1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/debugobjects.h> 22 #include <linux/kallsyms.h> 23 #include <linux/list.h> 24 #include <linux/rbtree.h> 25 #include <linux/radix-tree.h> 26 #include <linux/rcupdate.h> 27 #include <linux/pfn.h> 28 #include <linux/kmemleak.h> 29 #include <linux/atomic.h> 30 #include <linux/compiler.h> 31 #include <linux/llist.h> 32 #include <linux/bitops.h> 33 34 #include <asm/uaccess.h> 35 #include <asm/tlbflush.h> 36 #include <asm/shmparam.h> 37 38 struct vfree_deferred { 39 struct llist_head list; 40 struct work_struct wq; 41 }; 42 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 43 44 static void __vunmap(const void *, int); 45 46 static void free_work(struct work_struct *w) 47 { 48 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 49 struct llist_node *llnode = llist_del_all(&p->list); 50 while (llnode) { 51 void *p = llnode; 52 llnode = llist_next(llnode); 53 __vunmap(p, 1); 54 } 55 } 56 57 /*** Page table manipulation functions ***/ 58 59 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 60 { 61 pte_t *pte; 62 63 pte = pte_offset_kernel(pmd, addr); 64 do { 65 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 66 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 67 } while (pte++, addr += PAGE_SIZE, addr != end); 68 } 69 70 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 71 { 72 pmd_t *pmd; 73 unsigned long next; 74 75 pmd = pmd_offset(pud, addr); 76 do { 77 next = pmd_addr_end(addr, end); 78 if (pmd_clear_huge(pmd)) 79 continue; 80 if (pmd_none_or_clear_bad(pmd)) 81 continue; 82 vunmap_pte_range(pmd, addr, next); 83 } while (pmd++, addr = next, addr != end); 84 } 85 86 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 87 { 88 pud_t *pud; 89 unsigned long next; 90 91 pud = pud_offset(pgd, addr); 92 do { 93 next = pud_addr_end(addr, end); 94 if (pud_clear_huge(pud)) 95 continue; 96 if (pud_none_or_clear_bad(pud)) 97 continue; 98 vunmap_pmd_range(pud, addr, next); 99 } while (pud++, addr = next, addr != end); 100 } 101 102 static void vunmap_page_range(unsigned long addr, unsigned long end) 103 { 104 pgd_t *pgd; 105 unsigned long next; 106 107 BUG_ON(addr >= end); 108 pgd = pgd_offset_k(addr); 109 do { 110 next = pgd_addr_end(addr, end); 111 if (pgd_none_or_clear_bad(pgd)) 112 continue; 113 vunmap_pud_range(pgd, addr, next); 114 } while (pgd++, addr = next, addr != end); 115 } 116 117 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 118 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 119 { 120 pte_t *pte; 121 122 /* 123 * nr is a running index into the array which helps higher level 124 * callers keep track of where we're up to. 125 */ 126 127 pte = pte_alloc_kernel(pmd, addr); 128 if (!pte) 129 return -ENOMEM; 130 do { 131 struct page *page = pages[*nr]; 132 133 if (WARN_ON(!pte_none(*pte))) 134 return -EBUSY; 135 if (WARN_ON(!page)) 136 return -ENOMEM; 137 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 138 (*nr)++; 139 } while (pte++, addr += PAGE_SIZE, addr != end); 140 return 0; 141 } 142 143 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 144 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 145 { 146 pmd_t *pmd; 147 unsigned long next; 148 149 pmd = pmd_alloc(&init_mm, pud, addr); 150 if (!pmd) 151 return -ENOMEM; 152 do { 153 next = pmd_addr_end(addr, end); 154 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 155 return -ENOMEM; 156 } while (pmd++, addr = next, addr != end); 157 return 0; 158 } 159 160 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 161 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 162 { 163 pud_t *pud; 164 unsigned long next; 165 166 pud = pud_alloc(&init_mm, pgd, addr); 167 if (!pud) 168 return -ENOMEM; 169 do { 170 next = pud_addr_end(addr, end); 171 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 172 return -ENOMEM; 173 } while (pud++, addr = next, addr != end); 174 return 0; 175 } 176 177 /* 178 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 179 * will have pfns corresponding to the "pages" array. 180 * 181 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 182 */ 183 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 184 pgprot_t prot, struct page **pages) 185 { 186 pgd_t *pgd; 187 unsigned long next; 188 unsigned long addr = start; 189 int err = 0; 190 int nr = 0; 191 192 BUG_ON(addr >= end); 193 pgd = pgd_offset_k(addr); 194 do { 195 next = pgd_addr_end(addr, end); 196 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 197 if (err) 198 return err; 199 } while (pgd++, addr = next, addr != end); 200 201 return nr; 202 } 203 204 static int vmap_page_range(unsigned long start, unsigned long end, 205 pgprot_t prot, struct page **pages) 206 { 207 int ret; 208 209 ret = vmap_page_range_noflush(start, end, prot, pages); 210 flush_cache_vmap(start, end); 211 return ret; 212 } 213 214 int is_vmalloc_or_module_addr(const void *x) 215 { 216 /* 217 * ARM, x86-64 and sparc64 put modules in a special place, 218 * and fall back on vmalloc() if that fails. Others 219 * just put it in the vmalloc space. 220 */ 221 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 222 unsigned long addr = (unsigned long)x; 223 if (addr >= MODULES_VADDR && addr < MODULES_END) 224 return 1; 225 #endif 226 return is_vmalloc_addr(x); 227 } 228 229 /* 230 * Walk a vmap address to the struct page it maps. 231 */ 232 struct page *vmalloc_to_page(const void *vmalloc_addr) 233 { 234 unsigned long addr = (unsigned long) vmalloc_addr; 235 struct page *page = NULL; 236 pgd_t *pgd = pgd_offset_k(addr); 237 238 /* 239 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 240 * architectures that do not vmalloc module space 241 */ 242 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 243 244 if (!pgd_none(*pgd)) { 245 pud_t *pud = pud_offset(pgd, addr); 246 if (!pud_none(*pud)) { 247 pmd_t *pmd = pmd_offset(pud, addr); 248 if (!pmd_none(*pmd)) { 249 pte_t *ptep, pte; 250 251 ptep = pte_offset_map(pmd, addr); 252 pte = *ptep; 253 if (pte_present(pte)) 254 page = pte_page(pte); 255 pte_unmap(ptep); 256 } 257 } 258 } 259 return page; 260 } 261 EXPORT_SYMBOL(vmalloc_to_page); 262 263 /* 264 * Map a vmalloc()-space virtual address to the physical page frame number. 265 */ 266 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 267 { 268 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 269 } 270 EXPORT_SYMBOL(vmalloc_to_pfn); 271 272 273 /*** Global kva allocator ***/ 274 275 #define VM_LAZY_FREE 0x01 276 #define VM_LAZY_FREEING 0x02 277 #define VM_VM_AREA 0x04 278 279 static DEFINE_SPINLOCK(vmap_area_lock); 280 /* Export for kexec only */ 281 LIST_HEAD(vmap_area_list); 282 static struct rb_root vmap_area_root = RB_ROOT; 283 284 /* The vmap cache globals are protected by vmap_area_lock */ 285 static struct rb_node *free_vmap_cache; 286 static unsigned long cached_hole_size; 287 static unsigned long cached_vstart; 288 static unsigned long cached_align; 289 290 static unsigned long vmap_area_pcpu_hole; 291 292 static struct vmap_area *__find_vmap_area(unsigned long addr) 293 { 294 struct rb_node *n = vmap_area_root.rb_node; 295 296 while (n) { 297 struct vmap_area *va; 298 299 va = rb_entry(n, struct vmap_area, rb_node); 300 if (addr < va->va_start) 301 n = n->rb_left; 302 else if (addr >= va->va_end) 303 n = n->rb_right; 304 else 305 return va; 306 } 307 308 return NULL; 309 } 310 311 static void __insert_vmap_area(struct vmap_area *va) 312 { 313 struct rb_node **p = &vmap_area_root.rb_node; 314 struct rb_node *parent = NULL; 315 struct rb_node *tmp; 316 317 while (*p) { 318 struct vmap_area *tmp_va; 319 320 parent = *p; 321 tmp_va = rb_entry(parent, struct vmap_area, rb_node); 322 if (va->va_start < tmp_va->va_end) 323 p = &(*p)->rb_left; 324 else if (va->va_end > tmp_va->va_start) 325 p = &(*p)->rb_right; 326 else 327 BUG(); 328 } 329 330 rb_link_node(&va->rb_node, parent, p); 331 rb_insert_color(&va->rb_node, &vmap_area_root); 332 333 /* address-sort this list */ 334 tmp = rb_prev(&va->rb_node); 335 if (tmp) { 336 struct vmap_area *prev; 337 prev = rb_entry(tmp, struct vmap_area, rb_node); 338 list_add_rcu(&va->list, &prev->list); 339 } else 340 list_add_rcu(&va->list, &vmap_area_list); 341 } 342 343 static void purge_vmap_area_lazy(void); 344 345 /* 346 * Allocate a region of KVA of the specified size and alignment, within the 347 * vstart and vend. 348 */ 349 static struct vmap_area *alloc_vmap_area(unsigned long size, 350 unsigned long align, 351 unsigned long vstart, unsigned long vend, 352 int node, gfp_t gfp_mask) 353 { 354 struct vmap_area *va; 355 struct rb_node *n; 356 unsigned long addr; 357 int purged = 0; 358 struct vmap_area *first; 359 360 BUG_ON(!size); 361 BUG_ON(size & ~PAGE_MASK); 362 BUG_ON(!is_power_of_2(align)); 363 364 va = kmalloc_node(sizeof(struct vmap_area), 365 gfp_mask & GFP_RECLAIM_MASK, node); 366 if (unlikely(!va)) 367 return ERR_PTR(-ENOMEM); 368 369 /* 370 * Only scan the relevant parts containing pointers to other objects 371 * to avoid false negatives. 372 */ 373 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); 374 375 retry: 376 spin_lock(&vmap_area_lock); 377 /* 378 * Invalidate cache if we have more permissive parameters. 379 * cached_hole_size notes the largest hole noticed _below_ 380 * the vmap_area cached in free_vmap_cache: if size fits 381 * into that hole, we want to scan from vstart to reuse 382 * the hole instead of allocating above free_vmap_cache. 383 * Note that __free_vmap_area may update free_vmap_cache 384 * without updating cached_hole_size or cached_align. 