
683 
684 /**
685  * vm_area_map_pages - map pages inside given sparse vm_area
686  * @area: vm_area
687  * @start: start address inside vm_area
688  * @end: end address inside vm_area
689  * @pages: pages to map (always PAGE_SIZE pages)
690  */
691 int vm_area_map_pages(struct vm_struct *area, unsigned long start,
692 		      unsigned long end, struct page **pages)
693 {
694 	int err;
695 
696 	err = check_sparse_vm_area(area, start, end);
697 	if (err)
698 		return err;
699 
700 	return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT);
701 }
702 
703 /**
704  * vm_area_unmap_pages - unmap pages inside given sparse vm_area
705  * @area: vm_area
706  * @start: start address inside vm_area
707  * @end: end address inside vm_area
708  */
709 void vm_area_unmap_pages(struct vm_struct *area, unsigned long start,
710 			 unsigned long end)
711 {
712 	if (check_sparse_vm_area(area, start, end))
713 		return;
714 
715 	vunmap_range(start, end);
716 }
717 
718 int is_vmalloc_or_module_addr(const void *x)
719 {
720 	/*
721 	 * ARM, x86-64 and sparc64 put modules in a special place,
722 	 * and fall back on vmalloc() if that fails. Others
723 	 * just put it in the vmalloc space.
724 	 */
725 #if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR)
726 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
727 	if (addr >= MODULES_VADDR && addr < MODULES_END)
728 		return 1;
729 #endif
730 	return is_vmalloc_addr(x);
731 }
732 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
733 
734 /*
735  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
736  * return the tail page that corresponds to the base page address, which
737  * matches small vmap mappings.
738  */
739 struct page *vmalloc_to_page(const void *vmalloc_addr)
740 {
741 	unsigned long addr = (unsigned long) vmalloc_addr;
742 	struct page *page = NULL;
743 	pgd_t *pgd = pgd_offset_k(addr);
744 	p4d_t *p4d;
745 	pud_t *pud;
746 	pmd_t *pmd;
747 	pte_t *ptep, pte;
748 
749 	/*
750 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
751 	 * architectures that do not vmalloc module space
752 	 */
753 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
754 
755 	if (pgd_none(*pgd))
756 		return NULL;
757 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
758 		return NULL; /* XXX: no allowance for huge pgd */
759 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
760 		return NULL;
761 
762 	p4d = p4d_offset(pgd, addr);
763 	if (p4d_none(*p4d))
764 		return NULL;
765 	if (p4d_leaf(*p4d))
766 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
767 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
768 		return NULL;
769 
770 	pud = pud_offset(p4d, addr);
771 	if (pud_none(*pud))
772 		return NULL;
773 	if (pud_leaf(*pud))
774 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
775 	if (WARN_ON_ONCE(pud_bad(*pud)))
776 		return NULL;
777 
778 	pmd = pmd_offset(pud, addr);
779 	if (pmd_none(*pmd))
780 		return NULL;
781 	if (pmd_leaf(*pmd))
782 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
783 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
784 		return NULL;
785 
786 	ptep = pte_offset_kernel(pmd, addr);
787 	pte = ptep_get(ptep);
788 	if (pte_present(pte))
789 		page = pte_page(pte);
790 
791 	return page;
792 }
793 EXPORT_SYMBOL(vmalloc_to_page);
794 
795 /*
796  * Map a vmalloc()-space virtual address to the physical page frame number.
797  */
798 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
799 {
800 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
801 }
802 EXPORT_SYMBOL(vmalloc_to_pfn);
803 
804 
805 /*** Global kva allocator ***/
806 
807 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
808 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
809 
810 
811 static DEFINE_SPINLOCK(free_vmap_area_lock);
812 static bool vmap_initialized __read_mostly;
813 
814 /*
815  * This kmem_cache is used for vmap_area objects. Instead of
816  * allocating from slab we reuse an object from this cache to
817  * make things faster. Especially in "no edge" splitting of
818  * free block.
819  */
820 static struct kmem_cache *vmap_area_cachep;
821 
822 /*
823  * This linked list is used in pair with free_vmap_area_root.
824  * It gives O(1) access to prev/next to perform fast coalescing.
825  */
826 static LIST_HEAD(free_vmap_area_list);
827 
828 /*
829  * This augment red-black tree represents the free vmap space.
830  * All vmap_area objects in this tree are sorted by va->va_start
831  * address. It is used for allocation and merging when a vmap
832  * object is released.
833  *
834  * Each vmap_area node contains a maximum available free block
835  * of its sub-tree, right or left. Therefore it is possible to
836  * find a lowest match of free area.
837  */
838 static struct rb_root free_vmap_area_root = RB_ROOT;
839 
840 /*
841  * Preload a CPU with one object for "no edge" split case. The
842  * aim is to get rid of allocations from the atomic context, thus
843  * to use more permissive allocation masks.
844  */
845 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
846 
847 /*
848  * This structure defines a single, solid model where a list and
849  * rb-tree are part of one entity protected by the lock. Nodes are
850  * sorted in ascending order, thus for O(1) access to left/right
851  * neighbors a list is used as well as for sequential traversal.
852  */
853 struct rb_list {
854 	struct rb_root root;
855 	struct list_head head;
856 	spinlock_t lock;
857 };
858 
859 /*
860  * A fast size storage contains VAs up to 1M size. A pool consists
861  * of linked between each other ready to go VAs of certain sizes.
862  * An index in the pool-array corresponds to number of pages + 1.
863  */
864 #define MAX_VA_SIZE_PAGES 256
865 
866 struct vmap_pool {
867 	struct list_head head;
868 	unsigned long len;
869 };
870 
871 /*
872  * An effective vmap-node logic. Users make use of nodes instead
873  * of a global heap. It allows to balance an access and mitigate
874  * contention.
875  */
876 static struct vmap_node {
877 	/* Simple size segregated storage. */
878 	struct vmap_pool pool[MAX_VA_SIZE_PAGES];
879 	spinlock_t pool_lock;
880 	bool skip_populate;
881 
882 	/* Bookkeeping data of this node. */
883 	struct rb_list busy;
884 	struct rb_list lazy;
885 
886 	/*
887 	 * Ready-to-free areas.
888 	 */
889 	struct list_head purge_list;
890 	struct work_struct purge_work;
891 	unsigned long nr_purged;
892 } single;
893 
894 /*
895  * Initial setup consists of one single node, i.e. a balancing
896  * is fully disabled. Later on, after vmap is initialized these
897  * parameters are updated based on a system capacity.
898  */
899 static struct vmap_node *vmap_nodes = &single;
900 static __read_mostly unsigned int nr_vmap_nodes = 1;
901 static __read_mostly unsigned int vmap_zone_size = 1;
902 
903 /* A simple iterator over all vmap-nodes. */
904 #define for_each_vmap_node(vn)	\
905 	for ((vn) = &vmap_nodes[0];	\
906 		(vn) < &vmap_nodes[nr_vmap_nodes]; (vn)++)
907 
908 static inline unsigned int
909 addr_to_node_id(unsigned long addr)
910 {
911 	return (addr / vmap_zone_size) % nr_vmap_nodes;
912 }
913 
914 static inline struct vmap_node *
915 addr_to_node(unsigned long addr)
916 {
917 	return &vmap_nodes[addr_to_node_id(addr)];
918 }
919 
920 static inline struct vmap_node *
921 id_to_node(unsigned int id)
922 {
923 	return &vmap_nodes[id % nr_vmap_nodes];
924 }
925 
926 static inline unsigned int
927 node_to_id(struct vmap_node *node)
928 {
929 	/* Pointer arithmetic. */
930 	unsigned int id = node - vmap_nodes;
931 
932 	if (likely(id < nr_vmap_nodes))
933 		return id;
934 
935 	WARN_ONCE(1, "An address 0x%p is out-of-bounds.\n", node);
936 	return 0;
937 }
938 
939 /*
940  * We use the value 0 to represent "no node", that is why
941  * an encoded value will be the node-id incremented by 1.
942  * It is always greater then 0. A valid node_id which can
943  * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id
944  * is not valid 0 is returned.
945  */
946 static unsigned int
947 encode_vn_id(unsigned int node_id)
948 {
949 	/* Can store U8_MAX [0:254] nodes. */
950 	if (node_id < nr_vmap_nodes)
951 		return (node_id + 1) << BITS_PER_BYTE;
952 
953 	/* Warn and no node encoded. */
954 	WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id);
955 	return 0;
956 }
957 
958 /*
959  * Returns an encoded node-id, the valid range is within
960  * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is
961  * returned if extracted data is wrong.
962  */
963 static unsigned int
964 decode_vn_id(unsigned int val)
965 {
966 	unsigned int node_id = (val >> BITS_PER_BYTE) - 1;
967 
968 	/* Can store U8_MAX [0:254] nodes. */
969 	if (node_id < nr_vmap_nodes)
970 		return node_id;
971 
972 	/* If it was _not_ zero, warn. */
973 	WARN_ONCE(node_id != UINT_MAX,
974 		"Decode wrong node id (%d)\n", node_id);
975 
976 	return nr_vmap_nodes;
977 }
978 
979 static bool
980 is_vn_id_valid(unsigned int node_id)
981 {
982 	if (node_id < nr_vmap_nodes)
983 		return true;
984 
985 	return false;
986 }
987 
988 static __always_inline unsigned long
989 va_size(struct vmap_area *va)
990 {
991 	return (va->va_end - va->va_start);
992 }
993 
994 static __always_inline unsigned long
995 get_subtree_max_size(struct rb_node *node)
996 {
997 	struct vmap_area *va;
998 
999 	va = rb_entry_safe(node, struct vmap_area, rb_node);
1000 	return va ? va->subtree_max_size : 0;
1001 }
1002 
1003 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
1004 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
1005 
1006 static void reclaim_and_purge_vmap_areas(void);
1007 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
1008 static void drain_vmap_area_work(struct work_struct *work);
1009 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
1010 
1011 static __cacheline_aligned_in_smp atomic_long_t nr_vmalloc_pages;
1012 static __cacheline_aligned_in_smp atomic_long_t vmap_lazy_nr;
1013 
1014 unsigned long vmalloc_nr_pages(void)
1015 {
1016 	return atomic_long_read(&nr_vmalloc_pages);
1017 }
1018 
1019 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
1020 {
1021 	struct rb_node *n = root->rb_node;
1022 
1023 	addr = (unsigned long)kasan_reset_tag((void *)addr);
1024 
1025 	while (n) {
1026 		struct vmap_area *va;
1027 
1028 		va = rb_entry(n, struct vmap_area, rb_node);
1029 		if (addr < va->va_start)
1030 			n = n->rb_left;
1031 		else if (addr >= va->va_end)
1032 			n = n->rb_right;
1033 		else
1034 			return va;
1035 	}
1036 
1037 	return NULL;
1038 }
1039 
1040 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
1041 static struct vmap_area *
1042 __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root)
1043 {
1044 	struct vmap_area *va = NULL;
1045 	struct rb_node *n = root->rb_node;
1046 
1047 	addr = (unsigned long)kasan_reset_tag((void *)addr);
1048 
1049 	while (n) {
1050 		struct vmap_area *tmp;
1051 
1052 		tmp = rb_entry(n, struct vmap_area, rb_node);
1053 		if (tmp->va_end > addr) {
1054 			va = tmp;
1055 			if (tmp->va_start <= addr)
1056 				break;
1057 
1058 			n = n->rb_left;
1059 		} else
1060 			n = n->rb_right;
1061 	}
1062 
1063 	return va;
1064 }
1065 
1066 /*
1067  * Returns a node where a first VA, that satisfies addr < va_end, resides.
1068  * If success, a node is locked. A user is responsible to unlock it when a
1069  * VA is no longer needed to be accessed.
1070  *
1071  * Returns NULL if nothing found.
1072  */
1073 static struct vmap_node *
1074 find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va)
1075 {
1076 	unsigned long va_start_lowest;
1077 	struct vmap_node *vn;
1078 
1079 repeat:
1080 	va_start_lowest = 0;
1081 
1082 	for_each_vmap_node(vn) {
1083 		spin_lock(&vn->busy.lock);
1084 		*va = __find_vmap_area_exceed_addr(addr, &vn->busy.root);
1085 
1086 		if (*va)
1087 			if (!va_start_lowest || (*va)->va_start < va_start_lowest)
1088 				va_start_lowest = (*va)->va_start;
1089 		spin_unlock(&vn->busy.lock);
1090 	}
1091 
1092 	/*
1093 	 * Check if found VA exists, it might have gone away.  In this case we
1094 	 * repeat the search because a VA has been removed concurrently and we
1095 	 * need to proceed to the next one, which is a rare case.
1096 	 */
1097 	if (va_start_lowest) {
1098 		vn = addr_to_node(va_start_lowest);
1099 
1100 		spin_lock(&vn->busy.lock);
1101 		*va = __find_vmap_area(va_start_lowest, &vn->busy.root);
1102 
1103 		if (*va)
1104 			return vn;
1105 
1106 		spin_unlock(&vn->busy.lock);
1107 		goto repeat;
1108 	}
1109 
1110 	return NULL;
1111 }
1112 
1113 /*
1114  * This function returns back addresses of parent node
1115  * and its left or right link for further processing.
1116  *
1117  * Otherwise NULL is returned. In that case all further
1118  * steps regarding inserting of conflicting overlap range
1119  * have to be declined and actually considered as a bug.
1120  */
1121 static __always_inline struct rb_node **
1122 find_va_links(struct vmap_area *va,
1123 	struct rb_root *root, struct rb_node *from,
1124 	struct rb_node **parent)
1125 {
1126 	struct vmap_area *tmp_va;
1127 	struct rb_node **link;
1128 
1129 	if (root) {
1130 		link = &root->rb_node;
1131 		if (unlikely(!*link)) {
1132 			*parent = NULL;
1133 			return link;
1134 		}
1135 	} else {
1136 		link = &from;
1137 	}
1138 
1139 	/*
1140 	 * Go to the bottom of the tree. When we hit the last point
1141 	 * we end up with parent rb_node and correct direction, i name
1142 	 * it link, where the new va->rb_node will be attached to.
1143 	 */
1144 	do {
1145 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
1146 
1147 		/*
1148 		 * During the traversal we also do some sanity check.
1149 		 * Trigger the BUG() if there are sides(left/right)
1150 		 * or full overlaps.
1151 		 */
1152 		if (va->va_end <= tmp_va->va_start)
1153 			link = &(*link)->rb_left;
1154 		else if (va->va_start >= tmp_va->va_end)
1155 			link = &(*link)->rb_right;
1156 		else {
1157 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
1158 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
1159 
1160 			return NULL;
1161 		}
1162 	} while (*link);
1163 
1164 	*parent = &tmp_va->rb_node;
1165 	return link;
1166 }
1167 
1168 static __always_inline struct list_head *
1169 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
1170 {
1171 	struct list_head *list;
1172 
1173 	if (unlikely(!parent))
1174 		/*
1175 		 * The red-black tree where we try to find VA neighbors
1176 		 * before merging or inserting is empty, i.e. it means
1177 		 * there is no free vmap space. Normally it does not
1178 		 * happen but we handle this case anyway.
1179 		 */
1180 		return NULL;
1181 
1182 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
1183 	return (&parent->rb_right == link ? list->next : list);
1184 }
1185 
1186 static __always_inline void
1187 __link_va(struct vmap_area *va, struct rb_root *root,
1188 	struct rb_node *parent, struct rb_node **link,
1189 	struct list_head *head, bool augment)
1190 {
1191 	/*
1192 	 * VA is still not in the list, but we can
1193 	 * identify its future previous list_head node.
1194 	 */
1195 	if (likely(parent)) {
1196 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
1197 		if (&parent->rb_right != link)
1198 			head = head->prev;
1199 	}
1200 
1201 	/* Insert to the rb-tree */
1202 	rb_link_node(&va->rb_node, parent, link);
1203 	if (augment) {
1204 		/*
1205 		 * Some explanation here. Just perform simple insertion
1206 		 * to the tree. We do not set va->subtree_max_size to
1207 		 * its current size before calling rb_insert_augmented().
1208 		 * It is because we populate the tree from the bottom
1209 		 * to parent levels when the node _is_ in the tree.
1210 		 *
1211 		 * Therefore we set subtree_max_size to zero after insertion,
1212 		 * to let __augment_tree_propagate_from() puts everything to
1213 		 * the correct order later on.
1214 		 */
1215 		rb_insert_augmented(&va->rb_node,
1216 			root, &free_vmap_area_rb_augment_cb);
1217 		va->subtree_max_size = 0;
1218 	} else {
1219 		rb_insert_color(&va->rb_node, root);
1220 	}
1221 
1222 	/* Address-sort this list */
1223 	list_add(&va->list, head);
1224 }
1225 
1226 static __always_inline void
1227 link_va(struct vmap_area *va, struct rb_root *root,
1228 	struct rb_node *parent, struct rb_node **link,
1229 	struct list_head *head)
1230 {
1231 	__link_va(va, root, parent, link, head, false);
1232 }
1233 
1234 static __always_inline void
1235 link_va_augment(struct vmap_area *va, struct rb_root *root,
1236 	struct rb_node *parent, struct rb_node **link,
1237 	struct list_head *head)
1238 {
1239 	__link_va(va, root, parent, link, head, true);
1240 }
1241 
1242 static __always_inline void
1243 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
1244 {
1245 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
1246 		return;
1247 
1248 	if (augment)
1249 		rb_erase_augmented(&va->rb_node,
1250 			root, &free_vmap_area_rb_augment_cb);
1251 	else
1252 		rb_erase(&va->rb_node, root);
1253 
1254 	list_del_init(&va->list);
1255 	RB_CLEAR_NODE(&va->rb_node);
1256 }
1257 
1258 static __always_inline void
1259 unlink_va(struct vmap_area *va, struct rb_root *root)
1260 {
1261 	__unlink_va(va, root, false);
1262 }
1263 
1264 static __always_inline void
1265 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1266 {
1267 	__unlink_va(va, root, true);
1268 }
1269 
1270 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1271 /*
1272  * Gets called when remove the node and rotate.
1273  */
1274 static __always_inline unsigned long
1275 compute_subtree_max_size(struct vmap_area *va)
1276 {
1277 	return max3(va_size(va),
1278 		get_subtree_max_size(va->rb_node.rb_left),
1279 		get_subtree_max_size(va->rb_node.rb_right));
1280 }
1281 
1282 static void
1283 augment_tree_propagate_check(void)
1284 {
1285 	struct vmap_area *va;
1286 	unsigned long computed_size;
1287 
1288 	list_for_each_entry(va, &free_vmap_area_list, list) {
1289 		computed_size = compute_subtree_max_size(va);
1290 		if (computed_size != va->subtree_max_size)
1291 			pr_emerg("tree is corrupted: %lu, %lu\n",
1292 				va_size(va), va->subtree_max_size);
1293 	}
1294 }
1295 #endif
1296 
1297 /*
1298  * This function populates subtree_max_size from bottom to upper
1299  * levels starting from VA point. The propagation must be done
1300  * when VA size is modified by changing its va_start/va_end. Or
1301  * in case of newly inserting of VA to the tree.