385 */ 386 if (!free_vmap_cache || 387 size < cached_hole_size || 388 vstart < cached_vstart || 389 align < cached_align) { 390 nocache: 391 cached_hole_size = 0; 392 free_vmap_cache = NULL; 393 } 394 /* record if we encounter less permissive parameters */ 395 cached_vstart = vstart; 396 cached_align = align; 397 398 /* find starting point for our search */ 399 if (free_vmap_cache) { 400 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 401 addr = ALIGN(first->va_end, align); 402 if (addr < vstart) 403 goto nocache; 404 if (addr + size < addr) 405 goto overflow; 406 407 } else { 408 addr = ALIGN(vstart, align); 409 if (addr + size < addr) 410 goto overflow; 411 412 n = vmap_area_root.rb_node; 413 first = NULL; 414 415 while (n) { 416 struct vmap_area *tmp; 417 tmp = rb_entry(n, struct vmap_area, rb_node); 418 if (tmp->va_end >= addr) { 419 first = tmp; 420 if (tmp->va_start <= addr) 421 break; 422 n = n->rb_left; 423 } else 424 n = n->rb_right; 425 } 426 427 if (!first) 428 goto found; 429 } 430 431 /* from the starting point, walk areas until a suitable hole is found */ 432 while (addr + size > first->va_start && addr + size <= vend) { 433 if (addr + cached_hole_size < first->va_start) 434 cached_hole_size = first->va_start - addr; 435 addr = ALIGN(first->va_end, align); 436 if (addr + size < addr) 437 goto overflow; 438 439 if (list_is_last(&first->list, &vmap_area_list)) 440 goto found; 441 442 first = list_entry(first->list.next, 443 struct vmap_area, list); 444 } 445 446 found: 447 if (addr + size > vend) 448 goto overflow; 449 450 va->va_start = addr; 451 va->va_end = addr + size; 452 va->flags = 0; 453 __insert_vmap_area(va); 454 free_vmap_cache = &va->rb_node; 455 spin_unlock(&vmap_area_lock); 456 457 BUG_ON(va->va_start & (align-1)); 458 BUG_ON(va->va_start < vstart); 459 BUG_ON(va->va_end > vend); 460 461 return va; 462 463 overflow: 464 spin_unlock(&vmap_area_lock); 465 if (!purged) { 466 purge_vmap_area_lazy(); 467 purged = 1; 468 goto retry; 469 } 470 if (printk_ratelimit()) 471 pr_warn("vmap allocation for size %lu failed: " 472 "use vmalloc=<size> to increase size.\n", size); 473 kfree(va); 474 return ERR_PTR(-EBUSY); 475 } 476 477 static void __free_vmap_area(struct vmap_area *va) 478 { 479 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 480 481 if (free_vmap_cache) { 482 if (va->va_end < cached_vstart) { 483 free_vmap_cache = NULL; 484 } else { 485 struct vmap_area *cache; 486 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 487 if (va->va_start <= cache->va_start) { 488 free_vmap_cache = rb_prev(&va->rb_node); 489 /* 490 * We don't try to update cached_hole_size or 491 * cached_align, but it won't go very wrong. 492 */ 493 } 494 } 495 } 496 rb_erase(&va->rb_node, &vmap_area_root); 497 RB_CLEAR_NODE(&va->rb_node); 498 list_del_rcu(&va->list); 499 500 /* 501 * Track the highest possible candidate for pcpu area 502 * allocation. Areas outside of vmalloc area can be returned 503 * here too, consider only end addresses which fall inside 504 * vmalloc area proper. 505 */ 506 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 507 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 508 509 kfree_rcu(va, rcu_head); 510 } 511 512 /* 513 * Free a region of KVA allocated by alloc_vmap_area 514 */ 515 static void free_vmap_area(struct vmap_area *va) 516 { 517 spin_lock(&vmap_area_lock); 518 __free_vmap_area(va); 519 spin_unlock(&vmap_area_lock); 520 } 521 522 /* 523 * Clear the pagetable entries of a given vmap_area 524 */ 525 static void unmap_vmap_area(struct vmap_area *va) 526 { 527 vunmap_page_range(va->va_start, va->va_end); 528 } 529 530 static void vmap_debug_free_range(unsigned long start, unsigned long end) 531 { 532 /* 533 * Unmap page tables and force a TLB flush immediately if 534 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free 535 * bugs similarly to those in linear kernel virtual address 536 * space after a page has been freed. 537 * 538 * All the lazy freeing logic is still retained, in order to 539 * minimise intrusiveness of this debugging feature. 540 * 541 * This is going to be *slow* (linear kernel virtual address 542 * debugging doesn't do a broadcast TLB flush so it is a lot 543 * faster). 544 */ 545 #ifdef CONFIG_DEBUG_PAGEALLOC 546 vunmap_page_range(start, end); 547 flush_tlb_kernel_range(start, end); 548 #endif 549 } 550 551 /* 552 * lazy_max_pages is the maximum amount of virtual address space we gather up 553 * before attempting to purge with a TLB flush. 554 * 555 * There is a tradeoff here: a larger number will cover more kernel page tables 556 * and take slightly longer to purge, but it will linearly reduce the number of 557 * global TLB flushes that must be performed. It would seem natural to scale 558 * this number up linearly with the number of CPUs (because vmapping activity 559 * could also scale linearly with the number of CPUs), however it is likely 560 * that in practice, workloads might be constrained in other ways that mean 561 * vmap activity will not scale linearly with CPUs. Also, I want to be 562 * conservative and not introduce a big latency on huge systems, so go with 563 * a less aggressive log scale. It will still be an improvement over the old 564 * code, and it will be simple to change the scale factor if we find that it 565 * becomes a problem on bigger systems. 566 */ 567 static unsigned long lazy_max_pages(void) 568 { 569 unsigned int log; 570 571 log = fls(num_online_cpus()); 572 573 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 574 } 575 576 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 577 578 /* for per-CPU blocks */ 579 static void purge_fragmented_blocks_allcpus(void); 580 581 /* 582 * called before a call to iounmap() if the caller wants vm_area_struct's 583 * immediately freed. 584 */ 585 void set_iounmap_nonlazy(void) 586 { 587 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); 588 } 589 590 /* 591 * Purges all lazily-freed vmap areas. 592 * 593 * If sync is 0 then don't purge if there is already a purge in progress. 594 * If force_flush is 1, then flush kernel TLBs between *start and *end even 595 * if we found no lazy vmap areas to unmap (callers can use this to optimise 596 * their own TLB flushing). 597 * Returns with *start = min(*start, lowest purged address) 598 * *end = max(*end, highest purged address) 599 */ 600 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 601 int sync, int force_flush) 602 { 603 static DEFINE_SPINLOCK(purge_lock); 604 LIST_HEAD(valist); 605 struct vmap_area *va; 606 struct vmap_area *n_va; 607 int nr = 0; 608 609 /* 610 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 611 * should not expect such behaviour. This just simplifies locking for 612 * the case that isn't actually used at the moment anyway. 613 */ 614 if (!sync && !force_flush) { 615 if (!spin_trylock(&purge_lock)) 616 return; 617 } else 618 spin_lock(&purge_lock); 619 620 if (sync) 621 purge_fragmented_blocks_allcpus(); 622 623 rcu_read_lock(); 624 list_for_each_entry_rcu(va, &vmap_area_list, list) { 625 if (va->flags & VM_LAZY_FREE) { 626 if (va->va_start < *start) 627 *start = va->va_start; 628 if (va->va_end > *end) 629 *end = va->va_end; 630 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 631 list_add_tail(&va->purge_list, &valist); 632 va->flags |= VM_LAZY_FREEING; 633 va->flags &= ~VM_LAZY_FREE; 634 } 635 } 636 rcu_read_unlock(); 637 638 if (nr) 639 atomic_sub(nr, &vmap_lazy_nr); 640 641 if (nr || force_flush) 642 flush_tlb_kernel_range(*start, *end); 643 644 if (nr) { 645 spin_lock(&vmap_area_lock); 646 list_for_each_entry_safe(va, n_va, &valist, purge_list) 647 __free_vmap_area(va); 648 spin_unlock(&vmap_area_lock); 649 } 650 spin_unlock(&purge_lock); 651 } 652 653 /* 654 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 655 * is already purging. 656 */ 657 static void try_purge_vmap_area_lazy(void) 658 { 659 unsigned long start = ULONG_MAX, end = 0; 660 661 __purge_vmap_area_lazy(&start, &end, 0, 0); 662 } 663 664 /* 665 * Kick off a purge of the outstanding lazy areas. 666 */ 667 static void purge_vmap_area_lazy(void) 668 { 669 unsigned long start = ULONG_MAX, end = 0; 670 671 __purge_vmap_area_lazy(&start, &end, 1, 0); 672 } 673 674 /* 675 * Free a vmap area, caller ensuring that the area has been unmapped 676 * and flush_cache_vunmap had been called for the correct range 677 * previously. 678 */ 679 static void free_vmap_area_noflush(struct vmap_area *va) 680 { 681 va->flags |= VM_LAZY_FREE; 682 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 683 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 684 try_purge_vmap_area_lazy(); 685 } 686 687 /* 688 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been 689 * called for the correct range previously. 