1302  *
1303  * It means that __augment_tree_propagate_from() must be called:
1304  * - After VA has been inserted to the tree(free path);
1305  * - After VA has been shrunk(allocation path);
1306  * - After VA has been increased(merging path).
1307  *
1308  * Please note that, it does not mean that upper parent nodes
1309  * and their subtree_max_size are recalculated all the time up
1310  * to the root node.
1311  *
1312  *       4--8
1313  *        /\
1314  *       /  \
1315  *      /    \
1316  *    2--2  8--8
1317  *
1318  * For example if we modify the node 4, shrinking it to 2, then
1319  * no any modification is required. If we shrink the node 2 to 1
1320  * its subtree_max_size is updated only, and set to 1. If we shrink
1321  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1322  * node becomes 4--6.
1323  */
1324 static __always_inline void
1325 augment_tree_propagate_from(struct vmap_area *va)
1326 {
1327 	/*
1328 	 * Populate the tree from bottom towards the root until
1329 	 * the calculated maximum available size of checked node
1330 	 * is equal to its current one.
1331 	 */
1332 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1333 
1334 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1335 	augment_tree_propagate_check();
1336 #endif
1337 }
1338 
1339 static void
1340 insert_vmap_area(struct vmap_area *va,
1341 	struct rb_root *root, struct list_head *head)
1342 {
1343 	struct rb_node **link;
1344 	struct rb_node *parent;
1345 
1346 	link = find_va_links(va, root, NULL, &parent);
1347 	if (link)
1348 		link_va(va, root, parent, link, head);
1349 }
1350 
1351 static void
1352 insert_vmap_area_augment(struct vmap_area *va,
1353 	struct rb_node *from, struct rb_root *root,
1354 	struct list_head *head)
1355 {
1356 	struct rb_node **link;
1357 	struct rb_node *parent;
1358 
1359 	if (from)
1360 		link = find_va_links(va, NULL, from, &parent);
1361 	else
1362 		link = find_va_links(va, root, NULL, &parent);
1363 
1364 	if (link) {
1365 		link_va_augment(va, root, parent, link, head);
1366 		augment_tree_propagate_from(va);
1367 	}
1368 }
1369 
1370 /*
1371  * Merge de-allocated chunk of VA memory with previous
1372  * and next free blocks. If coalesce is not done a new
1373  * free area is inserted. If VA has been merged, it is
1374  * freed.
1375  *
1376  * Please note, it can return NULL in case of overlap
1377  * ranges, followed by WARN() report. Despite it is a
1378  * buggy behaviour, a system can be alive and keep
1379  * ongoing.
1380  */
1381 static __always_inline struct vmap_area *
1382 __merge_or_add_vmap_area(struct vmap_area *va,
1383 	struct rb_root *root, struct list_head *head, bool augment)
1384 {
1385 	struct vmap_area *sibling;
1386 	struct list_head *next;
1387 	struct rb_node **link;
1388 	struct rb_node *parent;
1389 	bool merged = false;
1390 
1391 	/*
1392 	 * Find a place in the tree where VA potentially will be
1393 	 * inserted, unless it is merged with its sibling/siblings.
1394 	 */
1395 	link = find_va_links(va, root, NULL, &parent);
1396 	if (!link)
1397 		return NULL;
1398 
1399 	/*
1400 	 * Get next node of VA to check if merging can be done.
1401 	 */
1402 	next = get_va_next_sibling(parent, link);
1403 	if (unlikely(next == NULL))
1404 		goto insert;
1405 
1406 	/*
1407 	 * start            end
1408 	 * |                |
1409 	 * |<------VA------>|<-----Next----->|
1410 	 *                  |                |
1411 	 *                  start            end
1412 	 */
1413 	if (next != head) {
1414 		sibling = list_entry(next, struct vmap_area, list);
1415 		if (sibling->va_start == va->va_end) {
1416 			sibling->va_start = va->va_start;
1417 
1418 			/* Free vmap_area object. */
1419 			kmem_cache_free(vmap_area_cachep, va);
1420 
1421 			/* Point to the new merged area. */
1422 			va = sibling;
1423 			merged = true;
1424 		}
1425 	}
1426 
1427 	/*
1428 	 * start            end
1429 	 * |                |
1430 	 * |<-----Prev----->|<------VA------>|
1431 	 *                  |                |
1432 	 *                  start            end
1433 	 */
1434 	if (next->prev != head) {
1435 		sibling = list_entry(next->prev, struct vmap_area, list);
1436 		if (sibling->va_end == va->va_start) {
1437 			/*
1438 			 * If both neighbors are coalesced, it is important
1439 			 * to unlink the "next" node first, followed by merging
1440 			 * with "previous" one. Otherwise the tree might not be
1441 			 * fully populated if a sibling's augmented value is
1442 			 * "normalized" because of rotation operations.
1443 			 */
1444 			if (merged)
1445 				__unlink_va(va, root, augment);
1446 
1447 			sibling->va_end = va->va_end;
1448 
1449 			/* Free vmap_area object. */
1450 			kmem_cache_free(vmap_area_cachep, va);
1451 
1452 			/* Point to the new merged area. */
1453 			va = sibling;
1454 			merged = true;
1455 		}
1456 	}
1457 
1458 insert:
1459 	if (!merged)
1460 		__link_va(va, root, parent, link, head, augment);
1461 
1462 	return va;
1463 }
1464 
1465 static __always_inline struct vmap_area *
1466 merge_or_add_vmap_area(struct vmap_area *va,
1467 	struct rb_root *root, struct list_head *head)
1468 {
1469 	return __merge_or_add_vmap_area(va, root, head, false);
1470 }
1471 
1472 static __always_inline struct vmap_area *
1473 merge_or_add_vmap_area_augment(struct vmap_area *va,
1474 	struct rb_root *root, struct list_head *head)
1475 {
1476 	va = __merge_or_add_vmap_area(va, root, head, true);
1477 	if (va)
1478 		augment_tree_propagate_from(va);
1479 
1480 	return va;
1481 }
1482 
1483 static __always_inline bool
1484 is_within_this_va(struct vmap_area *va, unsigned long size,
1485 	unsigned long align, unsigned long vstart)
1486 {
1487 	unsigned long nva_start_addr;
1488 
1489 	if (va->va_start > vstart)
1490 		nva_start_addr = ALIGN(va->va_start, align);
1491 	else
1492 		nva_start_addr = ALIGN(vstart, align);
1493 
1494 	/* Can be overflowed due to big size or alignment. */
1495 	if (nva_start_addr + size < nva_start_addr ||
1496 			nva_start_addr < vstart)
1497 		return false;
1498 
1499 	return (nva_start_addr + size <= va->va_end);
1500 }
1501 
1502 /*
1503  * Find the first free block(lowest start address) in the tree,
1504  * that will accomplish the request corresponding to passing
1505  * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1506  * a search length is adjusted to account for worst case alignment
1507  * overhead.
1508  */
1509 static __always_inline struct vmap_area *
1510 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1511 	unsigned long align, unsigned long vstart, bool adjust_search_size)
1512 {
1513 	struct vmap_area *va;
1514 	struct rb_node *node;
1515 	unsigned long length;
1516 
1517 	/* Start from the root. */
1518 	node = root->rb_node;
1519 
1520 	/* Adjust the search size for alignment overhead. */
1521 	length = adjust_search_size ? size + align - 1 : size;
1522 
1523 	while (node) {
1524 		va = rb_entry(node, struct vmap_area, rb_node);
1525 
1526 		if (get_subtree_max_size(node->rb_left) >= length &&
1527 				vstart < va->va_start) {
1528 			node = node->rb_left;
1529 		} else {
1530 			if (is_within_this_va(va, size, align, vstart))
1531 				return va;
1532 
1533 			/*
1534 			 * Does not make sense to go deeper towards the right
1535 			 * sub-tree if it does not have a free block that is
1536 			 * equal or bigger to the requested search length.
1537 			 */
1538 			if (get_subtree_max_size(node->rb_right) >= length) {
1539 				node = node->rb_right;
1540 				continue;
1541 			}
1542 
1543 			/*
1544 			 * OK. We roll back and find the first right sub-tree,
1545 			 * that will satisfy the search criteria. It can happen
1546 			 * due to "vstart" restriction or an alignment overhead
1547 			 * that is bigger then PAGE_SIZE.
1548 			 */
1549 			while ((node = rb_parent(node))) {
1550 				va = rb_entry(node, struct vmap_area, rb_node);
1551 				if (is_within_this_va(va, size, align, vstart))
1552 					return va;
1553 
1554 				if (get_subtree_max_size(node->rb_right) >= length &&
1555 						vstart <= va->va_start) {
1556 					/*
1557 					 * Shift the vstart forward. Please note, we update it with
1558 					 * parent's start address adding "1" because we do not want
1559 					 * to enter same sub-tree after it has already been checked
1560 					 * and no suitable free block found there.
1561 					 */
1562 					vstart = va->va_start + 1;
1563 					node = node->rb_right;
1564 					break;
1565 				}
1566 			}
1567 		}
1568 	}
1569 
1570 	return NULL;
1571 }
1572 
1573 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1574 #include <linux/random.h>
1575 
1576 static struct vmap_area *
1577 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1578 	unsigned long align, unsigned long vstart)
1579 {
1580 	struct vmap_area *va;
1581 
1582 	list_for_each_entry(va, head, list) {
1583 		if (!is_within_this_va(va, size, align, vstart))
1584 			continue;
1585 
1586 		return va;
1587 	}
1588 
1589 	return NULL;
1590 }
1591 
1592 static void
1593 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1594 			     unsigned long size, unsigned long align)
1595 {
1596 	struct vmap_area *va_1, *va_2;
1597 	unsigned long vstart;
1598 	unsigned int rnd;
1599 
1600 	get_random_bytes(&rnd, sizeof(rnd));
1601 	vstart = VMALLOC_START + rnd;
1602 
1603 	va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1604 	va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1605 
1606 	if (va_1 != va_2)
1607 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1608 			va_1, va_2, vstart);
1609 }
1610 #endif
1611 
1612 enum fit_type {
1613 	NOTHING_FIT = 0,
1614 	FL_FIT_TYPE = 1,	/* full fit */
1615 	LE_FIT_TYPE = 2,	/* left edge fit */
1616 	RE_FIT_TYPE = 3,	/* right edge fit */
1617 	NE_FIT_TYPE = 4		/* no edge fit */
1618 };
1619 
1620 static __always_inline enum fit_type
1621 classify_va_fit_type(struct vmap_area *va,
1622 	unsigned long nva_start_addr, unsigned long size)
1623 {
1624 	enum fit_type type;
1625 
1626 	/* Check if it is within VA. */
1627 	if (nva_start_addr < va->va_start ||
1628 			nva_start_addr + size > va->va_end)
1629 		return NOTHING_FIT;
1630 
1631 	/* Now classify. */
1632 	if (va->va_start == nva_start_addr) {
1633 		if (va->va_end == nva_start_addr + size)
1634 			type = FL_FIT_TYPE;
1635 		else
1636 			type = LE_FIT_TYPE;
1637 	} else if (va->va_end == nva_start_addr + size) {
1638 		type = RE_FIT_TYPE;
1639 	} else {
1640 		type = NE_FIT_TYPE;
1641 	}
1642 
1643 	return type;
1644 }
1645 
1646 static __always_inline int
1647 va_clip(struct rb_root *root, struct list_head *head,
1648 		struct vmap_area *va, unsigned long nva_start_addr,
1649 		unsigned long size)
1650 {
1651 	struct vmap_area *lva = NULL;
1652 	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1653 
1654 	if (type == FL_FIT_TYPE) {
1655 		/*
1656 		 * No need to split VA, it fully fits.
1657 		 *
1658 		 * |               |
1659 		 * V      NVA      V
1660 		 * |---------------|
1661 		 */
1662 		unlink_va_augment(va, root);
1663 		kmem_cache_free(vmap_area_cachep, va);
1664 	} else if (type == LE_FIT_TYPE) {
1665 		/*
1666 		 * Split left edge of fit VA.
1667 		 *
1668 		 * |       |
1669 		 * V  NVA  V   R
1670 		 * |-------|-------|
1671 		 */
1672 		va->va_start += size;
1673 	} else if (type == RE_FIT_TYPE) {
1674 		/*
1675 		 * Split right edge of fit VA.
1676 		 *
1677 		 *         |       |
1678 		 *     L   V  NVA  V
1679 		 * |-------|-------|
1680 		 */
1681 		va->va_end = nva_start_addr;
1682 	} else if (type == NE_FIT_TYPE) {
1683 		/*
1684 		 * Split no edge of fit VA.
1685 		 *
1686 		 *     |       |
1687 		 *   L V  NVA  V R
1688 		 * |---|-------|---|
1689 		 */
1690 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1691 		if (unlikely(!lva)) {
1692 			/*
1693 			 * For percpu allocator we do not do any pre-allocation
1694 			 * and leave it as it is. The reason is it most likely
1695 			 * never ends up with NE_FIT_TYPE splitting. In case of
1696 			 * percpu allocations offsets and sizes are aligned to
1697 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1698 			 * are its main fitting cases.
1699 			 *
1700 			 * There are a few exceptions though, as an example it is
1701 			 * a first allocation (early boot up) when we have "one"
1702 			 * big free space that has to be split.
1703 			 *
1704 			 * Also we can hit this path in case of regular "vmap"
1705 			 * allocations, if "this" current CPU was not preloaded.
1706 			 * See the comment in alloc_vmap_area() why. If so, then
1707 			 * GFP_NOWAIT is used instead to get an extra object for
1708 			 * split purpose. That is rare and most time does not
1709 			 * occur.
1710 			 *
1711 			 * What happens if an allocation gets failed. Basically,
1712 			 * an "overflow" path is triggered to purge lazily freed
1713 			 * areas to free some memory, then, the "retry" path is
1714 			 * triggered to repeat one more time. See more details
1715 			 * in alloc_vmap_area() function.
1716 			 */
1717 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1718 			if (!lva)
1719 				return -1;
1720 		}
1721 
1722 		/*
1723 		 * Build the remainder.
1724 		 */
1725 		lva->va_start = va->va_start;
1726 		lva->va_end = nva_start_addr;
1727 
1728 		/*
1729 		 * Shrink this VA to remaining size.
1730 		 */
1731 		va->va_start = nva_start_addr + size;
1732 	} else {
1733 		return -1;
1734 	}
1735 
1736 	if (type != FL_FIT_TYPE) {
1737 		augment_tree_propagate_from(va);
1738 
1739 		if (lva)	/* type == NE_FIT_TYPE */
1740 			insert_vmap_area_augment(lva, &va->rb_node, root, head);
1741 	}
1742 
1743 	return 0;
1744 }
1745 
1746 static unsigned long
1747 va_alloc(struct vmap_area *va,
1748 		struct rb_root *root, struct list_head *head,
1749 		unsigned long size, unsigned long align,
1750 		unsigned long vstart, unsigned long vend)
1751 {
1752 	unsigned long nva_start_addr;
1753 	int ret;
1754 
1755 	if (va->va_start > vstart)
1756 		nva_start_addr = ALIGN(va->va_start, align);
1757 	else
1758 		nva_start_addr = ALIGN(vstart, align);
1759 
1760 	/* Check the "vend" restriction. */
1761 	if (nva_start_addr + size > vend)
1762 		return vend;
1763 
1764 	/* Update the free vmap_area. */
1765 	ret = va_clip(root, head, va, nva_start_addr, size);
1766 	if (WARN_ON_ONCE(ret))
1767 		return vend;
1768 
1769 	return nva_start_addr;
1770 }
1771 
1772 /*
1773  * Returns a start address of the newly allocated area, if success.
1774  * Otherwise a vend is returned that indicates failure.
1775  */
1776 static __always_inline unsigned long
1777 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1778 	unsigned long size, unsigned long align,
1779 	unsigned long vstart, unsigned long vend)
1780 {
1781 	bool adjust_search_size = true;
1782 	unsigned long nva_start_addr;
1783 	struct vmap_area *va;
1784 
1785 	/*
1786 	 * Do not adjust when:
1787 	 *   a) align <= PAGE_SIZE, because it does not make any sense.
1788 	 *      All blocks(their start addresses) are at least PAGE_SIZE
1789 	 *      aligned anyway;
1790 	 *   b) a short range where a requested size corresponds to exactly
1791 	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1792 	 *      With adjusted search length an allocation would not succeed.
1793 	 */
1794 	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1795 		adjust_search_size = false;
1796 
1797 	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1798 	if (unlikely(!va))
1799 		return vend;
1800 
1801 	nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend);
1802 	if (nva_start_addr == vend)
1803 		return vend;
1804 
1805 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1806 	find_vmap_lowest_match_check(root, head, size, align);
1807 #endif
1808 
1809 	return nva_start_addr;
1810 }
1811 
1812 /*
1813  * Free a region of KVA allocated by alloc_vmap_area
1814  */
1815 static void free_vmap_area(struct vmap_area *va)
1816 {
1817 	struct vmap_node *vn = addr_to_node(va->va_start);
1818 
1819 	/*
1820 	 * Remove from the busy tree/list.
1821 	 */
1822 	spin_lock(&vn->busy.lock);
1823 	unlink_va(va, &vn->busy.root);
1824 	spin_unlock(&vn->busy.lock);
1825 
1826 	/*
1827 	 * Insert/Merge it back to the free tree/list.
1828 	 */
1829 	spin_lock(&free_vmap_area_lock);
1830 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1831 	spin_unlock(&free_vmap_area_lock);
1832 }
1833 
1834 static inline void
1835 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1836 {
1837 	struct vmap_area *va = NULL, *tmp;
1838 
1839 	/*
1840 	 * Preload this CPU with one extra vmap_area object. It is used
1841 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1842 	 * a CPU that does an allocation is preloaded.
1843 	 *
1844 	 * We do it in non-atomic context, thus it allows us to use more
1845 	 * permissive allocation masks to be more stable under low memory
1846 	 * condition and high memory pressure.
1847 	 */
1848 	if (!this_cpu_read(ne_fit_preload_node))
1849 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1850 
1851 	spin_lock(lock);
1852 
1853 	tmp = NULL;
1854 	if (va && !__this_cpu_try_cmpxchg(ne_fit_preload_node, &tmp, va))
1855 		kmem_cache_free(vmap_area_cachep, va);
1856 }
1857 
1858 static struct vmap_pool *
1859 size_to_va_pool(struct vmap_node *vn, unsigned long size)
1860 {
1861 	unsigned int idx = (size - 1) / PAGE_SIZE;
1862 
1863 	if (idx < MAX_VA_SIZE_PAGES)
1864 		return &vn->pool[idx];
1865 
1866 	return NULL;
1867 }
1868 
1869 static bool
1870 node_pool_add_va(struct vmap_node *n, struct vmap_area *va)
1871 {
1872 	struct vmap_pool *vp;
1873 
1874 	vp = size_to_va_pool(n, va_size(va));
1875 	if (!vp)
1876 		return false;
1877 
1878 	spin_lock(&n->pool_lock);
1879 	list_add(&va->list, &vp->head);
1880 	WRITE_ONCE(vp->len, vp->len + 1);
1881 	spin_unlock(&n->pool_lock);
1882 
1883 	return true;
1884 }
1885 
1886 static struct vmap_area *
1887 node_pool_del_va(struct vmap_node *vn, unsigned long size,
1888 		unsigned long align, unsigned long vstart,
1889 		unsigned long vend)
1890 {
1891 	struct vmap_area *va = NULL;
1892 	struct vmap_pool *vp;
1893 	int err = 0;
1894 
1895 	vp = size_to_va_pool(vn, size);
1896 	if (!vp || list_empty(&vp->head))
1897 		return NULL;
1898 
1899 	spin_lock(&vn->pool_lock);
1900 	if (!list_empty(&vp->head)) {
1901 		va = list_first_entry(&vp->head, struct vmap_area, list);
1902 
1903 		if (IS_ALIGNED(va->va_start, align)) {
1904 			/*
1905 			 * Do some sanity check and emit a warning
1906 			 * if one of below checks detects an error.
1907 			 */
1908 			err |= (va_size(va) != size);
1909 			err |= (va->va_start < vstart);
1910 			err |= (va->va_end > vend);
1911 
1912 			if (!WARN_ON_ONCE(err)) {
1913 				list_del_init(&va->list);
1914 				WRITE_ONCE(vp->len, vp->len - 1);
1915 			} else {
1916 				va = NULL;
1917 			}
1918 		} else {
1919 			list_move_tail(&va->list, &vp->head);
1920 			va = NULL;
1921 		}
1922 	}
1923 	spin_unlock(&vn->pool_lock);
1924 
1925 	return va;
1926 }
1927 
1928 static struct vmap_area *
1929 node_alloc(unsigned long size, unsigned long align,
1930 		unsigned long vstart, unsigned long vend,
1931 		unsigned long *addr, unsigned int *vn_id)
1932 {
1933 	struct vmap_area *va;
1934 
1935 	*vn_id = 0;
1936 	*addr = vend;
1937 
1938 	/*
1939 	 * Fallback to a global heap if not vmalloc or there
1940 	 * is only one node.
1941 	 */
1942 	if (vstart != VMALLOC_START || vend != VMALLOC_END ||
1943 			nr_vmap_nodes == 1)
1944 		return NULL;
1945 
1946 	*vn_id = raw_smp_processor_id() % nr_vmap_nodes;
1947 	va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend);
1948 	*vn_id = encode_vn_id(*vn_id);
1949 
1950 	if (va)
1951 		*addr = va->va_start;
1952 
1953 	return va;
1954 }
1955 
1956 static inline void setup_vmalloc_vm(struct vm_struct *vm,
1957 	struct vmap_area *va, unsigned long flags, const void *caller)
1958 {
1959 	vm->flags = flags;
1960 	vm->addr = (void *)va->va_start;
1961 	vm->size = vm->requested_size = va_size(va);
1962 	vm->caller = caller;
1963 	va->vm = vm;
1964 }
1965 
1966 /*
1967  * Allocate a region of KVA of the specified size and alignment, within the
1968  * vstart and vend. If vm is passed in, the two will also be bound.
1969  */
1970 static struct vmap_area *alloc_vmap_area(unsigned long size,
1971 				unsigned long align,
1972 				unsigned long vstart, unsigned long vend,
1973 				int node, gfp_t gfp_mask,
1974 				unsigned long va_flags, struct vm_struct *vm)
1975 {
1976 	struct vmap_node *vn;
1977 	struct vmap_area *va;
1978 	unsigned long freed;
1979 	unsigned long addr;
1980 	unsigned int vn_id;
1981 	int purged = 0;
1982 	int ret;
1983 
1984 	if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1985 		return ERR_PTR(-EINVAL);
1986 
1987 	if (unlikely(!vmap_initialized))
1988 		return ERR_PTR(-EBUSY);
1989 
1990 	might_sleep();
1991 
1992 	/*
1993 	 * If a VA is obtained from a global heap(if it fails here)
1994 	 * it is anyway marked with this "vn_id" so it is returned
1995 	 * to this pool's node later. Such way gives a possibility
1996 	 * to populate pools based on users demand.
1997 	 *
1998 	 * On success a ready to go VA is returned.
1999 	 */
2000 	va = node_alloc(size, align, vstart, vend, &addr, &vn_id);
2001 	if (!va) {
2002 		gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
2003 
2004 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
2005 		if (unlikely(!va))
2006 			return ERR_PTR(-ENOMEM);
2007 
2008 		/*
2009 		 * Only scan the relevant parts containing pointers to other objects
2010 		 * to avoid false negatives.
2011 		 */
2012 		kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
2013 	}
2014 
2015 retry:
2016 	if (addr == vend) {
2017 		preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
2018 		addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
2019 			size, align, vstart, vend);
2020 		spin_unlock(&free_vmap_area_lock);
2021 	}
2022 
2023 	trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
2024 
2025 	/*
2026 	 * If an allocation fails, the "vend" address is
2027 	 * returned. Therefore trigger the overflow path.
2028 	 */
2029 	if (unlikely(addr == vend))
2030 		goto overflow;
2031 
2032 	va->va_start = addr;
2033 	va->va_end = addr + size;
2034 	va->vm = NULL;
2035 	va->flags = (va_flags | vn_id);
2036 
2037 	if (vm) {
2038 		vm->addr = (void *)va->va_start;
2039 		vm->size = va_size(va);
2040 		va->vm = vm;
2041 	}
2042 
2043 	vn = addr_to_node(va->va_start);
2044 
2045 	spin_lock(&vn->busy.lock);
2046 	insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
2047 	spin_unlock(&vn->busy.lock);
2048 
2049 	BUG_ON(!IS_ALIGNED(va->va_start, align));
2050 	BUG_ON(va->va_start < vstart);
2051 	BUG_ON(va->va_end > vend);
2052 
2053 	ret = kasan_populate_vmalloc(addr, size);
2054 	if (ret) {
2055 		free_vmap_area(va);
2056 		return ERR_PTR(ret);
2057 	}
2058 
2059 	return va;
2060 
2061 overflow:
2062 	if (!purged) {
2063 		reclaim_and_purge_vmap_areas();
2064 		purged = 1;
2065 		goto retry;
2066 	}
2067 
2068 	freed = 0;
2069 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
2070 
2071 	if (freed > 0) {
2072 		purged = 0;
2073 		goto retry;
2074 	}
2075 
2076 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
2077 		pr_warn("vmalloc_node_range for size %lu failed: Address range restricted to %#lx - %#lx\n",
2078 				size, vstart, vend);
2079 
2080 	kmem_cache_free(vmap_area_cachep, va);
2081 	return ERR_PTR(-EBUSY);
2082 }
2083 
2084 int register_vmap_purge_notifier(struct notifier_block *nb)
2085 {
2086 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
2087 }
2088 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
2089 
2090 int unregister_vmap_purge_notifier(struct notifier_block *nb)
2091 {
2092 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
2093 }
2094 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
2095 
2096 /*
2097  * lazy_max_pages is the maximum amount of virtual address space we gather up
2098  * before attempting to purge with a TLB flush.
2099  *
2100  * There is a tradeoff here: a larger number will cover more kernel page tables
2101  * and take slightly longer to purge, but it will linearly reduce the number of
2102  * global TLB flushes that must be performed. It would seem natural to scale
2103  * this number up linearly with the number of CPUs (because vmapping activity
2104  * could also scale linearly with the number of CPUs), however it is likely
2105  * that in practice, workloads might be constrained in other ways that mean
2106  * vmap activity will not scale linearly with CPUs. Also, I want to be
2107  * conservative and not introduce a big latency on huge systems, so go with
2108  * a less aggressive log scale. It will still be an improvement over the old
2109  * code, and it will be simple to change the scale factor if we find that it
2110  * becomes a problem on bigger systems.
2111  */
2112 static unsigned long lazy_max_pages(void)
2113 {
2114 	unsigned int log;
2115 
2116 	log = fls(num_online_cpus());
2117 
2118 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
2119 }
2120 
2121 /*
2122  * Serialize vmap purging.  There is no actual critical section protected
2123  * by this lock, but we want to avoid concurrent calls for performance
2124  * reasons and to make the pcpu_get_vm_areas more deterministic.
2125  */
2126 static DEFINE_MUTEX(vmap_purge_lock);
2127 
2128 /* for per-CPU blocks */
2129 static void purge_fragmented_blocks_allcpus(void);
2130 static cpumask_t purge_nodes;
2131 
2132 static void
2133 reclaim_list_global(struct list_head *head)
2134 {
2135 	struct vmap_area *va, *n;
2136 
2137 	if (list_empty(head))
2138 		return;
2139 
2140 	spin_lock(&free_vmap_area_lock);
2141 	list_for_each_entry_safe(va, n, head, list)
2142 		merge_or_add_vmap_area_augment(va,
2143 			&free_vmap_area_root, &free_vmap_area_list);
2144 	spin_unlock(&free_vmap_area_lock);
2145 }
2146 
2147 static void
2148 decay_va_pool_node(struct vmap_node *vn, bool full_decay)
2149 {
2150 	LIST_HEAD(decay_list);
2151 	struct rb_root decay_root = RB_ROOT;
2152 	struct vmap_area *va, *nva;
2153 	unsigned long n_decay;
2154 	int i;
2155 
2156 	for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
2157 		LIST_HEAD(tmp_list);
2158 
2159 		if (list_empty(&vn->pool[i].head))
2160 			continue;
2161 
2162 		/* Detach the pool, so no-one can access it. */
2163 		spin_lock(&vn->pool_lock);
2164 		list_replace_init(&vn->pool[i].head, &tmp_list);
2165 		spin_unlock(&vn->pool_lock);
2166 
2167 		if (full_decay)
2168 			WRITE_ONCE(vn->pool[i].len, 0);
2169 
2170 		/* Decay a pool by ~25% out of left objects. */
2171 		n_decay = vn->pool[i].len >> 2;
2172 
2173 		list_for_each_entry_safe(va, nva, &tmp_list, list) {
2174 			list_del_init(&va->list);
2175 			merge_or_add_vmap_area(va, &decay_root, &decay_list);
2176 
2177 			if (!full_decay) {
2178 				WRITE_ONCE(vn->pool[i].len, vn->pool[i].len - 1);
2179 
2180 				if (!--n_decay)
2181 					break;
2182 			}
2183 		}
2184 
2185 		/*
2186 		 * Attach the pool back if it has been partly decayed.
2187 		 * Please note, it is supposed that nobody(other contexts)
2188 		 * can populate the pool therefore a simple list replace
2189 		 * operation takes place here.
2190 		 */
2191 		if (!full_decay && !list_empty(&tmp_list)) {
2192 			spin_lock(&vn->pool_lock);
2193 			list_replace_init(&tmp_list, &vn->pool[i].head);
2194 			spin_unlock(&vn->pool_lock);
2195 		}
2196 	}
2197 
2198 	reclaim_list_global(&decay_list);
2199 }
2200 
2201 static void
2202 kasan_release_vmalloc_node(struct vmap_node *vn)
2203 {
2204 	struct vmap_area *va;
2205 	unsigned long start, end;
2206 
2207 	start = list_first_entry(&vn->purge_list, struct vmap_area, list)->va_start;
2208 	end = list_last_entry(&vn->purge_list, struct vmap_area, list)->va_end;
2209 
2210 	list_for_each_entry(va, &vn->purge_list, list) {
2211 		if (is_vmalloc_or_module_addr((void *) va->va_start))
2212 			kasan_release_vmalloc(va->va_start, va->va_end,
2213 				va->va_start, va->va_end,
2214 				KASAN_VMALLOC_PAGE_RANGE);
2215 	}
2216 
2217 	kasan_release_vmalloc(start, end, start, end, KASAN_VMALLOC_TLB_FLUSH);
2218 }
2219 
2220 static void purge_vmap_node(struct work_struct *work)
2221 {
2222 	struct vmap_node *vn = container_of(work,
2223 		struct vmap_node, purge_work);
2224 	unsigned long nr_purged_pages = 0;
2225 	struct vmap_area *va, *n_va;
2226 	LIST_HEAD(local_list);
2227 
2228 	if (IS_ENABLED(CONFIG_KASAN_VMALLOC))
2229 		kasan_release_vmalloc_node(vn);
2230 
2231 	vn->nr_purged = 0;
2232 
2233 	list_for_each_entry_safe(va, n_va, &vn->purge_list, list) {
2234 		unsigned long nr = va_size(va) >> PAGE_SHIFT;
2235 		unsigned int vn_id = decode_vn_id(va->flags);
2236 
2237 		list_del_init(&va->list);
2238 
2239 		nr_purged_pages += nr;
2240 		vn->nr_purged++;
2241 
2242 		if (is_vn_id_valid(vn_id) && !vn->skip_populate)
2243 			if (node_pool_add_va(vn, va))
2244 				continue;
2245 
2246 		/* Go back to global. */
2247 		list_add(&va->list, &local_list);
2248 	}
2249 
2250 	atomic_long_sub(nr_purged_pages, &vmap_lazy_nr);
2251 
2252 	reclaim_list_global(&local_list);
2253 }
2254 
2255 /*
2256  * Purges all lazily-freed vmap areas.
2257  */
2258 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end,
2259 		bool full_pool_decay)
2260 {
2261 	unsigned long nr_purged_areas = 0;
2262 	unsigned int nr_purge_helpers;
2263 	unsigned int nr_purge_nodes;
2264 	struct vmap_node *vn;
2265 	int i;
2266 
2267 	lockdep_assert_held(&vmap_purge_lock);
2268 
2269 	/*
2270 	 * Use cpumask to mark which node has to be processed.
2271 	 */
2272 	purge_nodes = CPU_MASK_NONE;
2273 
2274 	for_each_vmap_node(vn) {
2275 		INIT_LIST_HEAD(&vn->purge_list);
2276 		vn->skip_populate = full_pool_decay;
2277 		decay_va_pool_node(vn, full_pool_decay);
2278 
2279 		if (RB_EMPTY_ROOT(&vn->lazy.root))
2280 			continue;
2281 
2282 		spin_lock(&vn->lazy.lock);
2283 		WRITE_ONCE(vn->lazy.root.rb_node, NULL);
2284 		list_replace_init(&vn->lazy.head, &vn->purge_list);
2285 		spin_unlock(&vn->lazy.lock);
2286 
2287 		start = min(start, list_first_entry(&vn->purge_list,
2288 			struct vmap_area, list)->va_start);
2289 
2290 		end = max(end, list_last_entry(&vn->purge_list,
2291 			struct vmap_area, list)->va_end);
2292 
2293 		cpumask_set_cpu(node_to_id(vn), &purge_nodes);
2294 	}
2295 
2296 	nr_purge_nodes = cpumask_weight(&purge_nodes);
2297 	if (nr_purge_nodes > 0) {
2298 		flush_tlb_kernel_range(start, end);
2299 
2300 		/* One extra worker is per a lazy_max_pages() full set minus one. */
2301 		nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages();
2302 		nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1;
2303 
2304 		for_each_cpu(i, &purge_nodes) {
2305 			vn = &vmap_nodes[i];
2306 
2307 			if (nr_purge_helpers > 0) {
2308 				INIT_WORK(&vn->purge_work, purge_vmap_node);
2309 
2310 				if (cpumask_test_cpu(i, cpu_online_mask))
2311 					schedule_work_on(i, &vn->purge_work);
2312 				else
2313 					schedule_work(&vn->purge_work);
2314 
2315 				nr_purge_helpers--;
2316 			} else {
2317 				vn->purge_work.func = NULL;
2318 				purge_vmap_node(&vn->purge_work);
2319 				nr_purged_areas += vn->nr_purged;
2320 			}
2321 		}
2322 
2323 		for_each_cpu(i, &purge_nodes) {
2324 			vn = &vmap_nodes[i];
2325 
2326 			if (vn->purge_work.func) {
2327 				flush_work(&vn->purge_work);
2328 				nr_purged_areas += vn->nr_purged;
2329 			}
2330 		}
2331 	}
2332 
2333 	trace_purge_vmap_area_lazy(start, end, nr_purged_areas);
2334 	return nr_purged_areas > 0;
2335 }
2336 
2337 /*
2338  * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
2339  */
2340 static void reclaim_and_purge_vmap_areas(void)
2341 
2342 {
2343 	mutex_lock(&vmap_purge_lock);
2344 	purge_fragmented_blocks_allcpus();
2345 	__purge_vmap_area_lazy(ULONG_MAX, 0, true);
2346 	mutex_unlock(&vmap_purge_lock);
2347 }
2348 
2349 static void drain_vmap_area_work(struct work_struct *work)
2350 {
2351 	mutex_lock(&vmap_purge_lock);
2352 	__purge_vmap_area_lazy(ULONG_MAX, 0, false);
2353 	mutex_unlock(&vmap_purge_lock);
2354 }
2355 
2356 /*
2357  * Free a vmap area, caller ensuring that the area has been unmapped,
2358  * unlinked and flush_cache_vunmap had been called for the correct
2359  * range previously.
2360  */
2361 static void free_vmap_area_noflush(struct vmap_area *va)
2362 {
2363 	unsigned long nr_lazy_max = lazy_max_pages();
2364 	unsigned long va_start = va->va_start;
2365 	unsigned int vn_id = decode_vn_id(va->flags);
2366 	struct vmap_node *vn;
2367 	unsigned long nr_lazy;
2368 
2369 	if (WARN_ON_ONCE(!list_empty(&va->list)))
2370 		return;
2371 
2372 	nr_lazy = atomic_long_add_return_relaxed(va_size(va) >> PAGE_SHIFT,
2373 					 &vmap_lazy_nr);
2374 
2375 	/*
2376 	 * If it was request by a certain node we would like to
2377 	 * return it to that node, i.e. its pool for later reuse.
2378 	 */
2379 	vn = is_vn_id_valid(vn_id) ?