690 */ 691 static void free_unmap_vmap_area_noflush(struct vmap_area *va) 692 { 693 unmap_vmap_area(va); 694 free_vmap_area_noflush(va); 695 } 696 697 /* 698 * Free and unmap a vmap area 699 */ 700 static void free_unmap_vmap_area(struct vmap_area *va) 701 { 702 flush_cache_vunmap(va->va_start, va->va_end); 703 free_unmap_vmap_area_noflush(va); 704 } 705 706 static struct vmap_area *find_vmap_area(unsigned long addr) 707 { 708 struct vmap_area *va; 709 710 spin_lock(&vmap_area_lock); 711 va = __find_vmap_area(addr); 712 spin_unlock(&vmap_area_lock); 713 714 return va; 715 } 716 717 static void free_unmap_vmap_area_addr(unsigned long addr) 718 { 719 struct vmap_area *va; 720 721 va = find_vmap_area(addr); 722 BUG_ON(!va); 723 free_unmap_vmap_area(va); 724 } 725 726 727 /*** Per cpu kva allocator ***/ 728 729 /* 730 * vmap space is limited especially on 32 bit architectures. Ensure there is 731 * room for at least 16 percpu vmap blocks per CPU. 732 */ 733 /* 734 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 735 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 736 * instead (we just need a rough idea) 737 */ 738 #if BITS_PER_LONG == 32 739 #define VMALLOC_SPACE (128UL*1024*1024) 740 #else 741 #define VMALLOC_SPACE (128UL*1024*1024*1024) 742 #endif 743 744 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 745 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 746 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 747 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 748 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 749 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 750 #define VMAP_BBMAP_BITS \ 751 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 752 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 753 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 754 755 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 756 757 static bool vmap_initialized __read_mostly = false; 758 759 struct vmap_block_queue { 760 spinlock_t lock; 761 struct list_head free; 762 }; 763 764 struct vmap_block { 765 spinlock_t lock; 766 struct vmap_area *va; 767 unsigned long free, dirty; 768 unsigned long dirty_min, dirty_max; /*< dirty range */ 769 struct list_head free_list; 770 struct rcu_head rcu_head; 771 struct list_head purge; 772 }; 773 774 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 775 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 776 777 /* 778 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 779 * in the free path. Could get rid of this if we change the API to return a 780 * "cookie" from alloc, to be passed to free. But no big deal yet. 781 */ 782 static DEFINE_SPINLOCK(vmap_block_tree_lock); 783 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 784 785 /* 786 * We should probably have a fallback mechanism to allocate virtual memory 787 * out of partially filled vmap blocks. However vmap block sizing should be 788 * fairly reasonable according to the vmalloc size, so it shouldn't be a 789 * big problem. 790 */ 791 792 static unsigned long addr_to_vb_idx(unsigned long addr) 793 { 794 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 795 addr /= VMAP_BLOCK_SIZE; 796 return addr; 797 } 798 799 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 800 { 801 unsigned long addr; 802 803 addr = va_start + (pages_off << PAGE_SHIFT); 804 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 805 return (void *)addr; 806 } 807 808 /** 809 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 810 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 811 * @order: how many 2^order pages should be occupied in newly allocated block 812 * @gfp_mask: flags for the page level allocator 813 * 814 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno) 815 */ 816 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 817 { 818 struct vmap_block_queue *vbq; 819 struct vmap_block *vb; 820 struct vmap_area *va; 821 unsigned long vb_idx; 822 int node, err; 823 void *vaddr; 824 825 node = numa_node_id(); 826 827 vb = kmalloc_node(sizeof(struct vmap_block), 828 gfp_mask & GFP_RECLAIM_MASK, node); 829 if (unlikely(!vb)) 830 return ERR_PTR(-ENOMEM); 831 832 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 833 VMALLOC_START, VMALLOC_END, 834 node, gfp_mask); 835 if (IS_ERR(va)) { 836 kfree(vb); 837 return ERR_CAST(va); 838 } 839 840 err = radix_tree_preload(gfp_mask); 841 if (unlikely(err)) { 842 kfree(vb); 843 free_vmap_area(va); 844 return ERR_PTR(err); 845 } 846 847 vaddr = vmap_block_vaddr(va->va_start, 0); 848 spin_lock_init(&vb->lock); 849 vb->va = va; 850 /* At least something should be left free */ 851 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 852 vb->free = VMAP_BBMAP_BITS - (1UL << order); 853 vb->dirty = 0; 854 vb->dirty_min = VMAP_BBMAP_BITS; 855 vb->dirty_max = 0; 856 INIT_LIST_HEAD(&vb->free_list); 857 858 vb_idx = addr_to_vb_idx(va->va_start); 859 spin_lock(&vmap_block_tree_lock); 860 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 861 spin_unlock(&vmap_block_tree_lock); 862 BUG_ON(err); 863 radix_tree_preload_end(); 864 865 vbq = &get_cpu_var(vmap_block_queue); 866 spin_lock(&vbq->lock); 867 list_add_tail_rcu(&vb->free_list, &vbq->free); 868 spin_unlock(&vbq->lock); 869 put_cpu_var(vmap_block_queue); 870 871 return vaddr; 872 } 873 874 static void free_vmap_block(struct vmap_block *vb) 875 { 876 struct vmap_block *tmp; 877 unsigned long vb_idx; 878 879 vb_idx = addr_to_vb_idx(vb->va->va_start); 880 spin_lock(&vmap_block_tree_lock); 881 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 882 spin_unlock(&vmap_block_tree_lock); 883 BUG_ON(tmp != vb); 884 885 free_vmap_area_noflush(vb->va); 886 kfree_rcu(vb, rcu_head); 887 } 888 889 static void purge_fragmented_blocks(int cpu) 890 { 891 LIST_HEAD(purge); 892 struct vmap_block *vb; 893 struct vmap_block *n_vb; 894 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 895 896 rcu_read_lock(); 897 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 898 899 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 900 continue; 901 902 spin_lock(&vb->lock); 903 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 904 vb->free = 0; /* prevent further allocs after releasing lock */ 905 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 906 vb->dirty_min = 0; 907 vb->dirty_max = VMAP_BBMAP_BITS; 908 spin_lock(&vbq->lock); 909 list_del_rcu(&vb->free_list); 910 spin_unlock(&vbq->lock); 911 spin_unlock(&vb->lock); 912 list_add_tail(&vb->purge, &purge); 913 } else 914 spin_unlock(&vb->lock); 915 } 916 rcu_read_unlock(); 917 918 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 919 list_del(&vb->purge); 920 free_vmap_block(vb); 921 } 922 } 923 924 static void purge_fragmented_blocks_allcpus(void) 925 { 926 int cpu; 927 928 for_each_possible_cpu(cpu) 929 purge_fragmented_blocks(cpu); 930 } 931 932 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 933 { 934 struct vmap_block_queue *vbq; 935 struct vmap_block *vb; 936 void *vaddr = NULL; 937 unsigned int order; 938 939 BUG_ON(size & ~PAGE_MASK); 940 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 941 if (WARN_ON(size == 0)) { 942 /* 943 * Allocating 0 bytes isn't what caller wants since 944 * get_order(0) returns funny result. Just warn and terminate 945 * early. 946 */ 947 return NULL; 948 } 949 order = get_order(size); 950 951 rcu_read_lock(); 952 vbq = &get_cpu_var(vmap_block_queue); 953 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 954 unsigned long pages_off; 955 956 spin_lock(&vb->lock); 957 if (vb->free < (1UL << order)) { 958 spin_unlock(&vb->lock); 959 continue; 960 } 961 962 pages_off = VMAP_BBMAP_BITS - vb->free; 963 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 964 vb->free -= 1UL << order; 965 if (vb->free == 0) { 966 spin_lock(&vbq->lock); 967 list_del_rcu(&vb->free_list); 968 spin_unlock(&vbq->lock); 969 } 970 971 spin_unlock(&vb->lock); 972 break; 973 } 974 975 put_cpu_var(vmap_block_queue); 976 rcu_read_unlock(); 977 978 /* Allocate new block if nothing was found */ 979 if (!vaddr) 980 vaddr = new_vmap_block(order, gfp_mask); 981 982 return vaddr; 983 } 984 985 static void vb_free(const void *addr, unsigned long size) 986 { 987 unsigned long offset; 988 unsigned long vb_idx; 989 unsigned int order; 990 struct vmap_block *vb; 991 992 BUG_ON(size & ~PAGE_MASK); 993 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 994 995 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 996 997 order = get_order(size); 998 999 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 1000 offset >>= PAGE_SHIFT; 1001 1002 vb_idx = addr_to_vb_idx((unsigned long)addr); 1003 rcu_read_lock(); 1004 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 1005 rcu_read_unlock(); 1006 BUG_ON(!vb); 1007 1008 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 1009 1010 spin_lock(&vb->lock); 1011 1012 /* Expand dirty range */ 1013 vb->dirty_min = min(vb->dirty_min, offset); 1014 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 1015 1016 vb->dirty += 1UL << order; 1017 if (vb->dirty == VMAP_BBMAP_BITS) { 1018 BUG_ON(vb->free); 1019 spin_unlock(&vb->lock); 1020 free_vmap_block(vb); 1021 } else 1022 spin_unlock(&vb->lock); 1023 } 1024 1025 /** 1026 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1027 * 1028 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1029 * to amortize TLB flushing overheads. What this means is that any page you 1030 * have now, may, in a former life, have been mapped into kernel virtual 1031 * address by the vmap layer and so there might be some CPUs with TLB entries 1032 * still referencing that page (additional to the regular 1:1 kernel mapping). 1033 * 1034 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1035 * be sure that none of the pages we have control over will have any aliases 1036 * from the vmap layer. 