2380 		id_to_node(vn_id):addr_to_node(va->va_start);
2381 
2382 	spin_lock(&vn->lazy.lock);
2383 	insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head);
2384 	spin_unlock(&vn->lazy.lock);
2385 
2386 	trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
2387 
2388 	/* After this point, we may free va at any time */
2389 	if (unlikely(nr_lazy > nr_lazy_max))
2390 		schedule_work(&drain_vmap_work);
2391 }
2392 
2393 /*
2394  * Free and unmap a vmap area
2395  */
2396 static void free_unmap_vmap_area(struct vmap_area *va)
2397 {
2398 	flush_cache_vunmap(va->va_start, va->va_end);
2399 	vunmap_range_noflush(va->va_start, va->va_end);
2400 	if (debug_pagealloc_enabled_static())
2401 		flush_tlb_kernel_range(va->va_start, va->va_end);
2402 
2403 	free_vmap_area_noflush(va);
2404 }
2405 
2406 struct vmap_area *find_vmap_area(unsigned long addr)
2407 {
2408 	struct vmap_node *vn;
2409 	struct vmap_area *va;
2410 	int i, j;
2411 
2412 	if (unlikely(!vmap_initialized))
2413 		return NULL;
2414 
2415 	/*
2416 	 * An addr_to_node_id(addr) converts an address to a node index
2417 	 * where a VA is located. If VA spans several zones and passed
2418 	 * addr is not the same as va->va_start, what is not common, we
2419 	 * may need to scan extra nodes. See an example:
2420 	 *
2421 	 *      <----va---->
2422 	 * -|-----|-----|-----|-----|-
2423 	 *     1     2     0     1
2424 	 *
2425 	 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed
2426 	 * addr is within 2 or 0 nodes we should do extra work.
2427 	 */
2428 	i = j = addr_to_node_id(addr);
2429 	do {
2430 		vn = &vmap_nodes[i];
2431 
2432 		spin_lock(&vn->busy.lock);
2433 		va = __find_vmap_area(addr, &vn->busy.root);
2434 		spin_unlock(&vn->busy.lock);
2435 
2436 		if (va)
2437 			return va;
2438 	} while ((i = (i + 1) % nr_vmap_nodes) != j);
2439 
2440 	return NULL;
2441 }
2442 
2443 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
2444 {
2445 	struct vmap_node *vn;
2446 	struct vmap_area *va;
2447 	int i, j;
2448 
2449 	/*
2450 	 * Check the comment in the find_vmap_area() about the loop.
2451 	 */
2452 	i = j = addr_to_node_id(addr);
2453 	do {
2454 		vn = &vmap_nodes[i];
2455 
2456 		spin_lock(&vn->busy.lock);
2457 		va = __find_vmap_area(addr, &vn->busy.root);
2458 		if (va)
2459 			unlink_va(va, &vn->busy.root);
2460 		spin_unlock(&vn->busy.lock);
2461 
2462 		if (va)
2463 			return va;
2464 	} while ((i = (i + 1) % nr_vmap_nodes) != j);
2465 
2466 	return NULL;
2467 }
2468 
2469 /*** Per cpu kva allocator ***/
2470 
2471 /*
2472  * vmap space is limited especially on 32 bit architectures. Ensure there is
2473  * room for at least 16 percpu vmap blocks per CPU.
2474  */
2475 /*
2476  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
2477  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
2478  * instead (we just need a rough idea)
2479  */
2480 #if BITS_PER_LONG == 32
2481 #define VMALLOC_SPACE		(128UL*1024*1024)
2482 #else
2483 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
2484 #endif
2485 
2486 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
2487 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
2488 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
2489 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
2490 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
2491 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
2492 #define VMAP_BBMAP_BITS		\
2493 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
2494 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
2495 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
2496 
2497 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
2498 
2499 /*
2500  * Purge threshold to prevent overeager purging of fragmented blocks for
2501  * regular operations: Purge if vb->free is less than 1/4 of the capacity.
2502  */
2503 #define VMAP_PURGE_THRESHOLD	(VMAP_BBMAP_BITS / 4)
2504 
2505 #define VMAP_RAM		0x1 /* indicates vm_map_ram area*/
2506 #define VMAP_BLOCK		0x2 /* mark out the vmap_block sub-type*/
2507 #define VMAP_FLAGS_MASK		0x3
2508 
2509 struct vmap_block_queue {
2510 	spinlock_t lock;
2511 	struct list_head free;
2512 
2513 	/*
2514 	 * An xarray requires an extra memory dynamically to
2515 	 * be allocated. If it is an issue, we can use rb-tree
2516 	 * instead.
2517 	 */
2518 	struct xarray vmap_blocks;
2519 };
2520 
2521 struct vmap_block {
2522 	spinlock_t lock;
2523 	struct vmap_area *va;
2524 	unsigned long free, dirty;
2525 	DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
2526 	unsigned long dirty_min, dirty_max; /*< dirty range */
2527 	struct list_head free_list;
2528 	struct rcu_head rcu_head;
2529 	struct list_head purge;
2530 	unsigned int cpu;
2531 };
2532 
2533 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
2534 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
2535 
2536 /*
2537  * In order to fast access to any "vmap_block" associated with a
2538  * specific address, we use a hash.
2539  *
2540  * A per-cpu vmap_block_queue is used in both ways, to serialize
2541  * an access to free block chains among CPUs(alloc path) and it
2542  * also acts as a vmap_block hash(alloc/free paths). It means we
2543  * overload it, since we already have the per-cpu array which is
2544  * used as a hash table. When used as a hash a 'cpu' passed to
2545  * per_cpu() is not actually a CPU but rather a hash index.
2546  *
2547  * A hash function is addr_to_vb_xa() which hashes any address
2548  * to a specific index(in a hash) it belongs to. This then uses a
2549  * per_cpu() macro to access an array with generated index.
2550  *
2551  * An example:
2552  *
2553  *  CPU_1  CPU_2  CPU_0
2554  *    |      |      |
2555  *    V      V      V
2556  * 0     10     20     30     40     50     60
2557  * |------|------|------|------|------|------|...<vmap address space>
2558  *   CPU0   CPU1   CPU2   CPU0   CPU1   CPU2
2559  *
2560  * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
2561  *   it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
2562  *
2563  * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
2564  *   it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
2565  *
2566  * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
2567  *   it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
2568  *
2569  * This technique almost always avoids lock contention on insert/remove,
2570  * however xarray spinlocks protect against any contention that remains.
2571  */
2572 static struct xarray *
2573 addr_to_vb_xa(unsigned long addr)
2574 {
2575 	int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids;
2576 
2577 	/*
2578 	 * Please note, nr_cpu_ids points on a highest set
2579 	 * possible bit, i.e. we never invoke cpumask_next()
2580 	 * if an index points on it which is nr_cpu_ids - 1.
2581 	 */
2582 	if (!cpu_possible(index))
2583 		index = cpumask_next(index, cpu_possible_mask);
2584 
2585 	return &per_cpu(vmap_block_queue, index).vmap_blocks;
2586 }
2587 
2588 /*
2589  * We should probably have a fallback mechanism to allocate virtual memory
2590  * out of partially filled vmap blocks. However vmap block sizing should be
2591  * fairly reasonable according to the vmalloc size, so it shouldn't be a
2592  * big problem.
2593  */
2594 
2595 static unsigned long addr_to_vb_idx(unsigned long addr)
2596 {
2597 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2598 	addr /= VMAP_BLOCK_SIZE;
2599 	return addr;
2600 }
2601 
2602 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2603 {
2604 	unsigned long addr;
2605 
2606 	addr = va_start + (pages_off << PAGE_SHIFT);
2607 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2608 	return (void *)addr;
2609 }
2610 
2611 /**
2612  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2613  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
2614  * @order:    how many 2^order pages should be occupied in newly allocated block
2615  * @gfp_mask: flags for the page level allocator
2616  *
2617  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2618  */
2619 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2620 {
2621 	struct vmap_block_queue *vbq;
2622 	struct vmap_block *vb;
2623 	struct vmap_area *va;
2624 	struct xarray *xa;
2625 	unsigned long vb_idx;
2626 	int node, err;
2627 	void *vaddr;
2628 
2629 	node = numa_node_id();
2630 
2631 	vb = kmalloc_node(sizeof(struct vmap_block),
2632 			gfp_mask & GFP_RECLAIM_MASK, node);
2633 	if (unlikely(!vb))
2634 		return ERR_PTR(-ENOMEM);
2635 
2636 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2637 					VMALLOC_START, VMALLOC_END,
2638 					node, gfp_mask,
2639 					VMAP_RAM|VMAP_BLOCK, NULL);
2640 	if (IS_ERR(va)) {
2641 		kfree(vb);
2642 		return ERR_CAST(va);
2643 	}
2644 
2645 	vaddr = vmap_block_vaddr(va->va_start, 0);
2646 	spin_lock_init(&vb->lock);
2647 	vb->va = va;
2648 	/* At least something should be left free */
2649 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2650 	bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2651 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
2652 	vb->dirty = 0;
2653 	vb->dirty_min = VMAP_BBMAP_BITS;
2654 	vb->dirty_max = 0;
2655 	bitmap_set(vb->used_map, 0, (1UL << order));
2656 	INIT_LIST_HEAD(&vb->free_list);
2657 	vb->cpu = raw_smp_processor_id();
2658 
2659 	xa = addr_to_vb_xa(va->va_start);
2660 	vb_idx = addr_to_vb_idx(va->va_start);
2661 	err = xa_insert(xa, vb_idx, vb, gfp_mask);
2662 	if (err) {
2663 		kfree(vb);
2664 		free_vmap_area(va);
2665 		return ERR_PTR(err);
2666 	}
2667 	/*
2668 	 * list_add_tail_rcu could happened in another core
2669 	 * rather than vb->cpu due to task migration, which
2670 	 * is safe as list_add_tail_rcu will ensure the list's
2671 	 * integrity together with list_for_each_rcu from read
2672 	 * side.
2673 	 */
2674 	vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu);
2675 	spin_lock(&vbq->lock);
2676 	list_add_tail_rcu(&vb->free_list, &vbq->free);
2677 	spin_unlock(&vbq->lock);
2678 
2679 	return vaddr;
2680 }
2681 
2682 static void free_vmap_block(struct vmap_block *vb)
2683 {
2684 	struct vmap_node *vn;
2685 	struct vmap_block *tmp;
2686 	struct xarray *xa;
2687 
2688 	xa = addr_to_vb_xa(vb->va->va_start);
2689 	tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2690 	BUG_ON(tmp != vb);
2691 
2692 	vn = addr_to_node(vb->va->va_start);
2693 	spin_lock(&vn->busy.lock);
2694 	unlink_va(vb->va, &vn->busy.root);
2695 	spin_unlock(&vn->busy.lock);
2696 
2697 	free_vmap_area_noflush(vb->va);
2698 	kfree_rcu(vb, rcu_head);
2699 }
2700 
2701 static bool purge_fragmented_block(struct vmap_block *vb,
2702 		struct list_head *purge_list, bool force_purge)
2703 {
2704 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu);
2705 
2706 	if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2707 	    vb->dirty == VMAP_BBMAP_BITS)
2708 		return false;
2709 
2710 	/* Don't overeagerly purge usable blocks unless requested */
2711 	if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2712 		return false;
2713 
2714 	/* prevent further allocs after releasing lock */
2715 	WRITE_ONCE(vb->free, 0);
2716 	/* prevent purging it again */
2717 	WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2718 	vb->dirty_min = 0;
2719 	vb->dirty_max = VMAP_BBMAP_BITS;
2720 	spin_lock(&vbq->lock);
2721 	list_del_rcu(&vb->free_list);
2722 	spin_unlock(&vbq->lock);
2723 	list_add_tail(&vb->purge, purge_list);
2724 	return true;
2725 }
2726 
2727 static void free_purged_blocks(struct list_head *purge_list)
2728 {
2729 	struct vmap_block *vb, *n_vb;
2730 
2731 	list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2732 		list_del(&vb->purge);
2733 		free_vmap_block(vb);
2734 	}
2735 }
2736 
2737 static void purge_fragmented_blocks(int cpu)
2738 {
2739 	LIST_HEAD(purge);
2740 	struct vmap_block *vb;
2741 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2742 
2743 	rcu_read_lock();
2744 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2745 		unsigned long free = READ_ONCE(vb->free);
2746 		unsigned long dirty = READ_ONCE(vb->dirty);
2747 
2748 		if (free + dirty != VMAP_BBMAP_BITS ||
2749 		    dirty == VMAP_BBMAP_BITS)
2750 			continue;
2751 
2752 		spin_lock(&vb->lock);
2753 		purge_fragmented_block(vb, &purge, true);
2754 		spin_unlock(&vb->lock);
2755 	}
2756 	rcu_read_unlock();
2757 	free_purged_blocks(&purge);
2758 }
2759 
2760 static void purge_fragmented_blocks_allcpus(void)
2761 {
2762 	int cpu;
2763 
2764 	for_each_possible_cpu(cpu)
2765 		purge_fragmented_blocks(cpu);
2766 }
2767 
2768 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2769 {
2770 	struct vmap_block_queue *vbq;
2771 	struct vmap_block *vb;
2772 	void *vaddr = NULL;
2773 	unsigned int order;
2774 
2775 	BUG_ON(offset_in_page(size));
2776 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2777 	if (WARN_ON(size == 0)) {
2778 		/*
2779 		 * Allocating 0 bytes isn't what caller wants since
2780 		 * get_order(0) returns funny result. Just warn and terminate
2781 		 * early.
2782 		 */
2783 		return ERR_PTR(-EINVAL);
2784 	}
2785 	order = get_order(size);
2786 
2787 	rcu_read_lock();
2788 	vbq = raw_cpu_ptr(&vmap_block_queue);
2789 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2790 		unsigned long pages_off;
2791 
2792 		if (READ_ONCE(vb->free) < (1UL << order))
2793 			continue;
2794 
2795 		spin_lock(&vb->lock);
2796 		if (vb->free < (1UL << order)) {
2797 			spin_unlock(&vb->lock);
2798 			continue;
2799 		}
2800 
2801 		pages_off = VMAP_BBMAP_BITS - vb->free;
2802 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2803 		WRITE_ONCE(vb->free, vb->free - (1UL << order));
2804 		bitmap_set(vb->used_map, pages_off, (1UL << order));
2805 		if (vb->free == 0) {
2806 			spin_lock(&vbq->lock);
2807 			list_del_rcu(&vb->free_list);
2808 			spin_unlock(&vbq->lock);
2809 		}
2810 
2811 		spin_unlock(&vb->lock);
2812 		break;
2813 	}
2814 
2815 	rcu_read_unlock();
2816 
2817 	/* Allocate new block if nothing was found */
2818 	if (!vaddr)
2819 		vaddr = new_vmap_block(order, gfp_mask);
2820 
2821 	return vaddr;
2822 }
2823 
2824 static void vb_free(unsigned long addr, unsigned long size)
2825 {
2826 	unsigned long offset;
2827 	unsigned int order;
2828 	struct vmap_block *vb;
2829 	struct xarray *xa;
2830 
2831 	BUG_ON(offset_in_page(size));
2832 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2833 
2834 	flush_cache_vunmap(addr, addr + size);
2835 
2836 	order = get_order(size);
2837 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2838 
2839 	xa = addr_to_vb_xa(addr);
2840 	vb = xa_load(xa, addr_to_vb_idx(addr));
2841 
2842 	spin_lock(&vb->lock);
2843 	bitmap_clear(vb->used_map, offset, (1UL << order));
2844 	spin_unlock(&vb->lock);
2845 
2846 	vunmap_range_noflush(addr, addr + size);
2847 
2848 	if (debug_pagealloc_enabled_static())
2849 		flush_tlb_kernel_range(addr, addr + size);
2850 
2851 	spin_lock(&vb->lock);
2852 
2853 	/* Expand the not yet TLB flushed dirty range */
2854 	vb->dirty_min = min(vb->dirty_min, offset);
2855 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2856 
2857 	WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2858 	if (vb->dirty == VMAP_BBMAP_BITS) {
2859 		BUG_ON(vb->free);
2860 		spin_unlock(&vb->lock);
2861 		free_vmap_block(vb);
2862 	} else
2863 		spin_unlock(&vb->lock);
2864 }
2865 
2866 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2867 {
2868 	LIST_HEAD(purge_list);
2869 	int cpu;
2870 
2871 	if (unlikely(!vmap_initialized))
2872 		return;
2873 
2874 	mutex_lock(&vmap_purge_lock);
2875 
2876 	for_each_possible_cpu(cpu) {
2877 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2878 		struct vmap_block *vb;
2879 		unsigned long idx;
2880 
2881 		rcu_read_lock();
2882 		xa_for_each(&vbq->vmap_blocks, idx, vb) {
2883 			spin_lock(&vb->lock);
2884 
2885 			/*
2886 			 * Try to purge a fragmented block first. If it's
2887 			 * not purgeable, check whether there is dirty
2888 			 * space to be flushed.
2889 			 */
2890 			if (!purge_fragmented_block(vb, &purge_list, false) &&
2891 			    vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2892 				unsigned long va_start = vb->va->va_start;
2893 				unsigned long s, e;
2894 
2895 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2896 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2897 
2898 				start = min(s, start);
2899 				end   = max(e, end);
2900 
2901 				/* Prevent that this is flushed again */
2902 				vb->dirty_min = VMAP_BBMAP_BITS;
2903 				vb->dirty_max = 0;
2904 
2905 				flush = 1;
2906 			}
2907 			spin_unlock(&vb->lock);
2908 		}
2909 		rcu_read_unlock();
2910 	}
2911 	free_purged_blocks(&purge_list);
2912 
2913 	if (!__purge_vmap_area_lazy(start, end, false) && flush)
2914 		flush_tlb_kernel_range(start, end);
2915 	mutex_unlock(&vmap_purge_lock);
2916 }
2917 
2918 /**
2919  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2920  *
2921  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2922  * to amortize TLB flushing overheads. What this means is that any page you
2923  * have now, may, in a former life, have been mapped into kernel virtual
2924  * address by the vmap layer and so there might be some CPUs with TLB entries
2925  * still referencing that page (additional to the regular 1:1 kernel mapping).
2926  *
2927  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2928  * be sure that none of the pages we have control over will have any aliases
2929  * from the vmap layer.