1037 */ 1038 void vm_unmap_aliases(void) 1039 { 1040 unsigned long start = ULONG_MAX, end = 0; 1041 int cpu; 1042 int flush = 0; 1043 1044 if (unlikely(!vmap_initialized)) 1045 return; 1046 1047 for_each_possible_cpu(cpu) { 1048 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1049 struct vmap_block *vb; 1050 1051 rcu_read_lock(); 1052 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1053 spin_lock(&vb->lock); 1054 if (vb->dirty) { 1055 unsigned long va_start = vb->va->va_start; 1056 unsigned long s, e; 1057 1058 s = va_start + (vb->dirty_min << PAGE_SHIFT); 1059 e = va_start + (vb->dirty_max << PAGE_SHIFT); 1060 1061 start = min(s, start); 1062 end = max(e, end); 1063 1064 flush = 1; 1065 } 1066 spin_unlock(&vb->lock); 1067 } 1068 rcu_read_unlock(); 1069 } 1070 1071 __purge_vmap_area_lazy(&start, &end, 1, flush); 1072 } 1073 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1074 1075 /** 1076 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1077 * @mem: the pointer returned by vm_map_ram 1078 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1079 */ 1080 void vm_unmap_ram(const void *mem, unsigned int count) 1081 { 1082 unsigned long size = count << PAGE_SHIFT; 1083 unsigned long addr = (unsigned long)mem; 1084 1085 BUG_ON(!addr); 1086 BUG_ON(addr < VMALLOC_START); 1087 BUG_ON(addr > VMALLOC_END); 1088 BUG_ON(addr & (PAGE_SIZE-1)); 1089 1090 debug_check_no_locks_freed(mem, size); 1091 vmap_debug_free_range(addr, addr+size); 1092 1093 if (likely(count <= VMAP_MAX_ALLOC)) 1094 vb_free(mem, size); 1095 else 1096 free_unmap_vmap_area_addr(addr); 1097 } 1098 EXPORT_SYMBOL(vm_unmap_ram); 1099 1100 /** 1101 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1102 * @pages: an array of pointers to the pages to be mapped 1103 * @count: number of pages 1104 * @node: prefer to allocate data structures on this node 1105 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1106 * 1107 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 1108 * faster than vmap so it's good. But if you mix long-life and short-life 1109 * objects with vm_map_ram(), it could consume lots of address space through 1110 * fragmentation (especially on a 32bit machine). You could see failures in 1111 * the end. Please use this function for short-lived objects. 1112 * 1113 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1114 */ 1115 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1116 { 1117 unsigned long size = count << PAGE_SHIFT; 1118 unsigned long addr; 1119 void *mem; 1120 1121 if (likely(count <= VMAP_MAX_ALLOC)) { 1122 mem = vb_alloc(size, GFP_KERNEL); 1123 if (IS_ERR(mem)) 1124 return NULL; 1125 addr = (unsigned long)mem; 1126 } else { 1127 struct vmap_area *va; 1128 va = alloc_vmap_area(size, PAGE_SIZE, 1129 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1130 if (IS_ERR(va)) 1131 return NULL; 1132 1133 addr = va->va_start; 1134 mem = (void *)addr; 1135 } 1136 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1137 vm_unmap_ram(mem, count); 1138 return NULL; 1139 } 1140 return mem; 1141 } 1142 EXPORT_SYMBOL(vm_map_ram); 1143 1144 static struct vm_struct *vmlist __initdata; 1145 /** 1146 * vm_area_add_early - add vmap area early during boot 1147 * @vm: vm_struct to add 1148 * 1149 * This function is used to add fixed kernel vm area to vmlist before 1150 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1151 * should contain proper values and the other fields should be zero. 1152 * 1153 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1154 */ 1155 void __init vm_area_add_early(struct vm_struct *vm) 1156 { 1157 struct vm_struct *tmp, **p; 1158 1159 BUG_ON(vmap_initialized); 1160 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1161 if (tmp->addr >= vm->addr) { 1162 BUG_ON(tmp->addr < vm->addr + vm->size); 1163 break; 1164 } else 1165 BUG_ON(tmp->addr + tmp->size > vm->addr); 1166 } 1167 vm->next = *p; 1168 *p = vm; 1169 } 1170 1171 /** 1172 * vm_area_register_early - register vmap area early during boot 1173 * @vm: vm_struct to register 1174 * @align: requested alignment 1175 * 1176 * This function is used to register kernel vm area before 1177 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1178 * proper values on entry and other fields should be zero. On return, 1179 * vm->addr contains the allocated address. 1180 * 1181 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1182 */ 1183 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1184 { 1185 static size_t vm_init_off __initdata; 1186 unsigned long addr; 1187 1188 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1189 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1190 1191 vm->addr = (void *)addr; 1192 1193 vm_area_add_early(vm); 1194 } 1195 1196 void __init vmalloc_init(void) 1197 { 1198 struct vmap_area *va; 1199 struct vm_struct *tmp; 1200 int i; 1201 1202 for_each_possible_cpu(i) { 1203 struct vmap_block_queue *vbq; 1204 struct vfree_deferred *p; 1205 1206 vbq = &per_cpu(vmap_block_queue, i); 1207 spin_lock_init(&vbq->lock); 1208 INIT_LIST_HEAD(&vbq->free); 1209 p = &per_cpu(vfree_deferred, i); 1210 init_llist_head(&p->list); 1211 INIT_WORK(&p->wq, free_work); 1212 } 1213 1214 /* Import existing vmlist entries. */ 1215 for (tmp = vmlist; tmp; tmp = tmp->next) { 1216 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1217 va->flags = VM_VM_AREA; 1218 va->va_start = (unsigned long)tmp->addr; 1219 va->va_end = va->va_start + tmp->size; 1220 va->vm = tmp; 1221 __insert_vmap_area(va); 1222 } 1223 1224 vmap_area_pcpu_hole = VMALLOC_END; 1225 1226 vmap_initialized = true; 1227 } 1228 1229 /** 1230 * map_kernel_range_noflush - map kernel VM area with the specified pages 1231 * @addr: start of the VM area to map 1232 * @size: size of the VM area to map 1233 * @prot: page protection flags to use 1234 * @pages: pages to map 1235 * 1236 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1237 * specify should have been allocated using get_vm_area() and its 1238 * friends. 1239 * 1240 * NOTE: 1241 * This function does NOT do any cache flushing. The caller is 1242 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1243 * before calling this function. 1244 * 1245 * RETURNS: 1246 * The number of pages mapped on success, -errno on failure. 1247 */ 1248 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1249 pgprot_t prot, struct page **pages) 1250 { 1251 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1252 } 1253 1254 /** 1255 * unmap_kernel_range_noflush - unmap kernel VM area 1256 * @addr: start of the VM area to unmap 1257 * @size: size of the VM area to unmap 1258 * 1259 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1260 * specify should have been allocated using get_vm_area() and its 1261 * friends. 1262 * 1263 * NOTE: 1264 * This function does NOT do any cache flushing. The caller is 1265 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1266 * before calling this function and flush_tlb_kernel_range() after. 1267 */ 1268 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1269 { 1270 vunmap_page_range(addr, addr + size); 1271 } 1272 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1273 1274 /** 1275 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1276 * @addr: start of the VM area to unmap 1277 * @size: size of the VM area to unmap 1278 * 1279 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1280 * the unmapping and tlb after. 1281 */ 1282 void unmap_kernel_range(unsigned long addr, unsigned long size) 1283 { 1284 unsigned long end = addr + size; 1285 1286 flush_cache_vunmap(addr, end); 1287 vunmap_page_range(addr, end); 1288 flush_tlb_kernel_range(addr, end); 1289 } 1290 EXPORT_SYMBOL_GPL(unmap_kernel_range); 1291 1292 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) 1293 { 1294 unsigned long addr = (unsigned long)area->addr; 1295 unsigned long end = addr + get_vm_area_size(area); 1296 int err; 1297 1298 err = vmap_page_range(addr, end, prot, pages); 1299 1300 return err > 0 ? 0 : err; 1301 } 1302 EXPORT_SYMBOL_GPL(map_vm_area); 1303 1304 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1305 unsigned long flags, const void *caller) 1306 { 1307 spin_lock(&vmap_area_lock); 1308 vm->flags = flags; 1309 vm->addr = (void *)va->va_start; 1310 vm->size = va->va_end - va->va_start; 1311 vm->caller = caller; 1312 va->vm = vm; 1313 va->flags |= VM_VM_AREA; 1314 spin_unlock(&vmap_area_lock); 1315 } 1316 1317 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 1318 { 1319 /* 1320 * Before removing VM_UNINITIALIZED, 1321 * we should make sure that vm has proper values. 1322 * Pair with smp_rmb() in show_numa_info(). 1323 */ 1324 smp_wmb(); 1325 vm->flags &= ~VM_UNINITIALIZED; 1326 } 1327 1328 static struct vm_struct *__get_vm_area_node(unsigned long size, 1329 unsigned long align, unsigned long flags, unsigned long start, 1330 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 1331 { 1332 struct vmap_area *va; 1333 struct vm_struct *area; 1334 1335 BUG_ON(in_interrupt()); 1336 if (flags & VM_IOREMAP) 1337 align = 1ul << clamp_t(int, fls_long(size), 1338 PAGE_SHIFT, IOREMAP_MAX_ORDER); 1339 1340 size = PAGE_ALIGN(size); 1341 if (unlikely(!size)) 1342 return NULL; 1343 1344 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1345 if (unlikely(!area)) 1346 return NULL; 1347 1348 if (!(flags & VM_NO_GUARD)) 1349 size += PAGE_SIZE; 1350 1351 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1352 if (IS_ERR(va)) { 1353 kfree(area); 1354 return NULL; 1355 } 1356 1357 setup_vmalloc_vm(area, va, flags, caller); 1358 1359 return area; 1360 } 1361 1362 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1363 unsigned long start, unsigned long end) 1364 { 1365 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1366 GFP_KERNEL, __builtin_return_address(0)); 1367 } 1368 EXPORT_SYMBOL_GPL(__get_vm_area); 1369 1370 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1371 unsigned long start, unsigned long end, 1372 const void *caller) 1373 { 1374 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1375 GFP_KERNEL, caller); 1376 } 1377 1378 /** 1379 * get_vm_area - reserve a contiguous kernel virtual area 1380 * @size: size of the area 1381 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1382 * 1383 * Search an area of @size in the kernel virtual mapping area, 1384 * and reserved it for out purposes. Returns the area descriptor 1385 * on success or %NULL on failure. 1386 */ 1387 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1388 { 1389 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1390 NUMA_NO_NODE, GFP_KERNEL, 1391 __builtin_return_address(0)); 1392 } 1393 1394 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1395 const void *caller) 1396 { 1397 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1398 NUMA_NO_NODE, GFP_KERNEL, caller); 1399 } 1400 1401 /** 1402 * find_vm_area - find a continuous kernel virtual area 1403 * @addr: base address 1404 * 1405 * Search for the kernel VM area starting at @addr, and return it. 1406 * It is up to the caller to do all required locking to keep the returned 1407 * pointer valid. 1408 */ 1409 struct vm_struct *find_vm_area(const void *addr) 1410 { 1411 struct vmap_area *va; 1412 1413 va = find_vmap_area((unsigned long)addr); 1414 if (va && va->flags & VM_VM_AREA) 1415 return va->vm; 1416 1417 return NULL; 1418 } 1419 1420 /** 1421 * remove_vm_area - find and remove a continuous kernel virtual area 1422 * @addr: base address 1423 * 1424 * Search for the kernel VM area starting at @addr, and remove it. 1425 * This function returns the found VM area, but using it is NOT safe 1426 * on SMP machines, except for its size or flags. 1427 */ 1428 struct vm_struct *remove_vm_area(const void *addr) 1429 { 1430 struct vmap_area *va; 1431 1432 va = find_vmap_area((unsigned long)addr); 1433 if (va && va->flags & VM_VM_AREA) { 1434 struct vm_struct *vm = va->vm; 1435 1436 spin_lock(&vmap_area_lock); 1437 va->vm = NULL; 1438 va->flags &= ~VM_VM_AREA; 1439 spin_unlock(&vmap_area_lock); 1440 1441 vmap_debug_free_range(va->va_start, va->va_end); 1442 kasan_free_shadow(vm); 1443 free_unmap_vmap_area(va); 1444 vm->size -= PAGE_SIZE; 1445 1446 return vm; 1447 } 1448 return NULL; 1449 } 1450 1451 static void __vunmap(const void *addr, int deallocate_pages) 1452 { 1453 struct vm_struct *area; 1454 1455 if (!addr) 1456 return; 1457 1458 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 1459 addr)) 1460 return; 1461 1462 area = remove_vm_area(addr); 1463 if (unlikely(!area)) { 1464 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1465 addr); 1466 return; 1467 } 1468 1469 debug_check_no_locks_freed(addr, area->size); 1470 debug_check_no_obj_freed(addr, area->size); 1471 1472 if (deallocate_pages) { 1473 int i; 1474 1475 for (i = 0; i < area->nr_pages; i++) { 1476 struct page *page = area->pages[i]; 1477 1478 BUG_ON(!page); 1479 __free_page(page); 1480 } 1481 1482 if (area->flags & VM_VPAGES) 1483 vfree(area->pages); 1484 else 1485 kfree(area->pages); 1486 } 1487 1488 kfree(area); 1489 return; 1490 } 1491 1492 /** 1493 * vfree - release memory allocated by vmalloc() 1494 * @addr: memory base address 1495 * 1496 * Free the virtually continuous memory area starting at @addr, as 1497 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1498 * NULL, no operation is performed. 1499 * 1500 * Must not be called in NMI context (strictly speaking, only if we don't 1501 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 1502 * conventions for vfree() arch-depenedent would be a really bad idea) 1503 * 1504 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node) 1505 */ 1506 void vfree(const void *addr) 1507 { 1508 BUG_ON(in_nmi()); 1509 1510 kmemleak_free(addr); 1511 1512 if (!addr) 1513 return; 1514 if (unlikely(in_interrupt())) { 1515 struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred); 1516 if (llist_add((struct llist_node *)addr, &p->list)) 1517 schedule_work(&p->wq); 1518 } else 1519 __vunmap(addr, 1); 1520 } 1521 EXPORT_SYMBOL(vfree); 1522 1523 /** 1524 * vunmap - release virtual mapping obtained by vmap() 1525 * @addr: memory base address 1526 * 1527 * Free the virtually contiguous memory area starting at @addr, 1528 * which was created from the page array passed to vmap(). 1529 * 1530 * Must not be called in interrupt context. 1531 */ 1532 void vunmap(const void *addr) 1533 { 1534 BUG_ON(in_interrupt()); 1535 might_sleep(); 1536 if (addr) 1537 __vunmap(addr, 0); 1538 } 1539 EXPORT_SYMBOL(vunmap); 1540 1541 /** 1542 * vmap - map an array of pages into virtually contiguous space 1543 * @pages: array of page pointers 1544 * @count: number of pages to map 1545 * @flags: vm_area->flags 1546 * @prot: page protection for the mapping 1547 * 1548 * Maps @count pages from @pages into contiguous kernel virtual 1549 * space. 1550 */ 1551 void *vmap(struct page **pages, unsigned int count, 1552 unsigned long flags, pgprot_t prot) 1553 { 1554 struct vm_struct *area; 1555 1556 might_sleep(); 1557 1558 if (count > totalram_pages) 1559 return NULL; 1560 1561 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1562 __builtin_return_address(0)); 1563 if (!area) 1564 return NULL; 1565 1566 if (map_vm_area(area, prot, pages)) { 1567 vunmap(area->addr); 1568 return NULL; 1569 } 1570 1571 return area->addr; 1572 } 1573 EXPORT_SYMBOL(vmap); 1574 1575 static void *__vmalloc_node(unsigned long size, unsigned long align, 1576 gfp_t gfp_mask, pgprot_t prot, 1577 int node, const void *caller); 1578 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1579 pgprot_t prot, int node) 1580 { 1581 const int order = 0; 1582 struct page **pages; 1583 unsigned int nr_pages, array_size, i; 1584 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1585 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; 1586 1587 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 1588 array_size = (nr_pages * sizeof(struct page *)); 1589 1590 area->nr_pages = nr_pages; 1591 /* Please note that the recursion is strictly bounded. */ 1592 if (array_size > PAGE_SIZE) { 1593 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, 1594 PAGE_KERNEL, node, area->caller); 1595 area->flags |= VM_VPAGES; 1596 } else { 1597 pages = kmalloc_node(array_size, nested_gfp, node); 1598 } 1599 area->pages = pages; 1600 if (!area->pages) { 1601 remove_vm_area(area->addr); 1602 kfree(area); 1603 return NULL; 1604 } 1605 1606 for (i = 0; i < area->nr_pages; i++) { 1607 struct page *page; 1608 1609 if (node == NUMA_NO_NODE) 1610 page = alloc_page(alloc_mask); 1611 else 1612 page = alloc_pages_node(node, alloc_mask, order); 1613 1614 if (unlikely(!page)) { 1615 /* Successfully allocated i pages, free them in __vunmap() */ 1616 area->nr_pages = i; 1617 goto fail; 1618 } 1619 area->pages[i] = page; 1620 if (gfp_mask & __GFP_WAIT) 1621 cond_resched(); 1622 } 1623 1624 if (map_vm_area(area, prot, pages)) 1625 goto fail; 1626 return area->addr; 1627 1628 fail: 1629 warn_alloc_failed(gfp_mask, order, 1630 "vmalloc: allocation failure, allocated %ld of %ld bytes\n", 1631 (area->nr_pages*PAGE_SIZE), area->size); 1632 vfree(area->addr); 1633 return NULL; 1634 } 1635 1636 /** 1637 * __vmalloc_node_range - allocate virtually contiguous memory 1638 * @size: allocation size 1639 * @align: desired alignment 1640 * @start: vm area range start 1641 * @end: vm area range end 1642 * @gfp_mask: flags for the page level allocator 1643 * @prot: protection mask for the allocated pages 1644 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 1645 * @node: node to use for allocation or NUMA_NO_NODE 1646 * @caller: caller's return address 1647 * 1648 * Allocate enough pages to cover @size from the page level 1649 * allocator with @gfp_mask flags. Map them into contiguous 1650 * kernel virtual space, using a pagetable protection of @prot. 1651 */ 1652 void *__vmalloc_node_range(unsigned long size, unsigned long align, 1653 unsigned long start, unsigned long end, gfp_t gfp_mask, 1654 pgprot_t prot, unsigned long vm_flags, int node, 1655 const void *caller) 1656 { 1657 struct vm_struct *area; 1658 void *addr; 1659 unsigned long real_size = size; 1660 1661 size = PAGE_ALIGN(size); 1662 if (!size || (size >> PAGE_SHIFT) > totalram_pages) 1663 goto fail; 1664 1665 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | 1666 vm_flags, start, end, node, gfp_mask, caller); 1667 if (!area) 1668 goto fail; 1669 1670 addr = __vmalloc_area_node(area, gfp_mask, prot, node); 1671 if (!addr) 1672 return NULL; 1673 1674 /* 1675 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 1676 * flag. It means that vm_struct is not fully initialized. 1677 * Now, it is fully initialized, so remove this flag here. 1678 */ 1679 clear_vm_uninitialized_flag(area); 1680 1681 /* 1682 * A ref_count = 2 is needed because vm_struct allocated in 1683 * __get_vm_area_node() contains a reference to the virtual address of 1684 * the vmalloc'ed block. 1685 */ 1686 kmemleak_alloc(addr, real_size, 2, gfp_mask); 1687 1688 return addr; 1689 1690 fail: 1691 warn_alloc_failed(gfp_mask, 0, 1692 "vmalloc: allocation failure: %lu bytes\n", 1693 real_size); 1694 return NULL; 1695 } 1696 1697 /** 1698 * __vmalloc_node - allocate virtually contiguous memory 1699 * @size: allocation size 1700 * @align: desired alignment 1701 * @gfp_mask: flags for the page level allocator 1702 * @prot: protection mask for the allocated pages 1703 * @node: node to use for allocation or NUMA_NO_NODE 1704 * @caller: caller's return address 1705 * 1706 * Allocate enough pages to cover @size from the page level 1707 * allocator with @gfp_mask flags. Map them into contiguous 1708 * kernel virtual space, using a pagetable protection of @prot. 1709 */ 1710 static void *__vmalloc_node(unsigned long size, unsigned long align, 1711 gfp_t gfp_mask, pgprot_t prot, 1712 int node, const void *caller) 1713 { 1714 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 1715 gfp_mask, prot, 0, node, caller); 1716 } 1717 1718 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1719 { 1720 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 1721 __builtin_return_address(0)); 1722 } 1723 EXPORT_SYMBOL(__vmalloc); 1724 1725 static inline void *__vmalloc_node_flags(unsigned long size, 1726 int node, gfp_t flags) 1727 { 1728 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 1729 node, __builtin_return_address(0)); 1730 } 1731 1732 /** 1733 * vmalloc - allocate virtually contiguous memory 1734 * @size: allocation size 1735 * Allocate enough pages to cover @size from the page level 1736 * allocator and map them into contiguous kernel virtual space. 