2930  */
2931 void vm_unmap_aliases(void)
2932 {
2933 	unsigned long start = ULONG_MAX, end = 0;
2934 	int flush = 0;
2935 
2936 	_vm_unmap_aliases(start, end, flush);
2937 }
2938 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2939 
2940 /**
2941  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2942  * @mem: the pointer returned by vm_map_ram
2943  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2944  */
2945 void vm_unmap_ram(const void *mem, unsigned int count)
2946 {
2947 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2948 	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2949 	struct vmap_area *va;
2950 
2951 	might_sleep();
2952 	BUG_ON(!addr);
2953 	BUG_ON(addr < VMALLOC_START);
2954 	BUG_ON(addr > VMALLOC_END);
2955 	BUG_ON(!PAGE_ALIGNED(addr));
2956 
2957 	kasan_poison_vmalloc(mem, size);
2958 
2959 	if (likely(count <= VMAP_MAX_ALLOC)) {
2960 		debug_check_no_locks_freed(mem, size);
2961 		vb_free(addr, size);
2962 		return;
2963 	}
2964 
2965 	va = find_unlink_vmap_area(addr);
2966 	if (WARN_ON_ONCE(!va))
2967 		return;
2968 
2969 	debug_check_no_locks_freed((void *)va->va_start, va_size(va));
2970 	free_unmap_vmap_area(va);
2971 }
2972 EXPORT_SYMBOL(vm_unmap_ram);
2973 
2974 /**
2975  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2976  * @pages: an array of pointers to the pages to be mapped
2977  * @count: number of pages
2978  * @node: prefer to allocate data structures on this node
2979  *
2980  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2981  * faster than vmap so it's good.  But if you mix long-life and short-life
2982  * objects with vm_map_ram(), it could consume lots of address space through
2983  * fragmentation (especially on a 32bit machine).  You could see failures in
2984  * the end.  Please use this function for short-lived objects.
2985  *
2986  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2987  */
2988 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2989 {
2990 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2991 	unsigned long addr;
2992 	void *mem;
2993 
2994 	if (likely(count <= VMAP_MAX_ALLOC)) {
2995 		mem = vb_alloc(size, GFP_KERNEL);
2996 		if (IS_ERR(mem))
2997 			return NULL;
2998 		addr = (unsigned long)mem;
2999 	} else {
3000 		struct vmap_area *va;
3001 		va = alloc_vmap_area(size, PAGE_SIZE,
3002 				VMALLOC_START, VMALLOC_END,
3003 				node, GFP_KERNEL, VMAP_RAM,
3004 				NULL);
3005 		if (IS_ERR(va))
3006 			return NULL;
3007 
3008 		addr = va->va_start;
3009 		mem = (void *)addr;
3010 	}
3011 
3012 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
3013 				pages, PAGE_SHIFT) < 0) {
3014 		vm_unmap_ram(mem, count);
3015 		return NULL;
3016 	}
3017 
3018 	/*
3019 	 * Mark the pages as accessible, now that they are mapped.
3020 	 * With hardware tag-based KASAN, marking is skipped for
3021 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3022 	 */
3023 	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
3024 
3025 	return mem;
3026 }
3027 EXPORT_SYMBOL(vm_map_ram);
3028 
3029 static struct vm_struct *vmlist __initdata;
3030 
3031 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
3032 {
3033 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3034 	return vm->page_order;
3035 #else
3036 	return 0;
3037 #endif
3038 }
3039 
3040 unsigned int get_vm_area_page_order(struct vm_struct *vm)
3041 {
3042 	return vm_area_page_order(vm);
3043 }
3044 
3045 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
3046 {
3047 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3048 	vm->page_order = order;
3049 #else
3050 	BUG_ON(order != 0);
3051 #endif
3052 }
3053 
3054 /**
3055  * vm_area_add_early - add vmap area early during boot
3056  * @vm: vm_struct to add
3057  *
3058  * This function is used to add fixed kernel vm area to vmlist before
3059  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
3060  * should contain proper values and the other fields should be zero.
3061  *
3062  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3063  */
3064 void __init vm_area_add_early(struct vm_struct *vm)
3065 {
3066 	struct vm_struct *tmp, **p;
3067 
3068 	BUG_ON(vmap_initialized);
3069 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
3070 		if (tmp->addr >= vm->addr) {
3071 			BUG_ON(tmp->addr < vm->addr + vm->size);
3072 			break;
3073 		} else
3074 			BUG_ON(tmp->addr + tmp->size > vm->addr);
3075 	}
3076 	vm->next = *p;
3077 	*p = vm;
3078 }
3079 
3080 /**
3081  * vm_area_register_early - register vmap area early during boot
3082  * @vm: vm_struct to register
3083  * @align: requested alignment
3084  *
3085  * This function is used to register kernel vm area before
3086  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
3087  * proper values on entry and other fields should be zero.  On return,
3088  * vm->addr contains the allocated address.
3089  *
3090  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3091  */
3092 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
3093 {
3094 	unsigned long addr = ALIGN(VMALLOC_START, align);
3095 	struct vm_struct *cur, **p;
3096 
3097 	BUG_ON(vmap_initialized);
3098 
3099 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
3100 		if ((unsigned long)cur->addr - addr >= vm->size)
3101 			break;
3102 		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
3103 	}
3104 
3105 	BUG_ON(addr > VMALLOC_END - vm->size);
3106 	vm->addr = (void *)addr;
3107 	vm->next = *p;
3108 	*p = vm;
3109 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
3110 }
3111 
3112 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
3113 {
3114 	/*
3115 	 * Before removing VM_UNINITIALIZED,
3116 	 * we should make sure that vm has proper values.
3117 	 * Pair with smp_rmb() in show_numa_info().
3118 	 */
3119 	smp_wmb();
3120 	vm->flags &= ~VM_UNINITIALIZED;
3121 }
3122 
3123 struct vm_struct *__get_vm_area_node(unsigned long size,
3124 		unsigned long align, unsigned long shift, unsigned long flags,
3125 		unsigned long start, unsigned long end, int node,
3126 		gfp_t gfp_mask, const void *caller)
3127 {
3128 	struct vmap_area *va;
3129 	struct vm_struct *area;
3130 	unsigned long requested_size = size;
3131 
3132 	BUG_ON(in_interrupt());
3133 	size = ALIGN(size, 1ul << shift);
3134 	if (unlikely(!size))
3135 		return NULL;
3136 
3137 	if (flags & VM_IOREMAP)
3138 		align = 1ul << clamp_t(int, get_count_order_long(size),
3139 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
3140 
3141 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
3142 	if (unlikely(!area))
3143 		return NULL;
3144 
3145 	if (!(flags & VM_NO_GUARD))
3146 		size += PAGE_SIZE;
3147 
3148 	area->flags = flags;
3149 	area->caller = caller;
3150 	area->requested_size = requested_size;
3151 
3152 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area);
3153 	if (IS_ERR(va)) {
3154 		kfree(area);
3155 		return NULL;
3156 	}
3157 
3158 	/*
3159 	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
3160 	 * best-effort approach, as they can be mapped outside of vmalloc code.
3161 	 * For VM_ALLOC mappings, the pages are marked as accessible after
3162 	 * getting mapped in __vmalloc_node_range().
3163 	 * With hardware tag-based KASAN, marking is skipped for
3164 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3165 	 */
3166 	if (!(flags & VM_ALLOC))
3167 		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
3168 						    KASAN_VMALLOC_PROT_NORMAL);
3169 
3170 	return area;
3171 }
3172 
3173 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
3174 				       unsigned long start, unsigned long end,
3175 				       const void *caller)
3176 {
3177 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
3178 				  NUMA_NO_NODE, GFP_KERNEL, caller);
3179 }
3180 
3181 /**
3182  * get_vm_area - reserve a contiguous kernel virtual area
3183  * @size:	 size of the area
3184  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
3185  *
3186  * Search an area of @size in the kernel virtual mapping area,
3187  * and reserved it for out purposes.  Returns the area descriptor
3188  * on success or %NULL on failure.
3189  *
3190  * Return: the area descriptor on success or %NULL on failure.
3191  */
3192 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
3193 {
3194 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3195 				  VMALLOC_START, VMALLOC_END,
3196 				  NUMA_NO_NODE, GFP_KERNEL,
3197 				  __builtin_return_address(0));
3198 }
3199 
3200 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
3201 				const void *caller)
3202 {
3203 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3204 				  VMALLOC_START, VMALLOC_END,
3205 				  NUMA_NO_NODE, GFP_KERNEL, caller);
3206 }
3207 
3208 /**
3209  * find_vm_area - find a continuous kernel virtual area
3210  * @addr:	  base address
3211  *
3212  * Search for the kernel VM area starting at @addr, and return it.
3213  * It is up to the caller to do all required locking to keep the returned
3214  * pointer valid.
3215  *
3216  * Return: the area descriptor on success or %NULL on failure.
3217  */
3218 struct vm_struct *find_vm_area(const void *addr)
3219 {
3220 	struct vmap_area *va;
3221 
3222 	va = find_vmap_area((unsigned long)addr);
3223 	if (!va)
3224 		return NULL;
3225 
3226 	return va->vm;
3227 }
3228 
3229 /**
3230  * remove_vm_area - find and remove a continuous kernel virtual area
3231  * @addr:	    base address
3232  *
3233  * Search for the kernel VM area starting at @addr, and remove it.
3234  * This function returns the found VM area, but using it is NOT safe
3235  * on SMP machines, except for its size or flags.
3236  *
3237  * Return: the area descriptor on success or %NULL on failure.
3238  */
3239 struct vm_struct *remove_vm_area(const void *addr)
3240 {
3241 	struct vmap_area *va;
3242 	struct vm_struct *vm;
3243 
3244 	might_sleep();
3245 
3246 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
3247 			addr))
3248 		return NULL;
3249 
3250 	va = find_unlink_vmap_area((unsigned long)addr);
3251 	if (!va || !va->vm)
3252 		return NULL;
3253 	vm = va->vm;
3254 
3255 	debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
3256 	debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
3257 	kasan_free_module_shadow(vm);
3258 	kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
3259 
3260 	free_unmap_vmap_area(va);
3261 	return vm;
3262 }
3263 
3264 static inline void set_area_direct_map(const struct vm_struct *area,
3265 				       int (*set_direct_map)(struct page *page))
3266 {
3267 	int i;
3268 
3269 	/* HUGE_VMALLOC passes small pages to set_direct_map */
3270 	for (i = 0; i < area->nr_pages; i++)
3271 		if (page_address(area->pages[i]))
3272 			set_direct_map(area->pages[i]);
3273 }
3274 
3275 /*
3276  * Flush the vm mapping and reset the direct map.
3277  */
3278 static void vm_reset_perms(struct vm_struct *area)
3279 {
3280 	unsigned long start = ULONG_MAX, end = 0;
3281 	unsigned int page_order = vm_area_page_order(area);
3282 	int flush_dmap = 0;
3283 	int i;
3284 
3285 	/*
3286 	 * Find the start and end range of the direct mappings to make sure that
3287 	 * the vm_unmap_aliases() flush includes the direct map.
3288 	 */
3289 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
3290 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
3291 
3292 		if (addr) {
3293 			unsigned long page_size;
3294 
3295 			page_size = PAGE_SIZE << page_order;
3296 			start = min(addr, start);
3297 			end = max(addr + page_size, end);
3298 			flush_dmap = 1;
3299 		}
3300 	}
3301 
3302 	/*
3303 	 * Set direct map to something invalid so that it won't be cached if
3304 	 * there are any accesses after the TLB flush, then flush the TLB and
3305 	 * reset the direct map permissions to the default.
3306 	 */
3307 	set_area_direct_map(area, set_direct_map_invalid_noflush);
3308 	_vm_unmap_aliases(start, end, flush_dmap);
3309 	set_area_direct_map(area, set_direct_map_default_noflush);
3310 }
3311 
3312 static void delayed_vfree_work(struct work_struct *w)
3313 {
3314 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
3315 	struct llist_node *t, *llnode;
3316 
3317 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
3318 		vfree(llnode);
3319 }
3320 
3321 /**
3322  * vfree_atomic - release memory allocated by vmalloc()
3323  * @addr:	  memory base address
3324  *
3325  * This one is just like vfree() but can be called in any atomic context
3326  * except NMIs.
3327  */
3328 void vfree_atomic(const void *addr)
3329 {
3330 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
3331 
3332 	BUG_ON(in_nmi());
3333 	kmemleak_free(addr);
3334 
3335 	/*
3336 	 * Use raw_cpu_ptr() because this can be called from preemptible
3337 	 * context. Preemption is absolutely fine here, because the llist_add()
3338 	 * implementation is lockless, so it works even if we are adding to
3339 	 * another cpu's list. schedule_work() should be fine with this too.
3340 	 */
3341 	if (addr && llist_add((struct llist_node *)addr, &p->list))
3342 		schedule_work(&p->wq);
3343 }
3344 
3345 /**
3346  * vfree - Release memory allocated by vmalloc()
3347  * @addr:  Memory base address
3348  *
3349  * Free the virtually continuous memory area starting at @addr, as obtained
3350  * from one of the vmalloc() family of APIs.  This will usually also free the
3351  * physical memory underlying the virtual allocation, but that memory is
3352  * reference counted, so it will not be freed until the last user goes away.
3353  *
3354  * If @addr is NULL, no operation is performed.
3355  *
3356  * Context:
3357  * May sleep if called *not* from interrupt context.
3358  * Must not be called in NMI context (strictly speaking, it could be
3359  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
3360  * conventions for vfree() arch-dependent would be a really bad idea).
3361  */
3362 void vfree(const void *addr)
3363 {
3364 	struct vm_struct *vm;
3365 	int i;
3366 
3367 	if (unlikely(in_interrupt())) {
3368 		vfree_atomic(addr);
3369 		return;
3370 	}
3371 
3372 	BUG_ON(in_nmi());
3373 	kmemleak_free(addr);
3374 	might_sleep();
3375 
3376 	if (!addr)
3377 		return;
3378 
3379 	vm = remove_vm_area(addr);
3380 	if (unlikely(!vm)) {
3381 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
3382 				addr);
3383 		return;
3384 	}
3385 
3386 	if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
3387 		vm_reset_perms(vm);
3388 	/* All pages of vm should be charged to same memcg, so use first one. */
3389 	if (vm->nr_pages && !(vm->flags & VM_MAP_PUT_PAGES))
3390 		mod_memcg_page_state(vm->pages[0], MEMCG_VMALLOC, -vm->nr_pages);
3391 	for (i = 0; i < vm->nr_pages; i++) {
3392 		struct page *page = vm->pages[i];
3393 
3394 		BUG_ON(!page);
3395 		/*
3396 		 * High-order allocs for huge vmallocs are split, so
3397 		 * can be freed as an array of order-0 allocations
3398 		 */
3399 		__free_page(page);
3400 		cond_resched();
3401 	}
3402 	if (!(vm->flags & VM_MAP_PUT_PAGES))
3403 		atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
3404 	kvfree(vm->pages);
3405 	kfree(vm);
3406 }
3407 EXPORT_SYMBOL(vfree);
3408 
3409 /**
3410  * vunmap - release virtual mapping obtained by vmap()
3411  * @addr:   memory base address
3412  *
3413  * Free the virtually contiguous memory area starting at @addr,
3414  * which was created from the page array passed to vmap().
3415  *
3416  * Must not be called in interrupt context.
3417  */
3418 void vunmap(const void *addr)
3419 {
3420 	struct vm_struct *vm;
3421 
3422 	BUG_ON(in_interrupt());
3423 	might_sleep();
3424 
3425 	if (!addr)
3426 		return;
3427 	vm = remove_vm_area(addr);
3428 	if (unlikely(!vm)) {
3429 		WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
3430 				addr);
3431 		return;
3432 	}
3433 	kfree(vm);
3434 }
3435 EXPORT_SYMBOL(vunmap);
3436 
3437 /**
3438  * vmap - map an array of pages into virtually contiguous space
3439  * @pages: array of page pointers
3440  * @count: number of pages to map
3441  * @flags: vm_area->flags
3442  * @prot: page protection for the mapping
3443  *
3444  * Maps @count pages from @pages into contiguous kernel virtual space.
3445  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
3446  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
3447  * are transferred from the caller to vmap(), and will be freed / dropped when
3448  * vfree() is called on the return value.
3449  *
3450  * Return: the address of the area or %NULL on failure
3451  */
3452 void *vmap(struct page **pages, unsigned int count,
3453 	   unsigned long flags, pgprot_t prot)
3454 {
3455 	struct vm_struct *area;
3456 	unsigned long addr;
3457 	unsigned long size;		/* In bytes */
3458 
3459 	might_sleep();
3460 
3461 	if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
3462 		return NULL;
3463 
3464 	/*
3465 	 * Your top guard is someone else's bottom guard. Not having a top
3466 	 * guard compromises someone else's mappings too.
3467 	 */
3468 	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
3469 		flags &= ~VM_NO_GUARD;
3470 
3471 	if (count > totalram_pages())
3472 		return NULL;
3473 
3474 	size = (unsigned long)count << PAGE_SHIFT;
3475 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
3476 	if (!area)
3477 		return NULL;
3478 
3479 	addr = (unsigned long)area->addr;
3480 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
3481 				pages, PAGE_SHIFT) < 0) {
3482 		vunmap(area->addr);
3483 		return NULL;
3484 	}
3485 
3486 	if (flags & VM_MAP_PUT_PAGES) {
3487 		area->pages = pages;
3488 		area->nr_pages = count;
3489 	}
3490 	return area->addr;
3491 }
3492 EXPORT_SYMBOL(vmap);
3493 
3494 #ifdef CONFIG_VMAP_PFN
3495 struct vmap_pfn_data {
3496 	unsigned long	*pfns;
3497 	pgprot_t	prot;
3498 	unsigned int	idx;
3499 };
3500 
3501 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
3502 {
3503 	struct vmap_pfn_data *data = private;
3504 	unsigned long pfn = data->pfns[data->idx];
3505 	pte_t ptent;
3506 
3507 	if (WARN_ON_ONCE(pfn_valid(pfn)))
3508 		return -EINVAL;
3509 
3510 	ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
3511 	set_pte_at(&init_mm, addr, pte, ptent);
3512 
3513 	data->idx++;
3514 	return 0;
3515 }
3516 
3517 /**
3518  * vmap_pfn - map an array of PFNs into virtually contiguous space
3519  * @pfns: array of PFNs
3520  * @count: number of pages to map
3521  * @prot: page protection for the mapping
3522  *
3523  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
3524  * the start address of the mapping.
3525  */
3526 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
3527 {
3528 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
3529 	struct vm_struct *area;
3530 
3531 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
3532 			__builtin_return_address(0));
3533 	if (!area)
3534 		return NULL;
3535 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3536 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
3537 		free_vm_area(area);
3538 		return NULL;
3539 	}
3540 
3541 	flush_cache_vmap((unsigned long)area->addr,
3542 			 (unsigned long)area->addr + count * PAGE_SIZE);
3543 
3544 	return area->addr;
3545 }
3546 EXPORT_SYMBOL_GPL(vmap_pfn);
3547 #endif /* CONFIG_VMAP_PFN */
3548 
3549 static inline unsigned int
3550 vm_area_alloc_pages(gfp_t gfp, int nid,
3551 		unsigned int order, unsigned int nr_pages, struct page **pages)
3552 {
3553 	unsigned int nr_allocated = 0;
3554 	struct page *page;
3555 	int i;
3556 
3557 	/*
3558 	 * For order-0 pages we make use of bulk allocator, if
3559 	 * the page array is partly or not at all populated due
3560 	 * to fails, fallback to a single page allocator that is
3561 	 * more permissive.