1737 * 1738 * For tight control over page level allocator and protection flags 1739 * use __vmalloc() instead. 1740 */ 1741 void *vmalloc(unsigned long size) 1742 { 1743 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1744 GFP_KERNEL | __GFP_HIGHMEM); 1745 } 1746 EXPORT_SYMBOL(vmalloc); 1747 1748 /** 1749 * vzalloc - allocate virtually contiguous memory with zero fill 1750 * @size: allocation size 1751 * Allocate enough pages to cover @size from the page level 1752 * allocator and map them into contiguous kernel virtual space. 1753 * The memory allocated is set to zero. 1754 * 1755 * For tight control over page level allocator and protection flags 1756 * use __vmalloc() instead. 1757 */ 1758 void *vzalloc(unsigned long size) 1759 { 1760 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1761 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1762 } 1763 EXPORT_SYMBOL(vzalloc); 1764 1765 /** 1766 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1767 * @size: allocation size 1768 * 1769 * The resulting memory area is zeroed so it can be mapped to userspace 1770 * without leaking data. 1771 */ 1772 void *vmalloc_user(unsigned long size) 1773 { 1774 struct vm_struct *area; 1775 void *ret; 1776 1777 ret = __vmalloc_node(size, SHMLBA, 1778 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1779 PAGE_KERNEL, NUMA_NO_NODE, 1780 __builtin_return_address(0)); 1781 if (ret) { 1782 area = find_vm_area(ret); 1783 area->flags |= VM_USERMAP; 1784 } 1785 return ret; 1786 } 1787 EXPORT_SYMBOL(vmalloc_user); 1788 1789 /** 1790 * vmalloc_node - allocate memory on a specific node 1791 * @size: allocation size 1792 * @node: numa node 1793 * 1794 * Allocate enough pages to cover @size from the page level 1795 * allocator and map them into contiguous kernel virtual space. 1796 * 1797 * For tight control over page level allocator and protection flags 1798 * use __vmalloc() instead. 1799 */ 1800 void *vmalloc_node(unsigned long size, int node) 1801 { 1802 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1803 node, __builtin_return_address(0)); 1804 } 1805 EXPORT_SYMBOL(vmalloc_node); 1806 1807 /** 1808 * vzalloc_node - allocate memory on a specific node with zero fill 1809 * @size: allocation size 1810 * @node: numa node 1811 * 1812 * Allocate enough pages to cover @size from the page level 1813 * allocator and map them into contiguous kernel virtual space. 1814 * The memory allocated is set to zero. 1815 * 1816 * For tight control over page level allocator and protection flags 1817 * use __vmalloc_node() instead. 1818 */ 1819 void *vzalloc_node(unsigned long size, int node) 1820 { 1821 return __vmalloc_node_flags(size, node, 1822 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1823 } 1824 EXPORT_SYMBOL(vzalloc_node); 1825 1826 #ifndef PAGE_KERNEL_EXEC 1827 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1828 #endif 1829 1830 /** 1831 * vmalloc_exec - allocate virtually contiguous, executable memory 1832 * @size: allocation size 1833 * 1834 * Kernel-internal function to allocate enough pages to cover @size 1835 * the page level allocator and map them into contiguous and 1836 * executable kernel virtual space. 1837 * 1838 * For tight control over page level allocator and protection flags 1839 * use __vmalloc() instead. 1840 */ 1841 1842 void *vmalloc_exec(unsigned long size) 1843 { 1844 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1845 NUMA_NO_NODE, __builtin_return_address(0)); 1846 } 1847 1848 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1849 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1850 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1851 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1852 #else 1853 #define GFP_VMALLOC32 GFP_KERNEL 1854 #endif 1855 1856 /** 1857 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1858 * @size: allocation size 1859 * 1860 * Allocate enough 32bit PA addressable pages to cover @size from the 1861 * page level allocator and map them into contiguous kernel virtual space. 1862 */ 1863 void *vmalloc_32(unsigned long size) 1864 { 1865 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 1866 NUMA_NO_NODE, __builtin_return_address(0)); 1867 } 1868 EXPORT_SYMBOL(vmalloc_32); 1869 1870 /** 1871 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1872 * @size: allocation size 1873 * 1874 * The resulting memory area is 32bit addressable and zeroed so it can be 1875 * mapped to userspace without leaking data. 1876 */ 1877 void *vmalloc_32_user(unsigned long size) 1878 { 1879 struct vm_struct *area; 1880 void *ret; 1881 1882 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1883 NUMA_NO_NODE, __builtin_return_address(0)); 1884 if (ret) { 1885 area = find_vm_area(ret); 1886 area->flags |= VM_USERMAP; 1887 } 1888 return ret; 1889 } 1890 EXPORT_SYMBOL(vmalloc_32_user); 1891 1892 /* 1893 * small helper routine , copy contents to buf from addr. 1894 * If the page is not present, fill zero. 1895 */ 1896 1897 static int aligned_vread(char *buf, char *addr, unsigned long count) 1898 { 1899 struct page *p; 1900 int copied = 0; 1901 1902 while (count) { 1903 unsigned long offset, length; 1904 1905 offset = (unsigned long)addr & ~PAGE_MASK; 1906 length = PAGE_SIZE - offset; 1907 if (length > count) 1908 length = count; 1909 p = vmalloc_to_page(addr); 1910 /* 1911 * To do safe access to this _mapped_ area, we need 1912 * lock. But adding lock here means that we need to add 1913 * overhead of vmalloc()/vfree() calles for this _debug_ 1914 * interface, rarely used. Instead of that, we'll use 1915 * kmap() and get small overhead in this access function. 1916 */ 1917 if (p) { 1918 /* 1919 * we can expect USER0 is not used (see vread/vwrite's 1920 * function description) 1921 */ 1922 void *map = kmap_atomic(p); 1923 memcpy(buf, map + offset, length); 1924 kunmap_atomic(map); 1925 } else 1926 memset(buf, 0, length); 1927 1928 addr += length; 1929 buf += length; 1930 copied += length; 1931 count -= length; 1932 } 1933 return copied; 1934 } 1935 1936 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 1937 { 1938 struct page *p; 1939 int copied = 0; 1940 1941 while (count) { 1942 unsigned long offset, length; 1943 1944 offset = (unsigned long)addr & ~PAGE_MASK; 1945 length = PAGE_SIZE - offset; 1946 if (length > count) 1947 length = count; 1948 p = vmalloc_to_page(addr); 1949 /* 1950 * To do safe access to this _mapped_ area, we need 1951 * lock. But adding lock here means that we need to add 1952 * overhead of vmalloc()/vfree() calles for this _debug_ 1953 * interface, rarely used. Instead of that, we'll use 1954 * kmap() and get small overhead in this access function. 1955 */ 1956 if (p) { 1957 /* 1958 * we can expect USER0 is not used (see vread/vwrite's 1959 * function description) 1960 */ 1961 void *map = kmap_atomic(p); 1962 memcpy(map + offset, buf, length); 1963 kunmap_atomic(map); 1964 } 1965 addr += length; 1966 buf += length; 1967 copied += length; 1968 count -= length; 1969 } 1970 return copied; 1971 } 1972 1973 /** 1974 * vread() - read vmalloc area in a safe way. 1975 * @buf: buffer for reading data 1976 * @addr: vm address. 1977 * @count: number of bytes to be read. 1978 * 1979 * Returns # of bytes which addr and buf should be increased. 1980 * (same number to @count). Returns 0 if [addr...addr+count) doesn't 1981 * includes any intersect with alive vmalloc area. 1982 * 1983 * This function checks that addr is a valid vmalloc'ed area, and 1984 * copy data from that area to a given buffer. If the given memory range 1985 * of [addr...addr+count) includes some valid address, data is copied to 1986 * proper area of @buf. If there are memory holes, they'll be zero-filled. 1987 * IOREMAP area is treated as memory hole and no copy is done. 1988 * 1989 * If [addr...addr+count) doesn't includes any intersects with alive 1990 * vm_struct area, returns 0. @buf should be kernel's buffer. 1991 * 1992 * Note: In usual ops, vread() is never necessary because the caller 1993 * should know vmalloc() area is valid and can use memcpy(). 1994 * This is for routines which have to access vmalloc area without 1995 * any informaion, as /dev/kmem. 1996 * 1997 */ 1998 1999 long vread(char *buf, char *addr, unsigned long count) 2000 { 2001 struct vmap_area *va; 2002 struct vm_struct *vm; 2003 char *vaddr, *buf_start = buf; 2004 unsigned long buflen = count; 2005 unsigned long n; 2006 2007 /* Don't allow overflow */ 2008 if ((unsigned long) addr + count < count) 2009 count = -(unsigned long) addr; 2010 2011 spin_lock(&vmap_area_lock); 2012 list_for_each_entry(va, &vmap_area_list, list) { 2013 if (!count) 2014 break; 2015 2016 if (!(va->flags & VM_VM_AREA)) 2017 continue; 2018 2019 vm = va->vm; 2020 vaddr = (char *) vm->addr; 2021 if (addr >= vaddr + get_vm_area_size(vm)) 2022 continue; 2023 while (addr < vaddr) { 2024 if (count == 0) 2025 goto finished; 2026 *buf = '\0'; 2027 buf++; 2028 addr++; 2029 count--; 2030 } 2031 n = vaddr + get_vm_area_size(vm) - addr; 2032 if (n > count) 2033 n = count; 2034 if (!(vm->flags & VM_IOREMAP)) 2035 aligned_vread(buf, addr, n); 2036 else /* IOREMAP area is treated as memory hole */ 2037 memset(buf, 0, n); 2038 buf += n; 2039 addr += n; 2040 count -= n; 2041 } 2042 finished: 2043 spin_unlock(&vmap_area_lock); 2044 2045 if (buf == buf_start) 2046 return 0; 2047 /* zero-fill memory holes */ 2048 if (buf != buf_start + buflen) 2049 memset(buf, 0, buflen - (buf - buf_start)); 2050 2051 return buflen; 2052 } 2053 2054 /** 2055 * vwrite() - write vmalloc area in a safe way. 2056 * @buf: buffer for source data 2057 * @addr: vm address. 2058 * @count: number of bytes to be read. 2059 * 2060 * Returns # of bytes which addr and buf should be incresed. 2061 * (same number to @count). 2062 * If [addr...addr+count) doesn't includes any intersect with valid 2063 * vmalloc area, returns 0. 2064 * 2065 * This function checks that addr is a valid vmalloc'ed area, and 2066 * copy data from a buffer to the given addr. If specified range of 2067 * [addr...addr+count) includes some valid address, data is copied from 2068 * proper area of @buf. If there are memory holes, no copy to hole. 2069 * IOREMAP area is treated as memory hole and no copy is done. 2070 * 2071 * If [addr...addr+count) doesn't includes any intersects with alive 2072 * vm_struct area, returns 0. @buf should be kernel's buffer. 2073 * 2074 * Note: In usual ops, vwrite() is never necessary because the caller 2075 * should know vmalloc() area is valid and can use memcpy(). 2076 * This is for routines which have to access vmalloc area without 2077 * any informaion, as /dev/kmem. 2078 */ 2079 2080 long vwrite(char *buf, char *addr, unsigned long count) 2081 { 2082 struct vmap_area *va; 2083 struct vm_struct *vm; 2084 char *vaddr; 2085 unsigned long n, buflen; 2086 int copied = 0; 2087 2088 /* Don't allow overflow */ 2089 if ((unsigned long) addr + count < count) 2090 count = -(unsigned long) addr; 2091 buflen = count; 2092 2093 spin_lock(&vmap_area_lock); 2094 list_for_each_entry(va, &vmap_area_list, list) { 2095 if (!count) 2096 break; 2097 2098 if (!(va->flags & VM_VM_AREA)) 2099 continue; 2100 2101 vm = va->vm; 2102 vaddr = (char *) vm->addr; 2103 if (addr >= vaddr + get_vm_area_size(vm)) 2104 continue; 2105 while (addr < vaddr) { 2106 if (count == 0) 2107 goto finished; 2108 buf++; 2109 addr++; 2110 count--; 2111 } 2112 n = vaddr + get_vm_area_size(vm) - addr; 2113 if (n > count) 2114 n = count; 2115 if (!(vm->flags & VM_IOREMAP)) { 2116 aligned_vwrite(buf, addr, n); 2117 copied++; 2118 } 2119 buf += n; 2120 addr += n; 2121 count -= n; 2122 } 2123 finished: 2124 spin_unlock(&vmap_area_lock); 2125 if (!copied) 2126 return 0; 2127 return buflen; 2128 } 2129 2130 /** 2131 * remap_vmalloc_range_partial - map vmalloc pages to userspace 2132 * @vma: vma to cover 2133 * @uaddr: target user address to start at 2134 * @kaddr: virtual address of vmalloc kernel memory 2135 * @size: size of map area 2136 * 2137 * Returns: 0 for success, -Exxx on failure 2138 * 2139 * This function checks that @kaddr is a valid vmalloc'ed area, 2140 * and that it is big enough to cover the range starting at 2141 * @uaddr in @vma. Will return failure if that criteria isn't 2142 * met. 2143 * 2144 * Similar to remap_pfn_range() (see mm/memory.c) 2145 */ 2146 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 2147 void *kaddr, unsigned long size) 2148 { 2149 struct vm_struct *area; 2150 2151 size = PAGE_ALIGN(size); 2152 2153 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 2154 return -EINVAL; 2155 2156 area = find_vm_area(kaddr); 2157 if (!area) 2158 return -EINVAL; 2159 2160 if (!(area->flags & VM_USERMAP)) 2161 return -EINVAL; 2162 2163 if (kaddr + size > area->addr + area->size) 2164 return -EINVAL; 2165 2166 do { 2167 struct page *page = vmalloc_to_page(kaddr); 2168 int ret; 2169 2170 ret = vm_insert_page(vma, uaddr, page); 2171 if (ret) 2172 return ret; 2173 2174 uaddr += PAGE_SIZE; 2175 kaddr += PAGE_SIZE; 2176 size -= PAGE_SIZE; 2177 } while (size > 0); 2178 2179 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 2180 2181 return 0; 2182 } 2183 EXPORT_SYMBOL(remap_vmalloc_range_partial); 2184 2185 /** 2186 * remap_vmalloc_range - map vmalloc pages to userspace 2187 * @vma: vma to cover (map full range of vma) 2188 * @addr: vmalloc memory 2189 * @pgoff: number of pages into addr before first page to map 2190 * 2191 * Returns: 0 for success, -Exxx on failure 2192 * 2193 * This function checks that addr is a valid vmalloc'ed area, and 2194 * that it is big enough to cover the vma. Will return failure if 2195 * that criteria isn't met. 2196 * 2197 * Similar to remap_pfn_range() (see mm/memory.c) 2198 */ 2199 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2200 unsigned long pgoff) 2201 { 2202 return remap_vmalloc_range_partial(vma, vma->vm_start, 2203 addr + (pgoff << PAGE_SHIFT), 2204 vma->vm_end - vma->vm_start); 2205 } 2206 EXPORT_SYMBOL(remap_vmalloc_range); 2207 2208 /* 2209 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2210 * have one. 2211 */ 2212 void __weak vmalloc_sync_all(void) 2213 { 2214 } 2215 2216 2217 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 2218 { 2219 pte_t ***p = data; 2220 2221 if (p) { 2222 *(*p) = pte; 2223 (*p)++; 2224 } 2225 return 0; 2226 } 2227 2228 /** 2229 * alloc_vm_area - allocate a range of kernel address space 2230 * @size: size of the area 2231 * @ptes: returns the PTEs for the address space 2232 * 2233 * Returns: NULL on failure, vm_struct on success 2234 * 2235 * This function reserves a range of kernel address space, and 2236 * allocates pagetables to map that range. No actual mappings 2237 * are created. 2238 * 2239 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 2240 * allocated for the VM area are returned. 2241 */ 2242 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 2243 { 2244 struct vm_struct *area; 2245 2246 area = get_vm_area_caller(size, VM_IOREMAP, 2247 __builtin_return_address(0)); 2248 if (area == NULL) 2249 return NULL; 2250 2251 /* 2252 * This ensures that page tables are constructed for this region 2253 * of kernel virtual address space and mapped into init_mm. 2254 */ 2255 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2256 size, f, ptes ? &ptes : NULL)) { 2257 free_vm_area(area); 2258 return NULL; 2259 } 2260 2261 return area; 2262 } 2263 EXPORT_SYMBOL_GPL(alloc_vm_area); 2264 2265 void free_vm_area(struct vm_struct *area) 2266 { 2267 struct vm_struct *ret; 2268 ret = remove_vm_area(area->addr); 2269 BUG_ON(ret != area); 2270 kfree(area); 2271 } 2272 EXPORT_SYMBOL_GPL(free_vm_area); 2273 2274 #ifdef CONFIG_SMP 2275 static struct vmap_area *node_to_va(struct rb_node *n) 2276 { 2277 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; 2278 } 2279 2280 /** 2281 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2282 * @end: target address 2283 * @pnext: out arg for the next vmap_area 2284 * @pprev: out arg for the previous vmap_area 2285 * 2286 * Returns: %true if either or both of next and prev are found, 2287 * %false if no vmap_area exists 2288 * 2289 * Find vmap_areas end addresses of which enclose @end. ie. if not 2290 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2291 */ 2292 static bool pvm_find_next_prev(unsigned long end, 2293 struct vmap_area **pnext, 2294 struct vmap_area **pprev) 2295 { 2296 struct rb_node *n = vmap_area_root.rb_node; 2297 struct vmap_area *va = NULL; 2298 2299 while (n) { 2300 va = rb_entry(n, struct vmap_area, rb_node); 2301 if (end < va->va_end) 2302 n = n->rb_left; 2303 else if (end > va->va_end) 2304 n = n->rb_right; 2305 else 2306 break; 2307 } 2308 2309 if (!va) 2310 return false; 2311 2312 if (va->va_end > end) { 2313 *pnext = va; 2314 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2315 } else { 2316 *pprev = va; 2317 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2318 } 2319 return true; 2320 } 2321 2322 /** 2323 * pvm_determine_end - find the highest aligned address between two vmap_areas 2324 * @pnext: in/out arg for the next vmap_area 2325 * @pprev: in/out arg for the previous vmap_area 2326 * @align: alignment 2327 * 2328 * Returns: determined end address 2329 * 2330 * Find the highest aligned address between *@pnext and *@pprev below 2331 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2332 * down address is between the end addresses of the two vmap_areas. 2333 * 2334 * Please note that the address returned by this function may fall 2335 * inside *@pnext vmap_area. The caller is responsible for checking 2336 * that. 2337 */ 2338 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2339 struct vmap_area **pprev, 2340 unsigned long align) 2341 { 2342 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2343 unsigned long addr; 2344 2345 if (*pnext) 2346 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2347 else 2348 addr = vmalloc_end; 2349 2350 while (*pprev && (*pprev)->va_end > addr) { 2351 *pnext = *pprev; 2352 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2353 } 2354 2355 return addr; 2356 } 2357 2358 /** 2359 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2360 * @offsets: array containing offset of each area 2361 * @sizes: array containing size of each area 2362 * @nr_vms: the number of areas to allocate 2363 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2364 * 2365 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2366 * vm_structs on success, %NULL on failure 2367 * 2368 * Percpu allocator wants to use congruent vm areas so that it can 2369 * maintain the offsets among percpu areas. This function allocates 2370 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 2371 * be scattered pretty far, distance between two areas easily going up 2372 * to gigabytes. To avoid interacting with regular vmallocs, these 2373 * areas are allocated from top. 2374 * 2375 * Despite its complicated look, this allocator is rather simple. It 2376 * does everything top-down and scans areas from the end looking for 2377 * matching slot. While scanning, if any of the areas overlaps with 2378 * existing vmap_area, the base address is pulled down to fit the 2379 * area. Scanning is repeated till all the areas fit and then all 2380 * necessary data structres are inserted and the result is returned. 