3562 	 */
3563 	if (!order) {
3564 		while (nr_allocated < nr_pages) {
3565 			unsigned int nr, nr_pages_request;
3566 
3567 			/*
3568 			 * A maximum allowed request is hard-coded and is 100
3569 			 * pages per call. That is done in order to prevent a
3570 			 * long preemption off scenario in the bulk-allocator
3571 			 * so the range is [1:100].
3572 			 */
3573 			nr_pages_request = min(100U, nr_pages - nr_allocated);
3574 
3575 			/* memory allocation should consider mempolicy, we can't
3576 			 * wrongly use nearest node when nid == NUMA_NO_NODE,
3577 			 * otherwise memory may be allocated in only one node,
3578 			 * but mempolicy wants to alloc memory by interleaving.
3579 			 */
3580 			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3581 				nr = alloc_pages_bulk_mempolicy_noprof(gfp,
3582 							nr_pages_request,
3583 							pages + nr_allocated);
3584 			else
3585 				nr = alloc_pages_bulk_node_noprof(gfp, nid,
3586 							nr_pages_request,
3587 							pages + nr_allocated);
3588 
3589 			nr_allocated += nr;
3590 			cond_resched();
3591 
3592 			/*
3593 			 * If zero or pages were obtained partly,
3594 			 * fallback to a single page allocator.
3595 			 */
3596 			if (nr != nr_pages_request)
3597 				break;
3598 		}
3599 	}
3600 
3601 	/* High-order pages or fallback path if "bulk" fails. */
3602 	while (nr_allocated < nr_pages) {
3603 		if (!(gfp & __GFP_NOFAIL) && fatal_signal_pending(current))
3604 			break;
3605 
3606 		if (nid == NUMA_NO_NODE)
3607 			page = alloc_pages_noprof(gfp, order);
3608 		else
3609 			page = alloc_pages_node_noprof(nid, gfp, order);
3610 
3611 		if (unlikely(!page))
3612 			break;
3613 
3614 		/*
3615 		 * High-order allocations must be able to be treated as
3616 		 * independent small pages by callers (as they can with
3617 		 * small-page vmallocs). Some drivers do their own refcounting
3618 		 * on vmalloc_to_page() pages, some use page->mapping,
3619 		 * page->lru, etc.
3620 		 */
3621 		if (order)
3622 			split_page(page, order);
3623 
3624 		/*
3625 		 * Careful, we allocate and map page-order pages, but
3626 		 * tracking is done per PAGE_SIZE page so as to keep the
3627 		 * vm_struct APIs independent of the physical/mapped size.
3628 		 */
3629 		for (i = 0; i < (1U << order); i++)
3630 			pages[nr_allocated + i] = page + i;
3631 
3632 		cond_resched();
3633 		nr_allocated += 1U << order;
3634 	}
3635 
3636 	return nr_allocated;
3637 }
3638 
3639 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3640 				 pgprot_t prot, unsigned int page_shift,
3641 				 int node)
3642 {
3643 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3644 	bool nofail = gfp_mask & __GFP_NOFAIL;
3645 	unsigned long addr = (unsigned long)area->addr;
3646 	unsigned long size = get_vm_area_size(area);
3647 	unsigned long array_size;
3648 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
3649 	unsigned int page_order;
3650 	unsigned int flags;
3651 	int ret;
3652 
3653 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3654 
3655 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3656 		gfp_mask |= __GFP_HIGHMEM;
3657 
3658 	/* Please note that the recursion is strictly bounded. */
3659 	if (array_size > PAGE_SIZE) {
3660 		area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node,
3661 					area->caller);
3662 	} else {
3663 		area->pages = kmalloc_node_noprof(array_size, nested_gfp, node);
3664 	}
3665 
3666 	if (!area->pages) {
3667 		warn_alloc(gfp_mask, NULL,
3668 			"vmalloc error: size %lu, failed to allocated page array size %lu",
3669 			nr_small_pages * PAGE_SIZE, array_size);
3670 		free_vm_area(area);
3671 		return NULL;
3672 	}
3673 
3674 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3675 	page_order = vm_area_page_order(area);
3676 
3677 	/*
3678 	 * High-order nofail allocations are really expensive and
3679 	 * potentially dangerous (pre-mature OOM, disruptive reclaim
3680 	 * and compaction etc.
3681 	 *
3682 	 * Please note, the __vmalloc_node_range_noprof() falls-back
3683 	 * to order-0 pages if high-order attempt is unsuccessful.
3684 	 */
3685 	area->nr_pages = vm_area_alloc_pages((page_order ?
3686 		gfp_mask & ~__GFP_NOFAIL : gfp_mask) | __GFP_NOWARN,
3687 		node, page_order, nr_small_pages, area->pages);
3688 
3689 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3690 	/* All pages of vm should be charged to same memcg, so use first one. */
3691 	if (gfp_mask & __GFP_ACCOUNT && area->nr_pages)
3692 		mod_memcg_page_state(area->pages[0], MEMCG_VMALLOC,
3693 				     area->nr_pages);
3694 
3695 	/*
3696 	 * If not enough pages were obtained to accomplish an
3697 	 * allocation request, free them via vfree() if any.
3698 	 */
3699 	if (area->nr_pages != nr_small_pages) {
3700 		/*
3701 		 * vm_area_alloc_pages() can fail due to insufficient memory but
3702 		 * also:-
3703 		 *
3704 		 * - a pending fatal signal
3705 		 * - insufficient huge page-order pages
3706 		 *
3707 		 * Since we always retry allocations at order-0 in the huge page
3708 		 * case a warning for either is spurious.
3709 		 */
3710 		if (!fatal_signal_pending(current) && page_order == 0)
3711 			warn_alloc(gfp_mask, NULL,
3712 				"vmalloc error: size %lu, failed to allocate pages",
3713 				area->nr_pages * PAGE_SIZE);
3714 		goto fail;
3715 	}
3716 
3717 	/*
3718 	 * page tables allocations ignore external gfp mask, enforce it
3719 	 * by the scope API
3720 	 */
3721 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3722 		flags = memalloc_nofs_save();
3723 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3724 		flags = memalloc_noio_save();
3725 
3726 	do {
3727 		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3728 			page_shift);
3729 		if (nofail && (ret < 0))
3730 			schedule_timeout_uninterruptible(1);
3731 	} while (nofail && (ret < 0));
3732 
3733 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3734 		memalloc_nofs_restore(flags);
3735 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3736 		memalloc_noio_restore(flags);
3737 
3738 	if (ret < 0) {
3739 		warn_alloc(gfp_mask, NULL,
3740 			"vmalloc error: size %lu, failed to map pages",
3741 			area->nr_pages * PAGE_SIZE);
3742 		goto fail;
3743 	}
3744 
3745 	return area->addr;
3746 
3747 fail:
3748 	vfree(area->addr);
3749 	return NULL;
3750 }
3751 
3752 /**
3753  * __vmalloc_node_range - allocate virtually contiguous memory
3754  * @size:		  allocation size
3755  * @align:		  desired alignment
3756  * @start:		  vm area range start
3757  * @end:		  vm area range end
3758  * @gfp_mask:		  flags for the page level allocator
3759  * @prot:		  protection mask for the allocated pages
3760  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3761  * @node:		  node to use for allocation or NUMA_NO_NODE
3762  * @caller:		  caller's return address
3763  *
3764  * Allocate enough pages to cover @size from the page level
3765  * allocator with @gfp_mask flags. Please note that the full set of gfp
3766  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3767  * supported.
3768  * Zone modifiers are not supported. From the reclaim modifiers
3769  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3770  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3771  * __GFP_RETRY_MAYFAIL are not supported).
3772  *
3773  * __GFP_NOWARN can be used to suppress failures messages.
3774  *
3775  * Map them into contiguous kernel virtual space, using a pagetable
3776  * protection of @prot.
3777  *
3778  * Return: the address of the area or %NULL on failure
3779  */
3780 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
3781 			unsigned long start, unsigned long end, gfp_t gfp_mask,
3782 			pgprot_t prot, unsigned long vm_flags, int node,
3783 			const void *caller)
3784 {
3785 	struct vm_struct *area;
3786 	void *ret;
3787 	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3788 	unsigned long original_align = align;
3789 	unsigned int shift = PAGE_SHIFT;
3790 
3791 	if (WARN_ON_ONCE(!size))
3792 		return NULL;
3793 
3794 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3795 		warn_alloc(gfp_mask, NULL,
3796 			"vmalloc error: size %lu, exceeds total pages",
3797 			size);
3798 		return NULL;
3799 	}
3800 
3801 	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3802 		/*
3803 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3804 		 * others like modules don't yet expect huge pages in
3805 		 * their allocations due to apply_to_page_range not
3806 		 * supporting them.
3807 		 */
3808 
3809 		if (arch_vmap_pmd_supported(prot) && size >= PMD_SIZE)
3810 			shift = PMD_SHIFT;
3811 		else
3812 			shift = arch_vmap_pte_supported_shift(size);
3813 
3814 		align = max(original_align, 1UL << shift);
3815 	}
3816 
3817 again:
3818 	area = __get_vm_area_node(size, align, shift, VM_ALLOC |
3819 				  VM_UNINITIALIZED | vm_flags, start, end, node,
3820 				  gfp_mask, caller);
3821 	if (!area) {
3822 		bool nofail = gfp_mask & __GFP_NOFAIL;
3823 		warn_alloc(gfp_mask, NULL,
3824 			"vmalloc error: size %lu, vm_struct allocation failed%s",
3825 			size, (nofail) ? ". Retrying." : "");
3826 		if (nofail) {
3827 			schedule_timeout_uninterruptible(1);
3828 			goto again;
3829 		}
3830 		goto fail;
3831 	}
3832 
3833 	/*
3834 	 * Prepare arguments for __vmalloc_area_node() and
3835 	 * kasan_unpoison_vmalloc().
3836 	 */
3837 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3838 		if (kasan_hw_tags_enabled()) {
3839 			/*
3840 			 * Modify protection bits to allow tagging.
3841 			 * This must be done before mapping.
3842 			 */
3843 			prot = arch_vmap_pgprot_tagged(prot);
3844 
3845 			/*
3846 			 * Skip page_alloc poisoning and zeroing for physical
3847 			 * pages backing VM_ALLOC mapping. Memory is instead
3848 			 * poisoned and zeroed by kasan_unpoison_vmalloc().
3849 			 */
3850 			gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
3851 		}
3852 
3853 		/* Take note that the mapping is PAGE_KERNEL. */
3854 		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3855 	}
3856 
3857 	/* Allocate physical pages and map them into vmalloc space. */
3858 	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3859 	if (!ret)
3860 		goto fail;
3861 
3862 	/*
3863 	 * Mark the pages as accessible, now that they are mapped.
3864 	 * The condition for setting KASAN_VMALLOC_INIT should complement the
3865 	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3866 	 * to make sure that memory is initialized under the same conditions.
3867 	 * Tag-based KASAN modes only assign tags to normal non-executable
3868 	 * allocations, see __kasan_unpoison_vmalloc().
3869 	 */
3870 	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3871 	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3872 	    (gfp_mask & __GFP_SKIP_ZERO))
3873 		kasan_flags |= KASAN_VMALLOC_INIT;
3874 	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3875 	area->addr = kasan_unpoison_vmalloc(area->addr, size, kasan_flags);
3876 
3877 	/*
3878 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3879 	 * flag. It means that vm_struct is not fully initialized.
3880 	 * Now, it is fully initialized, so remove this flag here.
3881 	 */
3882 	clear_vm_uninitialized_flag(area);
3883 
3884 	if (!(vm_flags & VM_DEFER_KMEMLEAK))
3885 		kmemleak_vmalloc(area, PAGE_ALIGN(size), gfp_mask);
3886 
3887 	return area->addr;
3888 
3889 fail:
3890 	if (shift > PAGE_SHIFT) {
3891 		shift = PAGE_SHIFT;
3892 		align = original_align;
3893 		goto again;
3894 	}
3895 
3896 	return NULL;
3897 }
3898 
3899 /**
3900  * __vmalloc_node - allocate virtually contiguous memory
3901  * @size:	    allocation size
3902  * @align:	    desired alignment
3903  * @gfp_mask:	    flags for the page level allocator
3904  * @node:	    node to use for allocation or NUMA_NO_NODE
3905  * @caller:	    caller's return address
3906  *
3907  * Allocate enough pages to cover @size from the page level allocator with
3908  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3909  *
3910  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3911  * and __GFP_NOFAIL are not supported
3912  *
3913  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3914  * with mm people.
3915  *
3916  * Return: pointer to the allocated memory or %NULL on error
3917  */
3918 void *__vmalloc_node_noprof(unsigned long size, unsigned long align,
3919 			    gfp_t gfp_mask, int node, const void *caller)
3920 {
3921 	return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END,
3922 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3923 }
3924 /*
3925  * This is only for performance analysis of vmalloc and stress purpose.
3926  * It is required by vmalloc test module, therefore do not use it other
3927  * than that.
3928  */
3929 #ifdef CONFIG_TEST_VMALLOC_MODULE
3930 EXPORT_SYMBOL_GPL(__vmalloc_node_noprof);
3931 #endif
3932 
3933 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
3934 {
3935 	return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE,
3936 				__builtin_return_address(0));
3937 }
3938 EXPORT_SYMBOL(__vmalloc_noprof);
3939 
3940 /**
3941  * vmalloc - allocate virtually contiguous memory
3942  * @size:    allocation size
3943  *
3944  * Allocate enough pages to cover @size from the page level
3945  * allocator and map them into contiguous kernel virtual space.
3946  *
3947  * For tight control over page level allocator and protection flags
3948  * use __vmalloc() instead.
3949  *
3950  * Return: pointer to the allocated memory or %NULL on error
3951  */
3952 void *vmalloc_noprof(unsigned long size)
3953 {
3954 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3955 				__builtin_return_address(0));
3956 }
3957 EXPORT_SYMBOL(vmalloc_noprof);
3958 
3959 /**
3960  * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3961  * @size:      allocation size
3962  * @gfp_mask:  flags for the page level allocator
3963  *
3964  * Allocate enough pages to cover @size from the page level
3965  * allocator and map them into contiguous kernel virtual space.
3966  * If @size is greater than or equal to PMD_SIZE, allow using
3967  * huge pages for the memory
3968  *
3969  * Return: pointer to the allocated memory or %NULL on error
3970  */
3971 void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask)
3972 {
3973 	return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
3974 				    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3975 				    NUMA_NO_NODE, __builtin_return_address(0));
3976 }
3977 EXPORT_SYMBOL_GPL(vmalloc_huge_noprof);
3978 
3979 /**
3980  * vzalloc - allocate virtually contiguous memory with zero fill
3981  * @size:    allocation size
3982  *
3983  * Allocate enough pages to cover @size from the page level
3984  * allocator and map them into contiguous kernel virtual space.
3985  * The memory allocated is set to zero.
3986  *
3987  * For tight control over page level allocator and protection flags
3988  * use __vmalloc() instead.
3989  *
3990  * Return: pointer to the allocated memory or %NULL on error
3991  */
3992 void *vzalloc_noprof(unsigned long size)
3993 {
3994 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3995 				__builtin_return_address(0));
3996 }
3997 EXPORT_SYMBOL(vzalloc_noprof);
3998 
3999 /**
4000  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
4001  * @size: allocation size
4002  *
4003  * The resulting memory area is zeroed so it can be mapped to userspace
4004  * without leaking data.
4005  *
4006  * Return: pointer to the allocated memory or %NULL on error
4007  */
4008 void *vmalloc_user_noprof(unsigned long size)
4009 {
4010 	return __vmalloc_node_range_noprof(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
4011 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
4012 				    VM_USERMAP, NUMA_NO_NODE,
4013 				    __builtin_return_address(0));
4014 }
4015 EXPORT_SYMBOL(vmalloc_user_noprof);
4016 
4017 /**
4018  * vmalloc_node - allocate memory on a specific node
4019  * @size:	  allocation size
4020  * @node:	  numa node
4021  *
4022  * Allocate enough pages to cover @size from the page level
4023  * allocator and map them into contiguous kernel virtual space.
4024  *
4025  * For tight control over page level allocator and protection flags
4026  * use __vmalloc() instead.
4027  *
4028  * Return: pointer to the allocated memory or %NULL on error
4029  */
4030 void *vmalloc_node_noprof(unsigned long size, int node)
4031 {
4032 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node,
4033 			__builtin_return_address(0));
4034 }
4035 EXPORT_SYMBOL(vmalloc_node_noprof);
4036 
4037 /**
4038  * vzalloc_node - allocate memory on a specific node with zero fill
4039  * @size:	allocation size
4040  * @node:	numa node
4041  *
4042  * Allocate enough pages to cover @size from the page level
4043  * allocator and map them into contiguous kernel virtual space.
4044  * The memory allocated is set to zero.
4045  *
4046  * Return: pointer to the allocated memory or %NULL on error
4047  */
4048 void *vzalloc_node_noprof(unsigned long size, int node)
4049 {
4050 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node,
4051 				__builtin_return_address(0));
4052 }
4053 EXPORT_SYMBOL(vzalloc_node_noprof);
4054 
4055 /**
4056  * vrealloc - reallocate virtually contiguous memory; contents remain unchanged
4057  * @p: object to reallocate memory for
4058  * @size: the size to reallocate
4059  * @flags: the flags for the page level allocator
4060  *
4061  * If @p is %NULL, vrealloc() behaves exactly like vmalloc(). If @size is 0 and
4062  * @p is not a %NULL pointer, the object pointed to is freed.
4063  *
4064  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4065  * initial memory allocation, every subsequent call to this API for the same
4066  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4067  * __GFP_ZERO is not fully honored by this API.
4068  *
4069  * In any case, the contents of the object pointed to are preserved up to the
4070  * lesser of the new and old sizes.
4071  *
4072  * This function must not be called concurrently with itself or vfree() for the
4073  * same memory allocation.
4074  *
4075  * Return: pointer to the allocated memory; %NULL if @size is zero or in case of
4076  *         failure
4077  */
4078 void *vrealloc_noprof(const void *p, size_t size, gfp_t flags)
4079 {
4080 	struct vm_struct *vm = NULL;
4081 	size_t alloced_size = 0;
4082 	size_t old_size = 0;
4083 	void *n;
4084 
4085 	if (!size) {
4086 		vfree(p);
4087 		return NULL;
4088 	}
4089 
4090 	if (p) {
4091 		vm = find_vm_area(p);
4092 		if (unlikely(!vm)) {
4093 			WARN(1, "Trying to vrealloc() nonexistent vm area (%p)\n", p);
4094 			return NULL;
4095 		}
4096 
4097 		alloced_size = get_vm_area_size(vm);
4098 		old_size = vm->requested_size;
4099 		if (WARN(alloced_size < old_size,
4100 			 "vrealloc() has mismatched area vs requested sizes (%p)\n", p))
4101 			return NULL;
4102 	}
4103 
4104 	/*
4105 	 * TODO: Shrink the vm_area, i.e. unmap and free unused pages. What
4106 	 * would be a good heuristic for when to shrink the vm_area?