2381 */ 2382 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2383 const size_t *sizes, int nr_vms, 2384 size_t align) 2385 { 2386 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2387 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2388 struct vmap_area **vas, *prev, *next; 2389 struct vm_struct **vms; 2390 int area, area2, last_area, term_area; 2391 unsigned long base, start, end, last_end; 2392 bool purged = false; 2393 2394 /* verify parameters and allocate data structures */ 2395 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); 2396 for (last_area = 0, area = 0; area < nr_vms; area++) { 2397 start = offsets[area]; 2398 end = start + sizes[area]; 2399 2400 /* is everything aligned properly? */ 2401 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2402 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2403 2404 /* detect the area with the highest address */ 2405 if (start > offsets[last_area]) 2406 last_area = area; 2407 2408 for (area2 = 0; area2 < nr_vms; area2++) { 2409 unsigned long start2 = offsets[area2]; 2410 unsigned long end2 = start2 + sizes[area2]; 2411 2412 if (area2 == area) 2413 continue; 2414 2415 BUG_ON(start2 >= start && start2 < end); 2416 BUG_ON(end2 <= end && end2 > start); 2417 } 2418 } 2419 last_end = offsets[last_area] + sizes[last_area]; 2420 2421 if (vmalloc_end - vmalloc_start < last_end) { 2422 WARN_ON(true); 2423 return NULL; 2424 } 2425 2426 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 2427 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 2428 if (!vas || !vms) 2429 goto err_free2; 2430 2431 for (area = 0; area < nr_vms; area++) { 2432 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); 2433 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 2434 if (!vas[area] || !vms[area]) 2435 goto err_free; 2436 } 2437 retry: 2438 spin_lock(&vmap_area_lock); 2439 2440 /* start scanning - we scan from the top, begin with the last area */ 2441 area = term_area = last_area; 2442 start = offsets[area]; 2443 end = start + sizes[area]; 2444 2445 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2446 base = vmalloc_end - last_end; 2447 goto found; 2448 } 2449 base = pvm_determine_end(&next, &prev, align) - end; 2450 2451 while (true) { 2452 BUG_ON(next && next->va_end <= base + end); 2453 BUG_ON(prev && prev->va_end > base + end); 2454 2455 /* 2456 * base might have underflowed, add last_end before 2457 * comparing. 2458 */ 2459 if (base + last_end < vmalloc_start + last_end) { 2460 spin_unlock(&vmap_area_lock); 2461 if (!purged) { 2462 purge_vmap_area_lazy(); 2463 purged = true; 2464 goto retry; 2465 } 2466 goto err_free; 2467 } 2468 2469 /* 2470 * If next overlaps, move base downwards so that it's 2471 * right below next and then recheck. 2472 */ 2473 if (next && next->va_start < base + end) { 2474 base = pvm_determine_end(&next, &prev, align) - end; 2475 term_area = area; 2476 continue; 2477 } 2478 2479 /* 2480 * If prev overlaps, shift down next and prev and move 2481 * base so that it's right below new next and then 2482 * recheck. 2483 */ 2484 if (prev && prev->va_end > base + start) { 2485 next = prev; 2486 prev = node_to_va(rb_prev(&next->rb_node)); 2487 base = pvm_determine_end(&next, &prev, align) - end; 2488 term_area = area; 2489 continue; 2490 } 2491 2492 /* 2493 * This area fits, move on to the previous one. If 2494 * the previous one is the terminal one, we're done. 2495 */ 2496 area = (area + nr_vms - 1) % nr_vms; 2497 if (area == term_area) 2498 break; 2499 start = offsets[area]; 2500 end = start + sizes[area]; 2501 pvm_find_next_prev(base + end, &next, &prev); 2502 } 2503 found: 2504 /* we've found a fitting base, insert all va's */ 2505 for (area = 0; area < nr_vms; area++) { 2506 struct vmap_area *va = vas[area]; 2507 2508 va->va_start = base + offsets[area]; 2509 va->va_end = va->va_start + sizes[area]; 2510 __insert_vmap_area(va); 2511 } 2512 2513 vmap_area_pcpu_hole = base + offsets[last_area]; 2514 2515 spin_unlock(&vmap_area_lock); 2516 2517 /* insert all vm's */ 2518 for (area = 0; area < nr_vms; area++) 2519 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2520 pcpu_get_vm_areas); 2521 2522 kfree(vas); 2523 return vms; 2524 2525 err_free: 2526 for (area = 0; area < nr_vms; area++) { 2527 kfree(vas[area]); 2528 kfree(vms[area]); 2529 } 2530 err_free2: 2531 kfree(vas); 2532 kfree(vms); 2533 return NULL; 2534 } 2535 2536 /** 2537 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2538 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2539 * @nr_vms: the number of allocated areas 2540 * 2541 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2542 */ 2543 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2544 { 2545 int i; 2546 2547 for (i = 0; i < nr_vms; i++) 2548 free_vm_area(vms[i]); 2549 kfree(vms); 2550 } 2551 #endif /* CONFIG_SMP */ 2552 2553 #ifdef CONFIG_PROC_FS 2554 static void *s_start(struct seq_file *m, loff_t *pos) 2555 __acquires(&vmap_area_lock) 2556 { 2557 loff_t n = *pos; 2558 struct vmap_area *va; 2559 2560 spin_lock(&vmap_area_lock); 2561 va = list_entry((&vmap_area_list)->next, typeof(*va), list); 2562 while (n > 0 && &va->list != &vmap_area_list) { 2563 n--; 2564 va = list_entry(va->list.next, typeof(*va), list); 2565 } 2566 if (!n && &va->list != &vmap_area_list) 2567 return va; 2568 2569 return NULL; 2570 2571 } 2572 2573 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2574 { 2575 struct vmap_area *va = p, *next; 2576 2577 ++*pos; 2578 next = list_entry(va->list.next, typeof(*va), list); 2579 if (&next->list != &vmap_area_list) 2580 return next; 2581 2582 return NULL; 2583 } 2584 2585 static void s_stop(struct seq_file *m, void *p) 2586 __releases(&vmap_area_lock) 2587 { 2588 spin_unlock(&vmap_area_lock); 2589 } 2590 2591 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2592 { 2593 if (IS_ENABLED(CONFIG_NUMA)) { 2594 unsigned int nr, *counters = m->private; 2595 2596 if (!counters) 2597 return; 2598 2599 if (v->flags & VM_UNINITIALIZED) 2600 return; 2601 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 2602 smp_rmb(); 2603 2604 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2605 2606 for (nr = 0; nr < v->nr_pages; nr++) 2607 counters[page_to_nid(v->pages[nr])]++; 2608 2609 for_each_node_state(nr, N_HIGH_MEMORY) 2610 if (counters[nr]) 2611 seq_printf(m, " N%u=%u", nr, counters[nr]); 2612 } 2613 } 2614 2615 static int s_show(struct seq_file *m, void *p) 2616 { 2617 struct vmap_area *va = p; 2618 struct vm_struct *v; 2619 2620 /* 2621 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on 2622 * behalf of vmap area is being tear down or vm_map_ram allocation. 2623 */ 2624 if (!(va->flags & VM_VM_AREA)) 2625 return 0; 2626 2627 v = va->vm; 2628 2629 seq_printf(m, "0x%pK-0x%pK %7ld", 2630 v->addr, v->addr + v->size, v->size); 2631 2632 if (v->caller) 2633 seq_printf(m, " %pS", v->caller); 2634 2635 if (v->nr_pages) 2636 seq_printf(m, " pages=%d", v->nr_pages); 2637 2638 if (v->phys_addr) 2639 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); 2640 2641 if (v->flags & VM_IOREMAP) 2642 seq_puts(m, " ioremap"); 2643 2644 if (v->flags & VM_ALLOC) 2645 seq_puts(m, " vmalloc"); 2646 2647 if (v->flags & VM_MAP) 2648 seq_puts(m, " vmap"); 2649 2650 if (v->flags & VM_USERMAP) 2651 seq_puts(m, " user"); 2652 2653 if (v->flags & VM_VPAGES) 2654 seq_puts(m, " vpages"); 2655 2656 show_numa_info(m, v); 2657 seq_putc(m, '\n'); 2658 return 0; 2659 } 2660 2661 static const struct seq_operations vmalloc_op = { 2662 .start = s_start, 2663 .next = s_next, 2664 .stop = s_stop, 2665 .show = s_show, 2666 }; 2667 2668 static int vmalloc_open(struct inode *inode, struct file *file) 2669 { 2670 if (IS_ENABLED(CONFIG_NUMA)) 2671 return seq_open_private(file, &vmalloc_op, 2672 nr_node_ids * sizeof(unsigned int)); 2673 else 2674 return seq_open(file, &vmalloc_op); 2675 } 2676 2677 static const struct file_operations proc_vmalloc_operations = { 2678 .open = vmalloc_open, 2679 .read = seq_read, 2680 .llseek = seq_lseek, 2681 .release = seq_release_private, 2682 }; 2683 2684 static int __init proc_vmalloc_init(void) 2685 { 2686 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 2687 return 0; 2688 } 2689 module_init(proc_vmalloc_init); 2690 2691 void get_vmalloc_info(struct vmalloc_info *vmi) 2692 { 2693 struct vmap_area *va; 2694 unsigned long free_area_size; 2695 unsigned long prev_end; 2696 2697 vmi->used = 0; 2698 vmi->largest_chunk = 0; 2699 2700 prev_end = VMALLOC_START; 2701 2702 rcu_read_lock(); 2703 2704 if (list_empty(&vmap_area_list)) { 2705 vmi->largest_chunk = VMALLOC_TOTAL; 2706 goto out; 2707 } 2708 2709 list_for_each_entry_rcu(va, &vmap_area_list, list) { 2710 unsigned long addr = va->va_start; 2711 2712 /* 2713 * Some archs keep another range for modules in vmalloc space 2714 */ 2715 if (addr < VMALLOC_START) 2716 continue; 2717 if (addr >= VMALLOC_END) 2718 break; 2719 2720 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING)) 2721 continue; 2722 2723 vmi->used += (va->va_end - va->va_start); 2724 2725 free_area_size = addr - prev_end; 2726 if (vmi->largest_chunk < free_area_size) 2727 vmi->largest_chunk = free_area_size; 2728 2729 prev_end = va->va_end; 2730 } 2731 2732 if (VMALLOC_END - prev_end > vmi->largest_chunk) 2733 vmi->largest_chunk = VMALLOC_END - prev_end; 2734 2735 out: 2736 rcu_read_unlock(); 2737 } 2738 #endif 2739 2740