4107 	 */
4108 	if (size <= old_size) {
4109 		/* Zero out "freed" memory. */
4110 		if (want_init_on_free())
4111 			memset((void *)p + size, 0, old_size - size);
4112 		vm->requested_size = size;
4113 		kasan_poison_vmalloc(p + size, old_size - size);
4114 		return (void *)p;
4115 	}
4116 
4117 	/*
4118 	 * We already have the bytes available in the allocation; use them.
4119 	 */
4120 	if (size <= alloced_size) {
4121 		kasan_unpoison_vmalloc(p + old_size, size - old_size,
4122 				       KASAN_VMALLOC_PROT_NORMAL);
4123 		/* Zero out "alloced" memory. */
4124 		if (want_init_on_alloc(flags))
4125 			memset((void *)p + old_size, 0, size - old_size);
4126 		vm->requested_size = size;
4127 	}
4128 
4129 	/* TODO: Grow the vm_area, i.e. allocate and map additional pages. */
4130 	n = __vmalloc_noprof(size, flags);
4131 	if (!n)
4132 		return NULL;
4133 
4134 	if (p) {
4135 		memcpy(n, p, old_size);
4136 		vfree(p);
4137 	}
4138 
4139 	return n;
4140 }
4141 
4142 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
4143 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4144 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
4145 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
4146 #else
4147 /*
4148  * 64b systems should always have either DMA or DMA32 zones. For others
4149  * GFP_DMA32 should do the right thing and use the normal zone.
4150  */
4151 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4152 #endif
4153 
4154 /**
4155  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
4156  * @size:	allocation size
4157  *
4158  * Allocate enough 32bit PA addressable pages to cover @size from the
4159  * page level allocator and map them into contiguous kernel virtual space.
4160  *
4161  * Return: pointer to the allocated memory or %NULL on error
4162  */
4163 void *vmalloc_32_noprof(unsigned long size)
4164 {
4165 	return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
4166 			__builtin_return_address(0));
4167 }
4168 EXPORT_SYMBOL(vmalloc_32_noprof);
4169 
4170 /**
4171  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
4172  * @size:	     allocation size
4173  *
4174  * The resulting memory area is 32bit addressable and zeroed so it can be
4175  * mapped to userspace without leaking data.
4176  *
4177  * Return: pointer to the allocated memory or %NULL on error
4178  */
4179 void *vmalloc_32_user_noprof(unsigned long size)
4180 {
4181 	return __vmalloc_node_range_noprof(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
4182 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
4183 				    VM_USERMAP, NUMA_NO_NODE,
4184 				    __builtin_return_address(0));
4185 }
4186 EXPORT_SYMBOL(vmalloc_32_user_noprof);
4187 
4188 /*
4189  * Atomically zero bytes in the iterator.
4190  *
4191  * Returns the number of zeroed bytes.
4192  */
4193 static size_t zero_iter(struct iov_iter *iter, size_t count)
4194 {
4195 	size_t remains = count;
4196 
4197 	while (remains > 0) {
4198 		size_t num, copied;
4199 
4200 		num = min_t(size_t, remains, PAGE_SIZE);
4201 		copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
4202 		remains -= copied;
4203 
4204 		if (copied < num)
4205 			break;
4206 	}
4207 
4208 	return count - remains;
4209 }
4210 
4211 /*
4212  * small helper routine, copy contents to iter from addr.
4213  * If the page is not present, fill zero.
4214  *
4215  * Returns the number of copied bytes.
4216  */
4217 static size_t aligned_vread_iter(struct iov_iter *iter,
4218 				 const char *addr, size_t count)
4219 {
4220 	size_t remains = count;
4221 	struct page *page;
4222 
4223 	while (remains > 0) {
4224 		unsigned long offset, length;
4225 		size_t copied = 0;
4226 
4227 		offset = offset_in_page(addr);
4228 		length = PAGE_SIZE - offset;
4229 		if (length > remains)
4230 			length = remains;
4231 		page = vmalloc_to_page(addr);
4232 		/*
4233 		 * To do safe access to this _mapped_ area, we need lock. But
4234 		 * adding lock here means that we need to add overhead of
4235 		 * vmalloc()/vfree() calls for this _debug_ interface, rarely
4236 		 * used. Instead of that, we'll use an local mapping via
4237 		 * copy_page_to_iter_nofault() and accept a small overhead in
4238 		 * this access function.
4239 		 */
4240 		if (page)
4241 			copied = copy_page_to_iter_nofault(page, offset,
4242 							   length, iter);
4243 		else
4244 			copied = zero_iter(iter, length);
4245 
4246 		addr += copied;
4247 		remains -= copied;
4248 
4249 		if (copied != length)
4250 			break;
4251 	}
4252 
4253 	return count - remains;
4254 }
4255 
4256 /*
4257  * Read from a vm_map_ram region of memory.
4258  *
4259  * Returns the number of copied bytes.
4260  */
4261 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
4262 				  size_t count, unsigned long flags)
4263 {
4264 	char *start;
4265 	struct vmap_block *vb;
4266 	struct xarray *xa;
4267 	unsigned long offset;
4268 	unsigned int rs, re;
4269 	size_t remains, n;
4270 
4271 	/*
4272 	 * If it's area created by vm_map_ram() interface directly, but
4273 	 * not further subdividing and delegating management to vmap_block,
4274 	 * handle it here.
4275 	 */
4276 	if (!(flags & VMAP_BLOCK))
4277 		return aligned_vread_iter(iter, addr, count);
4278 
4279 	remains = count;
4280 
4281 	/*
4282 	 * Area is split into regions and tracked with vmap_block, read out
4283 	 * each region and zero fill the hole between regions.
4284 	 */
4285 	xa = addr_to_vb_xa((unsigned long) addr);
4286 	vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
4287 	if (!vb)
4288 		goto finished_zero;
4289 
4290 	spin_lock(&vb->lock);
4291 	if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
4292 		spin_unlock(&vb->lock);
4293 		goto finished_zero;
4294 	}
4295 
4296 	for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
4297 		size_t copied;
4298 
4299 		if (remains == 0)
4300 			goto finished;
4301 
4302 		start = vmap_block_vaddr(vb->va->va_start, rs);
4303 
4304 		if (addr < start) {
4305 			size_t to_zero = min_t(size_t, start - addr, remains);
4306 			size_t zeroed = zero_iter(iter, to_zero);
4307 
4308 			addr += zeroed;
4309 			remains -= zeroed;
4310 
4311 			if (remains == 0 || zeroed != to_zero)
4312 				goto finished;
4313 		}
4314 
4315 		/*it could start reading from the middle of used region*/
4316 		offset = offset_in_page(addr);
4317 		n = ((re - rs + 1) << PAGE_SHIFT) - offset;
4318 		if (n > remains)
4319 			n = remains;
4320 
4321 		copied = aligned_vread_iter(iter, start + offset, n);
4322 
4323 		addr += copied;
4324 		remains -= copied;
4325 
4326 		if (copied != n)
4327 			goto finished;
4328 	}
4329 
4330 	spin_unlock(&vb->lock);
4331 
4332 finished_zero:
4333 	/* zero-fill the left dirty or free regions */
4334 	return count - remains + zero_iter(iter, remains);
4335 finished:
4336 	/* We couldn't copy/zero everything */
4337 	spin_unlock(&vb->lock);
4338 	return count - remains;
4339 }
4340 
4341 /**
4342  * vread_iter() - read vmalloc area in a safe way to an iterator.
4343  * @iter:         the iterator to which data should be written.
4344  * @addr:         vm address.
4345  * @count:        number of bytes to be read.
4346  *
4347  * This function checks that addr is a valid vmalloc'ed area, and
4348  * copy data from that area to a given buffer. If the given memory range
4349  * of [addr...addr+count) includes some valid address, data is copied to
4350  * proper area of @buf. If there are memory holes, they'll be zero-filled.
4351  * IOREMAP area is treated as memory hole and no copy is done.
4352  *
4353  * If [addr...addr+count) doesn't includes any intersects with alive
4354  * vm_struct area, returns 0. @buf should be kernel's buffer.
4355  *
4356  * Note: In usual ops, vread() is never necessary because the caller
4357  * should know vmalloc() area is valid and can use memcpy().
4358  * This is for routines which have to access vmalloc area without
4359  * any information, as /proc/kcore.
4360  *
4361  * Return: number of bytes for which addr and buf should be increased
4362  * (same number as @count) or %0 if [addr...addr+count) doesn't
4363  * include any intersection with valid vmalloc area
4364  */
4365 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
4366 {
4367 	struct vmap_node *vn;
4368 	struct vmap_area *va;
4369 	struct vm_struct *vm;
4370 	char *vaddr;
4371 	size_t n, size, flags, remains;
4372 	unsigned long next;
4373 
4374 	addr = kasan_reset_tag(addr);
4375 
4376 	/* Don't allow overflow */
4377 	if ((unsigned long) addr + count < count)
4378 		count = -(unsigned long) addr;
4379 
4380 	remains = count;
4381 
4382 	vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va);
4383 	if (!vn)
4384 		goto finished_zero;
4385 
4386 	/* no intersects with alive vmap_area */
4387 	if ((unsigned long)addr + remains <= va->va_start)
4388 		goto finished_zero;
4389 
4390 	do {
4391 		size_t copied;
4392 
4393 		if (remains == 0)
4394 			goto finished;
4395 
4396 		vm = va->vm;
4397 		flags = va->flags & VMAP_FLAGS_MASK;
4398 		/*
4399 		 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
4400 		 * be set together with VMAP_RAM.
4401 		 */
4402 		WARN_ON(flags == VMAP_BLOCK);
4403 
4404 		if (!vm && !flags)
4405 			goto next_va;
4406 
4407 		if (vm && (vm->flags & VM_UNINITIALIZED))
4408 			goto next_va;
4409 
4410 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4411 		smp_rmb();
4412 
4413 		vaddr = (char *) va->va_start;
4414 		size = vm ? get_vm_area_size(vm) : va_size(va);
4415 
4416 		if (addr >= vaddr + size)
4417 			goto next_va;
4418 
4419 		if (addr < vaddr) {
4420 			size_t to_zero = min_t(size_t, vaddr - addr, remains);
4421 			size_t zeroed = zero_iter(iter, to_zero);
4422 
4423 			addr += zeroed;
4424 			remains -= zeroed;
4425 
4426 			if (remains == 0 || zeroed != to_zero)
4427 				goto finished;
4428 		}
4429 
4430 		n = vaddr + size - addr;
4431 		if (n > remains)
4432 			n = remains;
4433 
4434 		if (flags & VMAP_RAM)
4435 			copied = vmap_ram_vread_iter(iter, addr, n, flags);
4436 		else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE))))
4437 			copied = aligned_vread_iter(iter, addr, n);
4438 		else /* IOREMAP | SPARSE area is treated as memory hole */
4439 			copied = zero_iter(iter, n);
4440 
4441 		addr += copied;
4442 		remains -= copied;
4443 
4444 		if (copied != n)
4445 			goto finished;
4446 
4447 	next_va:
4448 		next = va->va_end;
4449 		spin_unlock(&vn->busy.lock);
4450 	} while ((vn = find_vmap_area_exceed_addr_lock(next, &va)));
4451 
4452 finished_zero:
4453 	if (vn)
4454 		spin_unlock(&vn->busy.lock);
4455 
4456 	/* zero-fill memory holes */
4457 	return count - remains + zero_iter(iter, remains);
4458 finished:
4459 	/* Nothing remains, or We couldn't copy/zero everything. */
4460 	if (vn)
4461 		spin_unlock(&vn->busy.lock);
4462 
4463 	return count - remains;
4464 }
4465 
4466 /**
4467  * remap_vmalloc_range_partial - map vmalloc pages to userspace
4468  * @vma:		vma to cover
4469  * @uaddr:		target user address to start at
4470  * @kaddr:		virtual address of vmalloc kernel memory
4471  * @pgoff:		offset from @kaddr to start at
4472  * @size:		size of map area
4473  *
4474  * Returns:	0 for success, -Exxx on failure
4475  *
4476  * This function checks that @kaddr is a valid vmalloc'ed area,
4477  * and that it is big enough to cover the range starting at
4478  * @uaddr in @vma. Will return failure if that criteria isn't
4479  * met.
4480  *
4481  * Similar to remap_pfn_range() (see mm/memory.c)
4482  */
4483 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
4484 				void *kaddr, unsigned long pgoff,
4485 				unsigned long size)
4486 {
4487 	struct vm_struct *area;
4488 	unsigned long off;
4489 	unsigned long end_index;
4490 
4491 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
4492 		return -EINVAL;
4493 
4494 	size = PAGE_ALIGN(size);
4495 
4496 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
4497 		return -EINVAL;
4498 
4499 	area = find_vm_area(kaddr);
4500 	if (!area)
4501 		return -EINVAL;
4502 
4503 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
4504 		return -EINVAL;
4505 
4506 	if (check_add_overflow(size, off, &end_index) ||
4507 	    end_index > get_vm_area_size(area))
4508 		return -EINVAL;
4509 	kaddr += off;
4510 
4511 	do {
4512 		struct page *page = vmalloc_to_page(kaddr);
4513 		int ret;
4514 
4515 		ret = vm_insert_page(vma, uaddr, page);
4516 		if (ret)
4517 			return ret;
4518 
4519 		uaddr += PAGE_SIZE;
4520 		kaddr += PAGE_SIZE;
4521 		size -= PAGE_SIZE;
4522 	} while (size > 0);
4523 
4524 	vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
4525 
4526 	return 0;
4527 }
4528 
4529 /**
4530  * remap_vmalloc_range - map vmalloc pages to userspace
4531  * @vma:		vma to cover (map full range of vma)
4532  * @addr:		vmalloc memory
4533  * @pgoff:		number of pages into addr before first page to map
4534  *
4535  * Returns:	0 for success, -Exxx on failure
4536  *
4537  * This function checks that addr is a valid vmalloc'ed area, and
4538  * that it is big enough to cover the vma. Will return failure if
4539  * that criteria isn't met.
4540  *
4541  * Similar to remap_pfn_range() (see mm/memory.c)
4542  */
4543 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
4544 						unsigned long pgoff)
4545 {
4546 	return remap_vmalloc_range_partial(vma, vma->vm_start,
4547 					   addr, pgoff,
4548 					   vma->vm_end - vma->vm_start);
4549 }
4550 EXPORT_SYMBOL(remap_vmalloc_range);
4551 
4552 void free_vm_area(struct vm_struct *area)
4553 {
4554 	struct vm_struct *ret;
4555 	ret = remove_vm_area(area->addr);
4556 	BUG_ON(ret != area);
4557 	kfree(area);
4558 }
4559 EXPORT_SYMBOL_GPL(free_vm_area);
4560 
4561 #ifdef CONFIG_SMP
4562 static struct vmap_area *node_to_va(struct rb_node *n)
4563 {
4564 	return rb_entry_safe(n, struct vmap_area, rb_node);
4565 }
4566 
4567 /**
4568  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
4569  * @addr: target address
4570  *
4571  * Returns: vmap_area if it is found. If there is no such area
4572  *   the first highest(reverse order) vmap_area is returned
4573  *   i.e. va->va_start < addr && va->va_end < addr or NULL
4574  *   if there are no any areas before @addr.
4575  */
4576 static struct vmap_area *
4577 pvm_find_va_enclose_addr(unsigned long addr)
4578 {
4579 	struct vmap_area *va, *tmp;
4580 	struct rb_node *n;
4581 
4582 	n = free_vmap_area_root.rb_node;
4583 	va = NULL;
4584 
4585 	while (n) {
4586 		tmp = rb_entry(n, struct vmap_area, rb_node);
4587 		if (tmp->va_start <= addr) {
4588 			va = tmp;
4589 			if (tmp->va_end >= addr)
4590 				break;
4591 
4592 			n = n->rb_right;
4593 		} else {
4594 			n = n->rb_left;
4595 		}
4596 	}
4597 
4598 	return va;
4599 }
4600 
4601 /**
4602  * pvm_determine_end_from_reverse - find the highest aligned address
4603  * of free block below VMALLOC_END
4604  * @va:
4605  *   in - the VA we start the search(reverse order);
4606  *   out - the VA with the highest aligned end address.
4607  * @align: alignment for required highest address
4608  *
4609  * Returns: determined end address within vmap_area
4610  */
4611 static unsigned long
4612 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
4613 {
4614 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4615 	unsigned long addr;
4616 
4617 	if (likely(*va)) {
4618 		list_for_each_entry_from_reverse((*va),
4619 				&free_vmap_area_list, list) {
4620 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
4621 			if ((*va)->va_start < addr)
4622 				return addr;
4623 		}
4624 	}
4625 
4626 	return 0;
4627 }
4628 
4629 /**
4630  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4631  * @offsets: array containing offset of each area
4632  * @sizes: array containing size of each area
4633  * @nr_vms: the number of areas to allocate
4634  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4635  *
4636  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4637  *	    vm_structs on success, %NULL on failure
4638  *
4639  * Percpu allocator wants to use congruent vm areas so that it can
4640  * maintain the offsets among percpu areas.  This function allocates
4641  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
4642  * be scattered pretty far, distance between two areas easily going up
4643  * to gigabytes.  To avoid interacting with regular vmallocs, these
4644  * areas are allocated from top.
4645  *
4646  * Despite its complicated look, this allocator is rather simple. It
4647  * does everything top-down and scans free blocks from the end looking
4648  * for matching base. While scanning, if any of the areas do not fit the
4649  * base address is pulled down to fit the area. Scanning is repeated till
4650  * all the areas fit and then all necessary data structures are inserted
4651  * and the result is returned.
4652  */
4653 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4654 				     const size_t *sizes, int nr_vms,
4655 				     size_t align)
4656 {
4657 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4658 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4659 	struct vmap_area **vas, *va;
4660 	struct vm_struct **vms;
4661 	int area, area2, last_area, term_area;
4662 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
4663 	bool purged = false;
4664 
4665 	/* verify parameters and allocate data structures */
4666 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4667 	for (last_area = 0, area = 0; area < nr_vms; area++) {
4668 		start = offsets[area];
4669 		end = start + sizes[area];
4670 
4671 		/* is everything aligned properly? */
4672 		BUG_ON(!IS_ALIGNED(offsets[area], align));
4673 		BUG_ON(!IS_ALIGNED(sizes[area], align));
4674 
4675 		/* detect the area with the highest address */
4676 		if (start > offsets[last_area])
4677 			last_area = area;
4678 
4679 		for (area2 = area + 1; area2 < nr_vms; area2++) {
4680 			unsigned long start2 = offsets[area2];
4681 			unsigned long end2 = start2 + sizes[area2];
4682 
4683 			BUG_ON(start2 < end && start < end2);
4684 		}
4685 	}
4686 	last_end = offsets[last_area] + sizes[last_area];
4687 
4688 	if (vmalloc_end - vmalloc_start < last_end) {
4689 		WARN_ON(true);
4690 		return NULL;
4691 	}
4692 
4693 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4694 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4695 	if (!vas || !vms)
4696 		goto err_free2;
4697 
4698 	for (area = 0; area < nr_vms; area++) {
4699 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4700 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4701 		if (!vas[area] || !vms[area])
4702 			goto err_free;
4703 	}
4704 retry:
4705 	spin_lock(&free_vmap_area_lock);
4706 
4707 	/* start scanning - we scan from the top, begin with the last area */
4708 	area = term_area = last_area;
4709 	start = offsets[area];
4710 	end = start + sizes[area];
4711 
4712 	va = pvm_find_va_enclose_addr(vmalloc_end);
4713 	base = pvm_determine_end_from_reverse(&va, align) - end;
4714 
4715 	while (true) {
4716 		/*
4717 		 * base might have underflowed, add last_end before
4718 		 * comparing.
4719 		 */
4720 		if (base + last_end < vmalloc_start + last_end)
4721 			goto overflow;
4722 
4723 		/*
4724 		 * Fitting base has not been found.
4725 		 */
4726 		if (va == NULL)
4727 			goto overflow;
4728 
4729 		/*
4730 		 * If required width exceeds current VA block, move
4731 		 * base downwards and then recheck.
4732 		 */
4733 		if (base + end > va->va_end) {
4734 			base = pvm_determine_end_from_reverse(&va, align) - end;
4735 			term_area = area;
4736 			continue;
4737 		}
4738 
4739 		/*
4740 		 * If this VA does not fit, move base downwards and recheck.
4741 		 */
4742 		if (base + start < va->va_start) {
4743 			va = node_to_va(rb_prev(&va->rb_node));
4744 			base = pvm_determine_end_from_reverse(&va, align) - end;
4745 			term_area = area;
4746 			continue;
4747 		}
4748 
4749 		/*
4750 		 * This area fits, move on to the previous one.  If
4751 		 * the previous one is the terminal one, we're done.
4752 		 */
4753 		area = (area + nr_vms - 1) % nr_vms;
4754 		if (area == term_area)
4755 			break;
4756 
4757 		start = offsets[area];
4758 		end = start + sizes[area];
4759 		va = pvm_find_va_enclose_addr(base + end);
4760 	}
4761 
4762 	/* we've found a fitting base, insert all va's */
4763 	for (area = 0; area < nr_vms; area++) {
4764 		int ret;
4765 
4766 		start = base + offsets[area];
4767 		size = sizes[area];
4768 
4769 		va = pvm_find_va_enclose_addr(start);
4770 		if (WARN_ON_ONCE(va == NULL))
4771 			/* It is a BUG(), but trigger recovery instead. */
4772 			goto recovery;
4773 
4774 		ret = va_clip(&free_vmap_area_root,
4775 			&free_vmap_area_list, va, start, size);
4776 		if (WARN_ON_ONCE(unlikely(ret)))
4777 			/* It is a BUG(), but trigger recovery instead. */
4778 			goto recovery;
4779 
4780 		/* Allocated area. */
4781 		va = vas[area];
4782 		va->va_start = start;
4783 		va->va_end = start + size;
4784 	}
4785 
4786 	spin_unlock(&free_vmap_area_lock);
4787 
4788 	/* populate the kasan shadow space */
4789 	for (area = 0; area < nr_vms; area++) {
4790 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4791 			goto err_free_shadow;
4792 	}
4793 
4794 	/* insert all vm's */
4795 	for (area = 0; area < nr_vms; area++) {
4796 		struct vmap_node *vn = addr_to_node(vas[area]->va_start);
4797 
4798 		spin_lock(&vn->busy.lock);
4799 		insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head);
4800 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
4801 				 pcpu_get_vm_areas);
4802 		spin_unlock(&vn->busy.lock);
4803 	}
4804 
4805 	/*
4806 	 * Mark allocated areas as accessible. Do it now as a best-effort
4807 	 * approach, as they can be mapped outside of vmalloc code.
4808 	 * With hardware tag-based KASAN, marking is skipped for
4809 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4810 	 */
4811 	for (area = 0; area < nr_vms; area++)
4812 		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4813 				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4814 
4815 	kfree(vas);
4816 	return vms;
4817 
4818 recovery:
4819 	/*
4820 	 * Remove previously allocated areas. There is no
4821 	 * need in removing these areas from the busy tree,
4822 	 * because they are inserted only on the final step
4823 	 * and when pcpu_get_vm_areas() is success.
4824 	 */
4825 	while (area--) {
4826 		orig_start = vas[area]->va_start;
4827 		orig_end = vas[area]->va_end;
4828 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4829 				&free_vmap_area_list);
4830 		if (va)
4831 			kasan_release_vmalloc(orig_start, orig_end,
4832 				va->va_start, va->va_end,
4833 				KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH);
4834 		vas[area] = NULL;
4835 	}
4836 
4837 overflow:
4838 	spin_unlock(&free_vmap_area_lock);
4839 	if (!purged) {
4840 		reclaim_and_purge_vmap_areas();
4841 		purged = true;
4842 
4843 		/* Before "retry", check if we recover. */
4844 		for (area = 0; area < nr_vms; area++) {
4845 			if (vas[area])
4846 				continue;
4847 
4848 			vas[area] = kmem_cache_zalloc(
4849 				vmap_area_cachep, GFP_KERNEL);
4850 			if (!vas[area])
4851 				goto err_free;
4852 		}
4853 
4854 		goto retry;
4855 	}
4856 
4857 err_free:
4858 	for (area = 0; area < nr_vms; area++) {
4859 		if (vas[area])
4860 			kmem_cache_free(vmap_area_cachep, vas[area]);
4861 
4862 		kfree(vms[area]);
4863 	}
4864 err_free2:
4865 	kfree(vas);
4866 	kfree(vms);
4867 	return NULL;
4868 
4869 err_free_shadow:
4870 	spin_lock(&free_vmap_area_lock);
4871 	/*
4872 	 * We release all the vmalloc shadows, even the ones for regions that
4873 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
4874 	 * being able to tolerate this case.
4875 	 */
4876 	for (area = 0; area < nr_vms; area++) {
4877 		orig_start = vas[area]->va_start;
4878 		orig_end = vas[area]->va_end;
4879 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4880 				&free_vmap_area_list);
4881 		if (va)
4882 			kasan_release_vmalloc(orig_start, orig_end,
4883 				va->va_start, va->va_end,
4884 				KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH);
4885 		vas[area] = NULL;
4886 		kfree(vms[area]);
4887 	}
4888 	spin_unlock(&free_vmap_area_lock);
4889 	kfree(vas);
4890 	kfree(vms);
4891 	return NULL;
4892 }
4893 
4894 /**
4895  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4896  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4897  * @nr_vms: the number of allocated areas
4898  *
4899  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4900  */
4901 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4902 {
4903 	int i;
4904 
4905 	for (i = 0; i < nr_vms; i++)
4906 		free_vm_area(vms[i]);
4907 	kfree(vms);
4908 }
4909 #endif	/* CONFIG_SMP */
4910 
4911 #ifdef CONFIG_PRINTK
4912 bool vmalloc_dump_obj(void *object)
4913 {
4914 	const void *caller;
4915 	struct vm_struct *vm;
4916 	struct vmap_area *va;
4917 	struct vmap_node *vn;
4918 	unsigned long addr;
4919 	unsigned int nr_pages;
4920 
4921 	addr = PAGE_ALIGN((unsigned long) object);
4922 	vn = addr_to_node(addr);
4923 
4924 	if (!spin_trylock(&vn->busy.lock))
4925 		return false;
4926 
4927 	va = __find_vmap_area(addr, &vn->busy.root);
4928 	if (!va || !va->vm) {
4929 		spin_unlock(&vn->busy.lock);
4930 		return false;
4931 	}
4932 
4933 	vm = va->vm;
4934 	addr = (unsigned long) vm->addr;
4935 	caller = vm->caller;
4936 	nr_pages = vm->nr_pages;
4937 	spin_unlock(&vn->busy.lock);
4938 
4939 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4940 		nr_pages, addr, caller);
4941 
4942 	return true;
4943 }
4944 #endif
4945 
4946 #ifdef CONFIG_PROC_FS
4947 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4948 {
4949 	if (IS_ENABLED(CONFIG_NUMA)) {
4950 		unsigned int nr, *counters = m->private;
4951 		unsigned int step = 1U << vm_area_page_order(v);
4952 
4953 		if (!counters)
4954 			return;
4955 
4956 		if (v->flags & VM_UNINITIALIZED)
4957 			return;
4958 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4959 		smp_rmb();
4960 
4961 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4962 
4963 		for (nr = 0; nr < v->nr_pages; nr += step)
4964 			counters[page_to_nid(v->pages[nr])] += step;
4965 		for_each_node_state(nr, N_HIGH_MEMORY)
4966 			if (counters[nr])
4967 				seq_printf(m, " N%u=%u", nr, counters[nr]);
4968 	}
4969 }
4970 
4971 static void show_purge_info(struct seq_file *m)
4972 {
4973 	struct vmap_node *vn;
4974 	struct vmap_area *va;
4975 
4976 	for_each_vmap_node(vn) {
4977 		spin_lock(&vn->lazy.lock);
4978 		list_for_each_entry(va, &vn->lazy.head, list) {
4979 			seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4980 				(void *)va->va_start, (void *)va->va_end,
4981 				va_size(va));
4982 		}
4983 		spin_unlock(&vn->lazy.lock);
4984 	}
4985 }
4986 
4987 static int vmalloc_info_show(struct seq_file *m, void *p)
4988 {
4989 	struct vmap_node *vn;
4990 	struct vmap_area *va;
4991 	struct vm_struct *v;
4992 
4993 	for_each_vmap_node(vn) {
4994 		spin_lock(&vn->busy.lock);
4995 		list_for_each_entry(va, &vn->busy.head, list) {
4996 			if (!va->vm) {
4997 				if (va->flags & VMAP_RAM)
4998 					seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4999 						(void *)va->va_start, (void *)va->va_end,
5000 						va_size(va));
5001 
5002 				continue;
5003 			}
5004 
5005 			v = va->vm;
5006 
5007 			seq_printf(m, "0x%pK-0x%pK %7ld",
5008 				v->addr, v->addr + v->size, v->size);
5009 
5010 			if (v->caller)
5011 				seq_printf(m, " %pS", v->caller);
5012 
5013 			if (v->nr_pages)
5014 				seq_printf(m, " pages=%d", v->nr_pages);
5015 
5016 			if (v->phys_addr)
5017 				seq_printf(m, " phys=%pa", &v->phys_addr);
5018 
5019 			if (v->flags & VM_IOREMAP)
5020 				seq_puts(m, " ioremap");
5021 
5022 			if (v->flags & VM_SPARSE)
5023 				seq_puts(m, " sparse");
5024 
5025 			if (v->flags & VM_ALLOC)
5026 				seq_puts(m, " vmalloc");
5027 
5028 			if (v->flags & VM_MAP)
5029 				seq_puts(m, " vmap");
5030 
5031 			if (v->flags & VM_USERMAP)
5032 				seq_puts(m, " user");
5033 
5034 			if (v->flags & VM_DMA_COHERENT)
5035 				seq_puts(m, " dma-coherent");
5036 
5037 			if (is_vmalloc_addr(v->pages))
5038 				seq_puts(m, " vpages");
5039 
5040 			show_numa_info(m, v);
5041 			seq_putc(m, '\n');
5042 		}
5043 		spin_unlock(&vn->busy.lock);
5044 	}
5045 
5046 	/*
5047 	 * As a final step, dump "unpurged" areas.
5048 	 */
5049 	show_purge_info(m);
5050 	return 0;
5051 }
5052 
5053 static int __init proc_vmalloc_init(void)
5054 {
5055 	void *priv_data = NULL;
5056 
5057 	if (IS_ENABLED(CONFIG_NUMA))
5058 		priv_data = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
5059 
5060 	proc_create_single_data("vmallocinfo",
5061 		0400, NULL, vmalloc_info_show, priv_data);
5062 
5063 	return 0;
5064 }
5065 module_init(proc_vmalloc_init);
5066 
5067 #endif
5068 
5069 static void __init vmap_init_free_space(void)
5070 {
5071 	unsigned long vmap_start = 1;
5072 	const unsigned long vmap_end = ULONG_MAX;
5073 	struct vmap_area *free;
5074 	struct vm_struct *busy;
5075 
5076 	/*
5077 	 *     B     F     B     B     B     F
5078 	 * -|-----|.....|-----|-----|-----|.....|-
5079 	 *  |           The KVA space           |
5080 	 *  |<--------------------------------->|
5081 	 */
5082 	for (busy = vmlist; busy; busy = busy->next) {
5083 		if ((unsigned long) busy->addr - vmap_start > 0) {
5084 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5085 			if (!WARN_ON_ONCE(!free)) {
5086 				free->va_start = vmap_start;
5087 				free->va_end = (unsigned long) busy->addr;
5088 
5089 				insert_vmap_area_augment(free, NULL,
5090 					&free_vmap_area_root,
5091 						&free_vmap_area_list);
5092 			}
5093 		}
5094 
5095 		vmap_start = (unsigned long) busy->addr + busy->size;
5096 	}
5097 
5098 	if (vmap_end - vmap_start > 0) {
5099 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5100 		if (!WARN_ON_ONCE(!free)) {
5101 			free->va_start = vmap_start;
5102 			free->va_end = vmap_end;
5103 
5104 			insert_vmap_area_augment(free, NULL,
5105 				&free_vmap_area_root,
5106 					&free_vmap_area_list);
5107 		}
5108 	}
5109 }
5110 
5111 static void vmap_init_nodes(void)
5112 {
5113 	struct vmap_node *vn;
5114 	int i;
5115 
5116 #if BITS_PER_LONG == 64
5117 	/*
5118 	 * A high threshold of max nodes is fixed and bound to 128,
5119 	 * thus a scale factor is 1 for systems where number of cores
5120 	 * are less or equal to specified threshold.
5121 	 *
5122 	 * As for NUMA-aware notes. For bigger systems, for example
5123 	 * NUMA with multi-sockets, where we can end-up with thousands
5124 	 * of cores in total, a "sub-numa-clustering" should be added.
5125 	 *
5126 	 * In this case a NUMA domain is considered as a single entity
5127 	 * with dedicated sub-nodes in it which describe one group or
5128 	 * set of cores. Therefore a per-domain purging is supposed to
5129 	 * be added as well as a per-domain balancing.
5130 	 */
5131 	int n = clamp_t(unsigned int, num_possible_cpus(), 1, 128);
5132 
5133 	if (n > 1) {
5134 		vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN);
5135 		if (vn) {
5136 			/* Node partition is 16 pages. */
5137 			vmap_zone_size = (1 << 4) * PAGE_SIZE;
5138 			nr_vmap_nodes = n;
5139 			vmap_nodes = vn;
5140 		} else {
5141 			pr_err("Failed to allocate an array. Disable a node layer\n");
5142 		}
5143 	}
5144 #endif
5145 
5146 	for_each_vmap_node(vn) {
5147 		vn->busy.root = RB_ROOT;
5148 		INIT_LIST_HEAD(&vn->busy.head);
5149 		spin_lock_init(&vn->busy.lock);
5150 
5151 		vn->lazy.root = RB_ROOT;
5152 		INIT_LIST_HEAD(&vn->lazy.head);
5153 		spin_lock_init(&vn->lazy.lock);
5154 
5155 		for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
5156 			INIT_LIST_HEAD(&vn->pool[i].head);
5157 			WRITE_ONCE(vn->pool[i].len, 0);
5158 		}
5159 
5160 		spin_lock_init(&vn->pool_lock);
5161 	}
5162 }
5163 
5164 static unsigned long
5165 vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5166 {
5167 	unsigned long count = 0;
5168 	struct vmap_node *vn;
5169 	int i;
5170 
5171 	for_each_vmap_node(vn) {
5172 		for (i = 0; i < MAX_VA_SIZE_PAGES; i++)
5173 			count += READ_ONCE(vn->pool[i].len);
5174 	}
5175 
5176 	return count ? count : SHRINK_EMPTY;
5177 }
5178 
5179 static unsigned long
5180 vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5181 {
5182 	struct vmap_node *vn;
5183 
5184 	for_each_vmap_node(vn)
5185 		decay_va_pool_node(vn, true);
5186 
5187 	return SHRINK_STOP;
5188 }
5189 
5190 void __init vmalloc_init(void)
5191 {
5192 	struct shrinker *vmap_node_shrinker;
5193 	struct vmap_area *va;
5194 	struct vmap_node *vn;
5195 	struct vm_struct *tmp;
5196 	int i;
5197 
5198 	/*
5199 	 * Create the cache for vmap_area objects.
5200 	 */
5201 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
5202 
5203 	for_each_possible_cpu(i) {
5204 		struct vmap_block_queue *vbq;
5205 		struct vfree_deferred *p;
5206 
5207 		vbq = &per_cpu(vmap_block_queue, i);
5208 		spin_lock_init(&vbq->lock);
5209 		INIT_LIST_HEAD(&vbq->free);
5210 		p = &per_cpu(vfree_deferred, i);
5211 		init_llist_head(&p->list);
5212 		INIT_WORK(&p->wq, delayed_vfree_work);
5213 		xa_init(&vbq->vmap_blocks);
5214 	}
5215 
5216 	/*
5217 	 * Setup nodes before importing vmlist.
5218 	 */
5219 	vmap_init_nodes();
5220 
5221 	/* Import existing vmlist entries. */
5222 	for (tmp = vmlist; tmp; tmp = tmp->next) {
5223 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5224 		if (WARN_ON_ONCE(!va))
5225 			continue;
5226 
5227 		va->va_start = (unsigned long)tmp->addr;
5228 		va->va_end = va->va_start + tmp->size;
5229 		va->vm = tmp;
5230 
5231 		vn = addr_to_node(va->va_start);
5232 		insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
5233 	}
5234 
5235 	/*
5236 	 * Now we can initialize a free vmap space.
5237 	 */
5238 	vmap_init_free_space();
5239 	vmap_initialized = true;
5240 
5241 	vmap_node_shrinker = shrinker_alloc(0, "vmap-node");
5242 	if (!vmap_node_shrinker) {
5243 		pr_err("Failed to allocate vmap-node shrinker!\n");
5244 		return;
5245 	}
5246 
5247 	vmap_node_shrinker->count_objects = vmap_node_shrink_count;
5248 	vmap_node_shrinker->scan_objects = vmap_node_shrink_scan;
5249 	shrinker_register(vmap_node_shrinker);
5250 }
5251